

Policy-based Adaptation Rate
Control for TCP Traffic

By

Ms. Dujdao Krisboonchu

Submitted in Partial Fulfillment of the
Requirement for the Degree of

Master of Science in
Telecommunications Science

Assumption University

October , 2003

---- ---

The Faculty of Science and Technology

Thesis Title

By
Thesis Advisor
Academic Year

Master Thesis Approval

Policy-based Adaptation Rate Control for TCP Traffic

Ms. Dujdao Krisboonchu
Dr. Surat Tanterdtid
112003

The Department of Telecommunications Science, Faculty of Science and Technology of
Assumption University has approved this final report of the twelve credits course.
TS7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree
of Master of Science in Telecommunications Science.

Approval Committee:

(Dr. Surat Tanterdtid)
Advisor

(Asst.Prof.Dr obri Batovski)
Committee Member

Faculty Approval:

(Asst.Prof.Dr. obri Batovski)
Program Director

(Asst.Prof.Dr. Chanintom J. Nukoon)
Committee Member

(Asst.Prof.Dr. Surapong Auwatanamongkol)
Commission of Higher Education

University Affairs

October I 2003

Supavadee Nontakao)
Dean

ABSTRACT

TCP rate control is a new technique for transparently augmenting end-to-end TCP

performance by controlling the sending rate of a TCP source. The sending rate of TCP

source is determined by its window size, the round trip time and the rate of

acknowledgment. It controls the rate of TCP packets by controlling window size and

the rate of acknowledgment based on congestion environment.

This thesis presented the comparison of the simulation of TCP rate control and

standard TCP. This thesis separated the simulation into 2 categories, single hop and

multi hop topology with various link speeds. In the simulation of both topologies with

14 cases, the adjustment of the bandwidth is presented to make a congested

environment. The result of both topologies has shown that using TCP rate control

technology give higher performance than standard TCP in term of sending more TCP

packets in congested environment.

ACKNOWLEDGMENT

The author is very much indepted to Dr. Surat Tanterdtid, the thesis advisor, for his

help, suggessions and encouragement during my study. The author owes a great deal

to Asst.ProfDr.Chanintom J. Nukoon and Asst.ProfDr.Dobri Batovski for their

helpful recommendations.

The author would like to thank Telecommunication Science Department, Graduate

School of Assumption University for supporting the research.

Special thanks are due to Mr. Chanwit Chavalitkitjaroen for all his support.

The author would like to dedicate all of the expected benefits that are obained from

this dissertation to his father, Mr. Vinij Krisboonchu, who has been a great moral

supporter during the author's study.

-St. Gabrlel'sHLibrary, Au"

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER

CHAPTER I INTRODUCTION

I. I TCP overview

I .2 Background

1.3 Motivation

I .4 Problem Statement

1.5 Goals and objectives

CHAPTER 2 LITERATURE REVIEWS

11

111

v

Vlll

I

13

14

14

I5

2. I Transmission Control Protocol I 6

2.2 TCP Slow Start, Congestion Avoidance, Fast Retransmit, 2I

and Fast Recovery

2.3 Simulation-based Comparison of Tahoe, Reno 24

and SACK TCP

2.4 Selective Acknowledgment 26

2.5 Comparison Study of RED, ECN and TCP Rate Control 27

2.6 TCP Rate Control 28

CHAPTER 3 PROPOSED SYSTEM

3. I Proposed Algorithm

3.2 Scope and Limitation

3.3 Methodology

29

34

35

IV

TABLE OF CONTENTS (CONTINUE)

CHAPTER 4 RESULTS

4.1 Tested Topologies and Parameters for Single Hop

and Multi Hop Topology

4.2 Evaluation of Single Hop Topology for

Fast Ethernet (lOOBaseT)

4.3 Effect of Reducing the Bandwidth for Single Hop

Topology

36

40

44

4.3.1 Evaluation of Reducing the Bandwidth 44

to Standard Ethernet (lOBaseT)

4.3.2 Evaluation of Reducing the Bandwidth to 47

Low Bandwidth

4.3.3 Discussion of Effect of Reducing the 49

Bandwidth for Single Hop Topology

4.4 Evaluation of Multi Hop Topology for Standard 50

Ethernet (lOBaseT)

4.5 Effect of Reducing the Bandwidth for Multi Hop 53

Topology

4.5.1 Evaluation of Reducing the Bandwidth to 53

Low Bandwidth

4.5.2 Discussion of Effect of Reducing the Bandwidth 58

for Multi Hop Topology

4.6 Comparative Results of TCP Rate Control and Standard TCP

4.6.1 Discussion of Single Hop Topology

4.6.2 Discussion ofMulti Hop Topology

4.6.3 Summary Discussion of Results

60

62

63

CHAPTER 5 CONCLUSION AND RECOMMENDATION

REFERENCE

64

66

68 APPENDIX

LIST OF FIGURES

Figure 1-1 TCP Flow Control Mechanisms 2

Figure 1-2 TCP Header 4

Figure 1-3 TCP State Transition Diagram 7

Figure 1-4 TCP Sliding Window 9

Figure 1-5 Jacobson/Karels Algorithm 12

Figure 2-1 TCP Packet Format 16

Figure 2-2 TCP Three Way Handshake 20

Figure 2-3 Packet Loss and Retransmission 20

Figure 2-4 Slow Start 22

Figure 2-5 Selective Acknowledgment (SACK) 27

Figure 3-1 Single Hop Topology 34

Figure 3-2 . Multi Hop Topology 34

Figure 4-1 Topology A-The switch is connected to the server at 100 Mbps 37

Figure 4-2 Topology B - The switch is connected to the server at 10 Mbps 37

Figure 4-3 Topology C - The switch is connected to the server at 1 Mbps 38

Figure 4-4 Topology D - The bandwidth between switches is 1 OMbps 38

Figure 4-5 Topology E -The bandwidth between switches is 5 Mbps 38

Figure 4-6 Topology F - The bandwidth between switches is 1 Mbps 39

Figure 4-7 Comparison of total sending and receiving packets for standard 41

TCP and TCP Rate Control of case 1

Figure 4-8 Comparison of total sending and receiving packets for standard 42

TCP and TCP Rate Control of case 2

Figure 4-9 Comparison of total sending and receiving packets for standard 42

TCP and TCP Rate Control of case 3

Vl

LIST OF FIGURES

Figure 4-10 Comparison of total sending and receiving packets for standard 45

TCP and TCP Rate Control of case 4

Figure 4-11 Comparison of total sending and receiving packets for standard 46

TCP and TCP Rate Control of case 5

Figure 4-12 Comparison of total sending and receiving packets for standard 46

TCP and TCP Rate Control of case 6

Figure 4-13 Comparison of total sending and receiving packets for standard 48

TCP and TCP Rate Control of case 7

Figure 4-14 Comparison of total sending and receiving packets for standard 49

TCP and TCP Rate Control of case 8

Figure 4-15 Comparison of total sending and receiving packets for standard 51

TCP and TCP Rate Control of case 9

Figure 4-16 Comparison of total sending and receiving packets for standard 52

TCP and TCP Rate Control of case 10

Figure 4-17 Comparison of total sending and receiving packets for standard 54

TCP and TCP Rate Control of case 11

Figure 4-18 Comparison of total sending and receiving packets for standard 55

TCP and TCP Rate Control of case 12

Figure 4-19 Comparison of total sending and receiving packets for standard 57

TCP and TCP Rate Control of case 13

Figure 4-20 Comparison of total sending and receiving packets for standard 57

TCP and TCP Rate Control of case 14

..
Vll

LIST OF FIGURES

Figure 4-21 The percentage coefficient differentiation between TCP rate control 61

and standard TCP for case study 9-14

Figure 4-22 The percentage coefficient differentiation between TCP rate control 63

and standard TCP for case study 9-14

LIST OF TABLES

Table 4-1 Number of TCP and UDP sources for Case 1-3 40

Table 4-2 Percentage of TCP and UDP sources and comparison percentage 40

of TCP and UDP received packet for Case 1-3

Table 4-3 Result of standard TCP for case 1-3

Table 4-4 Result of TCP Rate Control for case 1-3

Table 4-5 Number of TCP and UDP sources for Case 4-6

41

41

44

Table 4-6 Percentage of TCP and UDP sources and comparison percentage 44

of TCP and UDP received packet for Case 4-6

Table 4-7

Table 4-8

Table 4-9

Result of standard TCP for case 4-6

Result of TCP Rate Control for case 4-6

Number of TCP and UDP sources for Case 7-8

45

45

47

Table 4-10 Percentage of TCP and UDP sources and comparison percentage 47

of TCP and UDP received packet for Case 7-8

Table 4-11 Result of standard TCP for case 7-8

Table 4-12 Result of TCP Rate Control for case 7-8

Table 4.13 Number of TCP and UDP sources for Case 9-10

48

48

50

Table 4-14 Percentage of TCP and UDP sources and comparison percentage 50

of TCP and UDP received packet for Case 9-10

Table 4-15 Result of standard TCP for case 9-10

Table 4-16 Result of TCP Rate Control for case 9-10

Table 4-17 Number of TCP and UDP sources for Case 11-12

51

51

53

Table 4-18 Percentage of TCP and UDP sources and comparison percentage 53

of TCP and UDP received packet for Case 11-12

Table 4-19 Result of standard TCP for case 11-12 54

LIST OF TABLES (CONTINUE)

Table 4-20 Result ofTCP Rate Control for case 11-12

Table 4-21 Number of TCP and UDP sources for Case 13-14

lX

54

56

Table 4-22 Percentage of TCP and UDP sources and comparison percentage 56

of TCP and UDP received packet for Case 13-14

Table 4-23 Result of standard TCP for case 13-14

Table 4-24 Result of TCP Rate Control for case 13-14

Table 4-25 TCP received packet comparison for case 1-8

Table 4-26 TCP received packet comparison for case 9 - 14

56

57

60

62

1. INTRODUCTION

1.1 TCP Overview

The TCP provides reliable transmission of data in an IP environment. TCP

corresponds to the transport layer (Layer 4) of the OSI reference model. Among the

services TCP provides are stream data transfer, reliability, efficient flow control, full

duplex operation, and multiplexing. With stream data transfer, TCP delivers an

unstructured stream of bytes identified by sequence numbers. This service benefits

applications because they do not have to chop data into blocks before handing it off to

TCP. Instead, TCP groups bytes into segments and passes them to IP for delivery.

TCP offers reliability by providing connection-oriented, end-to-end reliable packet

delivery through an inter network. It does this by sequencing bytes with a forwarding

acknowledgment number that indicates to the destination the next byte the source

expects to receive. Bytes not acknowledged within a specified time period are

retransmitted. The reliability mechanism of TCP allows devices to deal with lost,

delayed, duplicate, or misread packets. A time-out mechanism allows devices to

detect lost packets and request retransmission. TCP offers efficient flow control,

which means that, when sending acknowledgments back to the source, the receiving

TCP process indicates the highest sequence number it can receive without

overflowing its internal buffers. Full-duplex operation means that TCP processes can

both send and receive at the same time. Finally, TCP' s multiplexing means that

numerous simultaneous upper-layer conversations can be multiplexed over a single

connection.

TCP Summary

TCP provides a connection oriented, reliable, byte stream service. The term

connection-oriented means the two applications using TCP must establish a TCP

connection with each other before they can exchange data. It is a full duplex protocol,

meaning that each TCP connection supports a pair of byte streams, one flowing in

each direction. TCP includes a flow-control mechanism for each of these byte streams

that allows the receiver to limit how much data the sender can transmit. TCP also

implements a congestion-control mechanism.

y connecti oos.

*' • ·II port N port H &

re1iab1e
TCP +------· T C P

TCP conne~tion _~....,..._ ___ .,.,...

i:::::::::oo.:.:x :;:::::::: ::.:.:::::::::::1
! unrel Hili1e

t p IP addresses

IP datagrams
host A host S

Figure 1-1: TCP Flow Control Mechanisms

Two processes communicating via TCP sockets. Each side of a TCP connection has a

socket which can be identified by the pair < IP_ address, port_ rmmber >. Two

processes communicating over TCP form a logical connection that is uniquely

identifiable by the two sockets involved, that is by the combination

< local _IP_ address, local _port, remote _IP_ address, remote _port>.

2

TCP provides the following facilities to:

Stream Data Transfer

From the application's viewpoint, TCP transfers a contiguous stream of bytes.

TCP does this by grouping the bytes in TCP segments, which are passed to IP

for transmission to the destination. TCP itself decides how to segment the data

and it may forward the data at its own convenience.

Reliability

TCP assigns a sequence number to each byte transmitted, and expects a

positive acknowledgment (ACK) from the receiving TCP. If the ACK is not

received within a timeout interval, the data is retransmitted. The receiving

TCP uses the sequence numbers to rearrange the segments when they arrive

out of order, and to eliminate duplicate segments.

Flow Control

The receiving TCP, when sending an ACK back to the sender, also indicates

to the sender the number of bytes it can receive beyond the last received TCP

segment, without causing overrun and overflow in its internal buffers. This is

sent in the ACK in the form of the highest sequence number it can receive

without problems.

Multiplexing

To allow for many processes within a single host to use TCP communication

facilities simultaneously, the TCP provides a set of addresses or ports within

each host. Concatenated with the network and host addresses from the internet

communication layer, this forms a socket. A pair of sockets uniquely identifies

each connection.

3

Logical Connections

The reliability and flow control mechanisms described above require that TCP

initializes and maintains certain status information for each data stream. The

combination of this status, including sockets, sequence numbers and window

sizes, is called a logical connection. Each connection is uniquely identified by

the pair of sockets used by the sending and receiving processes.

Full Duplex

TCP provides for concurrent data streams in both directions.

TCP Header

TCP data is encapsulated in an IP datagram. The figure shows the format of the TCP

header. Its normal size is 20 bytes unless options are present. Each of the fields is

discussed below:

,.._o ____ •... ,,,,.,,~---.-----~--·-···············J~.).? ·-···-···-·--"--,,,~---------········· .. ···~

~· ~:
v .. .,.,.., ~-------................. ·.·.·-·-··"""'------·····"'··---,,.,,..~ - -__. --·---···-~~ ·.·1

32-bil &eq L1<?-r'IC(! numbe-t !

1--- - ---- --~-32-"' --b-it-ac--kn-<-)\-,..-l-e~~=~-'lf-. n-u:~~----·-····- ---------·······--···························---12\! tJv!•?S

~ ,.

r;.:;.;~-~~:~:J----;~~~~;:;~--·- i ~ i ~ ~ ~T~T~HT·------···-~ --1-6~-1~·=:~~-{~:\~S~;,~ ·····-·-··········i
~-----~~,~~: L ~~-~~-1~'.;~---------_l.~~.L~.!.~_1 I I i N j ~ ~
~

:t...........-~.-----·-······~"' ,.,~, .. ""'"''·'."'.'.'."' ~:

Hi-NtTCP ct•.i.tlMun

[----······'

lfrhit urgent p;;ink:r
,_!_,

·········-·--·----·-·---

'.;-
.;i

,......_._ ,,. __________
_l

---····----········----~

I

'••• ·••---•••H•-•·-··•••---·--·---•••••••••••o••••••••••••••••••••••••••---·•·•••••···· •••••--•••••••••

Figure 1-2: TCP Header

4

The SrcPort and DstPort fields identify the source and destination

ports,respectively. These two fields plus the source and destination IP

addresses, combine to uniquely identify each TCP connection.

The sequence number identifies the byte in the stream of data from the

sending TCP to the receiving TCP that the first byte of data in this segment

represents.

The Acknowledgement number field contains the next sequence number that

the sender of the acknowledgement expects to receive. This is therefore the

sequence number plus 1 of the last successfully received byte of data. This

field is valid only if the ACK flag is on. Once a connection is established the

ACK flag is always on.

The Acknowledgement, SequenceNum, and AdvertisedWindow fields are

all involved in TCP's sliding window algorithm. The Acknowledgement and

AdvertisedW indow fields carry information about the flow of data going in

the other direction. In TCP's sliding window algorithm, the reciever advertises

a window size to the sender. This is done using the AdvertisedWindow field.

The sender is then limited to having no more than a value of

AdvertisedWindow bytes of an acknowledged data at any given time. The

receiver sets a suitable value for the AdvertisedWindow based on the amount

of memory allocated to the connection for the purpose of buffering data.

The header length gives the length of the header in 3 2-bit words. This is

required because the length of the options field is variable.

The 6-bit Flags field is used to relay control information between TCP peers.

The possible flags include SYN, FIN, RESET, PUSH, URG, and ACK.

• The SYN and Fin flags are used when establishing and terminating a

TCP connection, respectively.

5

• The ACK flag is set any time the Acknowledgement field is valid,

implying that the receiver should pay attention to it.

• The URG flag signifies that this segment contains urgent data. When

this flag is set, the UrgPtr field indicates where the non-urgent data

contained in this segment begins.

• The PUSH flag signifies that the sender invoked the push operation,

which indicates to the receiving side of TCP that it should notify the

receiving process of this fact.

• Finally, the RESET flag signifies that the receiver has become

confused and so wants to abort the connection.

The Checksum covers the TCP segment: the TCP header and the TCP data.

This is a mandatory field that must be calculated by the sender, and then

verified by the receiver.

The Option field is the maximum segment size option, called the MSS. Each

end of the connection normally specifies this option on the first segment

exchanged. It specifies the maximum sized segment the sender wants to

recieve.

The data portion of the TCP segment is optional.

6

TCP State Transition Diagram

Figure 1~3: TCP State Transition Diagram

The two transitions leading to the ESTABLISHED state correspond to the opening of

a connection, and the two transitions leading :from the ESTABLISHED state are for

the termination of a connection. The ESTABLISHED state is where data transfer can

occur between the two ends in both the directions.

If a connection is in the LISTEN state and a SYN segment arrives, the connection

makes a transition to the SYN_RCVD state and takes the action of replying with an

ACK +SYN segment. The client does an active open which causes its end of the

7

connection to send a SYN segment to the server and to move to the SYN_SENT state.

The arrival of the SYN+ ACK segment causes the client to mo ve to the

ESTABLISHED state and to send an ack back to the server. When this ACK arrives

the server finally moves to the ESTABLISHED state. In other words, we have just

traced the TIIREE-WAY HANDSHAKE.

In the process of terminating a connection, the important thing to kee p in mind is that

the application process on both sides of the connection must independently close its

half of the connection. Thus, on any one side there are three combinations of

transition that get a connection from the ESTABLISHED state to the CLOSED state:

• This side closes first:

ESTABLISHED ->FIN_ WAIT_ 1-> FIN_ WAIT _2 -> TIME_ WAIT -> CLOSED.

• The other side closes first:

ESTABLISHED ->CLOSE WAIT-> LAST ACK-> CLOSED.

• Both sides close at the same time:

ESTABLISHED -> FIN WAIT 1-> CLOSING ->TIME WAIT -> CLOSED. - -

The main thing to recognize about connection teardown is that a connection in the

TIME WAIT state cannot move to the CLOSED state until it has waited for two

times the maximum amount of time an IP datagram might live in the Internet. The

reason for this is that while the local side of the connection has sent an ACK in

response to the other side's FIN segment, it does not know that the ACK was

successfully delivered. As a consequence, this other side might retransmit its FIN

segment, and this second FIN segment might be delayed in the network. If the

8

connection were allowed to move directly to the CLOSED state, then another pair of

application processes might come along and open the same connection, and the

delayed FIN segment from the earlier incarnation of the connection would

immediately initiate the termination of the later incarnation of that connection.

Sliding Window

L.e".itflyreV•irttt:,n
...------..=

~

tastByteAdi;ed

Figure 1-4: TCP Sliding Window

The sliding window serves several purposes:

(1) it guarantees the reliable delivery of data

t +
t-..textByteExpecte.-d LasU3yreRcvc!

(2) it ensures that the data is delivered in order,

(3) it enforces flow control between the sender and the receiver.

Reliable and ordered delivery

The sending and receiving sides of TCP interact m the following manner to

implement reliable and ordered delivery:

Each byte has a sequence number.

ACKs are cumulative.

9

Sending side

o LastByteAcked <=LastByteSent

o LastByteSent <= LastByteWritten

o bytes between LastByteAcked and LastByteWritten must be buffered.

Receiving side

o LastByteRead < NextByteExpected

o NextByteExpected <= LastByteRcvd + 1

o bytes between NextByteRead and LastByteRcvd must be buffered.

Flow Control

Sender buffer size : MaxSendBuffer

Receive buffer size : MaxRcvBuffer

Receiving side

o LastByteRcvd - NextBytteRead <= MaxRcvBuffer

o AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd -

NextByteRead)

Sending side

o LastByteSent - LastByteAcked <= AdvertisedWindow

o Effective Window= AdvertisedWindow - (LastByteSent -

LastByteAcked)

10

-StGabriets Library, Au
265 e,·1

• LastByteWritten- LastByteAcked <= Max:SendBuffer

o Block sender if (LastByteWritten - LastByteAcked) + y >

MaxSendBuffer

Always send ACK in response to an arriving data segment

Persist when AdvertisedWindow = 0

Adaptive Retransmission

TCP guarantees reliable delivery and so it retransmits each segment if an ACK is not

received in a certain period of time. TCP sets this timeout as a function of the RTT it

expects between the two ends of the connection. Unfortunately, given the range of

possible RTT's between any pair of hosts in the Internet, as well as the variation in

RTT between the same two hosts over time, choosing an appropriate timeout value is

not that easy. To address this problem, TCP uses an adaptive retransmission

medchanism. We describe this mechanism and how it has evolved over time.

Original Algorithm

Measure SampleRTT for each segment/ ACK pair

Compute weighted average of RTT

EstimatedRTT = a*EstimatedRTT + b*SampleRTT, where a+b = 1

a between 0.8 and 0.9

b between 0.1 and 0.2

Set timeout based on EstimatedRTTTimeOut = 2 * EstimatedRTT

11

Karn/Partridge Algorithm

Do not sample RTT when retransmitting

Double timeout after each retransmission

Jacobson/Karels Algorithm

{bl

Figure 1-5: Jacobson/Karels Algorithm

New calculation for average RTT

Difference= SampleRTT-EstimatedRTT

EstimatedRTT = EstimatedRTT + (d *Difference)

Deviation= Deviation+ d (IDifferencel - Deviation)), where dis a fraction between 0

and 1

Consider variance when setting timeout value

Timeout= u * EstimatedRTT + q *Deviation, where u = 1andq=4

12

St. Gabriel's Library, Au

1.2 Background

TCP Rate Control represents a more fundamental and precise approach by applying

explicit rate-based flow control to both individual and classes of traffic flows. TCP

rate control increases network efficiency by avoiding retransmissions and packet loss.

Imagine putting fine sand, rather than gravel, through a network pipe. Sand can pass

through the pipe more evenly and quickly than chunks. TCP Rate Control conditions

traffics so that it becomes more like sand than gravel. By using rate-based flow

control instead of queuing, TCP Rate Control evenly distributes packet transmissions

by controlling TCP acknowledgments to the sender, causing the sender to throttle

back, and avoiding packet tossing when there is insufficient bandwidth.

TCP Rate Control is a new technique for transparently augmenting end-to-end TCP

performance by controlling the sending rate of a TCP source. The sending rate of a

TCP source is determined by its window size, the round trip time and the rate of

acknowledgements. TCP Rate Control affects these aspects by modifying the ack

number and receiver window fields in acknowledgements and by modulating the

acknowledgement rate. From a performance viewpoint, a key benefit of TCP rate

control is to avoid adverse performance effects due to packet losses such as reduced

goodput and unfairness or large spread in per-user goodput.

13

1.3 Motivation

TCP congestion control is designed for network stability, robustness and opportunistic

use of network resources on an end-to-end basis. Using a robust technique to detect

packet loss (timeout or triple-duplicate acks), TCP infers congestion and trades off

per-user goodput for network stability. Specifically, TCP throughput is known to be a

function, which is inversely proportional to the round trip time, the timeout delays and

the square root of loss probability (Ignoring effects of small windows and timeout).

Given this equation, we can view the function of any buffer management algorithm

managing TCP flows as assigning loss probabilities and queuing delays (which affect

the round trip time) to competing TCP flows in order to meet performance

requirements such as utilization, queuing delays, spread of per-user goodputs etc.

However, this equation assumes that the TCP receiver window is not a limiting factor,

which is not necessarily the case. Therefore if the TCP receiver window were the

primary limiting factor, we could design a buffer management algorithm in which

TCP throughput would not depend primarily on loss rate (or the round trip time)

under controlled operating system.

1.4 Problem Statement

Computer networks have experienced an explosive growth and with that growth have

come severe congestion problems. Now TCP uses slow-start algorithm for congestion

control. With TCP slow-start, when a connection opens, only one packet is sent until

an ACK is received. For each ACK receives ACK, the sender can double the

transmission size. Note that this is exponential growth rate. But eventually packets are

dropped.

14

With normal transmission of TCP, the sending rate is not based on congestion

environment and when network is under the problem of loss packets and

retransmission can occur. Dropped and retransmission packet can increase latency.

This is the significant role of this thesis to point out TCP rate control based on

congestion environment can reduce loss and retransmit packets and can decrease

latency too.

1.5 Goals and Objectives

The goal for this thesis is to propose the methodology of TCP rate control that can

improve the performance when transmitting TCP/IP packet and reduce the loss and

retransmission packets. TCP rate control is a new technique for transparently

augmenting end-to-end TCP performance by controlling the sending rate of a TCP

source. The sending rate of TCP source is determined by its window size, the round

trip time and the rate of acknowledgement. So this thesis will control the rate of TCP

packets by controlling window size and the rate of acknowledgement based on

congestion environment.

From the performance viewpoint, a key objective of TCP rate control is to avoid

adverse performance effects due to packet losses such as reduced goodput and

unfairness or large spread in per-user goodputs.

15

2. LITERATURE REVIEW

These are 6 major literatures which describe the TCP concept and TCP congestion

control algorithms that are used in traditional TCP and their comparisons. The literatures

describe the TCP congestion control and comparisons of Tahoe, Reno and SACK and

describe the characteristic of SACK TCP.

2.1 Transmission Control Protocol [8]

This literature describes the protocol specification of Transmission Control Protocol

(TCP).

TCP Connection Establishment

To use reliable transport services, TCP hosts must establish a connection-oriented session

with one another. Connection establishment is performed by using a "three-way

handshake" mechanism. A three-way handshake synchronizes both ends of a connection

by allowing both sides to agree upon initial sequence numbers. This mechanism also

guarantees that both sides are ready to transmit data and know that the other side is ready

to transmit as well. This is necessary so that packets are not transmitted or retransmitted

during session establishment or after session termination.

Each host randomly chooses a sequence number used to track bytes within the stream it is

sending and receiving. Then, the three-way handshake proceeds in the following manner:

The first host (Host A) initiates a connection by sending a packet with the initial

sequence number (X) and SYN bit set to indicate a connection request. The second host

(Host B) receives the SYN, records the sequence number X, and replies by

acknowledging the SYN (with an ACK= X + 1). Host B includes its own initial sequence

number (SEQ = Y). An ACK = 20 means the host has received bytes 0 through 19 and

expects byte 20 next. This technique is called forward acknowledgment. Host A then

acknowledges all bytes Host B sent with a forward acknowledgment indicating the next

byte Host A expects to receive (ACK= Y + I). Data transfer then can begin.

Positive Acknowledgment and Retransmission

A simple transport protocol might implement a reliability-and-flow-control technique

where the source sends one packet, starts a timer, and waits for an acknowledgment

before sending a new packet. If the acknowledgment is not received before the timer

expires, the source retransmits the packet. Such a technique is called positive

acknowledgment and retransmission (PAR). By assigning each packet a sequence

number, PAR enables hosts to track lost or duplicate packets caused by network delays

that result in premature retransmission. The sequence numbers are sent back in the

acknowledgments so that the acknowledgments can be tracked. PAR is an inefficient use

of bandwidth, however, because a host must wait for an acknowledgment before sending

a new packet, and only one packet can be sent at a time.

TCP Sliding Window

A TCP sliding window provides more efficient use of network bandwidth than PAR

because it enables hosts to send multiple bytes or packets before waiting for an

acknowledgment. In TCP, the receiver specifies the current window size in every packet.

Because TCP provides a byte-stream connection, window sizes are expressed in bytes.

This means that a window is the number of data bytes that the sender is allowed to send

17

before waiting for an acknowledgment. Initial window sizes are indicated at connection

setup, but might vary throughout the data transfer to provide flow control. A window size

of zero, for instance, means "Send no data." In a TCP sliding-window operation, for

example, the sender might have a sequence of bytes to send (numbered 1 to 10) to a

receiver who has a window size of five. The sender then would place a window around

the first five bytes and transmit them together. It would then wait for an acknowledgment.

The receiver would respond with an ACK = 6, indicating that it has received bytes 1 to 5

and is expecting byte 6 next. In the same packet, the receiver would indicate that its

window size is 5. The sender then would move the sliding window five bytes to the right

and transmit bytes 6 to 10. The receiver would respond with an ACK = 11, indicating

that it is expecting sequenced byte 11 next. In this packet, the receiver might indicate that

its window size is 0 (because, for example, its internal buffers are full). At this point, the

sender cannot send any more bytes until the receiver sends another packet with a window

size greater than 0.

Figure 2-1: TCP Packet Format

18

St. Gabriel's Library. Au

TCP Packet Field Description

The following descriptions summarize the TCP packet fields:

• Source Port and Destination Part-Identifies points at which upper-layer source and

destination processes receive TCP services.

•Sequence Number-Usually specifies the number assigned to the first byte of data in the

current message. In the connection-establishment phase, this field also can be used to

identify an initial sequence number to be used in an upcoming transmission.

• Acknowledgment Number-Contains the sequence number of the next byte of data the

sender of the packet expects to receive.

•Data Offset-Indicates the number of 32-bit words in the TCP header.

•Reserved-Remains reserved for future use.

•Flags-Carries a variety of control information, including the SYN and ACK bits used

for connection establishment, and the FIN bit used for connection termination.

• Window-Specifies the size of the sender's receive window (that is, the buffer space

available for incoming data).

• Checksum-Indicates whether the header was damaged in transit.

• Urgent Pointer-Points to the first urgent data byte in the packet.

• Options-Specifies various TCP options.

• Data--Contains upper-layer information.

19

Evants at Host 1 !
~

f<.~t'itl fl?i * A.CK i ...
i
l

rt::-~*~Y.~~- f·~t~ ·t· At:;K ... J::r.: -··· · ·
,w;i; A.GK 1···········.

i
~
l

-·-·~·-·

Figure 2-2: TCP Three Way Handshake

. ··=w-
},

Figure 2-3: Packet Loss and Retransmission

Events at Host 2

......
::·=~:r::~ :.:::!:~.:~::,

+ ==~:(}·~:

Events at Host 2

.. ···-»-~--- -:·:::;:::·::::;-:::,..·-;:: :·::::-:=!.f:.;;,;_;;•:;:::-::: .·'

~-'N ;~= ::·::•:} ::!:::.:::-: ,:•
<

~'

20

St. Gabriel's Library~ Au

Adaptive Retransmission

TCP guarantees reliable delivery and so it retransmits each segment if an ACK is not

received in a certain period of time. TCP sets this timeout as a function of the RTT it

expects between the two ends of the connection. Unfortunately, given the range of

possible RTT's between any pair of hosts in the Internet, as well as the variation in RTT

between the same two hosts over time, choosing an appropriate timeout value is not that

easy. To address this problem, TCP uses an adaptive retransmission mechanism.

2.2 TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery [1]

This literature describes the characteristic11 of congestion control algorithms for slow

start, congestion avoidance, fast retransmit, and fast recovery.

Slow Start

• When a new connection is established, the congestion window, called "cwnd", is

initialized to one segment.

• The sender starts by transmitting one segment and waiting for its ACK.

• When that ACK is received, the congestion window is incremented from one to two,

and two segments can be sent

• When each of those two segments 1s acknowledged, the congestion window is

increased to four.

• This provides an exponential growth.

21

Host A Host B

Time

Figure 2-4 Slow Start

Congestion Avoidance

• Congestion avoidance and slow start are independent algorithms with different

objectives. In practice they are implemented together.

• Two variables be maintained for each connection: a congestion window, cwdn, and a

slow start threshold size, ssthresh.

• Initialization for a given connection sets cwdn to one segment and ssthresh to 65535

bytes.

• The TCP output routine never sends more than the rmrumum of cwdn and the

receiver's advertised window.

• When congestion occurs, one half of the current window size is saved in ssthresh.

Additionally, if the congestion is indicated by a timeout, cwdn is set to one segment.

22

Fast Retransmit

• TCP may generate an immediate acknowledgment (a duplicate ACK) when an out-of

order segment is receieved.

• The purpose of this duplicate ACK is to let the other end know that a segment was

received out of order, and to tell it what sequence number is expected.

• Since TCP does not know whether a duplicate ACK is caused by a lost segment or

just a reordering of segments, it waits for a small number of duplicate ACKs to be

receieved.

• If there is just a reordering of the segments, there will be only one or two duplicate

ACKs before the reordered segment is precessed.

• If three or more duplicate ACKs are receieved in a row, it is a strong indication that a

segment has been lost TCP then performs a retransmission of what appears to be the

missing segmemt without waiting for a retransmission timer to expire.

Fast Recovery

After fast retransmit sends what appears to be the missing segment, it uses congestion

avoidance. The reason for not performing slow start is that the receipt of the duplicate

ACKs tells TCP more than just a packet has been lost

Since the receiver can only generate the duplicate ACK when another segment is

received, that segment has left the network and is in the receiver's buffer. [1]

23

2.3 Simulation-based Comparisons of Tahoe, Reno and SACK TCP [4]

This literature uses simulation to explore the benefits of adding selective

acknowledgements (SACK) to TCP. It compares Tahoe, Reno, New Reno and SACK

TCP and show that SACK gives the best result

Tahoe TCP

This follows a basic go-back-n model using slow-start, congestion avoidance and fast

retransmit algorithms. With Fast Retransmit, after receiving a small number of duplicate

acks for the same TCP segment, the data sender infers that the packet has been lost and

retransmits the packet without waiting for the retransmission timer to expire.

Reno TCP

• Modification to the Tahoe TCP Fast Retransmit algorithm to include Fast

Recovery; this prevents the pipe from going empty after Fast Retransmit,

thereby avoiding the need to slow start after a single packet loss.

• A TCP sender enters Fast Recovery after receiving a threshold number of

dup. ACK>. The sender retransmits one packet and reduces its congestion

window by half Instead of slow-starting, the Reno sender uses additional

incoming dup. acks to clock subsequent outgoing packets.

• Reno TCP greatly improves performance in the face of single packet loss,

but can suffer when multiple packets are lost

24

St. Gabriel's Library_ Au

New Reno TCP

In Reno, a partial ack (ack for some but not all of the packets that were

outstanding at the start of the fast recovery period) takes TCP out of Fast

Recovery. In New Reno, partial acks do not take TCP out of fast recovery; partial

acks received during fast recovery are treated as an indication that the packet

immediately following the ACK packet has been lost and should be retransmitted.

Thus, when multiple packets are lost, New Reno can recover without a

retransmission timeout.

SACK TCP

The TCP sender maintain a scoreboard which keeps track of acks from previous

SACK packets. When the sender is allowed to send a packet, it retransmits the

next packet from the list of packets inferred to be missing at the receiver. If there

are no such packets and the receiver's advertised window is sufficiently large, the

sender sends a new packet. RFC2018 [2].

Simulation Result

One packet loss: Tahoe TCP does badly due to slow-start after the packet loss. All

other do relatively the same.

Two packet losses: Reno TCP fails to do as well as New Reno or SACK TCP,

since its algorithm is tuned for single packet loss.

Multiple packet losses: Reno TCP performs miserably in the face of a large

number of packet losses. SACK TCP continues to out-perform the rest of the algorithms.

25

2.4 Selective Acknowledgement Option[2]

TCP may experience poor performance when multiple packets are lost from one window

of data. With the limited information available from cumulative acknowledgments, a

TCP sender can only learn about a single lost packet per round trip time. An aggressive

sender could choose to retransmit packets early, but such retransmitted segments may

have already been successfully received.

A Selective Acknowledgment (SACK) mechanism, combined with a selective repeat

retransmission policy, can help to overcome these limitations. The receiving TCP sends

back SACK packets to the sender informing the sender of data that has been received.

The sender can then retransmit only the missing data segments.

This memo proposes an implementation of SACK and discusses its performance and

related issues

SACK allows the receiver to mform tll~ senqer about all segments that have been
If i 1

successfully received and allows the sender to retransmit only those segments that have

been sent.

26

ACK55

5590-5999 ..

ACK5500·

Figure 2-5 Selective Acknowledgment (SACK)

2.5 Comparative Study of RED, ECN and TCP Rate Control [7]

This literature evaluates the following network-based and end-to-end enhancements for

addressing the issue of enhancing TCP performance.

Random Early Detection (RED): an active queue management technique

TCP-explicit congestion notification (ECN): which uses a one-bit explicit

congestion notification instead of using packet drop as an implicit notification.

Packeteer's TCP Rate Control: a network-based solution which controls the

left and right edges of the TCP window, and shapes the TCP

acknowledgement stream.

27

All schemes control bottleneck queuing delay, but trade off other measures such as drop

rate, utilization and fairness, with TCP rate control exhibiting the best performance in

terms of all metrics. In terms of deployment flexibility, TCP rate control and RED allow

widespread and immediate deployment because they are transparent to hosts (ECN in not

because it requires TCP protocol modifications). The minimal state requirements and

protocol transparent of RED allows it a large deployment space.

2.6 TCP Rate Control [3]

This paper presents TCP rate control, a new technique for transparently augmenting end

to-end TCP performance by controlling the sending rate of a TCP source. The sending

rate of a TCP source is determined by its window size, the round trip time and the rate of

acknowledgments. TCP rate control affects these aspects by modifying the ack number

and receiver window fields in acknowledgments and by modulating the acknowledgment

rate. From a performance viewpoint, a key benefit of TCP rate control is to avoid adverse

performance effects due to packet losses such as reduced goodput and unfairness or large

spread in per-user goodputs. Further, TCP rate control positively affects performance

even if the bottleneck is non-local and the end-host TCP implementations are

nonconforming.

These aspects are demonstrated through a comparative study of TCP rate control, RED

and TCP-ECN. The TCP rate control approach has been implemented and patented

by Packeteer Inc.

28

3. PROPOSED SYSTEM

3.1 Proposed Algorithm

TCP Rate Control Methodology Flow Chart

Find round trip time (RTT)

l
Find Allocate Rate

l
Find Window Size

l
----- Compare allocate and measure rate

and mark it as bottlenecked or
hungry flows

Find Inter-ack Spacing Time

l
Set inter-ack spacing time value in TCP header

l
Sender sends packets by follow the calculated window size

l
Receiver receives packets and holds ACK and SACK based on

the inter-ack spacing time

l
Receiver sends ACK or SACK

l
Sender receives ACK, SACK and get new value of RTT and measure rate(R)

l
If senders found packet loss, retransmit loss packet ___________ __J

:st. GabrieJ's Library, Au

1. Samp RTT { c====::::::::==1
-== -

FindRTT

Samp RTT =Sample value ofRTT by noting the time difference between creation of the

TCP segment and receipt of an ACK for it.

Est RTT = the estimate ofRTT that TCP has after measuring.

EstRTT(n) = axEstRTT(n-1) + (1-a)xSampRTT(n)

2. Find Allocate Rate (Ai)

B = Bottlenecked capacity

N = Number of flows

A; =BIN

30

;(a= 7/8)

3. Compare with Measure Rate (Ri)

IfRi <A , then mark flow i as bottlenecked else mark it as hungry

4. Calculate the new allocate rate

Hungry Flows

U = Aggregate residual bandwidth the bandwidth that remains unutilized by

the bottlenecked flows. This value can be calculated by bottleneck capacity (B) minus

measure rate (R)

H = Total Number of Hungry Flows This is the total number of flows in the

link

Bottlenecked Flows

5. Find Window Size

W = the calculated window size in unit of packets

RTT = the round trip time, in seconds

MSS = the maximum segment size, in bytes

A = the rate allocation in bytes/s

W= (AXRIT) /MSS

Where 0 < W < 300

31

6. Send the packets based on calculated window size (W)

6. Find Inter-ack Spacing Time

A = the inter-ack spacing time, in seconds

A =RIT /W

7. Delay ACK and SACK based on inter-ack spacing time

} A

32

8. If there is packet loss, retransmit loss packet

9. Get the new value of RTT and measure rate (~)

} ~

Measure rate (Ri) = size of flow (byte) I RTT (seconds)

10. Repeat to step 1 until all data is sent

Note: For the first flow, skip the step 3 and 4. Use the allocated rate (~), there is no need

to mark the flow as hungry or bottlenecked flow

33

3.2 Scope and Limitation

The scope and limitation for this thesis will follow as:

1. TCP protocol will follow RFC 793 [5].

2. TCP SACK will follow RFC2018 [3].

3. TCP algorithms will follow RFC2001 [2].

4. This thesis will be working in the same LAN switch network.

5. The simulated scenario will be as following scenario

Client Server

Figure 3-1: Single Hop Topology

Client Seiver

Figure 3-2: Multi Hop Topology

Client side opens TCP ports to transmit data to server and the rate of TCP will be

controlled based on the congestion by following the proposed algorithms.

34

~r. Gaonei s Library, Au

3.3 Methodology

Network Simulator version 2 (NS2) or other coding C language is used to simulate the

idea for this thesis. Network Simulator version2 is based on C++ and Otcl and developed

by University of California at Berkeley (UCB).

This program uses metrics as follow:

• Sent packets for TCP and UDP (Bytes)

• Received packets for TCP and UDP (Bytes)

• Dropped packets for TCP and UDP (Bytes)

This thesis simulated 2 cases:

1. TCP with rte control by follow the proposed algorithm.

2. Standard TCP.

35

4.RESULTS

This chapter describes the performance results of TCP Rate Control and standard

TCP. The simulation is separated into 2 categories, single hop topology and multi hop

topology, with 14 cases. Section 4.6 presented the comparative results of TCP Rate

Control and Standard TCP. A brief discussion of topologies and parameters are

presented as follows:

4.1 Tested Topologies and Parameters for Single Hop and Multi Hop Topology

Topologies are classified into 2 categories: single hop and mulie hop as described

below:

Single Hop Topology: All TCP, UDP sources and servers are connected directly to

the switch. To get the various results, there is the adjustment of the number of TCP

and UDP sources and the bandwidth of the link from switch to the server. The

bandwidth from the switch to the server is adjusted from fast Ethernet (100 Mbps) to

standard Ethernet (10 Mbps) and to low bandwidth (1 Mbps). The use oflow

bandwidth from the switch to server is unrealistic. However, it is easy to evaluate the

algorithm and cleary show the result from the simulation. Figure 4 .1-4 .3 presented the

diagram of Single Hop Topology. There are 8 study cases (case study 1-8) forthe

simulation of single hop topology. The detail of the number of TCP and UDP sources

for each case is described in section 4.2-4.3. All TCP and UDP sources send the

packet to the server by following the tested parameters.

Multi Hop Topology: All TCP, UDP sources and servers are connected directly to

the switch and the server is connected to the another switch. These two switches are

connected together. To get the various results, there is the adjustment of the number

of TCP and UDP sources and the bandwidth of the link from switch to the server. The

bandwidth from the switch to the server is adjusted from standard Ethernet (10 Mbps)

to low bandwidth 5 Mbps and to 1 Mbps. The use oflow bandwidth between the

switches is unrealistic. However, it is easy to evaluate the algorithm and clearly show

the result from the simulation. Figure 4.4 -4.6 presented the diagram of Multi Hop

Topology. There are 6 study cases (case study 9-14) for the simulation of multi hop

topology. The detail of the number of TCP and UDP sources for each case is

described in section 4.4-4.5. All TCP sources send the packets to one server and UDP

sources send the packets to another server.

~
~

100 Mbps

TCP and UDP

~ sources

~
100Mbps

~
Server

~
Figure 4-1: Topology A - The switch is connected to the server at 100 Mbps

TCP and UDP
sources

Servers

Figure 4-2: Topology B - The switch is connected to the server at 10 Mbps

37

TCP and UDP
sources 1 Mbps

Server

Figure 4-3: Topology C - The switch is connected to the server at 1 Mbps

TCP and UDP
sources

Figure 4-4: Topology D-The bandwidth between switches is 10 Mbps

TCP and UDP
sources

Figure 4-5: Topology E -The bandwidth between switches is 5 Mbps

38

TCP and UDP
sources

Figure 4-6: Topology F - The bandwidth between switches is 1 Mbps

The evaluation follows the following parameters:

~ TCP selective acknowledgment (SACK),

~ Tail Drop queue type

~ 1000 bytes of packet size

~ Duration of 180 milliseconds

~ 448 Kbps of UDP incoming traffic (Constant Bit Rate, CBR)

39

4.2 Evaluation of Single Hop Topology for Fast Ethernet (lOOBaseT)

Refer to Figure 4 .1, topology ~ all TCP and UDP sources are connected to the switch

at the bandwidth 100 Mbps and the switch is connected to the seiver at the bandwidth

100 Mbps. The evaluation of topology A is separated into 3 cases with different

number of TCP and UDP sources. The adjustment of the number of TCP and UDP

sources for topology A is presented as follows:

Table 4-1: Number of TCP and UDP sources for Case 1-3

Case
Number of TCP Number of UDP

Sources Sources

1 5 0

2 5 10

3 2 15

Table 4-2: Percentage of TCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 1-3

Standard TCP TCP Rate Control

Case
% of TCP %ofUDP %ofTCP %ofUDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

1 100 0 100 0 100 0

2 33 67 81.01 18.99 80.95 19.05

3 12 88 48.55 51.45 48.95 51.05

From the above configuration of the number of TCP and UDP sources, the

measurement values are the number of sent, received and dropped packets for TCP

and UDP packets. The results are presented as follow:

40

Table 4-3: Result of standard TCP for case 1-3

TCP sent TCP
UDP sent Case Received (bytes)

b es
(bytes)·

7,155,000 7,151,000

7,155,000 7,123,000 1,680,000 1,670,000

2,862,000 2,862,000 3,050,000 3,033,000

Table 4-4: Result of TCP Rate Control for case 1-3

TCP sent case
(bytes)

1 7,105,000

2 7,123,000

3 2,786,000

7,500,000
7, OQQ, 000 -=•>'·,.,.,,.,,,.

6,500,000

6,000,000

5,500,000

5,000,000
Tep Rate
Control

TCP
Received

(bytes)

7,105,000

7,096,000

2,786,000

Standard TCP

UDP sent
UDP

(bytes) Received
(bytes)

- -
1,680,000 1,670,000

2,920,000 2,905,000

m Total Sending
(bytes)

1111 Total Recei~ ng
(bytes)

TCP
Dropped
(bytes)

-
-
-

Figure 4.7: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 1

41

7 ,500, 000 -,,.,., ... ,,,.,,.,.,.,.,.,,, ... ·.:·:·'.·'.· , ... ,.•.•.·.·.:.:-:.:-:.•.:.:···:·'.·'.·'.·'.·'.~·······:·'.·'.·'.·'.·'.············'

7,000,000

6,500,000

6,000,000

5,500,000

5,000,000

Tep Rate Standard
Control TCP

~t. GaorieJ's Library, Au

ra TCP Sent (bytes)

1111 TCP Received
(bytes)

Figure 4-8: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 2

3,000,000

2,800,000

2,600,000

2,400,000

2,200,000

2,000,000
Tep Rate Standard
Control TCP

ra TCP Sent (bytes)

1111 TCP Received
(bytes)

Figure 4-9: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 3

Figure 4.7 - Figure 4.9 show the comparison of standard TCP and TCP rate control

by comparing the total number of TCP and UDP sent and received packets. From

these results, it shows that the total of sent and received TCP and UDP packets of

both algorithms is not much different. The different is less than 3 % for the total

receiving TCP packets for case study 1-3. Due to this topology, the bandwidth from

switch to server is Fast Ethernet, 100 Mbps, so the link is not congested. With

noncongested link, the performance for sent and received packets for standard TCP

42

and TCP rate control is almost the same. Reducing the bandwidth to make congested

link can get the different performances for both topologies. Next section describes the

effect of reducing the bandwidth of the link for single hop topology to standard

Ethernet lOBaseT and low bandwidth.

43

4.3 Effect of Reducing the Bandwidth for Single Hop Topology

This section describes the effect ofreducing the bandwidth from the switch to server

in single hop topology. Refer to figure 4.2 and 4.3 shown the topology B and C that

reduce the bandwidth to 10 Mbps and 1 Mbps.

4.3.1 Evaluation of Reducing the Bandwidth to Standard Ethernet lOBaseT

Evaluation of reducing the bandwidth from the switch to server to standard Ethernet

lOBaseT, 10 Mbps, is separated into 3 study cases (case 4- 6). The adjustments of

the number of TCP and UDP sources are presented as follow:

Table 4-5: Number of TCP and UDP sources for Case 4-6

Case
Number of TCP Number of UDP

Sources Sources

4 5 0

5 5 5

6 5 15

Table 4-6: Percentage of TCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 4-6

Standard TCP TCP Rate Control

Case
%ofTCP %ofUDP %ofTCP %ofUDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

4 100 0 100 0 100 0

5 50 50 78.18 21.82 77.74 21.26

6 33 67 39.18 60.82 38.6 61.4

From the above configuration of the number of TCP and UDP sources, the

measurement values are the number of sent, received and dropped packets for TCP

and UDP packets. The results are presented as follow:

44

Tab le 4-7: Result of standard TCP for case 4-6

Case
TCP

TCP sent Received
b es)

3,606,000 3,592,000

2,853,000 2,848,000 800,000 795,000

I

1,698,000 1,691,000 2,635,000 2,625,000

Table 4-8: Result of TCP Rate Control for case 4-6

TCP
TCP sent Received

(bytes) (bytes)

3,606,000 3,592,000

2,835,000 2,829,000

1,687,000 1,683,000

3,800,000

3,600,000

3,400,000

3,200,000

3,000,000

UDP
UDP sent Received••

(bytes) . (bytes)·

- -

818,000 810,000

2,680,000 2,677,000

fa Total Sending

(bytes)

Ill Total Receiving

(bytes)

Tep Rate Control Standard TCP

TCP
Dropped
(bytes)

-
20,000

44,000

27,000

51,000

Figure 4-10: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 4

45

2 · 900, 000 lFfH:??/t/ff':??Iil'

2,800,000

2,700,000

2,600,000

2,500,000

Tep Rate Standard

Control TCP

Im TCP Sent (bytes)

111!11 TCP Received

(bytes)

Figure 4-11 : Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 5

1,875,000

1,675,000

1,475,000

1,275,000

1,075,000

Tep Rate

Control

Standard

TCP

ml TCP Sent (bytes)

1111111 TCP Receiwd

(bytes)

Figure 4.12: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 6

46

From the results in Figure 4.10- 4.12, the TCP sent and received packets of standard

TCP and TCP rate control are not much different. The difference between both

algorithm is less than 1 % for the total receiving TCP packets. The UDP sent and

received packets of standard TCP and TCP rate control are also not much different.

There is no effect ofreducing the bandwidth to 10 Mbps because the link is not

congested. Section 4 .3 .2 describes the evaluation of reducing the bandwidth to low

bandwidth.

4.3.2 Evaluation of Reducing the Bandwidth to Low Bandwidth

The adjustment of the bandwidth from switch to server to low bandwidth, 1 Mbps,

makes the link more congested. Evaluation of reducing the bandwidth from the switch

to server to 1 Mbps is separated into 2 study cases (case 7 - 8). The adjustments of the

number of TCP and UDP sources are presented as follow:

Table 4-9: Number of TCP and UDP sources for Case 7-8

Case
Number of TCP Number of UDP

% of TCP % of UDP
Sources Sources

7 10 2 55 45
8 5 2 50 50

Table 4-10: Percentage of TCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 7-8

Standard TCP TCP Rate Control

Case
%ofTCP %ofUDP %ofTCP % of UDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

7 83 17 55.76 44.24 60.21 39.79

8 71 29 50.66 49.34 56.5 43.5

47

~t. uabriefs Library, Au

From the above configuration of the number of TCP and UDP sources, the

measurement values are the number of sent, received and dropped packets for TCP

and UDP packets. The results are presented as follow:

Table 4-11: Result of standard TCP for case 7-8

TCP sent
b es

7 214,000 213,000 170,000 169,000

8 192,000 191,000 187,000 186,000

Table 4-12: Result of TCP Rate Control for case 7-8

.. ..

TCP UDP
Case TCP sent Received UDP sent Received

' (bytes) (bytes)

7 232,000 230,000 ..
8 214,000 213,000

250, 000 -,,.,,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,., .•. ,.,.,.,.,.,.,,,.,.,.,.,.,.,.,.,.,,.,.,.,.,.,.,.,.,.,., .. ,.,.,.,.,.,.,.,".,.,.,.,.,.,."

230,000-=

210,000

190,000

170,000

150,000

Tep Rate
Control

Standard
TCP

(bytes) (bytes)

152,000 152,000

165,000 164,000

rn TCP Sent (bytes)

1111 TCP Received
(bytes)

88,000

82,000

....

TCP••
DroppecJ
(bytes)

96,000

128,000

Figure 4-13: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 7

48

250,000 ,,.,,.,,.:.:·:·:·:·:·:·:·:«:·:·:·'.·'.·>'.·'.·'.·:·:·:::.:.:·'.·'.·'.·'.·'.·'.·'.·'.·'.~·:·'.·:·:·'.·'.·'.·'.·:'.·'.·'.·'.·"·'.-'."·'·"·'.·'.·'.·'.·'.<

230,000

210,000

190,000

170,000

150,000
Tep Rate
Control

Standard
TCP

s TCP Sent (bytes)

llllll TCP Received
(bytes)

Figure 4-14: Comparison of total sending and receiving packets for standard TCP and

TCP Rate Control of case 8

From the results in Table 4.8 - 4.9 and Figure 4.13 - 4.14, it shows that using TCP

rate control algorithm is better than standard TCP in team of sending more TCP

packets. The difference of the total receiving TCP packets between both algorithms is

about 7% for case study 7 and about 10% for case study 8. In the opposite way in

these 2 cases, using TCP rate control can send less UDP packets than standard TCP.

From the result, it can be concluded that TCP rate control algorithm can sent more

TCP packets than standard TCP in a low bandwidth environment.

4.3.3 Discussion of Effect of Reducing the Bandwidth for Single Hop Topology

Section 4.3.1 presents the evaluation of reducing the bandwidth to standard

Ethernet, 10 Mbps. From the results, there is not much difference in the performance

between standard TCP and TCP rate control in terms of the total receiving TCP and

UDP packets. The difference is only less than 1 % for the total receiving TCP packets.

Reducing the bandwidth to low bandwidth, 1 Mpbs makes the link more congested.

Section 4 .3 .2 presents the evaluation of reducing the bandwidth to 1 Mpbs. The

results show TCP rate control sent more TCP packets than standard TCP. The

difference of the total receiving TCP packets between both algorithms is about 7% for

case study 7 and about 10% for case study 8. In the opposite way, using TCP rate

49

control sent less UDP packets than standard TCP in case study 7 and 8 or in a

congested environment.

In summary, reducing the bandwidth to 10 Mbps as in section 4.3.1, the link is not

very congested, so the performance of using TCP rate control and standard TCP are

not much different. However, after reducing the bandwidth to 1 Mbps makes the link

very congested, using TCP rate control has a higher performance than standard TCP.

Thus, it can be concluded that TCP rate control has a higher performance than

standard TCP for very congested link environment in single hop topology. Next

section describes the evaluation of multi hop topology.

50

4.4 Evaluation of Multi Hop Topology for Standard Ethernet lOBaseT

Refer to Figure 4.10, topology D, all TCP and UDP sources are connected to the

switch at the bandwidth 100 Mbps. The switches connect together at the bandwidth of

standard Ethernet, 10 Mbps, and the switch connects to the server at the bandwidth

100 Mbps. The evaluation of topology Dis separated into 2 cases with different

number of TCP and UDP sources. The adjustment of the number of TCP and UDP

sources for topology A is presented as follows:

Table 4-13: Number of TCP and UDP sources for Case 9-10

Case
Number of TCP Number of UDP

Sources Sources

9 5 10

10 5 5

Table 4-14: Percentage ofTCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 9-10

Standard TCP TCP Rate Control

Case
%ofTCP % of UDP %ofTCP % of UDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

9 33 67 57.15 42.85 55.33 44.67

10 50 50 77 23 76.66 23.34

From the above configuration of the number of TCP and UDP sources, the

measurement values are the number of packets sent, received and dropped packets for

TCP and UDP packets. The results are presented as follow:

50

Table 4-15: Result of standard TCP for case 9-10

.....

TCP UDP case TCP sent Received UDP sent Received
. (bytes) (bytes) (bytes) (bytes)

9 2,083,000 2,067,000 1,560,000 1,550,000
,.

10 ... 2,756,000 2,735,000 822,000 817,000

Table 4-16: Result of TCP Rate Control for case 9-10

Case
TCP UDP

Received UDP sent
bytes

9 2,013,000 1,998,000 1,630,000 1,613,000

10 2,743,000 2,723,000 835,000 829,000

2,200,000 --w«?O<«<<••<?O·

2,000,000 [fl TCP Sent (bytes)

1,800,000

1,600,000

400 1111111 TCP Received 1, ,000

1,200,000 (bytes)

1,000,000

Tep Rate Standard TCP

Control

..

TCP
Dropped

... (bytes) ..

20,000

8,000

TCP
Dropped

es

17,000

6,000

Figure 4-15: Comparison of total sent and received packets for standard TCP and TCP

Rate Control of case 9

51

2,760,000 -.C<MC««•'"'"''''''""'

2,750,000

2,740,000

2,730,000

2,720,000

2,710,000

2,700,000

Tep Rate Standard TCP

Control

ml TCP Sent (bytes)

Ill TCP Received

(bytes)

Figure 4-16: Comparison of total sent and received packets for standard TCP and TCP

Rate Control of case 10

From the result in Figure 4.15 - 4.16, it is clear that using standard TCP algorithm can

sent more TCP packets than using TCP rate control algorithm. For this multi hop

topology, the bandwidth from switch to server is standard Ethernet lOBaseT, 10

Mbps. Standard TCP has a higher performance in terms of the total receiving TCP

packets than TCP rate control. However, the difference for total receiving TCP

packets for both algorithms is less than 5%. Refer to the results about receiving UDP

packets; the difference between TCP rate control and standard TCP is not much

different. Reducing the bandwidth of the link between the switches making the

congested link is evaluated in the next section.

52

4.5 Effect of Reducing the Bandwidth for Multi Hop Topology

This section describes the effect of reducing the bandwidth between the switches for

multi hop topology. Figures 4.5 and 4.6 show the topology E and F that reduce the

bandwidth between switches to low bandwidth to make a congested link.

4.5.1 Evaluation of Reducing the Bandwidth to Low Bandwidth

Reducing the Bandwidth to 5 Mbps

Evaluation of reducing the bandwidth between the switches to 5 Mbps is separated

into 2 cases (case 11 - 12). The adjustments of the number of TCP and UDP sources

are presented as follow:

Table 4-17: Number ofTCP and UDP sources for Case 11-12

Case
Number of TCP Number of UDP

Sources Sources

11 5 10

12 5 5

Table 4-18: Percentage of TCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 11-12

Standard TCP TCP Rate Control

Case
%ofTCP %ofUDP % of TCP %ofUDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

11 33 67 17.99 82.01 21.11 78.99

12 50 50 57.% 42.04 56.65 43.35

53

From the above configuration of the number of TCP and UDP sources, the

measurement values are the number of sent, received and dropped packets for TCP

and UDP packets. The results are presented as follow:

Table 4-19: Result of standard TCP for case 11-12

TCP
Received

bytes

.TCP
. Dropped

bytes

334,000 1,534,000 1,523,000 56,000

1,065,000 1,059,000 775,000 768,000

Table 4-20: Result of TCP Rate Control for case 11-12

11

12

500,000
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000

393,000

1,043,000

Tep Rate
Control

TCP
Received

es)

392,000

1,035,000

Standard TCP

UDP
Received

{b es)

1,478,000 1,465,000

797,000 792,000

rn TCP Sent (bytes)

111 TCP Received
(bytes)

53,000

TCP
Dropped
(b es

74,000

46,000

Figure 4-17 : Comparison of total sent and received packets for standard TCP and

TCP Rate Control of case 11

54

1,100,000

1,050,000
1,000,000

950,000
900,000

850,000
800,000

Tep Rate
Control

Standard
TCP

m TCP Sent (bytes)

1!!11 TCP Received
(bytes)

Figure 4-18: : Comparison of total sending and receiving packets for standard TCP

and TCP Rate Control of case 12

From the result in Figure 4.17 in case 11, it shows that using TCP rate control

algorithm can send more TCP packets than standard TCP. The different for both

algorithm is about 14% for the total receiving TCP packets. However in Figure 4 .18

in case 12, it is shown that standard TCP can send more TCP packets than TCP rate

control. The different for both algorithm is about 2% for the total receiving TCP

packets.

TCP rate control has higher performance than standard TCP in case 11. In case 11 the

UDP packets are set to 80% of the total and in case 12 the UDP packets are set to

40% of the total bandwidth so the performance of TCP rate control is lower than

standard TCP. TCP rate control has a higher performance when competing with a lot

of UDP packets. Next section describes the evaluation of reducing the bandwidth to 1

Mbps to make the link more congested and compare the result using TCP rate control

and standard TCP.

55

Reducing the Bandwidth to 1 Mbps

The adjustment of the bandwidth between switches to 1 Mbps to make the link more

congested. Evaluation of reducing the bandwidth between switches to 1 Mbps is

separated into 2 cases (case 13 - 14). The adjustment of the number of TCP and UDP

sources are presented as follow:

Table 4-21: Number of TCP and UDP sources for Case 13-14

Case
Number of TCP Number of UDP

% of TCP % of UDP
Sources Sources

13 5 10 7 93

14 5 5 10 90

Table 4-22: Percentage of TCP and UDP sources and comparison percentage of TCP

and UDP received packet for Case 13-14

Standard TCP TCP Rate Control

Case
%ofTCP % of UDP %ofTCP %ofUDP %ofTCP %ofUDP
Sources Sources Received Received Received Received

13 33 67 6.93 93.07 10.13 89.87

14 50 50 8.51 91.49 12.23 87.77

From the above configuration of the numberofTCP and UDP sources, the

measurement values are the number of sent, received and dropped packets for TCP

and UDP packets. The results are presented as follow:

Table 4-23: Result of standard TCP for case 13-14

13 26,000 26,000 353,000 349,000 30,000

14 33,000 32,000 346,000 344,000 28,000

56

Table 4-24: Result of TCP Rate Control for case 13-14

Case

13.

14

50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000

..

TCP
TCP sent Received

(bytes) (bytes) ..

38,000 38,000

47,000 46,000

Tep Rate Control Standard TCP

UDP
UDP sent Received

(bytes) (bytes)

341,000 337,000

332,000 330,000

rn TCP Sent (bytes)

1111 TCP Recei\ed
(bytes)

TCP
Dropped
(bytes)

42,000

46,000

Figure 4-19: Comparison of total sent and received packets for standard TCP and TCP

Rate Control of case 13

50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000

Tep Rate
Control

Standard TCP

m TCP Sent (bytes)

111TCP Receiwcl
(bytes)

Figure 4-20: Comparison of total sent and received packets for standard TCP and TCP

Rate Control of case 14

57

The above result shows that using TCP rate control can send more TCP packets than

standard TCP for both cases. After reducing bandwidth to 1 Mbps to make the link

very congested, TCP rate control algorithm has a very high performance than standard

TCP. The difference between both algorithms is about 30% for the receiving TCP

packets. When using TCP rate control algorithm, the received UDP packets is less

than by using standard TCP.

4.5.2 Discussion of Effect of Reducing the Bandwidth for Multi Hop Topology

Section 4.5.1 presents the evaluation ofreducing the bandwidth to 5 Mbps. From the

results, TCP rate control sent more TCP packets than standard TCP in case 11 but sent

less TCP packets in case 12. In case 11 the UDP packets is set to 80% of the total and

in case 12 the UDP packets is set to 40% of the bandwidth. TCP rate control has a

higher performance when competing with a lot of UDP packets. The differennce for

both algorithms is about 2% for the total receiving TCP packets. Section 4 .5 .2

represents the evaluation of reducing the bandwidth to 1 Mpbs. After reducing the

bandwidth to 1 Mpbs make the link very congested, the results show TCP rate control

sent more TCP packets than standard TCP in both cases. The difference between both

algorithms is about 30% for the receiving TCP packets.

In summary, reducing the bandwidth to 5 Mbps as in section 4 .5 .1 the link is not very

congested so the performance of using TCP rate control and standard TCP depend on

the number of TCP and UDP packets. TCP rate control has a higher performance

when competing with a lot of UDP packets. But after reducing more bandwidth to 1

Mbps to make the link very congestion, using TCP rate control has a higher

performance than standard TCP. Thus, it can be concluded that TCP rate control has

a higher performance than standard TCP for a very congested link environment in

Multi hop topology. However, when using TCP rate control algorithm, the receiving

58

.'.'.>t. liaont• ~ Library, Au

UDP packets is less than using standard TCP in a congested environment. This is the

limitation of TCP rate control algorithm for multi hop topology.

59

4.6 Comparative Results of TCP Rate Control and Standard

This section will discuss about the comparison of using TCP rate control and standard

TCP algorithms that refer to the simulated results in section 4.2-4.7.

4.6.1 Discussion of Single Hop Topology

Refer to section 4.2-4.4, it used the same topology with the different bandwidth

between switch and server. It started from 100 Mbps to 10 Mbps and 1 Mbps to make

congested link. In summary, Table 4 .19 shows the comparison of TCP packet

received between TCP rate control and standard TCP algorithm for case 1 - 8.

Table 4-25: TCP received packet comparison for case 1-8

Standard TCP TCP Rate Control

.. ..

case
TCP Received TCP Received % Coefficient ..

(bytes) (bytes)
.. - .

Differentiation
..
.. ..

1 7,151,000 7,105,000 -0.647 43139

2 7,123,000 7,096,000 -0.38049605

3 2,862,000 2,786,000 -2.72792534

4 3,592,000 3,592,000 0

5 2,848,000 2,829,000 -0.67161541

6 1,691,000 1,683,000 -0.47534165

7 213,000 230,000 7.391304348

8 191,000 213,000 10.3286385

From the above comparison table, it is shown that case 7 -8 TCP rate control can

receive more TCP packets than standard TCP. I conclude that TCP rate control can

receive more TCP packets than standard TCP in a congested environment.

60

From Table 4.19, the value of% coefficient differentiation shows the percentage

difference between TCP rate control and standard TCP. If the value is positive, it

means TCP rate control received more TCP packet than standard TCP. And in the

opposite way, if the value of% coefficient different is negative, TCP rate control sent

less TCP packets than standard TCP.

12

10

8

6

4

2

0

-2

-4 -""'""""'"""""""'"""""

% Coefficient Differentiation

-+- % Coefficient
Differentiatio

Figure 4-21: The percentage coefficient differentiation between TCP rate control and

standard TCP for case study 9-14

The above figure presents the graph of the percentage of differentiation between TCP

rate control and standard TCP. Refer to the graph TCP rate control working well in

case 7 - 8, this shows that TCP rate control can work very good in congestion

environment. From this result, the maximum different is 10.32% from this study.

61

4.6.2 Discussion of Multi Hop Topology

Refer to the section 4.4 - 4.7, I used two switches which one switch connected to TCP

and UDP sources and another switch connected to server. I started the bandwidth of

between two switches from 10 Mbps to 5 Mbps to 1 Mbps to make the link congested.

The table below shown the summary result of TCP received packet of using TCP rate

control and standard TCP and percentage of coefficient different.

Table 4-26: TCP received packet comparison for case 9 - 14

Standard TCP

.
Case TCP Received

,.
9 2,067,000 .

.. ·• .10 ••
2,735,000 ...

11 334,000

•
12 1,059,000

13 26,000

14 32,000

TCP Rate Control

TCP Received ..
1,998,000

2,723,000

392,000

1,035,000

38,000

46,000

% Coefficient
Differentiation

-3.453453453

-0.440690415

14.79591837

-2.31884058

31.57894737

30.43478261

From the above comparison table, it is clear that case 13 - 14 TCP rate control can

receive much more TCP packets than standard TCP. The result is similar to case 1-8,

TCP rate control can send more TCP packet in congestion environment. From this

result, the maximum difference is 31.57% from this study.

62

% Coefficient Differentation

35 >O%'C<'""-'"''"""'"'C°'''""
30~~~~

25
20
15
10+.s:~~~8m~SfJ!fc~~~8:¥.¥*/.~2

5-f.ff.:~~~~%¥.~~~~~PE~e±e±~~

0 -w.®~~4.@i.

-5 +.%~~%%~~±%~P-+±%~~:±
-1 0 --""'•'"'"'""""'"""""'•::>;-:::.:.:;,:.:.::::;.;::·:~:;.;;;.;:;:.::::;;;.::·:<::·::::·:·::::.:.:;.;<;.;;;:.::::::;.;;.;;.;:;.;;;;:;;:::::.:::::::::;;;::::.:::.>e:

-+-% Coefficient
Differentation

Figure 4-22: The percentage coefficient differentiation between TCP rate control and

standard TCP for case study 9-14

The above figure represents the graph of the percentage of differentiation between

TCP rate control and standard TCP. Referring to the graph TCP rate control, work

very well in case 13 - 14 in which I reduced the bandwidth to 1 Mbps from 10 Mbps

and 5 Mbps.

4.6.3 Summary Discussion of Results

Referring to the 2 categories of the simulation with 14 cases, each category I adjusted

the bandwidth of the link to get the various results. And from the results, using TCP

rate control technology works better than standard TCP in terms of being able to send

more TCP packets with the congested environment. With non congested

environment, TCP rate control and standard TCP gave the similar results. However,

when using TCP rate control algorithm, the received UDP packets is less than by

using standard TCP in a congested environment. This is the limitation of TCP rate

control algorithm for both topologies.

63

5. CONCLUSION AND RECOMMENDATION

In this thesis, the simulation of TCP rate control and standard TCP are presented for

both single hop and multi hop topology. The problem of standard TCP is that it uses

slow-start algorithm for congestion control. With TCP slow-start, when a connection

opens, only one packet is sent until an ACK is received. For each ACK receives ACK,

the sender can double the transmission size. Note that this is exponential growth rate.

But eventually packets are dropped. With normal transmission of TCP, the sending

rate is not based on congestion environment and when network is under the problem

ofloss packets and retransmission can occur. Dropped and retransmission packet can

increase latency. This is the significant role of this thesis to point out that TCP rate

control based on congestion environment can reduce loss and retransmit packets and

can decrease latency.

The proposed algorithm, TCP rate control, is a new technique for transparently

augmenting end-to-end TCP performance by controlling the sending rate of a TCP

source. The sending rate of TCP source is determined by its window size, the round

trip time and the rate of acknowledgement. It controls the rate of TCP packets by

controlling window size and the rate of acknowledgement based on congestion

environment.

This thesis separated the simulation into 2 categories, single hop and multi hop

topology with various link speeds. In the simulation of both topologies with 14 cases,

I adjusted the bandwidth to make a congested environment. The result of both

topologies show that using TCP rate control technology can give a higher

performance than standard TCP in terms of sending more TCP packets in the

congested environment. For single hop topology the maximum difference between

both algorithms is 10.32% for total received TCP packets. For multi hop topology it is

30.57%. However, with a non congested environment, TCP rate control and standard

TCP gave the similar results. The difference between both algorithms is less than 5%

for total receive TCP packets. However when using TCP rate control algorithm, the

received UDP packets is less than using standard TCP in congested environment. This

is the limitation of TCP rate control algorithm for both topologies.

The main contribution for this study is the evaluation of TCP rate control algorithm.

This study shows that TCP rate control gives a better performance than standard TCP

in congested environment for LAN switch network.

This TCP rate control is done only in LAN switch network. Usually the problem of

TCP occurs in WAN network. Future work will study TCP rate control on the WAN

network.

65

REFERENCES

[1] "TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery

Algorithms", W. Stevens, NAAO, RFC2001, January 1997.

[2] "TCP Selective Acknowledgment Options", M. Mathis, J.Mahdari PSC, S. Floyd

LBNL, A.Romanow, Sun Microsystems, RFC2018October1996

[3] "TCP Rate Control", Shrikrishna Karandikar, Shivkumar Kalyanaraman, Prasad

Bagal, Bob Packer, Department of ECSE, Department of Computer Science,

Rensselaer Polytechnic Institute, 2000

[4] "Simulation-based Comparisons of Tahoe, Reno, and SACK TCP", Kevin Fall

and Sally Floyd, Lawrence Berkeley National Laboratory, One Cyclotron Road,

Berkeley, CA 94720, 1997

[5] "Transport Control Protocol", Information Sciences Institute University of

Southern California 4676 Admiralty Way Marina del Rey, California 90291, RFC

793, September 1981

[6] "TCP Illustrated, Volume 1, W. Richad Stevens, Addison-Wesley Professional

Computing Series, 1994

[7] "Comparative study of RED, ECN and TCP Rate Control", Prasad Bagal,

Shivkumar Kalyanaraman, Bob Packer, Department of ECSE, Reensselaer

Polytechnic Institute, 1999

[8] "Computer Networks", Andrew S. Tanenbaum, Prentice Hall Inc, 1996

[9] "An Algorithm for Rate Allocation in a Packet-Switching Network with

Feedback", Anna Charny, Massachusetts Institute of Technology, May 1994

67

Programming Source Code

#################################
'f Case study 1 - Standard TCP
################################

#Create a simulator object
set ns [new Simulator]

set f[open out.tr w]
$ns trace-all $f

#set x [open x.trace w]
set t [open out.tcp w]
set a [open out.ack w]

set t_parrival [open out.paw]

#Open the nam trace file
set nf[open out.nam w]
$ns namtrace-all $nf

proc finish {} {
global ns nfxt a
$ns flush-trace

#Close the trace file
close $f

close $nf
#Execute nam on the trace file

execawk {
{

:st. Gabriel's Library, Au

APPENDIX

if(($1 == "-") && ($5 == "tcp") && ($3 == "2"))
print $2,$11,$5

}
} out. tr > out. tcp

execawk {
{

if(($1 == "-") && ($5 == "cbr") && ($3 == "2"))
print $2,$11,$5

}
} out.tr> out.cbr

execawk {
{

if(($1 == "r") && ($5 == ''tcp") && ($4 == "O"))
print $2,$11,$5

}
} out.tr> out.tcpr
execawk {
{

ift($1 == "r") && ($5 == "cbr") && ($4 = "0"))
print $2,$11,$5

}
} out.tr > out.cbrr

exec awk {
{

}

if(($1 == "d") && ($5 == "cbr"))
print $2,$11

} out.tr> out.dcbr

68

execawk {
{

if (($1 == "d") && ($5 == "tcp"))
print $2.$11

} out.tr> out.dtcp

exec nam out.nam &
exit 0

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]

$ns duplex-link $nl $d lOOmb lOms Drop Tail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl 100mb lOms DropTail

Set up BSD Sack TCP connection in opposite directions.

set src 1 [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

Create ftp sources at the each node

set ftpl [$srcl attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 3.0 "finish"

#Run the simulation
$ns run

#################################
#Case study 1 - TCP Rate Control
#################################

#Create a simulator object
set ns [new Simulator]

set f [open out.tr w]
$ns trace-all $f

#set x [open x.trace w]
sett [open out.tcp w]
set a [open out.ack w]

set t_parrival [open out.pa w]

69

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Record procedure
proc record! {parrl r aa} {

global ns rtt ai srcl sink qmond qmondl qmonOI t_parrival aa

set time 0.0001
set a [$qmon01 set parrivals__]
set b [$qmond set pdepartures __]
set c ($qmondl set parrivals __]

if {$parrl <=$a} {
set now [$ns now]

#hungry flow, find Ai
if{$r>=$aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*IOOO}]
setai [expr$aa+$h]
}

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
setrtt [expr [$srcl set srtt__]]
setamss [expr {$ai*0.00001}]
set window [expr [$srcl set srtt __] * $amss]
set de [expr { $rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$srcl set cwnd_ $window"
set parr I [expr {$parr I + $window}]
set r [expr I OOOOOO/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record! $parrl $r $ai"

proc record2 {parr2 r aa} {
global ns rtt ai src2 sink qmond qmondl qmon21 t_J>arrival aa

set time 0.0001
set a [$qmon21 set parrivals__]
set b [$qmond set pdepartures __]
set c ($qmondl set parrivals __]

if {$parr2 <=$a} {
set now [$ns now]

#hungry flow, find Ai
if{$r>=$aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*l000}]
setai [expr$aa+$h]
}

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
setaaa [expr {$aa/2}]
set ai [expr $ri+ $aaa]
}
set rtt [expr [$src2 set srtt __]]
set amss [expr {$ai*0.00001}]
set window [expr [$src2 set srtt __] * $amss]
set de [expr {$rtt/$window}]
$ns at (expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src2 set cwnd_ $window"

70

set parr2 (expr {$parr2 +$window}]
set r [expr 1 OOOOOO/$rtt]
}

set now [$ns now]
$ns at (expr $now+$time] "record2 $parr2 $r $ai"

proc record3 {parr3 r aa} {
global ns rtt ai src3 sink qmond qmondl qmon31 t_parrival aa

set time 0.0001
set a [$qmon31 set parrivals _]
set b [$qmond set pdepartures_]
set c [$qmondl set parrivals _]

if {$parr3 <= $a} {
set now ($ns now]

#hungry flow. find Ai
if {$r>= $aa} {
#n is flow in the link and h is bw those flows are using
set u (expr $b-$c]
seth [expr {$u*1000}]
setai [expr$aa+$h]
}

#bottleneck flow, find Ai
else {
setri [expr {$r/2}]
setaaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src3 set srtt _]]
set arnss [expr {$ai*0.00001 }]
set window [expr [$src3 set srtt_] * $amss]
set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at (expr $now] "$src3 set cwnd _$window"
set parr3 [expr {$parr3 +$window}]
set r [expr 1 OOOOOO/$rtt]
}

set now [$ns now}
$ns at [expr $now+$time] "record3 $parr3 $r $ai"

proc record4 {parr4 r aa} {
global ns rtt ai src4 sink qmond qmondl qmon41 t_parrival aa

set time 0.0001
set a [$qmon41 set parrivals _]
set b [$qmond set pdepartures _]
set c [$qmondl set parrivals _]

if {$parr4 <= $a} {
set now ($ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#n is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u *2000}]
set ai [expr $aa +$h]
}

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
set aaa (expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src4 set srtt _]]
setamss [expr {$ai*0.00001}]
set window [expr ($src4 set srtt_] * $amss]

71

set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src4 set cwnd $window"
set parr4 fexpr {$parr4 +$window}]
set r [expr 1 OOOOOO/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record4 $parr4 $r $ai"

proc record5 {parr5 r aa} {
global ns rtt ai src5 sink qmond qmondl qmon5 l t_parrival aa

set time 0.0001
set a [$qmon5 l set parrivals _J
set b [$qmond set pdepartures _J
set c [$qmondl set parrivals _J

if {$parr5 <= $a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*l000}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
setri [expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src5 set srtt _J]
set amss [expr {$ai*0.00001}]
set window [expr [$src5 set srtt_J * $amss]
set de [expr { $rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src5 set cwnd_ $window''
set parr5 [expr {$parr5 +$window}]
set r [expr 1000000/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record5 $parr5 $r $ai"

proc finish {} {
global ns nfx ta
$ns flush-trace

#Close the trace file
close $f

close $nf
#Execute nam on the trace file

execawk {
{

ifl.($1 == "-") && ($5 = "tcp") && ($3 = "2"))
print $2,$11,$5

}
} out.tr > out. tcp

execawk {
{

ifl.($1 == "-") && ($5 == "cbr") && ($3 == "2"))
print $2,$11,$5

}
} out.tr> out.cbr

72

execawk{
{

if{($1 == "r") && ($5 == "tcp") && ($4 == "O"))
print $2,$11,$5

}
} out.tr > out.tcpr

execawk {
{

if{($1 == "r") && ($5 == "cbr") && ($4 == "O"))
print $2,$11,$5

}
} out.tr> out.cbrr

execawk {
{

}

ift($1 == "d") && ($5 == "cbr"))
print $2,$11

} out.tr> out.dcbr

execawk {
{

if(($1 == "d") && ($5 = "tcp"))
print $2,$11

}
} out. tr > out.dtcp

exec nam out.nam &
exitO

#Create nodes
set d [$ns node]
set no [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]

$ns duplex-link $nl $d lOOmb IOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl l OOmb l Oms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl l OOmb lOms DropTail
$ns duplex-link $n5 $nl l OOmb 1 Oms DropTail

set qmonO [$ns monitor-queue $n0 $nl I]
set qmonOl [$ns monitor-queue $nl $n0 l]

set qmon2 [$ns monitor-queue $n2 $nl I]
set qmon21 [$ns monitor-queue $nl $n2 I]

set qmon3 [$ns monitor-queue $n3 $nl l]
set qmon31 [$ns monitor-queue $nl $n3 l]

set qmon4 [$ns monitor-queue $n4 $nl l]
set qmon41 [$ns monitor-queue $nl $n4 I]

set qmon5 [$ns monitor-queue $n5 $nl l]
set qmon51 [$ns monitor-queue $nl $n5 l]

set qmond [$ns monitor-queue $nl $d l]
set qmondl [$ns monitor-queue $d $nl I]

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]

73

set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

I=
Create ftp sources at the each node

set ftp 1 [$src 1 attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 ($src5 attach-app FTP]

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0. 0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0.00 "recordl 1 12500000 12500000"
$ns at 0.00 "record2 I 12500000 12500000"
$ns at 0.00 "record3 l 12500000 12500000"
$ns at 0.00 "record4 I 12500000 12500000"
$ns at 0.00 "record5 l 12500000 12500000"

$ns at 3. 0 "finish"

#Run the simulation
$ns run

Case study 2 - Standard TCP
(Modified from case study l - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]
set nll [$ns node]
set nl2 [$ns node]
set nl3 [$ns node]
set nl4 [$ns node]
set nl5 [$ns node]

$ns duplex-link $nl $d lOOmb !Oms DropTail
$ns duplex-link $n0 $nl lOOmb !Oms DropTail
$ns duplex-link $n2 $nl lOOmb !Oms DropTail
$ns duplex-link $n3 $nl lOOmb !Oms DropTail
$ns duplex-link $n4 $nl lOOmb !Oms DropTail
$ns duplex-link $n5 $nl lOOmb !Oms DropTail
$ns duplex-link $n6 $nl l OOmb l Oms DropTail
$ns duplex-link $n7 $nl IOOmb !Oms DropTail
$ns duplex-link $n8 $nl lOOmb !Oms DropTail
$ns duplex-link $n9 $nl lOOmb !Oms DropTail
$ns duplex-link $nl0 $nl lOOmb !Oms DropTail
$ns duplex-link $nl l $nl lOOmb !Oms Drop Tail
$ns duplex-link $nl2 $nl IOOmb !Oms DropTail
$ns duplex-link $nl3 $nl lOOmb lOms DropTail
$ns duplex-link $nl4 $nl lOOmb lOms DropTail

74

$ns duplex-link $nl5 $nl IOOmb !Oms DropTail

Set up BSD Sack TCP connection in opposite directions.
I=
set srcl [$ns create-connection TCP/Sack! $n0 TCPSink/Sackl $d 5)
set src2 [$ns create-connection TCP/Sack! $n2 TCPSink/Sackl $d 6)
set src3 [$ns create-connection TCP/Sack! $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sack! $n4 TCPSink/Sackl $d 8)
set src5 [$ns create-connection TCP/Sack! $n5 TCPSink/Sackl $d 9)

Create ftp sources at the each node

set ftp I [$src I attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP)
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udp I
set cbrl [new Application/Traffic/CBR)
$cbr I attach-agent $udp I
$cbr I set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize_ 1000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ 1000

set udp4 [new Agent/UDP]
$ns attach-agent $n10 $udp4
set cbr4 [new Application/Traffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

set udp5 [new Agent/UDP]
$ns attach-agent $nl I $udp5
set cbr5 [new Application/Traffic/CBR]
$cbr5 attach-agent $udp5
$cbr5 set packetSize _ 1000

set udp6 [new Agent/UDP]
$ns attach-agent $nl2 $udp6
set cbr6 [new Application!Traffic/CBR]
$cbr6 attach-agent $udp6
$cbr6 set packetSize _ 1000

set udp7 [new Agent/UDP]
$ns attach-agent $nl3 $udp7
set cbr7 [new Application/Traffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize _ 1000

set udp8 [new Agent/UDP]
$ns attach-agent $nl4 $udp8
set cbr8 [new Application/Traffic/CBR)
$cbr8 attach-agent $udp8
$cbr8 set packetSize_ 1000

set udp9 [new Agent/UDP)
$ns attach-agent $n 15 $udp9

75

set cbr9 [new Applicationffraffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize _ 1000

set nuJIO [new Agent/Null]
$ns attach-agent $d $null0

$ns connect $udp0 $null0
$ns connect $udpl $nu110
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null0
$ns connect $udp7 $null0
$ns connect $udp8 $null0
$ns connect $udp9 $null0

Start up the first ftp at the time 0 and
#the second ftp staggered I second later

$ns at 0.0 "$flpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$flp3 start"
$ns at 0.0 "$flp4 start"
$ns at 0.0 "$flp5 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0.0 "$cbr7 start"
$ns at 0.0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"

$ns at 3.0 "fmish"

#Run the simulation
$ns run

Case study 2 - TCP Rate Control
(Modified from case study l -TCP Rate Control)

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Applicationffraffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udp l
$cbrl set packetSize_ 1000

set nulJO [new Agent/Null]
$ns attach-agent $d $null 0
$ns connect $udp0 $null0
$ns connect $udp I $nul!O

$ns at 0.0 "$ftp I start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$flp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$flp5 start"

76

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start''

ns at 0.00 "recordl I 12500000 12500000''
$ns at 0.00 "record2 I 12500000 12500000"
$ns at 0.00 "record3 I 12500000 12500000"
$ns at 0.00 "record4 1 12500000 12500000"
$ns at 0.00 "record5 I 12500000 12500000"

$ns at 3.0 "finish"

#Run the simulation
$nsrun

Case study 3 - Standard TCP
(Modified from case study I - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]
set nl 1 [$ns node]
set nl2 [$ns node]
set n13 [$ns node]
setn14 [$ns node]
set n15 [$ns node]
set nl6 [$ns node]
set n17 [$ns node]
set n18 [$ns node]
set n19 [$ns node]
set n20 [$ns node]

$ns duplex-link $nl $d lOOmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl 1 OOmb lOms Drop Tail
$ns duplex-link $n6 $nl I OOmb lOms Drop Tail
$ns duplex-link $n7 $nl 1 OOmb 1 Oms Drop Tail
$ns duplex-link $n8 $nl 100mb lOms DropTail
$ns duplex-link $n9 $nl lOOmb lOms DropTail
$ns duplex-link $n10 $nl lOOmb lOms Drop Tail
$ns duplex-link $nll $nl lOOmb lOms DropTail
$ns duplex-link $nl2 $nl lOOmb lOms DropTail
$ns duplex-link $n13 $nl lOOmb lOms DropTail
$ns duplex-link $nl4 $nl 100mb lOms Drop Tail
$ns duplex-link $nl5 $nl lOOmb lOms Drop Tail
$ns duplex-link $n16 $nl lOOmb lOms Drop Tail
$ns duplex-link $nl 7 $nl lOOmb lOms Drop Tail
$ns duplex-link $n18 $nl lOOmb lOms DropTail
$ns duplex-link $n19 $nl lOOmb lOms Drop Tail
$ns duplex-link $n20 $nl lOOmb lOms DropTail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6]

Create ftp sources at the each node

set ftpl [$srcl attach-app FTP]
set ftp2 [$src2 attach-app FTP]

77

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ I 000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udpl
$cbr 1 set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize_ 1000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ I 000

set udp4 [new Agent/UDP]
$ns attach-agent $n 10 $udp4
set cbr4 [new Application!Traffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

set udp5 [new Agent/UDP]
$ns attach-agent $nl I $udp5
set cbr5 [new Application/Traffic/CBR]
$cbr5 attach-agent $udp5
$cbr5 set packetSize _ I 000

set udp6 [new Agent/UDP]
$ns attach-agent $n12 $udp6
set cbr6 [new Application/Traffic/CBR]
$cbr6 attach-agent $udp6
$cbr6 set packetSize _ 1000

set udp7 [new Agent/UDP]
$ns attach-agent $n13 $udp7
set cbr7 [new Application/Traffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize _ 1000

set udp8 [new Agent/UDP]
$ns attach-agent $n14 $udp8
set cbr8 [new Application!Traffic/CBR]
$cbr8 attach-agent $udp8
$cbr8 set packetSize _ 1000

set udp9 [new Agent/UDP]
$ns attach-agent $n 15 $udp9
set cbr9 [new Application/Traffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize _ 1000

set udp IO [new Agent/UDP]
$ns attach-agent $n 16 $udp I 0
set cbrlO [new Application!Traffic/CBR]
$cbrl0 set packetSize_ 1000
$cbrl0 attach-agent $udp10

set udpll [new Agent/UDP]
$ns attach-agent $n 17 $udp 11
set cbrll [new Application!Traffic/CBR]
$cbr 11 attach-agent $udp 11
$cbrl I set packetSize _ 1000

set udpl2 [new Agent/UDP]
$ns attach-agent $nl8 $udpl2
set cbr12 [new Application!Traffic/CBR]

~t. Gaoner s Library, Au

78

$cbr12 attach-agent $udp12
$cbr12 set packetSize_ 1000

setudpl3 [new Agent/UDP]
$ns attach-agent $n19 $udp13
set cbr13 [new Applicationffraffic/CBR]
$cbrl3 attach-agent $udp13
$cbr13 set packetSize_ 1000

set udp14 [new Agent/UDP]
$ns attach-agent $n20 $udp 14
set cbr14 [new Applicationffraffic/CBR]
$cbr14 attach-agent $udp14
$cbr14setpacketSize_ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $null0
$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null 0
$ns connect $udp7 $null0
$ns connect $udp8 $null0
$ns connect $udp9 $null0
$ns connect $udp 10 $null0
$ns connect $udp 11 $null0
$ns connect $udp12 $null0
$ns connect $udp13 $null0
$ns connect $udp14 $null0

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0.0 "$cbr7 start"
$ns at 0.0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"
$ns at 0.0 "$cbr10 start"
$ns at 0.0 "$cbrl l start"
$ns at 0.0 "$cbrl2 start"
$ns at 0.0 "$cbr13 start"
$ns at 0.0 "$cbr14 start"
$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 3 - TCP Rate Control
(Modified from case study 3 - Standard TCP)
##################}1#############################

#Create a simulator object
set ns [new Simulator]

set f [open out.tr w]
$ns trace-all $f

79

#set x [open x. trace w]
sett [open out.tcp w]
set a [open out.ack w]

set t_parrival [open out.paw]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Record procedure
proc record 1 {parr I r aa} {

global ns rtt ai srcl sink qmond qmondl qmonOl t_parrival aa

set time 0.0001
set a [$qmon0 I set parrivals _]
set b [$qmond set pdepartures _]
set c [$qmondl set parrivals _]

if {$parrl <=$a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
seth [expr {$u*IOOO}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
setri [expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src 1 set srtt _]]
set amss [expr { $ai *0.00001}]
set window [expr [$srcl set srtt_] * $amss]
set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src 1 set cwnd _ $window''
set parrl [expr {$parrl +$window}]
set r [expr IOOOOOO/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record I $parr 1 $r $ai"

proc record2 {parr2 r aa} {
global ns rtt ai src2 sink qmond qmondl qmon21 t_parrival aa

set time 0.0001
set a [$qmon21 set parrivals_]
set b [$qmond set pdepartures _]
set c [$qmondl set parrivals_]

if {$parr2 <=$a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*l000}]
set ai [expr $aa +$h]
}

#bottleneck flow, find Ai
else {
setri [expr {$r/2}]
set aaa [expr { $aa/2}]
set ai [expr $ri+$aaa]
}

80

set rtt [expr [$src2 set srtt _J]
set amss [expr {$ai*0.00001}]
set window [expr [$src2 set srtt _J * $amss]
set de [expr { $rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src2 set cwnd _ $window''
set parr2 [expr {$parr2 +$window}]
set r [expr to00000/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record2 $parr2 $r $ai"

set qmonO [$ns monitor-queue $n0 $nl I]
set qmonOl [$ns monitor-queue $nl $n0 I]

set qmon2 [$ns monitor-queue $n2 $nl I]
set qmon2l [$ns monitor-queue $nl $n2 l]

set qmond [$ns monitor-queue $nl $d I]
set qmondl [$ns monitor-queue $d $nl I]

$ns at 0.00 "record! l 125000 125000"
$ns at 0.00 "record2 I 125000 125000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

#################################
Case study 4 - Standard TCP
(Modified from case study l - Standard TCP)
#################################

$ns duplex-link $nl $d IOmb toms DropTail
$ns duplex-link $n0 $nl lOOmb toms DropTail
$ns duplex-link $n2 $nl l OOmb !Oms Drop Tail
$ns duplex-link $n3 $nl IOOmb toms DropTail
$ns duplex-link $n4 $nl IOOmb toms DropTail
$ns duplex-link $n5 $nl IOOmb IOms DropTail

Case study 4 - TCP Rate Control
#(Modified from case study I - TCP Rate Control)

$ns duplex-link $nl $d IOmb !Oms DropTail
$ns duplex-link $n0 $nl IOOmb !Oms DropTail
$ns duplex-link $n2 $n 1 I OOmb I Oms Drop Tail
$ns duplex-link $n3 $nl lOOmb !Oms DropTail
$ns duplex-link $n4 $nl lOOmb !Oms DropTail
$ns duplex-link $n5 $nl l OOmb toms Drop Tail

81

$ns at 0.00 "record! 11250000 1250000"
$ns at 0.00 "record2 11250000 1250000"
$ns at 0.00 "record3 1 1250000 1250000''
$ns at 0.00 "record4 1 1250000 1250000"
$ns at 0.00 "record5 11250000 1250000"

Case studv 5 - Standard TCP
(Modified from case study 1 - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node)
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]

$ns duplex-link $nl $d lOmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb !Oms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail
$ns duplex-link $n6 $nl lOOmb lOms DropTail
$ns duplex-link $n7 $nl lOOmb I Oms DropTail
$ns duplex-link $n8 $nl 100mb lOms DropTail
$ns duplex-link $n9 $nl lOOmb lOms DropTail
$ns duplex-link $n10 $nl lOOmb !Oms DropTail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5)
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6)
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7)
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9)

Create ftp sources at the each node

set ftpl [$srcl attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbr 1 [new Application/Traffic/CBR]
$cbrl attach-agent $udpl
$cbrl set packetSize _ 1000

set udp2 [new Agent/UDP]

82

$ns attach-agent $n8 $udp2
set cbr2 [new Application!fraffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ 1000

set udp3 [new AgentJUDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application!fraffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ 1000

set udp4 [new AgentfUDP]
$ns attach-agent $n10 $udp4
set cbr4 [new Application!fraffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ I 000

set nullO [new Agent/Null]
$ns attach-agent $d $null0

$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0

Start up the first ftp at the time 0 and
the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"

$ns at 3.0 "finish"

#Run the simulation
$nsrun

Case study 5 - TCP Rate Control
(Modified from case study 4 - TCP Rate Control)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]

$ns duplex-link $nl $d lOmb lOms DropTail
$ns duplex-link $n0 $nl !OOmb !Oms DropTail
$ns duplex-link $n2 $nl lOOmb lOms Drop Tail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail

83

$ns duplex-link $n6 $nl lOOmb IOms DropTail
$ns duplex-link $n7 $nl IOOmb IOms DropTail
$ns duplex-link$n8 $nl IOOmb IOms DropTail
$ns duplex-link $n9 $nl IOOmb IOms Drop Tail
$ns duplex-link $n10 $nl IOOmb !Oms DropTail

set qmonO [$ns monitor-queue $n0 $nl I]
set qmonOI [$ns monitor-queue $nl $n0 I]

set qmon2 [$ns monitor-queue $n2 $nl I]
set qmon21 [$ns monitor-queue $nl $n2 I]

set qmon3 [$ns monitor-queue $n3 $nl I]
set qmon3 l [$ns monitor-queue $n I $n3 I]

set qmon4 [$ns monitor-queue $n4 $nl I]
set qmon41 [$ns monitor-queue $nl $n4 I]

set qmon5 [$ns monitor-queue $n5 $nl I]
set qmon51 [$ns monitor-queue $nl $n5 I]

set qmond [$ns monitor-queue $nl $d I]
set qmondl [$ns monitor-queue $d $nl I]

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sack! $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sack! $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sack! $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

Create ftp sources at the each node

set ftp I [$src I attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ I 000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udp I
set cbrl [new Application/Traffic/CBR]
$cbr I attach-agent $udp I
$cbr I set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ 1000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application/Traffic/CSR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ 1000

set udp4 [new Agent/UDP]
$ns attach-agent $nl0 $udp4
set cbr4 [new Application/Traffic/CSR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

set nulJO [new Agent/Null]
$ns attach-agent $d $null0

$ns connect $udp0 $null0

84

$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0

Start up the frrst ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"

$ns at 0.00 "record! 1 1250000 1250000"
$ns at 0.00 "record2 1 1250000 1250000"
$ns at 0.00 "record3 1 1250000 1250000"
$ns at 0.00 "record4 l 1250000 1250000"
$ns at 0.00 "records 1 1250000 1250000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 6 - Standard TCP
(Modified from case study 1 ~ Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set n 1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set n 10 [$ns node]
set nl 1 [$ns node]
set n 12 [$ns node]
set nl3 [$ns node]
set nl4 [$ns node]
set nl 5 [$ns node]
set nl6 [$ns node]
set nl 7 [$ns node]
set nl8 [$ns node]
set nl9 [$ns node]
set n20 [$ns node]

$ns duplex-link $nl $d lOmb !Oms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb !Oms DropTail
$ns duplex-link $n3 $nl lOOmb lOrns DropTail
$ns duplex-link $n4 $nl lOOmb lOrns DropTail
$ns duplex-link $n5 $nl lOOmb lOrns DropTail
$ns duplex-link $n6 $nl lOOmb lOrns DropTail
$ns duplex-link $n7 $nl lOOmb !Oms DropTail
$ns duplex-link $n8 $nl lOOmb lOrns DropTail
$ns duplex-link $n9 $nl lOOmb lOrns DropTail
$ns duplex-link $n10 $nl lOOmb lOrns DropTail

85

St. Gabnefs Library, Au

$ns duplex-link $nll $nl lOOmb !Oms DropTail
$ns duplex-link $nl2 $nl lOOmb !Oms DropTail
$ns duplex-link $n13 $nl lOOmb lOms DropTail
$ns duplex-link $nl4 $nl lOOmb lOms DropTail
$ns duplex-link $nl5 $nl lOOmb !Oms DropTail
$ns duplex-link $nl6 $nl lOOmb !Oms DropTail
$ns duplex-link $nl7 $nl lOOmb !Oms DropTail
$ns duplex-link $nl8 $nl lOOmb lOms DropTail
$ns duplex-link $nl9 $nl lOOmb !Oms DropTail
$ns duplex-link $n20 $nl lOOmb lOms DropTail

set qmonO [$ns monitor-queue $n0 $nl l]
set qmonOl [$ns monitor-queue $nl $n0 l]

set qmon2 [$ns monitor-queue $n2 $nl l]
set qmon21 [$ns monitor-queue $nl $n2 l]

set qmon3 [$ns monitor-queue $n3 $nl l]
set qmon3 l [$ns monitor-queue $n 1 $n3 l]

set qmon4 [$ns monitor-queue $n4 $nl l]
set qmon41 [$ns monitor-queue $nl $n4 l]

set qmon5 [$ns monitor-queue $n5 $nl I]
set qmon5 l [$ns monitor-queue $n I $n5 l]

set qmond [$ns monitor-queue $nl $d l]
set qmondl [$ns monitor-queue $d $nl l]

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

Create ftp sources at the each node

set ftp 1 [$src 1 attach-app FfP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FfP]
set ftp4 [$src4 attach-app Ff P]
set ftp5 [$src5 attach-app FfP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application!Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize_ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udp 1
$cbr 1 set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ 1000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application!Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize_ 1000

set udp4 [new Agent/UDP]
$ns attach-agent $n10 $udp4
set cbr4 [new Application/Traffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize_ 1000

86

set udp5 [new Agent/UDP]
$ns attach-agent $nl 1 $udp5
set cbrS [new Applicationffraffic/CBR]
$cbr5 attach-agent $udp5
$cbr5 set packetSize_ 1000

set udp6 [new Agent/UDP]
$ns attach-agent $n12 $udp6
set cbr6 [new Applicationffraffic/CBR]
$cbr6 attach-agent $udp6
$cbr6 set packetSize _ 1000

set udp7 [new Agent/UDP]
$ns attach-agent $n13 $udp7
set cbr7 [new Applicationffraffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize _ 1000

set udp8 [new Agent/UDP]
$ns attach-agent $n14 $udp8
set cbr8 [new Applicationffraffic/CBR]
$cbr8 attach-agent $udp8
$cbr8 set packetSize _ 1000

set udp9 [new Agent/UDP]
$ns attach-agent $n15 $udp9
set cbr9 [new Applicationffraffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize _ I 000

set udplO [new Agent/UDP]
$ns attach-agent $n 16 $udp 10
set cbrlO [new Applicationffraffic/CBR]
$cbr 10 set packetSize _ 1000
$cbr I 0 attach-agent $udp 1 0

set udpll [new Agent/UDP]
$ns attach-agent $nl 7 $udpl I
set cbrll [new Applicationffraffic/CBR]
$cbrll attach-agent $udpll
$cbr 11 set packetSize _ 1000

set udp12 [new Agent/UDP]
$ns attach-agent $n18 $udp12
set cbrl2 [new Applicationffraffic/CBR]
$cbr12 attach-agent $udp12
$cbr12 set packetSize_ 1000

set udp13 [new Agent/UDP]
$ns attach-agent $n 19 $udp 13
set cbr13 [new Applicationffraffic/CBR]
$cbr 13 attach-agent $udp 13
$cbr 13 set packetSize _ 1000

set udp14 [new Agent/UDP]
$ns attach-agent $n20 $udp 14
set cbr14 [new Applicationffraffic/CBR]
$cbr 14 attach-agent $udp 14
$cbr 14 set packetSize _ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $null 0
$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null0
$ns connect $udp7 $null0
$ns connect $udp8 $null 0
$ns connect $udp9 $null0
$ns connect $udp 10 $null0
$ns connect $udpll $null0

87

$ns connect $udpl2 $null0
$ns connect $udpl3 $null0
$ns connect $udp 14 $null0

Start up the first ftp at the time 0 and
the second ftp staggered 1 second later

'* $ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0 .0 "$ftp5 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0.0 "$cbr7 start"
$ns at 0.0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"
$ns at 0.0 "$cbrl0 start"
$ns at 0.0 "$cbrll start"
$ns at 0.0 "$cbrl2 start"
$ns at 0.0 "$cbr 13 start"
$ns at 0.0 "$cbrl4 start"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 6 - Standard TCP
(Modified from case study 4 - TCP Rate Control)

#Create nodes
set d [$ns node]
set nO [$ns node]
set n l [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set n IO [$ns node]
set n 11 [$ns node]
set n 12 [$ns node]
set n 13 [$ns node]
set nl4 [$ns node]
set nl5 [$ns node]
set nl6 [$ns node]
setnl7 [$ns node]
set nl8 [$ns node]
set n 19 [$ns node]
set n20 [$ns node]

$ns duplex-link $nl $d lOmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb toms Drop Tail
$ns duplex-link $n2 $nl lOOmb toms Drop Tail
$ns duplex-link $n3 $nl lOOmb toms DropTail
$ns duplex-link $n4 $nl lOOmb toms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail

88

$ns duplex-link $n6 $nl lOOmb lOms DropTail
$ns duplex-link $n7 $nl 1 OOmb 1 Oms Drop Tail
$ns duplex-link $n8 $nl lOOmb lOms DropTail
$ns duplex-link $n9 $nl lOOmb lOms DropTail
$ns duplex-link $n10 $nl lOOmb lOms DropTail
$ns duplex-link $nl 1 $nl 1 OOmb lOms Drop Tail
$ns duplex-link $nl2 $nl lOOmb lOms DropTail
$ns duplex-link $nl3 $nl lOOmb lOms DropTail
$ns duplex-link $nl4 $nl lOOmb lOms DropTail
$ns duplex-link $nl5 $nl lOOmb lOms DropTail
$ns duplex-link $nl6 $nl lOOmb lOms DropTail
$ns duplex-link $nl7 $nl lOOmb lOms DropTail
$ns duplex-link $nl8 $nl lOOmb lOms DropTail
$ns duplex-link $nl9 $nl lOOmb lOms DropTail
$ns duplex-link $n20 $nl 1 OOmb lOms DropTail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

Create ftp sources at the each node

set ftp 1 [$src 1 attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traftic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ l 000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application!Traftic/CBR]
$cbr 1 attach-agent $udp 1
$cbr 1 set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traftic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ l 000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application!Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize_ 1000

set udp4 [new Agent/UDP]
$ns attach-agent $n10 $udp4
set cbr4 [new Application/Traffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize_ 1000

set udp5 [new Agent/UDP]
$ns attach-agent $nl 1 $udp5
set cbr5 [new Application/Traftic/CBR]
$cbr5 attach-agent $udp5
$cbr5 set packetSize _ 1000

set udp6 [new Agent/UDP]
$ns attach-agent $nl2 $udp6
set cbr6 [new Application!Traffic/CBR]
$cbr6 attach-agent $udp6

89

$cbr6 set packetSize _ 1000

set udp7 [new Agent/UDP]
$ns attach-agent $n13 $udp7
set cbr7 [new Application/Traffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize _ l 000

set udp8 [new Agent/UDP]
$ns attach-agent $nl 4 $udp8
set cbr8 [new Application!Traffic/CBR]
$cbr8 attach-agent $udp8
$cbr8 set packetSize _ l 000

set udp9 [new Agent/UDP]
$ns attach-agent $n 15 $udp9
set cbr9 [new Application/Traffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize _ l 000

set udplO [new Agent/UDP]
$ns attach-agent $n 16 $udp l 0
set cbrlO [new Application/Traffic/CBR]
$cbrl0 set packetSize 1000
$cbrl0 attach-agent Sii°dp l 0

setudpll [new Agent/UDP]
$ns attach-agent $n 17 $udp 11
set cbrl l [new Application/Traffic/CBR]
$cbr 11 attach-agent $udp 11
$cbrll set packetSize_ 1000

set udpl2 [new Agent/UDP]
$ns attach-agent $nl8 $udpl2
set cbrl2 [new Application/Traffic/CBR]
$cbr 12 attach-agent $udp 12
$cbrl2 set packetSize_ 1000

set udpl3 [new Agent/UDP]
$ns attach-agent $nl9 $udpl3
set cbrl3 [new Application/Traffic/CBR]
$cbr13 attach-agent $udpl3
$cbr 13 set packet Size_ 1000

set udpl4 [new Agent/UDP]
$ns attach-agent $n20 $udpl4
set cbrl4 [new Application/Traffic/CBR]
$cbr 14 attach-agent $udp 14
$cbr 14 set packetSize _ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $null0
$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null0
$ns connect $udp7 $null0
$ns connect $udp8 $null0
$ns connect $udp9 $null0
$ns connect $udpl0 $null0
$ns connect $udp 11 $null0
$ns connect $udpl2 $null0
$ns connect $udpl3 $null0
$ns connect $udp 14 $null0

Start up the first ftp at the time 0 and
#the second ftp staggered l second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$fip2 start"
$ns at 0.0 "$ftp3 start"

90

$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0. 0 "$cbr0 start"
$ns at 0.0 "$cbr 1 start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0.0 "$cbr7 start"
$ns at 0.0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"
$ns at 0.0 "$cbrl0 start"
$ns at 0.0 "$cbrll start"
$ns at 0.0 "$cbrl 2 start"
$ns at 0.0 "$cbrl3 start"
$ns at 0.0 "$cbrl4 start"

$ns at 0.00 "record I I 1250000 1250000"
$ns at 0.00 "record2 I 1250000 1250000"
$ns at 0.00 "record3 I 1250000 1250000"
$ns at 0.00 "record4 I 1250000 1250000"
$ns at 0.00 "record5 I 1250000 1250000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 7 - Standard TCP
(Modified from case study 7 - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node J
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n21 [$ns node]
set n22 [$ns node]
set n23 [$ns node]
set n24 [$ns node]
set n25 [$ns node]

$ns duplex-link $nl $d lmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns dnplex-Iink $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl lOOmb lOms Drop Tail
$ns duplex-link $n6 $nl lOOmb lOms Drop Tail
$ns duplex-link $n7 $nl lOOmb lOms Drop Tail
$ns duplex-link $n21 $nl lOOmb lOms DropTail
$ns duplex-link $n22 $nl lOOmb lOms DropTail
$ns duplex-link $n23 $nl lOOmb lOms DropTail
$ns duplex-link $n24 $nl lOOmb !Oms Drop Tail
$ns duplex-link $n25 $nl IOOmb !Oms Drop Tail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sack! $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sack! $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]

91

set src5 [$ns create-collllection TCP/Sack! $n5 TCPSink/Sackl $d 9]

set src21 [$ns create-connection TCP/Sack! $n21 TCPSink/Sackl $d 10]
set src22 [$ns create-connection TCP/Sack I $n22 TCPSink/Sackl $d 11]
set src23 [$ns create-connection TCP/Sack I $n23 TCPSink/Sackl $d 12]
set src24 [$ns create-connection TCP/Sack! $n24 TCPSink/Sackl $d 13]
set src25 [$ns create-connection TCP/Sack I $n25 TCPSink/Sackl $d 14]

Create ftp sources at the each node

set ftp I [$srcl attach-app FfP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FfP]

set ftp2 l [$src2 l attach-app FfP]
set ftp22 [$src22 attach-app FTP]
set ftp23 [$src23 attach-app FfP]
set ftp24 [$src24 attach-app Ff P]
set ftp25 [$src25 attach-app FfP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbr I attach-agent $udp I
$cbrl set packetSize_ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $null0
$ns connect $udp0 $null0
$ns connect $udp I $null 0

Start up the first ftp at the time 0 and
the second ftp staggered I second later

$ns at 0.0 "$ftp I start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0.0 "$ftp21 start"
$ns at 0.0 "$ftp22 start"
$ns at 0.0 "$ftp23 start"
$ns at 0.0 "$ftp24 start"
$ns at 0.0 "$ftp25 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 7 - TCP Rate Control
(Modified from case study 7 - Standard TCP)

#Create a simulator object
set ns [new Simulator]

set f [open out.tr w]
$ns trace-all $f

92

St. Gabriel's Library, Au

#set x [open x.trace w]
sett [open out.tcp w]
set a [open out.ack w]

sett_parrival [open outpa w]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Record procedure
proc recordl {parrl r aa} {

global ns rtt ai srcl sink qmond qmondl qmonOl t_parrival aa

set time 0.0001
set a [$qmon01 set parrivals _J
set b [$qmond set pdepartures _J
set c [$qmondl set parrivals _J

if {$parrl <=$a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
seth [expr {$u*1000}]
setai [expr$aa+$h]
}

#bottleneck flow, find Ai
else {
set ri [expr { $r/2}]
set aaa [expr {$aa/2}]
setai [expr$ri+$aaa]
}
set rtt [expr [$src 1 set srtt _J]
set amss [expr {$ai*0.00001}]
set window [expr [$src 1 set srtt _J * $amss]
set de [expr { $rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src 1 set cwnd _ $window"
set parr 1 [expr { $parr 1 + $window}]
set r [expr 1000000/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record! $parrl $r $ai"

proc record2 {parr2 r aa} {
global ns rtt ai src2 sink qmond qmondl qmon21 t_parrival aa

set time 0.0001
set a [$qmon21 set parrivals _J
set b [$qmond set pdepartures _J
set c [$qmondl set parrivals _J

if {$parr2 <= $a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*l000}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
setri [expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}

93

set rtt [eXJt [$src2 set srtt _]]
set amss~xpr {$ai*0.00001 }]
set windo [expr [$src2 set srtt_] * $amss]
set de [e {$rtt/$window}]
$ns at [extjr $now "$sink set interval_ $de]
$ns at [eXJt $now] "$src2 set cwnd $window"
set parr2 [~xpr {$parr2 +$window}]
set r [expr jlOOOOOO/$rtt]
} .

set now [$jls now]
$ns at [expr $now+$time] "record2 $parr2 $r $ai"

proc record3 {parr3 r !la} {
global ns iit ai src3 sink qmond qmondl qmon31 t_parrival aa

set time 0.~001
set a [$qm~n3 l set parrivals _]
set b [$qmj>nd set pdepartures _]
set c [$qmfnd 1 set parrivals _]

if {$parr3 i::= $a} {
set now [$*8 now]

#hungry fltw, find Ai
if {$r >= $jla} {
#u is flow jn the link and h is bw those flows are using
set u [expr !$b-$c J
set h [expr

1

{$u*lOOO}]
set ai [expt1 $aa+$h]
}

#bottlenecli:. flow, find Ai
else { ·
set ri [expr {$r/2}]
set aaa [e~ {$aa/2}]
set ai [exJ>I! $ri+$aaa]
}
set rtt [expt [$src3 set srtt_]]
setamss [e~ {$ai*0.00001}]
set windo~ [expr [$src3 set srtt _] * $amss]
set de [expj- { $rtt/$window}]
$ns at [exP\- $now "$sink set interval $de]
$ns at [exp)- $now] "$src3 set cwnd_ $window"
set parr3 [~xpr {$parr3 +$window}]
setr [expr •oooooo/$rtt]
} .

set now [$t)s now]
$ns at [expt $now+$time] "record3 $parr3 $r $ai"

proc record4 {parr4 r ~} {
global ns ~ ai src4 sink qmond qmondl qmon4 I t_parrival aa

set time 0.<)001
set a [$qmJn4 l set parrivals _]
set b [$qm~nd set pdepartures _]
set c [$qmqndl set parrivals _]

if {$parr41::= $a} {
set now [$t)s now]

'

#hungry fl<)w, find Ai
if{$r>=$Jta}{
#u is flow '1 the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*2000}]
set ai [expr! $aa+$h]
} .

#bottlenec~ flow, find Ai
else { .
setri [expr;{$r/2}]

94

set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src4 set srtt _J]
set amss [expr {$ai*0.00001}]
set window [expr [$src4 set srtt _J * $amss]
set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval $de]
$ns at [expr $now] "$src4 set cwnd_Swindow"
set parr4 [expr {$parr4 +$window}]
set r [expr 1 OOOOOO/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record4 $parr4 $r $ai"

proc record5 {parr5 r aa} {
global ns rtt ai src5 sink qmond qmondl qmon51 t__parrival aa

set time 0.0001
set a [$qmon51 set parrivals _J
set b [$qmond set pdepartures _J
set c [$qmondl set parrivals _J

if {$parr5 <= $a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*l000}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src5 set srtt _J]
setamss [expr {$ai*0.00001}]
set window [expr [$src5 set srtt_J * $amss]
set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src5 set cwnd_ $window"
set parr5 [expr {$parr5 +$window}]
set r [expr 1000000/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record5 $parr5 $r $ai"

proc record21 {parr21 r aa} {
global ns rtt ai src21 sink qmond qmondl qmon211 t__parrival aa

set time 0.0001
set a [$qmon211 set parrivals _J
set b [$qmond set pdepartures _J
set c [$qmondl set parrivals _J

if {$parr21 <= $a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
seth [expr {$u*1000}]
set ai [expr $aa+$h]
}

95

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
set aaa [expr { $aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src21 set srtt _]]
setamss [expr {$ai*O_OOOOI}]
set window [expr [$src21 set srtt_] * $amss]
set de (expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at (expr $now] "$srcl set cwnd_ $window"
set parr21 [expr {$parr21 +$window}]
set r [expr 1000000/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record21 $parr21 $r $ai"

proc record22 {parr22 r aa} {
global ns rtt ai src22 sink qmond qmondl qmon221 t_parrival aa

set time 0_0001
set a [$qmon221 set parrivals_]
set b [$qmond set pdepartures_]
set c ($qmondl set parrivals _]

if {$parr22 <=$a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
seth [expr {$u*l000}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
set ri [expr {$r/2}]
setaaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src22 set srtt _]]
setamss (expr {$ai*O_OOOOI}]
set window [expr [$src22 set srtt _] * $amss]
set de [expr {$rtt/$window}]
$ns at (expr $now "$sink set interval_ $de]
$ns at (expr $now] "$src22 set cwnd_ $window"
set parr22 (expr {$parr22 +$window} J
set r [expr 1 OOOOOO/$rtt]
}

set now [$ns now]
$ns at [expr $now+$time] "record22 $parr22 $r $ai"

proc record23 {parr23 r aa} {
global ns rtt ai src23 sink qmond qmondl qmon231 t_parrival aa

set time 0_0001
set a [$qmon23 l set parrivals _]
set b ($qmond set pdepartures _]
set c ($qmondl set parrivals _]

if {$parr23 <=$a} {
set now [$ns now]

#hungry flow, fmd Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u*IOOO}]

96

}

set ai [expr $aa+$h]
}

#bottleneck flow. find Ai
else {
set ri [expr {$r/2}]
set aaa (expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src23 set srtt _]]
set amss [expr {$ai*0.00001 }]
set window [expr [$src23 set srtt _] * $runss]
set de [expr { $rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at (expr $now] "$src23 set cwnd_ $window"
set parr23 [expr {$parr23 +$window}]
set r (expr 1000000/$rtt]
}
set now [$ns now]
$ns at [expr $now+$time] "record23 $parr23 $r $ai"

proc record24 {parr24 r aa} {
global ns rtt ai src24 sink qmond qmondl qmon241 t_parrival aa

set time 0.0001
set a [$qmon24 l set parrivals _]
set b [$qmond set pdepartures _]
set c ($qmondl set parrivals _]

if {$parr24 <=$a} {
set now [$ns now]

#hungry flow, find Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h (expr {$u*l000}]
set ai [expr $aa+$h]
}

#bottleneck flow, find Ai
else {
setri (expr {$r/2}]
set aaa [expr {$aa/2}]
set ai [expr $ri+$aaa]
}
set rtt [expr [$src24 set srtt _]]
set amss [expr {$ai*0.00001}]
set window [expr ($src24 set srtt _] * $runss]
set de [expr {$rtt/$window}]
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now] "$src24 set cwnd _ $window"
set parr24 [expr {$parr24 +$window}]
set r (expr 1000000/$rtt]
}
set now [$ns now]
$ns at [expr $now+$time] "record24 $parr24 $r $ai"

proc record25 {parr25 r aa} {
global ns rtt ai src25 sink qmond qmondl qmon25 l t_parrival aa

set time 0.0001
set a ($qmon25 l set parrivals _]
set b ($qmond set pdepartures _]
set c [$qmondl set parrivals _]

if { $parr25 <= $a} {
set now ($ns now]

#hungry flow, fmd Ai
if {$r >= $aa} {
#u is flow in the link and h is bw those flows are using
set u [expr $b-$c]
set h [expr {$u* 1000}]

97

set ai [expr $aa+$h]
}

#bottleneck flow. find Ai
else {
set ri [expr {$r/2})
setaaa [expr {$aa/2})
set ai [expr $ri+$aaa]
}
set rtt [expr [$src25 set srtt _J)
setamss [expr {$ai*O.OOOOI})
set window [expr [$src25 set srtt _J * $amss]
set de [expr {$rtt/$window})
$ns at [expr $now "$sink set interval_ $de]
$ns at [expr $now) "$src25 set cwnd _ $window"
set parr25 [expr {$parr25 +$window})
set r [expr IOOOOOO/$rtt)
}
set now [$ns now)
$ns at [expr $now+$time) "record25 $parr25 $r $ai"

set qmonO [$ns monitor-queue $n0 $nl I)
set qmonOI [$ns monitor-queue $nl $n0 I]

set qmon2 [$ns monitor-queue $n2 $nl I]
set qmon21 [$ns monitor-queue $nl $n2 I)

set qmon3 [$ns monitor-queue $n3 $nl I]
set qmon31 [$ns monitor-queue $nl $n3 I]

set qmon4 [$ns monitor-queue $n4 $nl I]
set qmon41 [$ns monitor-queue $nl $n4 I)

set qmon5 [$ns monitor-queue $n5 $nl I]
set qmon5 l [$ns monitor-queue $nl $n5 I]

set qmon21 [$ns monitor-queue $n21 $nl I]
set qmon211 [$ns monitor-queue $nl $n21 I)

set qmon22 [$ns monitor-queue $n22 $nl I)
set qmon221 [$ns monitor-queue $nl $n22 I]

set qmon23 [$ns monitor-queue $n23 $nl I)
set qmon23 l [$ns monitor-queue $nl $n23 I)

set qmon24 [$ns monitor-queue $n24 $n I I]
set qmon241 [$ns monitor-queue $nl $n24 I)

set qmon25 [$ns monitor-queue $n25 $nl I)
set qmon251 [$ns monitor-queue $nl $n25 I)

set qmond [$ns monitor-queue $nl $d I]
set qmondl [$ns monitor-queue $d $nl I)

$ns at 0.00 "record! I 125000 125000"
$ns at 0.00 "record2 I 125000 125000"
$ns at 0.00 "record3 I 125000 125000"
$ns at 0.00 "record4 I 125000 125000"
$ns at 0.00 "record5 I 125000 125000"

$ns at 0.00 "record21 I 125000 125000"
$ns at 0.00 "record22 I 125000 125000"
$ns at 0.00 "record23 1 125000 125000"

98

$ns at 0.00 "record24 1 125000 125000"
$ns at 0.00 "record25 1 125000 125000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 8 - Standard TCP
(Modified from case study 1 - Standard TCP)
##1/F

#Create nodes
set d [$ns node]
set no [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]

$ns duplex-link $nl $d lmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl 1 OOmb lOms Drop Tail
$ns duplex-link $n4 $nl lOOmb !Oms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail
$ns duplex-link $n6 $nl lOOmb lOms DropTail
$ns duplex-link $n7 $nl lOOmb lOms DropTail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sack! $n0 TCPSink/Sackl $d 5]
set src2 [$ns create-connection TCP/Sack! $n2 TCPSink/Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $d 9]

Create ftp sources at the each node

set ftp 1 [$src 1 attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udp 1
set cbrl [new Application/Traffic/CBR]
$cbr 1 attach-agent $udp 1
$cbrl set packetSize_ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $nu110

$ns connect $udp0 $null0
$ns connect $udpl $null0

Start up the first ftp at the time 0 and
the second ftp staggered 1 second later

99

$ns at 0.0 "$ftpl start''
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 8 - TCP Rate Control
#(Modified from case study 4 - TCP Rate Control)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
setn4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]

$ns duplex-link $nl $d lmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms Drop Tail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail
$ns duplex-link $n6 $nl lOOmb lOms DropTail
$ns duplex-link $n7 $nl lOOmb lOms DropTail

set qmonO [$ns monitor-queue $n0 $nl l]
set qmonO l [$ns monitor-queue $nl $n0 l]

set qmon2 [$ns monitor-queue $n2 $nl l]
set qmon21 [$ns monitor-queue $nl $n2 l]

set qmon3 [$ns monitor-queue $n3 $nl l]
set qmon31 [$ns monitor-queue $nl $n3 l]

set qmon4 [$ns monitor-queue $n4 $nl l]
set qmon41 [$ns monitor-queue $nl $n4 l]

set qmon5 [$ns monitor-queue $n5 $nl l]
set qmon51 [$ns monitor-queue $nl $n5 l]

set qmond [$ns monitor-queue $nl $d l]
set qmondl [$ns monitor-queue $d $nl l]

#Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink./Sackl $d 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink./Sackl $d 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink./Sackl $d 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink./Sackl $d 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink./Sackl $d 9]

Create ftp sources at the each node

set ftp 1 [$src l attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]

100

set ftp4 [$src4 attach-app FfP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbr 1 attach-agent $udp 1
$cbr 1 set packetSize _ 1000

set nullO [new Agent/Null]
$ns attach-agent $d $null0

$ns connect $udp0 $null0
$ns connect $udpl $null0

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftp I start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"

$ns at 0. 0 "$cbr0 start"
$ns at 0.0 "$cbrl start"

$ns at 0.00 "record! 1 125000 125000"
$ns at 0.00 "record2 1 125000 125000"
$ns at 0.00 "record3 1 125000 125000"
$ns at 0.00 "record4 1 125000 125000"
$ns at 0.00 "records I 125000 125000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

Case study 9 - Standard TCP
(Modified from case study 1 - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]
set n 11 [$ns node]
set nl2 [$ns node]
set n13 [$ns node]
set nl4 [$ns node]
set nl5 [$ns node]
set sl [$ns node]
set s2 [$ns node]

101

$ns duplex-link $nl $d lOmb lOms DropTail
$ns duplex-link $n0 $nl lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl lOOmb !Oms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $nl lOOmb lOms DropTail
$ns duplex-link $n6 $nl lOOmb lOms DropTail
$ns duplex-link $n7 $nl lOOmb lOms DropTail
$ns duplex-link $n8 $nl lOOmb 1 Oms DropTail
$ns duplex-link $n9 $nl lOOmb lOms Drop Tail
$ns duplex-link $nl0 $nl lOOmb lOms DropTail
$ns duplex-link $nl l $nl lOOmb lOms DropTail
$ns duplex-link $nl2 $nl lOOmb lOms DropTail
$ns duplex-link $n13 $nl lOOmb !Oms DropTail
$ns duplex-link $nl4 $nl lOOmb lOms DropTail
$ns duplex-link $nl5 $nl lOOmb lOms DropTail
$ns duplex-link $sl $d lOOmb lOms DropTail
$ns duplex-link $s2 $d lOOmb lOms DropTail

Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $s2 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $s2 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $s2 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $s2 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $s2 9]

Create ftp sources at the each node

set ftp l [$src l attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

set udpl [new Agent/UDP]
$ns attach-agent $n7 $udp l
set cbrl [new Application/Traffic/CBR]
$cbr l attach-agent $udp l
$cbr l set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ 1000

set udp3 [new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ l 000

set udp4 [new Agent/UDP]
$ns attach-agent $nl0 $udp4
set cbr4 [new Application/Traffic/CBR]
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

setudp5 [new Agent/UDP]
$ns attach-agent $n 11 $udp 5
set cbr5 [new Application/Traffic/CBR]
$cbr5 attach-agent $udp5
$cbr5 set packetSize _ 1000

set udp6 [new Agent/UDP]
$ns attach-agent $n 12 $udp6

102

set cbr6 [new Applicationffraffic/CBR]
$cbr6 attach-agent $udp6
$cbr6 set packetSize _ I 000

set udp7 [new Agent!UDP]
$ns attach-agent $n13 $udp7
set cbr7 [new Applicationffraffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize _ I 000

set udp8 [new Agent!UDP]
$ns attach-agent $nl4 $udp8
set cbr8 [new Application/Traffic/CBR]
$cbr8 attach-agent $udp8
$cbr8 set packetSize _ I 000

set udp9 [new Agent!UDP]
$ns attach-agent $nl5 $udp9
set cbr9 [new Applicationffraffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize _ I 000

set nullO [new Agent/Null]
$ns attach-agent $sl $null0

$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null0
$ns connect $udp7 $null0
$ns connect $udp8 $null0
$ns connect $udp9 $null0

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0.0 "$cbr7 start"
$ns at 0.0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"

$ns at 3.0 "finish"

#Run the simulation
$ns run

C38e study 9 - TCP Rate Control
#(Modified from case study I - TCP Rate Control)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

103

set n4 [$ns node]
set n5 [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
setnIO [$nsnode]
setnll [$nsnode]
set n12 [$ns node]
set n13 [$ns node]
set n14 [$ns node]
set n15 [$ns node]
sets 1 [$ns node]
set s2 [$ns node]

$ns duplex-link $nl $d lOmb !Oms DropTail
$ns duplex-link $n0 $nl IOOmb !Oms DropTail
$ns duplex-link $n2 $nl IOOmb !Oms DropTail
$ns duplex-link $n3 $nl IOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb !Oms DropTail
$ns duplex-link $n5 $nl IOOmb !Oms Drop Tail
$ns duplex-link $n6 $nl IOOmb lOms DropTail
$ns duplex-link $n7 $nl IOOmb lOms DropTail
$ns duplex-link $n8 $nl IOOmb !Oms DropTail
$ns duplex-link $n9 $nl 100mb !Oms DropTail
$ns duplex-link $n10 $nl IOOmb !Oms DropTail
$ns duplex-link $n 11 $nl 1 OOmb 1 Oms DropT ail
$ns duplex-link $n12 $nl IOOmb lOms DropTail
$ns duplex-link $n13 $nl IOOmb !Oms DropTail
$ns duplex-link $nl4 $nl IOOmb lOms DropTail
$ns duplex-link $nl5 $nl IOOmb lOms DropTail
$ns duplex-link $sl $d lOOmb lOms DropTail
$ns duplex-link $s2 $d IOOmb l Oms Drop Tail

set qmonO [$ns monitor-queue $n0 $nl I]
set qmonOI [$ns monitor-queue $nl $n0 l]

set qmon2 [$ns monitor-queue $n2 $nl I]
set qmon2 l [$ns monitor-queue $n l $n2 I]

set qmon3 [$ns monitor-queue $n3 $nl I]
set qmon3 l [$ns monitor-queue $nl $n3 l]

set qmon4 [$ns monitor-queue $n4 $nl l]
set qmon41 [$ns monitor-queue $nl $n4 I]

set qmon5 [$ns monitor-queue $n5 $nl l]
set qmon5 l [$ns monitor-queue $nl $n5 l]

set qmond [$ns monitor-queue $nl $d I]
set qmondl [$ns monitor-queue $d $nl I]

Set up BSD Sack TCP connection in opposite directions.

set src I [$ns create-connection TCP/Sack I $n0 TCPSink/Sackl $s2 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $s2 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $s2 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $s2 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $s2 9]

Create ftp sources at the each node

set ftpl [$srcl attach-app FTP]
set ftp2 [$src2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new Agent/UDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

104

setudpl (new Agent/UDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/fraffic/CBR)
$cbr 1 attach-agent $udp 1
$cbrl set packetSize_ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR)
$cbr2 attach-agent $udp2
$cbr2 set packetSize _ 1000

set udp3 (new Agent/UDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application!Traffic/CBR)
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ 1000

set udp4 [new Agent/UDP]
$ns attach-agent $nl0 $udp4
set cbr4 [new Application!fraffic/CBR)
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

set udp5 (new Agent/UDP]
$ns attach-agent $nl 1 $udp5
set cbr5 (new Application!fraffic/CBR)
$cbr5 attach-agent $udp5
$cbr5 set packetSize _ 1000

set udp6 (new Agent/UDP]
$ns attach-agent $n 12 $udp6
set cbr6 [new Application!fraffic/CBR)
$cbr6 attach-agent $udp6
$cbr6 set packetSize_ 1000

set udp7 [new Agent/UDP]
$ns attach-agent $n13 $udp7
set cbr7 [new Application!Traffic/CBR]
$cbr7 attach-agent $udp7
$cbr7 set packetSize_ 1000

set udp8 [new Agent/UDP]
$ns attach-agent $nl4 $udp8
set cbr8 (new Application/Traffic/CBR]
$cbr8 attach-agent $udp8
$cbr8 set packetSize _ 1000

set udp9 (new Agent/UDP]
$ns attach-agent $nl5 $udp9
set cbr9 [new Application!fraffic/CBR]
$cbr9 attach-agent $udp9
$cbr9 set packetSize_ 1000

set nullO [new Agent/Null]
$ns attach-agent $sl $null0

$ns connect $udp0 $nul10
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $null0
$ns connect $udp5 $null0
$ns connect $udp6 $null0
$ns connect $udp7 $null0
$ns connect $udp8 $nul10
$ns connect $udp9 $nul10

Start up the first ftp at the time 0 and
#the second ftp staggered 1 second later

$ns at 0.0 "$ftp 1 start"
$ns at 0.0 "$fip2 start"
$ns at 0.0 "$fip3 start"

105

$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"
$ns at 0.0 "$cbr4 start"
$ns at 0.0 "$cbr5 start"
$ns at 0.0 "$cbr6 start"
$ns at 0 .0 "$cbr7 start"
$ns at 0 .0 "$cbr8 start"
$ns at 0.0 "$cbr9 start"

$ns at 0.00 "recordl 1 1250000 1250000"
$ns at 0.00 "record2 1 1250000 1250000"
$ns at 0.00 "record3 1 1250000 1250000"
$ns at 0.00 "record4 1 1250000 1250000"
$ns at 0.00 "records 1 1250000 1250000"

$ns at 3.0 "finish"

#Run the simulation
$nsrun

#Case study 10 - Standard TCP
(Modified from case study 1 - Standard TCP)

#Create nodes
set d [$ns node]
set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set nS [$ns node]
set n6 [$ns node]
set n7 [$ns node]
set n8 [$ns node]
set n9 [$ns node]
set nlO [$ns node]
sets 1 [$ns node]
set s2 [$ns node]

$ns duplex-link $nl $d lOmb lOms DropTail
$ns duplex-link $n0 $n1 lOOmb lOms DropTail
$ns duplex-link $n2 $nl lOOmb lOms DropTail
$ns duplex-link $n3 $nl lOOmb lOms DropTail
$ns duplex-link $n4 $nl lOOmb lOms DropTail
$ns duplex-link $n5 $n1 lOOmb lOms DropTail
$ns duplex-link $n6 $n1 lOOmb lOms DropTail
$ns duplex-link $n7 $n1 lOOmb lOms DropTail
$ns duplex-link $n8 $nl lOOmb lOms DropTail
$ns duplex-link $n9 $n1 lOOmb lOms DropTail
$ns duplex-link $nl0 $nl lOOmb lOms DropTail
$ns duplex-link $sl $d lOOmb lOms DropTail
$ns duplex-link $s2 $d lOOmb 10ms DropTail

set qmonO [$ns monitor-queue $n0 $nl 1]
set qmonO I [$ns monitor-queue $n 1 $n0 1]

set qmon2 [$ns monitor-queue $n2 $nl l]
set qmon21 [$ns monitor-queue $nl $n2 l]

set qmon3 [$ns monitor-queue $n3 $nl l]
set qmon31 [$ns monitor-queue $nl $n3 l]

set qmon4 [$ns monitor-queue $n4 $nl 1]
set qmon41 [$ns monitor-queue $nl $n4 l]

106

set qmon5 [$ns monitor-queue $n5 $nl 1]
set qmon51 [$ns monitor-queue $nl $n5 l]

set qmond [$ns monitor-queue $nl $d 1]
set qmondl [$ns monitor-queue $d $nl 1]

4
Set up BSD Sack TCP connection in opposite directions.

set srcl [$ns create-connection TCP/Sackl $n0 TCPSink/Sackl $s2 5]
set src2 [$ns create-connection TCP/Sackl $n2 TCPSink/Sackl $s2 6]
set src3 [$ns create-connection TCP/Sackl $n3 TCPSink/Sackl $s2 7]
set src4 [$ns create-connection TCP/Sackl $n4 TCPSink/Sackl $s2 8]
set src5 [$ns create-connection TCP/Sackl $n5 TCPSink/Sackl $s2 9]

Create ftp sources at the each node

set ftp 1 [$srcl attach-app FTP]
set ftp 2 [$src 2 attach-app FTP]
set ftp3 [$src3 attach-app FTP]
set ftp4 [$src4 attach-app FTP]
set ftp5 [$src5 attach-app FTP]

set udpO [new AgenVUDP]
$ns attach-agent $n6 $udp0
set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udp0
$cbr0 set packetSize _ 1000

setudpl [new AgenVUDP]
$ns attach-agent $n7 $udpl
set cbrl [new Application/Traffic/CBR]
$cbrl attach-agent $udp 1
$cbr 1 set packetSize _ 1000

set udp2 [new Agent/UDP]
$ns attach-agent $n8 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packetSize_ 1000

set udp3 [new AgenVUDP]
$ns attach-agent $n9 $udp3
set cbr3 [new Application/Traffic/CBR]
$cbr3 attach-agent $udp3
$cbr3 set packetSize _ 1000

set udp4 [new AgenVUDP]
$ns attach-agent $n10 $udp4
set cbr4 [new Application/Traffic/CBRJ
$cbr4 attach-agent $udp4
$cbr4 set packetSize _ 1000

set nullO [new Agent/Null]
$ns attach-agent $sl $null0

$ns connect $udp0 $null0
$ns connect $udpl $null0
$ns connect $udp2 $null0
$ns connect $udp3 $null0
$ns connect $udp4 $nul10

Start up the first ftp at the time 0 and
the second ftp staggered 1 second later

$ns at 0.0 "$ftpl start"
$ns at 0.0 "$ftp2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$cbr0 start"
$ns at 0.0 "$cbrl start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$cbr3 start"

107

$ns at 0.0 "$cbr4 start"

$ns at 0.00 "recordl 1 125000 125000"
$ns at 0.00 "record2 1125000 125000"
$ns at 0.00 "record3 1 125000 125000"
$ns at 0.00 "record4 1 125000 125000"
$ns at 0.00 "record5 1 125000 125000"

$ns at 3. 0 "finish"

#Run the simulation
$ns run

#################################
Case study 11 - Standard TCP
(Modified from case study 9 - Standard TCP)
#################################

$ns duplex-link $nl $d 5mb lOms DropTail

#################################
Case study 11 - TCP Rate Control
(Modified from case study 11 - TCP Rate Control)
#################################

$ns duplex-link $nl $d 5mb lOms DropTail

$ns at 0.00 "recordl 1 '625000 625000"
$ns at 0.00 "record2 1 625000 625000"
$ns at 0.00 "record3 1 625000 625000"
$ns at 0.00 "record4 1 625000 625000"
$ns at 0.00 "record5 1 625000 625000"

$ns at 3 .0 "finish"

#Run the simulation
$nsrun

#Case study 12 - Standard TCP
(Modified from case study 10 - Standard TCP)

$ns duplex-link $nl $d 5mb lOms DropTail

108

##/=
#Case study 12 - TCP Rate Control
(Modified from case study I 0 - TCP Rate Control)
##/=

$ns duplex-link $nl $d 5mb IOms DropTail

$ns at 0.00 "record! 1.625000 625000"
$ns at 0.00 "record2 I 625000 625000"
$ns at 0.00 "record3 I 625000 625000"
$ns at 0.00 "record4 I 625000 625000"
$ns at 0.00 "record5 I 625000 625000"

$ns at 3. 0 "finish"

#Run the simulation
$ns run

Case study 13 - Standard TCP
(Modified from case study 9 - Standard TCP)

$ns duplex-link $nl $il lmb IOms DropTail

Case study 13 - TCP Rate Control
(Modified from case study 9 - TCP Rate Control)

$ns duplex-link $nl $il lmb IOms DropTail

$ns at 0.00 "record! l 125000 125000"
$ns at 0.00 "record2 I 125000 125000"
$ns at 0.00 "record3 l 125000 125000"
$ns at 0.00 "record4 I 125000 125000"
$ns at 0.00 "record5 I 125000 125000"

$ns at 3.0 "finish"

#Run the simulation
$ns run

109

#################################
#Case study 14- Standard TCP
(Modified from case study 10 - Standard TCP)
#################################

$ns duplex-link $nl $d lmb lOms DropTail

#Case study 14- TCP Rate Control
#(Modified from case study 10 - TCP Rate Control)

$ns duplex-link $nl $d lmb lOms DropTail

$ns at 0.00 "recordl 1 '125000 125000"
$ns at 0.00 "record2 1 125000 125000"
$ns at 0.00 "record3 1 125000 125000"
$ns at 0.00 "record4 1 125000 125000"
$ns at 0.00 "record5 1 125000 125000"

$ns at 3. O "finish"

#Run the simulation
$ns run

110

-St"Gabriel's Library, Au

	Cover and Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Review of Related Literatures
	Chapter 3 : Research Methodology
	Chapter 4 : Results
	Chapter 5 : Conclusions and Recommendations
	References
	Appendix

