ABSTRACT

Alain Badiou's *Being and Event* has gained popularity among many philosophers and thinkers across a multitude of fields. *Being and Event* has engaged in and can be viewed as a debate in contemporary continental discussions along with debates in the analytical field and into the realm of Theology. The scope and limits of this thesis is to address topics under a limited assumption of mathematical descriptions of ontology and its overlaps in Theology. The statement that this thesis is addressing is: *Through the analysis of the formal mathematical system of Being and Event, the presuppositions that Alain Badiou chooses allow for a system that can encapsulate all the multiples showing the operator “belonging” is not a necessary attribute of the ontology. The system can further show no conclusive use of mathematics beyond Infinity or the use of truth procedures that may provide ‘ruptures’ to a finite world.* In the introduction, Chapter I gives a brief background of the importance of Badiou's operator belonging, along with his political agenda that stems from an interpretation of the mathematical ontological world given in *Being and Event*. Chapter II
will describe formal axiom systems in general and focus at drawing out presuppositions used by previous mathematicians. Chapter III presents the thesis of *Being and Event* as a set theoretical system, named the *Ideas of the multiple*, and links the concepts of the previous chapter to the presuppositions formed by Alain Badiou. Chapter IV will address the reconstruction of the system and connect the hypothesis 'the One is not' with the presented sets, thus showing implications from the Ideas of the multiple and its effects at removing truth in the realm of Theology. Chapter V moves on to describe further sets in *Being and Event* in which the investigation will conclude to a problematic faced in the system of the Ideas of the multiple that relates to Badiou's presuppositions in mathematics and hypothesis in Theology. This problematic is detailed and addressed in the conclusion by showing proof of a system based on the initial presuppositions given by Alain Badiou that allows for a finite system of multiples without the priority of an initial belonging operator.