

MSIT
St. '<fabriel's Library , Au

Guideline for Effective Module Reuse

by

Ittiphol Orachoonwong

Submitted in Partial Fulfillment of
the Requirement for the Degree of

Master of Science
in Information Technology

Assumption University

November, 1999

The Faculty of Science and Technology

Thesis Approval

Thesis Title
By

Guideline for Effective Module Reuse
lttiphol Orachoonwong

Thesis Advisor
Academic Year

Dr. Peraphon Sophatsathit
2/1997

The Department of IT, the Faculty of Science and Technology of Assumption University
had approved this final report of the twelve credits course, IT7000 Master Thesis,
submitted in partial fulfillment of the requirements for the degree of Master of Science in
Information Technology.

Approval Committee:

L
''I / . / ;' --/;,.- (i --·

<. t tJ.:L ... - __,JJ;"/i .S.:.i'f?l}· --
---------;1--------.::::7----------- -----------~:-~-~------
(Dr. Peraphon Sophatsathit)

Advisor

(Dr. Vichit Avatchanakorn)
Committee

Faculty Approval:

~¥-!,'' .,
_____ 2L~~
(Dr. Thotsapon Sortrakul)

Director

(Prof. Dr. Chidchanok Lursinsap)
MUA Representative

.---~ ,~--

. ~ ~/I/',/·~ .

----~-~:.~~--~---L--~-----------
c Q{' Jirapun . Daengdej)

Committee

(Asst. Prof. Dr. Pratit Santiprabhob)
Dean

Novembe.v- I 1qqq
Month/Year

ACKNOWLEDGMENTS

I would very much like to express my deep gratitude to my advisor, Dr. Peraphon

Sophatsathit, who provide endured and patiently answered dozens of questions, who put in

the usual long hours and check every line of my paper. Without his constructive criticism

and suggestion, this work would not have been possible.

I would like to thank all of the committee members, Dr. Vichit Avatchanakorn, Dr.

Jirapun Daengdej, and Prof. Dr. Chidchanok Lursinsap for graciously spending their

valuable time and efforts in reviewing my thesis.

My thanks go to all faculty members and secretaries for their encouragement, and

also to acknowledge all the colleagues at S&T NOC, INFORES, and JAVA Center for

helping me manage many things. I would like to thank all my friends (Pawut, Vatha, and

Areya), my brothers (Paitoon, Pipat, Sakon, Keattisak, Sanguan and Suparwat) and my cute

sisters (Pornpimon, Supannika, Phikul, Sudaporn and Sudsui), who kept in touch with me.

I, however, must apologize for being unable to name the rest of him or her

individually in this limited space. I am aware that without their own initiative and support,

I might never have had a source of inspiration to write my thesis like this.

ABSTRACT

Recycling of existing code, or code reuse, simplifies the task of software

development considerably. Traditional code reuse encompasses the extent to which code

can be used in different applications with minimal change. This paper proposes a study on

code reuse to determine some guidelines for writing new code by means of reuse. The

main objective is to establish a framework for reuse component so as to increase software

development productivity and quality.

The results of this study confirm the benefits of code reuse over conventional

reinventing the wheel approach. One distinct characteristic so obtained is that a reusable

component is easier to incorporate into existing software under construction than to

reinvent it with fewer errors and efforts to complete.

Keywords: Code Reuse, Modularity, and Reusable Component.

11

ACKNOWLEDGMENTS

ABSTRACT

LIST OF FIGURES

LIST OFT ABLES

St. Gabriel's Library

TABLE OF CONTENTS

CHAPTER l: INTRODUCTION

1.1 Background

1.2 Motivation

1.3 Objectives

1.4 Scope of work

CHAPTER 2: AN APPROACH FOR CODE REUSE

2.1 Framework for building reusable code

2.2 Proposed Guidelines

CHAPTER 3: EXPERIMENT AND ANALYSIS

3.1 Experiment conditions and evaluation metrices

3.2 Example of module reuse

3.3 Experiment environment

3.4 Experiment results and analysis

CHAPTER 4: CONCLUSIONS

REFERENCES

APPENDIX A: MaCabe and Halstead Complexity Metrics

APPENDIX B: A sample calculation the productivity and the quality

APPENDIX C: Program structure chart in the experiment

11

lll

IV

4

5

7

7

11

17

17

19

27

68

76

78

80

82

85

LIST OF FIGURES

Figure 1-1: An objective of proposed guidelines

Figure 2-1: a) Tight coupling and b) Loosely coupled

Figure 2-2: Tightly coupled of no. of credits value

Figure 2-3: Loosely coupled of Tcredit into a function

Figure 2-4: Modularity model of both GP A Computing Module

5

7

8

8

and Register Fee Module 9

Figure 3-1: A procedure NameFormat to be selected for a reusable component 20

Figure 3-2: A new DataFormat function built from adapting old procedure 21

Figure 3-3: Redundancy code obtained from modifying DataFormat function 22

Figure 3-4: SetName changed to constant data 23

Figure 3-5: A practical reusable component 24

Figure 3-6: Program structure chart of Electronic Phone System developed

by conventional approach

Figure 3-7: Program structure chart of Electronic Phone System developed

by reuse approach

25

26

Figure 3-8: Comparison of both (1) traditional approach and (2) reuse approach 69

Figure 3-9: Comparison of three style of programming languages based on

productivity. 73

Figure 3-10: Graphical comparison of programming languages based on quality. 73

lll

LIST OF TABLES

Table 1-1: Comparison guidelines for code reuse by means of

feature perspectives

Table 3-1: Representing characteristics of new reuse component in

Get_Sentence Module.

Table 3-2: Representing characteristics of new reuse component in

Random Value Module.

Table 3-3: Representing characteristics of new reuse component in

Binary Search Module.

Table 3-4: Representing characteristics of new reuse component in

Move_Elevator module.

Table 3-5: Representing characteristics of new reuse component in

Shuffle Module.

Table 3-6: Representing characteristics of new reuse component in

BucketSort Module.

Table 3-7: Representing characteristics of new reuse component in

Maze Traversal Module.

Table 3-8: Representing characteristics of new reuse component in

DataMerge Module.

Table 3-9: Representing characteristics of new reuse component in

SpanWaveEven Module.

Table 3-10: Representing characteristics of hew reuse component in

both Open_Source and Print_Message modules.

IV

3

29

31

33

35

37

39

41

43

45

47

Table 3-11: Representing characteristics of new reuse components in

both Similarity Search and Display Module. 49

Table 3-12: Representing characteristics of new reuse component in

CheckFormat Module. 51

Table 3-13: Representing characteristics of new reuse component in

Distance_ Coordinate module. 53

Table 3-14: Representing characteristic of new reuse component in

BinaryTreeSearch module. 55

Table 3-15: Representing characteristics of new reuse component in

NewBinSearch module. 57

Table 3-16: Representing characteristics of new reuse component in

GenRandomDigit module. 59

Table 3-17: Representing characteristic of new reuse method in

NewBinTree object. 61

Table 3-18: Representing characteristic of new reuse method in

MovieTicketBooth object. 63

Table 3-19: Representing characteristic of new reuse method in

Softdrink VendingMachine object. 65

Table 3-20: Representing characteristics of new reuse method in

TicketVendingMachine object. 67

Table 3-21: Results comparing code reuse and conventional code writing 68

Table 3-22: Comparison of productivity and quality using LOC measurement 70

Table 3-23: Comparison of productivity and quality using complexity

measurement 71

v

Table 3-24: Comparison of programming languages based on productivity 72

Table 3-25: Comparison of programming languages based on quality 72

Vl

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND

Reuse is an efficient technique for saving resources and efforts. When we talk

about reuse in writing software, code reuse should be the first thing that comes to mind

in that reuse not only increases software productivity, but also entails better quality

software, improves software system interoperability, and utilizes fewer manpower and

efforts.

Implementing a reuse discipline entails more than creating and usmg reuse

libraries. It requires formalizing the practice of reuse by including support for reuse in

software development methods, tools, training, incentives, and measurements. Unless

reuse is built explicit and formalized, an organization will not be able to repeatedly

exploit reuse opportunities in multiple software projects. Without this repetition, the

improvements to the software process that result from reuse will be limited.

1.2 MOTIVATION

Today most application domains are computerized as many organizations are

searching ways to increase software development productivity, timeliness of delivery,

and long term reduction in costs of software development and maintenance. As such

developers must change their coding discipline to cope with development life cycle.

Before getting on to reuse fundamentals, the principle aspect of code reuse is that

code incorporated into software under construction can be reused from other programs

in the form of modular routines. Such an application can be carried out easier than

writing similar code that spreads across a large routine [4]. As such, developers are

looking for ways of writing less of code [5], or search for ways of writing code faster.

Toshiba Software Factory reported 50% reuse over its product line in 1989

which resulting in productivity increased by 57% [7]. GTE Data Services reached a

50% reuse level in the third year of their reuse program which yielded in $12 million

savings [8]. And US Naval Surface Warfare Center, Virginia Beach, VA [2] built a

common architecture for a family of combat direction systems by mean of reuse. On

fourteen ship system upgrades, the center achieved a level reuse of 89-99%, a 3-fold

reduction in defects, and an 8-to-10 fold increase in productivity. These are some

examples of reuse success stories.

Although object-oriented technologies support and encourage the reuse asset,

they don't explicitly describe how to determine the reuse potential of a component such

as an object class or framework [9]. In addition, it is important to understand that using

object technology does not result in automatic reuse. Although object technology [1]

does encourage a reuse mindset and object-oriented techniques such as encapsulation

and inheritance support reuse, object technology and reuse are not one and same thing.

Furthermore, object technology is neither sufficient nor essential to reuse. We can say

that object technology is not a prerequisite for reuse.

In Japan, object technology is not necessarily accepted in developing mission

critical systems, because it is difficult to understand [13] because many people are eager

for rapid, inexpensive, and high-quality system development by reusing existing

software components.

The potential for reuse is enormous [1], smce the majority of each new

application system could be assembled from reusable software parts, assuming that the

appropriate parts could be predetermined, built, and made readily available to system

developers.

There are, however, many reasons for reuse failures precipitating from the efforts

which have been blocked by many serious management and technical obstacles, such as

2

Jack of understanding about why to practice reuse, no tools to support the practice of

reuse, no methodology support for reuse and so forth. One reason of reuse failure which

coincides to the objective of this work is a set of guidelines for code reuse.

A good reason of establishing these guidelines is that each programming

language has its own features and rules. There is no pre-defined approach as to how

reuse should be carried out in each language. Thus, it is hard for the developers to find a

set of common reusable guidelines that fits the developers' needs.

A preliminary literature review was conducted in order to understand the

fundamental of code reuse in software development. Three source addressing different

aspects of code reuse were selected to provide some principal aspects of reuse features.

They are Software Reuse Guideline (Paper I) [15], Designing for Reuse (Paper II) [16],

and Rationale for the Design of Reusable Abstract Data Type Implemented in Ada

(Paper III) [17]. Table 1-1 shown the feature of guideline papers.

Table 1-1: Comparison Guidelines for Code Reuse by means of feature perspectives

Analysis perspectives Guidelines for Code Reuse

Paper I Paper II Paper III Proposed Guideline

a) Programming Language Independent Delphi Ada Independent

b) User Levels Casual Sophisticated Casual Sophisticated

c) Domain structure Undefined Semantic Specialized Specialized

d) Characteristics of Guideline Advice Practical Advice Advice

Paper I describes some general principles of modular design at a highly

conceptual level, such as representation of module design abstraction by means of a high

cohesion for closely-knitted code, or loose coupling for largely independent code.

Unfortunately, these characteristics are too abstract and unmeasurable. Paper II and

Paper III emphasize on specific programming languages such as Delphi and Ada,

3

respectively. Paper II considers a set of practical reuse guidelines such as how to make

a method protected instead of private and how to avoid nested procedures or references

to private part in virtual methods. On the other hand, Paper III offers useful advice such

as why user interface must be clean, or avoid implementing a certain package in such a

way that it maintains state in private variables.

The issues established by these papers represent application step in software

development. There is no coherent conceptual framework that integrates all the steps

into a set of common guidelines for software code reuse. This study, therefore, proposes

a set of practical guidelines that serve as an easy to understand step by step code reuse

approach.

These motivations and the lack of reuse methods reinforce to establish the

standard guideline that language is independent and supports functional programming

languages, object-based programming languages and object-oriented programming

languages. By following these proposed guidelines, developers are not constrained to

implement the objected-oriented technology by reuse existing components because the

proposed guidelines aim to support an independent programming language by means of

reuse. Furthermore, the proposed guidelines will help or improve generic code for

reuse.

1.3 OBJECTIVES

The following describe the objectives of this thesis:

1.3 .1) To present a step-by-step approach for code reuse in software

development based on a simple premise that if a code segment cannot be changed easily,

it is not a good candidate for reuse.

1.3.2) To establish a set of proposed guidelines for code reuse in small module

software which preserve the stated.

4

1.3.3) To present the results of an experiment which demonstrate why the notion

of code reuse is superior to reinventing the wheel.

The above objectives can be summarized as shown in Figure 1-1. The figure

depicts how developers can methodically apply the proposed guidelines in their software

development effort by combining existing code along with outside code to create

potential (module) code for reuse.

Existing code

11
Developing code

Using
existing code

.____;
Proposed Guidelines

D
Potential Code

for Reuse

Figure 1-1: An objective of the proposed guidelines

1.4 SCOPE OF WORK

Outside code

11
Developing code

Using
Outside code

Based on the above objectives a framework for code reuse is defined so as to

establish the scope of reuse. This thesis proposes a study on code reuse to determine a

set of guidelines for writing new code by means of reuse for which scope of work are as

follows:

5

a) The proposed guidelines must build or improve new reusable components

which correspond to the functional requirements or specifications.

b) The proposed guidelines aim to support code reuse that must be independent

of programming languages, i.e., procedural programming language, object

based programming language, and object-oriented programming language.

c) The guidelines aim at supporting sophisticated end-users whose meet their

complex requirements; Casual end-users are not incorporated.

d) The small-scale experiments are set to verify the proposed guidelines which

are based on small module code development less than 1500 lines of code.

e) The step-by-step proposed guidelines is built so as to guide developer in

creating potential reuse code (as illustrated in Figure 1-1).

Someone says that the best way of building instrument for saving energy is to

build human resource. This notion is reflected by the proposed guidelines attempting to

save the resources and programming efforts.

The remaining of this thesis is organized as follows: Chapter 2 establishes an

approach for code reuse and the proposed guidelines. Some experiments and Analysis

were conducted and described in Chapter 3 based on the above guidelines and the

concluding remarks are given in Chapter 4.

6

CHAPTER 2: AN APPROACH FOR CODE REUSE

2.1 FRAMEWORK FOR BUILDING REUSEABLE CODE

The fundamental principle of building code for reuse is to construct reusable

components that are easier to reuse than to reinvent. If a code segment cannot be

changed easily, it is not a good candidate for reuse.

We proposed a framework for building reusable code having the following

principal characteristics:

a) Coupling

We proposed reusable code to be loosely coupled over tightly coupled because

any change in the data component of reusable code would not require major revisions in

other code component. In other words, loosely coupled construct enables module to be

detached or attached with minimal side effects as oppose to tightly coupled construct.

This fact is illustrated by two coupling models in Figure 2-1.

Module A Module B Module A Module B

A's data B's data

Shared data area

(a) (b)

Figure 2-1: a) Tightly coupled and b) Loosely coupled

As depicted in Figure 2-2, the sample code computes GPA based on the number

of subjects taken in order to determine the total credits (line 16) for use in GPA

computation. The accumulated .value of Tcredit, however, is also required by the

Register module. As a consequence, Tcredit is a shared data area access by both GPA

module and Register module.

7

1 (* This is a procedure to compute GPA oE student *)
2 Procedure GPA_Computing(NoSubject integer
3 var Tcredit : integer);
4 Var
S GPA, Temp : real;
6 Begin
7 while NoSubject > 0 do
8 begin
9 I* ReadData is a procedure for reading SubjectID and Grade form file *)
10 ReadDataGSubjectID, Grade);
11
12 (*Credit() is a function to match the no. of credit per subject and
13 Vgrade() is a function to translate grade character to integer *)
14 Temp :=Temp+ (Credit(SubjectIDJ * Vgrade(Grade));
15 NoSubject := NoSubject - l;
16 Tcredit := Tcredit + Credit(SubjectID);
17 end;
18 GPA := Temp I Tcredit;
19 End;

Figure2-2 : Tightly coupled of no. of credit value

On the contrary, development for reuse advocates a loosely coupled

configuration because the components built are independent of the remaining code. As

depicted m Figure 2-3, Tcredit is decoupled into a function for greater flexible reuse

purposes.

1
2
3
4
5

(* Tcredit is a function to compute the total
Function Tcredit(NoSubject:integer): real;
Begin

while NoSubject > 0 do
begin

credit *)

6
7

I* Credit() is a function to match the no. of credit per subject *)

Tcredit .- Tcredit + Credit(SubjectID);
8 NoSubject .- NoSubject - l;
9 end;
10 End;
11
12 (* This is a procedure to compute GPA oE student *)
13 Procedure GPA_Computing(NoSubject integer
14 var Tcredit : integer);
15
16

Var
GPA, Temp : real;

17 Begin
18 while NoSubject > 0 do
19 begin
20 (* ReadData is a procedure for reading SubjectID and Grade form file *)
21 ReadData(SubjectID, Grade);
22
23 Temp .- Temp+ (Credit(SubjectID) * Vgrade(Grade));
24 NoSubject .- NoSubject - l;
25 end;
26 GPA .- Temp I Tcredit(NoSubject);
27 End;
28
29 (* This is a procedure to compute the register Eee of student *)
30 Procedure RegisterFee_Computing(NoSubject: integer);
31 Var
32 ReFee : real;
33 Begin
34 (* 7'credit() is a function compute total credit *)
35 ReFee := Tcredit(NoSubject) * PricePerCredit;
36 writeln(ReFee);
.37 End;

Figure 2-3: Loosely coupled of Tcredit into a function.

8

b) Modularity

It is imperative that high degree of modularity [6] be desirable because it

simplifies the design process and makes the overall product easier to maintain. As a

consequence, developers are free to combine the components in a number of different

ways to create new modular components for specific needs.

For example, if a developer wanted to compute the GPA and Registration Fee for

every student, he could make total credit a reuse function to be invoked by both modules

as shown in Figure 2-4.

RegisterFee
GPA

Computing
Module

Module

I I
I

TotalCredit

Figure2-4 : Modularity model of both GPA Computing Module and Register Fee

Module.

c) Information Hiding

Information hiding [2] enables software developers to be free from delving into

the implementation detail of the reuse components. Hence, the derived component's

complexity is considerably reduced.

d) Abstract Data Type (ADT)

ADT serves as the format of building reusable code segment. The main purpose

is to easily cement the difference between the existing component and the additional

code into a unique component.

9

Based on the above framework, we shall address the problems of software

development with code reuse step by step as follows:

o Preliminary investigation

In this stage, the developers must search for applicable code to be incorporated

into the system under investigation. Typical reusable pools include language and run

time libraries, built-in packages, etc.

o Analysis

During system analysis stage, developers must know which component in the

existing software can be replaced by reusable code. Before developers decide to choose

the candidate code segment, they have to analyze the design to ensure that the candidate

code segment performs the required function. Should there be any modification, it must

be kept to minimal. The analysis also encompasses the reuse domain of the applicable

candidate code for compatibility and correctness with the rest of the system.

o Design

This is the heart of code reuse in that developers must have a clear view as to

where the reuse component will be integrated into the overall structure of the software.

Code reuse will help improve the quality of software design owing to the

aforementioned framework. In addition, development time and cost will also be reduced

as more reusable components are being utilized. The resulting component can be used

by subsequent modular component interchange.

10

2.2 PROPOSED GUIDELINES

MSIT
St. Gabriel's Library~ Au

,• 093 ~. 1
Based on the framework discussed, the guidelines for adapting reuse components

that meet the reuse specification are as follows:

1. Look ahead to adapt and/or modify the reused component to take full

advantage of reuse opportunities.

Building application systems from reusable components is based on the

assumptions that reusable components exist somewhere, they are reasonably easy to find

and understand, and they are of good quality. So if the time to search for candidate

reusable components is too long in the developer's eyes, developers should decide to

build the component from scratch rather than reusing existing components.

Developers must identify the code segment in order to locate and select

candidate components suitable for the desired system functional requirements. The

procedural guidelines for looking ahead and selecting the existing reusable components

are follows as:

1) Determine the reuse component that corresponds to the functional requirements.

2) Determine any available application packages or programming languages that fit the

type of the above reuse component.

3) While searching for existing components to be reused in whole or in part, gather not

only code but also the associated documentation.

4) Assess the quality of candidate components, as quality is key to reusability by

considering whether

4.1) it is properly modularized and well-documented,

4.2) it is furnished with history of use, and

4.3) it has a reliable record.

11

5) Assess the portability of the candidate component suitable for reuse specification as

follows:

5.1) special or additional tools required to support the use of the candidate

component,

5.2) constraints imposed by the candidate components, e.g., for example,

programming language, platform specific requirements, etc.,

5.3) savings from reuse components as opposed to building them from scratch.

Carma McClure [9] suggests a simple rule of thumb: "The estimated saving

should be at least 30 percent to make it worth reusing.",

5 .4) performance gain from reuse,

5.5) candidate component supporting loosely coupling, and

5.6) the extent of modification required for the reused components within the

functional requirement.

Before developers decide which candidate components to choose, they need to

define how to measure reuse potential of the components. The reusability of a

component is measured in terms of the percent of reuse guidelines satisfied. Reuse

potential is the ratio of number of guidelines satisfied by a component and the total

number of guidelines that are applicable. A component [1 OJ may be:

1. Weakly reusable whose potential for reuse is low, implying that the reused code

satisfies fewer than 50% of the guidelines. It needs more efforts to redesign the original

component for reuse.

2. Limitedly reusable whose potential for reuse is high, implying that the reused code

satisfies between 50-70% of the relevant guidelines and needs some efforts to improve

it.

12

3. Strongly reusable whose potential for reuse is high, implying that the reused code

satisfies between 70-90% of the relevant guidelines and needs little modification to

improve it.

4. Immediately reusable whose potential for reuse is very high, implying that the

reused code satisfies more than 90% of the relevant guidelines and this can be reused as

is without modification.

There are two alternatives of component reuse, namely,

(1) Black-box adapting where the new functional requirements adapt the entire

selected component structure or design either from existing code or outside code

(see Figure 1-1) to fit the reuse component.

Black-box adapting requires that, developers focus on the functional

requirements of the software by adjusting the interface of reuse components

corresponding to the functional requirements to be a reuse component, e.g., changing

data type (from float to double in C language). Nevertheless, from OOP prospective,

developers may have to adapt or adjust certain private methods to protected or public

methods in order for reusability.

(2) White-box modifying where the selected component is modified to create a new

reuse component.

White-box modifying is to examme the procedural detail of the selected

components in order to ensure that the code meets requirements specification, as well as

improve processing performance. Primary modifications include data structure change

to comply with the requirement specification. For example, to accommodate unknown

number of inputs where the desired reuse component employs array structure, it is

essential that this array structure must be changed to some dynamic data structures such

as linked-list, stack, etc.

13

2. Investigate the code for redundancy to help identify opportunities for applying

additional reusable components.

When multiple software components provide the same function, or serve the

same purpose, or define the same data, redundancy can occur in the designated domain

or sub-domain. The developer should look for the redundant code in that domain to

apply candidate reuse components.

A direct approach to program investigation employs flow graph tools [6] to

locate redundant code through visual examining the resulting flow graphs. Such

redundant code decreases the quality and performance of software. To avoid those

problems, developers should check for redundancies by examining [9] the code that:

1) has the same or similar names,

2) uses the same or similar input and produces the same or similar output,

3) satisfies the same or similar requirements,

4) has the same or similar flow graphs,

5) has the same of similar complexity values based on McCabe Complexity

metrics [14] or Halstead Software Science Metrics [14]. (See Appendix A.)

As redundant code is identified, developers should create a new code module or

component to replace the redundant module. The resulting component code will support

vanous newly acquired or established implementations which can be subsequently

reused.

Remember that make more reusable, developer should limit size of component in

mind such as function, procedure, class, or methods because it 's easy to understand and

maintenance.

14

3. Follow the empirical frameworks while creating new components of reuse.

Developers should analyze the reuse specification flexibility and extensibility to

establish code inter-dependence. This is equivalent to creating new components. To

ensure this reusability framework, the code component should have the following

characteristics:

o Loosely Couple between components

o High Cohesion within the component

o Modularity and encapsulated for reuse

o Simple Interface

Some mechanisms conducive to the above characteristics should involve

• minimal no. of parameters to decrease potential errors and processing time,

• minimal no. of reads and writes in the reused component, and

• proper comments to clearly describe the reused component.

4. Assess the reuse specification corresponding to the functional requirements and

specification for reuse archival purpose.

In completing a domain reuse, the component must be checked against functional

requirements and, if possible, archived future reuse by means of standard testing

methods via black-box testing [1]. Evaluation is typically determined by testing its

inputs and the corresponding outputs. All assessed components represent new generic

versions of code. The new reuse component must be explicitly organized to categorize

how individual component is functionally similar or different. This is equivalent to

building relations to a collection of objects.

15

Developers can use naming scheme of parameterization and/or inheritance

hierarchy to denote all the components captured as synonyms for subsequent searches

and retrievals. Such activities, in effect, serve as the compilation step of archiving a

code repository for future development reuse.

16

St. Gabriel's Library

CHAPTER 3 EXPERIMENT AND ANALYSIS

3.1 EXPERIMENT CONDITIONS AND EVALUATION METRICS

In this chapter, a set of experiments is conducted to validate the proposed

guidelines by means of reuse approach in comparison to code rewrite approach. The

experiment exercised twenty small programs which involved more than fifty

components. The nature of the problems based primarily on Transaction Processing

Program (TPP) are solved by various programming languages such as C, Pascal, Delphi,

and Java.

In each experiment, the same programmer was assigned to complete a program

by means of both approaches which were controlled by the similar functional

requirements and programming language.

The experiments employed traditional software metrics, namely, time spent,

number of errors, and lines of code (LOC), to measure programming efforts and

efficiency. As such, the result of each experiment focused on the followings:

I. Time spent, starting immediately after the programmer understood program

requirements and began designing/modifying the program;

2. No. of errors, encompassing all errors after the program has passed

compilation step. This includes any improper outputs resulting from invalid

requirements; and

3. Lines of Code, comparing quantitatively the size of the program obtained

from both approaches.

Results of the experiment were analyzed to yield the productivity and quality of

the software product below.

17

1. Productivity and quality by means of Lines of Code

Size-oriented software metrics [6] are direct measures of software and the

process by which it is developed. Those formulas involve:

Productivity =

Quality

KLOC/person-hour

defects/KLOC

2. Productivity and quality by means of complexity

Function-oriented software metrics [6] are indirect measures of software and the

process by which it is developed. Rather than counting LOC, function-oriented metrics

focus on program "functionality" or "utility" based on function point measure.

To compute function point, the following relationship is used:

FP count-total * [0.65 + 0.01 * SUM(Fi)]

where count-total is the sum of all entries obtained such as no. of user inputs, no. of user

output, no. of files, and Fi are complexity adjustment values based on responses to

questions noted. Resulting productivity and quality can then be computed in a manner

analogous LOC as follows:

Productivity

Quality =

FP I person-hour

defects I FP

18

3.2 EXAMPLE OF MODULE REUSE

This section demonstrates how to build a new reusable component by following

the proposed guidelines in step by step using an Electronic Phone System as case study.

An Electronic Phone System (EPS) was chosen to demonstrate the viability of

the proposed guidelines. The EPS is a programming system that collects personal

information such as first name, surname, address, and telephone number for on-line

inquires. One of the requirement specifications is to validate input data from the user

and to gather all invalid inputs in an error_log file. Based on the proposed guidelines

and this experiment specifications, a reusable component search plan for solving this

problem was laid out as follows:

a) Type of the reuse domain

b) Domain description

c) Program constraints

d) Associated documentation

- examme functions of which process name,

address, or telephone.

- validate input data typed in by the user which are

primarily characters.

- Functions written in Pascal or C.

- if required.

e) Quality of candidate components - reliability record and history of reuse.

The process proceeded as shown below.

19

Assuming that developer has already passed to search and select the existing

reusable components in accordance with reuse specifications. Because in this section is

to attempt how to modify the reuse module from candidate module. Supposedly,

NameFormat procedure was selected as a candidate for reuse. The example code is

shown in Figure 3-1.

(* This is a procedure for check format data t.YPe of name *)
Procedure NameFormat (Min,Max integer;

Name string);
Var

SetName
Long, i
ErData

set of char; I* To declare available set of name type

Begin
SetName
Long

. -

. -

integer;
boolean;

['A' .. 'Z', 'a' .. ' z' l;
length (Name);

(* To declare

I* To initial
(* To measure

(* Condition if, for exam the length of data *)
if (Long> (Min-1)) and (Long< (Max+l)) then

begin

the status of error data

the set of name *)
the length of data *)

(* To initial data of i for start at the first position in string *)
i : = 1;

(* Repeat loop, for exam the invalid data type in the set of name *)
repeat

if Name[i] in SetName then
I* To increase i for going to the next position *)
i := i + 1

else
begin

writeln('Invalid
Erdata := true;

end;
until (i:=(Long+l)) or

end

in data type of Name');
(* To declare the status of error data *)

(Erda ta = true);

else

End;

begin
(* Condition if, for exam the minimum data input *)
if (Long < Min) then

writeln('Error in the minimum data input');

(* Condition if, for exam the maximum data input *)
if (Long > Max) then

writeln('Error in the maximum data input')
end;

*)

Figure 3-1: A procedure NameFormat to be selected for a reusable component

20

*)

For first step of the guidelines, we look ahead to adapt and/or modify the

reused component to take full advantage of reuse opportunities.

Adaptation and modification were required to tailor the above procedure suitable

for reuse. Figure 3-2 shows the code adjustment from programmer in bold. The

procedure was converted to a function on line no. 2 because new function and variable

names were established to convey a more meaningful program understanding in the

form of general aliases. According to the adapting interface (Black-box), the function

was required to perform code change (White-box) on line no. 12, 26, and 40.

1 (* This is a function to check format data type of name. *)
2 Function DataFormat (Min.Max : integer;
3 Data : string) : boolean;
4 Var
5 SetName set of char; (* To declare variable set of name type *)
6 Long, i integer;
7 ErData boolean; (* To declare the status of error data *)
8
9 Begin
10 SetName .- ['A' .. 'Z', 'a' .. 'z'];
11 Long length(Data);
12 DataFormat := true;
13

(* To initial data set of name *)
(* To measure the length of data *)
(* To initial status of NameFormat *)

14 (* Condition if, for exam the length of data *}
15 if (Long > (Min-1)) and (Long < (Max+l)) then
16 begin
17 i := l; (*To initial i for start at the first position *)
18
19 (* Repeat loop, to examine the invalid data type of name *)

20 repeat
21 if Data[i] in SetName then
22 i := i + 1 (* To increase i in order to go to the next position *)
23 else
24 begin (* Invalid in data type of name *)

25 writeln('Invalid in data type of Name');
26 DataFormat := false; (* To declare the status of error data *)
27 end;
28 until (i:=(Long+l)) or (DataFormat =false);
29 end
30 else
31 begin
32 (* Condition if, for exam the minimum data input *)
33 if (Long < Min) then
34 writeln('Error in the minimum data input');
35
36 (* Condition if, for exam the maximum data input *)
37 if (Long > Max) then
38 writeln('Error in the maximum data input');
39
40 DataFormat := false; (* To declare the status of error data *)
41 end;
42 End;

Figure 3-2: A new DataFormat function built from adapting old procedure

21

St. Gabriel's Library

The second step is to investigate the code for redundancy to help identify

opportunities for applying additional reusable components.

An approach to redundant code investigation employs flow graph tools to locate

redundant code with the help of visual examining. As depicted in Figure 3-3, a new

reusable component was promoted replacing redundancy code on line no. 25, 34, and 38

respectively. The new ErrorLog procedure generalized error invocation stemming form

different error types, for example, ErrorLog(21) on line 34 means that the user inputs

fewer data than the minimum requirement.

Additional redundant code founded by flow graph is obtained from redundancy

checking on line 33 and 37 shown in Figure 3-2.

1 (* This is a function to check format data tJ11>e of name. *)
2 Function DataFormat (Min, Max : integer;
3 Data : string) : boolean;
4
5
6
7
8

Var
SetName set of char; (* To declare variable set of name type *)
Long, i
ErData

9 Begin

integer;
boolean; (* To declare the status of error data *)

10 SetName .- ['A' .. 'Z', 'a' .. 'z']; (* To initial data set of name *)
11 Long .- length(Data);
12 DataFormat .-
13

true;
(* To measure the length of data *)
(* To initial status of NameFormat *)

14
15
16
17
18

(* Condition if, for exam the length of data *)
if (Long> (Min-1)) and (Long< (Max+l)) then

begin
i := l; (* To initial i for start at the first position *)

19
20
21
22
23
24
25
26

(* Repeat loop, to examine the invalid data type of name *)
repeat

if Data[i] in SetName then
i := i + 1 (* To increase i in order to go to the next position *)

else
begin

ErrorLog(ll);
DataFormat := false;

27 end;

(* Invalid in data type of name *)
{* To send code 11 to ErrorLog function *)
(* To declare the status of error data *)

28 until (i:=(Long+l)) or (DataFormat =false);
29 end
30 else
31 begin
32 (* Condition if, for exam the minimum data input *)
33 if (Long < Min) then
34 ErrorLog(21) (* To send code 21 to ErrorLog function *)
35 else
36 (* Cond"ition j.f, for exam the maximum data input *)
37 if (Long > Max) then
38 ErrorLog(31); (*To send code 31 to ErrorLog function *)
39
40 DataFormat .- false; (*To declare the status of error data *)
41 end;
42 End;

Figure 3-3: Redundancy code obtained from modifying DataFormat function

22

The third step is to follow the empirical frameworks while creating new

components of reuse.

According to the code of DataFormat function, SetName (Line 10 of Figure 3-2)

was tightly coupled with a set of alphabet. As such, SetName was changed to a constant

variable as depicted in Figure 3-4.

Program ElectronicPhone (Input, Output);
Type

SetChar = Set of char;
Var

SetName,
SetAddress,

(* To declare a SetName in global variable *)

SetPhone SetChar;
(* To declare a SetAddress in global variable *)
(* To declare a SetPhone in global variable *}

(* This is a procedure to initialize the
Procedure InitializeDataSet(var SetName,
Begin

SetName . - ['A' .. 'Z' , 'a' .. 'z'] ;

set of Name, address, and phone nwnber *)
SetAddress, SetPhone: SetChar);

SetAddress . - ['A' .. 'Z' , 'a' .. 'z' , 0 .. 9, 'I' , ' . 'l ;
Set Phone

End;
.- [0 .. 9];

Figure 3-4: SetName changed to constant data.

23

Finally, the last step of guideline advises developer to assess the domain

reuse specification corresponding to the functional requirements and specification

for reuse archival purpose.

The sample code was further generalized for reuse as shown in Figure 3-5.

1 (* This is a function for check format data type of name *)
2 Function DataFormat (Min,Max : integer;
3 Dataset : SetChar;
4
5 Var
6 Long, i

ErData 7
8
9 Begin
10

integer;
boolean;

Data : string) : boolean;

I* To declare the status of error data *)

11 Long := length(data); (* To measure the length of data *)
(* To initial status of NameFonnat *) DataFormat := true; 12

13
14
15
16
17
18

(* Condition if, for exam the length of data *)
if (Long> (Min-1)) and (Long< (Max+l)) then

begin
i := l; I* To initial value of i for start at the first position *)

19 I* Repeat loop, to examine the invalid data type of name *)
:20 repeat
21 if Data[i] in Dataset then
22 i := i + 1 I* To increase i for going to the next position *)
23 else
24 begin I* Invalid in data type of name *)
25 ErrorLog(ll); (* To send code 11 to ErrorLog function *)
26 DataFormat := false; (* To declare the status of error data *)
27 end;
28 until (i:=(Long+l)) or (DataFormat =false);
29 end
30 else
31 begin
32 I* Condi.tion if, for exam the minimum data input *)

33 if (Long < Min) then
34 ErrorLog(21); (*To send code 21 to ErrorLng function *)
35 else
36 I* Condition if, for exam the maximum data input *)
37 if (Long > Max) then
38 ErrorLog(31); (* To send code 31 to ErrorLog function *)
39
40 DataFormat := false; (* To declare the status of error data *)
41 end;
42 End;

Figure 3-5: A practical reusable component

The example experiment affects the effective reusability as shown in program

structure chart, comparing developed with conventional approach and developed with

reuse approach. Figure 3-6 and Figure 3-7 represent the same program as program

structure chart conducting with conventional approach and reuse approach respectively.

24

Main

Insert Update Delete

lnputFromFile lnputFromUser

NameCheck SurnameCheck AddressCheck

Figure 3-6: Program structure chart of Electronic Phone System developed by

conventional approach

In program structure chart of Figure 3-6, Insert module requires 4 components

for checking data, namely, Name, Surname, Address, and Telephone number. On the

contrary, the reuse approach only requires FormatCheck module.

25

Display

[Main

I

---·--

Insert Update Delete Display

_J

f i i
[lnputFromFile lnputFromUser

I I

FormatCheck

Figure 3-7: Program structure chart of Electronic Phone System developed by reuse

approach

Based on the above example, we can compare the percent of reusability of both

approaches by

L NumberOf Re use/nEach Re usedltims
PercentageOJ Re usability ::::: 100 x -----· ---------

TotalNumberO.fltems

Note: (1) Each reuse item of developed with conventional approach is reused twice.

(2) DataFormat item of developed with reuse approach is reused eight times.

26

~
J

Calculation

Reusability(Conventional approach)

Reusability(Reuse approach)

= 100 x [2 + 2 + 2 + 2]
20

= 40%

= lOOx [s]
17

= 47.05%

The reusability results confirm that the increasing percent of reusability of reuse

approach is greater than the reusability of conventional approach.

3.3 EXPERIMENT ENVIRONMENT

Twenty experiments are employed to validate the proposed guidelines usmg

conventional approach and reuse approach. Each experiment comprises different

modules under different in environment. Thus, each experiment has different

environment factors to create the desired module. The description of each sample

experiment explains all relevant details to the module.

27

St. Gabriel's library

Experiment # 1: Get_Sentence

1. Objective: To develop a new Get_Sentence module.

2. Propose: To build a new GetSentence component inside Get_Sentence module by

reusing an existing component.

3. Program environment:

3.1 Language: Pascal

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo Pascal)

4. Characteristic of module:

4.1 Function: to collect a first sentence of string input.

4.2 No. of component inside: 1 component

5. Candidate of existing reuse component: GetWord procedure

6. Description:

A candidate component (GetWord) will read all characters in string and collects

a word by founding first blank character. That is similar idea, a new component

(GetSentence) will collect a sentence when a full stop founded. A program structure

chart is depicted in Figure C-1 (See Appendix C).

7. Procedure:

7 .1 Changing title of a candidate component (GetW ord) to a proper new

component (GetSentence) that corresponds to the requirement specification.

7.2 Modifying a little bit inside new component (GetSentence) from a blank

character to a full stop character(.).

28

The characteristics of developed reuse component are represented in Table 3-1.

Table 3-1: Characteristics of new reuse component in Get_Sentence Module.

Component Name Structure Cyclomatic Complexity

GetSentence Procedure 2

8. Conclusion:

A GetSentence component is developed by modifying the candidate component

to be a new Get_Sentence module. So, a Get_Sentence module is a new effective

module for reuse archive proposed.

29

Experiment #2: Interactive Multiplication

1. Objective: To develop a new Random Value module

2. Propose: To build a new RandValue component inside RandomValue module by

reusing existing component.

3. Program environment:

3.1 Language: C

3.2 Programmer level: Sophisticated

3.3 Compiler: GCC

3.4 Editor: Notepad

4. Characteristic of Random Value module:

4.1 Function: To random value via parameter dependent

4.2 No. of component inside: 1 component

5. Candidate reuse component: rand function

6. Description:

Normally, a candidate component (rand function) gives a variable value such as

1 -1,000,000 digits which exceed the specification. So, a new component (rand Value

function) is used to identify the limited boundary of random value according to the

specification. A program structure chart is depicted in Figure C-2 (See Appendix C).

7. Procedure:

7 .1 Develop a new component (randValue function) which calls a candidate

component (rand function) directly without change, allowing immediate reuse of

a candidate component (rand function).

7.2 The result of candidate component (rand function) is modulated with 10 (in case

of one digits control), 100 (in case of two control), and 1000 (in case of three

digit control) to yield the desired number of output digits.

30

The characteristics of developed reuse component represented in Table 3-2.

Table 3-2: Represent characteristic of new reuse component in Random Value Module.

Component Name Structure Cyclomatic Complexity

RandValue Function 3

8. Conclusion:

The candidate component can be reused without change (Immediately reusable)

through RandValue component to build a new Random Value module.

Random Value module is a new effective module for reuse archive proposed.

31

So, a

Experiment #3: Binary Search

1. Objective: To develop a new Binary Search module

2. Propose: To build a new biSearchChar component inside Binary Search module by

reusing an existing component.

3. Program environment:

3 .1 Language : C

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo C)

4. Characteristic of Binary Search module:

4.1 Function: To search a student's name in from of binary search.

4.2 No. of component inside: 1 component

5. Candidate reuse component: biSearchlnt function

6. Description:

A key search of candidate component (biSearchlnt function) is the desired value.

The requirements specification of a new component (binSearchChar function) is to

search a student's name using binary search technique. A program structure chart is

depicted in Figure C-3 (See Appendix C).

7. Procedure:

7 .1 Changing name of a candidate component (biSearchlnt function) to a proper

alias component (biSearchChar function)

7.2 Adapting data type of interface component (biSearchChar function) from

integer (int) to character (char) that corresponds to the requirements

specification.

32

The characteristics of developed reuse component represented in Table 3-3

Table 3-3: Representing characteristics of new reuse component m Binary Search

Module.

Component Name Structure Cyclomatic Complexity

BiSearchChar Function 3

8. Conclusion:

The candidate component can be reused with minor change (Strongly reusable)

in BiSearchChar component to build a new Binary Search module. So, a Binary Search

module is a new effective module for reuse archive proposed.

33

St. Gabriel's library

Experiment #4: Elevator Simulation

Objective: To develop a new Move_Elevator module.

2 Propose: To build three components inside Move_Elevator module by reusmg

existing component.

3 Program environment:

3.1 Language : C

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo C)

4 Characteristic of module:

4.1 Function: To compute the effective distance of elevator movement

4.2 No. of component inside: 3 components

5 Candidate of existing reuse component: isMoving function

6 Description:

Two components (TimeOfArrival and TimeOfBreaking function) require writing

code from scratch, except isMoving function. A program structure chart is depicted in

Figure C-4 (See Appendix C).

7. Procedure:

7 .1 Take the existing reuse function to be a component m the new created

module (Move_Evevator).

7 .2 Add two functions named as TimeOfArrival and TimeOfBreaking to the new

created module.

7.3 Add a candidate component (isMoving) to Move_Elevator module.

34

The characteristics of developed reuse component represented in Table 3-4.

Table 3-4: Representing characteristics of new reuse component in Move_Elevator

module.

Component Name Structure Cyclomatic Complexity

IsMoving Function 1

8. Conclusion:

The candidate component can be reused without change (Immediately reusable)

to build a new Move_Elevator module. So, a Move_Elevator module is a new effective

module for reuse archive proposed.

35

Experiment #5: Card Game

1. Objective: To develop a new shuffle module

2. Propose: To build a new randomPosition component inside shuffle module by

reusing an existing component.

3 Program environment:

3.1 Language: C

3.2 Programmer level: Sophisticated

3.3 Compiler: GCC

3.4 Editor: pico

4 Characteristic of module:

4.1 Function: To random value in order to assign a new card

4.2 No. of component inside: 2 components

5 Candidate of existing reuse component: rand Value component from Exp. 2

6 Description:

Although the candidate component (randValue function) can support 2 digits, the

outcome generated exceeds some possible values obtain from regular deck. A new

designed component (randomPosition function) requires 2 digits whose falls between 1-

51 (52 faces possibility in Card Game) in random Card Game. A program structure

chart is depicted in Figure C-5 (See Appendix C).

7. Solution:

7.1 Changing name of existing component (randValue function) to a proper new

alias component (randomPosition function) that corresponds to a requirement

specification.

7.2 Modifying a little bit inside new component (randomPosition function) by

allowing random only 2 digits and return value mustn't over 51.

36

The characteristics of developed reuse component are represented in Table 3-5.

Table 3-5: Representing characteristics of new reuse component in Shuffle Module.

Component Name Structure Cyclomatic Complexity

RandomPosition Function 0

8. Conclusion:

The candidate component can be reused with minor change (Strongly reusable)

in RandomPosition component to build a new Shuffle module. So, a Shuffle module is a

new effective module for reuse archive proposed.

37

Experiment #6: Bucket Sort

1. Objective: To develop a new BucketSort module

2. Propose: To reuse an existing component (numberOtDigit) inside a new BucketSort

module.

3. Program environment:

3.1 Language : C

3.2 Programmer level: Sophisticated

3.3 Compiler: GCC

3.4 Editor: Notepad

4. Characteristic of module:

4.1 Function: To sort a title of book in form of bucket sort.

4.2 No. of component inside: 4 components

5. Candidate of existing reuse component: numberOtDigits function

6. Description:

There are four components inside a bucket sort module such as numberOtDigits,

distributeElement, collectElement, and zeroBucket. Three components must be written

from scratch, except numberOtDigit component. An existing component

(numberOtDigits function) supports only small numbers, unfortunately. The

requirements specification of new component support large numbers. A program

structure chart is depicted in Figure C-6 (See Appendix C).

7. Solution:

7 .1 Modify an integer variable to be an array of integers for increasing the

number of digits in large number.

7.2 Insert a parameter to support array type.

38

The characteristics of developed reuse component represented in Table 3-6

Table 3-6: Representing characteristics of new reuse component in BucketSort Module.

Component Name Structure Cyclomatic Complexity

NumberOIDigit Function 2

8. Conclusion:

The candidate component can be reused with minor change (Strongly reusable)

in numberOtDigit component to build a new BuckSort module. So, a Bucket module is

a new effective module for reuse archive proposed.

39

Experiment #7: MazeTraversal

1. Objective: To develop a new MazeTraversal module

2. Propose: To build a new printMaze component inside MazeTraversal module by

reusing existing component.

3. Program environment:

3.1 Language : C

3.2 Programmer level: Sophisticated

3.3 Compiler: GCC

3.4 Editor: pico

4. Characteristic of module:

4.1 Function: To find route in maze in 2 dimensions array.

4.2 No. of component inside: 3 components

5. Candidate of existing reuse component: printMatrix function

6. Description:

A printMaze, a cooraAreEdge, and a validMaze are three key functions in Maze

Traversal module. Our design can only reuse the printMaze function. The others

components must be written from scratch. A program structure chart is depicted in

Figure C-7 (See Appendix C).

7. Procedure:

7 .1 Adapt name of a candidate component (printMatrix) to a new component

printMaze and change data type in parameter from integer to character.

7.2 Modify a little bit inside component by changing a variable declaration from

integer (%d) to character (%c).

40

The characteristics of developed reuse component represented in Table 3-7.

Table 3-7: Representing characteristics of new reuse component m Maze Traversal

Module.

Component Name Structure Cyclomatic Complexity

PrintMaze Function 3

8. Conclusion:

The candidate component can be reused with minor change (Strongly reusable)

in printMaze component to build a new Maze Traversal module. So, a Maze Traversal

module is a new effective module for reuse archive proposed.

41

Experiment #8: Merge Score

1. Objective: To develop a new DataMerge module

2. Propose: To build a new MergeSort component inside DataMerge module by reusing

an existing component.

3. Program environment:

3.1 Language : Pascal

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo Pascal)

4. Characteristic of module:

4.1 Function: To merge the score of students.

4.2 No. of component inside: 1 component

5. Candidate of existing reuse component: MergeSort procedure

6. Description:

A candidate component (MergeSort) supports only string type that merges two

array inputs. A new designed module (DataMerge) requires a MergeSort component to

merge two-array input of student's score. A program structure chart is depicted in

Figure C-8 (See Appendix C).

7. Procedure

7 .1 Changing the data type of MergeSort from string to integer type that

corresponds to a specific requirement.

7.2 Adding some code to call MergeSort directly.

42

St. Gabriel's Library

The characteristics of developed reuse component represented in Table 3-8.

Table 3-8: Representing characteristics of new reuse component in DataMerge Module.

Component Name Structure Cyclomatic Complexity

MergeSort Procedure 4

8. Conclusion:

The candidate component can be reused with minor change (Strongly reusable)

in MergeSort component to build a new DataMerge module. So, a DataMerge module is

a new effective module for reuse archive proposed.

43

Experiment #9: 3DMazeRunning

l. Objective: To develop a new SpanWaveEven module.

2. Propose: To build new OutOtDepthRange component inside SpanWaveEven

component by reuse an existing component.

3. Program environment:

3.1 Language: C

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo C)

4. Characteristic of module:

4.1 Function: To find a way in maze of 3Dimension

4.2 No. of component inside: 3 components

5. Candidate of existing reuse component: outOfRowRange (component inside

Maze2Dimension module)

6. Description:

To develop SpanWaveEven module which requires three components, namely

outOfRowRange, outOfColumnRange, and outOtDepthRange. Two candidate

components (outOfRow Range and outOfColumnRange function inside

Maze2Dimension module) can be immediately reused in SpanWaveEven module except

outOtDepthRange. The last component must be written from scratch. A program

structure chart is depicted in Figure C-9 (See Appendix C).

7. Procedure:

7.1 Adapt the name of candidate component from outOfRowRange to

outOtDepthRange that corresponds to the requirement specification.

7.2 Add some code to call outOtDepthRang directly.

44

The characteristics of developed reuse component represented in Table 3-9.

Table 3-9: Representing characteristics of new reuse component m Span WaveEven

Module.

Component Name Structure Cyclomatic Complexity

OutOfRow Range Function 0

OutOfRowRange Function 0

OutOtDepthRange Function 0

8. Conclusion:

Two candidate components can be reused without change (Immediately

reusable) and one candidate component can be reused with minor change in

outOtDepthRange (Strongly reusable) component to build a new Span WaveEven

module. So, a SpanWaveEven module is a new effective module for reuse archive

proposed.

45

Experiment #10: SML_Compiler

1. Objective: To develop two modules (Open_Source and Print_Message)

2. Propose: To build two components (OpenSource and PrintMessage) inside two

modules by reusing existing components

3. Program environment:

3.1 Language: C

3.2 Programmer level: Sophisticated

3.3 Compiler: GCC

3.4 Editor: pico

4. Characteristic of two applied modules:

4.1 Function: To open file for read only (Open_Source module) and display

log_file to show on screen (Print_Message module)

4.2 No. of component inside each module: 1 component

5. Candidate of existing reuse component: a openFile function for Open_Source

module and a displayScreen function for Print_Message module

6. Description:

The candidate reuse component (openFile function) opens an output file for

writing. This violates the solid specification. A new designed component requires

opening the output as read-only. As for output, the displayScreen is an immediately

reusable for Print_Message module. A program structure chart is depicted in Figure C-

10 (See Appendix C).

7. Procedure:

7.1 Adapt the name of two candidate components from openFile and

displayScreen to openSource and printMessage, respectively.

7 .2 Modify mode of opening file inside openSource component for read-only

mode that corresponds to the functional requirement.

46

The characteristics of developed reuse component represented in Table 3-10

Table 3-10: Representing characteristics of new reuse component in both Open_Source

and Print_Message modules.

Component Name Structure Cyclomatic Complexity

PrintMessage Function 1

Open Source Function 3

8. Conclusion:

Two candidate component can be reused with minor change (Strongly reusable)

in printMessage and openSoure component to build a new Open_Source module. So, a

Open_Source module is a new effective module for reuse archive proposed.

47

Experiment # 11: Similarity Search

1. Objective: To develop of both Similarity Search module and Display module

2. Propose: To build two components of both similarity module and displayData

module by reusing existing reuse components

3. Program environment:

3.1 Language : C

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo C)

4. Characteristic of two modules:

4.1 Function: To search the term of similar work (Similarity Search module) and

display data on screen (Display module).

4.2 No. of component inside each module: 1 component

5. Candidate of existing reuse component: 1) sequencialSearch component for

Similarity module and 2) showOnScreen component for Display module

6. Description:

The similarity module requires sequential search while the showOnScreen

suppo1ts one dimension array to display sorted data on screen. A new designed Display

module combines all functional specifications into 2-dimension array. A program

structure chart is depicted in Figure C-11 (See Appendix C).

7. Solution:

7.1 Adapting the name of candidate component (showOnScreen function) to a

new reuse component (displayData) corresponding to a specific requirement.

7.2 Modifying inside component (displayData) to support 2-dimension array.

7 .3 Adding some code in Similarity module to call sequencialSearch directly.

48

The characteristics of developed reuse component represented in Table 3-11.

Table 3-11: Representing characteristics of new reuse components in both Similarity

Search and Display Module.

Component Name Structure Cyclomatic Complexity

Similarity Function 3

Display Data Function 2

8. Conclusion:

First, a candidate component (sequencialSearch) can be reused without change

(Immediately reusable) in similarity component to build a new Similarity Search

module. Second, a candidate component (showOnscreen) can be reused with minor

change (Strongly reusable) in displayData component to build a new Display Module.

So, both a Similarity Search module and a Display module are two new effective

modules for reuse archive proposed.

49

Experiment #12: Electronic Phone System

1. Objective: To develop CheckFormat module

2. Propose: To build a new dataFormat component inside CheckFormat by reusmg

existing component.

3. Program environment:

3.1 Language : Pascal

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Turbo Pascal)

4. Characteristic of module:

4.1 Function: To check any input error from user insert and update information

4.2 No. of component inside: 1 component

5. Candidate of existing reuse component: nameFormat procedure

6. Description:

The candidate component (nameFormat procedure) checks the valid type of

name and shows the error type of user input. A new reuse component (dataFormat

function) will check valid type of any information and keep the error type from user

input such as name, surname, telephone number, and Address. A program structure

chart is depicted in Figure C-11 (See Appendix C).

7. Procedure:

7.1 Adapting the name of candidate component (nameFormat) to a proper name

requirement (dataFormat).

7.2Modifying inside code from procedure to function that corresponds to a

specification requirement.

7.3Promoting redundancy code to be ErrorLog procedure (new component).

50

The characteristics of developed reuse component represented in Table 3-12.

Table 3-12: Representing characteristics of new reuse component m CheckFormat

Module.

Component Name Structure Cyclomatic Complexity

DataFormat Function 4

Error Log Procedure 1

8. Conclusion:

The candidate component can be reused with minor change (Limitedly reusable)

as dataFormat component inside a new CheckFormat module. So, a CheckFormat

module is a new effective module for reuse archive proposed.

51

St. Gabriel's Library

Experiment #13: GGS

1. Objective: To develop a new Distance_ Coordinate object

2. Propose: To build distanceToCooridinate method inside Distance_Cooridinate

module by reusing outside object.

3. Program environment:

3.1 Language: Delphi

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Delphi 4.0)

4. Characteristic of module:

4.1 Function: To compute latitude and longitude to mapping on screen

4.2 No. of component inside: 1 component

5. Candidate of existing reuse component: LaLongitude function

6. Description:

A distanceToCoordinate component reqmres computing the position area by

means of latitude and longitude that correspond directly to a candidate component. A

program structure chart is depicted in Figure C-13 (See Appendix C).

7. Procedure:

7.1 Changing LaLongitude function to be a virtual function (as Protected), thus

permitting distanceToCoordinate to call LaLongitude function directly.

7 .2 Adding some code inside distanceToCoordinate component to call

LaLongitude component directly.

52

The characteristics of developed reuse function represented in Table 3-13.

Table 3-13: Representing characteristics of new reuse component m

Distance_Coordinate module.

Component Name Structure Cyclomatic Complexity

Distance T oCoordinate Procedure 0

8. Conclusion:

A candidate component can be reused without change (Immediately reusable) in

distanceToCoordinate component to build a new Distance_Coordinate module. So, a

Distance_ Coordinate module is a new effective module for reuse archive proposed.

53

Experiment #14: Simple Inventory Program

1. Objective: To develop a new BinaryTreeSearch module

2. Propose: To reuse outside module for building a new BinaryTreeSearch module.

3. Program environment:

3.1 Language: Delphi

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Delphi 4.0)

4. Characteristic of module:

4.1 Function: To search inventory information

4.2 No. of component inside: 3 components

5. Candidate of existing reuse component: insertTree component and deleteTree

component in BinaryTree module.

6. Description:

BinaryTree module provides insertTree component and deleteTree component

that corresponds to the specific requirements of BinaryTreeSearch module. The

remaining components (binTreeSearch procedure) must be writteri from scratch. A

program structure chart is depicted in Figure C-14 (See Appendix C).

7. Procedure:

7.1 Replacing BinaryTree module to a new BinaryTreeSearch module

7.2 Writing a binTreeSearch component following the proposed guidelines such

as high cohesion and loosely coupled principles.

54

The characteristics of developed reuse method represented in Table 3-14.

Table 3-14: Representing characteristic of new reuse component in BinaryTreeSearch

module.

Component Name Structure Cyclomatic Complexity

InsertTree Procedure Unknown

Delete Tree Procedure Unknown

BinTreeSearch Procedure 3

8. Conclusion:

Two candidate component can be reused without change (Immediately reusable)

to build a new BinaryTreeSearch module. So, a BinaryTreeSearch module is a new

effective module for reuse archive proposed.

55

Experiment #15: Fire Alarm Sale System

1. Objective: To develop a new NewBinSearch module.

2. Propose: To build a new component inside NewBinSearch module by reusmg

existing module

3. Program environment:

3.1 Language : Delphi

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Delphi 4.0)

4. Characteristic of module:

4.1 Function: To add getSum (method) for counting the number of user while

insert information on file.

4.2 No. of component inside: 2 components

5. Candidate of existing reuse module: BinarySearch module

6. Description:

NewBinSearch is created for adding a getSum component in order to count the

number of user while adding information. In so doing, the getSum component invokes

an insertData component which adds new information to BinarySearch module. A

program structure chart is depicted in Figure C-15 (See Appendix C).

7. Procedure:

7 .1 Replace insertData component from BinarySearch module and add virtual

(allowing for reuse) to NewBinSearch module.

7.2 Write getSum from scratch.

56

The characteristics of developed reuse component represented in Table 3-15.

Table 3-15: Representing characteristics of new reuse component in NewBinSearch

module.

Method Name Structure Cyclomatic Complexity

InsertData Procedure 1

GetSum Procedure 0

8. Conclusion:

A candidate component (insertData) can be reused without change (Immediately

reusable) to build a NewBinSearch module. So, a NewBinSearch module is a new

effective module for reuse archive proposed.

57

Experiment # 16: Safety Net

1. Objective: To develop a new GenRandomDigit module

2. Propose: To build three components inside GenRandomDigit module by reuse

outside module.

3. Program environment:

3.1 Language: Delphi

3.2 Programmer level: Sophisticated

3.3 Compiler: IDE (Delphi 4.0)

4. Characteristic of module:

4.1 Function: To produce the functions of random by returning digit value only

4.2 No. of component inside: 3 components

5. Candidate of existing reuse component: genRandom component in GenPassword

module

6. Description:

A GenPassword module provides two components namely, genRandom and

checkPassword to complete reading user's password. The genRandom component

subsequently invokes GenRandomDigit module to generate random value. A program

structure chart is depicted in Figure C-16 (See Appendix C).

7. Procedure:

7 .1 Replacing a GenPassword module to a GenRamdomDigit module.

7 .2 Adapting a genRandom function by adding virtual (Allowing for reuse)

according to the proposed guidelines such as high cohesion, loosely coupled

principles.

58

The characteristics of developed reuse method represented in Table 3-16.

Table 3-16: Representing characteristics of new reuse component in GenRandomDigit

module.

Component Name Structure Cyclomatic Complexity

GenRandom Procedure 1

8. Conclusion:

A candidate component can be reused with minor change (Strongly reusable) to

build a new GenRandomDigit module. So, a GenRandomDigit module is a new

effective module for reuse archive proposed.

59

St. Gabriel's Library

Experiment #17: Binary Tree

1. Objective: To develop a new NewBinTree object

2. Propose: To build three methods inside NewBinTree object by reuse outside object.

3. Program environment:

3.1 Language: Java

3.2 Programmer level: Sophisticated

3.3 Compiler: JDK 1.2.1

3.4 Editor: Kawa

4. Characteristic of Object:

4.1 Function: To insert, delete and search in form of binary tree

4.2 No. of method inside: 3 methods

5. Candidate of existing reuse method: insertTree and deleteTree methods in

BinaryTree object.

6. Description:

A NewBinTree object requires three methods, namely, insertTree method,

deleteTree method, and searchTree method. Two methods can be reused from

BinaryTree object. The searchTree method requires NewBinTree module to build a

binary tree. A program structure chart is depicted in Figure C-17 (See Appendix C).

7. Procedure:

7.1 Inherit BinaryTree object from NewBinTree object.

7.2 Build searchTree method is according to the proposal guidelines such as high

cohesion, loosely coupled principles.

7.3 Set all methods to be protected mode

60

The characteristics of developed reuse method represented in Table 3-17.

Table 3-17: Representing characteristic of new reuse method in NewBinTree object.

Component Name Structure Cyclomatic Complexity

insertTree Method Unknown

delete Tree Method Unknown

search Tree Method 3

8. Conclusion:

Two candidate methods can be reused without change (Immediately reusable) to

build a new NewBinTree object. So, a NewBinTree object is a new effective object for

reuse archive proposed.

61

Experiment #18: ReserveTicket

1. Objective: To develop a new MovieTicketBooth object

2. Propose: To build five methods inside MovieTicketBooth object by reusing outside

object.

3. Program environment:

3.1 Language : Java

3.2 Programmer level: Sophisticated

3.3 Compiler: JDK 1.2.1 .

3.4 Editor: Kawa

4. Characteristic of Object:

4.1 Function: To reserve and cancel the ticket

4.2 No. of method inside: 3 methods

5. Candidate of existing reuse method: positionAvailable methods m TicketBooth

object.

6. Description:

A new MovieTicketBooth object reqmres three methods, namely

positionA valiable, reserve, and cancel. So one specific requirement of new object

requires a positionA vailable method embedded within embed TicketBooth object to

locate the desired position. A program structure chart is depicted in Figure C-18 (See

Appendix C).

7. Solution:

7 .1 Inherit Movie object to Ticket object for reusing a positionA valiable method.

7.2 Build both reserveTicket method and cancelTicket method by writing from

scratch according to the proposed guidelines.

7.3 Set all methods of new object to protected mode.

62

The characteristics of developed reuse method represented in Table 3-18.

Table 3-18: Representing characteristic of new reuse methods in MovieTicketBooth

object.

Component Name Structure Cyclomatic Complexity

positionA vailable Method Unknown

reserve Ticket Method 1

cancelTicket Method 1

8. Conclusion:

A candidate method can be reused without change (Immediately reusable) to

build a new MovieTicketBooth object. So, a MovieTicketBooth object is a new

effective object for reuse archive proposed.

63

Experiment #19: Softdrink_ Vending_Machine

1. Objective: To develop a new SoftdrinkVendingMachine object

2. Propose: To build three methods inside SoftdrinkVendingMachine object by reuse

outside object.

3. Program environment:

3.1 Language : Java

3.2 Programmer level: Sophisticated

3.3 Compiler: JDK 1.2.1

3.4 Editor: Kawa

4. Characteristic of Object:

4.1 Function: To produce the functions of soft drink vending machine

4.2 No. of method inside: 5 methods

5. Candidate of existing reuse method: Three methods in VendingMachine object

6. Description:

A VendingMachine object provides three methods, namely, productAvailable,

priceOfProduct, and exchangeCalculate. These methods in tum are required in new

SoftdrinkVendingMachine object. A program structure chart is depicted in Figure C-19

(See Appendix C).

7. Solution:

7 .1 Inherit VendingMachine object to Softdrink VendingMachine object.

7.2 Build getTemperature method and controlTemperature method from scratch

following the proposed guidelines

7.3 Add protected mode to all new methods.

64

The characteristics of developed reuse method represented in Table 3-19.

Table 3-19: Representing characteristic of new reuse methods m

Softdrink VendingMachine object.

Component Name Structure Cyclomatic Complexity

productA vailable Method Unknown

priceOtProduct Method Unknown

exchangeCalculate Method Unknown

get Temperature Method 0

controlTemperature Method 1

8. Conclusion:

Three candidate methods can be reused without change (Immediately reusable)

to build a new SoftdrinkVendingMachine object. So, a SoftdrinkVendingMachine

object is a new effective object for reuse archive proposed.

65

Experiment #20: Ticket_ Vending_Machine

1. Objective: To develop a new TicketVendingMachine object

2. Propose: To build three methods inside TicketVendingMachine object by reuse

outside object.

3. Program environment:

3 .1 Language : Java

3.2 Programmer level: Sophisticated

3.3 Compiler: JDK 1.2.1

3.4 Editor: Kawa

4. Characteristic of Object:

4.1 Function: To produce the functions of ticket vending machine

4.2 No. of method inside: 5 methods

5. Candidate of existing reuse method: Three methods in VendingMachine object from

Exp. 19.

6. Description:

A VendingMachine object provides three methods, namely, productAvailable,

priceOfProduct, and exchangeCalculate. These methods in tum are required in new

TicketVendingMachine object. Moreover, TicketVendingMachine object also requires

ticketClassification method and ticketTimeStamp method by writing from scratch. A

program structure chart is depicted in Figure C-20 (See Appendix C).

7. Solution:

7.1 lnherit VendingMachine object to TicketVendingMachine object and build

two new methods from scratch following the proposed guidelines

7.2 Add protected mode to all new methods.

66

The characteristics of developed reuse method represented in Table 3-20.

Table 3-20: Representing characteristics of new reuse methods m

Ticket VendingMachine object.

Component Name Structure Cyclomatic Complexity

PriceOfProduct Method Unknown

ProductA vailable Method Unknown

ExchangeCalculate Method Unknown

TicketClassification Method 9

TicketTimeStamp Method 0

8. Conclusion:

Three candidate methods can be reused without change (Immediately reusable)

to build a new TicketVendingMachine object. So, a TicketVendingMachine object is a

new effective object for reuse archive proposed.

67

3.4 EXPERIMENT RESULTS AND ANALYSIS

Traditional software metrics were applied to all experiments, namely, time spent,

number of errors, and lines of code (LOC), to measure productivity and quality. The

results are shown in Table 3-21.

Table 3-21: Results comparing code reuse and conventional code writing

No. of Developing with reuse approach Developing with conventional approach
Experiment LOC No. of error Time to finish LOC No. of error Time to finish

(person- hour) (person-hour)
Functional Programming Language

Exp. I 48 0 V2 40 0 1
Exp. II 88 0 V2 80 I %
Exp.III 95 0 2 88 2 5
Exp. IV 105 2 I V2 105 2 I
Exp. V 145 I V2 135 I I V2
Exp. VI 157 2 2 163 5 2
Exp. VII 175 2 I V2 190 4 2
Exp. VIII 230 I 4 V2 247 3 12
Exp. IV 363 2 5 421 6 8
Exp.X 610 2 10 690 7 15
Exp.XI 660 3 19 726 8 25
Exp. XII 752 2 7 V2 848 II 14

Object-Base Programmin~ Lan_guage
Exp. XIII 308 2 II 318 5 14
Exp.XIV 460 2 5 V2 480 7 9
Exp. XV 688 3 15 804 8 20
Exp. XVI 873 4 17 893 7 21

Object-Oriented Programming Langua"e
Exp. XVII 322 I 5 316 2 7
Exp. XVIII 486 I 4 488 2 6
Exp.XIX 396 3 12 402 5 15
Exp. XX 483 I 15 498 4 17

As depicted in Table 3-21, results comparison of code reuse and conventional

code writing are as follows:

1) LOC of the complete programs developed with reuse approach is lower than

developed with conventional approach except Exp. I, II, III, and V.

2) The number of errors of the complete program developed with reuse

approach is less when compared with conventional approach.

3) Time of the complete program developed with reuse approach is lower than

developed with conventional approach except Exp. IV and VI.

68

Results of the experiment raise two interesting:

1) Why is LOC of developed with reuse approach in Exp. I, II, III, and V higher

than developed with conventional approach?

2) Why is time spent on complete program in developed with reuse approach in

both Exp. IV and VI is not less than that of developed with conventional

approach?

A simple and straightforward explanation to the first question 1s that the

developer has to concentrate on how to build program for reuse. Thus,

functions/module in a small program may be unnecessary because of the sheer size of

the entire program. Moreover, conventional approach does not take into account

promoting future code reuse.

For example, a loop to write string may take only 2 or 3 lines of code in

GetSentense procedure of Read_Sentence program. Such a specific implementation

does not support modularity. In order to make this code segment reusable, it is

necessary to generalize its functionality, which eventually may require 8 lines of code as

shown in Figure 3-8.

Procedure GetSentense (var St SText;
var Last integer);

Begin

(1) write('Output: '); =r
for i := i to last do

write(St[i]);
(I) Looping string output, it's required 3 lines of code.

(2) Output(St, Last);

End;

Procedure Output (var St
Var Last

Begin
write('Output: ');
for i := 1 to Last do

write(St[i]);
readln;

End;

SText;
integer);

(2) To promote output procedure
for support reusable component,
it's required 8 lines of code.

Figure 3-8: Comparison of both (1) traditional approach and (2) reuse approach

69

Although, the similar programmer code in each experiment but LOC in comment

for reuse approach is almost equal or greater than LOC in comment of conventional

approach because reuse approach requires a good comment for other reader. So, it must

be clean.

The main issue concerning the second question is that both programs contain

complexity algorithm. As such, it calls for considerable effort to understand the

candidate component. In this case, developer should decide to build the reusable

component from scratch or reuse from existing component.

Further analysis on LOC and complexity measures [6] revealed similar trend for

software productivity and quality as the module size increased. This is shown in Table

3-22 and Table 3-23.

Table 3-22: Comparison of productivity and quality using LOC measurement

No. of Productivity Quality
Experiment Reuse Non-reuse Difference Reuse Non-reuse Difference

Functional Programming Language (C or Pascal)
Exp. I 0.096 0.040 0.056 0.000 0.000 0.000
Exp. II 0.176 0.107 0.069 0.000 12.500 12.500
Exp. III 0.048 0.018 0.030 0.000 22.727 22.727
Exp. IV 0.070 0.105 -0.035 19.048 19.048 0.000
Exp. V 0.290 0.090 0.200 6.897 7.407 0.51 I
Exp. VI 0.079 0.082 -0.003 12.739 30.675 17.936
Exp. VII 0.117 0.095 0.022 I 1.429 21.053 9.624
Exp. VIII 0.051 0.021 0.031 4.348 12.146 7.798
Exp. IX 0.073 0.053 0.020 5.510 14.252 8.742
Exp. X 0.061 0.046 0.015 3.279 10.145 6.866
Exp. XI 0.073 0.029 0.044 4.545 11.019 6.474
Exp. XII 0.100 0.061 0.040 2.660 12.972 10.312

Obiect-Based Programming Language (Delphi)
Exp. XIII 0.028 0.023 0.005 6.494 15.723 9.230
Exp. XIV 0.084 0.053 0.030 4.348 14.583 10.236
Exp. XV 0.046 0.040 0.006 4.360 9.950 5.590
Exp. XVI 0.051 0.043 0.009 4.582 7.839 3.257

Object-Oriented Programmin,g Language (Java)
Exp. XVII 0.064 0.045 0.019 3. 106 6.329 3.224
Exp. XVIII 0.122 0.081 0.040 2.058 4.098 2.041
Exp. XIV 0.033 0.027 0.006 7.576 12.438 4.862
Exp. XX 0.032 0.029 0.003 2.070 8.032 5.962

70

St. Gabriel's library

Note that larger numbers in productivity column imply higher programmer

productivity whereas larger figures in quality column (state equivalently more errors)

imply lower output quality. This is independent of metrics used, i.e., LOC or

complexity.

Table 3-23: Comparison of productivity and quality using complexity measurement

No. of Productivity Quality
Experiment Reuse Non-reuse Difference Reuse Non-reuse Difference

Functional Programming Language (C or Pascal)
Exp. I 10.360 4.830 5.530 0.000 0.000 0.000
Exp. II 10.780 6.720 4.060 0.000 0.198 0.198
Exp. III 19.110 7.154 11.956 0.000 0.056 0.056
Exp. IV 7.187 10.080 -2.893 0.186 0.198 0.013
Exp. V 22.680 7.093 15.587 0.088 0.094 0.006
Exp. VI 14.400 13.500 0.900 0.069 0.185 0.116
Exp. VII 6.320 4.440 1.880 0.211 0.450 0.239
Exp. VIII 9.778 3.438 6.340 0.023 0.073 0.050
Exp. IX 5.712 3.358 2.355 0.070 0.223 0.153
Exp.X 4.240 2.650 1.590 0.047 0.176 0.129
Exp. XI 4.703 1.591 3.112 0.071 0.201 0.130
Exp. XII 11.371 5.720 5.651 0.023 0.137 0.114

Object-Based Programming Language (Delphi)
Exp. XIII 14.991 11.086 3.905 0.012 0.032 0.020
Exp. XIV 16.298 9.360 6.938 0.022 0.083 0.061
Exp. XV 20.172 14.207 5.966 0.010 0.028 0.018
Exp. XVI 4.384 3.330 1.054 0.054 0.100 0.046

Object-Oriented Programming Language (Java)
Exp. XVII 22.410 15.043 7.367 0.009 0.019 0.010
Exp. XVIII 4.438 2.750 1.688 0.056 0.121 0.065
Exp.XIV 4.703 3.536 1.167 0.053 0.094 0.041
Exp. XX 5.755 4.772 0.983 0.012 0.049 0.038

Sample calculations of productivity and quality are given in Appendix B. The

percentage improvement of productivity and quality, using LOC measurement and

complexity measurement are 55.90% and 58.47%, and 63.22% and 59.67% respectively.

Therefore, it is apparent from the experiment that software reuse contributes greatly to

productivity and quality as the size of the software becomes larger. The framework

established earlier plays an important role in the development improvement. The

experiment results confirm:

1) LOC reduction implying less effort,

2) error reduction implying increase in software reliability, and

71

3) time spent reduction implying earlier finishing time of the product.

Analysis of results is divided into theoretical aspect and implementing aspect.

The theoretical aspect encompasses:

1) Complexity reduction helps reduce time to understand the reuse component;

2) Loose coupling allows reuse component to be inserted or deleted similar to

hardware counterpart's plug and play capability;

3) High cohesion helps predict some properties of product implementation such

as ease of debugging, ease of maintenance, and ease of modification (12].

The Implementing aspect involves:

1) Higher efficiency of project management enables the developer to control the

project's completion within the allotted time and costs.

2) Better software quality can be attained from the above built-in theoretical

aspect of the reuse component.

Further analysis on LOC and complexity measures [6] revealed similar trend for

software productivity and quality by means of various programming languages those are

shown in Table 3-24 and Table 3-25.

Table 3-24: Comparison of programming languages based on productivity

Programming Average productiviu using LOC Average productivity using complexity
Language Reuse Non-reuse Improvement Reuse Non-reuse Improvement

Functional 0.103 0.062 65.59% 10.553 5.881 79.44%
Object-based 0.052 0.040 31.55% 13.961 9.495 47.03%
Object-oriented 0.063 0.046 37.54% 9.326 6.525 42.93%

Table 3-25: Comparison of programming languages based on quality

Programming Average quality using LOC Average quality using complexity
Language Reuse Non-reuse Improvement Reuse Non-reuse Improvement

Functional 5.871 14.495 59.50% 0.066 0.166 60.44%
Object-based 4.946 12.024 58.87% 0.025 0.061 59.75%
Object-oriented 3.702 7.724 52.07% 0.033 0.071 54.19%

72

Comparative results of Table 3-24 and Table 3-25 are depicted in Figure 3-9 and

Figure 3-10 respectively.

80.00%

60.00%

40.00% D Functional

20.00% • Object-based

0.00% D Object-oriented

Average productivity Average productivity

using LOC using complexity

L __ .

Figure 3-9: Comparison of three style of programming languages based on productivity.

,----------··
I 65.00%

----------------~------·-·-------

60.00%

55.00% D Functional

50.00% • Object-based

45.00% D Object-oriented

Average quality Average quality

using LOC using complexity

------------~----------------·-----·--------------------------------

Figure 3-10: Graphical comparison of programming languages based on quality.

As depicted in Figure 3-9, the percentage of average productivity increment

between reuse approach and non-reuse approach of functional programming language (C

or Pascal) is higher rather than Object-based programming language (Delphi) and

Object-oriented programming language (Java). This implies that different program

73

structures affect code development with reuse because writing code for reuse is not

inherent for C or Pascal, whereas both Delphi and Java contain properties reusable code

that support modern programming language.

It can be seen from Figure 3-9, the productivity of C or Pascal is much higher

than Delphi and Java. Figure 3-10 shows slight percentage increase of quality of

procedural language over Object-based language and Object-oriented language.

Remember the quality of software depends on the number of defects. Variation in

programming languages does not effect software quality. Thus the small-scale

experiments confirm higher software productivity as the proposed guidelines were

followed.

The feature of developing with reuse approach is to build the application

software being avoidable to start at zero. The proposed guidelines will benefits software

development with reuse in many regards as follows:

I. Simplicity in code design plan

Normally it 's hard to design code in a large application encompassing many

functions. All large applications require high expertise. But with code reuse, the

designers could arrive at simpler design plan for the desired.

2. Creative your code reuse (or Developing code reuse in nearly your work)

Instead of taking only available code from existing libraries or external sources,

repository of the domain corresponding to functional requirements will be added up

in the archived inventory that are closer to user's need.

3. Improving portability

To write code reuse m standard format (such as ADT style), it can help

developers to be easily understandable. Such almost users are familiar with

Microsoft WINDOWS interface.

74

4. Effective use can be made of programmers.

A visionary software development team can avoid reinventing the wheel on

different projects by means of reuse. Hence, programmers will have more time to

develop new code segment for future reuse.

5. System reliability is increased.

Reuse code segments which have been exercised in working systems are more

reliable than newly developed code segments.

6. Overall process risk is reduced.

Uncertainty is one of the importance factors that all project managers try to

minimize as much as they can. Therefore programmers develop applications using

reuse code can reduce the uncertainty considerably.

7. Software development time can be reduced.

Shorter development time means increase speed of delivery. Bringing the

system to market as early as possible is perhaps more important than focusing on

overall development costs.

75

CHAPTER4 CONCLUSIONS

This study proposes an approach of code reuse guidelines to aid in software

development. The main objective is to prevent developers from reinventing the wheel.

The underlying principles of code reuse rely on simplicity of reusable code selection and

new code design strategies. A small scale experiment was performed to determine the

effective use of code reuse. The results confirmed an overall increase in productivity

and quality. As a consequent, software developers should first think reuse as a means

for minimizing resources and development efforts.

Some limited factors make guidelines unsuccessful developments are as follows:

1) High complexity algorithm of candidate component, developing program

based on proposed guidelines is required the candidate component. If it is

not easy to understand or hard to modify, it will be required mush efforts

rather than writing from scratch.

2) Limited Transaction processing program support, this guideline doesn't build

to advocate the Artificial Intelligence program (Al).

3) GUI-oriented and simplicity code, adapting and/or modifying the procedural

detail of component corresponds to functional requirement is required, so

some language (such as Power Builder) are GUI-oriented and required a

simple code is not suitable for this proposed guidelines.

According to one objective of proposed guidelines is to build or improve the

performance and quality of reuse component, so sophisticated end users whose meet

their complex requirements are target group. It is important to remember that firstly

creating a reusable component not only increase the development cost but also due to the

extra effort needed to introduce the characteristic of reusable component.

76

The first version of code for reuse took much efforts but less in percent of reuse

because almost candidate components weren't created with reuse. It is hoped that by

following the proposed guidelines, the resulting code will be efficient for reuse and

simplistic in subsequent development domain.

This thesis, however, has demonstrated only one aspect of reuse in the area of

program development or coding. A full-fledged software development endeavor should

incorporate as many reuse aspects as possible to take full advantage of the reusable

software technology.

Future work based on reuse modification and adaptation techniques of the

proposed guidelines, the criteria on which technique of reuse component should be

employed under certain circumstances still remain unexplored. Software development

trend will continue to strive for reusable components throughout the development

lifecycle. This means that there will be different reusable component repositories

developed for high potential reuse inventory. Such archival systems call for an efficient

storage and retrieval system to support open access for software community.

77

st. Gabriel's Library

REFERENCES

[l] Ian Sommerville. Software Engineering, Fifth Edition, pp. 219, 1995.

[2] Ted Davis, "Adopting a Policy of Reuse", IEEE Spectrum (June 1994) pp. 44-48.

[3] R. Capilla, "Analisis del dominio: i., hacia un modelo de reutilizaci6n sistema

tico? ," April 1996.

[4] Steve McConnell "Why You Should Use Routines ... Routinely," IEEE Software

July/August 1998.

[5] B. Boehm, "Improving software productivity," IEEE Software, pp. 43-57, Sept.

1987

[6] Roger S. Pressman. Software Engineering, Third edition. McGraw-Hill

Companies, Inc., 1992.

[7] M. Cusumano, "The Software Factory: A Historical Interpretation," IEEE

Software (March 1989) pp. 23-30.

[8] R. Prietro-Diaz, "A Domain Analysis Process Model," SPC-92032, Software

Productivity Consortium, Herndon, VA.

[9] Carma McClure, "Reuse-based Software Development Methodologies

Explained" copy right (C) 1997 by Extended Intelligence, Inc.

[10) M. Ramchandran and I. Sommerville, "Software Reuse Guidelines"

http://www.comp.lancs.ac. uk/computing/research/cse g/projects/ APPRAISAL/pa

per/paper. html

[11] Rafael Capilla, "Application of Domain Analysis to Knowledge Reuse"

http://www. umcs. maine.edu/-ftp/wisr/wisr8/papers/capilla/capilla.html

78

[12] E. Yourdon and L. Constantine, Structured Design. Englewood Cliffs, N.J.:

Prentice Hall, 1979.

[13] The International User Group Council, "Reuse in Object-Oriented

Development", http://www.guide.org/jgs/jgsoo l .htm

[14] Carma McClure, "Software Reuse Techniques", Published by Prentice Hall PTR

Prentice-Hall, Inc.

[15] M. Ramchandran and I. Sommerville, "Software Reuse Guidelines"

http://www.complancs.ac.uk/computing/research/cseg/projects/APPRAISAL/pap

er/paper.html

[16] Delphi imformant teams, "Designing for Reuse",

http://www.eagle-software.com/ designin.htm

[17] C. Genillard, N. Ebel and A. Strohmeier, Rationale for the Design of Reusable

Abstract Data Types Implemented in Ada, Published in Ada Letters (1989), Vol.

9 No. 2, pp. 62-71.

79

APPENDIX A

MaCabe Complexity Metrics and Halstead Complexity Metrics can be used to

check for redundancy.

Al: McCabe Metrics [14]

McCabe Cyclomatic, Essential, and Design Complexity Metrics can be used to

detect software redundancies. They be calculated by hand or by automatic complexity

metrics tools.

Cyclomatic Complexity is a graph theory complexity measure that is an

application of flow graphs to software program logic.

Cyclomatic Complexity = the number of logic paths in a program function

Essential Complexity is a measure of the "structuredness" of a program function

that is calculated by counting the number of GO Tos (excluding GO TO EXITs). It is a

count of the number of times a control path branches outside of the function and does

not return. In a perfectly structured function, its value is 1.

Essential Complexity = Number of returning branches I total number of branches

Design Complexity is the complexity of a "design reduced" program function in

which the function's flow graph is reduced by treating all logic decisions and loops that

do not contain calls to immediate subordinate functions as if they were straight lines

(that is, one path). Thus, the function's design complexity is less than or equal to its

cyclomatic complexity, and typically is much less.

80

A2: Halstead Metrics [14]

Halstead's Software Science Complexity Metrics are also used to measure the

complexity characteristics of software programs. While McCabe's metrics focus on

logic path in a program, Halstead's Metrics are based on counting the number of unique

operators and operands in a program.

Operator are reserved programming language words such as ADD, GREATER

THAN, MOVE, READ, IF, CALL; arithmetic operators such as +, -, *,I; and logical

operators such as GREATER THAN or EQUAL TO.

Operand are data variables and constants in the program.

Some of the basic Halstead Metrics for calculating Length and Volume of

program are

Length

Volume

Where n

0

0

N

=

=

=

=

N+O

L * log2 (n+o)

number of unique operators

number of unique operands

total number of operators

total number of operands

Some programs may be more sensitive to one metric than another, so it is a good

idea to calculate both metrics for each program or program function. Also, both metrics

can be applied to source code or to design specifications, and both are supported by

several automated tools that work with many different programming languages.

81

APPENDIXB

B 1: Calculation the productivity and the quality by measuring Line of Code

Size-oriented software metrics [11] is direct measures of software and the

process by which it is developed. Those formulas involve:

Productivity =

Quality =

KLOC/person-hour

defects/KLOC

A Sample calculation of productivity and quality

Experiment #.XII : Electronic Phone System (EPS)

Program Language : Pascal

Implementation by : Reusable code

Experiment Results : LOC is equal to 752, Defect is equal to 2

and person-hour is equal to 7 Y2

Productivity = KLOC/person-hour

= (752 I 1000) I 7.5

= 0.100

Quality = defect/KLOC

= 2 I (752 I 1000)

= 2.660

82

B2: Calculation the productivity and the quality by measuring complexity

Function-oriented software metrics [11] are indirect measures of software and

the process by which it is developed. Rather than counting LOC, function-oriented

metrics focus on program "functionality" or "utility".

To compute function points, the following relationship is used:

FP count-total * [0.65 + 0.01 * SUM(Fi)]

Once function points have been calculated, they are used in a manner analogous to LOC

as a measure of software productivity and quality:

Productivity = FP I person-hour

Quality = defects I FP

A Sample calculation of productivity and quality

Experiment #.XII : Electronic Phone System (EPS)

Program Language : Pascal

Implementation by : Reusable code

Experiment Results : Defect is equal to 2 and person-hour is equal to 7 V2

Table B-1: Computing function-point metrics

Measurement parameter Count Weight factor Total

Simple Average Complex

Number of user inputs 12 3 4 *6 72

Number of user outputs 2 4 *5 7 10

Number of user inquires 2 3 *4 6 8

Number of file I *7 10 15 7

Number of external interfaces 1 5 *7 10 7

Coun I-Total 104

83

Table B-2: Computing the complexity adjustment values

Complexity Factor

Adjustment values No- Incidental Moderate Average

influence (0) (l) (2) (3)

Is the code designed

to be reusable?

Are there distributed

processing Yes

functions?

Is the internal Yes

processing complex?

Arc the inputs,

outputs, files Yes

complex?

Is the application

designed to facilitate

change and ease of

use by the user?

Count-Total 17

Calculation:

Count-total is equal to 104 and SUM(Fi) is equal to 17. So,

FP = count-total * [0.65 + 0.01 * SUM(Fi)]

104 * [0.65 + 0.01 * 17]

85.28

hence person-hour is equal to 7 V2

Productivity

Quality

FP I person-hour

85.28 I 7.5

11.371

defects I FP

2 I 85.28

::!: 0.023

84

Significant

(4)

Yes

Total

Essential

(5)

Yes 5

3

3

2

4

APPENDIXC

Main

Input Output

Figure C-1: A program structure of Get_Sentence module in experiment#l

Main

Multiplication

lncorrectMassage Correct Message

Figure C-2: A program structure of Random Value module in experiment#2

85

Main

lnputData Display

PrintHeader PrintRaw

Figure C-3: A program structure of BinarySearch module in experiment#3

Main

[""'-'"""" Elevator _Simulate Display_Elevator

Get_Current_lnfo Show_ Current_! nfo

Figure C-4: A program structure of Move_Elevator module in experiment#4

86

St. Gabriel's IJbrnrv

Main

Deal

Figure C-5: A program structure of Shuffle module in experiment#5

Main

Insert Display

Figure C-6: A program structure of BucketSort module in experiment#6

I M•rn

Figure C-7: A program structure of MazeTraveral module in experiment#7

87

Main

Insert

Figure C-8: A program structure of DataMerge module in experiment#8

Main

PositionST Trace Back

Figure C-9: A program structure of SpanWaveEven module in experiment#9

88

Open_ Source

initArrays

~
L_-=:~

Compile

firstPass

Print_Message

second Pass

Figure C-10: A program structure of Open_Source module and Print_Message module

in experiment#lO

Main

Query Display

Similarity Search Sequencial ObjectSize

Figure C-11: A program structure of Similarity Search module in experiment#l l

89

Main

I
l ------

Insert Update Delete Display

~ :

'
li i '

lnputFromFile lnputFromUser

I
,-- - ___ L

FormatCheck

Figure C-12: A program structure of CheckFormat module in experiment#l2

Main

Cl earl nterface lnputDataFile Refresh Timer

Figure C-13: A program structure of Distance_ Coordinate module in experiment#l3

90

st. Gabriel's Library

Main

initFile

lnsertRecord Update Record DeleteRecord

initialize lnputData

BinaryTree

Figure C-14: A program structure of BinaryTreeSeach module in experiment#l4

Main

Information Proposal Operation Report

Insert Update Delete

newBinSearch

Binary _Search

Figure C-15: A program structure of NewBinSearch module in experiment#l5

91

Main

get Score windowReg

Gen Random Di gir get95/98 get NT

Gen Password

Figure C-16: A program structure of GenRamdonDigit module in experiment#l6

~

BinaryTree

insertTree ()
deleteTree ()

·~

NewBinaryTree

searchTree ()

Figure C-17: A program structure of NewBinaryTree object in experiment#l 7

92

··--

TicketBooth

positionAvaliable()

•

Movie TicketBooth

-·

reserve()
cancel()

Figure C-18: A program structure of MovieTicketBooth object in experiment#l8

-

Vending Machine
f---

productAvailable();
priceOf Product();
exchangeCalculate();

•

I
Softd ri n kVendi ng Machine

--

getTemperature();
controlTemperature();

Figure C-19: A program structure of SoftdrinkVendingMachine object m

experiment# 19

93

-~

Vending Machine

productAvailable();
price Of Product();
exchangeCalculate();

jL

Ticket_ VendingMachine

ticketClassif ication();
ticketTimeStamp();

Figure C-20: A program structure of Ticket_ VendingMachine object in experiment#20

St. Gabriel's Library

94

	Cover and Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : An Approach for Code Reuse
	Chapter 3 : Experiment and Analysis
	Chapter 4 : Conclusions
	References
	Appendix : A
	Appendix : B
	Appendix : C

