Extraction of antioxidant phenolic compounds from spent coffee ground by oil infusion method and production of scrub coffee oil glycerin soap bar

> By Mr. Vaivit Kositarat ID 5614892

4190

A special project submitted to the faculty of Biotechnology, Assumption University in part of fulfilment of the requirements for the degree of Bachelor of Science in Biotechnology 2016 THE ASSUMPTION UNIVERSITY LIBRARY

Senior Project

Extraction of antioxidant phenolic compounds from spent coffee ground by oil infusion method and production of scrub coffee oil glycerin soap bar

By

Mr. Vaivit Kositarat

SSUM/

ID 5614892

A special project submitted to the faculty of Biotechnology, Assumption University in part of fulfilment of the requirements for the degree of Bachelor of Science in Biotechnology

Title	: Extraction of antioxidant phenolic compounds from spent coffee ground by oil infusion method and production of scrub coffee oil glycerin soap bar
By	: Vaivit Kositarat
Advisor	: A. Sireerat Laodheerasiri
Level of study	: Bachelor of Science
Department	: Agro Industry
Faculty	: Biotechnology
Academic vear	: 2016 FRS

All Right reserved by Faculty of Biotechnology Assumption University

.

ABSTRACT

The spent coffee grounds (SCG) contain large amount of phenolic compounds which are investigated as a potential source of antioxidant. Melanoidins is one of phenolic compounds formed during a roasting process of coffee bean and it is brown-colored compound. To increase the sustainability of SCG, Coffea arabica was extracted by oil infusion method. Five oils which were canola oil, corn oil, coconut oil, sunflower oil and mineral oil were used as the oil carrier for extracting antioxidant compounds from SCG, the 10%, 20% and 30% w/w of SCG were infused in each oil carriers at room temperature for 24, 48, 72, 96 and 120 hrs. The result showed that, the increasing of concentration of infusion ratio and the time period of infusion effected the increasing of the amount of total phenolic compounds (TPC) in all oil carriers. The TPC of 30% (w/w) SCG at 120 hrs of canola oil, corn oil, coconut oil, sunflower oil and mineral oil were 31.99±0.06, 35.54±0.87, 29.05±0.74, 30.37±0.5 and 22.04±0.72 mg/ml, respectively. The highest TPC was found in 30% w/w SCG infused in canola oil at 72 hrs. which presented 36.10 ± 0.93 mg/ml however 30% w/w SCG infused in corn oil at 120 hrs. showed the highest percentage increase of TPC comparing with carrier coconut oil (59.4 $\% \pm 3.89$). All five SCG infused oils contain scavenging activity to DPPH; canola oil, corn oil, coconut oil, sunflower oil and mineral oil contains 92.31%±1.1, 91.25%±1.9, 48.94%±0.4, 94.71%±0.3 and 10.51%±0.4, respectively. The 30% w/w infused in sunflower oil at 120 hrs. exhibited the highest antioxidant activity of $94.71\% \pm 0.3$ and IC50 was 29.07 mg/ml whereas coconut oil showed the percentage increasing of antioxidant activity comparing with oil carrier was $265.23\% \pm 5.8$. For the brown-colored development, the infusion ratio and period of infusion influenced the increasing of color in all oil carriers significantly. Peroxide value were increased when SCG was infused in canola oil, corn oil, and sunflower oil, the value were 16 meg/kg, 8 meq/kg and 36 meq/kg, respectively. however peroxide value was unchanged in coconut oil and no peroxide value found in mineral oil. For antioxidant soap bar with SCG scrubber made with 5 types of SCG infused oil and with oil carrier, samples were tested for preference test, 20 panelists graded liking score range from 1 to 9 followed by these attributes, color, fragrance, lather moistening, scrubbing, skin feel and over all liking. Data from the test was statistically proved by Duncan multiple range test. The result showed that infused mineral oil soap had highest moistening score as 6.75 ± 1.16 .

Keywords: Spent coffee ground (SCG), Oil infusion, Melanoidins, Antioxidant activity, Soap bar

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my advisor; A Sireerat Laodheerasiri. Faculty of Biotechnology, Assumption University who helped me made this project happèn and gave me great advices as well as broaden my knowledge. Including, providing room and raw materials.

Also, I would like to thank Dr.Siriwan Panprivech, Faculty of Biotechnology, Assumption University who guided me in part of total phenolic compounds and antioxidant activity.

And, I would like to thank Dr. –Ing. Tatsawan Tipvarakarnkoon, Faculty of Biotechnology, Assumption University; for guided me how to further develop this glycerin soap product.

Besides these, I would like to thank Miss Thipthida Kaewtathip, Institute of Food Research and Product Development (IFRPD) Kasetsart University who provided me Arabica spent coffee ground.

Finally, I would like to thank my family for supporting and encouraging me. Also thank to my friends for helping me and each other in all the semesters since we had been study together

(HE ASSUMPTION UNIVERSITY LIBRAR)

TABLE OF CONTENT

	Page
ABSTRACT	Ι
ACKNOWLEDGEMENT	II
TABLE OF CONTENT	III
LIST OF FIGURES	IV
LIST OF TABLE	VIII
CHAPTER I: INTRODUCTION	1
OBJECTIVES	3
CHAPTER II: LITERATURE REVIEW	4
1. Coffee 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
2. Free radical and Antioxidant	8
3. Oil infusion	9
4. Glycerin soap bar	11
5. Lipid oxidation and peroxide value	12
CHAPTER III: METHODOLOGY	13
CHAPTER IV: RESULTS AND DISCUSSIONS	21
CHAPTER 5: CONCLUSIONS	62
REFERENCE	63
APPENDIX	66

. •

.

Page

Figure 1 Phenolic compounds in coffee	7
Figure 2 Melanoidins formed during roasting process of coffee bean	7
Figure 3 Stable and unstable molecule (free radical)	8
Figure 4 Antioxidant reacts with free radical	9
Figure 5 Total phenolic compounds in Canola oil compared between infusion ratio	25
(10%,20% and 30% w/w) and infusion period (24 to 120 hrs)	
Figure 6 The percentage development of total phenolic compounds in Canola	26
oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs	
of infusion period	
Figure 7 Total phenolic compounds in Corn oil compared between infusion ratio	27
(10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)	
Figure 8 The percentage development of total phenolic compounds in Corn oil	27
in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs	
of infusion period	
Figure 9 Total phenolic compounds in Coconut oil compared between infusion ratio	28
(10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)	
Figure 10 The percentage development of total phenolic compounds in Coconut oil	29
in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs	
of infusion period	
Figure 11 Total phenolic compounds in Sunflower oil compared between	30
infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)	
Figure 12 The percentage development of total phenolic compounds in Sunflower oil	30
in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs	
of infusion period	

•

.*

.

٠

.

•	Page
Figure 13 Total phenolic compounds in Mineral oil compared between infusion ratio	31
(10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)	
Figure 14 The percentage development of total phenolic compounds in Mineral oil	32
in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs	
of infusion period	
Figure 15 The percentage increasing of total phenolic compound compared with	33
oil carrier from 24 to 120 hrs, in 30% (w/w) infusion ratio	
Figure 16 The percentage inhibition of DPPH scavenging assay in canola oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)	37
Figure 17 The percentage inhibition increased from carrier oil in canola oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period	38
Figure 18 The percentage inhibition of DPPH scavenging assay in corn oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)	39
Figure 19 The percentage inhibition increased from carrier oil in corn oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period	39
Figure 20 The percentage inhibition of DPPH scavenging assay in coconut oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)	40
Figure 21 The percentage inhibition increased from carrier oil in coconut oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period	41
Figure 22 The percentage inhibition of DPPH scavenging assay in sunflower oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)	42

•

.

	' Page
Figure 23 The percentage inhibition increased from carrier oil in sunflower oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period	42
Figure 24 The percentage inhibition of DPPH scavenging assay in mineral oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)	43
Figure 25 The percentage inhibition increased from carrier oil in mineral oil in each infuse ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period	44
Figure 26 The increasing of percentage inhibition of DPPH scavenging assay from carrier oils in 30%(w/w) infusion ratio from 24 to 120 hours compare between eachoils carrier	44
Figure 27 The percentage of color increasing compare to canola oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours	49
Figure 28 The percentage of color increasing compare to corn oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours	50
Figure 29 The percentage of color increasing compare to coconut oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours	51
Figure 30 The percentage of color increasing compare to sunflower oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours	52
Figure 31 The percentage of color increasing compare to mineral oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours	53
Figure 32 survey question; what is your gender?	57
Figure33 survey question; age	57

•

•

. •

٠

Page

•

Figure34 survey question; What kind of bathing soap you like?	58
Figure35 survey question; Which brand of bathing soap you are using?	58
Figure36 survey question; How long you have been using specific bathing soap brand?	59
Figure37 survey question; What is the level of importance on following attributes for soap	59
Figure38 survey question; Do you know antioxidant soap?	60
Figure39 survey question; Have you ever use skin scrub?	60
Figure40 survey question; If there is an antioxidant glycerin soap bar with coffee scrub available in market, will you buy it	61
Figure 41 survey question; If there is an antioxidant glycerin soap bar with coffee scrub available in market, will you buy it	61

•

.

•

LIST OF TABLE

÷

	Page
Table1 Chlorogenic acid content in green coffee bean, expressed in g%, dry matter basis	6
Table 2 Total phenolic compounds of carrier oils (canola oil, corn oil,coconut oil, sunflower oil and mineral oil	22
Table 3 Total phenolic compounds in the various concentration(10%, 20%, and30% w/w) of SCG infusion in different oil carriers	23
Table 4 The percentage of total phenolic compound increasing from carrier oils in all SCG infused oils	24
Table 5 The percentage antioxidant activity of oil carriers by DPPH scavenging	34
Table 6 The percentage of antioxidant activity of SCG infused in the various type oil carriers	35
Table 7 The increasing of percentage antioxidant activity of SCG infused in the various type of oil carriers compared with oil carrier	36
Table 8 the inhibition concentration of DPPH scavenging assay at 50% (IC50)in 30% (w/w) infusion ratio from 24 hours to 120hours in each oil	45
Table 9 The measurement of color intensity of oil carrier at 420 nm	46
Table 10 The percentage of color intensity increased from oil carrier	47
Table 11 The percentage color increasing (10^3) from oil carrier of all oil infused samples	48
Table 12 Peroxide value of carrier oils, SCG infused oils (30%(w/w)/120hours)and percentage peroxide value increase from carrier oil.	54
Table13: preference scores of each type of infused oils soaps on seven attributes	55

. ·

.

.

CHAPTER I

INTRODUCTION

Coffee is the most popular beverage in the world with the second world trade community while the biggest is Petroleum. There are two main species of coffee that cultivate for consumption, *Coffea Arabica* (Arabica) and *Coffea canephora var. robusta* (Robusta). Because of Arabica its taste milder and more intense flavor, 70-70% of coffee's cultivation is Arabica.

The coffee after cultivation and preparation will get through roasting process then milling to form coffee powder use in brewing, after brewing process, a cup of espresso is made and the residue coffee is called "spent coffee ground" or SCG. Mostly it will be disposed as solid waste of fertilizer because it does not have commercial value. In some case, SCG are transformed into value added product by used as raw material of producing bioethanol or biofuel. Add referrence

The main component of phenol in green bean coffee is chlorogenic acid which is formed by esterification, consists of trans-cinnamic acids (caffeic, ferulic and *p*-coumaric acids) with hydroxyl groups on quinic acid. During coffee brewing process, chlorogenic acid is degraded by the heat and hydrolysis into smaller structure compounds such as caffeine and mostly are the soluble compounds. Besides this, the coffee beans during roasting process due to the high temperature applied in the process lead to transformation of chlorogenic acid into melanoidin which represents the brown colored compound, that come from Maillard reaction between reducing sugar and amino acid. Add refference Therefore, infusion oil process is used to extract the non-soluble melanoidin through the carrier oil and increase the total phenolic compound and antioxidant activity included with the change of color in infused oil.

In this study, the oil infusion method was used to extract nonsoluble compounds "melanoidin" by vary the type of oil carrier. The SCG-infused oil had potential to make antioxidant soap bar because of the phenolic compounds which isolated from spent coffee ground. Antioxidant compounds can protect skin from the sun light and helping the cell from the damag by free radical. Glycerin based soap was used for making soap bar due to its transparency. Besides this, SCG was applied in the soap bar as a scrubber in order to boost cleansing ability.

.

This project aims to study the effectiveness of oil infusion method to extract the phenolic compounds which contain antioxidant activity from SCG and to development the glycerin soap bar added with the SCG infused oil. Furthermore, the browning color and peroxide value were also determined to indicate the characteristic of SCG infused oil.

OBJECTIVES

- 1. To determine the amounts of total phenolic compounds antioxidant activity and color development in different types of oil carriers after oil infusion method.
- 2. To study the effect of infusion ratios and infusion times on the phenolic compounds, antioxidant activity, color and peroxide value development in spent coffee ground infused oil
- 3. To compare the attributes between different type of infused oil glycerin soaps

CHAPTER II

LITTERATURE REVIEW

1. Coffee

1.1 Robusta & Arabica

Coffee are cultivated in more than 50 countries, consist of Asia, Africa, America and Caribbean region. There are two spices of coffee those are the most cultivation in the world due to its unique taste and smell which are Arabica (*Coffea arabica*) 75% and Robusta (*Coffea canephora*) 25% of the world's cultivation.

When these two spices of coffees are made, their taste and aroma are different which Arabica has a much more intense flavor and complex aroma of those flowers, fruit, honey and chocolate. Robusta is more concentrated by its bitterness and is less aromatic. Although Arabica is more intense in aroma, Robusta contains almost twice amount of caffeine. The 100% Arabica is considered to be the best coffee in the world and much more superior than Arabica blend with Robusta (Jansen, 2006).

1.2 Spent coffee ground

After coffee beverages are made, a solid residue known as spent coffee grounds (SCG) is produced. Normally, SCG are disposed as a solid waste. It needs a proper management in order to get rid of SCG waste. Burning is not the good way to do, due to its bioactive compound which such as polyphenols, caffeine and tannins, can lead to production of greenhouse gas which directly bad effect to atmosphere. To avoid making the air pollution, there are many ways to make it more value, SCG can use as fertilizer for planting or raw material of biofuel production due to high organic compound in it. (Alessia Panusa, 2013)

1.3 Phenolic compound in coffee

Coffee contains large amount of phenolic compound. Phenolic compounds are found as a main composition of compound in plants, which has high in antioxidant activity to prevent or slow down oxidation reactions that destruct their cells. Mostly found in seeds and green leaves.

1.3.1 Chlorogenic acids (CGA)

Chlorogenic acid can be separated into two main groups which are mono-caffeoyl and di-caffeoyl acids. Robusta coffee contains more di-caffeoyl acids than Arabica coffee. Most of di-caffeoyl acids are hard to decompose in roasting process and remain barely unchanged in form that promote bitter taste in coffee and exhibit harsher taste profiles in Robusta, beside this the harsh taste present by di-caffeoyl acids in plant are effective protection of insects. Whereas, mono-caffeoyl acids are simply in structure and much more easier to decompose pass though roasting process

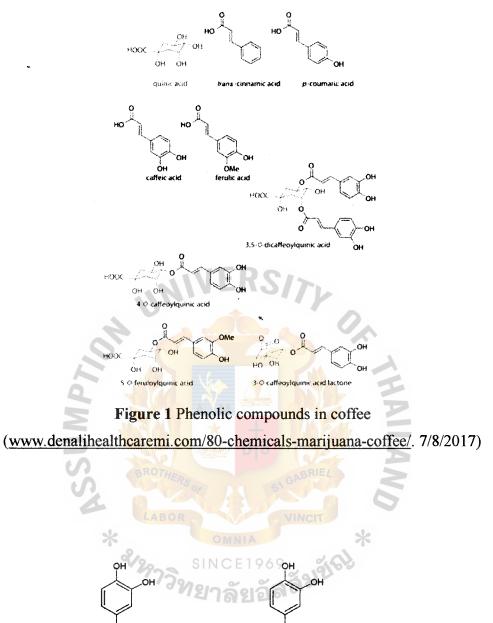
Chlorogenic acids formed by esterification consist of caffeoylquinic acids (CQA) with the main isomers (3-, 4- and 5-CQA), and related compounds such as caffeic acid, ferulic acid and p-coumaric acid; these compounds are the main of the phenolic fraction occurring in green coffee beans (Figure 1). (Alessia Punusa, 2013) Chlorogenic acid content in green coffee bean was shown in Table 1.

1.3.2 Melanoidin

Polyphenols in coffee like Chlorogenic acids are changed in structure or composition pass though the roasting process that high in temperature promote Maillard reactions between reducing sugars and free amino group, some of phenolic compounds are deconstructed, meanwhile new phenolic compounds with antioxidant activity are formed. (www.coffeechemistry.com/news/health/antioxidants-in-coffee, 2010). The final products of Maillaard reactions are Melanoidins. Melanoidins are high molecular weight nitrogenous brown colored compounds formed during roasting process. Its structures are largely unknown due to its complexity. Melanoidins consist of soluble and non-soluble groups and account up to 25% of dried coffee beans (Figure 2). (Moreira AS, Nunes FM, Domingues MR, Coimbra MA. 2012.)

Samples	CQA	FQA	diCQA	Total CGA	References
C arabica	5.76	0.25	0.87	6.88	Trugo & Macrae, 1984
C. <i>arabica</i> var Caturra	4.63	0.33	0.66	5.62	Clifford & Ramirez-Martinez .1991
C. arabica var. Bourbon	4,77	0.34	0.56	5.67	Clifford & Ramirez-Martinez .1991
Wild C. arabica (average)	3.26	0.19	0.60	4,10	Ky et al., 2001
C. arabica (Angola)	4.30	0.57	1.23	6.10	Correia et al., 1995
C. arabica (Angola)	4.84	0.28	0.53	5.65	Correia et al., 1995
C. arabica (Angola)	5.67	0.79	1.39	7.85	Correia et al., 1995
C. arabica var Boubon (Brazil)	4.2	0.28	0.77	5.25	Farah et al., 2005a
C. arabica cv. Longberry (Ethiopia)	4.6	0.29	0.84	5.73	Farah et al., 2005a
C. cunephora ev Robusta	6.82	0.60	1.37	s 8.80	Trugo & Macrae .1984
C canephora cv Robusta	5.33	0.79	1.05	7.17	Clifford & Ramirez-Martinez, 1991
C. canephora ev Robusta (Angola)	3.43	0.54	1.20	6.08	Correia et al., 1995
C. canephora cy Robusta (Angola)	4.97	0.75	1.46	7,18	Correia et al., 1995
C. canephora cv. Conillon (Brasil)	7.42	0.95	1.09	9.47	Farah et al., 2001
Wild C. canephora (average)	7.66	1.43	2.31	11.3	Ky et al., 2001
C. canephora var. Robusta (U <mark>ganda)</mark>	5.77	0.47	1.34	7.58	Farah et al., 2005a
mor hybrid (Carabica x C. canephora)	4.71	0.33	0.58	5.62	Clifford and Ramirez-Martinez, 1991
Catimor (Timor hybrid x C. arabica)	5.51	0.35	0.45	6.31	Clifford and Ramirez-Martinez, 1991
C. liberica cv. Dewevrei	5.39	0.48	1.1	6.97	Ky et al., 1977

Table1 Chlorogenic acid content in green coffee bean, expressed in g%, dry matter basis(Adriana Farah, 2006,7/8/2017)


CQA- caffeoyilquinic acid; FQA ~ feruloyiquinic acid; drCQA dicaffeoyilquinic acid. Total CGA- total chlorogenic acids.^a Units may have been changed for consistency ^a

. .•

.

ชั้นการิทยาลัยอัสสัมย์เรย

.

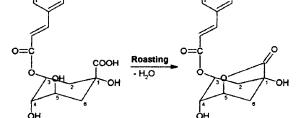
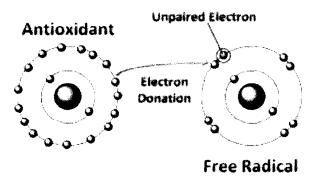


Figure 2 Melanoidins formed during roasting process of coffee bean.(Emma Eley, 2012. 1/8/2017)


2. Free radical and Antioxidant

Free radicals are unstable molecules that steal electrons from stable molecules, in order to stable their molecules lead to oxidation reactions which destruct the vegetative cells or occur in blood can induce acidity and cause of many diseases in result. Free radicals are normally produced by the body in order to aid the metabolic processes call as internal source and free radical also can promoted by external source such as smoking cigarettes, alcoholic beverages, pollutant in air. They are helpful in body functions but if too many, it is dangerous. (Figure 3)

Antioxidants could inhibit or slow down oxidation reactions by donate pair electron to free radical in order to make it stable instead of stealing from others molecule. (Figure 4) Antioxidants sources are often discussed in terms of their free radical scavenging abilities. (Susan Katchur, www.selfgrowth.com/articles/benefits-of-antioxidants-homemade-skin-care-and-more and Dr. Edward Group DC, NP, DACBN, DCBCN, DABFM, 2017. 1/8/2017)

Figure 3 Stable and unstable molecule (free radical) (Joan McDaniel, 2013 1/8/2017)

Figure 4 Antioxidant reacts with free radical (bestofbothworldsaz.com/tag/free-radical-theory-of-aging/ 1/8/2017)

NIVERSITU

3. Oil infusion

Infusion is the method that extracting out of chemical compound or flavors in plant material pass though the solvent. Infused oil, also referred to as macerated oil, and consists of oil carrier that has been permeated "infused" or "macerated" with one or more herbs. Infused oils will contain the properties of essential compound in both used herbs and oil itself. In some case, oil infusion is not suitable for extracting some plants that are less in essential oils content.(www.aromaweb.com/articles/whatinfu.asp 1/8/2017) In spent coffee ground, due to its lipids and melanoidins content, oil infusion method is expected to carry out of phenolic compounds in coffee.

There are two methods to create infused oil, the cold method and the hot method. The cold method, which is done at room temperature, takes time but easy and requires little attention while the oil is soaking in the herb's qualities. The hot method requires a direct heat source and close attention, but takes shorter time than cold method. (Candace Hunter, 2008) From the study, oregano and rosemary were infused in olive oil by varying the period of infusion (24, 48 and 72 hours). Most of panelists judged the odor and flavor as medium strong to strong, however there was no significant different between infusion time. (Mayada Damechki, 2001, 7/8/2017)

3.1 Oil carrier

The various type of oil could be used as carrier oil for infusion and extraction the active compounds from herbs and plants.

3.1.1 Canola oil

Canola oil is light yellow and has a neutral taste of brassica plants. In general, canola seeds pressed either employing traditional cold-pressing methods or in large scale, by hexane extraction method. Color, taste, and odor of cold-pressed oil indeed more pronounced than that of refined oil. In addition, the content of saturated fatty acids of canola oil is the lowest among all common sources of vegetable oil. (http://www.nutrition-and-you.com/canolaoil.html, Fereidoon Shahidi and Udaya Wanasundara, 1994, 7/8/2017)

3.1.2 Corn oil

Corn oil is extracted from the germ of corn. These germs are rich in omega-6 and oils. There are various methods of extracting oil from the seed germs. The oil when extracted is dense and needs to be refined before it is used for cooking purposes. One can also use unrefined oil as it contains more of health boosting plant phytochemicals. (oilhealthbenefits.com/corn-oil/, 2017, 7/8/2017) 212975

3.1.3 Coconut oil

Coconut oil is derived from the seeds of coconut palm, Cocos nucifera. Commercial coconut oil is made from copra or the dried kernel meat of coconut and goes through refining, bleaching and deodorizing processes. Coconut oil is considered a saturated fat because it contains more than 90% saturated fatty acids which is good for health. (A. M. Marina, Y. B. Che man, S. A. H. Nazimah & I. Amin, 2009, 7/8/2017)

THE ASSUMPTION UNIVERSITY LIBRARY

Fac. of Undergrad. Studies, Assumption Univ.

Sc. (Biotechnology) / 11

3.1.4 Sunflower oil

Sunflower oil is produced from oil type sunflower seeds. There are two types of sunflower seeds – confection sunflower seeds and non-oil sunflower seeds. Confection sunflower seeds are edible and are used for the extraction of oil whereas non-oil sunflower seeds are used for feeding animals and are not suitable for human consumption. Sunflower oil is light in taste and appearance and supplies more Vitamin E than any other vegetable oil. It is a combination of monounsaturated and polyunsaturated fats with low saturated fat levels. (Saba 2017, www.sunflowernsa.com/oil, 7/8/2017)

3.1.5 Mineral oil

Mineral oil is clear and colorless, oilý liquid that is a by-product of the distillation of petroleum. Mineral oil is used in medicine as a laxative and as an emollient. Mineral oil is completely indigestible and is not absorbed by the intestine. Its prolonged use may cause vitamin deficiencies. Mineral oil applied to the skin makes the latter softer and more pliable by retaining moisture within the epidermis. (The Editors of Encyclopædia Britannica, www.britannica.com/technology/mineral-oil, 7/8/2017)

: K2/)

4. Glycerin soap bar

Glycerin soaps have unique quality of moisturizing that is effective for all different kinds of the skins. It makes your skin moisturized and healthy. By these reasons, Glycerin soaps are considered to be one of the most moisturizing types of soap. Glycerin soaps promote moisture to your skin and hold it still. Beside this, glycerin soap keeps your skin feeling more hydrated than others types of soap that dried the skin, make it feel tight and even flaky. That why glycerin is a good skin humectant.

When the skins are moisturized, it is promote healthy skin by preventing of developing of wrinkles, stretch marks and tears in skins. Glycerin soap also suitable for using as facial washer more than harsh soap that dried skin and creating extra oil. Glycerin soap can help decrease or completely rid of acne problem.(RIPA AJMERA, 2017, 1/8/2017)

5. Lipid oxidation and peroxide value

Oxidation of lipid could be classified into positive and negative effect, in process of utilizing fatty acid to production of energy though β -oxidation.Oxidation is also involved in the production of signaling substances called eicosanoids. These are formed from the omega-3 fatty acid eicosapentaenoic acid (EPA) and the omega-6 fatty acid arachidonic acid (AA) by the action of specific enzyme systems. Besides this, oxidation also result of damaging the cells by free radicals are stealing electron in order to form a stable molecule and it also first step in the formation of several cytotoxic and mutagenic substances

Peroxide value is the measurement level of oxidation of a fat or oil containing polyunsaturated fatty acids, the cause of rancidity. A measure of hydroperoxides in oxidised oil. These are measured quantitatively on the basis of their ability to liberate iodine from acidic solutions of potassium iodide. This can be measured by titrating with sodium thiosulphate solution or electrochemically. (Dr. Kristi Ekrann Aarak and Dr. Linda Saga, BioActive Foods, www.1life63.com/en/omega-in-your-body-oxidation-of-lipids/oxidation-of-lipids, 7/8/2017)

CHAPTER III

METHODOLOGY

Materials

1. Samples

Sample	Source
Oil	
Canola	TVO, Thailand
Corn	Golden drop, Thailand
Coconut	Neturel, Thailand
Sunflower	TVO, Thailand
Mineral	Chemipan, Thailand
Coffee	
Arabica SCG	Coffee shop in Kasetsart University

2. Chemical substances

Chemical substances

Potassium iodide (KI MW = 166) Gallic acid monohydrate ($C_7H_6O_5$ MW = 170.12) 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) ($C_{18}H_{12}N_5O_6$ MW = 394.32) Ascorbic acid ($\underline{C_6H_8O_6}$ MW=176.12) Sodium Thiosulphate ($\underline{Na_2S_2O_3}$ MW = 158.11) Sodium carbonate ($\underline{Na_2CO_3}$ MW = 105.98) Chloroform (CHCl₃ MW = 119.38) Acetone (C_3H_6O MW = 58.08) Acetic acid (CH₃COOH MW = 60.05) Ethyl acetate ($C_4H_8O_2$ MW = 88.11) Glycerin ($C_3H_8O_3$ MW = 92.09)

Company Company

Ajax Finechem, New Zealand sigma-aldrich, China Srichem, India

Ajax Finechem, Australia Ajax Finechem, Australia Ajax Finechem, New Zealand RCI Labscan, Thailand RCI Labscan, Thailand RCI Labscan, Thailand RCI Labscan, Thailand Chemipan, Thailand Name Vaivit Kositarat

3. Other substances

Substances

Starch soluble Foiln&Ciocalteu's Phenol reagent

4. Equipments

	Equipments		Company
	Balance	A&D Compan	y Limited, Japan
	Micropipette	Biohit	, Germany
	Vortex mixer	VERS/> VELP	, Italy
	Spectophotometer	Milton	Roy, US
	Stirrer	VELP,	, Italy
	Centrifugation machine	HERMLE LABORTE	CHNIK, Germany
	Shaker	IKA LABOR	FECHNIK, Malaysia
	Thermostat oven	Jebsen & Jesse	n (Thailand) Co., Ltd
5.	Miscellaneous	THERS OF ST GABRIEL	
	Plasticwares	ABOR	Company
	Centrifuge tube (15 mL)	Quality Group	p Co., Ltd, Thailand
	Pipette tip (100 $\mu_{1, 1000}$ $\mu_{1, 1000}$	⁷ วิทยาลัยอัสสัมป์จะ	QSP, US
	Glasswares		Company
	Beaker		Pyrex, US

Funnel Erlenmeyer Flask Stirring rod

•

.

. .•

Methodology / 14

Company QRëC, New Zealand

Pyrex, US

Pyrex, US

Pyrex, US

Srichem, India

Methods

1. Preparation of spent coffee ground

The coffee ground passed from the brewing process which contain a lot of water content were collected and used further for drying process. SCG was collected from Art Coffee Shop at Kasertsart University; samples were collected 3 times and then blended together. The SCG was dried in hot oven at temperature $40^{\circ C^{\circ}C}$ until the weight constant in order to prevent compound destruction. The dry spent coffee ground was kept in the aluminum bag at room temperature.

2. Spent coffee ground oil infusion

Essential compounds in SCG were extracted by oil infusion technique. Five types of oil were purchased from the Thailand grocery shop and applied for oil infusion (Canola, Corn, Coconut, Sunflower, and Mineral oil). The infusion ratio were prepared as 45 g : 5 g of oil : SCG (10% w/w), 40 g : 10 g of oil : SCG (20% w/w) and 35 g : 15 g of oil : SCG (30% w/w) in the nontransparent bottle. The SCG in each oil (total 50g) were extracted at room temperature for 24 hrs (day1), 48 hrs (day2), 72 hrs (day3), 96 hrs (day4) and 120 hrs (day5) and agitated one time per day. The SCG infused oils were collected by filtration method using multi-layer thin white cloth and kept in non-transparent container at room temperature for chemical characteristic analysis

3. Sample preparation for chemical analysis

3.1 Sample preparation for total phenolic compounds assay

Weight 2.5g of infused oils sample and mixed with 15 ml of 70% acetone solvent (70:28:2, acetone/distilled water/acetic acid) then shakes 30 minutes in the dark place and centrifuged at 4000 rpm. for 10 minutes. After that, collected the watering part for analyzing by folin-ciocalteu's method. The control oil carrier was also prepared with the same procedure.

3.2 Sample preparation for DPPH scavenging Assay

Dissolved 1 g of SCG infused oil sample in 10 ml of ethyl acetate solvent, the concentration of prepared sample was 100 mg/ml, then diluted sample solution into concentration of 20, 40, 60 and 80mg/ml in ethyl acetate. These five concentrations were used to determine antioxidant activity and IC 50 by DPPH scavenging method. The oil carrier with have no SCG infused was used as a control to compare the increasing of antioxidant activity.

3.3 Sample preparation for peroxide value

[&]เหาวิท

Dissolved 5 g of SCG infused oil in 12 ml of chloroform and 18 ml of acetic acid.

Sc. (Biotechnology) / 17

4. Study of chemical characteristics

4.1 Total Phenolic compounds by Folin-Ciocalteu's method

Prepared fresh Folin-Ciocalteu's reagent by diluting with distilled water (folinciocalteu's reagent/distilled water, 1:5, v/v). One ml of sample and 2 ml of folin-ciocalteu's reagent were mixed in test tube and leave it for 3 min then 10 ml of 10% (w/v) of sodium carbonate (Na₂CO₃) was added and kept in the dark for 30 min. The absorbance was measure by spectrophotometer at 725 nm. The total phenolic compound was expressed as Gallic acid equivalent. Percentage total phenolic compound increased from carrier oil was calculated by this following formula.

%TPC increased from carrier oil =
$$\left(\frac{A_i - A_c}{A_c}\right) \times 100$$

 $A_c = Absorbance control (carrier oilcarrier oil)$

4.2 Anti-oxidation activity by DPPH scavenging method

The modified DPPH is scavenging technique that measured the anti-oxidant activity in the percentage reduction of DPPH. The 0.1 mM of DPPH in ethyl acetate were prepared in 100 ml Erlenmeyer flask, 0.0039 g of DPPH was dissolved in 10 ml of ethyl acetate (1mM DPPH) then topped up to 100ml with ethyl acetate (0.1mM DPPH).

Volume 1 ml of SCG infused oil prepared in ethyl acetate was mixed with 4 ml of 0.1 mM of DPPH solution in test tube, mix vigorously by vertex 10 second and the mixture was then leave in dark place for 30 minutes. The reaction was measured absorbance by spectrophotometer at 517nm. (1 ml of ethyl acetate + 4 ml of 0.1 mM of DPPH were used as control and ethyl acetate as a blank)

 $A_i = Absorbance infused oil$

Name Vaivit Kositarat

Percentage of antioxidant activity of each concentration of SCG infused oil samples were plotted in the graph versus with the concentration in order to examine IC50 value from linear equation, compared to ascorbic acid standard curve. Percentage of antioxidant activity and percentage of antioxidant activity increased from carrier oil were calculated by these formulas.

Note : 100 mg/ml SCG infused oil sample was used for calculating percentage of antioxidant activity increased

%Inhibition =
$$\left(\frac{A_b - A_i}{A_b}\right) \times 100$$

A₁ = Absorbance blank

 $A_i = Absorbance$ infused oil

%Inhibition increased from carrier oil = $\left(\frac{A_i - A_c}{A_c}\right) \times 100$ $A_c = Absorbance control carrier oil$

A_i = Absorbance infused oil

4.3 Color intensity

The SCG infused oil in different oil types were measured color intensity by spectrophotometry technique for determination the percentage of color intensity of SCG infused oils comparing with oil carrier (No SCG). All SCG infused oil samples and oil carrier samples were measured the absorbance at wavelength 420 nm. Percentage of color increased was calculated by this following formula.

%color increased from carrier oil = $\left(\frac{A_I - A_c}{A_c}\right) \times 100$ $A_c = Absorbance control$ $A_I = Absorbance infused oil$

4.4 Peroxide Value

Peroxide value can be measured by using titration method which shown as concentration of peroxide value (meq/kg). One ml of saturated potassium iodide (KI) was added into prepared oils samples and flask was covered flask with aluminum foil and shakes for 5 min at room temperature. Then 30 ml of distilled water was added and following with the adding of 1 ml of 1% starch solution. The color change into dark brown or dark blue color was observed. After that the mixture was titrated with 0.1 N sodium thiosulphate (Na₂O₃S₂) until dark brown or dark blue color disappeared. The volume (ml) of used titrant (0.1N sodium thiosulphate) was recorded and used to calculate peroxide value by this following formula..

Peroxide value =
$$\left[\frac{(V_1 - V_0) \times c}{m}\right] \times 1000$$

 V_0 = consumption of 0.1N sodium thiosulphate at initial

- V_1 = consumption of 0.1N sodium thiosulphate at the end point
- C = molar concentration of sodium thiosulphate
- m = weight oils in grams

5. Development of antioxidant glycerin soap bar

The soaps were made by using glycerin soap based, first layer was scrubbed soap which contained SCG as scrub beat and second layer was soap with SCG infused oil.

Glycerin was chopped into small pieces and melted in the double boiler hot water. The 30% w/w SCG infused oils at 120 hrs were used as ingredient to develop the glycerin soap bar as they contained the highest antioxidant activity value. Solid glycerin 50 g was boiled in double boiler hot water and0.2 g of SCG infused oil was added and mixed gently, after that 2g of dried SCG was added. The mixture was poured into a mold, leave until it cooling. For second layer, 50g of glycerin was melted with boiler and 0.2g of SCG infused oil was added and mixed gently then poured on top of first layer. Wait until the soaps were formed.

6. Preference test

20 panelists were assigned to test the soap with 3 steps

1. Observed the color (transparency) and smell soaps sample and score color and fragrance attributes.

2. Washed hand by using soaps sample, scrubbed soap part on hand until the lathers formed and scrubbed the coffee scrub side on back hand. Then score lather and scrubbing attributes.

3. Rubbed the hands dry and score skin feel and over all liking attributes The data from preference test was statistically prove by Duncan multiple range test

7. Statistical analysis

The results of %increase in phenolic compound and antioxidant activity were statistically analyzed by using R-program v2-15-3 and the results of preference test were statistically analyzed by SAS program.

CHAPTER IV

RESULTS AND DISCUSSIONS

1. Total Phenolic Compounds in SCG infused oil

Five types of carrier oil (canola oil, corn oil, coconut oil, sunflower oil and mineral oil) were selected for study the effectiveness of the extraction of phenolic compounds from SCG by oil infusion method. Three concentration of SCG infusion in each oil carriers were prepared into 10% (w/w), 20% (w/w) and 30% (w/w) and extracted for 24, 48, 72, 96 and 120 hrs at room temperature. Determination of total phenolic compounds (TPC) in SCG infused oils were done by Folin-Ciocalteu's method and expressed as standard Gallic acid equivalent (mg/ml). The amount of TPC in the carrier oils, various concentration of SCG infused oils were shown in Table 2 and Table 3, respectively.

After oil infusion process, TPC in all oil carriers were increased according to time and concentration ratio of SCG. The highest amount of TPC of non-infused oil (pure oil) was found in canola oil 22.30 ± 0.232 mg/ml, corn oil was 20.02 ± 0.63 mg/ml, sunflower oil was 19.46 ± 0.004 mg/ml,coconut oil was 19.23 ± 0.003 mg/ml and there was no TPC found in mineral oil as shown in Table 2. Mostly, 10% (w/w) and 20% (w/w) infusion ratio at 24 hrs to 72 hrs could showed the development of TPC, however at 96 hrs to 120 hrs of all infusion ratio showed higher amount of TPC, especially for 30% (w/w). By this result, it explained that as more ratio and time of infusion applied, the more TPC absorbed in oil carrier as shown in Table 3.

The percentage development of TPC in all SCG infused oils were determined by comparing to non-infused oils, the result indicated that in all oil sample 30% (w/w) infusion ratio had highest percentage development followed by 20% (w/w) infusion ratio and lowest percentage development is 10% (w/w) infusion ratio.

•

.

•

Table 2 Total phenolic compounds of carrier oils (canola oil, corn oil, coconut oil,
sunflower oil and mineral oil

Carrier oil Type	TPC (mg/ml)
Canola	22.30 ± 0.232
Corn	20.02 ± 0.63
Coconut	19.23 ± 0.003
Sunflower	19.46 ± 0.004
Mineral	18.44 ± 0.00

•

*

.

Table 3 Total phenolic compounds in the various concentration (10%, 2	20%, and
30% w/w) of SCG infusion in different oil carriers	

Canola									
	•	24hours	48hours	72hours	96hours	120hours			
10%	TPC mg/L	22.78±0.56	23.79±0.55	28±0.99	26.29±0.06	26.48±0.87			
20%		24.35±0.28	24.84±1.24	28.15±1.35	25.85±0.93	30.63±1.12			
30%		30.37±0.5	28.92±0.31	36.1±0.93	33.35±1.24	31.99±0.06			
Corn									
		24hours	48hours	72hours	96hours	120hours			
10%	TPC	20.72±0.37	20.63±0.53	21.57±0.35	22.87±1.18	22.65±1.12			
20%	mg/L	22.71±0.48	23.61±0.35	23.53±0.12	27.71±0.88	27.5±1.67			
30%	ing 2	25.5±1.05	26.64±0.19	29.71±0.31	30.89±1.36	35.53±0.87			
Coconut									
		24hours	48hours	72hours	96hours	120hours			
10%	TPC mg/L	21.2±1.18	21.27±0.45	22.87±0.56	21.33±0.27	23.5±1.08			
20%		22.17±0.56	23.88±0.5	25.13±0.4	25.69±0.8	27.65±0.7			
30%	ing 2	26.16±1.01	28.04±0.93	30.57±0.88	28.75±1.43	29.05±0.74			
		BR	Sunfloy	wer GABRIE	> <				
		24hours	48hours	72hours	96hours	120hours			
10%	TPC	20.94±0.31	22.04±0.66	22.59±0.22	22.39±0.72	24.49±0.87			
20%	mg/L	21.6±0.37	22.69±0.19	25.54±0.25	23.53±0.4	26.27±0.18			
30%		24.32±0.5	24.71±0.31	26.03±0.81	28.22±0.56	30.37±0.5			
Mineral									
		24hours	48hours	72hours	96hours	120hours			
10%	TPC mg/L	0±0	0±0	20.25±0.31	21.29±0.19	21.95±0.12			
20%		0±0	0±0	20.72±0.4	21.63±0.66	20.84±0.37			
30%		19.9±0.35	20.34±0.22	20.15±0.19	20.41±0.56	22.04±0.72			

.

.

The percentage of TPC increasing after infusion the SCG in oil carriers were calculated, the results were shown in Table 4.

Table 4 The percentage of total phenolic compound increasing from carrier oils in all SCG

$\begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$				intused	0115				
$ \begin{array}{ c c c c c c } \hline \mbox{10\% Part Pc} & 2.16\pm 1.67 & 11.47\pm 2.46 & 19.67\pm 4.45 & 17.9\pm 0.28 & 21.24\pm 3.89 \\ \hline \mbox{20\% increased} & 2.16\pm 1.67 & 11.47\pm 2.46 & 19.67\pm 4.45 & 17.9\pm 0.28 & 21.24\pm 3.89 \\ \hline \mbox{20.99\pm 5.56 } & 29.18\pm 6.05 & 15.93\pm 4.17 & 37.37\pm 5.01 \\ \hline \mbox{20.99\pm 5.26 } & 29.8\pm 1.39 & 54.78\pm 4.17 & 49.57\pm 5.6 & 43.47\pm 0.28 \\ \hline \mbox{20\% Part Pc} & 24hours & 48hours & .72hours & 96hours & 120hours \\ \hline \mbox{20\% Part Pc} & 3.5\pm 1.86 & 9.36\pm 2.67 & 12.88\pm 1.77 & 14.42\pm 5.89 & 13.14\pm 5.58 \\ \hline \mbox{20\% Part Pc} & 3.5\pm 1.86 & 9.36\pm 2.67 & 12.88\pm 1.77 & 14.42\pm 5.89 & 13.14\pm 5.58 \\ \hline \mbox{20\% Part Pc} & 3.5\pm 1.86 & 9.36\pm 2.67 & 12.88\pm 1.77 & 14.42\pm 5.89 & 13.14\pm 5.58 \\ \hline \mbox{20\% Part Pc} & 14.36\pm 4.73 & 19.47\pm 0.83 & 33.24\pm 1.39 & 38.55\pm 6.12 & 59.4\pm 3.89 \\ \hline \mbox{20\% Part Pc} & 24hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{10\% Part Pc} & 13\pm 2.26 & 14.39\pm 2.34 & 19.64\pm 2.9 & 10.95\pm 0.65 & 25.32\pm 2.26 \\ \hline \mbox{20\% Part Pc} & 15.28\pm 2.9 & 24.18\pm 2.58 & 30.72\pm 2.06 & 33.61\pm 4.14 & 43.8\pm 3.62 \\ \hline \mbox{30\% Part Pc} & 15.28\pm 2.9 & 24.18\pm 2.58 & 30.72\pm 2.06 & 33.61\pm 4.14 & 43.8\pm 3.62 \\ \hline \mbox{30\% Part Pc} & 15.28\pm 2.9 & 24.18\pm 2.58 & 30.72\pm 2.06 & 33.61\pm 4.14 & 43.8\pm 3.62 \\ \hline \mbox{30\% Part Pc} & 24hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{30\% Part Pc} & 24hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{30\% Part Pc} & 10.97\pm 1.91 & 16.6\pm 0.96 & 31.25\pm 1.27 & 20.88\pm 2.07 & 35.01\pm 0.94 \\ \hline \mbox{30\% Part Pc} & 10.97\pm 1.91 & 16.6\pm 0.96 & 31.25\pm 1.27 & 20.88\pm 2.07 & 35.01\pm 0.94 \\ \hline \mbox{30\% Part Pc} & 124hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{30\% Part Pc} & 24hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{30\% Part Pc} & 24hours & 48hours & 72hours & 96hours & 120hours \\ \hline \mbox{30\% Part Pc} & 0.40 & 0.40 & 20.25\pm 0.31 & 21.29\pm 0.19 & 21.95\pm 0.12 \\ \hline \mbox{30\% Part Pc} & 0.40 & 0.40 & 20.72\pm 0.4 & 21.63\pm 0.66 & 20.84\pm 0.37 \\ \hline \mbox{30\% Part Pc} & 0.40 & 0.40 & 20.72\pm 0.4 & 21.63\pm 0.66 & 20.84\pm 0.37 \\ \hline \mbox{30\% Part Pc} & 0.40 & 0.40 $				Canol	a				
$\begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$			24hours	48hours	72hours	96hours	120hours		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10%	% TPC	2.16±1.67	11.47±2.46	19.67±4.45	17.9±0.28	21.24±3.89		
30% 28.13±2.23 29.8±1.39 54.78±4.17 49.57±5.56 43.47±0.28 Corn 10% 24hours 48hours .72hours 96hours 120hours 10% % TPC 3.5±1.86 9.36±2.67 12.88±1.77 14.42±5.89 13.14±5.58 20% increased 15.75±2.41 19.26±1.75 20.31±0.62 36.26±4.39 31.37±8.33 30% 14.36±4.73 19.47±0.83 33.24±1.39 38.55±6.12 59.4±3.89 Coconut Coconut 10% % TPC 13±2.26 14.39±2.34 19.64±2.9 10.95±0.65 25.32±2.26 20% increased 136.04±5.26 45.84±4.84 59±4.59 49.5±7.42 51.1±3.87 20% increased 24hours 48hours 72hours 96hours 120hours 10% % TPC 13.60±5.26 45.84±4.84 59±4.59 49.5±7.42 51.1±3.87 20% % TPC 7.59±1.59 13.22±3.4 16.08±1.13 15.02±3	20%		9.44±1.39	20.09±5.56	29.18±6.05	15.93±4.17	37.37±5.01		
$ \begin{array}{c c c c c c c } \hline & 24 hours & 48 hours & .72 hours & 96 hours & 120 hours \\ \hline & 3.5 \pm 1.86 & 9.36 \pm 2.67 & 12.88 \pm 1.77 & 14.42 \pm 5.89 & 13.14 \pm 5.58 \\ \hline & 3.5 \pm 1.86 & 9.36 \pm 2.67 & 12.88 \pm 1.77 & 14.42 \pm 5.89 & 13.14 \pm 5.58 \\ \hline & 15.75 \pm 2.41 & 19.26 \pm 1.75 & 20.31 \pm 0.62 & 36.26 \pm 4.39 & 31.37 \pm 8.33 \\ \hline & 14.36 \pm 4.73 & 19.47 \pm 0.83 & 33.24 \pm 1.39 & 38.55 \pm 6.12 & 59.4 \pm 3.89 \\ \hline & 14.36 \pm 4.73 & 19.47 \pm 0.83 & 33.24 \pm 1.39 & 38.55 \pm 6.12 & 59.4 \pm 3.89 \\ \hline & 14.36 \pm 4.73 & 19.47 \pm 0.83 & 33.24 \pm 1.39 & 38.55 \pm 6.12 & 59.4 \pm 3.89 \\ \hline & 14.36 \pm 4.73 & 19.47 \pm 0.83 & 33.24 \pm 1.39 & 38.55 \pm 6.12 & 59.4 \pm 3.89 \\ \hline & 14.36 \pm 4.73 & 19.47 \pm 0.83 & 33.24 \pm 1.39 & 38.55 \pm 6.12 & 59.4 \pm 3.89 \\ \hline & 10.96 & 13 \pm 2.26 & 14.39 \pm 2.34 & 19.64 \pm 2.9 & 10.95 \pm 0.65 & 25.32 \pm 2.26 & 15.28 \pm 2.9 & 24.18 \pm 2.58 & 30.72 \pm 2.06 & 33.61 \pm 4.14 & 43.8 \pm 3.62 & 36.04 \pm 5.26 & 45.84 \pm 4.84 & 59 \pm 4.59 & 49.5 \pm 7.42 & 51.1 \pm 3.87 & 51.1 \pm 3.87$	30%		28.13±2.23	29.8±1.39	54.78±4.17	49.57±5.56	43.47±0.28		
$ \begin{array}{ c c c c } \hline \mbox{1} \mbo$				Corn	IS/TV				
$ \begin{array}{ c c c c } & & & & & & & & & & & & & & & & & & &$			24hours	48hours	• 72hours	96hours	120hours		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10%	94 TDC	3.5±1.86	9.36±2.67	12.88±1.77	14.42±5.89	13.14±5.58		
30% 14.36±4.73 19.47±0.83 33.24±1.39 38.55±6.12 59.4±3.89 Coconut Coconut 10% 24hours 48hours 72hours 96hours 120hours 10% % TPC 13±2.26 14.39±2.34 19.64±2.9 10.95±0.65 25.32±2.26 20% % TPC 15.28±2.9 24.18±2.58 30.72±2.06 33.61±4.14 43.8±3.62 30% ° 7.59±1.26 45.84±4.84 59±4.59 49.5±7.42 51.1±3.87 10% % TPC 24hours 48hours 72hours 96hours 120hours 10% % TPC 10.97±1.91 16.6±0.96 31.25±1.27 20.88±2.07 35.01±0.94 30% ° TPC 24.94±2.55 26.97±1.59 33.73±4.14 45±2.87 56.04±2.55 Mineration of the standard st	20%		15.75±2.41	<mark>19.26±1.75</mark>	20.31±0.62	36.26±4.39	31.37±8.33		
$24hours$ $48hours$ $72hours$ $96hours$ $120hours$ 10% $\%$ TPC 13 ± 2.26 14.39 ± 2.34 19.64 ± 2.9 10.95 ± 0.65 25.32 ± 2.26 20% $1ncreased$ 15.28 ± 2.9 24.18 ± 2.58 30.72 ± 2.06 33.61 ± 4.14 43.8 ± 3.62 30% 15.28 ± 2.9 24.18 ± 2.58 30.72 ± 2.06 33.61 ± 4.14 43.8 ± 3.62 30% 36.04 ± 5.26 45.84 ± 4.84 59 ± 4.59 49.5 ± 7.42 51.1 ± 3.87 50% 7.59 ± 1.59 13.22 ± 3.4 16.08 ± 1.13 15.02 ± 3.69 25.84 ± 4.46 10% $\%$ TPC 10.97 ± 1.91 16.6 ± 0.96 31.25 ± 1.27 20.88 ± 2.07 $35_{,01\pm 0.94}$ 30% 7.59 ± 1.59 13.22 ± 3.4 16.08 ± 1.13 15.02 ± 3.69 25.84 ± 4.46 30% 72.94 ± 2.55 26.97 ± 1.59 33.73 ± 4.14 45 ± 2.87 56.04 ± 2.55 10.97 ± 1.91 16.6 ± 0.96 31.25 ± 1.27 20.88 ± 2.07 $35_{,01\pm 0.94}$ 30% 24.94 ± 2.55	30%	moreusea	14.36±4.73	19.47±0.83	33.24±1.39	38.55±6.12	59.4±3.89		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Cocon	ut	K F	• <u>•</u> ••••••••••••••••••••••••••••••••••		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C	24hours	48hours	72hours	96hours	120hours		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10%	% TPC	13±2.26	14.39±2.34	19.64±2.9	10.95±0.65	25.32±2.26		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20%		15.28±2.9	24.18±2.58	30.72±2.06	33.61±4.14	43.8±3.62		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	30%	mercuseu	36.04±5.26	45.84±4.84	59±4.59	49.5±7.42	51.1±3.87		
$ \frac{10\%}{10\%} = \frac{1}{\%} \frac{7.59\pm1.59}{10.97\pm1.91} = \frac{13.22\pm3.4}{16.08\pm1.13} = \frac{15.02\pm3.69}{15.02\pm3.69} = \frac{25.84\pm4.46}{25.84\pm4.46} = \frac{10.97\pm1.91}{24.94\pm2.55} = \frac{16.6\pm0.96}{26.97\pm1.59} = \frac{31.25\pm1.27}{33.73\pm4.14} = \frac{24.94\pm2.55}{26.97\pm1.59} = \frac{26.97\pm1.59}{33.73\pm4.14} = \frac{120.88\pm2.07}{45\pm2.87} = \frac{56.04\pm2.55}{56.04\pm2.55} = \frac{56.04\pm2.55}{10.94} = \frac{120.95\pm0.12}{10.94} = \frac{10.95\pm0.12}{10.94} = \frac{10.95\pm0.12}{10.94} = \frac{10.97\pm0.19}{10.97\pm0.19} = \frac{10.97\pm0.19}{10.95\pm0.12} = \frac{10.97\pm0.19}{10.95\pm0.19} = \frac{10.97\pm0.19}{10.95\pm0.19} = \frac{10.97\pm0.19}{10.95\pm0.19} = \frac$			47	Sunflow	ver				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			24hours	48hours	72hours	96hours	120hours		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10%	% TPC	7.59±1.59	13.22±3.4	16.08±1.13	15.02±3.69	25.84±4.46		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20%		10.97±1.91	16.6±0.96	31.25±1.27	20.88±2.07	35,01±0.94		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30%		24.94±2.55	26.97±1.59	33.73±4.14	45±2.87	56.04±2.55		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mineral								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			24hours	48hours	72hours	96hours	120hours		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10%		0±0	0±0	20.25±0.31	21.29±0.19	21.95±0.12		
	20%		0±0	0±0	20.72±0.4	21.63±0.66	20.84±0.37		
	30%		20.06±0.31	20.46±0.12	20.15±0.19	20.41±0.56	22.34±0.68		

infused oils

For canola oil (Figure 5 and Figure 6), at 72 hrs infusion period, TPC in 30% (w/w) infusion ratio had highest percentage development which was $54.78\pm4.17\%$ (36.1 ± 0.931 mg/L) and TPC decreased at 96 hrs and 120 hrs to $49.57\pm5.56\%$ (33.35 ± 1.241 mg/ml) and $43.47\pm0.28\%$ (31.990.061 mg/ml), compared to others infusion period. For 20% (w/w) infusion ratio, the percentage TPC increasing developed from 24 to 72 hrs and dropped down at 96 hrs to $15.93.\pm4.17$ (25.85 ± 0.93 mg/ml) which less than 10% 96 hrs $17.9.\pm0.28$ (26.29 ± 0.06 mg/ml) however, except 96 hrs infusion time, 20% infusion ratio had higher percentage total phenolic compound increase than 10% infusion ratio.

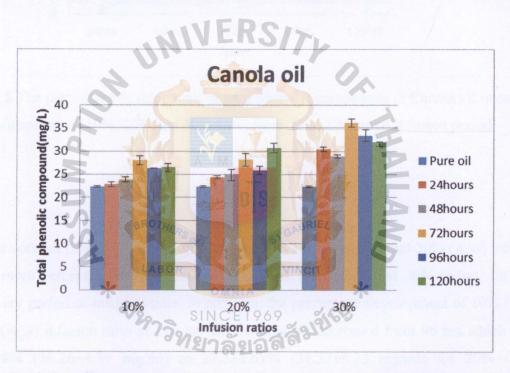


Figure 5 Total phenolic compounds in Canola oil compared between infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)

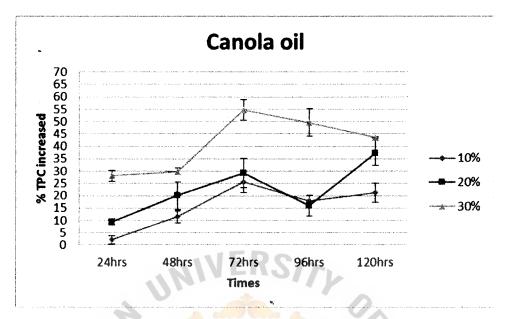


Figure 6 The percentage development of total phenolic compounds in Canola oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs of infusion period

For corn oil (Figure 7 and Figure 8), it was obviously showed that 30% (w/w) infusion ratio had more percentage development of TPC over 10% (w/w) and 20% (w/w) infusion ratio in every period of infusion time. In addition, the percentage development of 10% (w/w) and 20% (w/w) infusion ratio at 120 hrs were a little bit decreased from 96 hrs which were $27.71\pm0.88\%$ (36.26 ± 4.39 mg/ml) to $27.5\pm1.67\%$ (31.37 ± 8.33 mg/ml) for 20% (w/w) infusion ratio and 14.42 ± 5.89 (22.87 ± 1.18 mg/ml) to $13.14\pm5.58\%$ (22.65 ± 1.12 mg/ml) for 10% (w/w) infusion ratio. Moreover, 10% (w/w) infusion ratio had poor TPC compared to others infusion ratio. However, the highest percentage development of total phenolic compound for infused corn oil is $59.4\pm3.89\%$ (35.53 ± 0.87 mg/ml) found in 30% (w/w) infusion ratio at 120 hrs according to table 4.

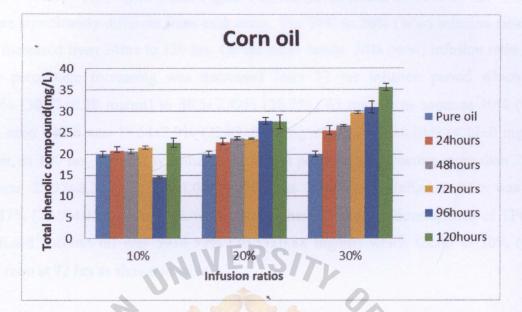


Figure 7 Total phenolic compounds in Corn oil compared between infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)

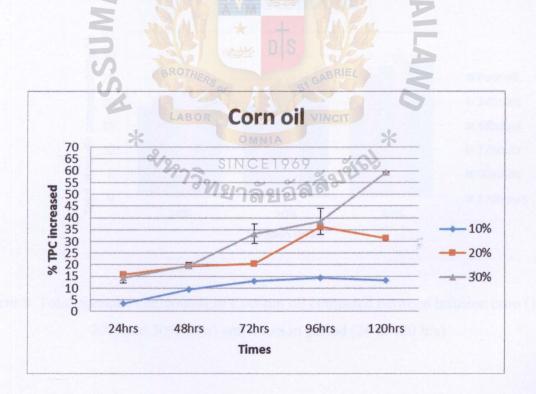


Figure 8 The percentage development of total phenolic compounds in Corn oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs of infusion period

For coconut oil (Figure 9 and Figure 10), the development of TPC of all infusion ratio were significantly different from each other. The TPC in 20% (w/w) infusion ratio was slightly increased from 24hrs to 120 hrs. On the other hands, 30% (w/w) infusion ratio at 96 hrs, the percentage increasing was decreased from 72 hrs infusion period which was $59\pm4.59\%$ (30.57 ± 0.88 mg/ml) to $49.5\pm7.42\%$ (28.75 ± 1.43 mg/ml) as same as 10% (w/w) infusion ratio which was $19.64\pm2.9\%$ (22.87 ± 0.56 mg/ml) to $10.95\pm0.65\%$ (4.17 ± 0 mg/ml). Moreover, at 120 hrs, 10% (w/w) infusion ratio had percentage increasing more than 72 hrs which was 25.32 ± 2.26 % (23.5 ± 1.08 mg/ml) but 30% (w/w) infusion ratio was not, $51.1\pm3.87\%$ (29.05 ± 0.74 mg/ml). However, the highest percentage development of TPC for SCG infused coconut oil was $59\pm4.59\%$ (30.57 ± 0.88 mg/ml) which found in 30% (w/w) infusion ratio at 72 hrs as shown in table 3.

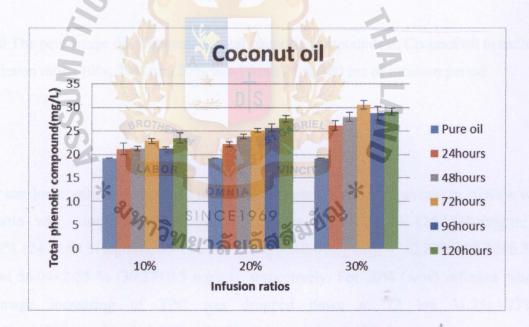


Figure 9 Total phenolic compounds in Coconut oil compared between infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)

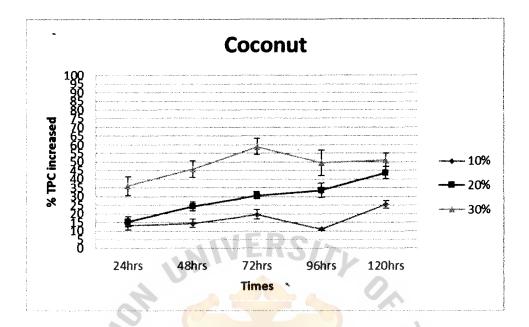


Figure 10 The percentage development of total phenolic compounds in Coconut oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs of infusion period

For sunflower oil Figure 11 and Figure 12, the percentage TPC increase in 30% (w/w) infusion ratio was increased from 24 to 120 hrs; $24.94\pm2.55\%$ ($24.32\pm0.5mg/ml$), $26.97\pm1.59\%$ ($24.71\pm0.31mg/ml$), $33.73\pm4.14\%$ ($26.03\pm0.81mg/ml$), $45\pm2.87\%$ (28.22 ± 0.56 mg/ml). and $56.04\pm2.55\%$ (30.37 ± 0.5 mg/ml), respectively. For 20% (w/w) infusion ratio, the percentage increasing of TPC was dropped down at 72 hrs $31.25\pm1.27\%$ ($25.54\pm0.25mg/ml$) to $20.88\pm2.07\%$ (23.53 ± 0.4 mg/ml) at 96 hrs and increased to $35.01\pm0.94\%$ ($26.27\pm0.18mg/ml$) at 120 hrs. The 10% (w/w) showed the lowest percentage increasing of TPC compared to others infusion ratio in every period of infusion time. Lastly, the highest percentage development of total phenolic compound for infusion ratio at 120 hrs as $56.04\pm2.55\%$ (30.37 ± 0.5 mg/ml) which found in 30% (w/w) infusion ratio at 120 hrs as shown in table 4.

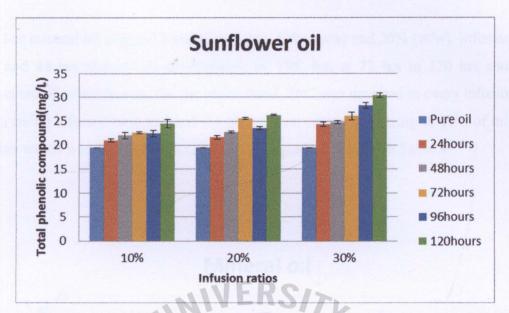


Figure 11 Total phenolic compounds in Sunflower oil compared between infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)

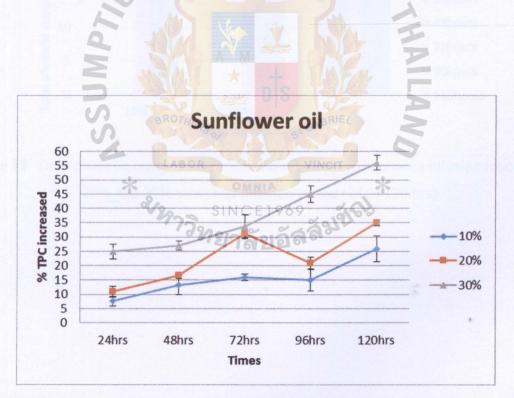


Figure 12 The percentage development of total phenolic compounds in Sunflower oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs of infusion period

Fac. of Undergrad. Studies, Assumption Univ.

For mineral oil (Figure 13 and Figure 14), 10% (w/w) and 20% (w/w) infusion ratio at 24 hrs and 48 hrs showed no development of TPC but at 72 hrs to 120 hrs showed the effectiveness of oil extraction. On the others hand, TPC was detected in every infusion period for 30% (w/w) infusion ratio and had the highest percentage increasing of TPC of mineral oil at 120 hrs which was $22.34\pm0.68\%$ (22.04 ± 0.72 mg/ml) as shown in Table 4.

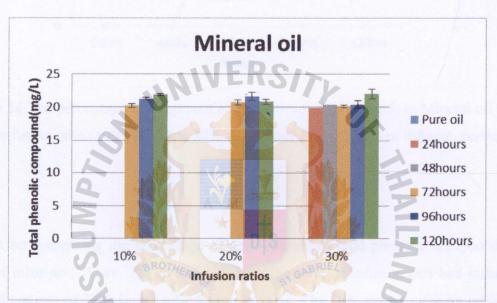


Figure 13 Total phenolic compounds in Mineral oil compared between infusion ratio (10%, 20% and 30% w/w) and infusion period (24 to 120 hrs)

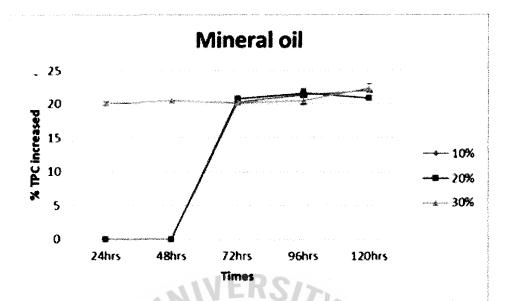


Figure 14 The percentage development of total phenolic compounds in Mineral oil in each infusion ratio (10%, 20% and 30% w/w) from 24 to 120 hrs of infusion period

After comparing the percentage of development of total phenolic compound in each period of infusion (24, 48, 72, 96 and 120 hrs), the ratio of infusion oils had influence the extracted amount of TPC in the oil infusion process. The 30% (w/w) infusion ratio showed the highest percentage of TPC development, followed by 20% (w/w) infusion ratio and the lowest was 10% (w/w) infusion ratio. The highest percentage development of TPC was found in SCG infused corm oil at 30% (w/w) infusion ratio,120 hrs

The comparison between 30% (w/w) infusion ratio of all carrier oils samples, as 30% (w/w) infusion ratio had more percentage development of phenolic compound than others ratio, so this ratio was selected to compare between each type of oil carriers.

In Figure 15, coconut carrier oil showed highest percentage development of TPC in 24, 48 and 72 hrs infusion times, canola carrier oil showed the highest percentage development TPC at 96 hrs, corn carrier oil showed the highest percentage development TPC at 120 hrs. Every carrier oils had potential to extract TPC from SCG though infusion process. In addition, the phenolic compound in initial oils carrier had influent to amount of extracted TPC after infusion process which the TPC could be absorbed well if less TPC contented in initial oil carrier like mineral oil, corn oil and sunflower oil.

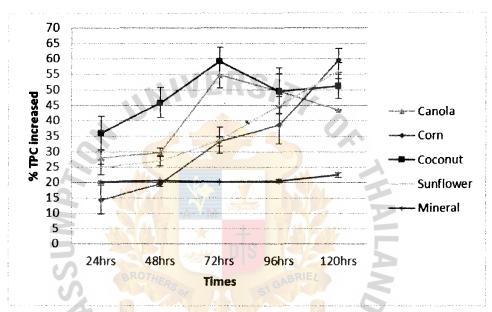


Figure 15 The percentage increasing of total phenolic compound compared with oil carrier from 24 to 120 hrs, in 30% (w/w) infusion ratio

From the previous study of extraction phenolic compound antioxidant by oil infusion, Rosemary and Oregano were used as herbal materials infused in olive oil. Total polar phenol content in oregano flavoured oils increased about 3.5 times in comparison with that of the control. For the rosemary flavoured oil an increase of 1.7 times was observed. Besides this peroxide value changes were higher for Oregano flavoured oil compared with Rosemary, both were higher than the control sample. In addition, there were development of pigment from Pheophytin α , β -Carotene and Lutein, oregano was higher than Rosemary. (Mayada Damechki, 2001).

2. Anti-oxidation activity by DPPH scavenging method

The antioxidant activity of SCG infused oil was measured by DPPII scavenging assay. Table 5 indicated the antioxidant activity of all oil carriers before adding SCG in the oil infusion process, the highest antioxidant activity was found in sunflower oil (90.5%) and the antioxidant activity in the other oil carriers were canola oil (89.7%), corn oil (74.9), coconut oil (13.4%) and the lowest was mineral oil (4.3%).

The antioxidant activity of SCG infused in the various types of oil carriers were also determined as shown in Table 6. Furthermore, the percentage of antioxidant activity increased from oil carrier was also studies and showed in Table 7.

 Table 5 The percentage antioxidant activity of oil carriers by DPPH scavenging

Type of Oil carriers	% antioxidant activity
canola	89.7±0.77
corn	74.9±1.44
coconut	13.4±1.25
sunflower	90.5±0.87
mineral	4.3±1.07

•

.

	Canola									
	- %	24hours	48hours	72hours	96hours	120hours				
10%	antioxidant	85.6±0.9	88.35±0.8	87.92±0.7	85.65±1.1	84.63±1.1				
20%	activity	86.7±1.4	89.25±1.1	88.16±0.5	87.14±0.8	86.2±1				
30%	activity	88.2±0.8	91.02±1.2	90.2±1	90.63±0.8	92.31±1.1				
	Corn									
	%	24hours	48hours	72hours	96hours	120hours				
10%	antioxidant	67.14±1.2	74±1.8	75.37±0.9	79.84±1.3	81.02±1				
20%	activity	70.08±1.1	79.06±1.3	80.78±0.7	87.33±0.8	89.76±1.6				
30%	uotivity	74.78±2	80.98±2.1	82.75±1.6	88±1	91.25±1.9				
	<u></u>	V.	Coconu	t	2.					
	%	24hours	48hours	72hours	96hours	120hours				
10%	antioxidant	18.27±1	20.35±0.9	23.73±0.9	24.67±1.1	28.82±0.7				
20%	activity	17.69±1.7	22,51±0.8	26.51±0.6	29.06±1.6	35.96±0.8				
30%	activity	18.94±0.7	24.24±0.6	33.18±0.6	37.57±0.5	48.94±0.4				
	2	332	Sunflowe	er de	A	And 1 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997				
	9/0	24hours	48hours	72hours	96hours	120hours				
10%	antioxidant	81. <mark>33±0.4</mark>	87.33±0.5	88.71±1	88.35±0.6	93.8±0.3				
20%	activity	82.67±0.6	90.67±0.6	89.92±0.4	89.45±0.4	94.35±0.4				
30%	uourriy	85.29±0.4	90.94±0.5	90.9±0.7	91.57±1	94.71±0.3				
	-		Mineral	900						
	%	24hours	48hours	72hours	96hours	120hours				
10%	antioxidant	2.86±2	5.96±4.4	8.47±5.7	7.18±5.2	8.82±6				
20%	activity	3.57±3.6	6.59±6.6	9.96±0.7	9.69±0.3	10±1.2				
30%		4.31±0.6	8.35±1.3	9.06±0.5	9.76±1.5	10.51±0.4				

 Table 6 The percentage of antioxidant activity of SCG infused in the various type oil carriers

4

•

.

			Can	ola		
	- % Increase	24hours	48hours	72hours	96hours	120hours
10%	of	0	0	0	0	0
20%	antioxidant	0	0	0	0	0
30%	activity	0	0.92±0.3	0.79±0.8	1.03±0.9	2.91±1.2
			Co	rn	<u></u>	
	% Increase	24hours	48hours	72hours	96hours	120hours
10%	of	0	0.49±0.8	0.77±1.1	6.6±1.8	8.17±1.3
20%	antioxidant	0	5.55±1.7	7.86±0.9	16.6±1	19.85±2.1
30%	activity	0.87±2	8.12±2.1.	10.47±1.6	17.49±1	21.84±1.9
			Coco	onut		L
	% Increase	24hours	48hours	72hours	96hours	120hours
10%	of	36. <mark>38±7.5</mark>	51.89±6.9	77.06±6.6	84.08±8.5	26.72±5.4
20%	antioxidant	31.99±12.6	67.98±5.6	97.83±4.8	116.86±11.9	168.36±5.7
30%	activity	41.35±3.5	80.86±5.8	147.59±12.2	180.36±9.7	265.23±5.8
	5		Sunfl	ower	6	L
	% Increase	24hours	48hours	72hours	96hours	120hours
10%	of	0	SINCE196	9 0	0	3.65±0.3
20%	antioxidant	0 739	1ยาวัตถั	a a 0	0	4.26±0.4
30%	activity	0	0.49±0.5	0.58±0.6	1.18±1.2	4.65±4.6
		L	Min	eral	L	L
	% Increase	24hours	48hours	72hours	96hours	120hours
10%	of	0	38.62±11.1	96.99±17.9	66.89±8.2	105.2±8.2
20%	antioxidant	0	53.21±27.4	131.65±16.7	125.26±6.9	132.56±27.
30%	activity	14.91±0	94.25±29.6	110.67±12.5	127.09±34.3	144.41±10.

Table 7 The increasing of percentage antioxidant activity of SCG infused in the various type of oil carriers compared with oil carrier

Fac. of Undergrad. Studies, Assumption Univ.

Sc. (Biotechnology) / 37

For canola oil as shown in figure 16, the antioxidant activity in oil carrier was higher than 20% (w/w) and 10% (w/w) infusion ratio in every period of infusion time and also higher than 30% (w/w) infusion ratio at 24 hrs. At 48 to 120 hrs, it was obviously found that the antioxidant activity of 30% (w/w) infusion ratio was more than oil carrier. The highest percentage of antioxidant activity of SCG infused oil increased from oil carrier was observed in 30% (w/w) at 120 hrs that indicated $92.31\%\pm1.1$ increasing shown in Table 7 and Figure 17. According to Figure 5, the TPC in 20% (w/w) and 10% (w/w) infusion ratio were higher than carrier oil which is unrelated with lesser antioxidant activities performed by DPPH method. By these results, the 20% (w/w) and 10% (w/w) infusion ratio of oils and spent coffee ground was not promoted antioxidant activity. However, 30% (w/w) infusion ratio showed the increasing of antioxidant activity started from 48 hrs to 120 hrs. In addition, the antioxidant activity of SCG infused canola oil in each period of infusion time were increased significantly by more infusion ratio applied. In Figure 17, the increasing of percentage antioxidant activity was only found in 30% infusion ratio from 48 to 120 hrs which had the highest value of $2.91\pm1.2\%$ at 120 hours infusion ratio.

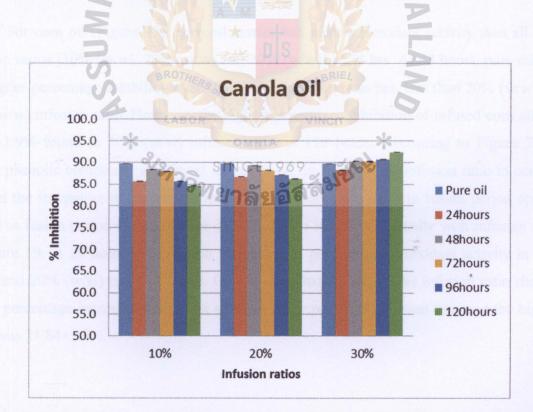


Figure 16 The percentage inhibition of DPPH scavenging assay in canola oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120

hours)

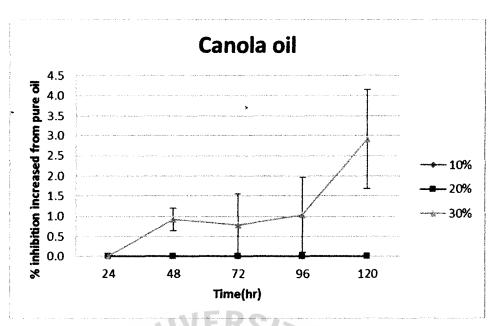


Figure 17 The percentage inhibition increased from carrier oil in canola oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period

For corn oil (Figure 18), corn oil carrier had more antioxidant activity than all SCG infusion ratios [10% (w/w), 20% (w/w) and 30% (w/w)] at 24 hrs. At 48 hours, pure oil also had higher percentage inhibition over 10% (w/w) infusion ratio but, less than 20% (w/w) and 30% (w/w) infusion ratio. However, the highest percentage inhibition of infused corn oil was 91.25 \pm 1.9% found in 30% (w/w) infusion ratio at 120 hours. According to Figure 7 The lowest phenolic compound was found in carrier oil. In addition, all infusion ratio in corn oil showed the increasing in percentage inhibition relatedly with more in fusion period applied and all in fusion period the percentage inhibition also increased relatedly with infusion ratio. In Figure 19, at 24 hour there was no increasing in percentage antioxidant activity in 10% (w/w) and 20% (w/w) infusion ratios. On the other hand, 30% (w/w) infusion ratio showed higher percentage increased over other ratios in every period of infusion time and the highest value was 21.84 \pm 1.9%.

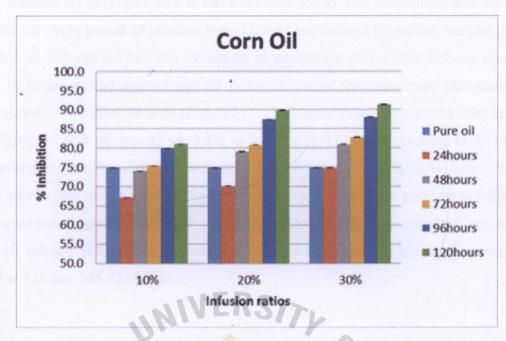


Figure 18 The percentage inhibition of DPPH scavenging assay in corn oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)

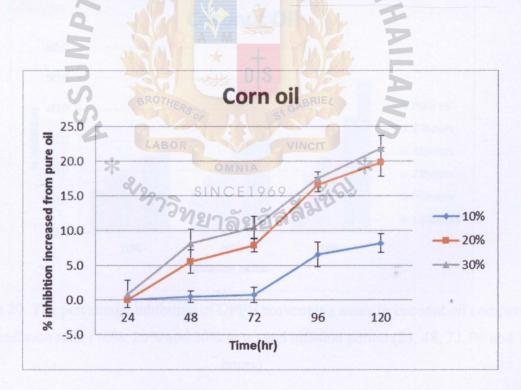
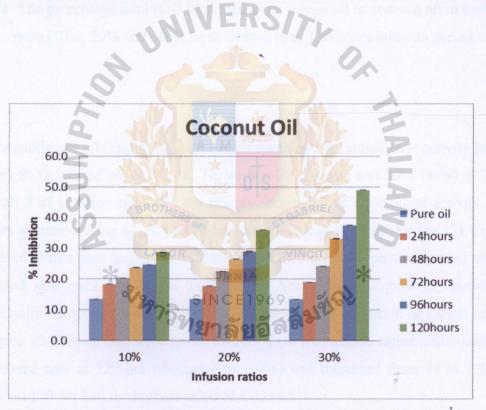



Figure 19 The percentage inhibition increased from carrier oil in corn oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period

Name Vaivit Kositarat

Results and Discussions / 40

For coconut oil in (Figure 20), it was obviously found that antioxidant activity of all infusion ratios at every period of infusion were higher than coconut oil carrier, besides this all infusion ratio in coconut oil had the increasing in percentage antioxidant activity relatedly with more in fusion period applied and all in fusion period the percentage inhibition also increased relatedly with infusion ratio (Figure 21). The highest percentage antioxidant activity of SCG infused coconut oil was $48.94\pm0.4\%$ in 30% (w/w, 120 hrs. According to its TPC in figure 9, antioxidant activity was increasing except 10% (w/w) and 30% (w/w) infusion ratio at 72 hrs which higher in TPC than 96 hrs infusion period but lower in percentage inhibition of DPPH scavenging assay. Figure 21 indicated the increasing in percentage antioxidant activity in all infused SCG infused coconut oil samples especially the highest percentage in 30% (w/w) at 120 hrs $265.23\pm5.8\%$.

Figure 20 The percentage inhibition of DPPH scavenging assay in coconut oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120 hours)

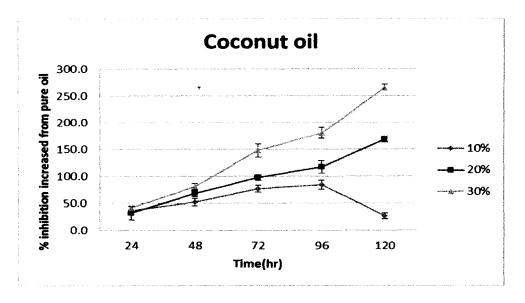


Figure 21 The percentage inhibition increased from carrier oil in coconut oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period

For sunflower oil (Figure 22), oil carrier contained the antioxidant activity higher than 10% (w/w) SCG infused oil at 24, 48, 72, 96 hrs, 20% (w/w) and 30% (w/w) at 24 hrs. In additiion all 3 of infusion ratio had the sharply increasing of antioxidant activity at 48 hrs from 24 hrs whereas during 48, 72 and 96 hrs had not changing much (Figure 23). The highest percentage of antioxidant activity was found in the 120 hrs infusion time period which 30% SCG infused sunflower oil showed $94.71\pm0.3\%$. According to Figure 11, carrier oil had lowest phenolic compound which unrelated with percentage inhibition of DPPH scavenging assay. Figure 23 showed that 10% (w/w) and 20% (w/w) infusion ratios antioxidant activity were increased only at 120 hrs whereas 30% (w/w) was increased from 48 to 120 hrs. So, 30% (w/w) at 120 hrs had the highest value of $4.65\pm4.6\%$.

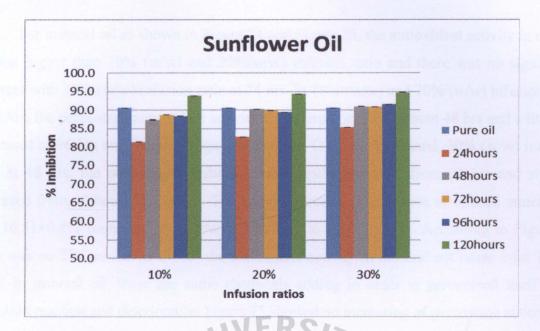


Figure 22 The percentage inhibition of DPPH scavenging assay in sunflower oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and

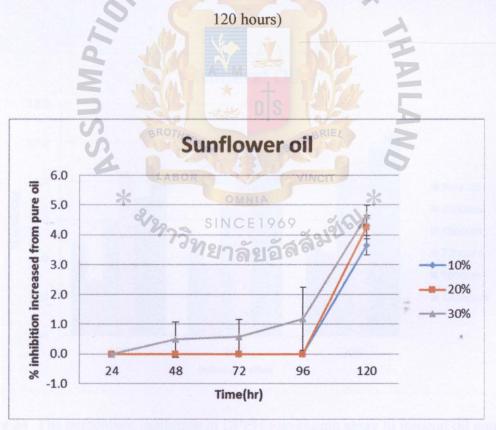
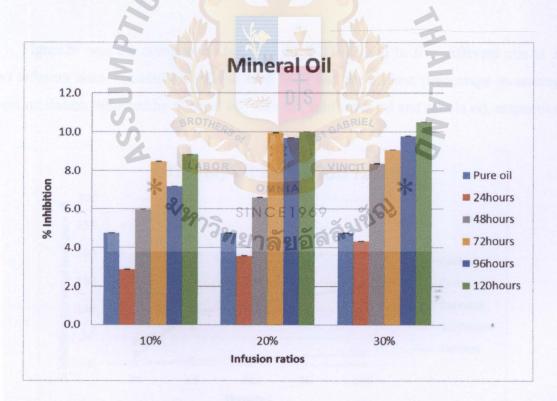



Figure 23 The percentage inhibition increased from carrier oil in sunflower oil in each infused ratio (10%, 20% and 30%) from 24 houres to 120 hours infusion period

Fac. of Undergrad. Studies, Assumption Univ.

Sc. (Biotechnology) / 43

For mineral oil as shown in Figure 24 and Figure 25, the antioxidant activity in carrier oil was higher than 10% (w/w) and 20%(w/w) infusion ratio and there was no significant different with 30% (w/w) infusion ratio at 24 hrs. In 10% (w/w) and 20% (w/w) infusion ratio at 72 hrs, the percentage antioxidant activity was sharply increased from 48 hrs and a little bit decreased at 96 hrs and increased again at 120 hrs. On the others hand, 30% (w/w) infusion ratio at 48 hrs, the percentage inhibition was shapely increased from 24 hrs and slightly increased from 48 hours to 120 hrs. The highest percentage inhibition of infused mineral oil was 10.51±0.4% found in 30% (w/w) infusion ratio at 120 hours. According to Figure 13, there was no TPC in carrier oil so, the antioxidant activity in mineral not come from TPC's itself. In mineral oil, there are some chemicals adding in order to prevent oil itself from oxidation reaction and deterioration Figure 25 showed no increasing of percentage antioxidant activity in 10% (w/w) and 20% (w/w) infusion ratios. The 30% (w/w) infusion ratio at 120 hrs.

Figure 24 The percentage inhibition of DPPH scavenging assay in mineral oil compare between infusion ratio (10%, 20% and 30% w/w) and infusion period (24, 48, 72, 96 and 120

hours)

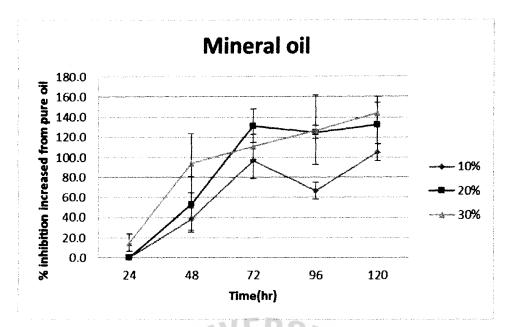


Figure 25 The percentage inhibition increased from carrier oil in mineral oil in each infuse ratio (10%, 20% and 30%) from 24 hours to 120 hours infusion period

Figure26 was the comparison between all SCG infused in five different oils at 30% (w/w) infusion ratio, coconut oil infused with SCG had the highest percentage increasing of percent inhibition followed by mineral oil, corn oil, sunflower oil and canola oil, respectively.

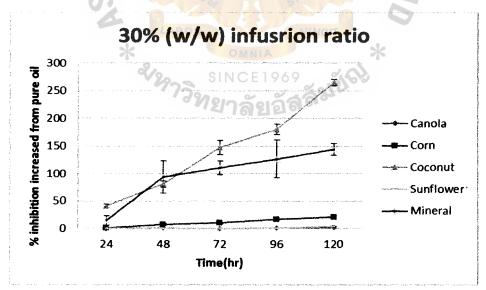


Figure 26 The increasing of percentage inhibition of DPPH scavenging assay from carrier oils in 30%(w/w) infusion ratio from 24 to 120 hours compare between each oils carrier

The result of IC50 was shown in Table 8, IC50 is the inhibition concentration at 50% according to the percentage inhibition, 30% infused sunflower oil at 120 hours exhibited strong antioxidant DPPH radical scavenging activity with the IC50 value of 29.07 mg/ml which had the highest percentage inhibition (94.71%±0.3) In addition, the other SCG infusion in canola and corn oils also exhibited the strong antioxidant activity as the IC 50 value were 27.93 mg/ml and 27.36 mg/ml, respectively. However, the standard ascorbic acid contained IC50 value of 2.97 mg/ml.

Table 8 the inhibition concentration of DPPH scavenging assay at 50% (IC50) in 30% (w/w)infusion ratio from 24 hours to 120hours in each oil

JED O

IC50 (mg/ml)								
Oil type	oil carrier	24hours	48hours	72hours	96hours	120hours		
Canola	36.15	3 <mark>5.1</mark> 9	28.45	27.58	39.04	27.93		
Corn	53.72	54.14	41.91	39.32	34.59	27.36		
Coconut	1,119.20	330.72	262.36	179.1	163.4	102.86		
Sunflower	41.05	42.98	36.56	32.17	35	29.07		
Mineral	3,125.25	4,195.03	1,016.46	706.67	1,408.62	834.07		

Note : IC 50 of ascorbic acid = 2.97mg/ml

3. Color intensity

The color of SCG infused oils were measured the absorbance by spectrophotometry method. The maximumwavelength was selected at 420 nm which suitable to observe the range of yellow color. The percentage increasing of color of all SCG infused oils were determined based on color of carrier oils (Table 9).

Table 10 and Table 11 showed the percentage increasing of color in oil after passed infusion process, the highest percentage increasing of color was found in coconut oil, which very different from the others.

0.196±0.01	
0.170±0.01	
0.426±0.015	
0.014±0.005	
0.072±0.004	
SI GABRIEL	

 Table 9 The measurement of color intensity of oil carrier at 420 nm

. •

•

			(Canola		14 14 14 14 14 14 14 14 14 14 14 14 14 1				
		24 hours	48 hours	72hours	96 hours	120 hours				
10%		238.78±15.71	280.1±10.98	336.9±12.03	399.15±31.01	494.73±17.62				
20%	% color intensity	421.09±19.11	458.16±18.63	501. 87 ±13.05	600.17±6.46	654.08±29.93				
30%	intensity	615.31±10.04	690.31±15.37	697.11±14.05	756.63±20.35	804.59±13.72				
	Corn									
	24 hours 48 hours 72 hours 96 hours									
10%		44.84±4	47.1±3.1	104.3±1.43	130.59±7.54	155.32±2.76				
20%	% color intensity	81.22±6.92	106.03±6	183.26±3.56	199.61±5.51	277.23±3.88				
30%		166.43±12.92	139.12±17.03	263.46±8.39	297.1±4.8	341.94±15.36				
	Coconut									
		24 hours	48 hours	72hours	96 hours	120 hours				
10%		3323.81±185.49	3876.19±148.86	4550±72.49	6145.24±184.1	7109.52±257.18				
20%	% color intensity	5619.05±111.65	6221.43±185.3	7526.19±227.04	8835.71±291.28	9697.62±185.76				
30%		8919.05±69.81	9228.57±118.99	10304.76±154.61	11057.14±202.58	11966.67±120.49				
		SS	BROTHERS	nflower GABRIE/	N					
		24 hours	48 hours	72hours	96 hours	120 hours				
10%	-	268.52±9.45	304.63±6.26	562.96±5.26	639.81±12.6	982.41±17.91				
20%	% color intensity	418.519±9.85	443.981±4.88	E 725±9.11	1103.241±12.9	1518.519±37.71				
30%		970.37±12.9	1031.481±11.56	1436.574±18.96	1714.352±15.61	2042.13±37.53				
			N	lineral						
		24 hours	48 hours	72hours	96 hours	120 hours				
10%		9.97±0.31	10±0.82	19.6±0.96	23.37±0.91	28.8±0.3				
20%	% color intensity	24.5±3.3	34±0.3	39.47±0.71	42.03±0.76	46.57±1.25				
30%		51.47±0.91	58.6±0.46	67.17±1.06	69.6±1.21	73.73±0.87				

Table 10 The percentage of color intensity increased from oil carrier

. •

.

			Canola			
		Day 1	Day2	Day3	Day4	Day5
10%	% color intensity(10 ³)	0.24	0.28	0.34	0.40	0.49
20%		0.42	0.46	0.50	0.60	0.65
30%	intensity(10)	0.62	0.69	0.70	0.76	0.80
A		- -	Corn	• • • • • •	<u> </u>	
		Day1	Day2	Day3	Day4	Day5
10%		0.04	0.05	0.10	0.13	0.16
20%	% color intensity(10 ³)	0.08	0.11	0.18	0.20	0.28
30%		0.17	0.14	0.26	0.30	0.34
	2		Coconut	2	7	
	2 1	Day 1	Day2	Day3	Day4	Day5
10%		3.32	3.88	4.55	6.15	7.11
20%	% color intensity (10^3)	5.62	6.22	7.53	8.84	9.70
30%	michsky(10)	8.92	9.23	10.30	11.06	11.97
	*	ABOR	unflower	ANCH	<	
	2/2	Day1	Day2 9	Day3	Day4	Day5
10%		0.27	0.30	0.56	0.64	0.98
20%	% color intensity (10^3)	0.42	0.44	0.73	1.10	1.52
30%	intensity(10)	0.97	1.03	1.44	1.71	. 2.04
]	Mineral	**************************************	<u>4 </u>	•
		Day1	Day2	Day3	Day4	Day5
10%		0.01	0.01	0.02	0.023	0.029
20%	% color intensity(10 ³)	0.025	0.034	0.039	0.042	0.047
30%		0.051	0.059	0.067	0.07	0.074

Table 11 The percentage color increasing (10^3) from oil carrier of all oil infused samples

For canola oil, in Table 11 and Figure 27, the percentage increasing of color related with infusion time, the highest percentage increasing of color in canola oil found in 30% (w/w) infusion ratio at 120 hours which is 0.8% (10^3). It was showed that the comparison of percentage increasing of color of canola oil in each infusion ratio, 30% (w/w) infusion ratio showed highest percentage increasing of color in every infusion period followed by 20% (w/w) and 10% (w/w) infusion ratio.

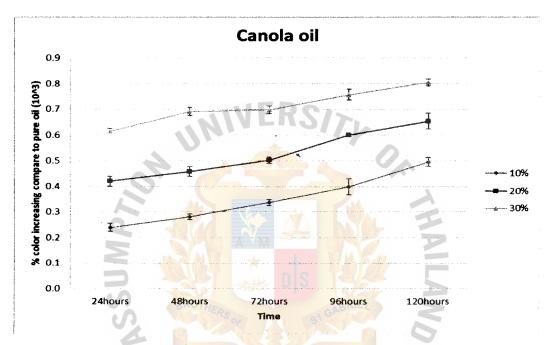


Figure 27 The percentage of color increasing compare to canola oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours

For corn oil (Figure28), the20% (w/w) and 10% (w/w) infusion ratioshowed the percentage increasing of color had increase related with infusion time but, for 30% (w/w) infusion ratio at 48 hours was decreased from 24 hours, which is 0.17% (10^3) to 1.4% (10^3) and increased to 0.26% (10^3) at 72 hours. The highest percentage increasing of color in corn oil found in 30% (w/w) infusion ratio at 120 hours which is 0.34% (10^3) It was showed that the comparison of percentage increasing of color of corn oil in each infusion ratio, 30% (w/w) infusion ratio showed highest percentage increasing of color in every infusion period followed by 20% (w/w) and 10% (w/w) infusion ratio.

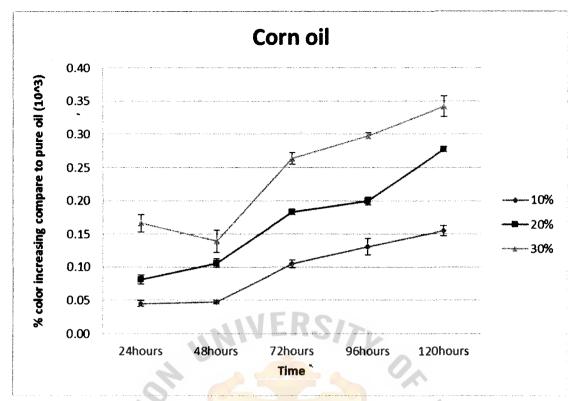


Figure 28 The percentage of color increasing compare to corn oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours

For coconut oil, it was obviously found that coconut oil had highest percentage increasing of color compared to others oil carriers. As showin n Table 11 and Figure 29, the percentage increasing of color had increase related with infusion time, the highest percentage increasing of color in canola oil was $11.97\% (10^3)$ which found in 30% (w/w) infusion ratio at 120 hours). Figure 29 showed the comparison of percentage increasing of color of corn oil in each infusion ratio, 30% (w/w) infusion ratio showed highest percentage increasing of color in every infusion period followed by 20% (w/w) and 10% (w/w) infusion ratio.

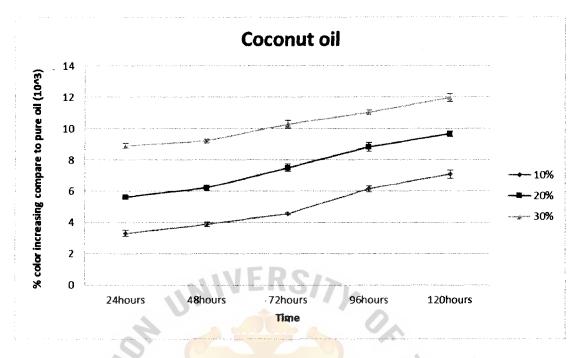


Figure 29 The percentage of color increasing compare to coconut oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours

For sunflower oil, the percentage increasing of color had increase related with infusion time, the highest percentage increasing of color in sunflower oil found in 30% (w/w) infusion ratio at 120 hours which is 2.04% (10^3). In Figure 30, it indicated that the comparison of percentage increasing of color of canola oil in each infusion ratio, 30% (w/w) infusion ratio showed highest percentage increasing of color in every infusion period followed by 20% (w/w) and 10% (w/w) infusion ratio.

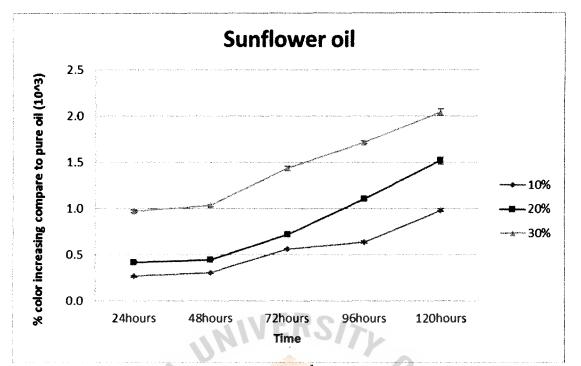


Figure 30 The percentage of color increasing compare to sunflower oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours

For mineral oil, it had lowest percentage increasing of color compared to others oil carriers. In Table 11 and Figure 31, the percentage increasing of color had increase related with infusion time, the highest percentage increasing of color in canola oil found in 30% (w/w) infusion ratio at 120 hours which is 0.074% (10^3). In Figure 31 Showed the comparison of percentage increasing of color of canola oil in each infusion ratio, 30% (w/w) infusion ratio showed highest percentage increasing of color in every infusion period followed by 20% (w/w) and 10% (w/w) infusion ratio

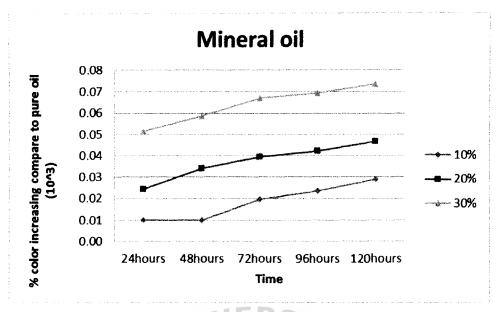


Figure 31 The percentage of color increasing compare to mineral oil carrier in each SCG infused ratio (10%, 20% and 30% (w/w)) from 24 hours to 120 hours

4. Peroxide value

Peroxide value of carrier oils and infused oils were determined by iodometric titration method. 30% ratio infusion at 120hours of all carrier oils was selected to use as samples, due to their phenolic compounds and antioxidant activities. The used of titrant volumes (0.1N sodium thiosulphate) were used for calculation of peroxide value in unit of milliequivalent/kilograms (meq/kg). The peroxide value of canola, corn. Coconut, sunflower and mineral oil were 10, 4, 2, 22, and 0 meq/kg, respectively (Table 12).

After infusion process, there were three types of oil carrier that had development in peroxide value which were canola oil from 10 to 16meq/kg, corn oil from 4 to 8meq/kg, sunflower oil from 22 to 36. From the result, it was obvious that sunflower oil had highest peroxide value 36meq/kg. Corn oil had highest percentage peroxide value increased from carrier oil 100%. Spent coffee grounds were not promoted inhibition of peroxide value in these carrier oils or acidity in coffee itself induced the oxidation to the carrier oils.

For coconut oil, there was not changing in peroxide value after infusion process. The reason was coconut oil was consist of saturated fatty acid which was the stable from of fatty acid and harder to oxidize than unsaturated fatty acid. And peroxide value in mineral oil was not found because it distillated from petroleum and did not have fatty acid to oxidize with oxygen.

Table 12 Peroxide value of carrier oils, SCG infused oils (30%(w/w)/120hours) andpercentage peroxide value increase from carrier oil.

Peroxide Value(meq/kg)						
	carrier oil	30%(w/w)/120hours	% POV			
infused oil	POV	POV	increased from			
	rov	POV	pure oil			
canola	10	16	60			
corn	4	8	100			
coconut	2	2	0			
sunflower	22	36	63.64			
mineral	0	0	0			

5. Antioxidant soap bar with coffee scrub

5.1 Preference test

After infused oils used as essential oils for making glycerin soap. In addition, non-added glycerin soap was used as control, total of sample soaps were six types, they were graded liking score range from 1-9 based on panelists' preferences on these following attribute; color(transparency), fragrance, lather, moisturizing, scrubbing, skin feel and over all liking.

The data from preference test was statistically prove by Duncan multiple range test

Attributes		1NI	s			
Attributes	Canola	Corn	Coconut	Sunflower	Mineral	Control
Color	6.05±1.00 ^b	5.95±0 <mark>.76^b</mark>	6.35±1.23 ^b	6.45±1.00 ^b	6.35±1.31 ^b	7.35±1.09 ^a
Fragrance	5.95±1.70 ^ª	6±1.26 ^a	6.2±1.54ª	5.3±1.84 ^b	6.3±1.42 ^a	6.35±1.79*
Lather	6.3±1.59 ^{ab}	6.2±1.79 ^b	6.55±1.54 ^{ab}	7.1±0.72 ^{ab}	6.6±1.23 ^{ab}	7.2±1.54 ^a
moisturizing	6.5±1.15 ^{ns}	6.25±1.29 ^{ns}	6.65±1.09 ^{ns}	6.2±1.32 ^{ns}	6.75±1.16 ^{ns}	6.65±1.35 ^{ns}
scrubbing	$6.2 \pm 1.40^{\text{ns}}$	6.05±1.64 ^{ns}	6.5±1.61 ^{ns}	6.65±1.27 ^{ns}	6.35±1.87 ^{ns}	6.9±1.52 ^{ns}
Skin feel	6.55±1.10 ^{ab}	6.4±1,14 ^{ab}	6.55±1.36 ^{ab}	6.3±1.26 ^b	6.75±1.16 ^{ab}	7.1±1.33 ª
Over all liking	6.8±0.83 ^{ab}	6.65±0.93 ^{ab}	6.75±1.02 ^{ab}	6.55±1.00 ^b	6.95±0.94 ^{ab}	7.3±1.45 ^a

Table13: preference scores of each type of infused oils soaps on seven attributes

Remark: ^{a b} means with superscripts in the column and those without a common superscript were significantly different α =0.05. ^{ns} superscript means no significantly different α =0.05

From the results, there were no significantly different between each oil on these attributes; moisturizing and scrubbing. For color, control had highest score 7.35 ± 1.09 significantly different from others soaps sample. For fragrance, infused sunflower oil soap had lowest score 5.3 ± 1.84 significantly different from others soaps sample. For lather, control had 7.2 ± 1.54 higher score than 6.2 ± 1.79 infused corn oil soap significantly. For skin feel and over all liking, control had significantly higher scores than infused sunflower oil soap, 7.1 ± 1.33 to 6.3 ± 1.26 and 7.3 ± 1.45 to 6.55 ± 1.00 , respectively.

5.2.Survey Questions

One hundred people were assigned to do survey questions for antioxidant glycerin soap bar with coffee scrub.

From the result, 62% were female and 38% were male. 35% of respondents were range between 41-50 years old and 23% were 51-60 years old. People who used soap bar and liquid soap were separated half by half which were 49% and 48%, respectively. Lux was the most used brand 26.3% followed by Shokubutsu 17.9% and Protex 14.7%. 30% of respondents had been using the same brand over 3 years, 17% had been using between 1 to 2 years and 16% had been using lower than 3 months. Fragrance was considered to be the most important attribute for respondents meanwhile other attributes were in range of important level. 58% of respondents did not know antioxidant soap but, 57% used to use scrub which most of natural scrubbers were rice (36.1%) and coffee (36.1%).

INCE1969

Lastly, 55.6% were not decided to purchase antioxidant glycerin soap bar with coffee scrub product yet, 31.3% were decided to purchase product meanwhile only13.1% were not response to this product. However, 55.6% was more than half of respondents that might or might not purchase the product which challenged to make them purchase product by marketing plans and development of product.

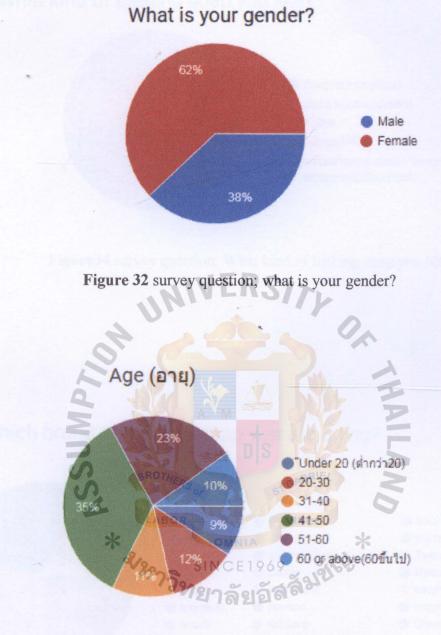


Figure33 survey question; age

What kind of bathing soap you like? 48% • Soap bar (สบู่ก้อน) • liquid soap (สบู่เหลว) • Foam • ได้หมด (All) • แล้วแต่โอกาส และความเหมาะสมของ สถานการณ์(depends)

Figure34 survey question; What kind of bathing soap you like?

Which brand of bathing soap you are using?

Figure35 survey question; Which brand of bathing soap you are using?

How long you have been using specific bathing soap brand?

Figure36 survey question; How long you have been using specific bathing soap brand?

UN

ดวามโปร้อแสง)

Important (Andey) Least important (สำคัญน้อยที่สุด) Mostimportart (drawiaa) 60 40 20 0 Price (shan) Color/ Fragrance (n.tu) Usage rate (diash Size and shape Foamy Wanes brand (Enia) (alia) a (Dure Lacititio) Transparent (å/ (nly) 21

Figure37 survey question; What is the level of importance on following attributes for soap?

What is the level of importance on following attribute for soap?

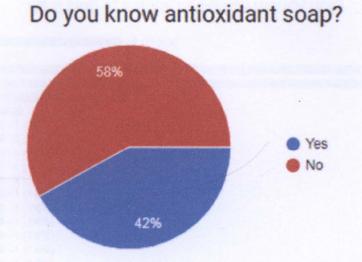


Figure38 survey question; Do you know antioxidant soap?

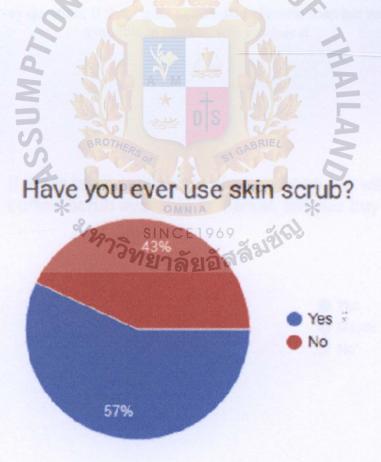
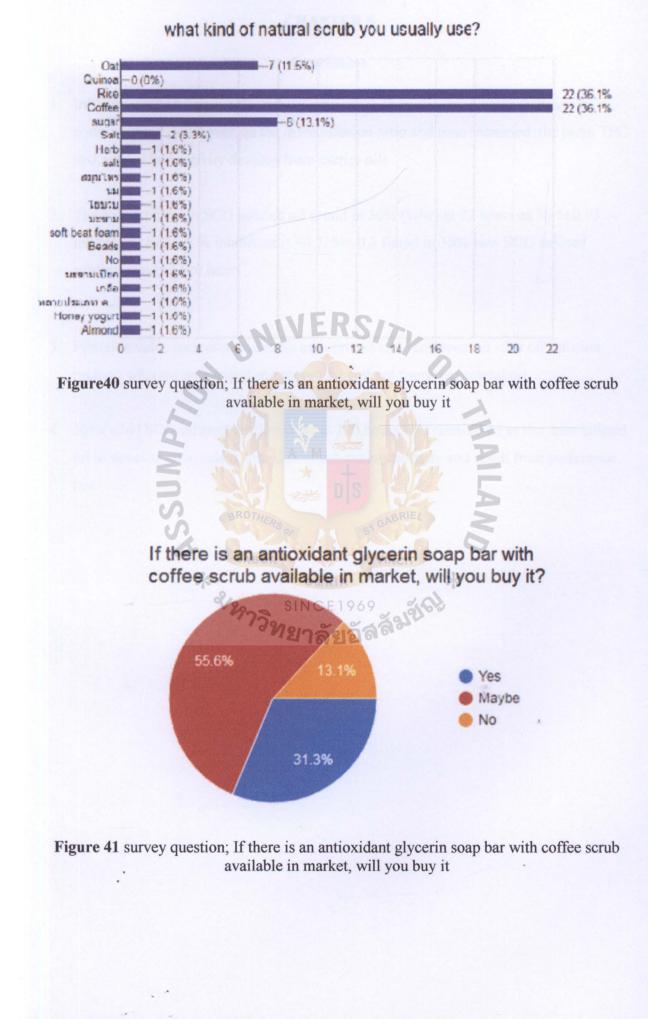



Figure39 survey question; Have you ever use skin scrub?

Sc. (Biotechnology) / 61

Fac. of Undergrad. Studies, Assumption Univ.

CHAPTER 5

Conclusion

- Infusion method was successfully to extract the phenolic compounds from spent coffee ground. Moreover, as the more infusion ratio and time increased, the more TPC and antioxidant activity develop from carrier oils
- The highest TPC in SCG infused oil found in 30% (w/w) at 72 hours as 36.1±0.93 mg/ml and highest % inhibition is 94.71%± 0.3 found in 30% w/w SCG infused sunflower oil at 120 hours.
- 3. Peroxide value increased in canola oil, corn oil and sunflower oil after oil infusion method whereas unchanged in coconut oil and not found in mineral oil
- 4. 30%(w/w) SCG infused sunflower oil at 120 hours was considered as the best infused oil to develop antioxidant soap due to antioxidant activity and result from preference test

REFERENCES

- Ana S. P. Moreira, a Fernando M. Nunes, b M. Rosario Dominguesa and Manuel A. Coimbra, (2012). Coffee melanoidins: structures, mechanisms of formation and potential health impacts.
- Viesturs Kreicbergs, Fredijs Dimins*, Velga Mikelsone, Ingmars Cinkmanis (2011). BIOLOGICALLY ACTIVE COMPOUNDS IN ROASTED COFFEE.
- 3. Selin Sahin, Mehmet Bilgin, Ezgi Sayım & Bedia Guvenilir, (2016) Effects of natural antioxidants in the improvement of corn oil quality: olive leaf vs. lemon balm.
- 4. I.A.R. Gray. OXIDATION INHIBITORS FOR INSULATING OILS.
- 5. Fereidoon Shahidi and Udaya Wanasundar, (1994) Stabilization of Canola Oil by Natural Antioxidants.
- 6. <u>Alessia Panusa</u>[†], <u>Antonio Zuorro</u>[§], <u>Roberto Lavecchia</u>[§], <u>Giancarlo Marrosu</u>, and <u>Rita</u> <u>Petrucci</u>, (2013) Recovery of Natural Antioxidants from Spent Coffee Grounds
- Carina Coelho, Miguel Ribeiro, Ana S. C. Cruz, Maria Rosario M. Domingues, Manuel A. Coimbra, Mirko Bunzel, and Fernando Milheiro Nunes, (2014) Nature of Phenolic Compounds in Coffee Melanoidins
- 8. Adriana Farah, Mariana Monteiro, Carmen M. Donangelo, and Sophie Lafay, (2008) Chlorogenic Acids from Green Coffee Extract are Highly Bioavailable in Humans
- 9. Coffeechemistry., Chlorogenic Acid

(https://www.coffeechemistry.com/chemistry/acids/chlorogenic-acid)

10. Coffeechemistry The Chemistry of Organic Acids: Part 1

(https://www.coffeechemistry.com/library/coffee-science-publications/the-chemistry-of-organic-acids-part-1)

- Coffeechemistry The Chemistry of Organic Acids: Part 2 (https://www.coffeechemistry.com/library/coffee-science-publications/the-chemistryof-organic-acids-part-2)
- Emma Sage, Coffee Science Manager, Specialty Coffee Association of America, (2014) Coffee Roasting Chemistry: Chlorogenic Acids
- 13. Adriana Farah; Carmen Marino Donangelo, (2006) Phenolic compounds in coffee
- 14. Selfgrowth, Benefits of Antioxidants Homemade Skin Care and More

(http://www.selfgrowth.com/articles/benefits-of-antioxidants-homemade-skin-careand-more)

- 15. Aromaweb, What are Infused Oils (also Known as Macerated Oils)? (http://www.aromaweb.com/articles/whatinfu.asp)
- 16. Mayada Damechki, Sofia Sotiropoulou and Maria Tsimidou, (2001). Antioxidant and pro-oxidant factors in oregano and rosemary gourmet olive oils
- 17. nutrition-and-you, Canola oil nutrition facts (http://www.nutrition-and-you.com/canola-oil.html)
- Fereidoon Shahidi and Udaya Wanasundara , (1994). Canola Extract as an Alternative Natural Antioxidant for Canola Oil
- 19. Oilhealthbenefits, Corn oil.(oilhealthbenefits.com/corn-oil/)
- 20. A. M. Marina, Y. B. Che man, S. A. H. Nazimah & I. Amin, (2009). Antioxidant capacity and phenolic acids of virgin coconut oil.
- 21. Sunflowernsa, Sunflower Oil Your Healthy Choice. (http://www.sunflowernsa.com/oil)

22. Britannica, Mineral oil.

(www.britannica.com/technology/mineral-oil)

23. Livestrong, Benefits of Glycerin Soap.

(http://www.livestrong.com/article/87954-benefits-glycerin-soap/)

24. Bioactive Food AS, Omega in your Body (http://www.1life63.com/en/omega-in-your-body-oxidation-of-lipids/oxidation-oflipids)

-

Г

APPENDIX

I. Statistic analyzed

· ·

1. Total phenolic compound

	Canola	corn	coconut	sunflower	mineral
• 1st	0.047	0.01	0.012	0.016	0
TPC	22.56	19.32	19.49	19.84	0.00
2nd	0.043	0.024	0.007	0.008	0
TPC	22.21	20.54	19.05	19.14	0.00
3rd	0.042	0.02	0.008	0.011	0
TPC	22.12	20.19	19.14	19.40	0.00

Table1 Raw data of total phenolic compound in all carrier oils

Table2 Raw data of total phenolic compound in canola infused oil

			Canola			
		24hours	48hours	72hours	96hours	120hours
	1 st%	0.054	0.059	0.101	0.090	0.105
	TPC	23.175	23.614	27.298	26.333	27.649
ſ	%TPC increase	3.935	5.902	22.425	18.097	23.998
Γ	2nd%	0.039	0.056	0.117	0.089	0.079
10%	TPC	21.860	23.351	28 .702	26.246	25.368
Γ	%TPC increase	-1.966	4.722	28.719	17.704	13.770
ſ	3rd%	0.045	0.068	0.087	0.044	0.091
ĺ	TPC	22.386	24.404	26.070	22.298	26.421
	%TPC increase	0.394	9.443	16.917	0.001	18.491
	1 st%	0.065	0.083	0.121	0.124	0.130
	TPC	24.140	25.719	29.053	29.316	29.842
Γ	%TPC increase	8.262	15.344	30.293	31.473	33.833
Γ	2nd%	0.066	0.101	0.118	0.077	0.192
20%	TPC 🗶	24.228	27.298	28.789	25.193	35.281
	%TPC increase	8.656	22.425	29.112	12.983	58.224
	3rd%	0.071	0.063	0.093	0.092	0.148
	TPC	24.667	23.965	26.596	26.509	31.421
Γ	%TPC increase	10.623	7.476	19.277	18.884	40.914
	1st%	0.140	0.089	0.203	0.180	0.154
	TPC	30.719	26.246	36.246	34.228	31.947
	%TPC increase	37.767	17.704	62.551	53,503	43.275
	2nd%	0.132	0.122	0.211	0.160	0.155
30%	TPC	30.018	29.140	36.947	32.474	32.035
	%TPC increase	34.620	30.686	65.698	45.635	43.668
	<u>3rd%</u>	0.091	0.117	0.190	0.216	0.227
	TPC	26.421	28.702	35.105	37.386	38.351
	%TPC increase	18.491	28.719	57.437	67.665	71.992

	Tables Raw data of	••••	orn			
		24hrs	48hrs	72hrs	96hrs	120hrs
	1 st%	0.013	0.021	0.035	0.037	0.014
	TPC	19.579	20.281	21.509	21.684	19.667
Γ	%TPC increase	-2.193	1.312	7.447	8.324	-1.755
	2nd%	0.029	0.032	0.040	0.060	0.057
10%	TPC	20.982	21.246	21.947	23.702	23.439
	%TPC increase	4.818	6.133	9.638	18.402	17.088
	3rd%	0.023	0.022	0.032	0.041	0.039
	TPC	20.456	20.368	21.246	22.035	21.860
	%TPC increase	2.189	1.751	6.133	10.076	9.200
	1st%	0.043	0.059	0.078	0.105	0.084
	TPC	22.211	23.614	25.281	27.649	25.807
	%TPC increase	10.953	17.964	26.290	38.121	28.919
	2nd%	0.049	0.055	0.057	0.116	0.104
20%	TPC	22.737	23.263	23.439	28.614	27.561
	%TPC increase	13.582	16,211	17.088	42.942	37.683
	3rd%	0.054	0.063	0.059	0.096	0.122
	TPC	23.175	23.965	23.614	26.860	29.140
	%TPC increase	15.773	19.717	17.964	34.177	45.571
	1st%	0.072	0.095	0.131	0.104	0,188
	TPC	24.754	26.772	29.930	27.561	34.930
	%TPC increase	11.016	20.064	34.226	23.605	56.650
	2nd%	0.056	0.092	0.126	0.153	0.202
30%	TPC BRO	23.351	26.509	29.49 1	31.860	36.158
	%TPC increase	4.722	18.884	32.260	42.881	62.158
	3rd%	B 0.089	0.057	NC0.085	0.131	0.153
	TPC 📩	26.246	23.439	25.895 🔰	29.930	31.860
	%TPC increase	17.704	5.115	16.130	34.226	42.881

Table3 Raw data of total phenolic compound in corn infused oil

^{พาววิท}ยาลัยอัสลั^{มช}์

•

. •

	Table4 Raw data		Coconut		scu coconut	. 011
		24hours	48hours	72hours	96hours	120hours
	1st%	0.022	0.038	0.046	0.032	0.068
Γ	TPC	20.368	21.772	22.474	21.246	24.404
Γ	%TPC increase	5.931	13.230	16.880	10.493	26.917
	2nd%	0.034	0.028	0.051	0.034	0.044
10%	TPC	21.421	20.895	22.912	21.421	22.298
	%TPC increase	11.406	8.668	19.161	11.406	15.968
	3rd%	0.041	0.031	0.055	0.028	0.061
	TPC	22.035	21.158	23.263	20.895	23.789
	%TPC increase	14.599	10.037	20.986	8.668	23,723
	1st%	0.047	0.058	0.072	0.084	0.108
	TPC	22.561	23.526	24.754	25,807	27.912
	%TPC increase	17.336	22.354	28.741	34.216	45.165
	2nd%	0.038	0.066	0.076	0.073	0.096
20%	TPC	21.772	24.228	25.105	24.842	26.860
	%TPC increase	13.230	26.00 ⁴	30.566	29.198	39.690
	3rd%	0.062	0.079	0.081	0.091	0.111
F	TPC	23.877	25.368	25.544	26.421	28.175
	%TPC increase	24.179	31.935	32.847	37.409	46.533
	1 st%	0.089	0.102	0.149	0.153	0.165
	TPC	26.246	27.386	31.509	31.860	32.912
	%TPC increase	36.497	42 <mark>.428</mark>	63.869	65.694	71.169
Γ	2nd%	0.076	0.083	0.137	0.129	0.115
30% [TPC	25.105	25.719	30.456	29.754	28.526
	%TPC increase	30.566	33.760	58.395	54.745	48.358
	3rd% 👱	0.099	0.117	0.129	0.106	0.127
	TPC 🥜	27.123	28.702	29.754	27.737	29.579
	%TPC increase	41.059	49.271	54.745	44.252	53.833

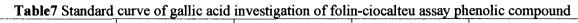
Table4 Raw data of total phenolic compound in infused coconut oil

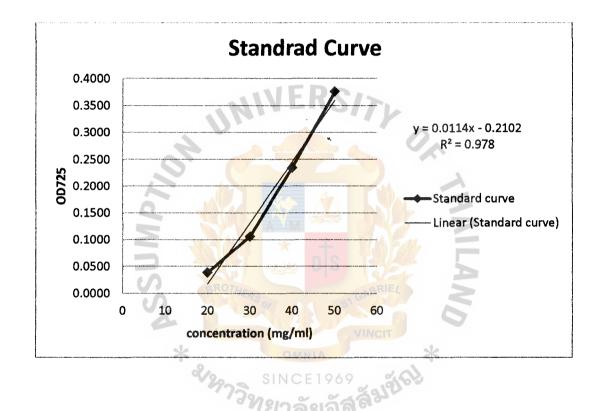
^{ราท}ยาลัยอัลล•

. •

	Tables Raw data of		Sunflower			
	·····	24hours	48hours	72hours	96hours	120hours
	- 1st%	0.031	0.042	0.050	0.038	0.076
	TPC	21.158	22.123	22.825	21.772	25.105
Γ	%TPC increase	8.714	13.672	17.278	11.869	28.996
	2nd%	0.049	0.033	0.045	0.054	0.034
10%	TPC	22.737	21.333	22.386	23.175	21.421
	%TPC increase	16.827	9.615	15.024	19.080	10.066
	3rd%	0.026	0.048	0.047	0.043	0.062
	TPC	20.719	22.649	22.561	22.211	23.877
	%TPC increase	6.460	16.376	15.925	14.123	22.686
	1 st%	0.033	0.035	0.100	0.053	0.087
	TPC	21.333	21.509	27.211	23.088	26.070
	%TPC increase	9.615	10.517	39.814	18.630	33.954
	2nd%	0.039	0.047	0.079	0.062	0.091
20%	TPC	21.860	<u>22.56</u> 1	25.368	23.877	26.421
ſ	%TPC increase	12.320	15.925	<mark>30.3</mark> 48	22.686	35.757
Γ	3rd%	0.057	0.050	0.083	0.059	0.090
Γ	TPC	23.439	22.825	25.719	23.614	26.333
Γ	%TPC increase	20.433	17.278	32.151	21.334	35.306
	1st%	0.053	0.069	0.135	0.128	0.111
F	TPC	23.088	24.491	30.281	29.667	28.175
F	%TPC increase	18.630	25.841	55.589	52,434	44.772
Γ	2nd%	0.071	0.051	0.093	0.116	0.132
30%	TPC	24.667	22.912	26.596	28.614	30.018
	%TPC increase	26.743	17.728	36.659	47.025	54.237
	3rd%	0.063	0.074	0.080	0.107	0.140
	TPC	23.965	24.930	25.456	27.825	30.719
	%TPC increase	23.137	28.095	30.799	42.969	57.842

Table5 Raw data of total phenolic compound in infused sunflower oil


٠


•

	Tableo Kaw data		Mineral			
		24hours	48hours	72hours	96hours	120hours
	1st%	0.000	0.000	0.024	0.031	0.019
ſ	TPC	0.000	0.000	20.544	21.158	20.105
Γ	%TPC increase	0.000	0.000	20.544	21.158	20.105
Γ	2nd%	0.000	0.000	0.017	0.022	0.039
10%	TPC	0.000	0.000	19.930	20.368	21.860
[%TPC increase	0.000	0.000	19.930	20.368	21.860
[3rd%	0.000	0.000	0.021	0.034	0.041
	TPC	0.000	0.000	20.281	21.421	22.035
	%TPC increase	0.000	0.000	20.281	21.421	22.035
	1st%	0.000	0.000	0.030	0.029	0.024
	TPC	0.000	0.000	21.070	20.982	20.544
	%TPC increase	0.000	0.000	21.070	20.982	20.544
ſ	2nd%	0.000	0.000	0.021	0.036	0.026
20%	TPC	0.000	0.000	20 .281	21.596	20.719
Γ	%TPC increase	0.000	0.000	20.281	21.596	20.719
F	3rd%	0.000	0.000	0.027	0.044	0.032
F	TPC	0.000	0.000	20.807	22.298	21.246
ſ	%TPC increase	0.000	0.000	20.807	22.298	21.246
	1st%	0.013	0.024	0.018	0.018	0.034
F	TPC	19.579	20.544	20.018	20.018	21.421
	%TPC increase	19.579	20.544	20.018	20.018	21.421
	2nd%	0.016	0.019	0.021	0.027	0.050
30%	TPC 🔭	19.842	20.105	20.281	20.807	22.825
	%TPC increase	19.842	0 20 10569	20.281	20.807	22.825
Γ	3rd%	0.021	0.022	0.032	0.041	0.039
-	TPC	20.281	20.368	21.246	22.035	21.860
	%TPC increase	20.281	20.368	21.246	22.035	21.860

Table6	Raw data of	total phenolic	compound in	infused mineral oil

OD725	20mg/ml	30mg/ml	40mg/ml	50mg/ml
1st	0.037	0.098	0.213	0.387
2nd	0.038	0.114	0.255	0.364
3rd	0.041	0.107	0.237	0.377
Average	0.0387	0.1063	0.2350	0.3760

Tableo Raw data of absorbance OD317 investigation of DFFH scaveliging assay										
	· · · · · · · · · · · · · · · · · · ·	* *	Canola oil		······································					
	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml					
1st	0.529	0.387	0.251	0.153	0.087					
2nd	0.552	0.404	0.273	0.137	0.081					
3rd	0.548	0.392	0.266	0.145	0.094					
			corn oil							
1st	0.602	0.488	0.382	0.302	0.227					
2nd	0.564	0.502	0.286	0.203						
3rd	0.572	0.497	0.407	0.293	0.211					
Coconut oil										
1st	0.743	0.744	0.721	0.714	0.732					
2nd	0.749	0.753	0.733	0.672	0.748					
3rd	0.742	0.734	0.716	0.724 🔨	0.728					
	7		Sunflower oil							
1st	0.574	0.416	0.272	0.188	0.072					
2nd	0.558	0.432	0.298	0.204	0.086					
3rd	0.580	0.422	0.279	0.192	0.083					
	S	BROTH	Mineral oil	RIE/						
1st	0.806 🕔	0.794	0.802	0.808	0.824					
2nd	0.826 🧹	0.816	0.788	0.813	0.807					
3rd	0.797	. 0.821	0.812	0.796	0.810					

2. Antioxidant activity DPPH scavenging assay

•

Table8 Raw data of absorbance OD517 investigation of DPPH scavenging assay

<

	· · · · · · · · · · · · · · · · · · ·	T	Tables r		/0111110111011	in infused can	01a 011 24 an	u 40 nouis		<u></u>	
				24hours					48hours	.	
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.558	0.422	0.262	0.191	0.130	0.573	0.410	0.227	0.129	0.099
	% inhibition	34.4	50.4	69.2	77.5	84.7	32.6	51.8	73.3	84.8	88.4
10%	2nd	0.601	0.415	0.266	0.156	0.115	0.552	0.396	0.210	0.140	0.106
1070	% inhibition	29.3	51.2	68.7	81.6	86.5	35.1	53.4	75.3	83.5	87.5
	3rd	0.580	0.420	0.278	0.185	0.122	0.560	0.425	0.236	0.136	0.092
	% inhibition	31.8	50.6	67.3	78.2	85.6	34.1	50.0	72.2	84.0	89.2
_	1 st	0.589	0.390	0.234	0.155	0.104	0.517	0.326	0.202	0.116	0.101
	% inhibition	30.7	54.1	72.5	81.8	87.8	39.2	61.6	76.2	86.4	88.1
20%	2nd	0.561	0.395	0.241	0.167	0.126	0.539	0.352	0.190	0.116	0.090
20%	% inhibition	34.0	53.5	71.6	<u>80</u> .4	85.2	36.6	58.6	77.6	86.4	89.4
	3rd	0.572	0.412	0.243	0.162	0.109	0.548	0.348	0.226	0.108	0.083
	% inhibition	32.7	51.5	71.4 R	80.9	87.2	RIE 35.5	59.1	73.4	87.3	90.2
	1 st	0.534	0.400	0.222	0.144	0.102	0.545	0.330	0.160	0.078	0.088
	% inhibition	37.2	52.9	73.9	BO 83.1	88.0	35.9	61.2	81.2	90.8	89.6
30%	2nd	0.562	0.389	0.231	0.163	0.093	0.530	0.342	0.176	0.089	0.072
5070	% inhibition	33.9	54.2	72.8	80.8	89.1	37.6	59.8	79.3	89.5	91.5
	3rd	0.549	0.395	0.216	0.151	0.106	0.542	0.326	0.163	0.096	0.069
	% inhibition	35.4	53.5	74.6	82.2	87.5	36.2	61.6	80.8	88.7	91.9

٠

Table9 Raw data of %inhibition in infused canola oil 24 and 48 hours

Appendix / 74

	······································		1 4010	72hours		ion in infused		2 and 30 not	96hours		
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.559	0.406	0.239	0.142	0.109	0.604	0.425	0.284	0.199	0.113
	% inhibition	34.2	52.2	71.9	83.3	87.2	28.9	50.0	66.6	76.6	86.7
100/	2nd	0.533	0.385	0.246	0.133	0.098	0.596	0.405	0.266	0.214	0.131
10%	% inhibition	37.3	54.7	71.1	84.4	88.5	29.9	52.4	68.7	74.8	84.6
	3rd	0.567	0.398	0.224	0.139	0.101	0.588	0.411	0.267	0.200	0.122
	% inhibition	33.3	53.2	73.6	83.6	88.1	<mark>3</mark> 0.8	51.6	68.6	76.5	85.6
	1st	0.543	0.353	0.196	0.112	0.100	0.592	0.425	0.234	0.153	0.110
	% inhibition	36.1	58.5	76.9	86.8	88.2	30.4	50.0	72.5	82.0	87.1
20%	2nd	0.561	0.321	0.201	0.101	0.097	0.611	0.399	0.251	0.143	0.102
2070	% inhibition	34.0	62.2	76.4	88.1	88.6	28.1	53.1	70.5	83.2	88.0
	3rd	0.558	0.344	0.226	0.126	0.105	0.620	0.381	0.251	0.166	0.116
	% inhibition	34.4	59.5	73.4	85.2	87.6	27.1	55.2	70.5	80.5	86.4
	1st	0.537	0.312	0.116	0.312	0.081 🖘	0.606	0.411	0.213	0.147	0.072
	% inhibition	36.8	63.3	86.4	63.3	90.5	28.7	51.6	74.9	82.7	91.5
30%	2nd	0.544	0.288	0.149	0.288	0.093	0.590	0.402	0.222	0.133	0.086
50.10	% inhibition	36.0	66.1	82.5	66.1	89.1	30.6	52.7	73.9	84.4	89.9
	3rd	0.562	0.303	0.153	0.303	N C 0.076 69	0.611	0.383	0.228	0.142	0.081
	% inhibition	33.9	64.4	82.0	64.4	91.1	28.1	54.9	73.2	83.3	90.5

Table 10 Raw data of % inhibition in infused canola oil 72 and 96 hours

1218200

.

•••

				120hours		
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	- 1st	0.566	0.425	0.324	0.207	0.140
	% inhibition	33.4	50.0	61.9	75.6	83.5
10%	2nd	0.581	0.444	0.303	0.190	0.121
10%	% inhibition	31.6	47.8	64.4	77.6	85.8
	3rd	0.563	0.448	0.291	0.216	0.131
	% inhibition	33.8	47.3	65.8	74.6	84.6
	1st	0.536	0.401	0.260	0.155	0.117
	% inhibition	36.9	52.8	69.4	81.8	86.2
20%	2nd	0.529	0.426	0.281	0.181	0.126
20%	% inhibition	37.8	49.9	66.9	78.7	85.2
	3rd	0.545	0.389	0.268	0.169	0.109
	% inhibition	35.9	54.2	68.5	80.1	87.2
	1st	0.506	0.306	0.222	0.095	0.058
	% inhibition	40.5	64.0	<mark>73</mark> .9	88.8	93.2
30%	2nd	0. <mark>522</mark>	0.323	0.236	0.108	0.062
50 /0	% inhibition	<u>38.6</u>	62.0	72.2	87.3	92.7
	3rd	0.518	0.333	0.219	0.090	0.076
	% inhibition	39.1	60.8	74.2	89.4	91.1

Table11 Raw data of %inhibition in infused canola oil 120 hours

[T	1 able 12	i in infused co	corn oil 24 and 48 hours						
				24hours				,	48hours	.	
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.607	0.545	0.490	0.350	0.278	0.589	0.496	0.390	0.291	0.226
	% inhibition	28.6	35.9	42.4	58.8	67.3	30.7	41.6	54.1	65.8	73.4
10%	2nd	0.613	0.567	0.478	0.331	0.290	0.571	0.507	0.420	0.283	0.204
10%	% inhibition	27.9	33.3	43.8	61.1	65.9	32.8	40.4	50.6	66.7	76.0
	3rd	0.628	0.552	0.484	0.326	0.270	0.606	0.511	0.404	0.326	0.233
	% inhibition	26.1	35.1	43.1	61.6	68.2	28.7	39.9	52.5	61.6	72.6
	1st	0.581	0.498	0.461	0.323	0.256	0.572	0.449	0.371	0.307	0.187
	% inhibition	31.6	41.4	45.8	62.0	69.9	32.7	47.2	56.4	63.9	78.0
200/	2nd	0.599	0.518	0.455	0.301	0.263	0.588	0.432	0.355	0.281	0.166
20%	% inhibition	29.5	39.1	46:5	64.6	69.1	30.8	49.2	58.2	66.9	80.5
	3rd	0.590	0.526	0.462	0.312	0.244	0.566	0.448	0.369	0.267	0.181
	% inhibition	30.6	38.1	45.6	63.3	71.3	33.4	47.3	56.6	68.6	78.7
	1st	0.577	0.489	0.411	0.298	0.200	0.583	0.431	0.316	0.260	0.182
	% inhibition	32.1	42.5	51.6	64.9	76.5	31.4	49.3	62.8	69.4	78.6
200/	2nd	0.584	0.493	0.405	0.305	0.233	0.555	0.411	0.298	0.248	0.155
30%	% inhibition	31.3	42.0	52.4	64.1	72.6	34.7	51.6	64.9	70.8	81.8
	3rd	0.576	0.501	0.396	0.290	0.210	0.542	0.409	0.282	0.252	0.148
	% inhibition	32.2	41.1	53.4	65.9	75.3	36.2	51.9	66.8	70.4	82.6

Table12 Raw data of %inhibition in infused corn oil 24 and 48 hours

^{วท}ยาลัยอัลล^{ิว}

.

		r - · · · · · · · · · · · · · ·	I able13 Raw data of %inhibition in infused corn oil /2 and 96 nours										
				72hours		r			96hours				
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml		
	1st	0.556	0.469	0.381	0.289	0.216	0.520	0.470	0.334	0.266	0.184		
	% inhibition	34.6	44.8	55.2	66.0	74.6	38.8	44.7	60.7	68.7	78.4		
100/	2nd	0.546	0.458	0.369	0.299	0.201	0.549	0.452	0.351	0.236	0.167		
10%	% inhibition	35.8	46.1	56.6	64.8	76.4	35.4	46.8	58.7	72.2	80.4		
	3rd	0.558	0.477	0.374	0.274	0.211	0.553	0.462	0.322	0.241	0.163		
	% inhibition	34.4	43.9	56.0	67.8	75.2	34.9	45.6	62.1	71.6	80.8		
	1st	0.541	0.465	0.320	0.300	0.164	0.534	0.420	0.274	0.208	0.105		
	% inhibition	36.4	45.3	62.4 📈	64.7	80.7	37.2	50.6	67.8	75.5	87.6		
2004	2nd	0.557	0.471	0.338	0.264	0.157	0.506	0.413	0.291	0.192	0.115		
20%	% inhibition	34.5	44.6	60.2	68.9	81.5	40.5	51.4	65.8	77.4	86.5		
	3rd	0.544	0.456	0.341	0.253	0.169	0.515	0.434	0.285	0.211	0.103		
	% inhibition	36.0	46.4	59.9	70.2	80.1	39.4	48.9	66.5	75.2	87.9		
	1st	0.523	0.401	0.289	0.265	0.141	0.518	0.399	0.255	0.149	0.104		
	% inhibition	38.5	52.8	66.0	68.8	83.4	39.1	53.1	70.0	82.5	87.8		
2004	2nd	0.538	0.422	0.281	0.232	0.137	0.523	0.421	0.235	0.132	0.109		
30%	% inhibition	36.7	50.4	66.9	72.7	83.9	38.5	50.5	72.4	84.5	87.2		
	3rd	0.540	0.438	0.297	0.235	0.162	0.527	0.407	0.241	0.158	0.093		
	% inhibition	36.5	48.5	65.1	72.4	80.9	38.0	52.1	71.6	81.4	89.1		

Table13 Raw data of %inhibition in infused corn oil 72 and 96 hours

*พ*ยาลัยอัล^{ละ}

٠

[120hours		····
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.519	0.426	0.320	0.221	0.170
[% inhibition	38.9	49.9	62.4	74.0	80.0
10%	2nd	0.544	0.450	0.341	0.204	0.153
10%	% inhibition	36.0	47.1	59.9	76.0	82.0
	3rd	0.538	0.441	0.335	0.230	0.161
	% inhibition	36.7	48.1	60.6	72.9	81.1
	1st	0.508	0.356	0.188	0.140	0.102
	% inhibition	40.2	58.1	77.9	83.5	88.0
20%	2nd	0.512	0.331	0.221	0.149	0.082
20%	% inhibition	39.8	61.1	74.0	82.5	90.4
	3rd	0.523	0.360	0.206	0.158	0.077
	% inhibition	38.5	57.6	75.8	81.4	90.9
	1st	0.519	0.360	0.200	0.131	0.092
	% inhibition	38.9	57.6	76.5	84.6	89.2
30% -	2nd	0.490	0.352	0.191	0.140	0.071
50%	% inhibition	42.4	58.6	77.5	83.5	91.6
[3rd	0.5 <mark>07</mark>	0.323	0.182	0.128	0.060
	% inhibition	40.4	62.0	78.6	84.9	92.9

Table14 Raw data of %inhibition in infused corn oil 120 hours

		·		·····							
				24hours					48hours	•	
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.797	0.792	0.771	0.724	0.701	0.808	0.750	0.738	0.694	0.673
	% inhibition	6.2	6.8	9.3	14.8	17.5	4.9	11.8	13.2	18.4	20.8
100/	2nd	0.816	0.799	0.768	0.734	0.698	0.815	0.769	0.742	0.706	0.686
10%	% inhibition	4.0	6.0	9.6	13.6	17.9	4.1	9.5	12.7	16.9	19.3
Ĩ	3rd	0.826	0.801	0.761	0.738	0.685	0.821	0.745	0.747	0.711	0.672
	% inhibition	2.8	5.8	10.5	13.2	19.4	3.4	12.4	12.1	16.4	20.9
	1st	0.779	0.723	0.788	0.689	0.712	0.775	0.703	0.717	0.675	0.656
	% inhibition	8.4	14.9	7.3	18.9	16.2	8.8	17.3	15.6	20.6	22.8
2007	2nd	0.791	0.733	0.767	0.706	0.703	0.783	0.694	0.725	0.683	0.666
20%	% inhibition	6.9	13.8	9.8	16.9	17.3	7.9	18.4	14.7	19.6	21.6
	3rd	0.802	0.745	0.777	0.714	0.684	0.771	0.712	0.735	0.679	0.654
	% inhibition	5.6	12.4	8.6	16.0	19.5	9.3	16.2	13.5	20.1	23.1
	1st	0.789	0.721	0.756	0.701	0.685	0.738	0.699	0.685	0.651	0.643
	% inhibition	7.2	15.2	11.1	17.5	19.4	13.2	17.8	19.4	23.4	24.4
2007	2nd	0.792	0.705	0.761	0.689	0.693	0.744	0.715	0.690	0.630	0.638
30%	% inhibition	6.8	17.1	10.5	18.9 on	18.5	12.5	15.9	18.8	25.9	24.9
	3rd	0.803	0.716	0.746	0.709	0.689	0.731	0.727	0.708	0.647	0.651
	% inhibition	5.5	15.8	12.2	16.6	18.9	14.0	14.5	16.7	23.9	23.4

Table15 Raw data of %inhibition in infused coconut oil 24 and 48 hours

*พิย*าลัยอัลละ

٠

ſ 		F	I able10		%innibition i	n infused coco	coconut oil 72 and 96 hours				
				72hours					96hours	h 	
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.810	0.756	0.710	0.685	0.656	0.751	0.700	0.666	0.655	0.651
	% inhibition	4.7	11.1	16.5	19.4	22.8	11.6	17.6	21.6	22.9	23.4
10%	2nd	0.826	0.742	0.732	0.702	0.641	0.733	0.712	0.671	0.661	0.632
10%	% inhibition	2.8	12.7	13.9	17.4	24.6	13.8	16.2	21.1	22.2	25.6
	3rd	0.804	0.748	0.727	0.691	0.648	0.759	0.696	0.661	0.645	0.638
	% inhibition	5.4	12.0	14.5	18.7	23.8	10.7	18.1	22.2	24.1	24.9
	1st	0.751	0.700	0.646	0.639	0.619	0.719	0.697	0.629	0.636	0.602
	% inhibition	11.6	17.6	24.0	24.8	27.2	15.4	18.0	26.0	25.2	29.2
200/	2nd	0.733	0.712	0.658	0.648	0.630	0.704	0.703	0.637	0.630	0.590
20%	% inhibition	13.8	16.2	22.6	23.8	25.9	17.2	17.3	25.1	25.9	30.6
	3rd	0.759	0.696	0.641	0.650	0.625	0.722	0.689	0.640	0.642	0.617
	% inhibition	10.7	18.1	24.6	23.5	26.5	15.1	18.9	24.7	24.5	27.4
	1st	0.722	0.681	0.601	0.623	0.559	0.713	0.633	0.596	0.604	0.519
	% inhibition	15.1	19.9	29.3	26.7	34.2	16.1	25.5	29.9	28.9	38.9
200/	2nd	0.725	0.674	0.591	0.642	0.561	0.694	0.629	0.581	0.617	0.532
30%	% inhibition	14.7	20.7	30.5	24.5	<mark>34.</mark> 0	18.4	26.0	31.6	27.4	37.4
	3rd	0.737	0.677	0.622	0.633	0.584	0.703	0.616	0.589	0.609	0.541
	% inhibition	13.3	20.4	26.8	25.5	31.3	17.3	27.5	30.7	28.4	36.4

Table16 Raw data of %inhibition in infused coconut oil 72 and 96 hours

*่ ที่*ยาลัยอัสล^ะ

.

٠

				120hours	·····	· · · · · hui · · i · · · · · · ·
;		20mg/ml	40mg/ml	60mg/ml	80mg/ml	20mg/ml
	1st	0.707	0.687	0.673	0.629	0.707
	% inhibition	16.8	19.2	20.8	26.0	16.8
10%	2nd	0.699	0.690	0.656	0.651	0.699
1070	% inhibition	17.8	18.8	22.8	23.4	17.8
	3rd	0.711	0.703	0.661	0.640	0.711
	% inhibition	16.4	17.3	22.2	24.7	16.4
	1st	0.672	0.689	0.646	0.599	0.544
	% inhibition	20.9	18.9	24.0	29.5	36.0
20%	2nd	0.698	0.700	0.658	0.612	0.538
2070	% inhibition	17.9	17.6	22.6	28.0	36.7
	3rd	0.701	0.695	0.641	0.603	0.551
	% inhibition	17.5	18.2	24.6	29.1	35.2
	1st	0.683	0.602	0.550	0.489	0.441
	% inhibition	19.6	29.2	35.3	42.5	48.1
30%	2nd	0.667	0.598	0.570	0.502	0.428
5070	% inhibition	21.5	29.6	32.9	40.9	49.6
	3rd	0.6 <mark>85</mark>	0.616	0.561	0.485	0.433
	% inhibition	<u>19.4</u>	27.5	34.0	42.9	49.1

Table17 Raw data of %inhibition in infused coconut oil 120 hours

		T	Table18 Ka		innibition in	infused sunfi	nflower oil 24 and 48 hours				
				24hours			<u> </u>		48hours	· · · · ·	
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.611	0.467	0.314	0.209	0.155	0.600	0.410	0.263	0.144	0.103
-	% inhibition	28.1	45.1	63.1	75.4	81.8	29.4	51.8	69.1	83.1	87.9
10%	_2nd	0.586	0.480	0.320	0.212	0.162	0.590	0.403	0.261	0.151	0.109
10%	% inhibition	31.1	43.5	62.4	75.1	80.9	30.6	52.6	69.3	82.2	87.2
	3rd	0.603	0.483	0.321	0.198	0.159	0.593	0.414	0.269	0.149	0.111
	% inhibition	29.1	43.2	62.2	76.7	81.3	30.2	51.3	68.4	82.5	86.9
	1st	0.599	0.450	0.289	0.200	0.148	0.584	0.380	0.242	0.108	0.084
	% inhibition	29.5	47.1	66.0	76.5	82.6	31.3	55.3	71.5	87.3	90.1
200/	2nd	0.602	0.444	0.293	0.192	0.142	0.590	0.385	0.235	0.129	0.080
20%	% inhibition	29.2	47.8	65 :5	77.4	83.3	30.6	54.7	72.4	84.8	90.6
	3rd	0.611	0.467	0.288	0.186	0.152	0.598	0.392	0.239	0.127	0.074
	% inhibition	28.1	45.1	66.1	78.1	82.1	29.6	53.9	71.9	85.1	91.3
	1st	0.587	0.433	0.276	0.185	0.122	0.570	0.369	0.237	0.102	0.072
	% inhibition	30.9	4 9.1 V	67.5	78.2	85.6	32.9	56.6	72.1	88.0	91.5
200/	2nd	0.592	0.441	0.279	0.178	0.128	0.582	0.381	0.228	0.115	0.078
30%	% inhibition	30.4	48.1	67.2	79.1	84.9	31.5	55.2	73.2	86.5	90.8
-	3rd	0.600	0.438	0.284	0.188	0.125	0.585	0.386	0.240	0.110	0.081
	% inhibition	29.4	48.5	66.6	77.9	85.3	31.2	54.6	71.8	87.1	90.5

Table 18 Pay data of % inhibition in infused sunflower oil 24 and 48 hours

^{/วท}ยาลัยอัสลั^ม์

.

•.

•

.

·		· · · · ·	Table19		omnioition in	infused sunfic	sunflower oil 72 and 96 hours				
				72hours					96hours		-
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.605	0.432	0.258	0.191	0.086	0.577	0.468	0.289	0.182	0.093
	% inhibition	28.8	49.2	69.6	77.5	89.9	32.1	44.9	66.0	78.6	89.1
10%	2nd	0.618	0.451	0.260	0.179	0.099	0.602	0.471	0.301	0.201	0.101
10%	% inhibition	27.3	46.9	69.4	78.9	88.4	29.2	<u>44.6</u>	64.6	76.4	88.1
	3rd	0.585	0.450	0.241	0.187	0.103	0.594	0.470	0.286	0.196	0.103
	% inhibition	31.2	47.1	71.6	78.0	87.9	30.1	44.7	66.4	76.9	87.9
	1st	0.549	0.412	0.194	0.108	0.089	0.571	0.416	0.301	0.180	0.088
	% inhibition	35.4	51.5	77.2	87.3	89.5	32.8	51.1	64.6	78.8	89.6
20%	2nd	0.561	0.392	0.198	0.123	0.082	0.552	0.402	0.259	0.174	0.094
20%	% inhibition	34.0	53.9	76.7	85.5	90.4	35.1	52.7	69.5	79.5	88.9
	3rd	0.566	0.397	0.202	0.135	0.086	0.574	0.416	0.261	0.171	0.087
	% inhibition	33.4	53.3	76.2	84.1	89.9	32.5	51.1	69.3	79.9	89.8
	1st	0.565	0.370	0.199	0.115	0.084	0.545	0.400	0.240	0.175	0.073
	% inhibition	33.5	56.5	76.6	86.5	90.1	35.9	52.9	71.8	79.4	91.4
200/	2nd	0.533	0.355	0.202	0.111	0.076	0.538	0.377	0.222	0.167	0.079
30% -	% inhibition	37.3	58.2	76.2	86.9	91.1	36.7	55.6	73.9	80.4	90.7
	3rd	0.543	0.361	0.197	0.109	0.072	0.540	0.382	0.236	0.181	0.063
	% inhibition	36.1	57.5	76.8	87.2	91.5	36.5	55.1	72.2	78.7	92.6

Table19 Raw data of %inhibition in infused sunflower oil 72 and 96 hours

*ขข*ยาลัยอิล^{ิส}

				120hours		annananana seolo nan no seolo nan
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.548	0.398	0.224	0.134	0.050
	% inhibition	35.5	53.2	73.6	84.2	94.1
10%	- 2nd	0.558	0.388	0.217	0.130	0.055
10%	% inhibition	34.4	54.4	74.5	84.7	93.5
	3rd	0.544	0.391	0.220	0.139	0.053
	% inhibition	36.0	54.0	74.1	83.6	93.8
	1st	0.559	0.376	0.186	0.131	0.045
	% inhibition	34.2	55.8	78.1	84.6	94.7
20%	2nd	0.564	0.371	0.197	0.139	0.051
20%	% inhibition	33.6	56.4	76.8	83.6	94.0
	3rd	0.561	0.383	0.192	0.142	0.048
	% inhibition	34.0	54.9	77.4	83.3	94.4
	1st	0.519	0.344	0.184	0.138	0.043
	% inhibition	38.9	59.5	78.4	83.8	94.9
30%	2nd	0.526	0.349	0.166	0.129	0.048
50%	% inhibition	38.1	58.9	80.5	84.8	94.4
	3rd	0.521	0.351	0.169	0.135	0.044
	% inhibition	38.7	58.7	80.1	84.1	94.8

Table20 Raw data of %inhibition in infused sunflower oil 120 hours

·			I adiezi k			n infused min	nineral oil 24 and 48 hours				
				24hours					48hours	r	
	_	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.834	0.833	0.834	0.834	0.822	0.805	0.800	0.775	0.795	0.800
	% inhibition	1.9	2.0	1.9	1.9	3.3	5.3	5.9	8.8	6.5	5.9
100/	2nd	0.840	0.829	0.824	0.830	0.834	0.818	0.814	0.793	0.811	0.795
10%	% inhibition	1.2	2.5	3.1	2.4	1.9	3.8	4.2	6.7	4.6	6.5
	3rd	0.821	0.826	0.831	0.820	0.821	0.823	0.822	0.801	0.805	0.803
	% inhibition	0.832	0.829	0.830	0.828	0.826	0.815	0.812	0.790	0.804	0.799
	1st	0.844	0.803	0.833	0.826	0.816	0.807	0.782	0.801	0.794	0.784
	% inhibition	0.7	5.5	2.0	2.8	4.0	5.1	8.0	5.8	6.6	7.8
2004	2nd	0.830	0.821	0.832	0.831	0.819	0.813	0.805	0.812	0.783	0.794
20%	% inhibition	2.4	3.4	2.1	2.2	3.6	4.4	5.3	4.5	7.9	6.6
	3rd	0.829	0.830	0.835	0.835	0.824	0.817	0.816	0.795	0.799	0.804
	% inhibition	2.5	2.4	1.8	1.8	3.1	3.9	4.0	6.5	6.0	5.4
	1st	0.827	0.822	0.814	0.819	0.808	0.801	0.811	0.801	0.804	0.767
	% inhibition	2.7	3.3	4.2	3.6	4.9	5.8	4.6	5.8	5.4	9.8
2004	2nd	0.819	0.810	0.817	0.823	0.815	0.795	0.827	0.807	0.785	0.788
30%	% inhibition	3.6	4.7	3.9	3.2	NIA 4.1	6.5	2.7	5.1	7.6	7.3
-	3rd	0.830	0.815	0.824	0.820	0.817	0.813	0.825	0.808	0.783	0.782
	% inhibition	2.4	4.1	3.1	3.5	3.9	4.4	2.9	4.9	7.9	8.0

Table21 Raw data of %inhibition in infused mineral oil 24 and 48 hours

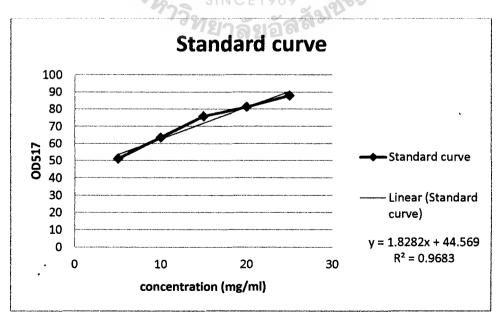
• ที่ยาลัยอัลละ

.

			1 adie22	Raw data of	%innibition i	in infused mineral oil 72 and 96 hours					
				72hours			96hours				
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml	20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.819	0.801	0.788	0.802	0.777	0.803	0.801	0.776	0.799	0.786
	% inhibition	3.6	5.8	7.3	5.6	8.6	5.5	5.8	8.7	6.0	7.5
10%	2nd	0.823	0.807	0.792	0.790	0.785	0.790	0.812	0.794	0.804	0.789
10%	% inhibition	3.2	5.1	6.8	7.1	7.6	7.1	4.5	6.6	5.4	7.2
	3rd	0.820	0.813	0.791	0.793	0.772	0.801	0.796	0.796	0.811	0.792
	% inhibition	0.821	0.807	0.790	0.795	0.778	0.798	0.803	0.789	0.805	0.789
	<u>1</u> st	0.801	0.794	0.800	0.784	0.760	0.803	0.785	0.801	0.780	0.765
	% inhibition	5.8	6.6	5.9	7.8	10.6	5.5	7.6	5.8	8.2	10.0
20%	2nd	0.797	0.791	0.814	0.788	0.764	0.808	0.791	0.812	0.790	0.768
20%	% inhibition	6.2	6.9	4.2	7.3	10.1	4.9	6.9	4.5	7.1	9.6
	3rd	0.793	0.805	0.799	0.792	0.772	0.809	0.796	0.799	0.792	0.770
	% inhibition	6.7	5.3	6.0	6.8	9.2	4.8	6.4	6.0	6.8	9.4
	1st	0.803	0.789 🔮	0.779	0.745	0.769	0.804	0.770	0.782	0.789	0.755
	% inhibition	5.5	7.2	8.4	12.4	9.5	5.4	9.4	8.0	7.2	11.2
2004	2nd	0.813	0.784	0.776	0.755	0.778	0.788	0.777	0.801	0.780	0.780
30%	% inhibition	4.4	7.8	8.7	11.2	8.5	7.3	8.6	5.8	8.2	8.2
	3rd	0.809	0.792	0.781	0.748	0.772	0.794	0.785	0.795	0.774	0.766
	% inhibition	4.8	6.8	8.1	12.0 N C	E199.2	6.6	7.6	6.5	8.9	9.9

Table22 Raw data of %inhibition in infused mineral oil 72 and 96 hours

^{่วท}ยาลัยอัสลิ^ม


٠

				120hours		
		20mg/ml	40mg/ml	60mg/ml	80mg/ml	100mg/ml
	1st	0.812	0.805	0.796	0.781	0.778
	% inhibition	4.5	5.3	6.4	8.1	8.5
10%	2nd	0.808	0.798	0.794	0.785	0.775
10%	% inhibition	4.9	6.1	6.6	7.6	8.8
	3rd	0.798	0.802	0.790	0.788	0.772
	% inhibition	0.806	0.802	0.793	0.785	0.775
	1st	0.808	0.795	0.793	0.787	0.756
	% inhibition	4.9	6.5	6.7	7.4	11.1
20%	2nd	0.803	0.800	0.787	0,750	0.776
20%	% inhibition	5.5	5.9	7.4	11.8	8.7
	3rd	0.807	0.791	0.781	0.773	0.763
	% inhibition	5.1	6.9	8.1	9.1	10.2
	1st	0.786	0.803	0.790	0.777	0.759
	% inhibition	7.6	5.5	7.1	8.6	10.7
30%	2nd	0.804	0.811	0.784	0.773	0.765
5070	% inhibition	5.4	4.6	7.8	9.1	10.0
	3rd	0.7 <mark>97</mark>	0.792	0.789	0.786	0.758
	% inhibition	6.2	6.8	7.2	7.5	10.8

Table23 Raw data of %inhibition in infused mineral oil 120 hours

Table24 Standard curve of ascorbic acid investigation of DPPH scavenging assay

OD517	5ug/ml	10ug/ml	15ug/ml	20ug/ml	25ug/ml
1st	0.418	0.312	0.212	0.178	0.094
2nd	0.412	0.306	0.195	0.136	0.109
3rd	0.416	0.309	0.208	0.164	0.102
Average	0.415	0.309	0.205	0.159	0.102

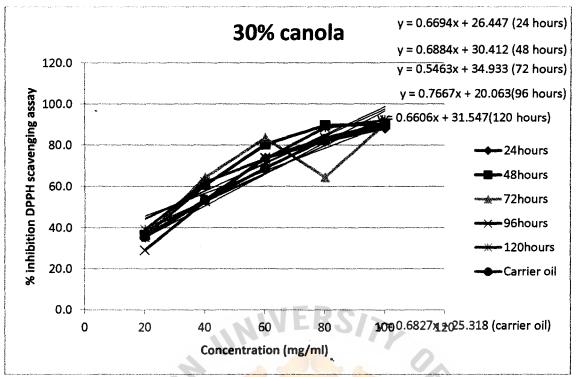
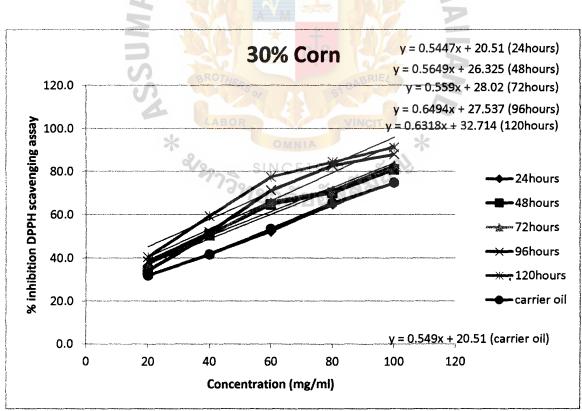
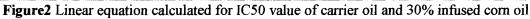




Figure1 Linear equation calculated for IC50 value of carrier oil and 30% infused canola oil

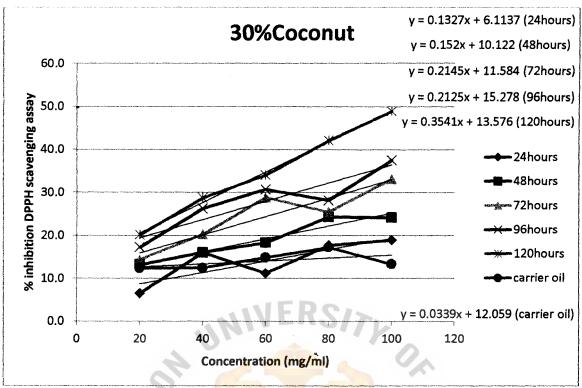


Figure3 Linear equation calculated for IC50 value of carrier oil and 30% infused coconut oil

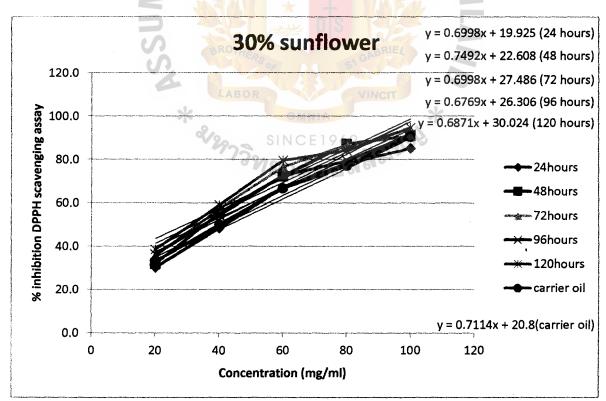


Figure4 Linear equation calculated for IC50 value of carrier oil and 30% infused sunflower oil

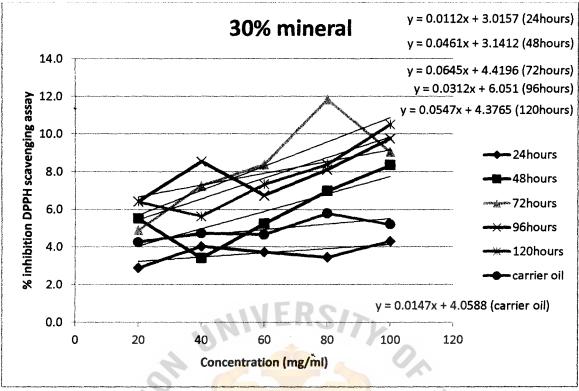


Figure5 Linear equation calculated for IC50 value of carrier oil and 30% infused mineral oil

3. Color increasing from carrier oils

	canola	corn	coconut	sunflower	mineral
1st	0.206	0.442	0.019	0.076	0
2nd	0.186	0.412	0.010	0.068	0
3rd	0.197	0.425	0.014	0.072	0
Average	0.196	0.426	0.014	0.072	0

Table25 absorbance value of all carrier oils OD420

Table26 Absorbance value of canola oil OD420

Canola								
	24hours	48hours	72hours	96hours	120hours			
	0.638	0.724	0.854	0.926	1.132			
10%	0.698	0.744	0.881	0.964	1.201			
	0.656	0.767	0.834	1.045	1.164			
Average	0.664	0.745	0.856	0.978	1.166			
	1.053	1.082	1.153	1.358	1.473			
20%	0.980	1.135	1.182	1.382	1.539			
	1.031	1.065	1.204	1.377	1.422			
Average	1.021	1.094	1.180	1.372	1.478			
K	1.399	1.542	1.589	1.693	1.804			
30%	1.423	1.523	1.534	1.710	1.756			
Ň	1.384	1.582	1.564	1.634	1.759			
Average	1.402	1.549	1.562	1.679	1.773			

Table27 Absorbance value of corn oil OD420

Corn							
	24hours	48hours	72hours	96hours	120hours		
	0.638	0.621	0.894	0.934	1.084		
10%	0.602	0.641	0.845	1.040	1.123		
	0.611	0.618	0.872	0.973	1.056		
Average	0.617	0.627	0.870	0.982	1.088		
	0.746	0.876	1.223	1.302	1.608		
20%	0.804	0.904	1.193	1.256	1.590		
	0.766	0.853	1.204	1.271	1.623		
Average	0.772	0.878	1.207	1.276	1.607		
	1.126	1.090	1.589	1.683	1.952		
30%	1.194	0.945	1.534	1.715	1.822		
	1.085	1.021	1.522	1.677	1.874		
Average	1.135	1.019	1.548	1.692	1.883		

coconut							
	24hours	48hours	72hours	96hours	120hours		
	0.485	0.534	0.642	0.870	1.045		
10%	0.451	0.561	0.649	0.851	0.973		
	0.502	0.575	0.662	0.902	1.010		
Average	0.479	0.557	0.651	0.874	1.009		
	0.815	0.893	1.032	1.272	1.346		
20%	0.784	0.856	1.078	1.204	1.398		
	0.803	0.906	1.093	1.277	1.371		
Average	0.801	0.885	1.068	1.251	1.372		
	1.284	1.302	1.487	1.543	1.694		
30%	1.266	1.295	1.417	1.584	1.721		
	1.238	1.321	1.466	1.559	1.653		
Average	1.263	1.306	1.457	1.562	1.689		

Table29 Absorbance value of sunflower oil OD420

sunflower							
	24hours	48hours	72hours	96hours	120hours		
	0.263	0.287	0.473	0.534	0.783		
10%	0.273	0.291	0.480	0.523	0.790		
	0.260	0.296	0.479	0.541	0.765		
Average	0.265	0.291	0.477	<mark>0</mark> .533 🤇	0.779		
	0.367	0.392	0.593	0.862	1.182		
20%	0.381	0.388 💴	0.601	0.877	1.134		
	0.372	0.395NG	E 0.588	0.860	1.180		
Average	0.373	0.392	0.594	0.866	1.165		
	0.768	0.824	1.104	1.294	1.532		
30%	0.781	0.808	1.094	1.309	1.573		
	0.763	0.812	1.121	1.316	1.522		
Average	0.771	0.815	1.106	1.306	1.542		

~

mineral							
	24hours	48hours	72hours	96hours	120hours		
	0.099	0.093	0.193	0.227	0.285		
10%	0.103	0.109	0.206	0.244	0.291		
	0.097	0.098	0.189	0.230	0.288		
Average	0.100	0.100	0.196	0.234	0.288		
	0.212	0.343	0.387	0.412	0.453		
20%	0.278	0.337	0.401	0.427	0.478		
	0.245	0.340	0.396	0.422	0.466		
Average	0.245	0.340	0.395	0.420	0.466		
	0.525	0.581	0.670	0.694	0.735		
30%	0.508	0.587	0.662	0.709	0.747		
	0.511	0.590	0.683	0.685	0.730		
Average	0.515	0.586	0.672	0.696	0.737		
Average							

Table30 Absorbance value of mineral oil OD420	Table30	Absorbance	value o	f mineral	oil OD420
---	---------	------------	---------	-----------	-----------

4. Peroxide value

٠

infused oil	Control	30% infused
DS	Used sodium thiosulfate	Used sodium thiosulfate
canola	0.5	0.8
corn	0.2	0.4
coconut	0.1	0.1
sunflower	1.1 OMNIA	1.8
mineral	000 000 CE1969	0

Statistic analyzed II.

1. % total phenolic increase

Df	Sum Sq	Mean Sq	F value	Pr(>F)
A • 4	3435	859	15.447	3.73e-06 ***
B 1	4772	4772	85.843	4.75e-09 ***
rep 1	183	183	3.294	0.0832.
A:B 4	408	102	1.836	0.1579
Residuals 22	1223 56		ter an	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table33 summary(Fact.RCBD) corn oil						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
A	4	3534	884	27.861	4.58e-09 ***	
B	1	3638	3638	114.709	4.98e-11 ***	
rep	3 1 - 2	1	1	0.017	0.89615	
A:B	4	739	185	5.828	0.00174 **	
Residuals	26	825	32	a conservation		
Signif. codes:	0 '***' 0.0	01 '**' 0.01 '*' (0.05 '.' 0.1 ' ' 1	4110		

]	Df Sum Sq	Mean Sq	F value	Pr(>F)
Α	4 1563	391	15.768	1.14e-06 ***
B	1 6465	6465	260.808	4.52e-15 ***
rep	1 25	25	1.025	0.3207
A:B	4 245	61	2.472	0.0694 .
Residuals	645	25		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table35 summary(Fact.RCBD) sunflower oil

Df	Sum Sq	Mean Sq	F value	Pr(>F)	
A 4	2244.3 561	.1 29.7	55 5.4	8e-09 ***	
B 1	2588.5	2588.5	137.276 2.0	5e-11 ***	
rep 1	10.7	10.7	0.568	0.4584	49.43 H · · · · · · · · · · · · · · · · · ·
A:B 4	241.5	60.4 N C E 1	96 3.202	ð 0.0305 *	
Residuals 24	452.6	18.9			

Signif. codes: 0'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Table36 summary(Fact.RCBD) mineral oil

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
A	4	2365.5 591	.4 41.	686 3.52	s-11 ***
В	1	359.2 359	.2 25.	317 2.8 0	e-05 ***'
rep	-1	22.3	22.3	1.568	0.221177
A:B	4	474.9 118	.7 8.3	69 0.00	0158 ***
Residuals	27	383.0	14.2		
Signif codes: 0	**** 0 001	*** 0 01 ** 0 05 * 0	1 * * 1		

0.05 '.' 0.1 Signif. c

Table37 summary(Fact.RCBD) 30% infusion ratio of all infused oils

)f S	Sum Sq Mear	n Sq	F value	Pr(>F)
A	4	3589	897.2	37.45	2 1.19e-10 ***
B	4 4	4721	1180.3	49.27	0 5.04e-12 ***
rep	1.28.98	25	25.3	1.055	0.314
A:B	16 2	2389	149.3	6.234	1.75e-05 ***
Residuals	27 (547	24.0		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

	24hrs	std.err	replication	
canola	28.12887	9.6381864	2	
coconut	36.04064	3.0375695	3	
corn	14.36003	3.3438606	2	
mineral	20.06140	0.2192982	2	
sunflower	24.93983	1.8028835	2	
-laha: 0.05 - 1				
alpha: 0.05 ;] Critical Rang				······································
alpha: 0.05 ; 1 Critical Rang 2		4	5	· · · · · · · · · · · · · · · · · · ·

Table38 Duncan multiple comparison on effect of 24hours infusion period on every infused oils

Harmonic Mean of Cell Sizes 2.142857 Different value for each comparison Means with the same letter are not significantly different.

Groups, Treatments and means

а	coconut	30.04
ab	canola	28.13
ab	sunflow	er 24.94
ab	mineral	20.06
b	corn	14.36
$\overline{>}d_1$	moon tost(m	odel "trt" alpha=

> duncan.test(model,"trt",alpha=0.05,console=TRUE) Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) : unused argument(s) (console = TRUE)

Table39 Duncan n	nultiple comparison	on effect of 48hours	s infusion period on	every infused oils

	48hrs	std.err	replication
canola	29.70245	0.9834884	2
coconut	45.84907	3.4215453	2
corn	19.47417	0.5900930	2
mineral	20.45614	0.0877193	INC2E1969
sunflower	26.96807	1.1268022	2
alpha: 0.05 ; D	f Error: 5		1012127
Critical Range			
2	3	4	5
6.147896	6.339247	6.420346	6.449503

Means with the same letter are not significantly different. Groups, Treatments and means

a	coconut	45.85
b	canola	29.7
b	sunflower	26.9 7
C	mineral	20.46
С	corn	19.47

> duncan.test(model,"trt",alpha=0.05,console=TRUE) Error in duncan.fest(model, "trt", alpha = 0.05, console = TRUE) : unused argument(s) (console = TRUE)

	72hrs	std.err	replication
canola	55,20758	5.0088224	3
coconut	- 59.00301	2.6514081	3 In the foreign sector of the state of the
corn)	33.24301	0.9834884	2
mineral	20.14912	0.1315789	2
sunflower	33,72889	2.9296857	2

Table40 Duncan multiple comparison on effect of 72hours infusion period on every infused oils

alpha: 0.05 ; Df Error: 7

Critical Range

2	3	4	5	
12,11011	12.59202	12,84948	12.99461	

Harmonic Mean of Cell Sizes 2.307692

Different value for each comparison Means with the same letter are not significantly different. Groups, Treatments and means

a	coconut	59	-
8	canola	55.21	
b	sunflower	33.73	
b	corn	33.24	Serve.
С	mineral	20.15	6

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE):
unused argument(s) (console = TRUE)

Table41 Duncan	multiple compa	rison on effect	of 96hours infusior	period on ever	y infused oils

	96hrs	std.err	replication
canola	49.56892	3,9339536	2
coconut	49.49872	5.2463695	2
corn	38.55385	4.3273490	2
mineral	20.41228	0.3947368	2
sunflower	44.99691	2.0282440	2

alpha: 0.05; Df Error: 5

Critical Range

2	3	4	5	
13.20748	13.61856	13.79278	13.85542	
34 44 41	1.44	· · · · · · · · · · · · · · · · · · ·	CC	

Means with the same letter are not significantly different.

Groups, Treatments and means

a	canola	49.5 7	

- a coconut 49.5
- a sunflower 45
- a corn 38.55
- b mineral 20.41

> duncan.test(model,"trt",alpha=0.05,console=TRUE)

Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) :

unused argument(s) (console = TRUE

Table42 Duncan multiple compariso	on on effect of 120 hours i	infusion period on every infused oils

	120hrs	std.err	replication
canola	43.47129	0.1966977	2
coconut	51.09544	2.7372363	2
corn	59.40380	2.7537675	2
mineral	22.34211	0.4824561	2
sunflower	56.03957	1,8028835	2
alpha: 0.05 ; 1			
Critical Rang	e		
2	3	4	5
7.011148	7.229367	7.321854	7.355105

Means with the same letter are not significantly different.

Groups, Treatments and means

a	corn	59.4
ab	sunflowe	r 56.04
b	coconut	51.1
¢	canola	43.47
d	mineral	22.34
- A	incan test(m	odal "trt" alpha=0

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE):
unused argument(s) (console = TRUE)

Table43 Duncan multiple comparison on %TPC increased of 30% infused canola oil on every infusion ratio

	canola	std.err	replication
120hrs	43,47129	0.1966977	2
24hrs	28,12887	9.6381864	2
48hrs	29,70245	0.9834884	2
72hrs	55,20758	5.0088224	IN 3 E 1969
96hrs	49,56892	3,9339536	2
alpha: 0.05; E	Of Error: 6		4 IOTZINA
Critical Range	;		
2	3	4	5
18.54559	19.22109	19,55570	19,72341

Harmonic Mean of Cell Sizes 2.142857

Different value for each comparison
Means with the same letter are not significantly different.
Groups, Treatments and means

a	72hrs	55.21
8	96hrs	49.57
ab	120hrs	43.47
b	48hrs	29.7
b	24hrs	28.13

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE):
unused argument(s) (console = TRUE

Table44 Duncan multiple comparison on %TPC increased of 30% infused corn oil o	n every infusion ratio

	corn	std.err	replication
120hrs	59,40380	2.7537675	2
24hrs	14.36003	3.3438606	2
48hrs	19.47417	0.5900930	2
72hrs	33.24301	0.9834884	2
96hrs	38.55385	4,3273490	2

alpha: 0.05; Df Error: 5

Critical Range

2	3	4	5	
10.12771	10.44293	10,57653	10.6245	6

Means with the same letter are not significantly different.

Groups, Treatments and means

a	120hrs	59.4
b	96hrs	38.55
b	72hrs	33.24
C	48hrs	19.47
c	24hrs	14.36

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE):
unused argument(s) (console = TRUE)

5

	Coconut	std.err	replication
120hrs	51.09544	2.737236	2
24hrs	36.04064	3.037570	
48hrs	45.84907	3.421545	2
72hrs	59.00301	2.651408	3
96hrs	49.49872	5.246370	2

Critical Rang	ge		
2	3	4	

Harmonic Mean of Cell Sizes 2.307692 Different value for each comparison Means with the same letter are not significantly different. Groups, Treatments and means

a	72hrs	59
ab	120hrs	51.1
ab	96hrs	49.5
bc	48hrs	45.85
с	24hrs	36.04

. .

A TH

Table46	Duncan mul	tiple compariso	on %TPC increase of 30% infus	ed sunflower oil on every infusion ratio

	sunflower	std.err	replication
120hrs	56,03957	1,802884	2
24hrs	. 24.93983	1.802884	2
48hrs	26.96807	1.126802	2
72hrs	33.72889	2.929686	2
96hrs	44.99691	2.028244	2

alpha: 0.05; Df Error: 5

Critical Range

	2	3	4	5
7.3	55151	7,584077	7.681102	7.715984
		same letter are a ents and means	not significantly d	ifferent.
a	120hrs	56.04	111.	IERSIN
b	96hrs	45		
c	72hrs	33.73		
cd	48hrs	26.97		
d	24hrs	24.94		
> dı	incan.test(m	odel,"trt",alpha	=0.05,console=TR	UE)
Erro	or in duncan.		", alpha = 0.05, co	

Table47 Dunc	an multiple cor	nparison on %]	TPC increase of 30% infuse	d mineral oil on every infusion ratio
	mineral	std.err	replication	

	mmerat	stu.err	replication	
120hrs	22.34211	0.4824561	2	
24hrs	20.06140	0.2192982	2	
48hrs	20,45614	0.0877193	2	>
72hrs	20.14912	0.1315789	INC ² =1060 40	
96hrs	20.41228	0.3947368	2	
alpha: 0.05;	Df Error: 5		ยาลยอดจ	

Critical Range

1.104669 1.139051 1.153623 1.158862	

Means with the same letter are not significantly different.

Gro	ups, Treatm	ents and means
a	120hrs	22.34

b	48brs	20.46
b	96hrs	20.41
b	72hrs	20.15
b	24hrs	20.06

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) :
unused argument(s) (console = TRUE)

2. % inhibition increase

Df	Sum Sq Mean	Sq F value	Pr(>F)	
A 4	3.791	0.948 2	.916 0.0.	36002 *
B 1	8.272	8.272 2	steel and a web over the state there is not a to be the state of the s	e-05 ***
rep 1	0,109	0.109 0	이야지 않는 것이 아이는 것이 집에 있는 것이 있는 것이 같은 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없 않는 것이 없는 것이 없이 없는 것이 없 않이	6305
A:B 4	8,299	2.075 6	.383 0.00	0641 ***
Residuals 33	10.726 0.325			

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

		Ta	ble49 sum	mary(Fact.RCBI	D) corn oil
	Df	Sum Sq Me	an Sq	F value	Pr(>F)
A	4	1598.1 399).5	81.036	<2e-16 ***
B	1	548.6	548.	6 111	.271 2.92e-12 ***
rep	2 1 1	9.3	9,3	1.8	87 0.178576
A:B	4	139.1	34.8	7.0	54 0.000301 ***
Residuals	34	167.6 4.9			
Signif. cod	les: 0 '***' ().001 '**' 0.01 '*	' 0.05 '.' 0.:	VERS	172
		Tab	le50 summ	ary(Fact.RCBD)	coconut oil

				ry(Fact.RCBD)		
	Df	Sum Sq Me	an Sq	F value	Pr(>F)	
A	4	78749	19687	17	1.63	<2e-16 ***
B	1	57889	57889	504	.68	<2e-16 ***
rep	1	6	6	0.0	5	0.824
A:B	4	50108	12527	109	.21	<2e-16 ***
Residuals	34	3900	115			

Table51 summary(Fact RCBD) sunflower oil

		Tavi	cor summai	y(raci.hcb	D) sunnowe	1 OII	
	Df	Sum Sq M	ean Sq	F value	Pr(>F)	
A	4	114.15	28.53	7 🔮 👘	218,482	< 2e-16	***
B	1	3.74	3.741		28.639	7.14e-06	* **
rep	1	0.00	0.002		0.016	0.901	
A:B	4	1.77 📉	0.444		3.397	0.020 *	
Residuals	32	4.18	0.131	BRICH S	kin la Mal		
Signif codes: 0	**** 0 (001 *** 0 01 "	*10.05110.1	111	2.195		

Signif. codes: 0 '***' 0.001 '**' 0.01 0.05 0.1

		Table52 sum	mary(Fact.RCBD)	mineral oil
	Df	Sum Sq Mean Sq	F value	Pr(>F)
Α	4	79162 197	90 110.	726 1.616-15 ***
В	1	8138 813	8 45.5	30 4.52e-07 ***
rep	1	355 355	1.98	4 0,171308
A:B	4	4915 122	9 6.8	75 0.000708 ***
Residuals	25	4468 179		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 .' 0.1 '' 1

Table53	summary(Fact.RCBD) 30% of every oils
Labicoo	Summary (1 uot.1(C)DD	, 5070 01 Overy 0115

	Df	Sum Sq Mean Sq	F value	Pr(>F)
A	4	52244 1	3061 356.	230 <2e-16 *** .
B	4	240660 60165	1640.976	<2e-16 ***
rep	1.	8 8	0.20	6 0.652
A:B	16	67442 4	215 114.	965 <2e-16 ***
Residuals	41	1503 37		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

, •

Table54 Duncan multiple comparison on effect of 24hours infusion period on every infused oils

	24hrs	std.err	replication
canola	0.0000000	0.0000000	3
coconut	41.3520632	2.0275690	3
corn	0.8743684	0,6298629	3
mineral	14.9110807	NA	1
sunflower	0.0000000	0.0000000	3
alpha: 0.05; E	Of Error: 8		
Critical Range	2		
2	3	4	5
4.096280	4.268711	4.365090	4.422873

Harmonic Mean of Cell Sizes 2.142857

Different value for each comparison

Means with the same letter are not significantly different.

Groups, Treatments and means

a	coconut	41.35
b	mineral	14.91
С	corn	0.8744
C	canola	0
с	sunflower	0

> duncan.test(model,"trt",alpha=0.05,console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE):
unused argument(s) (console = TRUE)

Table55 Duncan multiple comparison on effect of 48hours infusion period on every infused oils

	48hrs	std.err	replication
canola	0.6164339	0.3284800	3
coconut	80.8604039	3.3239147	3 VINCIT
corn	8.1180136	1.6281381	3
mineral	77.8385773	8.2079343	
sunflower	0,4983209	0.3358249	A BENELLE MARK
alpha: 0.05 ; D	Of Error: 9	773.	a sala
Critical Range)	a N	ยาลัยอัลิตั้
2	3	4	5
9.539799	9.957166	10.197593	10.347385

Harmonic Mean of Cell Sizes 2,727273

Different value for each comparison

Means with the same letter are not significantly different.

Gr	oups, Treatme	ents and means
a	coconut	80.86
8	mineral	77.84
b	corn	8.118
b	canola	0,6164
<u>b</u>	sunflower	

> duncan.test(model,"trt",alpha=0.05,console=TRUE) Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) : unused argument(s) (console = TRUE)

	72hrs	std.err	replication
canola	0.7913087	0.4386111	3
coconut	147.5856014	7.0419721	ание и на селото на состато на состато на селото на селото на селото на селото на селото и на селото и на сост По селото на селото на состато на селото н
corn	10.4740962	1.2178019	3
mineral	110.6703146	7.2387177	3
sunflower	0.8774781	0.2599935	2
alpha: 0.05 ; I			
Critical Range	9		
2	3	4	5
16.10604	16.81068	17.21659	17.46948
Harmonic Me	an of Cell Sizes 2.	727273	
			ED.
	e for each comparis		fferent
	ments and means	U	
a coconu	t 147.6		
b minera	1 110.7		
c corn	10.47		
c sunflow	er 0.8775		
c canola	0.7913		
> duncan.test(model, "trt", alpha=	0.05,console=TRI	UE)
	in.test(model, "trt",		
	ment(s) (console =		
e	0		
	\geq		
Table57 Dunc	can multiple compa	rison on effect of	96 hours infusion period on every infused oils
	96hrs	std.e	rr replication
canola	1.033948	0.5372245	3
coconut	180.362891	5.6064513	
corn	17.489987	0.7422941	3
mineral	144.870041	15.0478796	
sunflower	1.657459	0,6499838	2
alpha: 0.05 ; D		0	
apilu. 0.00 , L		9/0 01	NCELOKO ZO.

Table56 Duncan multiple comparison on effect of 72hours infusion period on every infused oils

 2
 3
 4
 5

 18.55372
 19.33472
 19.77127
 20.03299

 Harmonic Mean of Cell Sizes
 2.5

Different value for each comparison Means with the same letter are not significantly different. Groups, Treatments and means

a	coconut	180.4
b	mineral	144.9
с	corn	17.49
C	sunflower	1.657
с	canola	1.034

.

Critical Range

.

> duncan.test(model, "trt", alpha=0.05, console=TRUE) Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) : unused argument(s) (console = TRUE)

.

Table58 Duncan multiple comparison on effect of 120 hours infusion period on every infused o	Fable58 Duncan multi	e comparison on eff	ect of 120 hours infusion	period on ever	y infused oil
--	----------------------	---------------------	---------------------------	----------------	---------------

٠

Table58 Dun	can multiple comp	arison on effect of	f 120 hours infusion period on every infused oils
	120hrs	std.err	replication
canola	3,613352	0.2623123	2
coconut	265.232660	3.3239147	3
corn	21.835650	1.4743975	3
mineral	150.341997	1.3679891	2
sunflower	4.647384	0,1985733	3
alpha: 0.05; 1			
Critical Rang	e	······	
2	3	4	5
6.661540	6.941954	7.098690	7,192659
Harmonic Me	ean of Cell Sizes 2	.5	
	ue for each compari		
			fforont
	he same letter are n	or significantly of	
	tments and means		
a coconu			
b minera	al 150,3		
c corn	21.84		EDo.
d sunfloy	wer 4,647		
d canola	We believe a the state of the second s	en al frank fan strant fan it fan de fan s	an bad bereken nem kun her
	(model,"trt",alpha=	0.05 console=TR	
	an.test(model, "trt"		
	ment(s) (console =		ISOIC - IROE).
unused algu	ment(s) (console –	INUE)	
Table59 D	uncan multiple con	nparison on %TP	C increased of 30% infused canola oil on every infusion ratio
	canola	std.err	replication
120hrs	3.6133517	0.2623123	2
24hrs	0.0000000	0.0000000	
48hrs	0.6164339	0.3284800	3
72hrs	0.7913087	0.4386111	
96hrs	1.0339476	0.5372245	3
alpha: 0.05 ; 1			omnia – X
. ,		810 011	LOTION AND
Critical Range	e	V292 SIN	NCE1969
2	2	17900-	~ YAAP

2	3	491917	อัตเส็ส ติ ซ
1.237204	1.291332	1.322513	1.341939
Harmonic Me	ean of Cell Sizes 2.	727273	
Different valu	e for each compari	son	
Means with the	he same letter are n	ot significantly differ	erent.
	ments and means	6 ,	

Groups, Treatments and means

•

•

a	120hrs	3.613
b	96hrs	1.034
b	72hrs	0.7913
b	48hrs	0.6164
b	24hrs	0

> duncan.test(model, "trt", alpha=0.05, console=TRUE)
Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) :
unused argument(s) (console = TRUE)

Tallable 60 Duaman diola	plemoarparison on %TPC increase	ed of 30% infused corn oil	l on every infusion ratio

	corn	std.err	replication
120brs 21	1.8356501	1.4743975	3
24hrs 0.8	8743684	0.6298629	3
48hrs 8.1	1180136	1.6281381	3
	.4740962	1.2178019	an your has shared by set a lypeptime of the foreign of the set of the rest of the method of the set of t
server and a server of the server and the	.4899866	0.7422941	3
alpha: 0.05 ; Df Erro	or: 10		
Critical Range			
2	3	4	5
n a shi kata ka an ingi ka shi kata na afa sa shi ka shi na shi na shi ka shi na shi ka shi ka shi ka shi ka s	966586	4.067111	4.131415
Means with the same	e letter are n	ot significantly d	lifferent.
Groups, Treatments	and means		
	21.84		
the state of the state of the state of	7.49		
	0.47		VERS/>
c 48hrs 8	.118		
d 24hrs 0	.8744	V	· · · ·
Error in duncan.test(unused argument(s)			RUE) ponsole = TRUE) :
unused argument(s)) (console =	TRUE)	onsole = TRUE) :
unused argument(s) Table61 Duncan r) (console =	TRUE)	C increased of 30%infused coconut oil on every infusion ratio
unused argument(s) Table61 Duncan n) (console = nultiple com coconut	TRUE) parison on %TP std.err	onsole = TRUE) : 'C increased of 30% infused coconut oil on every infusion ratio replication
unused argument(s) Table61 Duncan r 120hrs 26) (console = nultiple com coconut 5.23266	TRUE) parison on %TP std.err 3.323915	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3
unused argument(s) Table61 Duncan n 120hrs 26 24hrs 41) (console = nultiple com coconut 5.23266 1.35206	TRUE) parison on %TP std.err 3.323915 2.027569	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3
unused argument(s) Table61 Duncan n 120hrs 26 24hrs 41 48hrs 80) (console = nultiple com coconut 5.23266 1.35206 .86040	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3
unused argument(s) Table61 Duncan n 120hrs 26 24hrs 41 48hrs 80 72hrs 14) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915 7.041972	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3 3 3
unused argument(s) Table61 Duncan n (120hrs 26 24hrs 41 48hrs 80 72hrs 14 96hrs 18) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3
unused argument(s) Table61 Duncan n Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2" Colspan="2") (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915 7.041972	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3 3 3
unused argument(s) Table61 Duncan n 120hrs 26 24hrs 41 48hrs 80 72hrs 14 96hrs 18 alpha: 0.05 ; Df Erro) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915 7.041972	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3 3 3
unused argument(s) Table61 Duncan n 120hrs 26 24hrs 41 48hrs 80 72hrs 14 96hrs 18 alpha: 0.05 ; Df Erro) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289	TRUE) parison on %TP std.err 3.323915 2.027569 3.323915 7.041972	onsole = TRUE) : C increased of 30%infused coconut oil on every infusion ratio replication 3 3 3 3 3
unused argument(s) Table61 Duncan m Table61 Duncan m Table71 Duncan m Tabl) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289 or: 10 3 .24902	TRUE) sparison on %TP std.err 3.323915 2.027569 3.323915 7.041972 5.606451 4 15.63547	onsole = TRUE) : C increased of 30% infused coconut oil on every infusion ratio replication 3 3 3 3 INCE 1969 15.88268
unused argument(s) Table61 Duncan r Tabl) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289 or: 10 3 .24902	TRUE) sparison on %TP std.err 3.323915 2.027569 3.323915 7.041972 5.606451 4 15.63547	onsole = TRUE) : C increased of 30% infused coconut oil on every infusion ratio replication 3 3 3 3 INCE 1969 15.88268
unused argument(s)Table61 Duncan m120hrs2624hrs4148hrs8072hrs1496hrs18alpha: 0.05 ; Df ErroCritical Range214.5924915Means with the same) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289 or: 10 3 .24902 e letter are no	TRUE) sparison on %TP std.err 3.323915 2.027569 3.323915 7.041972 5.606451 4 15.63547	onsole = TRUE) : C increased of 30% infused coconut oil on every infusion ratio replication 3 3 3 3 INCE 1969 15.88268
unused argument(s)Table61 Duncan n120hrs2624hrs4148hrs8072hrs1496hrs18alpha: 0.05 ; Df ErroCritical Range214.5924915Means with the sameGroups, Treatments) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289 or: 10 3 .24902 e letter are no and means	TRUE) sparison on %TP std.err 3.323915 2.027569 3.323915 7.041972 5.606451 4 15.63547	onsole = TRUE) : C increased of 30% infused coconut oil on every infusion ratio replication 3 3 3 3 INCE 1969 15.88268
unused argument(s) Table61 Duncan n 120hrs 26 120hrs 26 24 120hrs 26 24 24hrs 41 41 48hrs 80 72 72hrs 14 96 96hrs 18 81 alpha: 0.05 ; Df Error Critical Range 2 14.59249 15 Means with the same Groups, Treatments 2 a 120hrs 2) (console = nultiple com coconut 5.23266 1.35206 .86040 7.58560 0.36289 or: 10 3 .24902 e letter are no	TRUE) sparison on %TP std.err 3.323915 2.027569 3.323915 7.041972 5.606451 4 15.63547	onsole = TRUE) : C increased of 30% infused coconut oil on every infusion ratio replication 3 3 3 3 INCE 1969 15.88268

48hrs 80.86

e	24hrs	41.35	1.0000 10000			
> d	uncan test(r	nodel "trt" alp	ha=0.05.0	consol	e=TR	UE)

. •

Error in duncan.test(model, "trt", alpha = 0.05, console = TRUE) : unused argument(s) (console = TRUE)

•

с đ

. .

	sunflower	std.err	replication
120hrs	4,6473838	0.1985733	3
24hrs	0.0000000	0.0000000	3
48hrs	0.4983209	0.3358249	3
72hrs	0.8774781	0.2599935	2
96hrs	1.6574586	0.6499838	2
alpha: 0.05; Df	Error: 8		
Critical Range			
2	3	4	5
1.003419	1.045657	1.069266	1.083421
Harmonic Mean	of Cell Sizes 2	2.5	
Different value			
		not significantly di	fferent.
Groups, Treatme	ents and means		
a <u>120hrs</u>	4.64 7		EKS/>
b 96hrs	1.657		·
bc 72hrs	0.8775		
c 48hrs	0,4983		
c 24hrs	0		
> duncan.test(m	odel,"trt",alpha=	=0.05,console=TR	UE)
		', $alpha = 0.05$, cor	
	ent(s) (console =		
unused algume	ent(s) (console	IKUE)	
-			
-	5	A	
-	M		
-	MU		
Table63 Dund		nparison on %TPC	C increased of 30% infused mineral oil on every infusion ratio
	mineral	nparison on %TPC std.err	replication BRIEL
Table63 Dund	mineral 150.34200	nparison on %TPC	
	mineral 150.34200 14.91108	nparison on %TPC std.err	replication GRIEL
120hrs 24hrs	mineral 150.34200	nparison on %TPC std.err 1.367989	replication and a
120hrs	mineral 150.34200 14.91108	nparison on %TPC std.err 1.367989 NA	replication 2 1
120hrs 24hrs 48hrs 72hrs	mineral 150.34200 14.91108 77.83858	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718	replication
120hrs 24hrs 48hrs 72hrs 96hrs	mineral 150,34200 14.91108 77,83858 110.67031 144,87004	nparison on %TPC std.err 1.367989 NA 8.207934	replication
120hrs 24hrs 48hrs 72hrs 96hrs	mineral 150,34200 14.91108 77,83858 110.67031 144,87004	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718	replication
120hrs 24hrs 48hrs 72hrs 96hrs	mineral 150,34200 14.91108 77,83858 110.67031 144,87004	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718	replication
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df	mineral 150,34200 14.91108 77,83858 110.67031 144,87004	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718	replication
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df	mineral 150,34200 14.91108 77,83858 110.67031 144,87004	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718	replication
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range	mineral 150.34290 14.91108 77.83858 110.67031 144.87004 Error: 5	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880	replication 2 1 2 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 5
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 3 37.97884	nparison on %TPC std.err 1,367989 NA 8.207934 7.238718 15.047880 4 38.46471	replication 2 1 2 3 3 2 7 ລັຍລັດລົ້ອງ 5
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 3 37.97884	nparison on %TPC std.err 1,367989 NA 8.207934 7.238718 15.047880 4 38.46471	replication 2 1 2 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 3 2 7 5
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean	mineral 150.34290 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1.	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706	replication 2 1 2 3 2 7 ລັຍລັດດີ 5
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compari	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value for Means with the s	mineral 150.34290 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. for each compariant ame letter are not	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo Means with the s Groups, Treatme	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compariant eletter are not and means	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo Means with the s Groups, Treatme a 120hrs	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compari ame letter are no nts and means 150.3	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo Means with the s Groups, Treatme a 120hrs ab 96hrs	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. for each compariant eletter are not sand means 150.3 144.9	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo Means with the s Groups, Treatme a 120hrs b 96hrs oc 72hrs	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compariant each compariant eletter are not sand means 150.3 144.9 110.7	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value for Means with the s Groups, Treatme a 120hrs ab 96hrs oc 72hrs : 48hrs	mineral 150.34290 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compari ame letter are no nts and means 150.3 144.9 110.7 77.84	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 .764706 son	replication 2 1 2 3 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
120hrs 24hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value for Means with the s Groups, Treatme a 120hrs ab 96hrs oc 72hrs c 48hrs 1 24hrs	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compari ame letter are no nts and means 150.3 144.9 110.7 77.84 14.91	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 764706 son ot significantly dif	replication 2 1 2 3 3 2 7 5 38.63939 , ferent.
120hrs 24hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value for Means with the s Groups, Treatme a 120hrs ab 96hrs bc 72hrs c 48hrs 1 24hrs c duncan.test(mo	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. for each compariant letter are non the and means 150.3 144.9 110.7 77.84 14.91 del, "trt", alpha=0	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 764706 son ot significantly dif	replication 2 1 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 5 38.63939 * ferent.
120hrs 24hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value for Means with the s Groups, Treatme 120hrs b 96hrs bc 72hrs 48hrs 24hrs duncan.test(mo	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compariante letter are not not means 150.3 144.9 110.7 77.84 14.91 del, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt"), alpha=(est(model, "trt	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 764706 son ot significantly dif	replication 2 1 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 5 38.63939 . . ferent.
120hrs 24hrs 24hrs 48hrs 72hrs 96hrs alpha: 0.05 ; Df Critical Range 2 36.83244 Harmonic Mean Different value fo Means with the s Groups, Treatme 120hrs b 96hrs b 72hrs 48hrs 24hrs duncan.test(mo	mineral 150.34200 14.91108 77.83858 110.67031 144.87004 Error: 5 3 37.97884 of Cell Sizes 1. or each compariante letter are not not means 150.3 144.9 110.7 77.84 14.91 del, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt", alpha=(est(model, "trt"), alpha=(est(model, "trt	nparison on %TPC std.err 1.367989 NA 8.207934 7.238718 15.047880 4 38.46471 764706 son ot significantly dif	replication 2 1 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 5 38.63939 . . ferent.

Appendix / 106

III. Preference test

Table64 SAS out put; Duncan comparison, class level information

Randomized Complete Block

The ANOVA Procedure Class Level Information

Class	Levels	Values
Block	20	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Treatment	6	ABCDEF

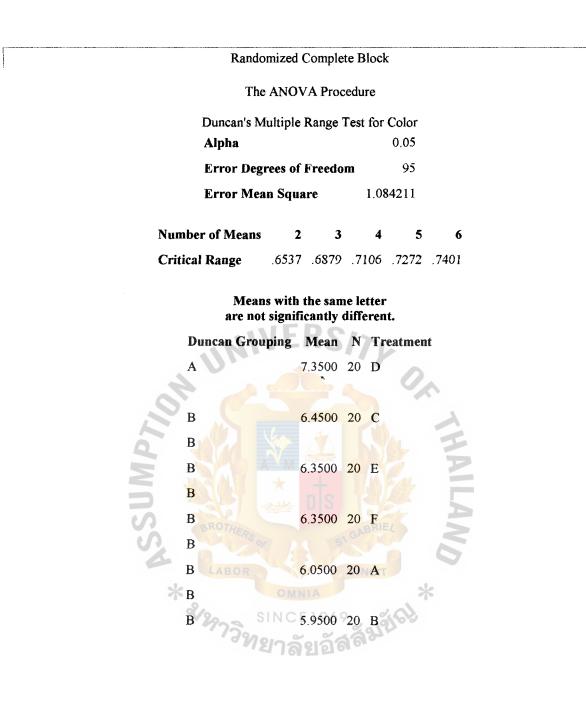
Number of Observations Read 120

Number of Observations Used 120

IVERSITY

Table65 SAS out put; Duncan multiple comparison on color attribute

Randomized Complete Block


The ANOVA Procedure

1		Dependent Variable: Color					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	24	54,1666667	2.2569444	2.08	0.0066		
Error	95	103.0000000	1.0842105	2			
Corrected Total	119	157.1666667		0			

R-Square Coeff Var Root MSE Color Mean

0.344645 16.22734 1.041254 6.416667

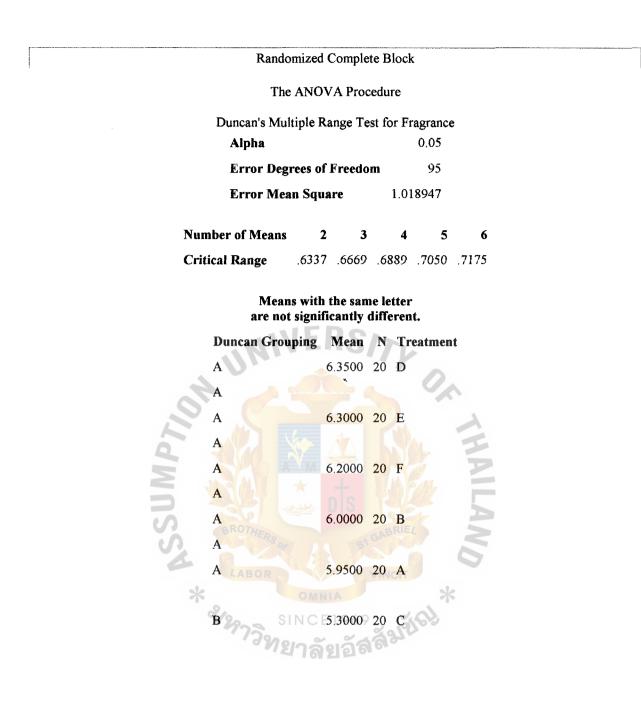
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	29.5000000	1,55263158	1.43	0.1306
Treatment	5	24.66666667	4.93333333	4.55	0.0009

•

.

Table66 SAS out put; Duncan multiple c	comparison on fragrance attribute
Randomized Comp	plete Block

The ANOVA Procedure


Dependent Variable: Fragrance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	24	211.1666667	8.7986111	8.64	<.0001		
Error	95	96.8000000	1.0189474				
Corrected Total	119	307.9666667					

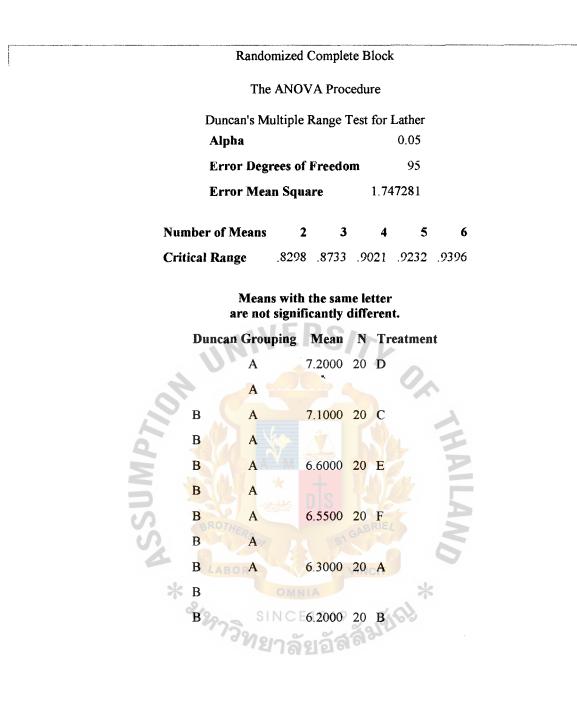
R-Square (Coeff Var	Root MSE	Fragrance	Mean
------------	-----------	----------	-----------	------

0.685680	16.77722	1.009429	6.016667

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	196.3000000	10.3315789	10,14	<.0001
Treatment	5	14.8666667	, 2.9733333	2.92	0.0170

Table67 SAS out put; Duncan multiple comparison on lather attribute Randomized Complete Block

The ANOVA Procedure


Dependent Variable: Lather							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	24	89.000000	3.7083333	2.12	0.0055		
Error	95	165.9916667	1.7472807				
Corrected Total	119	254.9916667					

R-Square Coeff Var Root MSE Lather Mean

0.349031	19.85253	1.321847	6.658333

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	72.15833333	3.79780702	2,17	0.0075
Treatment	5	16.84166667	3.36833333	1.93	0.0968

•

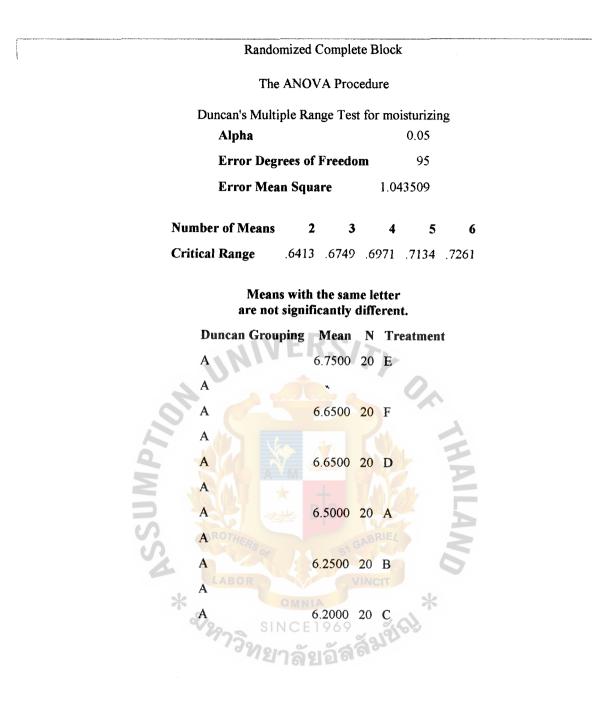

.

Table68 SAS out put; Duncan multiple comparison on moturizing attribute Randomized Complete Block

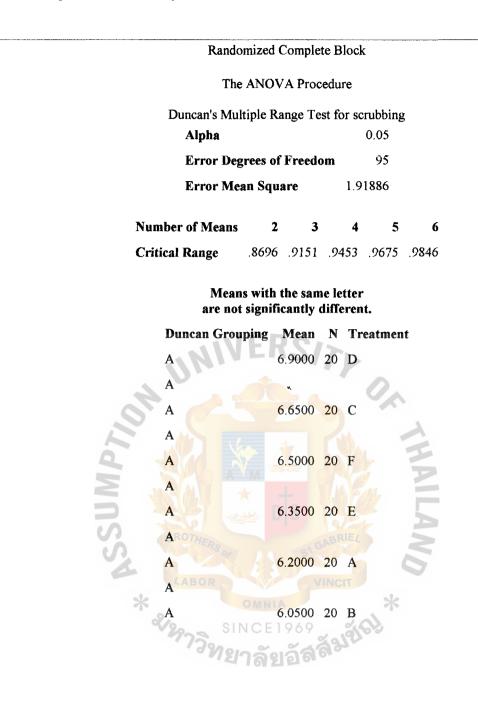
The ANOVA Procedure

Dependent Variable: moisturizing					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	78.8666667	3.2861111	3.15	<.0001
Error	95	99.1333333	1.0435088		
Corrected Total	119	178.0000000			

R-Squ	are	Coeff Var	Root MSE	moist	uring Me	an
0.443	071	15.71573	1.021523		6.5000	00
Source	DF	Anova S	SS Mean S	quare	F Value	Pr > F
Block	19	73,6666666	67 3,877	19298	3.72	<.0001
Treatment	5	5.200000	00 1.040	00000	1.00	0.4241
SUMPTIO, **			DS 5100 5100 5100 5100 5100 5100 5100 510	BRIEL		

Table69 SAS out put; Duncan multiple comparison on scrubbing attribute Randomized Complete Block

The ANOVA Procedure


Dependent Variable: scrubbing						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	24	105.3000000	4.3875000	2.29	0.0025	
Error	95	182.2916667	1.9188596			
Corrected Total	119	287.5916667				

R-Square Coeff Var R	ot MSE scrubbing	g Mean
----------------------	------------------	--------

0.366144	21.50420	1.385229	6.441667
0.300144	21.30420	1.303229	0.441007

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	95.75833333	5.03991228	2.63	0.0011
Treatment	5	9.54166667	1.90833333	0.99	0.4254

Table70 SAS out put; Duncan multiple comparison on skin feel attribute Randomized Complete Block

The ANOVA Procedure

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	83.5666667	3.4819444	3.41	<.0001
Error	95	97.0250000	1.0213158		
Corrected Total	119	180.5916667			

0.462738	15,29284	1.010602	6.608333
0.402758	13.23204	1.010002	0.008333

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	75.42500000	3,96973684	3,89	<,0001
Treatment	5	8.14166667	1.62833333	1.59	0.1691

.

٠

•

•

	Rando	mized (Comple	te B	lock	i	
	The	ANOV	A Proc	edu	re		
J	Duncan's Mu	ltiple R	ange T	est f	or sl	kinfeel	
	Alpha					0.05	
	Error Deg	rees of]	Freedo	m		95	
	Error Mea	n Squa	re		1.02	1316	
Numbe	er of Means	2	3		4	5	6
Critica	l Range	.6344	.6676	.68	97	.7058	.7183
_	are not	-	cantly (diffe	ren	t.	
D	uncan Grou	THE R			Tre	eatmen	t
1	А	7	.1000	20	D		
4	А		-			0	
B	A	6	.7500	20	E		
В							2
B		6	.5500	20	Α		P
В	A						AIL
B B	A		0.5500 0.5500				AILA
NDSS B	A A A	6	5500	20			AILAN
WDSS B B B	A A A	6		20	F		AILAND
NDSSA B B B	A A ROTHERS A A	6	5500	20	F	*	AILAND
NDSS B B B	A A A	6	5500	20	F	*	AILAND

Table71 SAS out put; Duncan multiple comparison on over all liking attribute Randomized Complete Block

The ANOVA Procedure

		Dependent Variab	le: Overall		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	46.4000000	1.9333333	2.13	0.0053
Error	95	86.2666667	0.9080702		
Corrected Total	119	132.6666667			

R-Square	Coeff Var	Root MSE	Overall Mean
-----------------	-----------	----------	---------------------

0.349749 1	3.94528	0.952927	6.833333
------------	---------	----------	----------

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Block	19	39.33333333	2.07017544	2.28	0,0048
Treatment	5	7.06666667	1.41333333	1 56	0 1799

.

٠

Multiple egrees (Iean Sq	OVA Prod Range T of Freed uare	Test f	for C	0.05 95	
egrees (Iean Sq	of Freed			0.05 95	
lean Sq		om		95	
lean Sq		om	0.90		
_	uare		0.90		
				0807	
IS	2 3		4	5	6
.598	2 .6295	.65	03	.6655	.6773
ouping	Mean	N	Tr	eatmen	t
VL	7.3000	20	D		
				0,	
	6.9500	20	Е		
	6.8000	20	A		4
					1
	6.7500	20	F		5
					N
	6.6500	20	в		6
OMN	6.5500	20	C	\sim^{*}	
SINC	= 1969	29	32	63	
	ans with ot signi	ans with the sam ot significantly ouping Mean 7.3000 6.9500 6.8000 6.7500 6.6500	Ans with the same leot significantly differently differently ouping Mean N 7.3000 20 6.9500 20 6.8000 20 6.7500 20 6.6500 20	Ans with the same letter ouping Mean N Transition 0uping Mean N Transition 7.3000 20 D 6.9500 20 E 6.8000 20 A 6.7500 20 F 6.6500 20 B	7.3000 20 D 6.9500 20 E 6.8000 20 A 6.7500 20 F 6.6500 20 B

THE ASSUMPTION UNIVERSITY LIBRARY

•