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Chapter 1 

Introduction 

1.1 Background 

In many fields of science, and particularly in medicine, there is a growing expec-
tation to investigate results of previous research either to provide a baseline for 
comparison or to justify a need for a further empirical study. This could be illus-
trated by the following advice given by the UK's National Health Service that 
`research should take place only when a systematic review of previous research 
has been carried out and the need for new research has been established' [1]. 

If the quality of the previous studies is not to be questioned, and if they ad-
dress the same research problems in similar ways and possible inconsistencies be-
tween studies are attributable to sampling errors then fixed—effect meta—analysis 
is a powerful tool for such an investigation. Such meta—analysis typically applies 
statistical techniques that take into account the sample sizes of given studies 
and produces a weighted arithmetic mean of a particular proportion being in-
vestigated [2]. For example, this proportion could be the odds that a specific 
treatment will reduce the risk of developing a specific disease or a proportion of 
certain patients that develop a certain condition. 

The advantage of meta—analysis is that on one hand it allows dealing with 
statistically expected inconsistencies among studies to increase the statistical 
power by working with a larger pooled sample and on the other hand it allows 
one to generalise the results to a larger population. This latter use is due 
to the fact that many studies focus on a narrow population but span a much 
larger population. Such use of meta—analysis was advocated in [3] although it 
is controversial according to some other authors [4]. 

Nevertheless, there seems to be a consensus that such meta—analysis is not 
appropriate when there is heterogeneity between studies explained by the vari-
ability in research methods or in investigated samples. This is often referred to 
as 'mixing apples with oranges'. Indeed, if one study is about young patients 
and another about elderly patients then everyone in the medical field would take 
a combination of such studies' findings with extreme caution. As pointed out 
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6 CHAPTER 1. INTRODUCTION 

in [4], even more striking would be a combination of weights of small children 
and dogs with large fish and cats even if all four samples appeared to be ho-
mogeneous; i.e., with variations as if they were taken randomly from the same 
population. 

The question we ask in this paper is different and fairly specific. Is there a 
way to analyse studies that do not appear heterogeneous in terms of research 
problems and ways they investigated them but despite that studies show it 
statistically beyond any doubt? And of course we do not mean the obvious 
answer postulating the need to identify the actual source, which is indeed the 
right way to approach the problem if it is feasible because it explains it all and 
every researcher should do this in the first place. We have in mind the situation 
where despite an effort we have not clearly identified the source of heterogeneity. 
In this paper we call this unexplained heterogeneity. 

Certainly statistical analysis that fail to account for heterogeneity (i.e., fixed—
effect meta—analysis) is of no help since something else is going on other than 
that each study just took a sample from the same population. And although 
some statistical methods accounting for heterogeneity have been developed, in 
this paper we suggest a non-statistical technique, notably employing mathe-
matical logic, which could be perhaps categorised as a version of the recently 
developed Bayesian approach to meta—analysis [5], but unlike the more general 
Bayesian approach it will be strictly applicable only to the restricted setting of 
our question. Although it is quite restricted, the technique still has appealing 
advantages of the Bayesian approach: 

1. It deals with heterogeneity between studies. 

2. It is able to combine related studies that do not necessarily measure the 
same proportions. 

Similarly as in the case of the Bayesian approach to meta—analysis, given 
that the danger of combining unrelated studies has been avoided, we have the 
freedom to include into the analysis a whole range of studies. This can be 
quite convenient as the number of studies investigating a rare disease could be 
rather small for a meaningful statistical meta—analysis. The inability to deal 
with complex knowledge is one of the classical criticisms of meta-analysis [2]. 
To illustrate, when researchers wish to combine related studies into a single 
narrative they could end up with the following scenario. Say that one study 
investigates the effectiveness of a routine screening in discovering cancer and 
the other study adds to the same routine screening a CT scan. Although they 
measure effectively different proportions, the first the proportion of patients 
where the routine screening discovered cancer and the second one the propor-
tions where the routine screening with a CT scan discovered cancer, these two 
proportions are much related so it appears natural to try to combine them. 

Combining related studies is of course performed in systematic reviews of 
literature all the time [2]. However, such a combination is subjective in na-
ture and often comes with bias as was shown in [6], where a catchy title of a 
study was all that was needed to bias the analysis. In this paper, in order to 
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achieve a rigorous combination of related studies, we use probabilistic logic and 
information geometry to transform studies to non—empty closed convex sets in 
a probabilistic simplex. The reasoning behind the encoding selection used in 
this paper in lieu of the plethora of choices shall be clearly explained. This 
will not only be a theoretical construction; the encoding will be demonstrated 
on real studies concerning the incidence of diagnosis of cancer in patients with 
unprovoked venous thromboembolism. The encoding will be similar to that sug-
gested in [7] but further elaborated. We aspire here to provide the reader with 
a comprehensive tutorial to the approach we are proposing and demonstrate it 
on a real application. 

The subsequent combination of resulting non—empty closed convex sets in 
probabilistic simplex will be performed by a probabilistic merging operator 
called the linear entropy operator, which was first introduced in [8]. More signif-
icantly, the fact that this operator is appropriate for analysing related studies 
with unexplained heterogeneity was showed in [9]. The following are the as-
sumptions necessary for the argument to work and under different assumptions 
another operator could be more optimal: 

1. There is a huge population from which each study selected a large sample 
on which it measured some proportions. 

2. Heterogeneity can be statistically detected from the measured proportions. 

3. The studies appear to investigate the same population by rather similar 
methods; there is no obvious source of heterogeneity. 

The technical result from [9] was obtained similarly as the maximum entropy 
inference process was justified in [10]. Informally, an entropic approach to a 
daunting problem is about ignoring irrelevant processes that make the problem 
difficult. In this particular setting the exact nature of the unknown processes 
that do exist and cause the observations reported in studies more different than 
statistically expected could be ignored and instead these processes are treated 
probabilistically. There could be so many of them that we can just assume that 
each can occur with equal probability (but this would be false if a source of 
heterogeneity was known). And although this argument works even in the case 
of homogeneity, a statistical fixed—effect meta—analysis produces in such a case 
much more powerful results [9]. So the entropic approach should not be used if a 
more powerful method is available; either statistical in the case of homogeneity, 
or if we are able to identify the source of heterogeneity. 

This shares with the Bayesian approach to meta—analysis the following. In 
the Bayesian approach a prior distribution is chosen for a particular practical 
meta—analysis and a posterior distribution is computed based on some additional 
information. The prior distributions used in [9] is that 'all possible ways in which 
studies could have obtained their observations are equally probable' and 'every 
population proportion is a priory equally probable'. Using a specific modelling 
of observing proportions as drawing with replacement the so called 'number of 
possible states argument' is applied to determine overwhelmingly most probable 
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population proportions given observations of studies and these coincide with the 
result of the linear entropy operator mentioned above. See [9] for more details. 

For a reader who feels that the paper [9] is too technical but who still wants to 
understand the linear entropy operator better we will later list several properties 
which are in the context of uncertain reasoning [11, 12] called principles and we 
will point out which of them are satisfied by this operator. 

Since the use of the linear entropy operator in the setting outlined above has 
been already supported in [9], it is the encoding of studies by several non—empty 
closed convex sets in a probabilistic simplex and the interpretation of the non—
empty closed convex set resulting from the operator that will be addressed in 
this paper. This paper focuses on plain, accessible language rather than relying 
on mathematics in order to be useful to a greater array of future researchers 
interested in combining studies with unexplained heterogeneity. 

Finally, we should point out that there is a major computational issue with 
the linear entropy operator and in order to apply the proposed method some 
roundabout computation in convex optimisation will be performed at the end 
of the paper by a method from [13, 14]. With all these nuances our approach to 
meta—analysis with unexplained heterogeneity is schematically outlined in Fig-
ure 1.1. 
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Studies Unexplained Heterogeneity 

Encoding 

Sets Closed Convex in Simplex 

Linear Entropy Operator 

Set Closed Convex in Simplex 

Choosing Single Point 

-') Point in Simplex 

Roundabout 
Computation 

Interpretation 

Proportions Merged from Studies 

Figure 1.1: Our approach to meta—analysis with unexplained heterogeneity. We 
focus on blue arrows in this paper while red arrows were already developed in 
the literature. 
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Chapter 2 

Literature Review 

2.1 Venous thromboembolism and cancer 

Throughout this paper we explain the proposed approach to meta—analysis with 
unexplained heterogeneity on a particular medical problem concerning venous 
thromboembolism (VTE). VTE is a condition that includes either deep vein 
thrombosis (DVT) or pulmonary embolism (PE) or both. DVT is a formation 
of a blood clot in a vein. Such a clot often dislodges and travels through the 
heart into lungs. A sufficiently large clot can subsequently block a pulmonary 
vein causing PE and if left untreated it can lead to death [15]. In fact, VTE is 
the third most common cardiovascular illness [16]. 

Provoked venous thromboembolism is associated with prolonged rest or co-
agulation abnormalities and it could be induced by effort or a vein catheter [15]. 
Existing cancer, recent surgery and pregnancy are also risk factors [17]. When 
no such reason is apparent venous thromboembolism is referred to as unpro-
voked (in the literature alternatively the term 'idiopathic VTE' is used). 

In 1872 Trousseau [18] observed that there is some sort of relationship be-
tween unprovoked VTE and previously undiagnosed (occult) cancer. Since then 
the presence of the relationship has been observed many times; a large meta—
analysis [19] shows that 10% of patients diagnosed with unprovoked VTE are 
diagnosed with cancer within 12 months and the inclusion of extensive screening 
statistically significantly improves the detection of cancer from 49.4% of can-
cers detected with routine evaluation alone to 69.7% of cancers detected with 
extensive screening combined with routine evaluation. The exact nature of the 
relationship is still unknown and only recent studies started to cast some light on 
questions as to how patients with unprovoked VTE should be precisely screened 
for cancer when their condition becomes symptomatic [20, 21, 22, 23, 24, 25, 
26, 27]. At the same time some of these studies reported a lower incidence of 
diagnosis of cancer in patients with unprovoked VTE than 10% and some of 
them also reported a low sensitivity of extensive screening. In this paper we are 
going to look at these studies and combine them. This selection of studies was 
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obtained by searching the PubMed Central database [28]. 
All the studies listed above are fairly similar in nature. Each is either a 

randomised or on observation study investigating adult patients with an unpro-
voked episode of VTE. This means that patients with the following risk factors 
were excluded: coagulation abnormalities (e.g., factor V Leiden mutation), re-
cent surgery, prolonged rest, pregnancy or effort—induced episodes. There was 
however a variation on whether young adult patients were excluded (less than 
40 years in [20], less than 25 years in [21] and less than 70 years in [25]). If a 
patient had no known cancer he or she was observed over a certain period of 
time to determine whether cancer occurs in his or her case. Studies that did 
not fit this template or were published before the year 2 000 were excluded. 

It is important to note that the studies included in our analysis did not 
differentiate between different types of VTE; patients with DVT, PE or both 
conditions were eligible. This particularly means that DVTs in legs, which 
are much more common than DVTs in upper—extremity (such as in subclavian 
veins) [15], were much more represented in the studies. In fact, studies [23, 24] 
and [26] outright excluded upper—extremity DVTs. Studies were performed 
in western countries and no study selectively targeted a specific population in 
terms of life—style. Notably, studies included past and current smokers despite 
the fact that smoking is considered as a risk factor for both VTE [17] and cancer. 
Also, patients with previous history of VTE (unless recent) and family history 
of VTE were not excluded. Although most cancers were diagnosed in the older 
age groups no age differentiation was performed in any study. 

The main objective of each study was to determine how the screening for 
cancer should be performed when unprovoked VTE is diagnosed. Since the 
one—year incidence of diagnosis of cancer in patients with unprovoked VTE at 
the level of 10% reported in [19] is much higher than in the normal population, 
naturally it seems appropriate to screen them. However, is screening consid-
ered as routine sufficient? Or do more invasive and expensive methods pay for 
themselves in terms of a much better detection rate? 

It appears that the problem addressed is the same across the studies and that 
they investigated it in a fairly similar manner. Recall that this is a necessary 
assumption; otherwise, the method proposed here may not be used. (Needless 
to say, in such a case statistical meta—analysis would also be inapplicable.) 

More explicitly, there was only a slight variation in the techniques used 
for routine screening across the studies. The techniques always included the 
following. 

• Medical history, physical examination, complete blood count and chest 
x—rays. 

Furthermore, creatinine levels, serum electrolytes and liver function testing were 
often included. 

On the other hand, extensive screening techniques varied more significantly. 
They usually comprised a selection of the following. 

• Chest computer tomography (CT) scan, abdomen CT scan, pelvis CT 
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scan, 18F—FDG—PET/CT whole body scan, ultrasound of abdomen and 
pelvis, mammography, tumor markers and prostate—specific antigen. 

Before extensive screening techniques become part of a routine cancer screening 
for patients with unprovoked VTE we ought to make sure that the resources, 
psychological trauma and the danger of radiation induced cancer are all out—
weighed by the number of lives saved. 

In this paper we will learn more about this interesting problem. We will see 
that despite similarities we can statistically detect heterogeneity in our selection 
of studies. We will also discover that they often measure different proportions 
but we will also explain how we can deal with such an issue using our represen-
tation in the form of non—empty closed convex sets in a probabilistic simplex. 
We will show the findings researchers established within individual studies and 
we will combine them using the method outlined in the introduction. 
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Chapter 3 

Research Methodology 

3.1 Unexplained heterogeneity 

First, we are going to create a so called funnel plot for the incidence of diagnosis 
of cancer in patients with unprovoked VTE of the selection of studies [20, 21, 22, 
23, 24, 25, 26, 27] we wish to combine against the sample size. An asymmetric 
funnel plot indicates that there is some sort of publication or selection bias [2], 
for example studies reporting negative results could tend to be unpublished. 
However, the funnel plot in Figure 3.1 does not appear to indicate any problem 
with our selection. 

Second, we are going to create a Forest plot for the one—year incidence of 
diagnosis of cancer in patients with unprovoked VTE of our selection of studies, 
including the meta—analysis [19] and using a more recent paper ([29]) to identify 
additional details about the study [20]; see Figure 3.2. Note that the study [21] 
did not report the incidence of diagnosis of cancer in patients with unprovoked 
VTE so it is excluded from this Forest plot. A Forest plot is a graphical tool, 
which allows us to make initial analysis of studies; in particular in the following 
we try to see if the mean age of patients plays any role in the measured incidence 
of diagnosis of cancer in patients with unprovoked VTE. This was the motivation 
behind including one study that specifically targeted elderly patients [25] but 
in general this would be undesirable as a different mean age can be identified as 
a possible source of heterogeneity. It appears that mean age could play a small 
role in the reported incidence, although the studies investigating older patients 
have rather small sample sizes; see Figure 3.2. 

In the Forest plots the pooled value was obtained as a weighted arithmetic 
mean of the reported incidences weighted by the corresponding sample sizes. 
Usually, weighting factors are not obtained directly from sample sizes. Instead, 
the inverse of the variance of a particular study is taken. Variance more accu-
rately accounts for example differences in control and treatment groups when 
odds ratios are pooled but in our case we pool just the proportions so the in-
verse of the variance is proportional to the sample size. Furthermore, in the 

15 



16 CHAPTER 3. RESEARCH METHODOLOGY 
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0 5 10 .  15 20 25 

Figure 3.1: The funnel plot of the selection of studies we wish to combine. 
The x—axis denotes the proportion of cancers discovered over the period of each 
study. The y—axis denotes the sample size. The red line indicates the pooled 
incidence. 

forest plots we use Clopper—Pearson confidence intervals since they are accurate 
confidence intervals for a random variable with a binomial distribution regard-
less of the sample size. In particular, in our following Forest plots (Figures 3.3 
and 3.4) concerning the effectiveness of routine evaluation and the effectiveness 
of the technique combining routine evaluation with extensive screening we may 
not use the normal approximation to a binomial distribution since the number 
of patients with cancer in many studies is too small (less than 30). 

According to the Forest plots, the pooled value of the one—year incidence 
of diagnosis of cancer in patients with unprovoked VTE (7.15%, 95% confi-
dence interval 6.14 — 8.26) is lower than the one reported in the previous meta—
analysis [19] (10%, 95% confidence interval 8.6 —11.3) and this difference is sta-
tistically significant as seen from the confidence intervals. On the other hand, 
the pooled value for sensitivity of routine evaluation (47.93%, 95% confidence 
interval 38.77-57.20) is similar to the one reported in the meta—analysis (49.4%, 
95% confidence interval 40.2 — 58.5). Accordingly, the pooled value for sensitiv-
ity of the technique combining routine evaluation with extensive screening (75%, 
95% confidence interval 66.27 — 82.45) is not statistically different from the one 
reported in the meta—analysis (69.7%, 95% confidence interval 61.1 — 77.8). 

It appears that at this point we can just end our analysis. But ending the 
research at this point poses two issues: 

1. Many studies did not report the proportions measured in the above men-
tioned Forest plots precisely. Notice empty spaces and that one study [21] 
is not included at all. Nevertheless, the studies measured similar propor- 
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Incidence of Cancer with Unprovoked VTE in % 

[25] 0 (80) 

[27] 0 (65) 

[22] 0 (64) 

[24] I (64) 

[24] C (62) 

[20] I (62) 

[20] C (62) 

[26] 0 (55) 

[23] I (54) 

[23] C (54) 

Pooled Value 

Previous Meta 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 

Figure 3.2: The Forest plot of the selection of studies in scope for combining. 
The x—axis denotes the percentage of people that had cancer discovered within 
a 12 months period (studies [20] and [24] had longer follow—up periods) after the 
occurrence of VTE. 95% Clopper—Pearson confidence intervals are used. On the 
y—axis the studies are arranged by the mean age of patients (the value in round 
brackets). The letter '0' indicates an observation study, the letter T indicates 
the incidence in the group that received the intervention (extensive screening) 
and the letter 'C' indicates the incidence in the control group. 

A 

A 

-0- 
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Sensitivity of Routine Evaluations in % 

[25] 0 (80) 

[27] 0 (65) 

[22] 0 (64) 

[24] I (64) 

[24] C (62) 

[20] I (62) 

[20] C (62) 

[26] 0 (55) 

[23] I (54) 

[23] C (54) 

Pooled Value 

Previous Meta 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 

Figure 3.3: The Forest plot of the selection of studies in scope for combining. 
The x—axis denotes the proportion of cancers detected by routine evaluation 
when unprovoked VTE was diagnosed. 95% Clopper—Pearson confidence in-
tervals are used. On the y—axis the studies are arranged by the mean age of 
patients (the value in round brackets). The letter '0' indicates an observation 
study, the letter 'I' indicates the incidence in the group that received the inter-
vention (extensive screening) and the letter 'C' indicates the incidence in the 
control group. Not every study reported the proportion correctly, the sensitivity 
is missing for those studies. 
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Sensitivity of Rout. Eval. with Ext. Scr. in % 

[25] 0 (80) 

[27] 0 (65) 

[22] 0 (64) 

[24] I (64) 

[24] C (62) 

[20] I (62) 

[20] C (62) 

[26] 0 (55) 

[23] I (54) 

[23] C (54) 

Pooled Value 

Previous Meta 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 

Figure 3.4: The Forest plot of the selection of studies in scope for combining. 
The x—axis denotes the proportion of cancers detected either by routine eval-
uation or by extensive screening when unprovoked VTE was diagnosed. 95% 
Clopper—Pearson confidence intervals are used. On the y—axis the studies are 
arranged by the mean age of patients (the value in round brackets). The let-
ter '0' indicates an observation study, the letter T indicates the incidence in 
the group that received the intervention (extensive screening) and the letter 
`C' indicates the incidence in the control group. Not every study reported the 
proportion correctly, the sensitivity is missing for those studies. 

A 
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tions. Can we somehow take advantage of the information they provide? 

2. Heterogeneity between the studies can actually be statistically detected 
as we will shortly see. Is it right to just compute and interpret the pooled 
value (the weighted arithmetic mean of proportions reported in studies)? 

Let us have a look at the reported incidence of diagnosis of cancer in pa-
tients with unprovoked VTE from Figure 3.2. Let us assume that the pooled 
proportion p = 0.0715 (7.15%) is the true proportion of patients that have can-
cer discovered in a 12 months period. If there are n patients in a sample then by 
the central limit theorem the number X of patients that have cancer discovered 
is a random variable and 

Vn • p • (1 — p) 
 Z 

that is this fraction as a random variable has the standard normal distribution 
(this is indeed just an approximation and in general it works if n•p and n • (1—p) 
are both at least 5). Now, if p is obtained by taking m binomially distributed 
random variables X1  E {0, , , X, e {0,..., generating the same 

proportion by p = 
E

, where Eirn = n, then 

E z2 ^ x;„_i; 
z=1 

rti • P • ( 1 19) i=1 

see [30]. One level of freedom (we sum only until in — 1) is lost by including the 
equation p = Finally, by observing 

(Xi  — ni  • p)2 (Xi — ni - P)2 (ni  — — ni • (1  — P))2  
ni  • p • (1 — p) ni  • p • (1 — p) 

and denoting the value of the random variable Xi respectively ni - Xi by 0 
(`observed'), and denoting ni  - p respectively ni • (1 - p) by E (`expected') we 
obtain the familiar Pearson's chi—squared test [31] for homogeneity of binomially 
distributed X1, , X, (i.e., the test whether they indeed generate the same 
proportion); 

E  (I!)  — E)2 
2  

E Xrn-i• 

Now, if the studies have virtually taken samples from the same population 
then the numbers of patients X1,  , Xm  that have cancer discovered should 
be only a function of the sample size and the statistical error. If the value 
of the random variable in Formula 3.1 differs significantly from the expected 
value having the distribution then it is unlikely that the random variables 
generate the same proportion. This is what we call statistically detected hetero-
geneity. The reported proportions depend on something and we can ask what 
they depend on. 

X — n • p 

TE (Xi  — ni  • p) 2  rn-1  

(3.1) 
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Study 

[25] 0 (80) 

[27] 0 (65) 

[22] 0 (64) 

[24] I (64) 

[24] C (62) 

[20] I (62) 

[20] C (62) 

[26] 0 (55) 

[23] I (54) 

[23] C (54) 

Patients 

with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 
with cancer 
without cancer 

Observed (0) Expected ( E) 

4 3.58 
46 46.42 
12 3.58 
38 46.42 
43 24.67 
302 320.33 
12 14.09 
185 182.91 
13 14.09 
184 182.91 
30 24.45 
312 317.55 
21 20.59 

267 267.41 
1 2.86 
39 37.14 
19 30.24 
404 392.76 
14 30.82 

417 400.18 

Table 3.1: The number of patients with diagnosed cancer and without diagnosed 
cancer respectively. The expected value E is computed as the product of the 
sample size and the pooled proportion of patients with and without cancer 
respectively. On the y—axis the studies are arranged by the mean age of patients 
(the value in round brackets). The letter '0' indicates an observation study, the 
letter 'I' indicates the incidence in the group that received the intervention 
(extensive screening) and the letter 'C' indicates the incidence in the control 
group. 
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So what are the observed and expected values for the data reported in Fig- 
ure 3.2? We explore them in Table 3.1. 

Applying Formula 3.1 we establish that x6 = (4-335.58 
 
8)2  (46- 464.2  42)2 + (12- 36.8  58)2 

+ 46.42 
3  

= 53.531, although a single study, namely [27], contributed by 21.33 to this 
value. A classical approach would be to remove this study from the meta—
analysis. Statistically, in 90% of cases the value of A is below 13.36 should be 
there no heterogeneity. According to [2] 90% confidence level is usually used to 
determine this critical value 13.36 and the result above this critical point should 
invite caution as such a result indicates heterogeneity so studies should not be 
simply pooled. 

Note that some expected values in Table 3.1 are below 5 which causes trou-
bles with the application of the central limit theorem as explained above. Nev-
ertheless, it is still applicable if the following conditions, originally attributed 
to [32], are satisfied. 

1. No expected value is less than 1. 

2. No more than 20% of the expected values are less than 5. 

We can see that these conditions are satisfied in our case. Note that in the 
conditions above we are not concerned with the observed values; we are only 
interested in the expected values. 

We also perform Pearson's chi—squared test for the reported sensitivity of 
routine evaluation (Figure 3.3) and the sensitivity of the technique combining 
routine evaluation with extensive screening (Figure 3.4). In the prior case the 
measured chi-squared value is xg = 8.38 while in 90% of cases this value is 
not higher than 7.78 should there be no heterogeneity. In the latter case the 
measured chi-squared value is xb = 15.11 while in 90% of cases this value is 
not higher than 9.24 should there be no heterogeneity. Although it must be 
noted that the number of studies considered and their respective sample sizes 
are worryingly low in these two tests. 

In general, if the number of studies is low or the sample sizes are small then 
the chi—squared test is underpowered; in other words, it may not detect hetero-
geneity even if it is present. Despite this fact, we have detected heterogeneity. 

The studies considered above investigated the same problem, the incidence 
of diagnosis of cancer in patients with unprovoked VTE, all using routine evalu-
ation, extensive screening and a follow—up period. So there is no obvious source 
of the heterogeneity that was statistically detected above. Interestingly, in prac-
tice we have often statistical homogeneity but in fact studies are heterogeneous; 
recall the example combining small children and dogs with large fish and cats 
from the introduction. Here we have detected heterogeneity statistically but 
with no obvious explanation. Recall that this situation is referred to as unex-
plained heterogeneity. And although, digging further into studies, we uncover 
quite a few differences, these differences do not appear to explain the variability 
in reported proportions: 

Although the study [25] excluded everyone younger than 70 years, looking at 
Figure 3.2 it can be seen that the variability in the mean age does not explain 
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heterogeneity in the measured incidence. Also, the fact that studies [20, 21] 
and [24] had longer follow—up periods should not significantly contribute to 
heterogeneity since the risk of being diagnosed with cancer falls to near normal 
levels a year after the diagnosis of VTE [33]. Even though studies [23, 24] 
and [26] excluded upper—extremity DVTs, these are only marginal to the overall 
number of VTEs [15]. Finally, there was large variability in what exactly a CT 
scan included, in particular it sometimes included and sometimes omitted pelvis, 
but the variability of differences means that it is difficult to attribute the specific 
heterogeneity we detected to it. 

On the other hand, in particular the age and the choice of extensive screening 
techniques are certainly factors that contributed to heterogeneity. The simpli-
fication we adopt is that we treat these factors equally with any other possible 
factors contributing to heterogeneity. It would be much better to attribute 
clearly specific variability to detected heterogeneity, but since we are not able 
to do so then we argue that the high complexity of possible sources of hetero-
geneity should be approached probabilistically considering all possible situations 
equally. Precisely this was performed in [9] and the linear entropy operator 
emerged. So we are confident that applying it in this situation is justified. 

In the literature the problem of unexplained heterogeneity is often approached 
statistically. Several existing methods are commonly referred to as random—
effects meta—analysis [5]. Such analysis acknowledges that there are in fact 
differences between studies; for example, the incidence of diagnosis of cancer in 
patients with unprovoked VTE can depend on age and studies having differ-
ently aged patients naturally have different expected incidences. The reported 
proportions do not vary only due to chance but also due to the other factors. 
Naturally, the precise source of heterogeneity is not known; in general we just 
make sure that small studies are taken into account along with big studies; 
see [34]. This can be as extreme as virtually taking the un—weighted arithmetic 
mean of particular proportions reported in all studies. 

However, this random—effects approach is sometimes criticised. As advo-
cated in [34], large heterogeneity in no way indicates that smaller studies should 
be more trusted nor that there is a fault in bigger studies. The approach pro-
posed later in this paper preserves the weights of big studies and thus it should 
not be susceptible to such a criticism. Furthermore, in [9] a specific model of 
meta—analysis with unexplained heterogeneity was created and it was shown 
that in that model the weighted arithmetic mean actually provides overwhelm-
ingly the most probable estimate of the true proportion in the population that 
the studies investigated. 

Furthermore, apart form statistically detected heterogeneity we have identi-
fied another problem. Proportions reported in many studies were related to the 
problem presented in this paper, but could not be incorporated in the analysis 
above, and we would not be able to use them also in random—effects meta—
analysis. However, the following section explains a non—statistical technique 
that will permit taking them into consideration. 
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3.2 Probabilistic propositional logic 
How would a logician approach the problem presented in the previous section? 
The author of this paper happens to be a logician so here is a method that 
we could perhaps call a logician's approach to meta—analysis with unexplained 
heterogeneity. 

3.2.1 Basic notions 
Our basic references for this framework are [11, 12, 35]. First, we need to build a 
propositional language in which we will talk about findings reported in studies. 
In general, this is a set L of a finite collection of variables, say 

L = 

For example, we can denote by al  the statement that a patient has cancer and 
by a2  the statement that the patient has VTE. In order to combine variables into 
sentences we use several logical symbols: 'and' (A), 'or' (V) and 'negation' (--,) 
using the following recursive scheme: Every propositional variable is a sentence. 
If S is a sentence also is a sentence. For example, if S is a propositional 
variable a l  then = gal means that the patient does not have cancer. If S i  
and S2 are sentences then also Si  A S2 and Si  V S2 are sentences. For example, 
if Si  denotes the sentence gal  that the patient does not have cancer and S2 
represents the sentence a2 that the patient has VTE the sentence Si  A S2 = 
(—,a1)Aa2 means that the patient does not have cancer and at the same time he or 
she has VTE. The sentence a2A(—,a1) has exactly the same meaning as (—,a1)Aa2; 
both 'A' and 'V' are commutative. The statement Si V S1 = (—,a1) V al means 
that the patient either does not have cancer or the patient has it. Obviously, 
this sentence is always true. Most sentences however cannot be decided; they 
may be true for a particular patient but not necessarily. 

To express the likelihood that a particular sentence is true for a random pa-
tient we assign to every sentence that can be constructed over our propositional 
language L a number between 0 and 1. 0 means that the sentence is false, 1 
that the sentence is true and numbers rising from 0 to 1 represent our increasing 
confidence in validity of the sentence. Let us denote such a function 

P : sentences [0, 1] . 

The function P may not be arbitrary and it must follow some probabilistic 
rules. There are many justifications as to why it is so but perhaps the most 
compelling are found in the Dutch book argument by de Finetti [36]. The rules 
are the following: 

• If S is a true sentence then P(S) = 1, 

• P(—S) = 1 — P(S), 

• P (S i  V S2 ) = P(S1) + P(82 ) — P(S1  A S2). 
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So in particular if Si  and S2  are mutually exclusive (i.e., Si  A S2  is false) then 
P(Si.  V S2) = P(S1) + P(S2 ).  We shall call P satisfying the rules above a 
probability function from now on. 

There is another type of a sentence which we often need to consider: a con-
ditional sentence. A conditional sentence Si  given S2 is a sentence where we 
consider validity of S1  under the assumption that S2  is true. We denote this 
conditional sentence Si  S2. The order of symbols matters; T is not commu-
tative. For example, let al  denote the sentence that a patient has cancer and 
a2 the sentence that a CT scan detected a malignant tumor. Note that clearly 

a2 is false. Now for a random patient the sentence al  may or may not be 
true. But given a2  we surely know that al is true. Hence aila2  is true and we 
would assign P(aiIa2) = 1. How to define this probability function in general is 
given by the so called Bayes formula (and it is due to mathematicians Thomas 
Bayes and Pierre—Simon Laplace): 

A  
P(S11,52) — 

P(Si.  
P(52) 

 S2) 
 

whenever P(52) 0. 
The logical and probabilistic rules above are valid in any situation. In partic-

ular, logically true sentences such as (—,a1) V al  are always assigned the value 1. 
If validity of a sentence is uncertain then we shall attempt to use the findings 
reported in a particular study to find the appropriate number in [0, 1] represent-
ing our confidence that it is valid for a random patient. For example, if 10% of 
patients with VTE have diagnosed cancer in a particular study and we define 
L = {al , a2}, where al  stands for cancer being diagnosed and a2  for VTE being 
present, then 

P(ai A a2) = —
10 
100 = 0.1  

shall represent our confidence in the sentence a l  n a2 being true for a patient 
randomly selected from the population investigated in the study. 

For every observation research or for every sample investigated in randomised 
studies we may consider the set of all probability functions that we can create 
from observations in the study in a given propositional language L. Different 
languages can lead to different sets and therefore we denote such a set by K L  
and call it an L—knowledge base. In our example above we would write 

KP = {P(ai  A a2) = 0.1} (3.2) 

but this would not be possible if we had no propositional variables expressing 
the diagnosis of cancer and the presence of VTE. 

However, even with a fixed language we still can create several different sets 
of statements. For example, we can replace the knowledge base ill Equation 3.2 
with 

KZ = {P(-(ai  A a2)) = 0.9} 
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but the intuitive meaning of the two knowledge bases Kf and la is the same. In 
other words, they both generate the same sets of possible probability functions 
P. More explicitly, this set of possible probability functions is a closed convex 
subset of the 2' — 1 dimensional probabilistic simplex where n is the number 
of propositional variables in L. (This is because the set of all logically and 
probabilistically possible probability functions P forms the whole probabilistic 
simplex which is closed and convex itself, and observations from studies in the 
form explained above are only linear constraints, which can restrict the simplex 
only in a closed and convex manner.) If two L—knowledge bases generate the 
same set of possible probability functions P then we call them equivalent. We 
shall be interested in knowledge bases only up to equivalence and we identify 
them with their respective closed convex sets in the probabilistic simplex. We 
shall use symbols WI', .1/174', and ViL,  V4 to denote closed convex sets in 
the probabilistic simplex generated by L. 

Now consider an L1—knowledge base KL1 generating a closed convex set 
WL1 where L1  = , an } and expand our language by some additional 
propositional variables to form L2  = L1  U {b1, b8 }. If we disregard any 
implicit knowledge about the variables then KL1 is also an L2—knowledge base. 
Denote the closed convex set generated by K L1 in L2  by WL2. Now for every 
P E WL2  let P1L1  be the probability function from the simplex generated by 
L1  that agrees with P on all sentences that can be created over L1. Define 

W L21L1 = {PiLl: P E W L2 }. 

Then clearly WL2 L, = W L1  (this can be shown using the disjunctive normal 
form theorem of propositional logic together with the rules that P obeys speci-
fied above). 

In any practical problem it is undesirable to disregard all implicit knowledge 
we possess, in particular if it concerns dependence of propositional variables. For 
example, we may have two variables, one say al  representing general detection 
of cancer and the other say a2 representing detection by a CT scan. Clearly a2 
implies al  as it cannot be that cancer is detected by a particular test but at the 
same time it is not detected in general. Such implicit knowledge always must 
be part of a knowledge base in which case the knowledge base may not be so 
easily transferable to an extended language as suggested above. 

Now, let L1 = {al, a2} and KL1 = {P(a i  A a2) = 0.2, P(( ---,a1) A a2) = 
0.2, P(ai A (—a2)) = 0.3, P(( —,a1) A (—,a2)) = 0.3}. There is only one probability 
functions satisfying KL1 so the corresponding closed convex set WL1 has only 
one element. If 

KL1 
 was constructed from observations in a particular study 

then the study provides full information regarding al  and a2.  However, the 
constraints formulated from observations in a particular study often only restrict 
the set of all possible probability functions, in particular when we consider 
many studies that make our propositional language rich. For example, if we 
add an extra variable a3  to our language that is independent of al  and a2  
forming the language L2  because another study talks about a3  then we have 
no additional constraints to put to KL2 based only on the first study. Hence 
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KL2  does not specify for example the value of P(a3) at all and there are many 
different probability functions that could be possible and the corresponding 
closed convex set WL2 in the probabilistic simplex has many elements. 

One needs to be careful not to include inconsistent constraints to a single 
knowledge base. For example, since sentences a1  Aa2 and (-2i) Aa2 are mutually 
exclusive there is no probability function P that satisfies KL1 = {P(ai  A a2) = 
0.7, P((— ,a1) A a2) = 0.81. In other words, the corresponding set WL1  in the 
probabilistic simplex generated by L1  is empty. This can happen for example 
if one mix observations from a control group with an intervention group in a 
randomised study. 

Apart form dependence of selected propositional variables there is another 
implicit knowledge we would like to incorporate to every knowledge base: every 
sentence that is not logically false has some probability to be realised. Therefore, 
we add to every knowledge base linear constraints stipulating that P must assign 
to every logically satisfiable sentence a value bigger than some small positive 
constant, say  iool000 •  In our context this represents that everything that is 
logically possible should be manifested at least in one patient out of one hundred 
thousand. We shall often assume that such constraints are in place. 

3.2.2 Linear entropy operator 

Given a study, if we manage to identify a suitable propositional language L and 
find relevant and consistent constraints on possible probability functions P using 
observations from the study and implicit knowledge concerning propositional 
variables then we in fact represent the study by a non—empty closed convex 
set in the probabilistic simplex determined by L. The question as to how we 
should determine L and the constraints merits detailed investigation and it is 
the main objective of this paper. We will address it in detail in the following 
section. In this section we show how we can use this representation to combine 
the observations reported in studies. 

For the purpose of combining non—empty closed convex sets in probabilistic 
simplex, the linear entropy operator denoted eKL was introduced in [8] (but 
only in the case when the weighting is uniform) and justified as optimal for 
combining studies with unexplained heterogeneity in [9] (this time for any non—
zero weighting) under the assumptions that were specified in the introduction. 
However, do note that under different assumptions another operator might be 
more suitable and, additionally, whether these assumption are fully satisfiable 
in practice is questionable. 

Now, formally, our preferred operator eKL takes an m—tuple of closed convex 
sets WI',  , Wrf, and a non—zero weighting A = (Ai Am), Al > 0, Am  > 
0 and Ei

m 
 i  ai = 1, and maps them to a single non—empty closed convex set in 

the probabilistic simplex determined by L. We denote this set by 

QKL W L w,Thz, 

In our context each WI' is determined by either an observation study or a 
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sample investigated in a randomised study and the corresponding weight Ai  is 
defined by 

sample size for Wi
L  

Ai =  
pooled sample size 

An argument supporting that the weighting should be determined in this way 
was given in [9]. 

001.- L , Wif.',) is a set of possible probability functions P. Under as- 
sumptions employed in [9] each P in this set is overwhelmingly more likely 
to correspond to true probabilities on sentences over L in the population from 
which the studies have taken samples than all possible probability functions out-
side this set given the observations from studies are expressed by WP,  , W L  
with the corresponding weights. However, the argument employed in [9] does 
not imply whether some probability functions in qL(WP, , W4) are more 
likely than others. Fortunately, the resulting set of probability functions often 
contains only a single P in which case there is no need to sort this ambiguity 
out. Nevertheless, the failure of the linear entropy operator to provide us with 
a single probability function in general can be viewed as a major philosophical 
and practical flaw of this operator which will need to be seriously addressed in 
Section 3.4 to compute its result. 

Another problem with the linear entropy operator is that it cannot satisfy 
any reasonable adaptation of the general locality principle as defined in [12] due 
to [12, Example 1]. In that paper an attractive alternative to the linear entropy 
operator was investigated which satisfies the general locality principle. 

On the other hand, the linear entropy operator satisfies a string of other 
principles and many such principles were extensively discussed in [35]. Here we 
list only several principles that will turn out somewhat useful in this paper: 

• (Strong Consistency Principle) If fl 1  WL 0 then 

ryn 

= i=, 

In other words, if studies are jointly consistent then every P that stud-
ies agree on is also produced by the linear entropy operator. In particular, 
etp,( w-L )  = This property in the case when the weighting is uniform is 
proved in [8] but it is fairly easy to modify the proof so that it works for any 
non—zero weighting. 

• (Language Invariance Principle) Let L1  and L2 be propositional lan-
guages such that L1  C L2 and all the variables are independent. Consider 
WP1 ,  ,  Then 
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Note that we already know that WI'  = WL1 , 1 < i < m, by the defini-
tion. This principle means that if we extend our propositional language by new 
variables but do not supply any new constraints (this includes also constraints 
postulating that every sentence that is not logically false has some probability 
to be realised) then the probability functions P produced by the linear entropy 
operator in the simplex generated by L2 agrees with the probability functions 
produced by this operator in the simplex generated by L1  on all sentences formed 
only over L1. In other words, we can freely extend our language with indepen-
dent variables without affecting the result of combining studies by the linear 
entropy operator. 

• (Consistent Irrelevant Information Principle) Let L1  and L2 be dis-
tinct propositional languages such that all the variables are independent. 
Consider W1L' W4' and Vi

L2 ,  , V4 1 v-L2  0. Then 2  such that nm i 

elicL (wir,uL2nvii.,, uL2 ,...,wniLluL2 nyk,uL2 )L,  = 

This principle is stronger than the language invariance principle. It says that 
we can even supply new constraints with new variables as long as the constraints 
are jointly consistent across all studies. A simple example of such constraints 
are those postulating that every sentence expressible in L2 (but not jointly in 
L1  and L2) that is not logically false has some probability to be realised. 

The two properties above in the case when the weighting is uniform are 
proved in [35, Lemma 4.2.8 and Corollary 4.2.9] but it is fairly easy to modify 
the proof so that it works also for any non—zero weighting. 

The principles above will prove to be useful in the following section where we 
show how we should choose a propositional language and knowledge bases for 
our problem of combining studies concerning the incidence of diagnosis of cancer 
in patients with unprovoked VTE. The principles will help us to determine 
what matters and what does not when constructing them. Should the technical 
notation of this section appear impenetrable for the reader we believe that it 
could be fully understood upon reading the following section. 

3.3 Guide to representation 

The following should be considered only as a guide, one of many possible ways 
of representing real studies in a mathematical model of closed convex sets in a 
probabilistic simplex. It is not possible to prove that a particular representation 
of reality is 'correct'. Instead, we need to proceed back and forth between the 
model and reality trying to improve our model in each stage. 

While examining the validity of the representation neither of the following 
will be addressed: 

1. The stability of the representation (e.g., if a small change in constraints 
can cause big change in the results). 
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2. Whether different researchers can apply it consistently. 

On the other hand, although we do not investigate this rigorously, the pre-
sented guide should be more transparent than subjective systematic reviews of 
conflicting studies. 

3.3.1 How to select propositional variables 
Our first task when representing studies by closed convex sets in a probabilis-
tic simplex is to construct a propositional language that will allow us to talk 
about relevant findings. Looking at Section 2.1 we quickly identify three main 
things we would like to be able to express in the case of a random patient with 
unprovoked VTE: 

1. Cancer manifested within 12 months (CA). 

2. Cancer detected during routine evaluation when unprovoked VTE was 
diagnosed (RE'). 

3. Cancer detected during extensive screening when unprovoked VTE was 
diagnosed (ES'). 

These variables are however not independent. Indeed, if cancer is detected 
during initial routine evaluation or extensive screening then cancer was surely 
manifested within 12 months so propositional sentences CA) A RE' and 

CA) A ES' are false. Recall that in such a case we should assign P((— ,  CA) A 
RE') = 0 and P((— ,  CA) A ES') = 0 and place these constraints to every knowl-
edge base over a language containing the variables CA, RE' and ES'. However, 
this would cause some technical difficulties; for example, we would violate the 
assumptions adopted in [9], where an argument supporting the linear entropy 
operator was given, so we instead add the following constraints: 

1. P((— CA) A REc) = mo8000 and  

2. P((— ,  CA) A ESc) = 	 1008000 .  

Given our sample sizes, this is not going to influence the interpretation of results 
in any way. In general, any positive number less than one can be used but 
practically it really needs to be significantly smaller that the proportions that 
can be reported in studies. The particular selection above is chosen for technical 
reasons discussed in Section 3.4. 

Looking at the studies [21, 23, 24, 25] the propositional variables above seem 
sufficient. However, the studies [20, 22, 26, 27] differentiate between routine 
evaluation and extensive screening giving suspicious results and cancer being 
actually detected. In other words, only some of these suspicious findings are 
find to be actual cancers but if cancer is not detected then the patient still can 
manifest cancer within a 12 month period. So we are compelled to add the 
following two variables to make the most of the studies: 
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1. Routine evaluation yielded suspicious results in respect to cancer when 
unprovoked VTE was diagnosed (RES). 

2. Extensive screening yielded suspicious results in respect to cancer when 
unprovoked VTE was diagnosed (ESS). 

Again, we have problems with dependence so we add the following con-
straints to every knowledge base: 

1. P((--,  RE') A REc) — 100000 and  

2. P((---. ESs) A ESc) — 1008000 • 

This is because it is not possible to detect cancer using for example routine 
evaluation if it does not yield suspicious results in the first place. 

Now, a more thorough examination of the studies shows us that the nature 
of extensive screening quite varied across the studies. This could compel us to 
add new variables to differentiate between CT scans and other tests such as 
ultrasound and tumor markers. Checking further details, we see differences in 
how suspicious results were treated, follow—up organised and so on and so forth. 

In practice we may sometimes eventually conclude that every study is dif-
ferent and tailor propositional variables Li  specifically for each study 'V which 
would result in a language L = L1  U ... U Ln„,, 

Li t 
 n Li2  = 0, and individual 

studies being then represented by closed convex sets WI' , , Wk— respectively. 
Looking at the consistent irrelevant information principle from Section 3.2.2 we 
can see that in such an extreme case the linear entropy operator performs no 
actual merging; if we restrict the language into the one used in a single study 
Li  then we obtain precisely the closed convex set that was used to encode it; 
i.e., W. . In our case we would like to add the implicit knowledge that every 
logically satisfiable sentence over whole L has some probability to be realised. 
In such a case the consistent irrelevant information is not applicable but the 
strong consistency principle will give us a similar result because clearly studies 
cannot disagree if their constraints are formulated in different languages. 

So, it is necessary to stop somewhere in the process of adding variables. 
Otherwise no merging is possible. This is, however, not something intrinsic to 
meta—analysis but a trait of probability in general. Consider that one suffers 
from an episode of unprovoked VTE. What is his or her chance that cancer will 
be diagnosed within one year? Studies suggest 10%. But he or she is young and 
studies also suggest that younger people have much lower chance. So it must be 
less than 10%, right? Well, the incidence is lower, but this was obtained from 
a smaller sample. And that person had also a history of cancer in family and 
has been exposed to considerable amount of dust and smoke. But, on the other 
hand, he or she does sport and eat vegan and so on and so forth and ultimately 
there is no sample to establish the chance that he or she develops cancer because 
probability cannot be assigned to an individual. 

We need an abstract population where we generalise from individuals. But 
if we generalise too much then we may end up 'mixing apples and oranges' 
as combining studies with explained heterogeneity was often described in the 
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More Bias Less Power 111 11==11111 1111. 
Less Variables More Variables 

Figure 3.5: The illustration of the effect that the propositional language has on 
the bias and the power of a merging process. 

literature. Our population here are studies and we need to abstract from details. 
Our studies appear sufficiently similar; extensive screening was after all treated 
as it is named in every study, something that should ultimately detect cancer 
if it is present, so in this particular case we feel comfortable ignoring some 
differences. But this is something that must be decided on a case—to—case basis. 
And this is not an easy task. We paraphrase Paris [37] who made a similar 
remark in a different context: 

`Most of us would surely prefer modes of reasoning which we could 
follow blindly without being required to make much effort ;  ideally 
no effort at all. Unfortunately, this guide to meta—analysis with 
unexplained heterogeneity is not one to follow blindly; it requires 
substantial effort to get meaningful results.' 

To conclude, we trade precision of our propositional language for abstrac-
tion and power. Too fine language gives little power with not much merging 
performed and too rough language creates bias and wrong conclusions; see Fig-
ure 3.5 for an illustration. 

Does our selection of propositional variables 

L = {CA, REc, ESc, RE', ES'} 

create bias? Of course, it has to be there. But in our particular selection of stud-
ies including variables concerning differences in extensive screening, the mean 
age, the length of the follow—up period and the exclusion of upper—extremity 
DVTs discussed in Section 3.1 would leave us with little power. Considering 
the treatment of extensive screening across studies as explained in Section 2.1 
and looking at the analysis of variability identified across studies in Section 3.1 
we are confident that the bias introduced by selecting the above propositional 
language is not going to significantly distort merging process. In practice it 
is necessary to perform such an analysis when constructing the propositional 
language. 

3.3.2 How to assign probabilities consistently 
In the previous section we have created and justified the propositional language 
L = {CA, REe, ESC, RE', ESS}. In this section we will explain in detail how we 
can assign to studies L—knowledge bases (see Section 3.2.1 for the definition of a 
knowledge base) by interpreting observations reported in studies as constraints 
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on possible probability functions P. There is no unique way of doing this; 
observations from studies can be often interpreted in many ways. But the more 
effort we put into it, the better the correspondence between our model in the 
form of knowledge bases and reality. 

Now, notice that there are two types of studies: 

1. observation; these report observations on a single sample and in our case 
they are [22, 25, 26, 27], and 

2. randomised; these consider two samples: a control sample and an inter-
vention sample and in our case they are [20, 21, 23, 24]. 

As we will shortly see, each type needs a separate treatment. In the following 
section we start with observation studies. 

Probability and conditional probability 

Let us have a look at the observation study [26]. 

"Our final study population consisted of 40 patients who completed 
initial screening, FDG—PET/CT imaging, and follow—up. [...] Dur-
ing the initial screening evaluation, 16 patients (40%) had > 1 
positive clinical finding concerning for underlying malignancy. [...] 
Twenty—five patients (62.5%) had > 1 abnormality on FDG—PET/CT 
suspicious for malignancy, [...] Of the 16 patients with positive clini-
cal findings [...], 13 (81.2%) had one or more abnormalities on FDG—
PET/CT requiring additional evaluation, [...], only one patient in 
this cohort was diagnosed with cancer (cancer incidence 2.5%, 95% 
CI: 0.6%-12.9%)." 

In the sample there were 40 patients of which 16 had suspicious routine 
evaluation. Therefore 

P(RES) = 
16

z()- 

So in general we assign probabilities as proportions; we take the number of 
patients with a trait over the overall number of patients we have investigated 
for the trait. The addition 'we have investigated for the trait' is important. 
P(ESS A RES)  

40, 
 because the trait 'having extensive screening suspicious' was 

here reported only for those who had routine evaluation suspicious. The correct 
interpretation of the observation from the study is the following conditional 
probability (see Section 3.2.1): 

13 
P(ES's RES) = 

16 

In general if N is the sample size in the study and a and b are sentences 
then by the Bayes rule 
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P(a A  b) N,LA b 
NaAb 

P(alb) P(b) EL Nb 

where Na Ab is the number of patients for which both sentences a and b are true 
and Nb is the number of patients for which the sentence b is true. In our case, 
N = 40, a = ESS, b = RES, Nam = 13 (for 13 patients both screening methods 
produced suspicious results) and Nb = 16 (16 patients had routine evaluation 
suspicious). 

Note that the study in fact reported that no patient had cancer without 
having it diagnosed by extensive screening. Since for technical reasons we do 
not wish to assign zero probabilities we instead include the following constraint 
to express that having cancer and not being diagnosed by extensive screening 
is unlikely: 

P(CA ES`)) =  
8   

100 000 
Similarly, no cancer was diagnosed by routine evaluation, hence 

P (CA A REc) = 
8 

100 000 
Encoding all observations expressible in our language L into constraints to-

gether with implicit knowledge mentioned in the previous section we obtain the 
following L—knowledge base: 

8 
K L61,0 =  {P(REs) = —

16 

P(ES' I RE') = —
13

, P(CA A(—, ESc)) —  [2
40 ' 16 100 000 

8 25 1 1 
PICA A REc) = 

100 000 
P(ESs) = 40' P(ES')  = 

40 ,  P(CA) = 7-
10- , 

8   
P((--,  RE') A REc) — (8  P (—, ESs) A ESc) — 

100 000 ' 100 000 ' 
8 8 

P((— ,  CA) A REc) =  , P((— ,  CA) A ESc) =  
100 000 100 000' 

P(`logically satisfiable sentence') >  1  100 000 I' 
The first two lines above were obtained from observations, the third and fourth 
lines express our implicit knowledge about the dependence of the variables and 
the last line is to express that every logically satisfiable sentence that we can 
construct over L can be true at least for one patient out of one hundred thou-
sand. Recall that this last requirement is only technical so that for example the 
justification from [9] for the linear entropy operator works. 

Our final step in constructing a knowledge base is to check its consistency. 
Normally, observation obtained from a single sample should be consistent, but 
there always could be errors and distortions due to patients lost during the study 
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period (in particular if there is a lengthy follow—up period). Furthermore, our 
requirement that every sentence must be assigned a non—zero probability could 
cause further problems. In the case above 

1 
P(CA ESe)) + P(CA A ESc) = P(CA) = 40' 

P((—,  CA) A ESC) + P(CA A ESC) = P(ES 
1

) = To  and 

P((—,  CA) A ESC) = 
8 

100 000 

yield also 

P(CA A(—, ESc)) = 
100 000 

so everything appears consistent. Checking consistency for many constraints 
however may be difficult. This should be performed using a computational 
software as we used in Section 3.4. 

Randomised studies 

Unlike the observation study above, randomised studies report proportions ob-
served on two different samples and these can be easily inconsistent with each 
other. Inconsistent constraints considered together yield a knowledge base to 
which corresponds an empty set in the probabilistic simplex given by L. Such 
contradictions are expected when there are several different sources of infor-
mation (e.g., more studies) and the purpose of the linear entropy operator is 
to interpret such conflicting reports if each report is individually consistent. If 
all observations across all studies are consistent then by the strong consistency 
principle the linear entropy operator produces a set of probability functions that 
corresponds to a knowledge base containing all those observations. So we do 
have internal consistency of our methodology. On the other hand. the linear 
entropy operator is not able to produce any results if it is given an inconsistent 
knowledge base as one of the inputs. We therefore must express observations 
obtained from control and intervention samples as separate knowledge bases. 
We will demonstrate this on the study [21]. 

"Apparently cancer—free patients with acute idiopathic venous throm-
boembolism were randomized to either the strategy of extensive 
screening for occult cancer or to no further testing. [...] Of 201 
patients, 99 were allocated to the extensive screening group and 102 
to the control group. In 13 (13.1%) patients, the extensive screening 
identified occult cancer. In the extensive screening group, a single 
(1.0%) malignancy became apparent during follow—up, whereas in 
the control group a total of 10 (9.8%) malignancies became symp-
tomatic [...]" 

8 
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Looking carefully on the study we realise that all included patients went 
through routine evaluation without being diagnosed with cancer. Note that this 
on the other hand does not mean that routine evaluation was never suspicious, 
only that cancer was not proved. Interpreting the quote from the study we have 
in mind that every observation is a conditional probability subject to —, REc. 

Patients in the intervention sample were extensively screened and the fol-
lowing knowledge base could be constructed from the observations: 

14 13 
4111,1  = {P(CA REc) =  99 ,P(CA A ESc RE') =  , 

P ((—REs) A REc) = —, ESs) A ESC) =  
100

8 

 000 p 1008000' 
8  8 

P((— ,  CA) A REc) = CA) A ESC) = 
100 000 pi( 100 000 

1 
100 000 I • 

Note that P(— REc) was not reported hence we cannot determine unconditional 
P(CA REc)). This is the reason why this study was not included in the 
analysis performed in Section 3.1 and it is a demonstration of the main advan-
tage of the presented method over statistical (not Bayesian) meta—analysis; the 
present method has an ability to deal with complex knowledge. 

Now we represent observations from the control sample: 

10 
1([21],0 = IP (c A HREc ) =  

102' 

P((— RE') 
8 

REc) = P((— , ESs) A ESC) = 
8 

100 000 ' 100 000 
8 8 

P((— ,  CA) A RE') — P((— ,  CA) A ESc) =  
100 000 100 000 

1 
100 000 

Notice that these two knowledge bases above are jointly inconsistent: Con-
straints P(CA(—,  RE') = — l

ib°, and PICA RE`) = 99 cannot possibly hold at 
the same time. We therefore always split intervention and control samples. 

Another randomised study is the study [24]: 

"[...] leaving 197 in each group for the modified intention—to—test 
analysis. After initial screening assessment, cancer was diagnosed in 
11 (5.6%) patients in the 18F—FDG PET/CT group and four (2.0%) 
patients in the limited screening group (absolute risk difference 3.6%, 
95% CI 0.4 to 7.9; p = 0.07). [...] One (0.5%) occult malignancy 
was detected in 186 patients who had negative initial screening in 
the 18F—FDG PET/CT group, compared with nine (4.7%) in 193 
patients in the limited screening group (absolute risk difference 4.1%, 
95% CI 0.8 to 8.4, p = 0.01)." 

P(`logically satisfiable sentence') > 

P(`logically satisfiable sentence') > 
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Patients in the intervention sample obtained both routine evaluation and 
18F—FDG PET/CT while patients in the control sample obtained only rou-
tine evaluation (in the paper the term limited screening is used instead). We 
construct a knowledge base for the intervention sample: 

4A1,1 = {P(REc V ESe) 

P((--,  RES) A RE') = 

P((--,  CA) A RE') =  

= —
11

, P(CA I REc) A ESC)) = 
197 186 

8 8   
P((-,ESs) A ESc) — 

100 000 ' 100 000 ' 

100
8

000 P((—' 
CA) A ES') — 

100 000 ' 
8 

P(`logically satisfiable sentence') > 
1 

100 000 I ' 

and for the control sample: 

4 
K[a4],c = {P(RE') =  

197
, P(CA RE') = 9 

8 8   
P((— ,  RE') A REe) =  P((— , ESs) A ESc) = 

100 000 100 000 ' 

P((— ,  CA) A REc) = 8 8 
100 000 

P((— CA) A ESe) = 

100 000 

P(`logically satisfiable sentence') > 
1   

100 000 I .  

Note that P(CA REc)) = P(CA  REc))•P(--,  RE') = P(CA  RE9)• 
(1 — P(REc)) = th • (1 — th) = The constraint P(CA RE')) = 197 
would be in KL[241 0 redundant. We do not have to include redundant constraints 
in knowledge bases, but we may do it (although a computational software check-
ing, for example, consistency can reward us with a lower computational time 
should we do not include such constraints). 

Also P (CA A REc) = P(REc) —P((—,  CA) A REc) = 49 

100  0

7 loo goo
00 

so P(CA) = 1  
P(CA A(—, REe)) +P(CA A REc) = 19

4
7  100 197 Therefore, 

8 

000 = ' 
including the constraint P(CA) = w,  would lead to an inconsistent knowledge 
base. Nevertheless, one can easily interpret the quote above using this very 
constraint and there would be nothing wrong with that if one also manages to 
reassign other probabilities so that the resulting knowledge base is consistent. 
Only our way of interpreting the observations gives a rather small chance of 
one to ten thousand to the event that a patient has cancer detected by routine 
evaluation while he or she actually does not have it. 
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Sensitivity, specificity and positive predictive value 

In medicine there are three main ways how to explain the usefulness of a screen-
ing strategy. These are its sensitivity, specificity and positive predictive value. 
We have already worked with a notion of sensitivity in Figures 3.3 and 3.4. The 
sensitivity of a screening strategy specifies how many cancers were identified by 
the strategy relative to the overall number of cancers. 

For example, taking 4'41 0  considered above the sensitivity of routine eval-
uation is 

P  
P(REc A RE' ICA) =

(CA A(REc  A REs))  
P(CA) 

P(RE') — P(REc RES)) — P((--,  CA)  A (RE' A REs)) 
P(CA) 

4 8 4   4 197 100 000 100 000 

13

. 13 8   
197 100 000 

Now, looking at the randomised study [20], which was in detail explained 
in [29], in the control sample 7 of 21 cancers were discovered by routine evalu-
ation which gives the sensitivity of routine evaluation 

P(RE' A REs CA) = 
21 

In the intervention sample 12 of 30 cancers were discovered by routine eval-
uation thus 

P(REc A RE' CA) = 12 

Routine evaluation jointly with extensive screening detected 18 out of 30 cancers: 

P((RE' A RE') V (ES' A ES')ICA) = 18 

Compare this with reports in Figures 3.3 and 3.4. 
Now let us have a look at a report from [29] that is detailed in Table 3.2. 

Sensitivity Specificity Posit. Predict. Value 

Table 3.2: The sensitivity, the specificity and the positive predictive value of 
routine evaluation and extensive screening as reported in [29, Table 2]. 

The specificity expresses the proportions of non—suspicious results to the 
number of patients without cancer and the positive predictive value expresses 
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the proportion of actual cancers among only suspicious results; see Table 3.3 for 
an interpretation of these quantities in our language. 

Sensitivity Specificity Posit. Predict. Value 

Routine Eval.  P(RE' A RE' CA) P(- RE81-,  CA) P(CA A RE' RE') 
Extensive Scr.  P(ES' A ESS CA)  P( ,  ES' H CA) P(CA A ES' I ESS) 

Table 3.3: Our interpretation of the sensitivity, the specificity and the positive 
predictive value of routine evaluation and extensive screening using the propo-
sitional language L. 

Sensitivity Specificity Posit. Predict. Value 

P((RE' RE')V P((-, RE') A  ES')H CA) P((CA A RE' A RE' )V 
V(ES' A ES')1 CA) v(CA A ES' A ESs)1 RES v ESS) 

Table 3.4: Our interpretation of the sensitivity, the specificity and the positive 
predictive value of routine evaluation combined with extensive screening using 
the propositional language L. 

There are two main problems with translating Table 3.2 into constraints from 
Table 3.3. The first problem is that the reports concerning routine evaluation 
are from the sample that combines both control and intervention groups. The 
second problem is that the reports regarding extensive screening are made after 
excluding patients having cancer discovered during routine evaluation. A more 
appropriate translation -of the -results are therefore the following constraints: 

P(ESc A ESs ICA A(- REe)) = 1.73  , P(-, ESs1(-,  CA) A (,RE°)) = —
199 

284 

P(CA A ESC I ESS A( —r REc)) = 6 
91 

for the intervention sample and 

7 
P(REc A RE' ICA) = —

21 ' 
P(CA A RE` I REs) = 

62 
for the control sample (note that we are not able to determine any constraints for 
the specificity from the reported observations). Obviously, we have not obtained 
the latter constraints for the sensitivity and the positive predictive value from 
Table 3.2; we have obtained them from the following: 

"During the total study period a malignancy occurred in 21 of the 
288 patients undergoing limited screening (7.3%), vs 30 out of 342 
extensively screened patients (8.8%) [. ..1" 
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Furthermore, in [29, Table 1] it was reported that 62 out of 288 routine 
evaluations were suspicious. Finally, we form the following knowledge base. 

7  
K [

L
201  = {P(RE' A RES ICA) = —

21 
P(CA A RE' I RE') =

2 

P(CA) = 
21

—P(RE5) = 62 
288 ' 288 

P((-r RE') A RE') = 8 P((-,  ESs) A ES') = 8   
100 000 100 000' 

8   
P((--,  CA) A RE') =  

100
8

000 
P((-, CA) A ES') = 

100 000 

P(`logically satisfiable sentence') > 
1 

100 000 } 

In [29, Table 1] it was also reported that 57 out of 342 routine evalua-
tions were suspicious in the intervention sample. Finally, we form the following 
knowledge base. 

KL  = {P(ES' A ESs ICA A(-,  REc)) = [201,I 18 

P(CA A ES' 1ES' A(-RED)) 
12 

P(REc A RE' ICA) =  , 

P(CA A RE' I RE') = 
12

77 , P(CA) = 
3

4

0

2 ' 
P(RES) = 57 

342 

8   8   
P(( REs) A  REc) = 100 000 

P((-, ESs) A ESe) -
100 000' 

8 
P((-, CA) A RE') = 8 P((—,  CA) A ESc) = 100 000 ' 100 000 

1 
P(`logically satisfiable sentence') 

100 000 

12 patients in the intervention sample had cancer discovered during routine 
evaluation. Considering that 342 - 12 = 330 patients were supposed to be 
extensively screened the constraint for specificity P(-,  ES' CA) A (-' REc)) = 

284 but also some other constraints that we can construct from the reports 
in the paper such as P(ESs REc) = —3

9
0
1
2  and P(ESc H REc) = Tg7, do not 

appear to make sense and in fact they are inconsistent with the knowledge 
base above. These value are due to the fact that only 302 patients actually 
went for extensive screening procedures and the corresponding proportions were 
reported in the study. In practice we shall always expect that patients are lost 
in particular during follow-up and we investigate how to address such an issue 
in the following section. 
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Danger of Inconsistencies Less Power 

Keeping constraints together Splitting contraints 

Figure 3.6: The illustration of the effect that splitting constraints into more 
knowledge bases has on the power of a representation. 

Adjusting constraints 

If there are only a few patients lost during the study period (i.e., there are only 
few such patients in respect to the overall sample size) then we may safely ignore 
such lose and we in fact ignored this in all previously mentioned studies but [20]. 
However, 28 lost patients in [20] appear significant in a sample of 330 patients. 

The down-side of adjusting constraints for missing patients is the danger of 
creating inconsistencies so one would perhaps suggest splitting one knowledge 
base into two. After all, we always split the control and intervention samples 
for the very same reason. We need to however realise that splitting constraints 
into several knowledge bases is not desirable at all as it decreases their power. 
It introduces ambiguity where it was not in the first place. See Figure 3.6 for 
an illustration. 

In the following we adjust the randomised study [23] for missing patients: 

"A total of 14 patients (3.9%; 95% CI, 1.9 to 5.4) in the limited-
screening group [431 patients] and 19 patients (4.5%; 95% CI, 2.9 to 
6.9) in the limited-screening-plus-CT group [423 patients] received 
a diagnosis of occult cancer [in the interval between randomisation 
and the 1-year follow-up]. [...] In the primary outcome analysis, 4 of 
14 occult cancers (29%; 95% CI, 8 to 58) were missed by the limited 
screening strategy (i.e., cancer was diagnosed after the screening 
strategy had deemed the patient as being free from cancer and before 
the end of the 1-year follow-up period), whereas 5 of 19 occult 
cancers (26%; 95% CI, 9 to 51) were missed by the strategy of limited 
screening plus CT." 

In the control sample only 4 patients did not receive any actual screening and 
more significantly 17 patients discontinued follow-up. We consider the amount 
of missing patents rather insignificant and therefore we encode the above by the 
following knowledge base. 

14 10 
K[2

L31,0 =  {P(CA) = —
431

, P(Rff A RE' I CA) = T4  , 

8  8 
P((- REs) A REc) =  „-ESs) A ESe) —  

100 000 ' ' pft 10 000' 
8  8   

P((-,  CA) A RE') = „ CA) A ES") = 
100 000 ' ' 

p( ( 

.- 
10 000' 
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P(`logically satisfiable sentence') > 
1 

100 000 
On the other hand, 33 patients in the intervention sample did not receive the 
envisaged screening and 15 were lost during follow—up. Having 33 patients who 
missed the screening appears more significant and we adopt the following. 

102:314  = P (CA) 

P((—, RE') ARE') — 

P((--,  CA) A RE') — 

19 14   
423 

, P(REc V ES') = 
423 — 33' 

8 8 
P(( —,  ESs) A ESc) =  

100 000 100 000' 
8 8   

CA) A ES') = 
100 000 100 000' 

1 
P(`logically satisfiable sentence') 

100 000 
Since we do not allow zero probabilities we actually do not allow to assign 

the probability 1 to any sentence that can be false. In the following observation 
study [27] the sensitivity of extensive screening was reported as 1; however, we 
need to adjust this value slightly down for a technical reason of avoiding zeros. 

"Fifty patients were included. [...] In 22 (44%) patients, PET—CT 
showed increased FDG—uptake suspicious for malignancy [.. .1. After 
additional procedures, malignancy was confirmed in 54.5% (12/22) 
of cases. [...] In 45.5% (10/22) of cases, additional evaluation [...] 
discarded the presence of an occult cancer. [...] Twenty—eight pa-
tients (56%) had a negative PET—CT at VTE diagnosis. Five pa-
tients were lost to follow—up. Among the 23 other patients, none 
had developed malignancy at the end of follow—up." 

The sensitivity of extensive screening P(ESc A ESS ICA) is reported as iz 
but this would mean that P((ESC A ESS) A CA) = P(CA) which in turn gives 
P((—.(ES'AESs))ACA) = 0. Therefore, in order to create a consistent knowledge 
base we represent this observation as P(CA) — P((ES' A ESS) A CA) = lool000 

12 
If('271,0  = {P(CA) — P((ES' A ES') A CA) =  

100000 '  
12 22 

P(CA A ES' I ES') =  22 P(ESS) =  , 

8 8 
P((--,  RES) A RE') = 100 000 P((— ,  ESS) A ES') =  

100 000 
8 8   

P((--,  CA) A RE') = 100 000' P((— ,  CA) A ES') = 
100 000 

1   
P(`logically satisfiable sentence') > 

100 000 
The knowledge base above gives us the following statement about the sensi-

tivity of extensive screening: 
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P((ES' A ESs) A CA)  P(CA) 12  
P(ESc A ESS CA) = 100000  

P(CA) P(CA) 

Note that adding P(CA) = 01  would lead to an inconsistent knowledge base: 
P(CA A ES' ESS) = 1

21 and P(ESS) = so gives P(CA A(ESc A ESS)) = g while 
P(CA) > P((CA A ES') n ESS)). 

Conclusion 

In Section 3.3.2 we have learnt couple of useful guidelines: 

• Distinguish between probability and conditional probability. 

• Split constraints in randomised studies to those concerning the interven-
tion sample and those concerning the control sample. 

• Do not split constraints into more knowledge bases if not necessary. 

• Interpret the sensitivity, the specificity and the positive predictive value 
of a screening method. 

• Read through a whole paper not just through its abstract. 

We apply them to represent the two remaining observation studies [22, 25] 
considered in this paper. 

First, the study [25] observed the following: 

"Fifty patients [...] were included. One patient was diagnosed [with 
cancer] at inclusion and cancers were found in three other patients 
during the follow—up period [...]." 

Our interpretation is the knowledge base 

= {P(CA) = P(REc V ES') = -573  , 

8 8 
P((—,  RES) A RE') = 

100 000 
ESS) A ES') = 

100 000 

P((—,  CA) A RE') =  8 
8 

P('Iogically satisfiable sentence') ? 
1  

 
100 000 

Second, the study [22] observed the following: 

" [...] 345 patients considered to have idiopathic VTE. [...] Ninety—
two of [patients with suspicious findings on routine evaluation] had 
an idiopathic thrombosis. [...] In patients with idiopathic venous 
thromboembolism [the frequencies of malignancy not detected by 
routine evaluation] were 3.14% (six of 191) [in patients who were 
younger than 70 years] and 9.30% (12 of 129) [in patients who were 
above 70 years] [...]." 

, P((---,  CA) A ES') = 
100 000 100 000 
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Furthermore, [22, Table 3] reported that there were 9 patients whose cancer was 
missed during both screenings but they were diagnosed before the end of the 
follow—up period. 

Note that we had to look at the actual paper and not just at the abstract 
since they investigated both patients with unprovoked VTE and patients with 
provoked VTE but the abstract reports only proportions on the combined pop- 
ulation. 

We interpret the above by 

92  
{P(RES) = T-45  , P(CA A RE' I RE') = 

25 
= 

P(CA) = 945' P(CA A ES' H RE') = 
320' 

8 8 
P((— ,  RE') A RED) = 

100 000' 
P(( --, ESs) A ESc) =  

100 000' 

P((--,  CA) A RE') =  
100

8

000 
P((—r CA) A ES') = 

100
8

000' 

P(`logically satisfiable sentence') >  1  100 000 I 

Note that the above gives that the sensitivity of routine evaluation is 

P  
P(REc A RE' I CA) =

((RE'  A  RE')  A CA) 
P(CA) 

P(CA  A RE' I REs) • P(RES)  E • a  25 
P(CA) 43 43 345 

This concludes our construction of knowledge bases and in the next section 
we will show how to assign a weighting to knowledge bases. 

3.3.3 How to assign weighting 

In the previous section we have created the following knowledge bases, each 
created from a sample investigated in a study (the corresponding sample size 
is in the parentheses): K[L2'01/  (342), K(2'0],c, (288), K[z1],1(99), (102), -/<- 1] c; 

(345), KEL,31,i  (423), 431 0  (431), K[L,41.i  (197) , If(' (197), KL K[L2.2]o 241,0 [251,0 
(50), ./<-

51 0  (40), ./f 71 0  (50). As we have explained in Section 3.2.1 a non—
empty closed convex set in a probabilistic simplex corresponds to every consis-
tent knowledge base. Let us denote by WI' the set corresponding to the sam-
ple 'i'. Given several non—empty closed convex sets, the linear entropy operator 
was justified for the purpose of combining them if we deal with unexplained het-
erogeneity under specific assumptions; see Section 3.2.2. The resulting closed 

tw[L,20 w 
]  I , 

 • • 
5 

[2

L  
7LO

)
)  

where the weighting A is convex set is denoted by `'A 
given by 
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sample size for WL 
Ai  =  

pooled sample size 

For example, 

sample size for W[201 I  
A [2 

[2011  
(1j -= • 

pooled sample size 2 564 

Therefore, in the merging process, closed convex sets obtained from larger 
samples have also bigger weights in respect to closed convex sets obtained from 
smaller samples. Working with the weights obtained from sample sizes in the 
context of unexplained heterogeneity was supported in [9]. Apart from the 
corresponding sample size we do not otherwise judge the quality of a study. 
This could be perhaps considered as a weakness of the presented representation 
as our only choice here is to not include flawed studies at all. 

Furthermore, the closed convex sets were obtained from knowledge bases 
and constraints in any given knowledge base do not appear equally strong. For 
example, the sensitivity of routine evaluation was obtained only by looking at the 
patients having cancer and these comprised only a small fraction of the overall 
sample size. This is not problematic for the result obtained in [9] due to the 
assumption that a sufficiently large sample was observed. Unfortunately, it is 
questionable whether this is the case for some studies included here. In general, 
analysis proposed here should be performed only if all constraints included in 
knowledge bases were observed on large samples. In the other case a different 
method for combining them could be more appropriate. 

3.4 Roundabout computation 

3.4.1 Algorithm 
In the previous section, we have identified 12 knowledge bases each of which de- 
termines a non—empty closed convex set of L—probability functions. We denote 
those WL  WL wL wL wL wL wL wL wL 

[2OLP [20],C 5  " [211,15  " [21],C 5  " [221,05 " [23],I 5  " [23],C 5  " [24],P " [24],C 7  w

[251,o ,  W[2s] o ,  " 
w

[2
L 

 0 71  in this order. As we have mentioned previously, the use " ,  
of the linear entropy operator for meta—analysis with unexplained heterogeneity 
was justified and this operator was shown to have nice properties. Thus far, we 
have not explicitly defined this operator, but we will do so in this section as we 
need such a definition to actually compute the result. 

First, by the disjunctive normal form theorem, the value of a probability 
function on any sentence is determined by its values on special atomic sen-
tences [11]. There are two to the number of variables in L of such sentences so 
in our case we have 25  = 32 atomic sentences. If we list them in some fixed or- 
der, say al , , a32, then we may identify an L—probability function P with the 
vector of its values on these atomic sentences: (P(ai ), , P(a32)). Note that 
P(ai ) E [0, 1], 1 < j < 32, by the definition and E.121  P(ai ) = 1 follows from 
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the probabilistic rules that P satisfies. So the set of all L—probability functions 
is the 31 dimensional simplex. 

Now consider two L—probability functions P and Q in our simplex. The 
Kullback—Leibler divergence (an asymmetric distance) from P to Q is the fol-
lowing real number 

KL(Q II P) := 

32 

j=1 
Q(as) log 

Q(%)
.  

P(aa) 

What the linear entropy operator here in effect does is to create a set of L—
probability functions P that minimise the following weighted sum of Kullback—
Leibler divergences 

12 

KL(0)
11 P) 

i=1 

subject to Q (') 
 E W[2o] I,  ••• , 

n(12)  w

[
L

7] 0 where the weighting factors 2, " 2   

sample size for WI' 
A, —  

pooled sample size 

were identified in Section 3.3.3. We denote this set by \
(w 

[2
L 

 01,1 7  • • • 7  
 

W[27],0).  
However, no method that could feasibly determine this set explicitly is known 

to us. On the other hand, it is only a simple generalisation of the famous 
alternating projective procedure due to Csiszar and TusnLly [38] performed in 
the literature many times and with various degrees of generality [13, 14, 39, 40] 
that the following procedure converges to a point in 001.(L( A x W[L20] I 7  • " W[27] 0 ) : 

Let Po  be an arbitrary L-probability function with no zero coordinates. We 
define recursively a sequence {Pk}ZL0  by the following: 

1. set Q(i)  = arg minc2(i)Ewi, KL(Q(i)  IA) and 

2. define Pk±i(ai) = 	Ai • Q (i)  (%) for all 1 < j < 32. 

Now, 

Ihn Pk E w L L 
"A \ [20],I7 • • . , v  [27],  ) k—>co 

provides us with a means to compute a point inside the set; unfortunately, no 
explicit characterisation of such a point is known to us. 

Fortunately, there is a roundabout way. Let 1 > r > 0 be a fixed real 
number. Let .// be an arbitrary L-probability function with no zero coordinates. 
We define recursively a sequence 

1. set Q(i)  = arg minQ(i) E W.I. 
 KL(Q(i) 

 Pic.)  and 

2. define PT+, (a j) = r • 37  (1 — r) • Ei
l_21  A, • Q(i)(aj) for all 1 < j < 32. 

{P1,•}Z)=0  by the following: 
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10-2  Rate of Convergence .   

Figure 3.7: The behaviour of TYkr(CA A RE' A ESC A RES A ESS) for several fixed 
r and as we change k = 0,  , 99. 

What we have in effect done above was to bias the alternating projective proce-
dure towards the uniform probability function and we may decrease the level of 
bias by lowering the value of the parameter r. In particular Pi° = Pk. Now, it 
is a consequence of a modification of the chairman theorem due to Wilmers [12] 
performed in [13, 14] that 

iclICL (TAT L w L )\ lim Pk = cmoc k,A-•  k ,,,
[20] i,• • • , [271,0) / r—>0 k—).00 

see [11] for a definition of the CM' operator, which selects a unique probability 
function in a closed convex set of probability functions. 

In general it does not hold that limr+o  limk,co  Pk = limk,c,„ = 
limk,, Pk  (see [13, 14]) but as seen in Figure 3.7 this is true in our situation. 
A possible and likely explanation is that the set 91-.1-'( W[20],I ' • ' W[27]  0) in 
fact contains only a single probability function. We will therefore simply use 
the alternating projective procedure to compute a probability function P to 
represent our selection of studies. 

3.4.2 Implementation 

The algorithm specified in Section 3.4.1 was implemented by using the tools 
specified in Table 3.5. In this section we explore some technical issues that we 
have encountered during the implementation. 
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Tool 

Processor 

Compiler 

Programming Language 
Optimisation Package 

Intel Core i5-4690 CPU 
only one core (thread) was used 
Microsoft Visual Studio 2015 
Community Version 14.0.25123.00 Update 2 
C++ 
Alglib 3.10.0, Free Edition 
Licence: GPL 2+, Reference: [41] 

Table 3.5: Tools used to perform the computation. 

First, the only computationally complex task in the algorithm specified in 
Section 3.4.1 is to compute the unique Q(i)  = arg minQ(‘)Ew i, KL(Q(i)1/A) for 
every sample 'i'. Since the Kullback—Leibler divergence is a strictly convex 
function in its first argument and each set Wi

L  is determined by several lin-
ear equalities and inequalities this is a problem of linear convex optimisation. 
Alglib, more precisely its sub—package Minbleic, employs the gradient of the 
Kullback—Leibler divergence (in our case analytically obtained) to minimise this 
divergence and it handles equality constraints by linear projections and inequal-
ity constraints by the method of activation and deactivation (in our case we do 
not have any genuine inequality constraints; we have only boundary conditions). 
More details can be found in [41]. 

Since for technical reasons, we do not allow to assign zero probabilities to 
sentences (otherwise the algorithm from Section 3.4.1 would not work), our 
variables were bounded by small constants. This in effect could cause some of 
our variables to vary in magnitudes that are much smaller than those of other 
variables. This is a major problem for optimisation. There are two methods to 
remedy this: 

1. We may select constraints in such a way that all variables varying in small 
magnitudes are in fact fixed to unique numbers. 

2. We may inform Minbleic how each variable should be scaled. 

Both these methods were employed here. 
Minbleic automatically checks whether the constraints in every knowledge 

base are consistent. We have obtained no indication of inconsistency. 
There are several stopping conditions available in Minbleic. We have tested 

that EpsG (gradient change) smaller than 0.000 000 01 does not lead to any 
improvement in minimising the divergence. Also EpsX (step change) smaller 
than 0.000 000 1 does not lead to any improvement. 

Second, the question how many iterations for the parameter k are needed 
was necessary to be answered. From Figures 3.8 and 3.9 it is apparent that 
preforming 1 000 iterations is sufficient. These computations took 359 seconds 
and 243 seconds respectively. 
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Rate of Convergence .10-2  

al.  3.32628 

3.32627 

3.32626 
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Figure 3.8: The behaviour of Pkr(CA A REc A ESc A RE' A ESs) for fixed r = 
0.001 and as we change k = 900, ... , 999. 
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Figure 3.9: The behaviour of Pk (CA A REc A ESe A RE' A ESS) and as we change 
k = 900, ... , 999. 
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Chapter 4 

Result and Discussion 

4.1 Result 
In this paper we have developed a special non—statistical technique for meta—
analysis with unexplained heterogeneity and we have applied it to the problem of 
determining the incidence of diagnosis of cancer in patients with unprovoked ve-
nous thromboembolism (VTE); see Section 2.1 for a detailed explanation of this 
condition. The new method was needed as traditional fixed—effect meta—analysis 
could not be applied due statistically detected heterogeneity; see Section 3.1. 
Furthermore, any non—Bayesian meta—analysis would not be able to deal with 
complex knowledge. In Section 3.3 we have managed to interpret complex find-
ings reported in the studies [20, 21, 22, 23, 24, 25, 26, 27]. For comparison, sta-
tistical techniques allow only observations that were made in Section 3.1. The 
initial stage of our method offers much flexibility in interpreting the findings 
and further improvements are certainly possible but the subsequent application 
of the linear entropy operator was justified in [9] as optimal under assumptions 
specified in the introduction. One of the assumptions however states that the 
reported proportions were observed on sufficiently large samples. The pooled 
sample size of the selection of studies considered here is 2 564 patients which 
appears sufficient; however, many proportions were reported on rather small 
samples as noted in Section 3.3.3. The following results should therefore be 
treated as our best guess based on the information on hand: 

The one—year incidence of diagnosis of cancer in patients with unprovoked 
VTE is 7.78%. This is significantly lower than 10% (95% confidence interval 
8.6 — 11.3) reported in the previous meta—analysis [19]; see Figure 4.1 for com-
parison. Note that our method does not produce confidence intervals. This is 
because if all assumptions mentioned in the introduction are satisfied (although 
never the case in practice) then our method employing the linear entropy op-
erator yields the overwhelmingly the most likely proportions; see [9]. Although 
our result suggests that the incidence is lower than 10% it is still much higher 
than in the normal population so it still appears reasonable to screen for cancer 
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in patients when they are diagnosed with unprovoked VTE. We will analyse the 
reliability of this result in the following section. 

Which screening method for cancer should be used when unprovoked VTE is 
diagnosed can be determined by Table 4.1 where the sensitivity, the specificity 
and the positive predictive value (see Tables 3.3 and 3.4 for explicit definitions) 
of routine evaluation, extensive screening and combined screening are reported; 
see Section 2.1 for a detailed description of these screening strategies but do 
note that these are abstracted notions and the definition of the strategies varied 
from study to study. Our results should be therefore considered as a general 
guidance whether routine methods are sufficient or if including more extensive 
methods is warranted. 

Despite the impression made by some individual studies included in our 
analysis that the sensitivity of 69.7% (95% confidence interval 61.1-77.8) for 
screening combining routine evaluation with extensive screening reported in 
the meta—analysis [19] is too high, our result that the sensitivity of combined 
screening is 77.76% indicates even higher sensitivity that the one established 
in [19]. 

Our results also indicate that extensive screening has much better detection 
rate than routine evaluation which detects only 43.77% of cancers. This roughly 
supports the original findings of [19] that routine evaluation has the sensitivity 
of 49.4% (95% confidence interval 40.2-58.5). 

Sensitivity Specificity Posit. Predict. Value 

Routine Eval. 43.77% 81.55% 15.63% 
Extensive Scr. 77.72% 68.45% 17.19% 
Combined Scr. 77.78% 63.29% 15.15% 

Table 4.1: Our results based on a new non—statistical analysis of several studies 
concerning effectiveness of different screening strategies for cancer upon diag-
nosis of unprovoked VTE. 

4.2 Discussion 
In this section we investigate how reliable our results are, namely whether ex-
clusion of a single study from our collection [20, 21, 22, 23, 24, 25, 26, 27] has 
a significant effect on the results reported in the previous section: 

The incidence of diagnosis of cancer in patients with unprovoked VTE com-
puted in such a manner varied from 6.97% to 9.79%. This means that we cannot 
reliably claim that the incidence is in fact lower than the one reported in the 
previous meta—analysis [19]. Such a claim would depend on the inclusion of the 
study [23] and it is worth noting that this study investigated patients with the 
lowest average age among all studies considered here. 

The variability of our results concerning effectiveness of different screening 
strategies is in Table 4.2. The sensitivity, the specificity and the positive predic- 
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Incidence of Cancer with Unprovoked VTE in % 

[25] 0 (80) 
[21] I (66) 

[21] C (66) 
[27] 0 (65) 
[22] 0 (64) 
[24] I (64) 

[24] C (62) 
[20] I (62) 

[20] C (62) 
[26] 0 (55) 
[23] I (54) 

[23] C (54) 
Our Result (60) 

Previous Meta 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 

Figure 4.1: The Forest plot of our selection of studies (in blue), our interpre-
tation of them (in red) and the previous meta—analysis [19] (in black). The 
x—axis denotes the percentage of people that had cancer discovered within a 12 
months period (studies [20, 21] and [24] had a longer follow—up period) after 
the occurrence of VTE. Note that the study [21] did not report this proportion 
explicitly. This is the main reason why our result is different from the pooled 
value reported in Figure 3.2. 95% Clopper—Pearson confidence intervals are used 
but note that our non—statistical method does not produce confidence intervals. 
On the y—axis the studies are arranged by the mean age of patients (the value 
in round brackets). The letter '0' indicates an observation study, the letter 'I' 
indicates the incidence in the group that received the intervention (extensive 
screening) and the letter 'C' indicates the incidence in the control group. 
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tive value of routine evaluation vary symmetrically around our results 43.77%, 
81.55% and 15.63% respectively in magnitudes that appear to indicate that our 
results are reliable. 

Sensitivity Specificity Posit. Predict. Value 

Routine Eval. 36.59 — 49.61% 76.24 — 83.67% 12.69 — 18.07% 
Extensive Ser. 47.11 — 83.20% 58.58 — 73.48% 10.22 — 20.89% 
Combined Scr. 74.99 — 83.25% 52.54 — 64.07% 12.58 — 18.51% 

Table 4.2: The variability of our results when a single study is removed con-
cerning effectiveness of different screening strategies. 

On the other hand the sensitivity, the specificity and the positive predictive 
value of extensive screening vary strongly towards lower values from established 
77.72%, 68.45% and 17.19% respectively in rather high magnitudes. This vari-
ation was predominantly achieved by excluding a study that investigated mere 
50 patients. In particular the sensitivity of extensive screening could be in fact 
as low as the sensitivity of routine evaluation alone. More research is needed to 
establish this value. 

Finally, the sensitivity of combined screening of 77.78% appears reliable. 
Combined screening is much more sensitive than routine evaluation alone. The 
specificity of combined screening vary asymmetrically. This value could be 
smaller than established 63.29%. There does not appear to be a significant 
problem with the positive predictive value established as 15.15%. 

Excluding a single study proved to be a useful tool and one would perhaps 
suggest to exclude more studies using some criteria in an attempt to perform 
subgroup—analysis. In general in meta—analysis this was shown to be a prob-
lematic strategy that reduces the power of the analysis and thus creates results 
only by chance [2]. More studies being included in the analysis here would be 
preferable. 



Chapter 5 

Conclusion and 
Recommendation 

Our analysis indicates that 7.78% of patients with unprovoked venous throm-
boembolism are diagnosed with cancer within one year. This result is however 
sensitive to the average age of the patients included in the studies. We are not 
able to reliably claim that the incidence is lower than 10% as reported in [19]; 
this could be simply because our pooled sample has a lower average age (of 60 
years). 

Our results concerning routine evaluation and combined screening for cancer 
upon diagnosis of unprovoked VTE appear reliable and support the finding of 
the previous meta—analysis [19] that combined screening employing both routine 
and extensive screening techniques has a much better occult—cancer detection 
rate than routine evaluation alone. The difference in the detection rate accord-
ing to our analysis is 77.78% versus 43.77%. Despite the fact that extensive 
screening is expensive, it could be traumatic for patients and there is also the 
danger of radiation induced cancer it may be worth to consider to employ it 
jointly with routine evaluation. 

Finally, it is an open problem whether extensive screening without routine 
evaluation detects significantly more occult cancers in patients with unprovoked 
VTE than routine evaluation. Although combined screening has much better 
sensitivity, this could be because each technique detects cancer in different pa-
tients. The fact that extensive screening alone under—performs was indicated in 
some studies included in our analysis (e.g., [20]) nevertheless such findings are 
usually obscured as routine evaluation is performed first and patients having 
cancer discovered in this stage are removed. Further research on the sensitivity 
of extensive screening is needed. 
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