

1'llE ASSVMPTION UNIVERSITY LIBRARY'

A New Approach to Compression of
Text Data in Tabular Form

Using One-To-Many Dictionary-Based
Preprocessing Algorithm

by

Wuthikrai Tharachatr

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
in Information Technology

Assumption University

November 2012

The Faculty of Science and Technology

Dissertation Title

Dissertation Approval

A New Approach to compression and confidentiality of Text Data
in Tabular Form Using One-T-Many Dictionary-Based
Preprocessing Algorithm: A Case Study in Cloud Supply Chain

By Mr. Wuthikrai Tharachatr
Dissertation Advisor Professor Dr. Graham Winley
Academic Year 2/2012

The Department of Information Technology, Faculty of Science and Technology of
Assumption University has approved dissertation final report of the thirty six credits
course. IT9000 Dissertation, submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Technology.

Approval Committee:

(Asst. Prof. Dr Thotsapon Sortrakul)
Advisor

Faculty Approval:

(Assoc. Prof. Dr. Surapong Auwatanamongkol)
Commission of Higher Education

University Affairs

r. Jirapun Daengdej)
Dean

November I 2012

The Faculty of Science and Technology

Declaration

This is to certify that the work presented in this thesis was carried out by the author in the

Department of Information Technology at Assumption University, Thailand and is the

result of original research conducted by the author, except where formally acknowledged

and/or referenced, and has not been submitted for a degree to any other university or

institution.

(Wutbikrai Tbaracbatr)

ACKNOWLEDGEMENT

I express my appreciation and sincere thanks to those who have contributed to the

completion of this dissertation. First and foremost, I extend my deep gratitude to my

advisor, Asst. Prof. Dr. Thotsapon Sortrakul, for his best valuable time, effort, assistance,

suggestions, and encouragements, which were valuable in all steps of writing this

dissertation.

I also acknowledge my committee members, Prof. Dr. Graham Kenneth Winley,

Asst. Prof. Dr. Jirapun Daengdej, and Assoc. Prof. Dr. Surapong Auwatanamongkol who

provided much valuable advices and recommendations during my dissertation defense.

Special acknowledgement goes to Asst. Prof. Dr. Supavadee Nontakao for her

inspiration and guidance during my study.

Last but not least, to my beloved parents, I owe a debt of gratitude for their

supports and encouragements along the path of my academic pursuits. I am also thankful

to God for all the wonderful things He has given me.

I

ABSTRACT

Due to dramatic growth of data storage and transfer for most enterprises

nowadays, it is necessary to have larger memories to store numbers of binary generated

from everyday communication and documentary. Especially, for large or multinational

enterprises where various parts of digital communication and documentary are duplicated

and redundant, many data compression techniques have been used to reduce the storage

requirements by compressing the data binaries.

In this research, a simple preprocessing technique for improving compression

performance of text data in tabular form is introduced. Data sharing through cloud

computing in the field of supply chain is selected as the illustration. Sets of duplicated

data are preprocessed based on analyses of static-data ratio and number of receivers in

order to generate a single compressed file, while different decoding overheads are

encoded and separately distributed to particular receivers in parallel.

The results show that compression perf onnance can be improved with some

trade-offs for decoding overheads. Static-data ratio and size of duplicated static data are

found to be directly proportional to the compression performance with some benefits to

data confidentiality, while number of receivers is related to the efficient use of encoding

tokens.

II

ftlE ASSUMPTION UNIVERSITY LIBRARf'

CONTENTS

ACKNOWLEDGE:MENT

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER I INTRODUCTION

1.1 Overview

1.2 Literature Survey

1.3 Research Problems

1.4 Objectives of the Study

1.5 Scope of the Study

1.6 Definitions and Equations

1. 7 Dissertation Organization

CHAPTER 2 BACKGROUND KNOWLEDGE

2.1 Lossless Data Compression Algorithms

2.2 Data Preprocessing Techniques

2.3 Archiving Software

2.4 Cloud Supply Chain

2.5 Data Confidentiality

CHAPTER 3 PROPOSED TECHNIQUE

3 .1 Overview

m

Page

I

n
m

v

VII

1

4

9

10

11

12

13

14

18

22

23

29

37

3.2 Single Encoding Token to Multiple Decoding Overheads

3.3 Data Isolation

3.4 Integrated Solution

CHAPTER 4 DATA PREPARATION AND TESTING METHOD

4.1 Data Preparation

4.2 Simulation Method

4.3 Selected Archiving Software

4.4 Selected Existing Preprocessing Technique

CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSES

5 .1 Results and Comparisons of the Compression Performance

Page

38

39

40

42

43

44

45

in Relation to Ratios of Static Data and Duplicated Static Data 46

5.2 Results and Comparisons of the Efficient Use of Encoding

Tokens in Relation to Number of Receivers

CHAPTER 6 CONCLUSION AND FUTURE WORKS

6.1 Interpretation of Findings and Conclusion

6.2 Discussion: The Most Suitable Approach

6.3 Future Research

BIBLIOGRAPHY

IV

68

70

71

74

75

LIST OF FIGURES

Figure 1.1: Cloud security survey

Figure 1.2: Top-ten technology priority

Figure 2.1: Cloud Supply Chain

Figure 2.2: Three core parts of information security

Figure 2.3: Degrees of security

Figure 2.4: Risk-Openness-Value P~adigm

Figure 3 .1: The proposed technique-paradigm

Figure 3.2: Encoding module

Figure 3.3: Decoding module

Figure 5.1: Comparison of compressed file sizes

(25% of static data and 25% of duplicated static data)

Figure 5.2: Comparison of compressed file sizes

(50% of static data and 25% of duplicated static data)

Figure 5.3: Comparison of compressed file sizes

(75% of static data and 25% of duplicated static data)

Figure 5.4: Comparison of compressed file sizes

(25% of static data and 50% of duplicated static data)

Figure 5.5: Comparison of compressed file sizes

(50% of static data and 50% of duplicated static data)

v

Page

3

3

29

34

35

36

38

40

41

48

49

51

52

54

Figure 5.6: Comparison of compressed file sizes

(75% of static data and 50% of duplicated static data)

Figure 5.7: Comparison of compressed file sizes

(25% of static data and 75% of duplicated static data)

Figure 5.8: Comparison of compressed file sizes

(50% of static data and 75% of duplicated static data)

Figure 5.9: Comparison of compressed file sizes

(75% of static data and 75% of duplicated static data)

Figure 5 .10: Comparison of compressed file size based on the use of

7-Zip as the selected archiving software

Figure 5 .11: Comparison of compressed file size based on the use of

PeaZip as the selected archiving software

Figure 5 .12: Comparison of compressed file size based on the use of

WinAce as the selected archiving software

Figure 5.13: Comparison of compressed file size based on the use of

WinRAR as the selected archiving software

Figure 5.14: Comparison of compressed file size based on the use of

WinZip as the selected archiving software

Page

55

57

58

60

61

62

62

63

64

Figure 5.15: Degrees of compression performance of the proposed preprocessing

technique integrated with archiving software in average based on ratios of

static data and duplicated static data

Figure 5.16: Number of tokens used in relation to number of receivers

VI

67

68

LIST OF TABLES

Page

Table 2.1: Selected Archiving Software 23

Table 2.2: Summary of Security Mechanisms by Major Cloud Service Providers 31

Table 4.1: Data sets used for testing compression performance in relation to

the ratios of static data and duplicated static data 43

Table 4.2: Functions of Microsoft Excel 2003 that were used in this research 44

Table 4.3: Selected archiving software 45

Table 5 .1: Details of data sets and compression algorithms used for the analyses 4 7

Table 5.2: Comparison of compression ratios

(25% of static data and 25% of duplicated static data)

Table 5.3: Comparison of space saving percentage

(25% of static data and 25% of duplicated static data)

Table 5.4: Comparison of compression ratios

(50% of static data and 25% of duplicated static data)

Table 5.5: Comparison of space saving percentage

(50% of static data and 25% of duplicated static data)

Table 5.6: Comparison of compression ratios

(75% of static data and 25% of duplicated static data)

Table 5.7: Comparison of space saving percentage

(75% of static data and 25% of duplicated static data)

VII

48

48

50

50

51

52

Table 5.8: Comparison of compression ratios

(25% of static data and 50% of duplicated static data)

Table 5.9: Comparison of space saving percentage

(25% of static data and 50% of duplicated static data)

Table 5 .10: Comparison of compression ratios

(50% of static data and 50% of duplicated static data)

Table 5 .11: Comparison of space saving percentage

(50% of static data and 50% of duplicated static data)

Table 5.12: Comparison of compression ratios

(75% of static data and 50% of duplicated static data)

Table 5.13: Comparison of space saving percentage

(75% of static data and 50% of duplicated static data)

Table 5.14: Comparison of compression ratios

(25% of static data and 75% of duplicated static data)

Table 5 .15: Comparison of space saving percentage

(25% of static data and 75% of duplicated static data)

Table 5 .16: Comparison of compression ratios

(50% of static data and 75% of duplicated static data)

Table 5 .17: Comparison of space saving percentage

(50% of static data and 75% of duplicated static data)

Table 5.18: Comparison of compression ratios

(75% of static data and 75% of duplicated static data)

VIII

Page

53

53

54

54

56

56

57

57

59

59

60

Page

Table 5.19: Comparison of space saving percentage

(75% of static data and 75% of duplicated static data) 60

Table 5.20: Compression performances of the archiving software when they were

integrated with the proposed preprocessing technique 66

Table 6.1: Comparisons ofWRTwith the proposed preprocessing technique 71

IX

1.1 Overview

CHAPTER I

INTRODUCTION

Nowadays, everyday communication and documentation among the supply

chain parties usually create redundancy of duplicated data, which cause unnecessary

requirements for larger cloud data storage. From the past, data compression

algorithms have existed for almost 40 years but there is no compression algorithm that

is able to effeclively compress all data structures and types. In addition, complex

internal structure fi le which simultaneously stores different types of data is commonly

used, therefore, it makes a single lossless data compression technique a difficult

problem to compress data effectively and get a high compression ratio as a result.

Currently, there are many data compression and preprocessing techniques designed to

reduce size of data that are shared and transmitted in the cloud. For data compression,

it can be categorized into two main techniques consisting of Lossless Data

Compression and Lossy Data Compression.

Lossless Data Compression can decode the data exactly what it encoded. This

compression technique allows the exact original data to be reconstructed from the

compressed data. It is normally used for all kinds of text, scientific and statistical

databases to ensure that the decoded output will be exactly identical to the original

data. For Lossy Data Compression, the compressed data will be slightly distorted in

which it is mostly used for digital sound or image compression where the distortion is

acceptable. It aims to minimize the amount of data that needs to be kept or

transmitted. Starting from an entropy coder, it is a method that assigns every symbol

from the alphabet to a code depended on the occurrence probability of that particular

1

symbol. The symbols, which are occurred more frequently, will get shorter codes than

the less probable symbols. The codes are assigned to the symbols by focusing on the

expected length of the compressed sequence would be minimal.

Recently, cloud computing is one of the latest IT developments which

provides various benefits and competitive advantages through flexibility,

configurability, scalability, reliability, and anywhere accessibility. It provides many

options ranged from everyday computer users to large and small businesses.

However, there are still many challenges with the opportunities being offered by the

cloud. Some of the challenges include confidentiality, security, and lack of control.

Enterprises have to be aware of the security risks of storing important data and

information on the cloud. International Data Corporation (IDC) conducted surveys

during 2008 to 2012 in which some of the sections were related to the growth of cloud

and security aspects in IT industry as illustrated in figure 1.1 and 1.2.

Figure 1.1 shows the survey on cloud security presenting that security was

ranked as the first thing which IT executives concerned (Chang et al., 2010). Figure

1.2 displays top ten technology priorities conducted by JDC in 2010 in which the

cloud computing was the first priority by organizations in the field of technology

(Shuai et al., 2010).

In term of cloud supply chain; the uses of cloud service are mainly in the areas

of purchasing/procurement, inventory management, order filling and processing,

production scheduling, transportation/distribution, customer service, and vendor

relations. It can involve many parties including raw material suppliers, packaging

suppliers, manufacturers of finished goods, sourcing, logistics, outsourced third-party

logistics, consolidators, carriers, freight forwarders, cargo agents, financial and

information services, and consumers. In general, sensitive information processed

2

outside an enterprise brings some level of risk and they are typically managed within

shared environments along with data of other partners, customers, and competitors.

Figure 1.1: Cloud security survey

i--·-··-····-·····-····-·-·····-···· .. ····"'"···-.. ···-··-·-·-·-··-··-···-··-· ..
Security N, • 87.~%

Availability

Performance ••••••••• ml82.9%

On-demand payment model may cost more

Lack of interoperability standards ~'·!liBBHBe~~!I~ 80.2%

Bringilg back in-house may be difftcuh

Hard to integrate with in-ho1.LSe IT

Not enough ability to customize

711% 12"/o 74% 7fl'lo 78"/o 80".4 82% 84% 86% 88% 90%

% responding 3, 4, S

Figure 1.2: Top-ten technology priority

10
9
8
7

Qt)

~ ~
~ 4

3
2
1
0

00 c ·s
p,,
e
8
]
.9
u

i::
0

:~
-;

~

~ -c
II) 0 s 0 II)

] tlO

"' 0 i::
~ "' ~ Q)
:::::: E-<
.D -~

cU ~ i:: i:: ~ 0 0 0 s:: ~ Q ·.c ·.c cU "' e ~ cU .~

j 0 0. ~ 'ii ~ - p,, s:: < 8 -"' 'O 4)

"' ra "' u ·c: ~ r: 00 ·;;; i:: e- 0
::s J2 2 0
~ .. &l .§

! ~ z
T-ecbnology

3

1.2 Literature Survey

The most well-known entropy coders are Huffman coder (Huffman, 1952) and

an arithmetic coder. The Huffman coder is optimal in the way that it assigns codes of

integer length, while the arithmetic coder is free from this limitation, therefore,

arithmetic coding usually creates shorter expected code length. Sharma (20 I 0)

mentioned that Huffman coding is in wide use because of its simplicity, high speed

and lack of encumbrance by patents while Arithmetic coding can be viewed as a

generalization of Huffman coding; indeed, in practice arithmetic coding is often

preceded by Huffman coding, as it is easier to find an arithmetic code for a binary

input than for a non-binary input. Suri & Goel (2010) presented a memory efficient

array data structure to decode the binary codeword based on Huffman techniques in

which they developed two algorithms. In first algorithm they used Huffman ternary

tree with height h with binary codeword, which resulted out the corresponding symbol

of the given codeword in very short time and required less memory. In their second

algorithm, they used array data structure to decode the binary codeword. In this case,

both algorithms presented totally new formulas and require less effort.

In term of universal lossless data compression algorithms where they work

well on the output data from general source class, currently they are popular and

widely used. Historically, Ziv and Lempel introduced the first one in 1977 (Ziv &

Lempel, 1977). The authors proposed the method to compress identical parts and

replace the repetitions with the information where the identical subsequences

appeared before. Ziv and Lempe! (1978) proposed two main variants of their

methods, which are LZ77 that encodes the information of repetitions directly, and

LZ78 that maintains a supporting dictionary of subsequences previously appeared,

and stores the indexes from this dictionary in the output sequence. The main

4

advantages of these two methods are high speed and ease of implementation.

However, compression ratio of these two algorithms might be worse than the current

ratios available nowadays. Mohd et al. (2009) developed the enhanced LZW

technique (LZW++) in data compression in which .the basic framework of LZW++

technique is based on the existing LZW technique. The LZW++ technique read three

characters in time during data compression while existing LZW technique read

character one by one. Comparison was made between LZW++ technique and existing

LZW technique in terms of time performance and size of file after compression. The

authors presented that LZW++ technique is more efficient in text compression than

the existing LZW techniques.

In 1984, a prediction by partial matching (PPM) algorithm was introduced by

Cleary and Witten (1984). This algorithm works differently compared to the previous

algorithms proposed by Ziv and Lempel in which it statistically calculates occurrence

of symbols previously appeared. After that it uses them to assign codes to the symbols

from the alphabet that can occur at the next position in which the expected length of

the sequence is minimized. In this case, the symbols that are more likely to occur will

have shorter codes compared to less probably symbol. The statistics of symbol

occurrences would be stored for separate contexts, therefore, after processing one

symbol, the codes which are assigned for symbols usually completely differ because

the changing of the context. Anyway, an arithmetic coder is used in order o assign

codes for symbols. The disadvantages of the PPM algorithms are slow speed and

large memory is required in order to store the statistics of symbol occurrences, which

it might not be practical for some cases. However, these methods obtain the best

compression ratios in the group of universal lossless data compression algorithms.

5

Later, in 1987, Cormack and Horspool introduced another statistical lossless

data compression algorithm called as dynamic Markov coder (DMC). Their algorithm

assumes that the data which being compressed is an output of some Markov source

class. It tries to discover this source during the compression by better and better

estimating the probability of occurrence of the next symbol by using the probability in

which the codes for symbols from the alphabet are assigned by using an arithmetic

coder. This algorithm has the same disadvantages as PPM because a large storage

memory is required to store the statistics of symbol occurrences and also slow

running. Anyway, it could be an alternative for the PPM methods because it generates

the comparable compression ratios by using the similar running speed.

In 1994, another compression method called a Burrows-Wheeler compression

algorithm (BWCA) is introduced. It is a block-sorting compression algorithm in

which the technique is to build a matrix where rows store all the one-character cyclic

shifts of the compressed sequence, to lexicographically sort the rows, and to use the

last column of the matrix for further processing. This process is named as the

Burrows-Wheeler transform (BWT). The output of the transform is then handled by a

move-to-front transform (Bentley et al., 1986), and would be compressed by an

entropy coder in the last stage, which either a Huffman coder or an arithmetic coder is

used. As the result of this algorithm, a sequence is obtained in which all symbols

appeared in the similar contexts would be grouped together. The advantages of the

BWT algorithm are high speed of execution and reasonable compression ratios which

are better than the LZ methods. Anyway, the result is slightly worse than the best

existing PPM algorithms (Deorowicz, 2003) in which the PPM algorithms generates

the higher compression ratios but execute a bit slower than the BWT method.

6

Willems et al. (1995) developed another compression method named context

tree weighting (CTW) algorithm. This algorithm assumes that the data are produced

by some source of that class and then the probability of symbol occurrence is

estimated. This algorithm is similar to the PPM and the DMC algorithms because an

arithmetic coder is applied to assign codes to the symbols during the compression.

The main advantage of this algorithm is its higher compression ratio compared to the

DMC technique but slightly worse than those obtained by the PPM algorithms

(Deorowicz, 2003). By the way, the main disadvantage of this algorithm is its low

running speed.

In 2004, Govindan and Shajeemohan presented an intelligent text data

encryption and compression for high speed and secure data transmission over Internet

called Intelligent Dictionary Based Encoding (IDBE) in which a preprocessing of the

text prior to conventional compression will improve the compression efficiency and

provide the required security.

In 2007, Robert and Nadarajan also proposed a method, which transforms a

text file into intermediate file with minimum possible byte values called Dictionary

based transformation (DBn and Dynamic reversible transformation (DRn in order

to reduce the number of possible bytes that appear after every byte in the source file

which increases backend algorithm's compression performance.

Kattan (2010) purposed the applications of Genetic Programming (GP) in the

lossless data compression domain. In particular, the author proposed a series of

intelligent universal compression systems called the GP-zip family. The author

presented four members of this family, namely, GP-zip, GP-zip*, GP-zip2 and GP

zip3. Each new version addressed the limitations of previous systems and improves

upon them. Moreover, a new learning technique is introduced which it is specialized

7

on analyzing continued stream of data, detecting different patterns within them and

associating these patterns with different classes according to the user's need.

Carns & Mesut (2010) developed a fast text compression method based on

multiple static dictionaries and named this algorithm as STECA (Static Text

Compression Algorithm). This algorithm is language dependent because of its static

structure. To evaluate encoding and decoding performance of STECA with different

languages, the author selected English and Turkish that have different grammatical

structures then they compared the compression and decompression times and

compression ratio results with the results of LZW, LZRWl, LZPl, LZOP, WRT,

DEFLATE (Gzip), BWCA (Bzip2) and PPMd algorithms. In their research, the result

presented that if speed is the primary consideration, STECA is an efficient algorithm

for compressing natural language texts.

In addition to the lossless text compression, there are also various

preprocessing techniques available nowadays which bring better compression

performance when they are properly used together with lossless data compression

algorithms. Preprocessing technjques bring some compression at the initial

preprocessing stage itself as well as retain enough context and redundancy for

existing compression algorithms to bring out better results (Rexline and Robert,

2011). The famous preprocessing techniques are Burrows Wheeler Transformation

(BWT), Star Encoding, Length Index Preserving Transformation (LIPT), StarNT, and

Word Replacement Transformation (WRT). According to these preprocessing

methods, the dictionary is made in time as static one and distributed by both encoding

units and decoding units. The usefulness of dictionary-based text preprocessing skills

are the less memory utilization, simple concepts, higher speed in process, and better

results in the compression rates (Rexline and Robert, 2011).

8

Ullah et al. (2010) presented a novel use of steganography for both

confidentiality and compression in which message is encoded by using a grayscale

bitmap image. The image acts as a steganographic carrier for the text and the carrier is

never transmitted across the untrusted channel while only the compressed index array

that contains the indices for hidden data in the image is transmitted. The image also

acts as a shared key between sender and receiver, which is used for confidentiality

and also to extract the desired text from the image. They described that encoding text

into the image is not only to make it secure but good amount of compression is also

achieved and found that the text length is directly proportional to compression

performance.

1.3 Research Problems

From the past, data compression algorithms have existed for almost 40 years

but there is no compression algorithm that is able to effectively compress all data

structures and types. Nowadays, complex internal structure file which simultaneously

stores different types of data is commonly used, therefore, it makes a single lossless

data compression technique a difficult problem to compress data effectively and get a

high compression ratio as a result. In addition, there are still many challenges

including confidentiality, security, and lack of control for data sharing on the cloud,

therefore, some of enterprises have to be aware of the security risks of storing

important data and information on the cloud. In order to improve data compression

with some benefits to data confidentiality, the researcher describes current problems

and issues as follows.

1) Each particular algorithm has its own strengths and weaknesses based on

data type that it was designed to work best for. Therefore, only one data

9

compression technique cannot be used to get the minimum compressed

complex internal structure data. Therefore, data preprocessing technique

might be another solution to improve data compression performance.

2) Large or multinational enterprises, especially in supply chain related field,

have hugely amount of complex internal structure data, but most of the

data are mainly and frequently duplicated in particular formats.

3) Since data confidentiality is still one of the most challenging problems in

cloud supply chain, therefore, instead of using controls and encryptions,

data isolation is applied as a solution to support enterprises about

confidentiality of their valuable data and information.

To overcome these issues, the researcher proposes a simple approach that can

improve compression performance with some benefits to data confidentiality of

shared text data structured in tabular form by testing with real supply chain data that

is shared on cloud computing.

1.4 Objectives of the Study

This section describes objectives of this dissertation in which it focuses on

creating of a solution for improving data compression performance of text data

structured in tabular form by integrating the proposed preprocessing technique with

existing archiving software. Since each particular existing data compression algorithm

has its own strengths and weaknesses based on which data type it was designed to

work best for, therefore, only a single technique might not be employed in order to get

the minimum compressed complex internal structure data together with data

confidentiality. In this study, an efficient text preprocessing algorithm for data

10

tJD: ASSIJMPTJON UNIVERSITY LIBRA.Rf

compression that can encode specific multiple data into a single encoding token is

introduced. The followings are the objectives of this research:

1) Introduces a simple preprocessing technique that can enhance

compression performance of text data that is structured in tabular form

when it is integrated with archiving software.

2) Increases utilization of encoding tokens, which are generated for a

particular set of data that is structured in tabular form by relating it with

number of assigned receivers.

1.5 Scope of the Study

The scope of this study is to introduce a simple text preprocessing approach

that can improve compression performance of shared text data that is structured in

tabular form for supporting cloud supply chain. An efficient text-preprocessing

algorithm that can encode specific multiple data into a single encoding token is

proposed. However, the proposed technique cannot be applied for other text formats

that are not structured in spreadsheet form.

11

1.6 Definitions and Equations

Ratio of static data: Percentage of static data available in the original

file.

Size of static data
(Size of static data+ Size of dynamic data)

Ratio of duplicated static data: Percentage of static data that is duplicated in the

original file.

Size of duplicated static data
Size of static data

Total file size: Size of static data + Size of dynamic data

Compression ratio: The ratio between the size of the compressed

file and the size of the source file.

= Size after compression
Size before compression

Space saving percentage: Percentage of shrinkage of the source file.

= Size before compression - Size after compression o/c
Size before compression °

12

1.7 Dissertation Organization

This dissertation is divided into 6 chapters, which are discussed one by one as

follow.

The backgrounds of lossless data compression, data preprocessing, well

known archiving software, cloud computing, and data confidentiality are elaborated in

Chapter 2.

Chapter 3 introduces a simple approach to compression of text data in tabular

form by using one-to-many dictionary-based preprocessing algorithm for supporting

data sharing in cloud supply chain including encoding and decoding modules.

Chapter 4 describes about data preparation for testing the proposed text

preprocessing algorithm and discusses about the simulation in details.

Chapter 5 presents outcomes of integrating the proposed preprocessing

algorithm with selected archiving software along with its experimental analyses with

the use of selected archiving software individually as well as the use of existing well

known preprocessing technique called Word Replacement Transformation (WRT) as

an integration tool.

Chapter 6 interprets the research findings, discussion about the most suitable

approach for applying the proposed preprocessing technique, and some

recommendations for future researches.

13

CHAPTER2

BACKGROUND KNOWLEDGE

Prior to the proposed technique, this section provides background knowledge

in relation to lossless data compression algorithms, data preprocessing techniques,

some of well-known archiving software, cloud supply chain, and data confidentiality.

2.1 Lossless Data Compression Algorithms

For lossless data compression techniques, they can be categorized into five

popular techniques which are 1) Shannon-Fano coding and Huffman coding, 2)

Aritlunetic coding, 3) Dictionary-based coding, 4) Prediction by Partial Matching

(PPM), and 5) Burrows-Wheeler Transform (BWT).

1) Shannon- Fano Coding and Huffman Coding: Shannon- Fano coding,

introduced by Claude Elwood Shannon (1948) and Robert Fano (1949), is

a data compression technique that constructs a prefix code based on a set

of symbols and their estimated or measured probabilities. The symbols are

arranged in order from most probable to least probable, after that they will

be divided into two sets in which total probabilities will be as close as

possible to being equal. Then, all symbols have the first digits of their

codes assigned; symbols in the first set will be assigned as "0" and

symbols in the second set will be assigned as 11 l ". If there is any set with

more than one member remains, the same process will be repeated for

those sets in order to determine successive digits of their codes. When a

set has been reduced to one symbol, it means that the symbol's code is

completed and will not assign the prefix of any other symbol's code.

14

Huffman coding was introduced in 1952 by David A. Huffman, which

represents a different technique compared to Shannon-Fano algorithm.

While the Shannon-Fano tree is created from the root to the leaves, the

Huffman algorithm does in the opposite direction by starting from leaves

to the root. Huffman coding can be divided into two types, which are static

Huffman coding and adaptive Huffman coding. For adaptive Huffman

coding (Dynamic Huffman coding), it is an adaptive coding technique

based on Huffman coding in which it dynamically calculates the

probabilities based on recent actual frequencies in the sequence of source

symbols, and then changes the coding tree structure in order to match with

the updated probability estimates.

2) Arithmetic Coding: Arithmetic coding takes a stream of input symbols and

then replaces them with a single floating point output number in which the

longer the message will require more bits for output number. Arithmetic

coding works on infinite-precision numbers in which this single number

can be only in the range of zero to one. The output numbers are generated

by probabilities assigned to the symbols that are being encoded. It means

that the arithmetic coding differs from other forms of entropy encoding

especially Huffman coding because it does not separating the input into

component symbols and replacing each with a code but the arithmetic

coding encodes the entire message into a single number. By comparing

compression ability between Huffman coding and Arithmetic coding, the

Arithmetic coding performs better than Huffman in many parts because

Arithmetic is an adaptive model and does not need to translate each

symbol into an integral number of bits. However, Arithmetic coding

15

requires more computation on multiplication and division, which causes

slower coding time and more complication.

3) Dictionary-based Coding: Liao et al. (1995) and Lefurgy et al. (1997)

explored this algorithm by taking advantage of commonly occurring

instruction sequences with the use of a dictionary in which the repeating

occurrence will be replaced by a codeword that points to the index of the

dictionary that contains a particular pattern. Although the dictionary-based

technique represents the good compression ratio but, practically, it might

not be effective because each data file might contain different

characteristics. Therefore, list of words in the dictionary to be used for

compression has to be different belongs to the different characteristics of

data. In general, sender can create a list that suitable for each data file to be

compressed but receiver does not have that particular list by itself,

therefore, sender has to send the dictionary-based list to receiver as

overhead. When the overhead is taken into consideration, it reduces

compression ratio and effectiveness of this algorithm. The main issue of

the dictionary-based compression technique is about the list of words to be

used between sender and receiver because the list will have a high

significant impact to its effectiveness. If the list is not properly set, it will

absolutely affect to the compression ratio. In order to solve this issue, there

are two main methods called as "static dictionary" and "dynamic

dictionary". For "static dictionary", the complete set of strings is

determined prior to the starting of coding and it will not be changed during

the coding process. It is frequently used when set of messages being

encoded is fixed and large. The list will be set up to cover all the types of

16

files to be coded which will be updated to both sender and receiver sides in

advance, therefore, there will be no overhead sending from sender to

receiver for decoding purpose later on. Anyway, this static dictionary list

has to be large enough to cover as many as possible of the types of data to

be compressed. A static dictionary that is created for particular types of

data might not be effectively applied to other types of data because the

compressed data might be larger than the original data instead as the

dictionary might not perfectly matched with those kinds of data. On the

other hands, there are numbers of methods where the dictionary-based

algorithms start by using some predetermined state while the contents can

be changed during the encoding process based on the data that has already

been encoded, which are called as "dynamic dictionary", for examples,

LZ77 and LZ78 algorithms.

4) Prediction by Partial Matching (PPM): The prediction by partial matching

(PPM) data compression technique was developed by Cleary and Witten

(1984). It is an adaptive statistical data compression technique based on

context modeling and prediction. PPM algorithm uses a set of previous

symbols in the uncompressed symbol stream to predict probability of

occurrence of the next symbol in the stream. This probability is then used

for encoding the symbol by the use of arithmetic coding algorithm. The

idea of this algorithm is that if a large context is used to determine the

probability of the symbol being encoded, it will require estimation and

storage of an extremely large number of conditional probabilities in which

it is unfeasible. Instead of estimating these probabilities in advance, the

burden can be reduced by estimating the probabilities as the coding

17

proceeds. In this case, it is only required to store these contexts which have

been occurred in the sequence being encoded, therefore, it is much smaller

number compared to number of all possible contexts.

5) Burrows- Wheeler Transform (BWT): In 1994, Michael Burrows and David

Wheeler introduced a data compression algorithm based on the Burrows

Wheeler Transform (BWT). The Burrows-Wheeler transform is also

called as block-sorting compression such as bzip2. The compression ratios

were comparable with the ones obtained using known best methods. When

a character string is transformed by the BWT, the value of the characters

will not be changed. The transformation arranges the order of the

characters. If the original string had several substrings that frequently

occurred, then the transformed string will have several places where a

single character is repeated multiple times in a row. This is useful for

compression, since it is easy to compress a string that has runs of repeated

characters by using move-to-front transform and run-length encoding.

2.2 Data Preprocessing Techniques

The usefulness of dictionary-based text preprocessing techniques are the less

memory utilization, simple concepts, higher speed in process and better compression

performance because they bring some compression at the initial preprocessing stage

and retain enough context and redundancy for existing compression algorithms to

bring out better results of compression performance (Rexline and Robert, 2011).

There are about eight standard and famous preprocessing algorithms currently

available presented as follows:

18

1) Burrows-Wheeler Transformation (BWT): Burrow and Wheeler (1994)

presented a block-sorting lossless data compression algorithm which

operates by reversibly permutes a block of source data and then rearranges

it by using a sorting technique, after that pipes through a Move-To-Front

(MTF) stage follows by using of Run Length Encoder and an entropy

encoder (Huffman coding or Arithmetic coding). The output generated by

the BWT will be lexicographically arranged as series of blocks. If the file

size is larger, the BWT technique will separate the data into numbers of

independent blocks of a predetermined size prior to data compression.

Because each block is independent, therefore, it should be possible to run

the BWT algorithm simultaneously on multiple blocks of data in order to

achieve higher speed. After that the separated blocks are concatenated

back together in order to form a final compressed file. In order to achieve

good compression performance, a block size of sufficient value must be

selected; at least 2 kilobytes because increasing of the block size will also

increase the effectiveness of the algorithm (Rex line and Robert, 2011).

2) Incremental Frequency Count (IFC) -A post BWT-stage for the Burrows

Wheeler Transformation: Abel et al. (2007) introduced the Incremental

Frequency Count stage by combining it with a Run Length Encoding

(RLE) stage along with the BWT and entropy coding stage instead of

using Move-To-Front (MTF) algorithm. IFC algorithm replaces the MTF

algorithm by assigning a counter for each character and places in

descending order in which whenever a character comes for process from

the input stream, the position of the corresponding counter is yield and

incremented which will be recalculated and added into the counter of the

19

processed character, therefore, only one counter needs to be rearranged

inside the list in which it will make the faster process compared to MTF.

In this case, the counters will be frequently rescaled for the purpose of

preventing overruns and in order to indicate closer symbols, and it will

give high throughput in the same way as MTF stage along with the

comparable good compression performance (Rexline and Robert, 2011).

3) The Star Transformation: this algorithm was introduced by Kruse and

Mukherjee in which the transformation is designed to make it easier to

compress the source file by set up a very big dictionary in advance that

contains commonly used words which are expected in the input files and

the dictionary must be known by the sender and receiver. Every word in

the dictionary as a star encoded equivalent in which as many letters as

possible are replaced by the "*" character and the dictionary is sectioned

into numbers of streams of sub-dictionaries that consist of words with

length 1 <n<22 because the more length of an English word is 22 letters.

Practically, the most used words will gain the highest percentage of "*"

characters in their encoding and if it is carried out properly in which the

transformed file has a big number of "*" characters, it will make the

transformed file more compressible than the original text file (Rexline and

Robert, 2011).

4) Length Index Preserving Transformation (LIP1): This algorithm was

introduced by Awan and Mukherjee in 2001 by developing a dictionary

based reversible lossless text transformation that can be applied to a source

text in order to improve compression performance. In this case, the length

of the input word and the offset of the words in the dictionary are denoted

20

with alphabets and the encoding process will make use of recurrence of

same length of words in the English language to create context in the

transformed text that the entropy coders can exploit (Awan and

Mukherjee, 2001).

5) StarNT Transformation: Sun et al. (2003) introduced this algorithm in

which it works with a ternary search tree that provides a very fast change

of encoding speed at a low capacity overhead and they introduced capital

conversion technique by placing the escape symbol and flag director at the

end of the codewords. The concept comes up to the background

dependencies and results better compression ratio over the skills (Rexline

and Robert, 2011).

6) Intelligent Dictionary Based Encoding (IDBE) Transformation: The

algorithm was introduced by Govindan and Mohan in 2006 in which it is

designed to preprocess the text and transform it into some intermediate

form that can be compressed with better compression result by exploiting

the natural redundancy of the language in making the transformation

(Govindan and Mohan, 2006). The dictionary is produced with multiple

sources of files as input and codewords are formed by the use of ASCII

characters (Rexline and Robert, 2011).

7) Two Level Dictionary Based Text Transformation: Zia et al. (2008)

introduced this preprocessing technique in which the original words in a

text file are transformed into codewords having length 2 and 3 by using a

dictionary comprising 73,680 frequently used words in English language

in which most frequently used words use 2 length codewords while the

reset words use 3 length codewords in order to generate good compression

21

result. The codewords are selected by considering the spaces between

words in the original text file that can be removed altogether recovering a

substantial amount of space, and another feature of this scheme is the

recovery of unused bit of ASCII character representation from each

character to save one byte per 8 ASCII characters (Zia et al., 2008).

8) Word Replacement Transformation (WRT): Skibinski introduced this

algorithm in 2004. Grabowski et al. (2005) applied the algorithm by using

only ASCII character 128-225 in order to represent the codewords and

reduce the effect caused by the End-Of-Line (EOL) symbols, which

hamper the context because words are usually separated by spaces

(Rexline and Robert, 2011). This technique substitutes EOL symbols by

spaces and encodes their former positions. Words will be replaced with

references to where the word is located in the dictionary. In addition, the

technique also suggests ngram replacement, space stuffing between words,

capital conversion by placing the flag at the beginning of the codeword

instead of placing it at the end of the codeword like StarNT (Rexline and

Robert, 2011).

2.3 Archiving Software

Currently, there are various archiving tools for compressing data which are

available either free or proprietary software. Each of archiving software is generally

designed based on specific algorithms and its output performance might be varied

when it is compared with other archiving tools because it depends on type and size of

the data that it is well-designed to work for. Table 2.2 presents five well known

22

archiving programs selected based on algorithms they implement, supported operating

system, and supported format requirements.

Table 2.1: Selected Archiving Software

Software Algorithms
Support ZIP Archive support

Windows OS (reading and writing)

7-Zip
Program used filters, LZ77, LZMA,

Yes Yes
PPM,BWT

PeaZip LZ77, Huffman, LZMA, PPM Yes Yes

WinAce Program used tilters, LZ77, Huffman Yes Yes

WinRAR
Program used filters, LZ77, PPM,

Yes Yes
Huffman

WinZip
Shannon-Fano, PPM, Huffman, LZH,

Yes Yes
LZW

2.4 Cloud Supply Chain

Currently, Cloud Computing technology is one of the rapidly growing fields

of Information Technology (IT) and has supported organizations to cope with

dynamic changes in markets and financial situations (Hugos and Hulitzky, 2010).

Cloud services bring flexibility, configurability, cost effectiveness, low

implementation cost to IT and by extension, Supply Chain Management (SCM)

(Durowoju et al., 2011). The key driver of Cloud Computing is the Internet in which,

at an organizational level, Lancioni et al. (2003) found that the Internet has been

applied in the areas of purchasing/procurement; inventory management;

transportation; order processing; customer service; production scheduling; and vendor

relations, with procurement, transportation, and customer service having the most

Internet usage. Chan and Chan (2010) stated that exchange of information drives

business efficiency and effectiveness. Zhou et al. (2012) described the application of

23

Cloud Computing in four areas that has taken place in relation to SCM perspective

which are: (a) Product trace systems: which are based on establishing of technologies

such as RFID (Radio-Frequency Identification) in which products can be tracked and

traced by using of intelligent network systems; (b) Visualized intelligent distribution

network management systems: by using of GPS (Global Positioning System) satellite

navigation and positioning, vehicle distribution networks can be scheduled and

managed in real-time; (c) Automated logistics and distribution centers: based on the

uses of advanced technologies; for examples, sound, light, color, or mechanical or

electrical characteristics for logistics operations to operate automatically under the

intelligent control; and (d) Supply chain public information platforms: for examples,

platform facilities coordination, collaboration, and integration of the parties across a

supply chain.

The conceptual model of Cloud Supply Chain can be classified .into three

levels, which are Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (laaS). The components are related to a generic supply

chain including raw material management; coordination among manufacturers,

distributors, wholesalers, retailers, and end-customers through uses of SCM software

solutfon for examples planning and forecasting; CRM (Customer Relationship

Management), e-procurement, etc. (Zhou et al., 2012). The followings are three levels

of the model.

1) Software as a Service (SaaS): Customers can use the applications on cloud

computing instead of using the application on a computer or in a local data

center, but they cannot control the operating system, hardware or network

infrastructure on Cloud Computing (National Institute of Standards and

Technology (NIST), 2012).

24

2) Platform as a Service (PaaS) is typically an application framework in

which the customers can control the applications run in the hosting

environment, or over the hosting environment, but again they cannot

control the operating system, hardware or network infrastructure on which

they are running (NIST, 2012).

3) Infrastructure as a Service (IaaS) provides a service that the customers can

use all fundamental computing resources on the Cloud Computing, for

examples, processing power, storage, networking components or

middleware. This is different from SaaS and PaaS because the customers

can also control the operating system, storage, deployed applications and

possibly networking (NIST, 2012).

There are four types of Cloud Computing currently available, which are

Private Cloud, Public Cloud, Community Cloud, and Hybrid Cloud.

1) Private Cloud is established for a specific groups or organizations in

which it limits access and operates solely for that particular group only.

The resources are not shared by other entities (Kok, 2010). The

organization or a third party may manage it. This type of Cloud service

provides minimum risk but may not support scalability and agility of

Public Cloud service. Private cloud users are considered as trusted by the

organization because they are either employees, or have contractual

agreements with the organization (Kok, 2010).

25

2) Public Cloud is the service that allows an access by any subscriber with

an Internet connection to the cloud space. It is available to the general

public or a large industry group. Public cloud users are not considered to

be trusted because they are not tied to the organization as employees and

the user has no contracture agreement with the provider (Kok, 2010).

3) Community Cloud is shared among two or more organizations, which

have similar cloud requirements and share their missions or interests. It is

the same as Private Cloud but data may be stored with the data of

competitors. Community users are also considered as trusted by the

organizations that are part of the community (Kok, 2010).

4) Hybrid Cloud is a combination of at least two clouds with the mixture of

private, public, or community that remains unique entities with

standardized or proprietary technology. It leverages the capabilities of

each cloud deployment model where each part of a hybrid cloud is

connected to the other by a gateway, controlling the applications and data

that flow from each part to the other (Kok, 2010). The users of hybrid

clouds can be considered as trusted and untrusted where the untrusted

users are prevented to access the resources of the private and community

parts of the hybrid cloud (Kok, 2010).

Although Cloud Computing is one of the latest IT developments that provides

various benefits and competitive advantages through flexibility, capital investment

saving, energy saving, increased efficiency, configurability, scalability, reliability,

and anywhere accessibility. However, there are still many challenges with the

opportunities being offered by the cloud as mentioned below:

26

TRI! AS~ION UNIVERSITY LJBRAl9

1) Security, privacy, and trust: The cloud vendors typically provide an access

control mechanism for their users (NIST, 2012). However, there are still

some risks that Cloud Computing cannot provide some safety

mechanisms, which can monitor and track their servers. For the private

cloud, the user access and the networks used are restricted and designated,

therefore, the data and processes are managed within the organization

without restrictions of network bandwidth, security exposures and legal

requirements that using Public Cloud services might entail (NIST, 2012).

However, there are problems for the Public Cloud that it cannot always

ensure about data confidentiality for information of all users, therefore, the

users cannot avoid risks of receiving dangerous or malicious information

along with service-hijacking, phishing, fraud, and exploitations. Sun et al.

(2011) mentioned that some organizations can consider about providing of

different security levels according to degrees of trust in Cloud Computing

and they will manage trust degree change with interaction time and context

together with monitor, adjust, and reflect the trust relationship dynamic

with time.

2) Availability: The Cloud Computing user frequently wants constant access

to their remote computing resources anytime and anywhere (Barnatt,

2010). However, the users may worry that when they need their data and

applications, they may not be able to have access to the cloud at the time

they need. In addition, although Cloud Computing is established basically

on existing IT infrastructure, the newer infrastructure of Cloud Computing

may meet some issues of hardware and software compatibility (Zhou et al.,

2012).

27

3) Reliability: Individuals and organizations may concern if the data stored

on a vendor's infrastructure will be safe enough. Although large Cloud

Computing vendors who invest huge amount of money in establishing of

firewalls and other securities, they are still cases that the Cloud Computing

sites can be hacked (Zhou et al., 2012).

4) Controllability: Currently there are many vendors of Cloud Computing

available where competitor suppliers may limit access to the Cloud

Computing, or supply older hardware and software to customers, or

provide limited capability for interoperability, therefore, it is difficult for

users who would like to move their data or services from an existing Cloud

Computing supplier to another vendor (Zhou et al., 2012). Sometimes,

even the users would like to frequently upload or download the data; they

may find some data transfer problems, for example, Internet flow

limitation (Zhou et al., 2012).

Figure 2.1 presents the conceptual model of Cloud Computing in relation to

supply chain (Zhou et al., 2012).

28

Figure 2.1: Cloud Supply Chain

Service
Provider

Vjnua!i7.ed Raourccs
-Compuh:
- Stonage
- Nctworlcing
• Cle.

Vutual Image
- Image mctadala
-Image

Product

Planning

2.5 Data Confidentiality

Cloud Software
Application

(SaaS)

Cloud Software
F.nvironmeot (PaaS)

Cloud Infrastructure (IaaS)

Planning and Forecasting

Capacity Management

Inventory Management

Warehouse Management

CRM

Supplier Managcmcn11Soorce

Service Management and Spare Parts

Etc.

lnfoml&lioo
Management

-Monaring
• Reporting
-SLA
- C1paeity Planning
- Billing

Service
Aggregator

Confidentiality is one of the fundamental requirements for secure

communication on an untrusted channel (Ullah et al., 2010). No matter how careful

the users manage their personal data, by subscribing to the cloud, the users will be

giving up some control to an external source because this distance between the users

and the physical location of their data creates a barrier and it may also create more

space for a third party to access the information (Huth and Cebula, 2011).

29

The followings are key security challenges of using Cloud Computing:

1) Data location: Generally, cloud users are not aware of the exact location of

the datacenter and also they do not have any control over the physical

access mechanisms to the particular data, but in some examples,

applications and data may be stored in some countries where they have

judiciary concerns and service providers will be subjected to the security

requirements and legal obligations of that particular country (Sangroya et

al., 2010).

2) Investigation: Data for multiple customers may be co-located and may also

be spread across multiple datacenters; therefore, it is difficult for cloud

service to be investigated and may be impossible. Users may not have

much knowledge regarding the network topology and service provider

may also impose restrictions on the network security of the users

(Sangroya et al., 2010).

3) Data Segregation: Since the data in the cloud is stored in a shared

environment together with the data from other users, therefore, encryption

may not be assumed as the single solution for data segregation problems

(Sangroya et al., 20 l 0). In addition, some customers may not want to

encrypt their data because there may be possible that the encryption may

accidentally destroy their data (Sangroya et al., 2010).

4) Long-term viability: There is also a challenge for service providers to

ensure the data safety in changing business situations; for examples,

mergers and acquisitions; where the users must ensure that their data are

availability without any issue during these situations (Sangroya et al.,

2010).

30

5) Compromised servers: Since users do not have a choice of using physical

acquisition toolkit in a cloud computing environment, in a situation where

a server is compromised, they have to shut their servers down until they

get a previous backup of the data (Sangroya et al., 2010).

6) Recovery: Cloud service providers must ensure that the users' data is

securely stored. In general, the data is replicated across multiple sites but

there may be some risks caused by unwanted events where the service

provider must ensure about quick restoration of the data (Sangroya et al.,

2010).

In table 2.2, Sangroya et al. (2010) presented results of a survey of security

mechanisms available online at the official websites of major cloud service providers

which are Amazon EC2, Amazon S3, GoGrid, Google App Engine, Microsoft Azure

Services, Amazon Elastic Map Reduce, Salesforce, and Google Docs.

Table 2.2: Summary of Security Mechanisms by Major Cloud Service Providers

Security Issue Results

Password Recovery
90% were using standard methods like other common

services, while 10% were using sophisticated techniques.

Encryption
40% were using standard SSL encryption, while 20% were
using encryption mechanism but at an extra cost, 40% were

Mechanism
using advance methods like HTTPS access also.

70% had their datacenters located in more than one
Data Location country, while 10% were located at a single location, and

another 20% were not disclose about this information.
Availability of 40% reported downtime along with results in data loss,

History while 60% of the cases were available in good condition.

Proprietary /Open Only 10% of the service providers had open mechanism.

70% were providing extra monitoring services, while 10%
Monitoring Services were using automatic technique, and the remaining 20%

were not open about this issue.

31

Currently, there are many methods employed to improve data security and

confidentiality. Mainly, there are four kinds of safeguards; which are access controls,

flow controls, inference controls, and cryptographic controls.

1) Access controls: These controls prevent accidental or malicious disclosure,

modification, or destruction of records, data sets, and programs segments

in which many access control systems incorporate a concept of ownership

where a user may dispense and revoke privileges for objects he/she owns,

for example, the patient does not own his record in a medical information

system (Denning et al., 1979). The effectiveness of access controls are

based on three assumption which are 1) proper user identification in which

no one should be able to fool the system into giving him/her the

capabilities of another, 2) unanticipated observers do not gain access, and

3) privilege-information is heavily protected in which all the information

that specifies the access, each program has to objects in the system and the

privilege-information is accessible only to authorized programs of the

supervisor (Denning and Denning, 1979).

2) Flow controls: These controls regulate the dissemination or copying of

information by prohibiting derived data from having lower confidentiality

than the original in which they control the flow that occurs from object X

to object Y, for example, a simple flow of copying a file from file X into

file Y (Denning and Denning, 1979). Most flow controls employ some

concept of security class; the transfer of information from a sender to a

receiver is allowed only if the receiver's security class is at least as

privileged as the sender's (Denning, 1976). Flow controls can prevent a

service program from leaking a customer's confidential data, however,

32

such controls are often complex and hard to be efficiently used (Denning

and Denning, 1979).

3) Inference controls: These controls prevent leakage through programs that

produce summaries of groups of confidential records because the

summaries may contain vestiges of the original information in which

snooper can reconstruct the information by processing these enough

summaries, which is called as deduction of confidential information by

inference in order to make the cost of obtaining confidential information

unacceptably high (Denning and Denning, 1979).

4) Cryptographic controls: Encryption is a common safeguard for data stored

in, or in transit through, media whose security cannot be guaranteed by

these other controls (Denning and Denning, 1979). In this case, with the

help of a secret key, the sensitive plaintext is scrambled into unintelligible

cipher text before being put in the insecure medium in which generally the

practical controls are based on shorter keys than the original messages

because the intruder may know the enciphering and deciphering

algoritluns and the security of these controls depend on the secrecy of the

keys and the computational difficulty of inverting the enciphering

algorithms (Denning and Denning, 1979). The Data Encryption Standard

(DES) is the first encryption stan.dard based on the IBM proposed

algorithm called Lucifer. It is an efficient and economical algorithm,

which became a standard in 1974. 3DES (Triple Data Encryption

Standard) is an enhancement of DES in which the encryption method is

similar to the one in original DES but it is applied three times to increase

the encryption level but the encryption time is slower. AES (Advanced

33

Encryption Standard) is a newer encryption standard recommended by

NIST to replace DES. Another algorithm called "blowfish" is one of the

most common public domain encryption technique introduced by Bruce

Schneier in 1993, which is a variable length key (64-bit block cipher).

In order to plan an information security, the security plan should have three

essential parts as 1) protection of the information itself at the core, 2) hardening of the

resources (systems and networks), and 3) authentication of those accessing the

information as presented in figure 2.2 (Calabrese, 2004). Figure 2.4 presents the

assessed level of risk decreases commensurate with the value of the information in

which the relationship is said to be proportional that when the value increases, the risk

will be increased (Calabrese, 2004).

Figure 2.2: 1bree core parts of information security

Authentication and Validation

Limited and Monitored
Access

Information
Coating

1

2

System, Network,
Process, Hardening

Controlled Access
(filtering)

34

Figure 2.3 presents degrees of security in which an organization must address

to meet the requirements of the organization that ranged from ultra-restrictive to

extremely pennissive and the degree of security that the organization wants will

directly influence the degree to which any layei: in the model is implemented

(Calabrese, 2004).

Figure 2.3: Degrees of security

Restrictive

Disconnect
from Net

Closed

Controlled

Moderate

Balanced

35

Network
Filtered

Pennissive

Open

Figure 2.4: Risk-Openness-Value Paradigm

Example:
- Personal website
- Personal access with
high speed internet
access

Posture:
- Secwity focus; Peace
of mind+ Nuisance
Avoidance

Example:
- Home personal
computing with low
speed dial-up ISP

Posture:
- No meaningful
security focus

High
Need for Openness

Example:
- Information websites
- Catalogues

Posture:
- Emphasis on security
while maintaining ease
of use

Example:
- Small business
private back office
computing

Posture:
- Emphasis on data
integrity

Low

Example:
- Internet enabled business

Posture:
- Emphasis on secure
exchanges and increased
customer confidence

Example:
- Large business back
office computing

Posture:
- Emphasis on secure
operations

Need for Openness

36

m le:
. NIM

- ffiPPA compliant
medical record
management
- On-line financial
transactions

Posture .
... n1l11!:Q . .

Example:

High
Risk

- High security government
sites
- Critical
Nationalllnfrastructure
information sites

Posture:
- Max security + privacy

3.1 Overview

CHAPTER3

PROPOSED TECHNIQUE

The prime concern of this study is to implement a simple approach that can

improve compression performance of shared text data in structured tabular form in

which cloud supply chain is selected for illustrating the proposed technique. An

efficient text preprocessing algorithm for improving data compression that can encode

specific multiple data into a single encoding token is introduced.

The proposed algorithm reduces number of encoding tokens used at the initial

preprocessing stage itself for the static data by utilizing a single token for multiple

receiver data as many as possible. A single encoding token can support multiple

receivers with different meanings and each receiver only sees the decoded data that

are associated with that particular assigned receiver. The data visible in the cloud

supply chain includes both static data that is preprocessed by the proposed algorithm

and dynamic data that is filtered based on assigned receivers particularly.

By using the proposed preprocessing algorithm, the encoding tokens can be

more efficiently utilized and decoding overheads are separately provided to particular

assigned receivers. Therefore, the proposed algorithm can respectively increase

compression performance of the shared text data in tabular form. There are three sub

techniques applied in this algorithm, which are 1) the use of single encoding token to

many decoding overheads (one-to-many dictionary-based preprocessing), 2) data

isolation, and 3) integrated solution. Figure 3.1 presents an overview paradigm of the

proposed algorithm as a whole, while the encoding and decoding modules are

elaborated in details presented in figure 3.2 and 3.3.

37

Figure 3.1: The proposed technique paradigm

Dynamic
data

Analyze

Sender original file

Static
data

Assign
encoding

token

Create
decoding
overhead

Compressing

Compressing

CLOUD
SUPPLY
CHAIN

Compressed
file

Compressed
overhead

3.2 Single Encoding Token to Multiple Decoding Overheads

Decoding
overhead

Filter
Receiver

I

Decoding
overhead

Filter
Receiver

2

Decoding
overhead

Receiver
Filter 3

In order to make the dictionary-based data compression technique more

effective, the proposed study introduces another method to reduce the number of

encoding tokens used for a particular set of original data. In this circumstance, static

data in the original file is analyzed and unique in order to find distinctiveness of the

static data contained in the file for the purpose of token utilization. Subsequently, a

single encoding token is used based on a particular group of original data and multi-

receivers in which it can be decoded into number of meanings differently based on

sets of isolated decoding overheads that are transmitted to each assigned receiver

differently and separately.

38

In general, one encoding token is used for a single meaning of an original data

in which it is just only a one- to-one relationship. On the other hands, by using the

proposed technique, the relationship of data coding is a one-to-many in which

multiple meanings of decoding overheads can be referred just to a single encoding

token.

3.3 Data Isolation

As cloud security is one of the important issues that enterprises have to be

aware of and the main issue of dictionary-based compression technique is about an

effective list of words used between sender and receiver known as overhead that may

impact to compression performance, this research proposes a simple technique by

utilizing the data isolation method to gain opportunities from isolated decoding

overhead that directly improves the compression performance of the encoded file

stored in the cloud since the decoding overhead is not taken into consideration

because the overhead is only transmitted to each assigned receiver separately.

Another benefit of using isolated decoding overhead is to improve data

confidentiality shared in the cloud, since the encoding tokens are assigned as one-to

many relationship with decoding overheads, each receiver only sees the decoded data

that are only associated with that particular assigned receiver. Other receivers,

hackers, or even eavesdroppers will not know that particular decoding overheads and

are not able to interpret that encoded file into meaningful data.

39

3.4 Integrated Solution

In order to make the proposed preprocessing technique practical for data

sharing in the cloud supply chain, the proposed technique is used together with

selected existing archiving software as an integrated solution to improve data

compression performance.

The proposed technique can bring some compression and data confidentiality

at the initial preprocessing stage itself as aforementioned, and the compression

performance is then improved again by using the selected archiving software to

ensure that this integrated solution can effectively and efficiently provide good results

in both compression performance and data confidentiality for cloud supply chain

users.

Figure 3.2: Encoding module

Start

Calculate
total nwnber

of rows

Calculate total
number of
receivers

Group
data by

receivers

Use "advance filter" to get
the list of unique accounts

(distinctive rows)

Find maximwn
distinctive value per

receiver

Separate data into
groups based on

receivers

Create decoding overheads
by assigning codes to each
row sequentially based on
number of characters for
each receiver (same row
based encoding token is
used for each receiver as

Map the assigned
tokens to each row

of the dynamic
data set

Classify types
of data (static
or dynamic)

Compress the
preprocessed file

by using the
selected

archiving
software

many as possible)

End
Send decoding overheads
to each receiver separately

40

Compress the
preprocessed

decoding
overheads by using
selected archiving

software

Transmit the
compressed file to

the cloud

Figure 3.3: Decoding module

Start

Decompress filtered
dynamic data by using
the selected archiving

software

Decompress decoding
overheads by using the

selected archiving
software

Lookup decompressed
static data from the

decoding overheads to
the decompressed
dynamic data set

End

41

CHAPTER4

DATA PREPARATION AND TESTING METHOD

4.1 Data Preparation

In general, there are two methods of choosing the test files for testing the

compression performance. The first method is to use a well-known standard data. For

examples, Calgary corpus, Canterbury corpus, or Silesia corpus. Another method is to

prepare a new data set for testing. Actually, it is more convenient to use the standard

sets of data because they are easier to compare new results with previous techniques.

However, in order to test the compression performance of the proposed preprocessing

algorithm, new data sets were prepared because the algorithm is designed specifically

for text data in tabular form.

In this research, real data sets in spreadsheet format used in supply chain for

communicating between manufacturers and raw material suppliers were selected. In

order to test the compression performance in relation to number of receivers, static

data ratio (percentage of static data available in the original file), and size of

duplicated static data (the static data that are duplicated in the original file); the data

were modified and separated into 10 sets. The first 9 sets of the data were prepared as

presented in table 4.1 in which they were used for measuring compression

performance of the proposed technique in relation to static-data ratio and duplicated

static-data ratio. The last set of the data contained 100 data rows in which it was used

for testing minimum and maximum use of encoding tokens in relation to variation of

the number of receivers.

42

THE A~WMPTION UNIVERSITY LIBRA_.-

Table 4.1: Data sets used for testing compression performance in relation to the ratios

of static data and duplicated static data

Data set Ratio of static data
Ratio of duplicated static

data

1 25% 25%

2 25% 50%

3 25% 75%

4 50% 25%

5 50% 50%

6 50% 75%

7 75% 25%

8 75% 50%

9 75% 75%

4.2 Simulation Method

In this research, Microsoft Excel 2003 macros and functions were used for

simulation purposes to simulate this one-to-many dictionary-based preprocessing

algorithm in which encoding was preprocessed at the sender by using the encoding

module at initial stage prior to the next data compression integrated with the selected

archiving software. The simulation was also used for decoding module in which the

decoding overheads prepared for each assigned receiver are used in retrieving the

original messages from the shared file.

Table 4.2 presents the functions of Microsoft Excel 2003 that were used in this

research.

43

Table 4.2: Functions of Microsoft Excel 2003 that were used in this research

Function Description
It is an action or a set of actions you can use to automate
tasks. Macros are recorded in the Visual Basic for

Macro Applications programming language. In this research,
this function was used to automatically calculate
duplication of text data for assigning encoding tokens
and decoding overheads.
A PivotTable report is an interactive table that quickly
combines and compares large amounts of data. In this

Pivot Table
research, the pivot table is applied for the purpose of
counting total number of rows, number of receivers,
grouping the data by receivers, and finding maximum
distinctive value per receiver.

Advanced filter
In this research, the advanced filter is applied in order to
find unique records of the distinctive rows.
It is a function to returns the number of characters in a

LEN
text string. In this research, this function is used in order
to calculate number of characters of static data per row
for assigning encoding tokens efficiently.
Numbers are sorted from the smallest negative number to
the l.argest positive number. In this research, this function

Sort
is used in order to sort number of characters of static data
per row for assigning encoding tokens efficiently. The
higher number of characters, the shorter of the encoding
token will be assigned.
It is applied as a searching tool for a value in the
specified column of a table, and then returns a value in
the same row from a column that is specified in the table.

VLOOKUP In this research, it is used for mapping the assigned
tokens to each row of the dynamic data set as well as
mapping decompressed static data from the decoding
overheads back to the decompressed dynamic data set.

4.3 Selected Archiving Software

In this research, the tested software products were selected based on their

algorithms to support text data compression, supported operating system (Windows),

and supported archive reading and writing (ZIP), which are 7-Zip, PeaZip, WinAce,

WinRAR, and WinZip. Table 4.3 presents selected software products and data

compression algorithms that are implemented by these software products (Konecki et

al, 2011). This research focuses on how well these software products can support the

44

purposed one-to-many dictionary-based preprocessing technique as the integration

tool by seeing the differences in compression efficiency among the integrated

solutions. Integrations of each software product with the proposed algorithm were

tested. The results of compression ratio of all integrations are presented and compared

in the next chapter with elaborations.

Table 4.3: Selected archiving software

Software Algorithms

7-Zip Program used filters, LZ77, LZMA, PPM, BWT

PeaZip LZ77, Huffman, LZMA, PPM
~-

WinAce Program used filters, LZ77, Huffman

WinRAR Program used filters, LZ77, PPM, Huffman

WinZip Shannon-Fano, PPM, Huffman, LZH, LZW

4.4 Selected Existing Preprocessing Technique

Word Replacement Transformation (WRT) was selected as an existing

preprocessing technique for the purpose of compression performance comparison.

According to a previous research, this transformation technique was the recent

algorithm in which it was compared with another two well-known algorithms, LIPT

and StarNT. The results presented that WRT provided better compression

performance over LIPT and StarNT. WRT also operated faster than StarNT because

WRT works based on the hashing technique, which can speed up the encoding and

decoding process while StarNT uses a ternary search tree for maintaining the

dictionary. Moreover, WRT carried out well with larger text file compared to StarNT

and LIPT by providing a better compression ratio on larger corpora (Rexline and

Robert, 2011).

45

CHAPTERS

EXPERIMENT AL RESULTS AND ANALYSES

5.1 Results and Comparisons of the Compression Performance in Relation to

Ratios of Static Data and Duplicated Static Data

In this research, the testing results are classified into 2 sections as 1)

compression performance in relation to ratios of static data and duplicated static data

and 2) minimum and maximum encoding tokens required in relation to number of

receivers.

As the data were prepared by using real data in spreadsheet format used for

communicating between manufacturers and raw material suppliers instead of selecting

a well-known standard data set and the researcher would like to study the

relationships of static data ratio and duplicated static data ratio toward data

compression performance of the proposed preprocessing algorithm, therefore, the

analyses of compression performance were separated based on the following 9 data

sets and tested with selected archiving software, selected archiving software with

WRT technique, and selected archiving software with the proposed preprocessing

technique as presented in table 5.1

The last set of the data contained 100 data rows in which it was used for

testing minimum and maximum use of encoding tokens in relation to variation of the

number of receivers. The result of this analysis is illustrated in figure 5.17.

46

Table 5.1: Details of data sets and compression algorithms used for the analyses

Data set
25% of static data and
25% of du licated static data
50% of static data and
25% of du licated static data
75% of static data and
25% of du licated static data
25% of static data and
50% of du licated static data
50% of static data and
50% of du Heated static data
75% of static data and
50% of du Heated static data
25% of static data and
75% of du Iicated static data
50% of static data and
75% of du Heated static data
75% of static data and
75% of du Heated static data

archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WR T,
archiving software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue
archiving software, archiving software with WRT,
archivin software with ro osed techni ue

Figure 5.1, table 5.2, and table 5.3 represent compression perfonnances of the

first data set that contains 25% of static data and 25% of duplicated static data, the

results show that only some of integrations of selected archiving software with the

proposed preprocessing technique generated better compression results. In this

condition, only the combinations of the proposed technique with 7-Zip and WinRAR

could generate better compression ratio and space saving when they were compared

with WRT algoritlun. Integration of WRT with PeaZip, WinAce, and WinZip could

generate better compression performance. However, integrations of the proposed

preprocessing technique with all of the selected archiving software could provide

better compression performance when they were compared with using of only

selected archiving software individually, ranged from I% to 14.9% of improvement in

compression outputs.

47

Figure 5.1: Comparison of compressed file sizes

(25% of static data and 25% of duplicated static data)

2,000,000

1,500,000

File si:zl: (bytes) 1,000,000

500,000

r
7-Zip PeaZip WinAce WinRar Winq>

il"r"J! Archiving software only 150,876 395,361 275,443 265,070 436,881

- Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 148,003 391,307 250,066 225,623 424,525

Proposed teclmique

- Original 1,915,904 1,915,904 1,915,904 1,91 5,904 1,915,904

Table 5.2: Comparison of compression ratios

(25% of static data and 25% of duplicated static data)

Archiving software Archiving Archiving software +
only software + WRT Proposed technique

7-Zip 0.079 0.113 0.077
PeaZip 0.206 0.169

- 0.204
WinAce 0.144 0.125 0.131
WinRAR 0.138 0.127 0.118
WinZip 0.228 0.168 0.222

Table 5.3: Comparison of space saving percentage

(25% of static data and 25% of duplicated static data)

Archiving software Archiving software Archiving software +
only + WRT Proposed technique

7-Zio 92.13% 88.71% 92.28%
PeaZip 79.36% 83.14% 79.58%
WinAce 85.62% 87.53% 86.95%

WinRAR 86.16% 87.32% 88.22%
WinZip 77.20% 83.18% 77.84%

48

Figure 5.2, table 5.4, and table 5.5 represent compression performances of the

second data set that contains 50% of static data and 25% of duplicated static data, the

results show similar results as the first data set in which only some of integrations of

selected archiving software with the proposed preprocessing technique generated

better compression results. In this case, the combinations of the proposed technique

with 7-Zip, WinAce, and WinRAR could generate better compression ratio and space

saving when they were compared with WRT algorithm. Integration of WRT with

PeaZip and WinZip could generate better compression performance. However,

integrations of the proposed preprocessing technique with all of the selected archiving

software could still provide better compression performance when they were

compared with using of only selected archiving software individually, ranged from

6.9% to 30.49% of improvement in compression outputs.

Figure 5.2: Comparison of compressed file sizes

(50% of static data and 25% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

r. .
7-Zip PeaZip WinAce WinRar Winl4>

l*·~ Archiving software only 150,876 395,361 275,443 265,070 436,881

-Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 140,526 350,639 191,658 191,843 386,611
Proposed technique

-Original 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

49

Table 5.4: Comparison of compression ratios

(50% of static data and 25% of duplicated static data)

Archiving software Archiving Archiving software +
only software + WRT Proposed technique

7-Zip 0.079 0.113 0.073
PeaZio 0.206 0.169 0.183

WinAce 0.144 0.125 0.100
WinRAR 0.138 0.127 0.100
WinZip 0.228 0.168 0.202

Table 5.5: Comparison of space saving percentage

(50% of static data and 25% of duplicated static data)

Archiving software Archiving software Archiving software +
only +WRT Proposed technique

7-Zip 92.13% 88.71% 92.67%
PeaZip 79.36% 83.14% 81.70%
WinAce 85.62% 87.53% 90.00%
WinRAR 86.16% 87.32% 89.99%
WinZip 77.20% 83.18% 79.82%

Figure 5.3, table 5.6, and table 5.7 represent compression performances of the

third data set that contains 75% of static data and 25% of duplicated static data, the

results show similar results as the first and the second data set in which only some of

integrations of selected archiving software with the proposed preprocessing technique

generated better compression results which were 7-Zip, WinAce, and WinRAR that

could generate better compression ratio and space saving when they were compared

with WRT algorithm. Integration of WRT with PeaZip and WinZip could still

generate better compression performance. However, integrations of the proposed

preprocessing technique with all of the selected archiving software could still provide

better compression performance when they were compared with using of only

selected archiving software individually, ranged from 17.2% to 46.6% of

improvement in compression outputs. The compression outputs were improved from

50

the first, the second, and the third data set respectively in relation to the increases of

static data ratio.

Figure S.3: Comparison of compressed file sizes

(75% of static data and 25% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

7-Z"ip PeaZip WinAce WinRar WinZip

'.'5 Archiving software only 150,876 395,361 275,443 265,070 436,881

- Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 115,994 325,765 147,222 145,816 361,579
Proposed teclmique

-Original 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

Table S.6: Comparison of compression ratios

(75% of static data and 25% of duplicated static data)

Archiving software Archiving Archiving software +
only software+ WRT Proposed technique

7-Zip 0.079 0.113 0.061
PeaZip 0.206 0.169 0.170

WinAce 0.144 0.125 0.077
WinRAR 0.138 0.127 0.076
WinZip 0.228 0.168 0.189

51

Table 5.7: Comparison of space saving percentage

(75% of static data and 25% of duplicated static data)

Archiving software Archiving software Archiving software +
only +WRT Proposed technique

7-Zio 92.13% 88.71% 93.95%
PeaZip 79.36% 83.14% 83.00%
WinAce 85.62% 87.53% 92.32%

WinRAR 86.16% 87.32% 92.39%
WinZio 77.20% 83.18% 81.13%

Figure 5.4, table 5.8, and table 5.9 represent compression performances of the

fourth data set that contains 25% of static data and 50% of duplicated static data, the

results show similar results as the first three data sets aforementioned in which only

some of integrations of selected archiving software with the proposed preprocessing

technique generated better compression results which were 7-Zip and WinRAR that

could generate better compression ratio and space saving when they were compared

with WRT algorithm. Integration of WRT with PeaZip, WinAce, and WinZip could

still generate better compression performance.

Figure 5.4: Comparison of compressed file sizes

(25% of static data and 50% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

7-Zip PeaZ"ip WinAce WinRar w~

W-.3"" Archivng software only 150,876 395,361 275,443 265,070 436,881

ml Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 142,326 364,591 248,474 222,459 397,019
Proposed technique

- Original 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

52

Table 5.8: Comparison of compression ratios

(25% of static data and 50% of duplicated static data)

Archiving software Archiving Archiving software +
only software + WRT Proposed techniaue

7-Zip 0.079 0.113 0.074
PeaZip 0.206 0.169 0.190

WinAce 0.144 0.125 0.130
WinRAR 0.138 0.127 0.116
WinZip 0.228 0.168 0.207

Table 5.9: Comparison of space saving percentage

(25% of static data and 50% of duplicated static data)

Archiving software Archiving software Archiving software +
only +WRT Proposed technique

7-Zip -
92.13% 88.71% 92.57%

PeaZip 79.36% 83.14% 80.97%
WinAce 85.62% 87.53% 87.03%
WinRAR 86.16% 87.32% 88.39%
WinZip 77.20% 83.18% 79.28%

Figure 5.5, table 5.10, and table 5.11 represent compression performances of

the fifth data set that contains 50% of static data and 50% of duplicated static data, the

results show better results as compared to the first four data sets aforementioned in

which four out of five integrations of selected archiving software with the proposed

preprocessing technique generated better compression results which were 7-Zip,

PeaZip, WinAce, and WinRAR that could generate better compression ratio and space

saving when they were compared with WRT algorithm. Except only the integration of

WRT with WinZip that could still generate better compression performance.

53

Figure 5.5: Comparison of compressed file sizes

(50% of static data and 50% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

7-Zip PeaZip WnAce WinRar WinZip

l Archiving software only 150,876 395,361 275,443 265,070 436,881

m'll Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 127,117 303,757 182,166 180,409 330,010

Proposed technique

- Origiial 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

Table 5.10: Comparison of compression ratios

(50% of static data and 50% of duplicated static data)

Archiving software Archiving Archiving software +
only software+ WRT Proposed technique

7-Zip 0.079 0.113 0.066
PeaZio 0.206 0.169 0.159
WinAce 0.144 0.125 0.095
WinRAR 0.138 0.127 0.094
WinZip 0.228 0.168 0.172

Table 5.11: Comparison of space saving percentage

(50% of static data and 50% of duplicated static data)

Archiving software Archiving software Archiving software +
only + WRT Proposed technique

7-Zip 92.13% 88.71% 93.37%
PeaZip 79.36% 83.14% 84.15%
WinAce 85.62% 87.53% 90.49%

WinRAR 86.16% 87.32% 90.58%
WinZip 77.20% 83.18% 82.78%

54

Figure 5.6, table 5.12, and table 5.13 represent compression performances of

the sixth data set that contains 75% of static data and 50% of duplicated static data,

the results show better results as compared to the first five data sets mentioned

previously in which all of the integrations of selected archiving software with the

proposed preprocessing technique generated better compression results which were 7-

Zip, PeaZip, WinAce, WinRAR, and WinZip could generate better compression ratio

and space saving when they were compared with WRT algorithm. It could be

concluded that increases of the isolated static data and duplicated static data are

directly proportional to compression performance of the proposed technique.

Figure 5.6: Comparison of compressed file sizes

(75% of static data and 50% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

7-Z4> PeaZip WinAce WinRar WinZip

~" , Archivmg software only 150,876 395,361 275,443 265,070 436,881

- Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- ArchivEg software + 97,913 253,547 124,438 127,730 278,732
Proposed technique

-Origilal 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

55

Table 5.12: Comparison of compression ratios

(75% of static data and 50% of duplicated static data)

Archiving software Archiving Archiving software +
only software+ WRT Proposed technique

7-Zip 0.079 0.113 0.051
PeaZip 0.206 0.169 0.132

WinAce 0.144 0.125 0.065
WinRAR 0.138 0.127 0.067
WinZip 0.228 0.168 0.145

Table S.13: Comparison of space saving percentage

(75% of static data and 50% of duplicated static data)

Archiving software Archiving software Archiving software +
only + WRT Proposed technique

7-Zip 92.13% 88.71% 94.89%
PeaZip 79.36% 83.14% 86.77%
WinAce 85.62% 87.53% 93.50%

WinRAR 86.16% 87.32% 93.33%
WinZip 77.20% 83.18% 85.45%

Figure 5.7, table 5.14, and table 5.15 represent compression perfonnances of

the seventh data set that contains 25% of static data and 75% of duplicated static data,

the compression perf onnance was lower as compared to the fifth data set because

ratio of static data was reduced from 75% to 25%, therefore, only 7-Zip, and

WinRAR could generate better compression results when they were compared with

WRT algorithm. It was founded that decrease of the isolated static data ratio is

directly proportional to the lower of compression performance of the proposed

technique.

56

TIU ASSUMPTION UNIVERSRY LllllLdf

Figure 5.7: Comparison of compressed file sizes

(25% of static data and 75% of duplicated static data)

2,000,000

1,500,000

Foo si2e (bytes) l ,OOO;OOO

500,000

7-Zip PeaZip WinAce WinRar w~

wm ,.""" Archiving software only 150,876 395,361 275,443 265,070 436,881

- Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 136,432 337,287 246,626 220,175 368,952

Proposed technique

-Original 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

Table 5.14: Comparison of compression ratios

(25% of static.data and 75% of duplicated static data)

Archiving software Archiving Archiving software +
only software + WRT Proposed technique

7-Zip 0.079 0.11 3 0.071
PeaZip 0.206 0.169 0.176
WinAce 0.144 0.125 0.129
WinRAR 0.138 0.127 0.115
WinZip 0.228 0.168 0.193

Table 5.15: Comparison of space saving percentage

(25% of static data and 75% of duplicated static data)

Archiving software Archiving software Archiving software +
only +WRT Proposed technique

7-Zip 92.13% 88.71% 92.88%
PeaZip 79.36% 83.14% 82.40%
WinAce 85.62% 87.53% 87.13%

WinRAR 86.16% 87.32% 88.51%
WinZip 77.20% 83.18% 80.74%

57

Figure 5 .8, table 5 .16, and table 5 .17 represent compression performances of

the eighth data set that contains 50% of static data and 75% of duplicated static data,

the results were improved in which all of the integrations of selected archiving

software with the proposed preprocessing technique generated better compression

results which were 7-Zip, PeaZip, WinAce, WinRAR, and WinZip could generate

better compression ratio and space saving when they were compared with WRT

algorithm. It was confirmed that that increases of the isolated static data and

duplicated static data are directly proportional to compression performance of the

proposed technique when the results were compared with all of six data sets

previously mentioned.

Figure 5.8: Comparison of compressed file sizes

(50% of static data and 75% of duplicated static data)

2,000,000

l ,500,000

File sizI! (bytes) 1,000,000

500,000

7-~ PeaZ" WinAce Wruw WinZip

~·~ Archiving software only 150,876 395,361 275,443 265,070 436,881

- Archivi1g software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 114,449 258,205 173,494 168,890 277,283
Proposed technique

-Original 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

58

Table S.16: Comparison of compression ratios

(50% of static data and 75% of duplicated static data)

Archiving software Archiving Archiving software +
only software+ WRT Proposed technique

7-Zip 0.079 0.113 0.060
PeaZip 0.206 0.169 0.135
WinAce 0.144 0.125 0.091
WinRAR 0.138 0.127 0.088
WinZip 0.228 0.168 0.145

Table S.17: Comparison of space saving percentage

(50% of static data and 75% of duplicated static data)

Archiving software Archiving software Archiving software +
only +WRT Proposed technique

7-Zip 92.13% 88.71% 94.03%
PeaZip 79.36% 83.14% 86.52%

WinAce 85.62% 87.53% 90.94%
WinRAR 86.16% 87.32% 91.18%
WinZip 77.20% 83.18% 85.53%

Figure 5.9, table 5.18, and table 5.19 represent compression performances of

the ninth data set that contains 75% of static data and 75% of duplicated static data. In

this condition, the proposed preprocessing technique could generate the best result in

which the results of all integrations of selected archiving software with the proposed

preprocessing technique could bring the best compression results in all perspectives.

All over again, it was confirmed that that increases of the isolated static data and

duplicated static data are directly proportional to compression performance of the

proposed technique when the results were compared with all of seven data sets

aforementioned. By comparing percentages of improvement between the use of

selected archiving software individually and the use of the proposed preprocessing

technique as an integration tool, the results were improved by ranging from 44.0% to

60.5% when the proposed technique was employed.

59

Figure 5.9: Comparison of compressed file sizes

(75% of static data and 75% of duplicated static data)

2,000,000

1,500,000

File size (bytes) 1,000,000

500,000

7-~ PeaZ., WinAce WilR.ar WinZip

- Archiving so~ only 150,876 395,361 275,443 265,070 436,881

- Archiving software + WRT 216,350 323,013 238,952 242,919 322,285

- Archiving software + 84,449 184,992 108,934 111,321 196,691
Proposed teclmique

- Origilal 1,915,904 1,915,904 1,915,904 1,915,904 1,915,904

Table 5.18: Comparison of compression ratios

(75% of static data and 75% of duplicated static data)

Archiving software Archiving Archiving software +
only software + WR T Pronosedtechnique

7-Zip 0.079 0.1 13 0.044
PeaZip 0.206 0.169 0.097
WinAce 0.144 0.125 0.057
WinRAR 0.138 0.127 0.058
WinZip 0.228 0.168 0.103

Table 5.19: Comparison of space saving percentage

(75% of static data and 75% of duplicated static data)

Archiving software Archiving software Archiving software +
only + WRT Proposed technique

7-Zip 92.13% 88.71% 95.59%
PeaZip 79.36% 83.14% 90.34%
WinAce 85.62% 87.53% 94.31%

WinRAR 86.16% 87.32% 94.19%
WinZip 77.20% 83.18% 89.73%

60

In order to propose the most suitable archiving software that works best with

the proposed preprocessing algorithm, figure 5.10 to figure 5.14 represent the

analytical results of particular archiving software that was used individually, used

with WRT, and used with the proposed technique.

Figure 5.10: Comparison of compressed file size based on the use of

7-Zip as the selected archiving software

250000 .
'ii'
~

200,000

e 150,000 ·-----.-----.-- ---.--------- --- --- ----- -- -- -- ----..
~ .___ . --------. .. 100,000 !:

50,000

• static I % duplicated s~tic 25125 25150 50/25 25ns 50/50 75/25 sons 75/50 15n5

- - - - 7·zip 150,876 150,876 150,876 150,876 150,876 150,876 150,876 150,876 150,876

--7-zip + WRT 216,350 216,350 216,350 216,350 216,350 216,350 216,350 216,350 216,350

._ 7-zip + Proposed 148.003 142,326 140,526 136,432 127,117 115,994 114,449 97,913 84,449

As presented in figure 5.10, the integration of 7-Zip with the proposed

preprocessing technique generated better results for all data sets when the outputs

were compared with the use of 7-Zip individually as well as the use of WRT as the

preprocessing tool, and significantly outperfonned when the ratio of static data was at

75%. However, there were only slightly improvements when the static data ratio was

at25%.

By using 7-Zip, it was found that the integration of WRT would generate the

lower compression performance when it was compared with the use of 7-Zip

individually.

61

Figure S.11: Comparison of compressed file size based on the use of

PeaZip as the selected archiving software

450000 .
400,000 ~------ ---- -- ------------------ ---- ----- -- -

'ii' 350,000 • • • >. 300,000 ~ e
250,000 "-J

"' 200,000 ..
~

""' 150,000

100,000

50,000

% static I% duplicated ~c 25'25 25150 50/25 25n5 15125 50/50 sons 75/50 15ns

- - - - PeaZip 395,361 395,361 395,361 395,361 395,361 395,361 395,361 395,361 395,361

--PeaZip + WRT 323,013 323,013 323,013 323,013 323,013 323,013 323,013 323,013 323,013

- PeaZip +Proposed 391,307 364,591 350,639 337,287 325,765 303,757 258,205 253,547 184,992

As presented in figure 5. 11, the integration of PeaZip with the proposed

preprocessing technique generated better results for only four out of nine of the data

sets when the outputs were compared with the use of PeaZip individually as well as

the use of WRT as the preprocessing tool in which the results of the proposed

technique would be better than WR T when the ratios of both static data and

duplicated static data were greater than 50%.

Figure 5.12: Comparison of compressed file size based on the use of

WinAce as the selected archiving software

300000
' ------------ --- ---------------------------------·

250,000 • • • 'ii' ~ ;. 200,000 e •
~ ~ 150,000

~ 100,000

50,000

% static I % duplicated static 25n.s 25/50 2sns 50/25 50/50 50n5 15'25 15150 15n5

- - - -winAce 275,443 275,443 275,443 275,443 275,443 275,443 275,443 275,443 275,443

--WinAce + WRT 238,952 238,952 238,952 238,952 238,952 238,952 238,952 238,952 238,952

- WinAce + Proposed 250,066 248,474 246,626 191,658 182,166 173,494 147,222 124,438 108,934

62

As presented in figure 5.12, the integration of WinAce with the proposed

preprocessing technique generated better results when it was compared with PeaZip

but the performance was still lower than the integration with 7-Zip. There were only

six out of nine of the data sets in which compression performance of the proposed

technique were better than WRT. According to the results, data with 25% of static

data ratio was not recommended for the use of the proposed technique with WinAce

as the compression tool.

Figure 5.13: Comparison of compressed file size based on the use of

WinRAR as the selected archiving software

300,000

250,000

'i
>. e 200,000

~
"'

150,000 ..
Ii: 100,000

50,000

% sfJltic I % duplicated static 25!2S 25150 25n5 50/2S 50150 50175 75/25 75150 15n5

- - - - WinRar 265,070 265,070 265,070 265,070 265,070 265,070 265,070 265,070 265,070

--WinRar + WRT 242,919 242,919 242,919 242,919 242,919 242,919 242,919 242,919 242,919

-WinRar + Proposed 225,623 222,459 220,175 191,843 180,409 168,890 145,816 127,730 111,321

As presented in figure 5.13, the integration of WinRAR with the proposed

preprocessing technique generated better results for all data sets when the outputs

were compared with the use of WinRAR individually as well as the use of WRT as

the preprocessing tool, and significantly outperformed when the ratios of static data

and duplicated static data were at 50% and 75%, and there were only slightly

improvements when the static data ratio was at 25%.

However, by comparing it with 7-Zip, the results of 7-Zip still outperformed

in term of data compression performance in all conditions consisting of the use of

63

archiving software individually, the WRT integration, and also the integration with

the proposed preprocessing technique.

Figure 5.14: Comparison of compressed file size based on the use of

WinZip as the selected archiving software

500,000

450,000 a:.:..::..:.--

!
400,000 • • • 350,000 ":::-==-.~ '-' 300,000

~ .~ 250,000
"' .. 200,000 ii!

150,000

100,000

50,000

% static I % duplicated static 25125 25/50 50125 2sns 75125 50/50 15150 sons 1sns

- - - -WinZip 436.881 436,881 436,881 436,881 436,881 436,881 436,881 436,881 436,881

--WinZip + WRT 322,285 322,285 322,285 322,285 322,285 322,285 322,285 322,285 322,285

-WinZip + Proposed 424.525 397,019 386,611 368,952 361,579 330,010 278,732 277,283 196,691

As presented in figure 5.14, the integration of WinZip with the proposed

preprocessing technique generated better results for only three out of nine data sets

when the outputs were compared with the use of WinZip individually as well as the

use of WRT as the preprocessing tool in which the results of the proposed technique

would be better than WRT only when the ratios of static data was at 75%, or at 50% if

the ratio of duplicated static data was at 75%.

By comparing WinZip with the aforementioned four archiving software in all

conditions consisting of the use of archiving software individually, the WRT

integration, and also the integration with the proposed preprocessing technique;

WinZip provided the lowest compression performance.

The results of low compression performance in some conditions might be

caused by unsuitable integration of the prepared data text files with some of the

selected archiving software.

64

According to the experimental results, 7-Zip is the best archiving software that

works best with the prepared text files. The integration of 7-Zip with the proposed

preprocessing technique generated highest c-0mpression performance for all data sets

when it was compared with the use of 7-Zip indiv\dually and the use of 7-Zip with

WRT. It was the same as WinRAR in which the integration of WinRAR with the

proposed preprocessing technique could generate highest compression performance

for all data sets when it was compared with the use of WinRAR individually and the

use of WinRAR with WRT but in the lower compression performance when it was

compared with 7-Zip.

7-Zip archiving software produced the best compression performance for the

selected data sets compared to other archiving software in which it might be because

of the use of various algorithms to compress the files consisting of its own filters that

might be suitable for the prepared data sets, LZ77, LZMA, PPM, and BWT. By

comparing 7-Zip with other selected archiving software; the use of additional BWT

algorithm that is a block-sorting lossless data compression algorithm which operates

by reversibly permutes a block of source data and then rearranges it by using a sorting

technique, after that pipes through a Move-To-Front (MTF) stage follows by using of

Run Length Encoder and an entropy encoder (Huffman coding or Aritlunetic coding)

as well as its efficient program-used filter; the compression performance of the

selected data sets were improved.

According to the experimental results, 7-Zip is recommended for this kind of

supply chain data that is created in spreadsheet format. Table 5.20 represents

compression performances of the archiving software when they were used with the

proposed preprocessing technique.

65

Table 5.20: Compression performances of the archiving software when they were

integrated with the proposed preprocessing technique

Compression Range of
Software Algorithms used

performance space saving
percentage

Program used filters, High
7-Zip LZ77, LZMA, PPM, compression 92.28% - 95.59%

BWT performance

Program used filters,
Moderate

WinAce compression 86.95% - 94.31 % LZ77, Huffman performance

Program used filters, Moderate
WinRAR compression 88.22%- 94.19% LZ77, PPM, Huffman

performance

LZ77, Huffman,
Low

PeaZip compression 79.58% - 90.34% LZMA,PPM performance

Shannon-Fano, PPM, Low
WinZip compression 77.84% - 89.73% Huffman, LZH, LZW

performance

The higher ratio of static data provided more interesting outcomes compared

to the higher duplicated static data ratio in which it delivered slightly less significant

improvements. However, by increasing of both static data and duplicated static-data

ratios, the integration of proposed algorithm with the archiving software could

provide better results that benefit to both sender and receiver in term of data

compression performance. Figure 5.15 represents the pattern of data that the proposed

preprocessing technique can generate results. It is separated into 9 sets of data based

on ratios of static data and duplicated static data, and classified into 5 degrees of

compression performance improvement when the proposed technique is integrated

with archiving software in average by ranging from lowest compression perfonnance

improvement, low compression performance improvement, moderate compression

performance improvement, high compression performance improvement, and highest

compression performance improvement respectively. According to the results, the

66

proposed preprocessing technique is recommended for the data that contain at least

50% of static data and duplicated static data because it is able to generate significant

improvement for the compression performance, while the use of only archiving

software individually might be satisfactory for compressing the data that contains less

than 50% of static data.

Figure 5.15: Degrees of compression performance improvement in average of the

proposed preprocessing technique integrated with archiving software based on ratios

of static data and duplicated static data

25

%
Static 50
data

75

25
% Duplicated static data

50 75

Highest
improvement

67

5.2 Results and Comparisons of the Efficient Use of Encoding Tokens in Relation

to Number of Receivers

For the utilization of the encoding tokens, as the relationship of data coding of

the proposed technique is a one-to-many in which multiple meanings of decoding

overheads can be referred just to a single encoding token, the encoding tokens can be

efficiently utilized based on particular groups of original data in relation to

distinctiveness of the static data and number of receivers. Figure 5.16 presents

minimum and maximum numbers of encoding tokens required for a particular set of

data in relation to number of receivers. In this study, 100 data rows were selected in

order to find out the ranges of tokens that could be generated for the specific ranges of

receivers.

Figure S.16: Number of tokens used in relation to number of receivers

"Cl

" ..,
:::i

a
~ s
0 ..
.!
8 = z

100

80

60 . .
40

20 .
, LO

o+-~~~~~~~__;;.........:...:....:...:.~:...:..:..;~~~:....:....:..~~....:...:..::i~~

0 l 10 20 30 40 50 60 70

number of recehers
· · · • · · Miniinlm tokens used
------Maxinrum tokens used

80 90 100

The results show that encoding tokens can be more effectively utilized if the

particular data set contains data for a larger number of receivers. Minimum numbers

of required tokens can be reached if the distinctive data rows are balanced and equally

68

assigned to each receiver, while maximum numbers of tokens represent maximum

required tokens that are possibly occurred if the distinctive data rows assigned to each

receiver are imbalanced. In the range of 1 to 10 percent of receivers toward distinctive

data rows (1 to 10 receivers per I 00 distinctive data rows are tested), the numbers of

required tokens are significantly dropped if the data set contains equivalent number of

distinctive data rows per receiver. After 10 percent of the proportion, the minimum

numbers of required token are slightly decreased.

69

CHAPTER6

CONCLUSION AND FUTURE WORKS

6.1 Interpretation of Findings and Conclusion

Since text is still one of the most important data that is normally transmitted

on day-to-day communication network nowadays, therefore, redundancy of data that

frequently transferred and real-time updated many times per day can be problems for

enterprises when sharing the data among stakeholders and related parties in which

data compression is served as a common tool for supporting file size reduction.

In this research, a simple method for improving data compression performance

by using the one-to-many data-sharing concept is introduced used in a novel way. By

integrating the purposed preprocessing technique with existing data archiving

software, users both sender and receivers can get benefits from the better data

compression performance with some additional benefits to data confidentiality.

This research compares the proposed preprocessing technique with another

popular preprocessing technique that also performs well for text data called as "Word

Replacement Transformation (WRT)" and with the selected archiving software itself

in order to discover usefulness of the proposed algorithm and benchmark its

compression performances with existing tools. Table 6.1 presents comparisons of

WRT and the proposed preprocessing technique in terms of compression

performance, data confidentiality, and ease of use.

70

Table 6.1: Comparisons of WRT with the proposed preprocessing technique

Criterion WRT Proposed technique

Supported text All text formats are Only text format in tabular form
format supported. (spreadsheet) is supported.

Generated better results under
some conditions especially when

ratios of static data and
Generated better results for duplicated static data were high.

Compression
some conditions especially However, it was depended on the
when ratios of static data selected archiving tool in which

performance
and duplicated static data the proposed technique generated

were low. better results than WRT for all
conditions of prepared data when

it was used with 7-Zip and
WinRAR.

Use of numerical codes as
decoding overheads but the

overheads would not be shared in

Use of ASCII characters but
the Cloud. The overheads are

decoding overheads would
separately sent to each assigned

Confidentiality
not be isolated from the

receiver with different decoding

processed file.
data for each receiver for
confidentiality purpose.

Additional encryption can be an
option to increase its
confidentiality level.

Run EXE file in DOS,
Utilize available macro and

Ease of use
Microsoft Windows

functions in spreadsheet program
itself.

6.2 Discussion: The Most Suitable Approach

This study presents benefits of using the proposed approach and suggests the

appropriate archiving software that works best with the proposed technique in order to

practically support text file sharing.

Based on the simulation results, it can be concluded that the purposed

algorithm is very useful when the text data spreadsheet form has high static data and

71

duplicated static-data ratios that are directly proportional to the data compression

performance.

However, the proposed preprocessing technique might not be able to generate

better results when using it with some archiving software under the condition that

ratios of static data and duplicated static data are quite low (less than 50% each).

The researcher recommends the use of 7-Zip and WinRAR for integrating

with the proposed preprocessing technique because they are able to generate better

compression performance compared to WRT in all conditions of the prepared text

data even the ratios of static data and duplicated static data are low. However,

compression performances of the selected archiving software might be changed from

time to time based on continuous development and improvement of each of the

archiving software in applying more efficient compression algorithms into the

software. Ranking of the compression performance might be changed or there might

be another archiving software that can generate better compression ratio in the near

future.

The larger number of receivers per shared file can utilize the use of encoding

tokens more efficiently. The larger number of receiver can enhance the utilization of

the number of assigned encoding tokens used for that particular file because a single

encoding token can be used for multiple receivers instead of encoding for just only

one receiver in which the minimum numbers of required tokens can be reached when

the distinctive data rows are balanced and equally assigned to each receiver.

In addition; instead of using access control, flow control, inference control,

and cryptographic control; this proposed preprocessing technique can add some

benefits to data confidentiality through the isolation of decoding overheads in which

each receiver only sees the decoded data that are only associated with that particular

72

assigned receiver. Other receivers, hackers, or even eavesdroppers will not know that

segregated decoding overheads and are not able to interpret that encoded file into

meaningful data without the mapping of shared encoding tokens with the segregated

decoding overheads particularly. The higher number of receivers and the higher ratios

of static and duplicated static data can lower the chance of data disclosure in the cloud

environment because the assigned encoding tokens will be more utilized and lesser

dynamic data will be shared in the cloud. In this case, the more valuable static data

can be segregated and separately transmitted to each assigned receiver outside the

cloud or the sender can increase the confidentiality of data sharing by disconnecting

the sending of decoding overheads from the Net and manually send it outside

untrusted networks.

Cloud supply chain is selected in this research as an illustration of the

proposed preprocessing technique because supply chain is one of the main business

functions that have emerged as a critical and integral part of how enterprises operate

and compete nowadays. In general, the supply chain data and information are

valuable and have to be share to stakeholders while they are also the targets for

hackers and other eavesdroppers to attack. It becomes challenges for many

organizations to secure their valuable data and information When they have to share

them to other parties via untrusted channels or networks. Especially, it is difficult to

secure private and confidential data in the cloud since location and access in the cloud

are controlled by cloud service providers in which it is different from traditional on

site storage or networks in which the organizations can controls where the data is

located and exactly manage who can access it.

The proposed preprocessing technique is actually not limited to cloud supply

chain but it can be applied to other data sharing environments as well as other

73

business functions where the improvement of data compression performance is

needed and data segregation is applicable in which ratios of static data and duplicated

static data along with number of receivers contained in a tabular file are main factors

toward the efficiency of proposed preprocessing technique.

6.3 Future Research

This research focuses only an improvement in compression performance for

text data in tabular form created for the purpose of data sharing in which the cloud

supply chain is selected as the illustration. The future research may consider about

other file formats that can si~ilarly employ this simple technique with some

modifications. Other business functions may differently use other file formats to

record their valuable data and information in while other algorithms may be more

efficiently compress and secure them. In addition, there are also various possible

integrated solutions, for examples, by including data encryption or steganography

with future techniques in order to get other interesting results.

74

BIBLIOGRAPHY

Awan, F. and Mukherjee, A. (2001), LIPT: A Lossless Text Transform to Improve

Compression, Proceedings of International Conference on Information and

Theory, April 2001.

Bamatt, C. (2010), A Brief Guide to Cloud Computing, Constable & Robinson Ltd.,

London, UK.

Bentley, J. L.; Sleator, D. D.; Tarjan, R. E. and Wei, V. K. (1986), A locally adaptive

data compression scheme, Communications of ACM, Vol. 29(4), April, pp.

320-330.

Burrows, M. and Wheeler, D. J. (1994), A block-sorting lossless data compression

algorithm, SRC Research Report 124, Digital Equipment Corporation,

California.

Calabrese, T. (2004), Information Security Intelligence: Cryptographic Principles &

Applications, first edition, Thomson Delmar Leaming.

Carns, A. and Mesut A. (2010), Fast Text Compression Using Multiple Static

Dictionaries, Information Technology Journal, Vol. 9 No. 5, pp. 1013-1021.

Chan, H. K.; and Chan, F. T. S. (2010), Comparative Study of Adaptability and

Flexibility in Distributed Manufacturing Supply Chains, Decision Support

System, Vol. 48, No. 2, pp. 331-341.

Chang, L. Ti; Chin, L.; Chang, A.Y.; Chun, J. C. (2010), Information Security issue

of enterprises adopting the application of cloud computing, IEEE 20 I 0 Sixth

International Conference on Networked Computing and Advanced

Information Management (NCM), pp. 645.

75

Cleary, J. and Witten, I. (1984), Data compression using adaptive coding and partial

string matching, IEEE Transactions on Communications, COM-32, pp. 396-

402.

Cormack, G. V. and Horspool, R. N . (1987), Data compression using dynamic

Markov modeling, The Computer Journal, Vol. 30(6), December, pp. 541- 550.

Denning, D. E. (1976), A Lattice Model of Secure Information Flow,

Communications of ACM. Vol. 19, No. 5 (May 1976), pp. 236-243.

Denning, D. E.; Denning, P. J.; Schwartz, M. D. (1979), The Tracker: A Threat to

Statistical Database Security, ACM Trans. Database Syst., Vol. 4, No. I

(March 1979), pp. 76-96.

Deorowicz, S. (2003), Universal lossless data compression algorithms, Doctoral

Dissertation, Silesian University of Technology.

Durowoju, 0 . A.; Chan, H. K.; Wang, X. (2011), The Impact of Security and

Scalability of Cloud Service on Supply Chain Performance, Journal of

Electronic Commerce Research, VOL 12, NO 4, pp. 243-256.

Fano, R.M. (1949), The transmission of information, Technical Report, No. 65

(Cambridge (Mass.), USA: Research Laboratory of Electronics at MIT).

Hugos, M. and Hulitzky, D. (2010), Business in the Cloud, John Wiley & Sons. Inc.,

Hoboken, New Jersey, USA.

Huffman, D. A. (1952), A method for the construction of minimum-redundancy codes.

In Proceedings of the Institute of Radio Engineers, September, pp. 1098- 1101.

Huth, A. and Cebula, J. (2011), The Basics of Cloud Computing, Carnegie Mellon

University, produced for US-CERT.

Kattan, A. (2010), Evolutionary Synthesis of Lossless Compression Algorithms: the

GPzip Family, Doctoral Dissertation, University of Essex.

76

Kok, G. (2010), Cloud Computing & Confidentiality, Master of Science graduation

thesis, Computer Science, University of Twente.

Konecki, M.; Kudelic, R.; Lovrencic, A. (2011): Efficiency of Lossless Data

Compression, MIPRO 2011, May 23-27.

Kruse, H. and Mukherjee, A. (1998), Preprocessing Text to Improve Compression

Ratios, In: Storer JA, Proceedings of the 1998 IEEE Data Compression

Conference, Los Alamitos, California.

Lancioni, R.; Schau, H. J.; Smith, M. F. (2003), Internet Impacts on Supply Chain

Management, Industrial Marketing Management, Vol. 32, pp. 173-175.

Lefurgy, P. Bird, I. Chen and T. Mudge (1997), Improving code density using

compression techniques, In Proceedings of International Symposium on

Microarchitectures (MICRO), pages 194-203, 1997.

Liao, S.; Devadas, S.; Keutzer, K. (1995), Code density optimization for embedded

DSP processors using data compression techniques, In Proceedings of

Advanced Research in VLSI, pages 393-399, 1995.

Mohd Kamir, Y.; Mohd Sufian, M.; Ahmad Faisal Amri, A. and Elissa Nadia, M.

(2009), Achieving Capability in Data Compression Using LZW++- Technique,

IJCSNS International Journal of Computer Science and Network Security, Vol.

9, No. 8, pp. 327-334.

National Institute of Standards and Technology (2012), NIST Cloud Computing

Program, Available at: http:// www.nist.gov/ index.html accessed on

06/0112012.

Rexline, S. J.; Robert, L. (2011): Dictionary Based Preprocessing Methods in Text

Compression - A Survey, International Journal of Wisdom Based Computing,

Vol. 1(2), pp. 13-18, August.

77

Robert, L.; Nadarajan, R. (2009), Simple Lossless Preprocessing Algorithms for Text

Compression, IET Software, 2009, Vol. 3, Issue 1, pp. 37-45

Sangroya, A.; Kumar, S.; Dhok, J.; ·Varma, V. (2010), Towards Analyzing Data

Security Risks in Cloud Computing Environments, ICISTM, CCIS 54, pp.

255-265.

Shajeemohan, B. S. and Govindan, V. K. (2006), IDBE - An Intelligent Dictionary

Based Encoding Algorithm for Text Data Compression for High Speed Data

Transmission Over Internet, CoRR abs/cs/0601077.

Shannon, C.E. (July 1948), A Mathematical Theory of Communication, Bell System

Technical Journal, Vol. 27: pp. 379-423.

Sharma, M. (20 I 0), Compression Using Huffman Coding, IJCSNS International

Journal of Computer Science and Network Security, Vol. 10 No. 5, pp. 133-

141.

Shuai, Z.; Shufen, Z.; Xuebin, C.; Xiuzhen, H. (2010), Cloud Computing Research

and Development Trend, 2nd International Conference on Future Networks,

2010. ICFN'lO. pp. 23.

Skibinski, P. (2004), Two-Level Dictionary Based Compression, Przesmyckiego, Vol.

20, pp. 51-151Wroclaw,30 November 2004.

Skibinski, P.; Grabowski, Sz.; Deorowicz, S. (2005), Revisiting dictionary-based

compression, Software-Practice and Experiences, VOL. 35, No. 15, pp. 1455-

1476.

Sun, D.; Chang, G.; Sun, L.; Wang, X. (2011), Surveying and Analyzing Security,

Privacy and Trust Issues in Cloud Computing Environments, Elsevier Ltd.,

China.

78

Suri, P. and Goel, M. (2010), Ternary Tree & A New Huffman Decoding Technique,

IJCSNS International Journal of Computer Science and Network Security, Vol

10 No.3, pp. 165-172.

Ullah, F.; Naveed, M.; Inayatullah Bahar, M.; Iqbal, F. (2010): Novel use of

Steganography for both Confidentiality and Compression, International

Journal of Engineering and Technology, vol. 2 no. 4, pp. 361 -366, IACSIT

Press Singapore.

V.K.Govindan and B.S. Shajeemohan (2004), IDBE-An Intelligent Text Data

Compression for High Speed data Transmission Over Internet, Proceedings of

the International conference on Intelligent Signal Processing and Robotics,

ISPR 2004 UT Allahabad, 20-23, Feb. 2004.

Willems, F. M. J.; Shtarkov, Yu. M. and Tjalkens, T. J. (1995), The context tree

weighting method: Basic properties. IEEE Transactions on Information

Theory, Vol. 41, May, pp. 653--664.

Zhou, L.; Zhu, Y.; Lin, Y.; Bentley, Y. (2012), Cloud Supply Chain: A Conceptual

Model, The Mediterranean Institute of Advanced Studies.

Zia, M. Z. K.; Dewan, Md.; Rahman, F.; Rahman, C. M. (2008), Two-Level

Dictionarv-Based Text Compression Scheme, Proceedings of 11th

International Conference on Computer and Informatin Technology (ICCIT

2008).

Ziv, J. and Lempel, A. (1977), A universal algorithm for sequential data compression,

IEEE Transactions on Information Theory, IT-23, pp. 337-343.

Ziv, J. and Lempel, A. (1978), Compression of individual sequences via variable-rate

coding, IEEE Transactions on Information Theory, IT-24, pp. 530-536.

THE ASSUMPTION VNIVERSJTY Ll.IRAlf

79

	Cover and Title Page
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter I : Introduction
	Chapter II : Background Knowledge
	Chapter III : Proposed Technique
	Chapter IV : Data Preparation and Testing Method
	Chapter V : Experimental Results and Analyses
	Chapter VI : Conclusion and Future Works
	Bibliography

