

1'IR AMUMPTION UNIV&llSD'Y LURA.Kt

Measuring Test Case Reusability
Based on Simplicity and

Independence

\\ \ By ,.,.}'

O,t.
Mr. Mohammad Rava -;:.

'pa -r-
~

~

Submitted in Partial Fulfillment of the
Requirement for the Degree of

Master of Science
in Information Technology

Assumption University

July, 2013

nD: ASSUMPTION lJNlV&IWTY LIBRAll\.

The Faculty of Science and Technology

Master Thesis Approval

Thesis Title A Model for Measuring Test Case Reusability

By Mr. Mohammad Rava

Thesis Advisor Asst. Prof. Dr. Jirapun Daengdej

Academic Year 1/2013

The Department of Information Technology, Faculty of Science and Technology of
Assumption University has approved this final report of the twelve credits course.
IT7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree
of Master of Science in Information Technology.

Approval Committee:

r. Jirapun Daengdej)
Advisor

(Asst. Prof. Dr. Thotsapon Sortrakul)
Committee Member

Faculty Approval:

~
//

(Asst. Dr. Jirapun Daengdej)
Dean

(! sddd_ ~
(Asst. Prof. Dr. Vichit A vatchanakom)

Committee Member

969

, ..

(Assoc.Prof.Dr. Surapong Euwatanamongkol)
Commission of Higher Education

Ministry of Education

July I 2013

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to God the Merciful and Compassionate to

whom I owe my very existence. Without His blessings of wisdom and perseverance,

none of this would have been possible.

I would like to express my deep and sincere gratitude to my Adviser, Asst. Prof. Dr.

Jirapun Daengdej for giving me the opportunity to do this research and providing me

with invaluable guidance throughout the journey. His dedication and sincerity to his

work and students has deeply inspired me to become the best in my field of study.

With only a few words he was able to convey me volumes of knowledge that have

helped carrying out this thesis. It was truly an honor to work and study under his

guidance. I am beyond grateful for all that he has offered me. I also would like to

extend my thanks to his wife and family for their patience and understanding for all

the time he had given to me and my research at hours that were beyond his

responsibility to me.

I am extremely grateful to my parents for their love and prayers. Without their

encouragement and support none of this would have been possible. Particularly my

mother, Dr. Fatemeh Hamidifar for sharing her experiences and knowledge on

research and teaching me about the methodology that helped me a great deal in my

research.

I would also like to thank the Assumption University, the Faculty of Science and

Technology in particular, for proving the tools that made all this possible.

Finally, I would like to thank all the people who made it possible for me to complete

the research, whether directly or indirectly.

11

ABSTRACT

Software Testing is a very important part of Software Engineering; however its

effectiveness is reflected on the amount of time and resources that it is spent on. To

reduce the consumption of already scarce resources, software engineers have come up

with a solution known as reuse. One of the most common components for reusability

is the test case. However there are very few that concentrate on making a metrics

standard model for test cases let alone its reusability, and the few that exists are either

complex or flawed in nature, particularly when measuring all forms of test cases.

Based on previous studies done in the field of test case reusability this research

focuses on creating a model for measuring test case reusability. A general template is

provided by other researchers. However each research focuses on a single aspect of

reusability, and does not concentrate the main criteria relevant in measuring the

reusability of the test case. Hence this study proposes a model for measuring test case

reusability.

111

TABLE OF CONTENTS

The Faculty of Science and Technology Thesis Approval .. .i

Acknowledgementsii

Abstract .. iii

Table ofContents .. iv

L. ff. .. 1st o 1gures .. vu

List of Tables ... viii

1. Chapter 1 : Introduction 1

A. Overview .. 1

B. Goals and Objectives ... 3

C. Scope and Limitations .. 4

2. Chapter 2: Literature Review ... 5

A. Introduction .. 5

1. Test Case 5

2. Use Case .. 10

3. Reusing Test Cases .. 14

B. Related Work ... 16

1. A Study of Reusability and Complexity .. 17

2. Test Case Reusability Metrics Model.. .. 19

a) Reusability Factors ... 19

lV

b) The Drawbacks .. 29

3. Test Case Reduction Methods by Using CBR ... 31

a) Measuring Test Case Complexity .. 31

b) Drawbacks .. 34

C. The Statement of Problem ... 36

1. Issues on Measuring Understandability ... 37

2. Issues on Measuring Changeability .. .40

3. Issues on Measuring Universal 41

4. Issues on Measuring Complexity .. 43

3. Chapter 3: Measuring Test Case Reusability ... 44

A. The Solution ... 44

1. Modified Test Case Reusability Metrics Model.. 44

2. Simplicity and Reverse Complexity .. 44

3. Model for Measuring Test Case Reusability ... 50

4. Chapter 4: Evaluation ··-···························· 51

A. Method of Evaluation .. 51

B. Evaluation Sam.ples .. 53

1. Course Registration System ... 54

2. The ATM Withdraw Based on Activity Diagram 64

3. Hotel Management System Guest Login ... 74

5. Chapter 5: Results and Discussion ... 79

v

A. Course Registration System ... 80

B. ATM Withdraw Based on Activity Diagram ... 82

C. Hotel Management System Guest Login ... 83

D. Test Case Reusability Metrics Model Comparison ... 84

6. Chapter 6: Conclusion and Further Work .. 85

A. Conclusion ... 85

B. Drawbacks .. 87

I . Lack of Metrics Weight ... 87

2. Additional Factors ... 87

3 . Limitations Due to Scope of Work .. 88

C. Further Study ... 89

7. References and Bibliography ... 90

8. Appendix A: Programming Codes ... 95

VI

LIST OF FIGURES

Figure 2-1: Use Case Diagram for a University Course Registration System (26] 11

Figure 2-2: Basic and Alternate Flow of Events in a Use Case (26] 13

Figure 2-3: Control Flow Diagram Example [51] ... 31

Figure 2-4: Abnormal Control Flow Example [54] ... 34

Figure 3-1: Control Flow Example [51] .. 45

Figure 4-1: Login Process Test Flow [17] ... 51

Figure 4-2: Course Registration Use Cases [26). ... 54

Figure 4-3: Course Register Control Flow ... 57

Figure 4-4: ATM Withdraw Activity Diagram [55] .. 64

Figure 4-5: ATM Withdraw Activity Diagram Graph and Control Flow (55) 66

Figure 4-6: Generated Test Paths for ATM Withdraw (55] .. 67

Figure 4-7: HMS GUEST LOGIN Control Flow .. 74

Figure 4-8: HMS Guest Login Test Paths .. 75

vii

LIST OF TABLES

Table 2-1: HM Invalid Guest Login Test Case .. 8

Table 2-2: Textual Use Case Template .. 12

Table 2-3: Thresholds of Human Cognition .. 21

Table 24: Parameters Calculation Formulas ... 22

Table 2-5: Invalid Test Case .. 39

Table 3-1: Test Case Flow Simplicity .. .48

Table 4-1 : "Course Register'' Test Case Matrix .. 59

Table 4-2: Register Course Test Links and Test ltems .. 60

Table 4-3: Course Register Test Case Independence .. 61

Table 4-4: Simplicity Measurement Results .. 62

Table 4-5: Course Register Test Case Reusability .. 63

Table 4-6: ATM Withdraw Test Case Values ... 67

. ~ ~
Table 4-7: ATM Withdraw Test Cases 1, 2 and 3 ... 68

Table 4~8: ATM Withdraw Test Cases 4 and 5 ·························~································69

Table 4-9: A TM Withdraw Test Cases 6 and 7 ... 70

Table 4-10: Independence Measurement Results .. 71

Table 4-11: Simplicity Measurement Results .. 72

Table 4-12: Reusability Measurement Results .. 73

Table 4-13: Test Case Required Data Table .. 75

Table 4-14: Sample Test Cases from Hotel management System Login Process 76

Vlll

Table 4-15: Independence Measurement Results .. 77

Table 4-16: Simplicity Measurement Results .. 77

Table 4-17: Reusability Measurement Results .. 78

Table 5-1: Linkert Scale for Test Case Reusability ... 79

Table 5-2: Course Register Test Case Reusability .. 80

Table 5-3: ATM Withdraw Reusability Measurement Results 82

Table 5-4: HMS_ GL Test Case Reusability Results ... 83

IX

1. CHAPTER 1: INTRODUCTION

A. Overview

A common practice to reduce the cost of test development is through reusability [19],

particularly test case reusability. This practice helps testers to avoid duplicating their efforts

in order to create the same test case, doing so will also improve the quality of software testing

and greatly reduce the cost of production which would lead to further enhancing the

productivity of software companies [15].

In recent years many research institutions and software companies have studied test cases,

each have studied a specific aspect of the test case. In Domain based testing: Increasing test

case reuse [20], the researchers attempted on creating a test case generation method based on

the concepts of software reuse, domain analysis and domain modeling. A similar ideology

can be seen in "Domain based testing: A reuse oriented test method" [22]. In "Test Reuse in

CBSE Using Built in Test" [21], they present an architecture which is derived from

Component Based Software Engineering (CBSE) in which they integrate built-in tests in

software components that in turn makes it possible to reuse tests. These researchers have

concentrated on the management and generation of test cases, and they often have dealt with

test suits as a whole. Measurement of test case as a singular component has seldom been

studied, let alone the measurement of test case reuse.

This research concentrates on measuring the test case reusability, and makes it quantifiable

on how reusable a test case it is as a sole, and not as a group or a suit. The research presented

is based from many previous researches and articles; however the main aspect of the research

has come from "A Study of Reusability, Complexity and Reuse Design Principles" [40],

"Test Case Reusability Metrics Model" [10], and "Test Case Reduction Methods by Using

I

CRM" [51]. In Chapter 2 a basic background is given of the main aspects of test cases and

reusability, and also each of the main literature are explained in detail and how they are relate

to this research. In Chapter 3 issues regarding each of the criteria are disclosed and how the

issue affects the system is shown with examples and proof of concept. A solution to the

issues is also provided the second part of Chapter 3, including how all the new criteria come

together to create the new reusability measurement model. In Chapter 4 methods of

evaluating the model is disclosed alongside three separate samples from three different

sources that generate test cases. In Chapter 5 the results are evaluated and discussed, and

finally in Chapter 6 there will be a conclusion to the research, including the drawbacks of the

new system and how it can be further improved.

2

B. Goals and Objectives

This research concerns with creating a model for measuring test case reusability. By

analyzing several researches, this study finds the different issues with each existing model

and provides an alternative solution. The main goal of this research is:

1. To discover several potential criteria for measuring reusability in software

systems, and identify potential reusability factors for test cases in software

testing.

2. To create a basic expandable template for measuring test case reusability

based on independence and simplicity for test cases generated from control

flow diagrams and use cases.

3. To evaluate the template by using different samples for generating test cases

based on control flow diagrams and use cases.

3

C. Scope and Limitations

This research has the following scope and limitations:

1. This research focuses on measuring test case reusability for test cases at that

are generated from use cases and control flow diagrams.

2. The test cases have to be designed with white box testing as well as black box

testing in mind, due to the requirements it has for measuring an aspect of

reusability, there need to be a certain degree of knowledge on the procedure of

test case generation such as use cases.

3. The current template for measuring test case reusability includes only two

factors as main measurement attributes and for further precision it requires

more criteria to be added.

4. The test case template does not have an innate weight system among the

factors, meaning that in its current stage all factors are considered equal in

importance when measuring overall reusability. C)

4

2. CHAPTER 2: LITERATURE REVIEW

A. Introduction

Software engineering is comprised of several processes with each falling into a certain phase

which eventually builds the Software Development Life Cycle (SDLC). There are many

different kinds of SDLC. However all of them follow the same logic as seen in Progressive

SDLC [25]. It starts with Planning, Analysis and Design, moving to Development,

Implementation and finally Maintenance or testing. Different methods often split these

processes into smaller more specified ones, or some even integrate it together. In this research

we concentrate on Software Testing, which is mainly located in the Maintenance phase,

however in most recent SDLCs it is believed the this components should exist across all other

phases and should run parallel to them. This further emphases the importance of Software

Testing. -
IEEE defines software testing as a process that analyzes a software item to detect the

differences of existing and required conditions and evaluate the features of the software item

[I]. Bugs, errors and defects are the result of the detection process. Software testing has been

estimated to take as much as 70% of the overall cost of producing the application or software

[2]. This implies the importance of software testing in software development process.

1. Test Case

An essential component of software testing is test case. The Institute of Electrical and

Electronics Engineers defines a test case as "A set of test inputs, execution conditions, and

expected results developed for a particular objective, such as to exercise a particular program

path or to verify compliance with a specific requirement." [5].

5

A test case is essentially a mechanism in which a tester will use to evaluate if a software or

application is functioning properly. The mechanism is usually a set of conditions or variables

under which the tester will use to make those evaluations.

The purpose of a test case is to find defects [6]. In very general terms the very aim of a test is

to run and trigger failures that expose defects. In developer language, these defects are

regarded and often called "bugs". Test cases are involved in many types of testing; usually

they are grouped into test suites and are used in testing either a whole software system or a

particular component.

R
According to IEEE 829-1998 [29] a test case is comprised of many components and

specifications which are used to completely address the workings of the testing components.

The first component is "Test Case Specification Identifier" which is a unique generated

number or name related to the software components in testing. The Test Case Identifier -

most commonly referred to as Test Case ID is usually a short unique name for the case which

could include any relevant numbering such as versioning number, date, sequence and etc.

The second component is "Test Items" which identifies the items that are to be tested in the

test case. Such items are usually included in the requirement specification, system design

specification as well as other relevant guides, manuals and documentation.

The third component is "Input Specification", which are all inputs required to execute the test

case. The inputs usually consist of data, values, variables and even files.

The fourth component is "Output Specification", which are considered to be all the outputted

necessary to verify the test case. The outputs can be data elements and values, but also it can

6

be human actions, conditions, files and relationships, depending on the level of test case the

specification may vary.

The fifth component is "Environmental Needs'', which are mainly the hardware and software

requirements necessary for the test case to properly function. It also can include necessary

facilities and training.

The sixth component is "Inter-case Dependencies", which identifies any prerequisite test

cases. The precursor should often identify all prerequisites.

These components aid in creating the basic model of a test case. In this research we mainly

concentrate on certain values that will most likely aid in measuring test cases, by using these

components and components seen in other relevant researches such as the Test Case

Reusability Metrics Model [1 O] we use the following attributes: 'pa -
1. Test Case ID: Based on "Test Case Specification Identifier" [29], it is used to create a

unique identifier for each test case which in this research consists of three main parts

shown in the following format: "Abbreviated name for the system/application _

system/application sub-identifier_ Sequence Number"

2. Test Item: The item that is being tested from the system/application. Based on the

second component "Test Items"' [29].

3. Test Case Objective: The purpose of the test case, sometimes referred to as Test Case

Description, used to describe the test case in a few simple words.

4. Test Case Keyword: Keywords used for the purpose of searching test cases, this

particular attribute is based on Test Case Reusability Metrics Model [10] which is

used as a metrics component.

7

5. Test Inter-Case Dependency: Based on the sixth component, and required in the

measurement of test case reusability according to TCRMM [10]. This component

mainly keeps track of the number of precursor test cases.

6. Test Steps: Steps to execute in order to successfully perform a test case.

7. Test Date: Based on "Input Specification" [29], which mainly tracks the values

involved in the verification of the test case.

8. Expected Result: Based on "Output Specification" [29], which is used to verify the

result of the test case, mainly used as comparison with actual result. A test case only

passes when the actual results and expected result are matching.

Table 2-1: HM Invalid Guest Login Test Case

- -
Test Case ID: HM GL 01 ~

Test Item: Username Box, Password Box, Display Message

Test Case Objective: Invalid Login - Blank Usemame and Password.

Test Case Keyword: Login, Verification, Invalid, U semame, Password, Message Box

... -...-_ .--... ~ - - #' .~--

Test Precunon: 0 " ,~,,, ~ l~'trlV"
v1at1'il~

Test Data:
Usemame [Invalid]
Password [Invalid]

I. Enter Login Page
2. Input Usemame.

Test Sequence: (Steps 3. Input Password.
to Execute) 4. Click on Login

5. Confirm Error Message
6. Input Usemame

Test Expected Result: Error Message: Invalid Credentials. Return to Login Page.

8

A sample of a test case used in this research can be seen in Table 2-1 HM Invalid Guest

Login Test Case. The test case is based on Hotel Management System [23] Login Page

designed for Guests. The test case ID is HM_ GL _ 01, which stands for Hotel Management

System, Guest Login Sub-system and sequence 1 in the test case bundle related to sub-system

Guest Login. Test Item in this test case is the Username Box, Password Box and Display

Message, mainly since the inputting of the username and password are of main phases of the

test and also the result of the test involves in showing a message box. Test Case Objective is

Invalid Login resulting from incorrect input of credentials. Test Case Keywords are particular

keywords used for the purpose of searching and identification. Test Precursors are the

number of test cases precursor to the current test case, meaning mainly the number of test

cases that needs to be tested before the current test case is to be tested properly. Test

Sequence, also known as Steps to Execute or simply Test Steps are steps and sequences of

actions that need to be taken in order for the test case to be successfully executed. Test

Expected Result is the expected output of the test case, if the given test case is to be executed

successfully.

In order to generate a test case, the user needs access to the use case of a system which will

grant him different sequences and pathways to be tested in a specific sub-system or function.

By using use cases there will be no function without a test case.

9

2. Use Case

In a software development project, a use case defines software requirements [26]. The use

case describes the developing system's behavior under various situations and conditions as

the system responds to a request from a user or a stakeholder which are known as primary

actors [27]. To accomplish a certain goal in the system, the primary actor begins an

interaction and the system then responds accordingly based on the interest of the user.

Depending on a particular request and the conditions surrounding that request, different

sequences of behavior or scenarios can unfold. The collection of those different scenarios is a

test case. The creation of use cases begins early in the system development. According to

IBM Rational Unified Process (RUP) "a use case fully describes a sequence of actions

performed by a system to provide an observable result of value to a person or another system

using the product under development." [28]

In general Terms a use case tells a customer what to expect, a developer what to code and

more importantly it tells the tester what to test. In case of software testing which consists of

several related tasks each with their own set of deliverables, test case creation is the first

fundamental step. Then test steps are designed for these test cases and finally test scripts are

created to implements those steps [26]. Test cases aid in identifying and communicating the

conditions that will be implemented in the test and are essential for verifying successful and

acceptable implementation of the product requirement, thus resulting in test cases being the

key to the whole process.

Fundamentally use cases are written in text fonn, although they can also be written using

flow charts, sequence charts, diagrams and programming languages. In basic level they are

used as a communication from one person to another, often with no special training, hence

why at early stages of development "simple text" is considered the preferred choice [27].

IO

1'111! ABSUMPTION 1JN1Y111RrY LIBRA~

80096 e ·1
Use case diagrams are based on Unified Modeling Language (UML) and are used to

represent use cases visually (26]. To explain the workings of use case diagrams we use an

example created by IBM Rational's requirements management evangelist (26] and will take it

as partial basis for some of the results seen in later chapters.

Student

Registrar

Course
Catalog
System

Proffessor

Figure 2-1: Use Case Diagram for a University Course Registration System
[26]

In Figure 2-1 a use case diagram depicts requirements for a university course registration

system. The stick figures represent "actors'' which can be a variety of things, such as people

or even other syStems that interact with the main system. The ovals represent ''use cases";

each use case is a piece of functionality that is to be implemented. The lines connecting the

actors and use cases represent communication between the two entities [26, 27].

Each use case requires to be described with a significant amount of text. The text should follow a

specific format which usually describes how the use case operates. Table 2-1 is a how an average

textual use case is often depicted [27].

11

Table 2-2: Textual Use Case Template

Use Case Section Description

Name [26] The name associated with the use case.

Brief Description [26] The description of purpose and role of the use case.

A basic textual description (understandable by the

Flow of Events [26] customer and user) of what the system is supposed to

do in regards to the use case.

A textual description that gathers all special

requirements such as non-functional requirements

Special Requirements [26] that are not considered in the use case model but

need to be taken into consideration during the design

~ or implementation.

A textual description defining the constraints and

Preconditions (26] preconditions for the system at the time of use case

tit
inception.

le> A textual description that defines any constraints on

Post conditions [26] * the system or conditions that happen at the time the

use case ends.

In order to generate test cases from use cases, flow of events in a use case must be created.

There are two components in the flow of events; the first is "Basic Flow of Events", which

covers what normally should happen when a certain use case is performed. The second is

"Alternate Flow of Events" which covers behavior of an optional character relative to normal

behavior and also variations to that behavior.

12

Alternate
Flow3

Alternate
Flow4

Start
Use Case

End
Use Case

End
Use Case

Alternate
Flow2

End
Use Case

Figure 2-2: Basic and Alternate Flow of Events in a Use Case [26]

Figure 2-2 represents a typical structure for flow of events. The straight arrow is the basic

flow, and the curved arrows represent the alternate flow. Some alternate flows such as

alternate flow 1 and 3 return the basic flow of events at some point while others such as

alternate flow 2 and 4 simply end the use case.

*
According to IBM Rational Guide [26] there are three steps to follow in order to generate test

cases from a use case. The first step is to generate the scenarios by identifying each

combination of basic and main flow. Then in the second step we identify the test cases from

scenarios. By analyzing each scenario in both textual and diagram fonn there should be at

least one test case for each scenario. The third and final step identifies the values that need to

be tested in the test case, since without test data test cases cannot be executed or implemented

in any fonn. After values have been identified a test case is then generated based on the given

data. In this research this is the main method used for extracting test cases as it is the most

common method recognized for test case generation.

13

3. Reusing Test Cases

In software engineering, reusability refers to using modules, classes, functionalities and even

segments of the code again with little or no modification. The main purpose is to reduce

implementation time and decrease the chance of bugs and errors appearing, since prior testing

on those modules has refined them. Many studies and researches from the computer science

and software industry have analyzed the benefits of software reuse and reusability and

believe that it plays a key strategic factor in improving software quality, productivity and

reliability as well as reduce development cost [30, 31, 32, 33, 34, 35, 36 and 38). Doug

Mcilroy [3 7] in 1969 presented component based development for software reuse, suggesting

that software components which are interchangeable pieces should form the basis for

software systems.

Software reuse has become very popular due to wide application and implementation of

object oriented methods and component based development. However recently reuse research

on software testing has started to grow compared to the earlier stages. Design and creation of

effective test cases is considered an important aspect in software and system testing [39).

For the purpose of reuse, test cases are often stored in a library of test cases in order to be

used as a resource in future applications or systems. A key issue in test case reuse is the

effective test case organization and management, which particularly include the depiction and

analysis of the test case [40].

Designers should test the system as early and as often as possible and should incorporate

different aspects of testing throughout the design process. Even in design process, component

reuse does significantly reduce design time and product cost [40). This is made possible by

14

reusing components with built-in test information, which ultimately results in a manufactured

and developed system with improved quality, and enhanced reliability and maintainability.

The test methodology used will greatly affect the design process. However the test

methodology of the system depends strongly on the tests used for each component of that

system [40]. In essence the methodology defines what and effective test case is, if

methodology is effective then effective test case will be extracted, however if the

methodology is defective or even partially defective then as rule of thumb the selected test

cases for reuse will also have a chance of being defected. Thus reusing based on methodology

often has its cons and downsides.

Other forms of reuse involve is measuring reusability on a single test case [IO]. This method

removes the issue regarding methodology deficiency and group comparing. In this research

we mainly focus on the singular test case reuse.

15

B. Related Work

There are three studies that are used as main references for this research. Their techniques

and theories are the basis of the reusability measurement model.

The first study, titled "A Study ofReusability, Complexity and Reuse Design Principles" [36]

in which analyzes the components relative to reusability and explores three reuse principles

that are imperative for any model that intends on measuring reusability.

The second study titled "Test Case Reusability Metrics Model" [10] in which the researchers

devised a metrics model based on their experience to measure the reusability of test cases.

The third study titled "Test Case Reduction Methods by Using CBR" [51] wherein the

researchers developed a method for reducing the number of redundant test cases and thus

reducing the size of the test suit using case base reasoning.

16

1. A Study of Reusability and Complexity

The researchers based their study on analyzing reusability of code components m an

application. By using a 5 point linkert scale very similar to a previous research [41]: (1 - Not

Used, 2 - Difficult to Reuse, 3 - Neither Difficult not easy to reuse, 4 - Easy to Reuse, 5 -

Very Reusable.) they measured reusability of a component as perceived by subjects reusing

the components.

In a previous study done by the same researchers [42] selected subjects built one-use

steaming components [43]. Based on a set of reuse design principles the subjects were trailed

on software reuse design and converted their one-use components to be reusable. They

concluded that the reusable component were significantly larger in size compared to the one

use (single use) components. Following up the study they identified three commonly used

reuse design principles which were: "Well-identified Interface", "Documentation" and

"Clarity and Understandability" [36, 42].

Well-Defmed Interface: According to the study, an interface is what determines how a

components can be reused and how it is interconnected with other components. If the

component's interface is simple, it should be easier to reuse. These interfaces have three

types which are: Application Programming Interface, User Interface and Data Interface [44].

Documentation: An essential part of any system is documentation which is used for any

future use or modification for maintainability. The documentation should be extensible

(meaning that it should have the capacity to be expanded upon), adaptable (can be modified

depending on the situation) and self-contained (complete and independent) [44].

Clarity and Understandability: Basically in regards to functionality, a degree to which a

component is easily understood is referred to as Clarity and Understandability of the

17

component. Another research [45] discusses the definiteness of a characteristic to make

components reusable. Definitiveness is defined the degree of clarity to which the module's

purpose, capability, constraints, interfaces, and required resources are defined.

The study follows the common belief that the larger the component the harder is it for it to be

reused. According to widely used cost estimation model knows as COCOMO II [46], it is

considered that software reuse and reusing components cost is higher if the reusable

component is larger.

In the study, thirty-four subjects participated, with each subject reusing only 5 components

which resulted in a total of 170 reused cases. The assignment of components was randomly

selected from a pool of 25 components which were designed and build specifically for reuse.

Using regression analysis the relationship between the complexity of a component and the

ease of reuse was analyzed. An inverse correlation was found between the complexity and

ease of reuse, which means the higher the complexity, the lower the ease of reuse. However

the relationship was not statistically significant. There was also an analysis on the

relationship between the reuse design principles and the ease of reuse. The results indicated

that of the three reuse design principles, two significantly increased the ease of reuse while

the other did not have a significant impact. The ones that had a greater effect on the ease of

reuse were Well-Defined Interface and Clarity and Understandability. This means that

documentation had a low impact on ease of reuse.

Although this research is not directly related to test case reuse, it does set strong principles in

case of reusability which can set a direct correlation for any form of reusability in software

system; this also includes reusability in testing and test cases.

18

2. Test Case Reusability Metrics Model

As organizations implement systematic reuse test cases in software testing to improve

productivity and quality, they must be able to measure reusability oftest case and identify the

most effective reuse strategies. In the Test Case Reusability Metrics model [10] the

researchers developed a metrics model for test case reusability, and provided reusability

factors that helped establish reusability assessment model.

Reusability has been defined as the degree to which a thing can be used [13]. Test case

reusability refers to the test case can be used in a variety of application level. A metric is a

quantitative indicator of an attribute of a thing [13]. It is crucial to determine what reusability

factors of test case are, and to quantify these reusability factors.

Currently there are no standards for test case metrics, let alone the reusability factor. The

researchers referenced ISO/IEC 9126 Software engineering-Product quality [14] and their

experience in the field of software testing as their guide to create the Test Case Metrics.

a) Reusability Factors

The researchers that devised TCRMM [10] divided reusability into four main factors. They

are understandability, changeability, independence and universal.

In order to measure the factors using an example we take test case HM_ GL_ 03 regarding

hotel management system login system in Table 2-1. All the variables are extracted from the

source Hotel Management System Project [23].

19

(1) Understandability

It has been theorized in [10] that the more a test case is understood, then the more it is likely

to be reused, and vice versa. The understandability factor measures how easy a test case is

understood in terms of its internal and external decryptions. There are several aspects that

reflect on Understandability, they are "Test Case Summery" (S), "Keyword" {K), "Test Item"

(I), and so on.

There are three formulas used to calculate the understandability of the test case, each based

on a certain aspect. The formulas follow the same logic in calculating understandability,

however the first formula delves in percentage of understand properties on test case

summery, the second formula investigates is the percentage of understand properties on test

case keyword, and the last formula uses the same reasoning to find the percentage of

understand properties on test case items, also interpreted as test steps. The researchers used

thresholds of human cognition as variable to measure the understandability of each criterion.

The first formula in regards to understanding is Us, which is defined as the percentage of

understand properties on test case summary of test case "t". The number of characters in test

case summary is depicted with "s" [10]: ~ ~\S
f/1 i tl'il $•b'

s=O

s E (0, LS1) U (LS2 , +ao)

s E [LS11 LS2]

The second formula is the percentage of understand properties to test case keyword and a test

case "t", which is shown with UK. The number of keywords in a test case is showing with "k":

20

k=O

k E (0, LK1) U (LK2, +oo)

k E [LK11 LK2]

The third formula - Ur is the percentage of understand properties to test steps of a test case

"t". Number oftest items is shown with "i" [10]:

i=O

i E (0, L/1) U (L/2, +oo)

i E [L/11 L/2]

The parameters in the above formulas can change depending on their use and application.

The thresholds a, p, and y are valued in Table 2-3 according to the characteristics of human

cognition and linguistic features.

Table 2-3: Thresholds of Human Cognition

~

Thresholds al ... ' ~
a2 p1 p2 yl y2

....
Value 0.3 0.4 0.3 0.4 0.3 0.4

- _ _..!,

The Table 2-4 shows how each parameter is calculated in detail. The values related to the

parameters are obtained from arithmetic mean of statistical data in the researcher's test case

library that includes hundreds of existing test cases.

21

Table 2-4: Parameters Calculation Formulas

Parameter Calculation Formula Value

n

LS1 ~ L Si x (1 - a1) 21.17

i=O

n

LS2 ~Is, x c1 - ai) 42.38

i=O

1 n
LK1 ;; L Si x (1 - P1) 2.25

i=O

lf LK2 "' ; Six (l-P2) 4.49
i=O ..fi,

n ~

Ll1 ~~ ~L St x (1-Y1) I\ 6.77
i=O

l:2l 1 n

Lf 2 ;; I St x (1 - Yi)
y,.

13.55 ~

i=O

To calculate the Understandability factor, the values of Us, UK and U1 are shown in the

following formula:

*
In order to calculate understandability, we need to first extract the necessary data from the

test case (Table 2-1). There are mainly three values that are of concern for understandability.

The first value is Test Case Summery, which is also seen as Test Case Description or Test

Case Objective, and it is represented by the letter "S". The second value is the Test Case

Keyword, represented by the letter "K", and the third value is Test Items, represented by the

letter "I" which is also seen as number of items being tested such as test data.

22

The number of characters in Test Case HM_GL_Ol (Table 2-1) Test Case Summery is equal

to thirty-seven (3 7) without considering spaces between the words. The formula indicates:

s=O

s E (0,21.17) U (42.38, +oo)

s E [21.17,42.38]

By allocating the parameters from Table 2-4 it is seen that "s" is a value between the two

margins and thus resulting in the Understandability value for Test Case Summery to be I

meaning l 00% understandable.

s = 37 °"' s E [21.17,42.38] °"' U5 (t) = 1°"'100%

The number of keywords in the Test Case HM_GL_Ol (Table 2-1) is six (6). Putting the

values in the formula results in:
'pa

k = 6 °"' k E (0,2.25) U (4.49, +oo) -
The number of Test Items in the Test Case HM_GL_Ol (Table 2-1) is indicated to three (3).

The usemame, the password and the display message are the 3 elements involved in the test.

According to the formula:

i = 3 °"' k E (0,6.77) U (13.55, +oo)

Since three (3) is lower than 6.77, then the formula is used to calculate the amount which is:

L/2 - Lli 13.55 - 6.77 9.78
Ui(t) = l2i - L/1 - L/21 = 16 - 6.77 - 13.321 = 14.32 = 0·682

U1(t) = 0.682-.. 68%

23

The final understandability measurement is the average of the three values. Using the

following formula the overall understandability of the test case is measured.

()
U5 + UK + Ur 1 + 0.42 + 0.682

u t = 3 = 3 = 0.7

U(t) = 0.7 -+ U(t) = 70%

Based on the produced value the understandability of the test case HM_GL_Ol is 70%, and is

considered to be understandable.

24

(2) Changeability

Test case changeability is possible ifthe structure and style of the test case are made in a way

that the changes can be implemented easily, completely and consistently. The changeability

of a test case is directly tied to its data representation.

The researchers believe that the less the number of constants are and the more variables exist,

then the higher is its changeability.

To calculate changeability we consider Cc to be a percentage of changeability property to

constant of a test case "t". The number of constants in test case "f' is shown with "c":

Cc(t) = !~·
0,

c:;!:O

c=O

The percentage of changeability property to variable of test case "t" is shown as Cv, and the

number of variables test case "t" has is shown with "v":

v
Cv(t)=-

1+v *
The values of Cc and Cv calculate the changeability factor in the following way:

c +c
C(t) = c v

2

To evaluate Changeability we use the same test case for Understandability. Test Case

HM_ GL _ 01 is a manual test case and thus it does not have constants represented in outside of

the test case template. The two variables it uses are usemame and password. The following is

the result of the formula and value allocation.

25

Since there are no constants in the formula, then:

Cc(t) = {~·
0,

c * 0 -+ Cc(t) = 0
c=O

And thus v (the variable will be two):

Cc(t) = 0

v 2
Cv(t) =--=-

1+v 3

Changeability is then measured by the average of the two values:

2
Cc + Cv 0 + 3 2 1 -

C(t) =
2

= -
2

- = 6 = 3 = 0.33-+ C(t) = 33.33% -
Most manual test cases in form of tables do not have a constant However constants are

introduced mainly in automated Test Cases when they are linked together via a template, and

thus using resources from that template.

26

(3) Independence

The researchers assume that the stronger is a test case's independence from other test cases,

the more reusable it is. The independence of a test case is measured based on its dependency

on other test cases. The more precursor test cases a test case has, then the less independent it

is. Chained test cases are a simple example of precursor test cases, when a test case requires a

previous test case to be executed before they are executed, then that test case is dependent on

its previous test case, and would reflect on its poor independence factor.

To calculate independence, the variable "I" is considered a percentage of independence

property of test case "t", and the number of precursor test cases which test case "t" has is

represented with "p":

l(t) = 2-p

In order to evaluate independence we use the Test Case HM_GL_Ol (Table 2-1) as reference.

According to the test case, there are no precursor test cases to the test case HM_ GL _ 01. Thus

the result is:

* *
I(t) = 2-11 = 2° = 1~I(t)=1 ~ I(t) = 100%

However if there were more test cases precursor to the aforementioned test case, then the

result would change depending on the number of precursors. For example, if there were 2

precursor test cases the indolence would decrease.

1 1
I(t) = 2-p = 2-2 = - = - ~ I(t) = 0.25 ~ I(t) = 25%

22 4

27

(4) Universal

The researchers assume that if a test case is more universal, then its reusability is higher.

Universal is defined more in terms of test case environment. The universal factor is reflected

from test fields and test scenarios that a test case is executed. A test scenario is the testing

environment that includes software and hardware environment. An example would be the

necessity of having specific software and hardware in order to proceed with the test. a test

field on the other hand, refers to application of the test case.

To calculate Universal factor, consider UNp as the percentage of universal properties to

applications of the test case "t". The number of application in which test case "t" can be used

is shown with "f':

{

0,
UNp(t) = 1

1--
f'

f =O

f-:FO

In test case "t" the percentage of universal properties to software and hardware are associated

with UNw. The number of software scenarios that test case "t" is run is shown with "s", and

for the number of hardware scenarios run on the test case "t" the letter "h" is represented.

1
UNw(t) = h 1 s+ +

Both values of UNp and UNw contribute to calculate the value of Universal factor.

UNp+UNw
UN(t) =

2

28

b) The Drawbacks

There are several drawbacks related to the Test Case Reusability Metrics Model which are

listed as below:

1. The Test Case Reusability Metrics Model is based on the experience researchers had

in the field of reusability and test case evaluation rather than empirical evidence [10].

No other references are used in order to assess any of the factors other than user

experience.

2. The factor understandability has flaws in regards to language barrier and standards.

Some organizations have different methods of expressing test case summery, some

others that use an automated method do not have traditional summery designated and

use other methods to describe the test case as seen in Weblnject [24]. There is also

explanation for different language descriptions. The same test case in Spanish will

use more words to describe the same test case, while other language such as Chinese

may use lesser characters, thus creates an inconsistency among different languages

and understandability of the test case. This is mainly due to the fact that the authors

assumed meaning exist within the description and test cases, and thus this factor only

works when the degree of meaning is assumed to be of full value.

3. Changeability formula is a paradox and a contradiction to the theory of what the

formula should do, and thus it is fully unreliable. There is also no indication in the

research on the origin of the formula provided. This is mainly due to the fact that the

test case generation technique [10] used by the authors has a constant value at all

times. The assumption for no constants was presumed for cases in which constants do

not happen, however even in such scenario, the formula is logically flawed.

4. In many cases the universal value is not feasibly calculated, since many of the test

cases do not store the information regarding the hardware and software scenarios.

29

This is particularly problematic if test cases are designated before development when

the values in regards to the hardware and software scenarios are none existent.

5. Complexity of the test case is not at all included or mentioned as a factor for the

reusability, it is well established in many other researches [36, 51]. Thus the main

formula for calculating reusability is incomplete in its essence.

In the next section, we elaborate on these drawbacks and provide a new reusability metrics

method for calculating the reusability of test cases.

30

3. Test Case Reduction Methods by Using CBR

In order to reduce the nwnber of redundant test cases the researchers [51] use path coverage

criteria in order to reduce test case redundancy. The importance of the complexity in test

cases has been seen in other similar researches [53, 54] in which are used by the researcher.

a) Measuring Test Case Complexity

For the purpose of Test Case Reusability Metrics, our main concentration is the method this

research uses in order to calculate complexity of a test case. In order to do so, the researchers

use Control Flow Graphs which are derived from the source code or the application. Since the

method is based on white box testing, each state is assumed to be a block of code. By using

path oriented test case generation techniques the researchers use a template control flow to

create several different test cases. Figure 2-3 is a control flow diagram used by the

researchers [51] in order to extract various variables, including test cases.

Figure 2-3: Control Flow Diagram Example (51]

Let S = { sl, s2, s3, s4, s5} to be a set of stages in the control flow diagram (Figure 2-3). By

assuming that each of the above states could potentially reveal a fault, thus it is believed that

the ability of five states is to reveal five faults. Since every single transaction must be tested,

then in this example each test case will be a traverse of the stages. The result would be:

31

In which TCn is considered to be a test case, and Sn is considered the state which acts as a

node in the path oriented graph that is used for the purpose of testing, which in this scenario

would be Figure 2-3. Following the pattern, the Control Flow (Figure 2-3) would generate the

following test cases based on different stage transactions:

TC1 = {s1 -+ s2}

TC2 = {s1 -+ s3}

TC3 = {s1 -+ S4}

TC4 = {s1 -+ s2 -+ s3}

TC5 = {s1 -+ s2 -+ ss}

\

TC6 = {s1 -+ s4 -+ s3}

TC,= {s1-+ Sz -+ S3-+ ss}

TC10 = {s2 -+ s3 -+ s5}

TC11 = {s3 -+ s5}

TC12 = {s4 -+ S3}

In order to measure complexity, the researchers consider the following:

Cplx ={High, Medium, Low} where Cplx is the complexity of the test case. To measure the

value of the complexity into the three values (high, medium and low) the researchers devised

the following calculation method.

• High Complexity: When the number of states is higher than the average number of

states in the test suit.

• Medium Complexity: When the number of states is equal to the average number of

states in the test suit.

• Low Complexity: When the number of states is lower than the average number of

states in the test suit.

32

The average number of stages in the thirteen test cases is as follows where "nsi" is the

number of stages in the test case I, and Avg5 is the average of stages:

:Lf;1 nsi 35
Avg5 = = - = 2.69 := 3 -+ Avg5 = 3

13 13

Following the average of stages, the result of the test case complexity would be:

Cpzx(TC1) = Low C11zx(TC8) = High

Cpix(TC2) = Low C11zx(TC9) =Low

Cpix(TC3) = Low C11zx(TC10) =Medium

CptxCTC4) =Medium C11zx(TC11) = Low

~
Cpzx(TC5) = Medium Cpix(TC12) = Low 'pa -
Cptx(TC6) =Medium Cpzx(TC13) = Medium

r-
~

Cpzx(TC1) =High ~
The complexity of the test case indicates how difficult each test case is to execute [51]. This

method does provide a good approach on how to measure test case complexity. However this

method does have some shortcomings and drawbacks.

33

b) Drawbacks

Although the measurement system is a good way to measure test case complexity, it does

however have some shortcomings that prevent us from directly using it for measuring test

case reusability.

The measurement formula used for measuring complexity of a single test case is based on

average of stages in the control flow. In short, if the control flow is abnormal, then the

average cannot be representative of the entire test case group. An example of an abnormal

control flow is seen in Figure 2-4.

* ~

Figure 2-4: Abnormal Control Flow Example [54]

34

Several test cases can be extracted from Figure 2-4. It can be as low as 2 nodes or even as

high as 40 nodes depending on how it is traversed. This imbalance can increase the average

significantly and result in some oftest cases to measure as low complexity, while they should

have been classified as medium or even high. However the concept is relatively sound and it

will be expanded upon in chapter 3 where complexity will be measured.

35

C. The Statement of Problem

Test Case Reusability Metrics was among the very first proposed models that created a

quantifiable framework to measure test case reusability [10]. However the metrics factors

considered are not without problem.

In order to prove that some of the TCRMM don't work as planned, we used two types of

methods to deduct them. First is "comprehensive reasoning", by using references and logical

reasoning to deduct some of the factors results, and the second is "Reject by Example", in

which we test the TCRMM against some testcases and show why that particular factor fails.

The test case used is from Hotel Management System [23] - which for the purpose of this

thesis we are going to focus on the login system which is often considered the most common

part of any software system. The codes for the login system are written in java (Appendix A).

The standard test case format is applied using the template obtained from Chapter 2.

There are several issues and drawbacks that this research intends on resolving. The first three

are issues encountered with factors presented by "Test Case Reusability Metrics Model" [10]

which are Understandability, Changeability and Universal by using logical and empirical

evaluation to the possible extent. The fourth issue is the missing component from the

TCRMM which has been regarded in my other researches as an essential factor for measuring

reusability in any form according to the study on reusability and complexity and reuse design

principles [40].

36

1. Issues on Measuring Understandability

The researchers have quantified understandability; but the components used for measurement

are incomplete. TCRM Understandability consists of "Keyword Understandability'', "Test

Item Understandability", and "Test Summery Understandability". However a similar

measurement methodology has been used for measuring software understandability, which is

a grander scale in terms of size. The research "A Model for Measuring Software

Understandability" (15] focuses on measuring several aspects of understandability in regards

to software. The purpose of measuring software understandability is to remove the aspect of

creating faults that are caused from misunderstandings. For example, an application is written

by programmer X. Programmer Y wants to continue developing the application and create a

second version. However, Programmer Y does not understand fully what programmer X has

written, and hence it will cause programmer Y to misinterpret some factors within the

software and create unintentional faults within the second version of the software. To avoid

such situation from happening, the researchers created a full list of things that need to be

understood before proceeding with the situation.

The first criterion is "Understandability of The Documentation". An application or software

is not maintained only trough source code, but it requires an integrated use of both source

code and documentation [16]. In software testing, the test case itself is often regarded as the

test documentation, this means that test keyword, and test item and test summery are

considered as document side of the code.

The second criterion is "Understandability of Structure" (15]. Without understanding the

structure of a test or a software system, it is impossible to reconstruct it correctly. If a

software system or a test case is difficult for a software/test engineer to understand, then in

would take many times until he/she reconstructs it correctly. TCRMM has not included a

37

factor for test case structure understandability, and hence it lacks precision when it comes to

understanding accuracy measurement in general test cases.

The other criteria are "Understandability of Components", "Understandability of Data" and

"Understandability of Source Code". However in the scale of a test case it would be

detrimental to measure those factors into consideration since the time and resources needed

would be rather exponential. It means that in order to measure the full understanding of a

single test case, then there must also be understanding of the source code and data spatial

complexity which would defeat the purpose of reusing the test case itself.

On another note, considering that only descriptive factors such as test item, test summery and

keyword are used to measure understanding, the it would mean that the understanding factor

itself would heavily rely on the person at work. Understanding depends not only on

understandability of the test case or software system, but also the level of comprehension of

the software tester or engineer [15].

The authors of TCRMM [10] used results from their previous paper "Reusable Test Models

and Application Based on Z Specification" [7]. The test cases produced in the research were

mainly in Chinese language [7], hence makes the measurement less accurate without fully

measuring the language understandability.

In order to evaluate the point, we use an invalid test case sample to demonstrate how the

arbitrary the metric system is. The test case is in a form of a sample. The words can be

replaced with any other words and it would not change the final result. As long as the number

of keywords, items and summery characters are within the boundary, then the result would

not stay the same.

38

Table 2-5: Invalid Test Case

Test Case ID: TC Invalid

Test Items: Iteml, Item2, Item3, Item4, Item5, Item6

Test Case Objective: This is a description unrelated to the test case.

Test Case Keyword: .K.eyvvordl,.K.eyvvord2,.K.eyvvord3

Test PrecUl'SOrs: 0

Test Data: Datal, Data2, Data3

Following the boundaries presented in Table 2-5 we come to the following conclusions:

s = 40 -+ s E [21.17,42.38] -+ U5 (t) = 1

k = 3 -+ k E [2.25,4.49] -+ UK(t) = 1

I= 6 -+ s E (6.77,13.55] -+ U1(t) = 1

Us+ UK+ U1 1+1+1
U(t) = = = 1-+ U(t) = 100%

3 3

Following the formula the result would yield 100% understandability on any given test case

as long as it falls .into the boundary. Even if the words are randomly generated and replaced

with the template words, the test case understandability would still yield a I 00% result.

The reason such result is generated is due to the fact that the authors and researchers of test

case reusability metrics model assumed a degree of meaning and interpretation in the test

case. They did not assume that by any point invalid explanations can be used in order to

generate a test case. It is only logical that they assumed that the test case designer would

write with the concept of meaning in mind.

39

Understandability is a valid factor, since according to "A Study of Reusability, Complexity

and Reuse Design Principles" [40] the researchers concluded and Understandability and

Clarity plays a great role in reusability, however the metrics formula the researchers of

TCRMM use has been proven to be inaccurate by example. Hence it's why Understandability

should be removed as a metrics factor from the final reusability formula

2. Issues on Measuring Changeability

Changeability formula is logically flawed and does not in any way explain how they were

obtained. An example on how the formula fails is as following. The researchers believe that

the more changeable a test case is, the more reusable it will be [10]. They proceed to assume

that the constants which cannot be changed reduce changeability. The more constants exists

in a test case, the less the changeable it will be. However the formula contradicts that idea:

Cc(t) = {~·
0,

'*o
c=O

It mentions that if there are no constants, then the changeability of the constants is equal to

zero (0) meaning that without constants the changeability is nonexistent, however earlier they

mention that the less the constants are the more changeable they are. So the question is that:

how is it that no constants would produce the same value as infinite constants?

if c = 0 thenCc(t) = 0

1
if c = oo then Cc(t) = - = 0

00

if c = 1 then Cc(t) = 1 -+ 100%

40

This means that 1 constant is more changeable that 0 constants. Even though they specifically

point out that constants reduce changeability. This means that formula does have a

mathematical error that does not fit the concept and thus it makes the calculation baseless.

Also there is no direct indication of how would the formula behave for manual test cases that

do not have any constants. If the formula is implemented in such situation, the value for

changeability would never reach more than 49.99%.

Although the formula is logically flawed, the test cases that were used by the researchers

indicate that the generation technique would always yield a number of constants even though

there might be no variables, there will always be constants. However this gesture could have

been better demonstrated by simply pointing out that the value of constants can never be

equal to zero, rather than the opposite.

3. Issues on Measuring Universal

The researchers have not explicitly defined what they mean by Universal. It has been

mentioned that the more universal a test case is, the more reusable it will be. Then they

proceed and refer universality to test scenarios and test fields [10]. They measure the number

software and hardware scenarios a test case is executed in, but also they measure the

application requirements necessary to run the test case.

Based on "A New Approach to Generating High Quality Test Cases" [17], in order to create a

high quality test case an important aspect that should be viewed is the structure of the

component that is being tested. They relate it to the number of inputs and outputs generated

from a single process, and how a test case is written to satisfy every aspect of that structure.

Hence here we conclude that Universality is too vague.

41

Another issue with universal is the fact the information required is too detailed. When

Rothermel and Harrold developed their "Safe and efficient Algorithm for Regression

Testing" they mentioned that the best reusable test case is one that does not require

information too expensive to extract [4]. Prior knowledge about the code or development

cycle can be very difficult to find specially if the Test Cases are being imported from

software developed by a different group of programmers. Technical information such as

Hardware and Software scenarios are also difficult to be generated unless they are made part

of the Test Case itself, and that would also increase the cost of making test cases. Calculating

the Universal Factor effectively would only result in increase of time and resources which

makes the whole point of reusing the test cases completely unnecessary.

The authors of TCRMM specifically mention that universal depends on the number of

hardware and software requirement needed for a specific test case to run [10]. However this

harbors several issues of its own. First, this would mean that there is no possible way to test

pre-development test cases (test cases designed before the code development of the system),

this is mainly due to the fact that there aren't any estimated hardware and software scenarios

at that phase of the development. The second issue is that the number of hardware and

software scenarios, alongside the number of scenarios does not indicate any information

about the complexity of the scenarios - if the test case requires a single application that is

difficult to apply or a function that is complex to implement, it can be equally reusable as a

test case with several easy to install applications and functions. There is also no weighing

system for the functions and softwares, as some software and hardware are unique to the

situation, then they are more difficult measure and balance in the formula. Thus the number

of hardware and software scenarios cannot reflect the simplicity or reuse or how universal

and general the test case is.

42

4. Issues on Measuring Complexity

Complexity is a factor that is not considered in the Test Case Reusability Metrics Model,

however many researches on reusability including the study on reusability and complexity

[40] which state that the more complex a system is, the harder it is to reuse. Other researchers

also determined that the more complex a reuse component is, the higher the cost of reuse will

be [52]. In a related research that develops a method on reducing test cases based on case

base reasoning [51], it is shown that complexity plays a great role in test case reusability.

Thus it is concluded that complexity is a justified factor and should be included in the test

case reusability measurement factors. The main issue is that the method in which Complexity

is measured and added to the rest of the factors. There have been many theories in regards to

measuring complexity in a system and a test case which will be expanded upon in the next

section regarding complexity.

43

3. CHAPTER 3: MEASURING TEST CASE RE USABILITY

A. The Solution

1. Modified Test Case Reusability Metrics Model

Based on the issues with Understandability, we move to exclude it from the test case

reusability factors by reason of example and proof. Universal also is not computable based on

the provided evidence, since there is no limit to the number of hardware and software

scenarios. Also according to the reusability study [40], documentation has proven to be a

minimal factor of. reusability and have little to no effect on the overall reusability of the

components. Changeability is also not mathematically matching with the proposed theory,

thus it cannot be accepted as well. The only factor that remains is Independence which is

going to be used as one of the prominent factors for measuring test case reusability.

2. Simplicity and Reverse Complexity

There are several techniques proposed for measuring complexity. The study on reusability,

complexity and reuse design principles [36] used "Source Lines of Code" (SLOC) as

measurement terms. SLOC is among the most popular and most used methods of measuring

size and complexity in software metrics. Complexity of Software components has been

measured in several empirical studies [47, 48. 49 and 50]. However source lines of code is

not feasible in test cases which do not have direct access to the source code, especially in the

cases of white box testing, thus the concept of modularity is more relevant to test case

metrics.

Modularity [18] has proven that simplicity and clairvoyance in design makes reusability

easier, particularly in software reuse. The same logic can be applied to test case; the simpler a

44

test case is the easier it would be for the test engineers to reuse it. This is mainly because

most of the test cases are subject to a small redesign, and if a test case is too complex, then it

would take more resources to change it than creating an entirely new test case.

Among the most prominent and reliable methods of measuring complexity in software

systems is cyclomatic complexity, which is a software measurement technique developed in

1976 by Thomas J. McCabe [54]. This method is based on software control flows and it

mainly measures the complexity of the system by how big and how diverse it is. The more

conditions and states exist in a system, the more complex the system will be. Figure 3-1 is an

example of a relatively simple control flow from the research on "Test Case Reduction

Methods by CBR" [51].

I I" L

Figure 3-1: Control Flow Example [51]

In order to calculate the system's cyclomatic complexity, the following formula is introduced

by the researcher Thomas J. McCabe [54]. Consider "CC" as the value of Cyclomatic

Complexity, then "E" is equal to the number of edges (connection between the nodes) in the

control flow, and "N" as the number of nodes. The cyclomatic complexity of the control flow

'"A" is:

CCA = E - N + 1 = 6 - 5 + 1 = 2 -+ CCA = 2

45

However in case of test cases the number of difference between the number of edges and the

number of nodes would always be equal to negative one (-1) since a test case a single traverse

from the system's control flow, and the number of edges would always be lower than the

number of nodes. This would mean that the cyclomatic complexity of every traversed test

case is always equal to zero (0), which is highly inaccurate. Thus to more reliably measure

the complexity, other variables must be considered for test case complexity.

According to many researches, the longer the test case, the more complicated would be to

execute it [36, 51 and 54]. Thus it can be concluded that the one of the most important factors

in measuring test case complexity is the number of flows. Depending on whether test cases

are being extracted from use cases or control flows the edges of the graph are the flows in

between the nodes or stages. However other than the flows, there are number of components

and items that exist in a test case. Test items have a direct influence on the test case

complexity, the more items that are involved in a test case, the more complex that test case

will be. In Test Case Reusability Metrics Model [10], it has been noted that more test items

reduce the degree of understandability, and thus are an important part of a test case.

To measure complexity first the purpose of the generated output must be determined.

Measuring complexity would mean that the higher the percentage of complexity, the more

complex it is. This won't fit the other criteria since factors such as understandability,

independence, changeability and universal are more reusable if the value is closer to 100%,

however complexity would be more reusable if the value is closer to 0%. This means that in

order to properly measure reusability the factor that needs to be measured is "Reversed

Complexity", which in this research is named "Simplicity" for convenience.

Cyclomatic Complexity grants a basic idea of the need to measure complexity from a white

box perspective. However according to researches performed in the field of measuring

46

complexity [54, 56, 57 and 59], it bas been suggested that a hybrid solution of both black box

and white box methods is required in order to accurately measme the complexity of a

component, and thus in order to measure the complexity of the test case two aspects are used

that comprise of a grey box method.

Simplicity is based on two components, test case flows and test items. This means that longer

test cases are more complex as they take more time to execute. And the more items that are in

the focus of a single test case, the harder it will be and thus more complex. To measure these

factors we follow the same concepts from cyclomatic complexity [54] and test case

reusability metrics model [10]. In order to measure test case flow simplicity, consider

"'SE(t)" to be the simplicity of test case ~'t" based on test case flow. And consider "NE" being

the number of flows and edges in a control flow or a test case. Thus:

47

Note that the minimum number of flows is one (1) and the minimum number of states or

nodes is two (2). Calculating based on the test cases from Figure 3-1 would result in the

following table:

Table 3-1: Test Case Flow Simplicity

48

In order to calculate simplicity based on test items a similar approach is followed, in which

the number of items being tested in a single test case is represented by "Nr1" and the

simplicity oftest case items of test case "t" is shown as "STI(t)". The formula is:

The minimum number of items being tested is always equal to one (1), since at any given

moment at least a single item is tested.

The final simplicity of test case "t'' would be an average of the two values. Consider "S(t)"

as the total percentage of simplicity in test case "t". The following is the result of calculating

both values:

S(t) = _sE_(_t)_+_s_rr_(t_)
2

49

3. Model for Measuring Test Case Reusability

In order to measure the reusability metrics for the test case "t", a combination of all the

accepted and developed factors is required. The final two factors are:

1. Independence:

2. Simplicity:

1
I(t) = 2-p = -

2P

ER
1 1

SF(t) = - and S1(t) = -
/llE fllrr

()
S8 (t) + Srr(t) st =---2--

The final reusability measurement model is an average of the two main factors; consider

"R(t)" as reusability percentage of test case "t":

* I(t) + S(t) o1. -.'-. *
R(t) = 2 'fib"~

°" 114$ ~

50

4. CHAPTER 4: EVALUATION

A. Method of Evaluation

To evaluate the results of test case reusability measurement model, a process is used which is

based on several researches related to generating test cases for reuse and other purposes.

The first important note is mentioned in the research "A new Approach to Generating High

Quality Test Cases" [17]. They explain that in order to have a high quality test case one must

cover all aspects that a fault can occur. A process is then made to test every aspect of a

process - this also aids in measuring the independence of each process and how it is related

and linked to other test cases. Hence in Figure 4-1 we can see all the workings of the

described login test case based on all included processes:

Return

'-----!

Check for
Error

Login Box

Failure

Login Failure
Message

Success Control Panel

Figure 4-1: Login Process Test Flow [17]

However the main steps of the test case generation process is based on the IBM Rational

Edge [26] on generating test cases from use cases. This method provides a number of steps

which are malleable and can be used in not only generating test cases from use cases, but also

51

generating the test cases from other mediums as well, such as control flows and other

sources. The steps are as following:

1. Step 1 : Generate Use Cases [26] (or Control Flows).

2. Step 2: Generate Use Case Scenarios [26] (or Control Flow Traverses).

3. Step 3: Identify Test Cases [26].

4. Step 4: Identify Data Values to Test [26].

5. Step 5: Apply Reusability Measurement Model.

6. Step 6: Collect Generated Results.

Each step is applied depending on what method of extraction is used. When all test cases are

completely generated, then the reusability measurement model is applied and the results are

collected based on Independence, and Simplicity. In the end the two factors are put together

and calculated as a single value for measuring test case reusability.

52

B. Evaluation Samples

In order to properly evaluate the results three samples are used from separates researches and

projects. Each uses a different method of test case generation which will provide an insight

into the feasibility of the system. The three researches are:

1. IBM Rational Edge - Generating Test Cases from Use Cases [26]: a student

registration system with accessible use cases, scenarios and test cases.

2. Hotel Management System [23]: a fully accessible system which is designed for the

purpose of testing. The only component that is used is a login for the guest.

3. Research on "An Enhanced Test Case Generation Technique Based on Activity

Diagrams" [55] -test cases that are generated based on activity diagrams.

Each of the examples will be evaluated based on the 6 steps of evaluation. However since

different techniques are used the content of some steps is changed however the concept

remains intact.

53

1. Course Registration System

In the IBM Rationale Edge "Generating Test Cases from Use Cases" [26], a course

registration system is created in which based on the use case diagram test cases are generated.

Figure 4-7 the use case for the registration system is demonstrated by the author of the article.

~ ~~
Student Course

Catalog
System

Registrar
Proffessor

Figure 4-2: Course Registration Use Cases [26]

There are three use cases in Figure 4-2. They are Register Course, Select Courses to Teach

and Close Registration. All the three use cases interrelate in one way or another and affect

each other depending on the phase and sub phase of each test case.

54

Following the steps to generate test cases, the next step is to generate use case scenarios and

create test case based on the scenarios and control flows. The use case has a basic flow and

five alternate flows which combined create the different scenarios to generate the test cases.

The basic flow consists of five steps. Those steps are [26]:

1. Logon [26]: The use case starts when the student accesses the system via the

university website. In order to logon the student has to enter his student ID and the

password into the system.

2. Select "Create Schedule" [26]: After logon, the system shows several available

functions the student selects "Create Schedule".

3. Obtain Course Information [26]: Followed by the step 2 the system retrieves a list of

available courses from the catalogue system.

4. Select Courses: The student selects six courses (four primary courses and two

alternate) from the retrieved list.

5. Submit Schedule: The student finalizes the selected and indicates completion. For

every single course selected the system verifies if it is available or if the student has

passed the necessary prerequisites.
1

,.... ~ a1.

6. Display Completed Schedule: In the final step if the submission was successful the

system displays the schedule containing the selected courses for the student and a

confirmation number for the schedule.

The basic flow is when the process of the control flow is straight and all the decision points

have valid variables. The alternate flow is possible points that appear as decision points

within the system and depending on the status of the values or the condition of the system

overall they produce an alternative path.

55

The alternative flows in the course registering use case are:

1. Unidentified student [26]: In step 1 of the basic flow (logon) if the credentials

inserted (namely the student id and/or the password) are not valid an error

message is displayed and notifies the student of the status.

2. Quit [26]: At any point of the system the user can quit and exit the system. By this

point the use case ends.

3. Unfulfilled Prerequisites, Course Full or Schedule Conflicts [26]: In step 5 of the

basic flow (submit schedule) if the student has unfulfilled prerequisites or if the

courses are full or if there are schedule conflicts within the selection the system

displays a message that the student should select a different course and it directs to

continue at step 4 which is the selection of courses.

4. Course Catalogue System Unavailable [26]: In step 3 of the basic flow (Obtain

Course Information) if the system is unavailable a message is displayed and the

use case ends.

5. Course Registration Closed [26]: The use case ends and a message is displayed if

it is determined that the registration is closed at any point of the system.

Using the information provided in the basic flow and the alternate flow a control flow is

designed that reflects all the possible paths. From which the test cases are then generated.

56

Figure 4-3 is the control flow of the system based on the provided information.

"' \ \ ',
\ \ '
\ \ '
\ \
\ \
\ \
\ \
\ \

\
\
\
\
\
\
\
\
\

Figure 4-3: Course Register Control Flow

57

According to the developers there are 8 possible scenarios to test the use case in its entirety.

Those scenarios are listed as follows:

1. Successful Registration [26].

2. Unidentified Student [26].

3. Valid User Quits [26].

4. Course Registration System Unavailable [26].

5. Registration Closed [26].

6. Cannot Enroll-Course Full [26].

7. Cannot Enroll - Prerequisite Not Fulfilled [26]. /"fy
8. Cannot Enroll- Schedule Conflict [26]. O,t.

The test cases for the Course Register use case will mainly be Test Case Value Matrix [26].

This contains detailed information on the values and the expected result. Other information is

not added and not seemed necessary by the author.

However there are other test cases that exist apart from the 8 main test cases. These are the

sub test cases that are generated for the alternate 2 which point out that at any given point the

user can quit. So this results in three additional test cases.

58

Table 4-1: "Course Register" Test Case Matrix

RC 1 I Successful Registration I Valid I Valid L:- Valid I Valid I Valid I Valid I confirmation number
dis12Iared.

RC 2 I Unidentified Student I Invalid I NIA I NIA I ' NIA I NIA I NIA I Error Message; back
to login screen

-

RC 3 I Valid User Quits I Valid I Valid I NIA I NIA ~ I NIA I NIA I Login Screen
Appears

RC 4 1
Course Registration

Valid Valid NIA NIA (- NIA NIA Error Message; Back
System Unavailable

I
to step 2

I

RCS I Registration Closed Valid Valid NIA NIA
I Error Message; Back , NIA NIA to step 2

RC 6 I Cannot Enroll - Course Valid Valid Valid Valid ~ h Invalid Valid
Error Message; Back

Full to step 3
-

Cannot Enroll - ~'

RC 7 I Prerequisite Not Valid
.,..,

Valid Valid Invalid Valid Valid
Error Message; Back

l,'-" to step 4
Fulfilled

RC 8 1
Cannot Enroll -

Valid Valid ''' Valid ' Valid Valid Invalid
Error Message; Back

Schedule Conflict to step 4

59

Table 4-1 lists all the test cases and the values at that phase. Table 4-12 lists all the precursor

tests and involved test items.

Table 4-2: Register Course Test Links and Test Items

I Test Case Independence Test Items
Number of Number of

ID Test Items Edges

RC 1 0 1, 2, 3, 4, 5, 6 6 8

RC 2 0 1 1 3

RC 3 0 \\: l, A2
~ 'l lrrr

2 5

' ~ II
RC 4 0 1,A4 2 5

RC 5 0 1, A5 2
~

5
i.-

RC 6 0 1, 2, 3, 4, 5, A3 6 9
i::
L

RC 7 0 1, 2, 3, 4, 5, A3 6
~

9

RC 8
~

0 1, 2, 3, 4, 5, A3 6 ~ 9

RC 9 1 3,A2 2 3 ,
u

RC 10 1 4,A2
<>,\"

2 3
v

RC 11 1 6,A2 2 3

Using the values from the test cases we calculate the reusability of the test case by first

calculating independence and then simplicity and finally the overall reusability.

60

In order to measure independence we use the values in Table 4-3.

Table 4-3: Course Register Test Case Independence

Test Case
Independence

Independence
ID Percentage

RC I I(t) = 2-o = 1 100%

RC 2 I(t) = 2-0 = 1 100%

RC 3 I(t) = 2-0 = 1 l:: ID 100%
-

RC 4 I(t) = 2-0 = 1 100%
~

·~

RC 5 I(t) = 2-0 = 1 100%
r-~

RC 6 / I) I(t) = 2-o = 1 lOOo/o ~

RC 7 I(t) = 2-o = 1 100%

-

RC 8 I(t) = 2-0 = 1 ..s ~~ 100%

RC 9 I(t) = 2-1 = 0.5 SO%

RC 10 I(t) = 2-1 = 0.5 50%

RC 11 I(t) = 2-1 = 0.5 SO%

61

To measure simplicity, the values from Table 4-4 are extracted. The test items are the

involved items in the test cases. The test edges are the number of edges that are involved in

every test case.

Table 4-4: Simplicity Measurement Results

Test Case Test Item Test Edge Simplicity

ID Simplicity Simplicity Percentage
I

1 1 1 1
RC 1 Sr1(t) =-=- SE(t) =-=- 14.58%

Nr1 6 NE 8
~ ~

1 1 1
RC 2 Sr1(t) =-= 1 SE(t) =-=- 66.66%

Nr1 NE 3
' ... (,.

1 1 1 1
RC 3 Sr1(t) = -=- S8 (t) =-=- 35%

NTJ 2 NE 5

1 1 1 1
RC 4 STI(t) =-=- S8 (t) =-=- 35%

Nr1 2 NE 5
-_

1 1 1 1
RC 5 Sr1(t) =-=- SE(t) =-=- 35°/o

Nrr 2 NE 5
~

1 1 1 1
RC 6 Sr1(t) =-=- SE(t) =-=- 27.77o/o

Nr1 6 NE 9
-- -

1 1 1 1
RC 7 Sr1(t) =-=- S8(t) =-=- 27.77%

Nr1 6 NE 9

1 1 1 1
RC 8 Srr(t) =-=- SE(t) =-=- 27.77%

Nr1 6 NE 9

RC 9
1 1

Sr1(t) =-=-
Nr1 2

1 1
SE(t) =-=-

NE 3
41.66%

1 1
RC 10 Sr1(t) =-=-

Nr1 2

1 1
SE(t) =-. =- 41.66%

NE 3

1 1 1 1
RC 11 STJ(t) =-=- Se(t) =-=- 41.66%

Nr1 2 NB 3

62

By combining the two tables the overall reusability based on simplicity and independence is

acquired. All the values are included in the Table 4-5.

Table 4-5: Course Register Test Case Reusability

I

Test
Independence Simplicity

Reusability
Case ID Percent

RC 1 100.00/o 14.58% 57.3°.4
RC 2 100.0% 66.66% 83.3%
RC 3 100.00/o 35% 67.5°.4
RC 4 100.0% 35% 67.5%
RC 5 100.0% r, 35% 67.5%
RC 6 100.0% \ 27.77% 63.9%
RC 7 100.00/o 27.77% 63.9%
RC 8 100.0% 27.77% 63.9%
RC 9 50.0% 41.66% 45.8%
RC 10 50.0% 41.66% 45.8%
RC 11 50.0% 41.66% 45.88/o

63

2. The A TM Withdraw Based on Activity Diagram

In the research "An Enhanced Test Case Generation Technique Based on Activity Diagrams"

[55], there is a test case generation technique which extracts test cases based on Activity

Diagrams. One unique aspect of this research is that the basis of the test case generation

method is cyclomatic complexity [54], which allows them measure the number of test paths

necessary for a full coverage. However for the purpose of evaluating test cases based on

reusability, the methodology is not the main concentration, but the generated results are.

[(ari.:dJ

A<'ttp• <'ard
: Lu,I

(httt.; ,.,

r ,.,,

i.. .Uh . .. ·1 '"-~'

' " (li'-'Uhl>f'I

(A1"'L'kd"

- - ---... -
RK&"h \' •-•• ;

R1-.:.-1rt
j(,,·;a1~-.11

Prine r\'nipc

• m .. , •• ~ mn ... ~ '·

t"

Ejttl card

"ln-u lli..·1,·111 l>al~111.- .- Ulll ·

- --------- no ro:rnu''"'" ~mnkJ"

(;irJ

•·

f\ 'ahJl

------------r ----------------

(Sufti,·1.:nr I l
jln~tli.-.~rul

-*
. l pdau• balan<'\'

Figure 4-4: ATM Withdraw Activity Diagram [55]

64

The "ATM Withdraw" is the example used to demonstrate their model, in which we use to

evaluate the measurement model. The Activity Diagram for the ATM Withdraw is shown in

Figure 4-4.

The system has two main interfaces; one is the A TM interface by which the user interacts

with, and the other the Bank interface which the A TM interacts with.

The system starts by accepting the A TM card from the user, once accepted the user proceeds

to insert his pin number which is promptly checked by bank, if invalid the user may have to

enter the pin again or cancel which then the system will respond by ejecting the card. If the

pin is accepted the user then proceeds to enter the required amount, the amount is then

checked with the bank and the account holder's balance, if insufficient the bank then checks

if the user has permission to over withdraw from balance, if there is no permission the

message "Insufficient balance and no permission granted" will appear on the screen and the

card is ejected. If there is permission the balance is then updated and a receipt created. The

receipt is then printed and the cash is dispensed at the same time and the system proceeds to

eject card and end. * *
6

In order to extract test cases from activity diagrams, they must be converted to Activity

Diagram Graphs (ADG) which essentially serves as control flows for the system. The

converted diagram is created by the researchers of Test Case Generation Based on Activity

Diagram [55] and is shown in Figure 4-5.

65

[Invalid]

[Cancel] [Valid]

Figure 4-5: ATM Withdraw Activity Diagram Graph and Control Flow (55]

66

The test paths are shown in Figure 4-6, in which all the paths are included, note that no test

case removal technique is used to remove redundant test cases, and test cases are measured in

their raw and unmodified form.

Test Path 1 ={A-+ B-+ C-+ B}

Test Path 2 = {A -+ B -+ C -+ D -+ E -+ G -+ H -+] -+ KL -+ M -+ 0 -+ P -+ Q}

Test Path 3 ={A-+ B-+ C-+ D-+ E--. G-+ H-+]-+ L-+ M-+ 0-+ P-+ Q}

Test Path 4 ={A-+ B-+ C-+ D-+ E-+ G-+ I-+ F-+ 0-+ P-+ Q}

Test Path 5 = {A -+ B -+ C -+ D -+ E -+ G -+ I -+ H -+] -+ kL -+ M -+ 0 -+ P -+ Q}

Test Path 6 ={A-+ B-+ C-+ D-+ E-+ G-+ I-+ H-+]-+ L-+ M-+ 0-+ P-+ Q}

Test Path 7 ={A-+ B-+ C-+ F-+ 0-+ P-+ Q}
'pa

Figure 4-6: Generated Test Paths for ATM Withdraw [55]

Each test path represents a single test case. Each test case required a certain number of values

in order to operate; the values are either a variable or a constant depending on the role they

possess in the system. Table 4-6 lists all the required values. ~ O'

Table 4-6: A TM Withdraw Test Case Values

I Test Case Ill Pin Amount Balance Permission

ATM I PIN [Invalid] NIA NIA NIA
ATM2 PIN [Valid] Amount [Sufficient] 2:Amount NIA
ATM 3 PIN [Valid] Amount [Sufficient] ~Amount NIA
ATM 4 PIN [Valid] Amount [Insufficient] :SAmount No

ATM 5 PIN [Valid] Amount [Insufficient] sAmount Yes

ATM6 PIN [Valid] Amount [Insufficient] sAmount Yes

ATM_7 PIN [Invalid] NIA NIA NIA

67

Table 4-7: ATM Withdraw Test Cases 1, 2 and 3

1. Enter A TM Card Invalid PIN Result in

ATM 01 I PIN Box I Invalid PIN - Return I A TM Login, Invalid, I 0 t 2. Enter PIN [Invalid] Invalid Verification
to PIN Box Verification 3. Verify Error and return to page

4. Enter PIN [Invalid] when prompt.

1. Enter ATM Card

PIN Box, ~~" ATM Login, Valid,
2. Enter PIN [Valid]

Amount Box, Valid Pin- -~ Verification,
3. Verify Validity

ATM 02 I Balance Sufficient Amount - Sufficient Amount, 0
4. Enter Amount I Print Receipt -

Check, Dispense Receipt Sufficient Balance,
[Sufficient] Ejected Card
5. Receive Receipt

Receipt Print, - Dispense Receipt
6. Receive Card
7. Return

1. Enter A TM Card
2. Enter PIN [Valid]

PIN Box, ' (ATM Login, Valid, I 3. Verify Validity
Amount Box, Valid Pin-

~

Verification, 4. Enter Amount I Dispense Cash -ATM 03 I Balance Sufficient Amount - Sufficient Amount, 0 [Sufficient]
Check, Cash Dispense Amount Sufficient Balance,

l 5. Receive Dispensed Ejected Card
I

Dispenser Dispense Amount " v Amount
6. Receive Card
7. Return

68

Table 4-8: A TM Withdraw Test Cases 4 and 5

_....,. 1111 1·,r 1. Enter A TM Card PIN Box, PJ; 2. Enter PIN [Valid] Amount Box,
A TM Login, Valid, 3. Verify Validity Display Message:

Balance Valid Pin - I

"Insufficient balance Verification, 4. Enter Amount
ATM 04 I Check, Insufficient Amount

Insufficient Amount, 0 [Insufficient] and no permission
Permission - Display Error

~ Insufficient Balance, 5. Verify No Permission. granted" - Ejected Check, Message QJt No Permission 6. View Denied Message Card Display g. 7. Eject Card
Message Box

8. Return ..
1>, 1. Enter A TM Card

PIN Box, ~ A TM Login, Valid,
2. Enter PIN [Valid]

~'- 3. Verify Validity Amount Box, Valid Pin-
Verification,

Balance Insufficient Amount
Sufficient Amount,

4. Enter Amount I Print Receipt -ATM 05 I Check, - Permission
Sufficient Balance,

0 [Insufficient]
Ejected Card Receipt Print, Granted - Receive

Dispense Receipt,
5. Verify Permission.

Permission Receipt
Permission Granted

6. Receive Receipt
(

7. Receive Card Check
8. Return

69

Table 4-9: ATM Withdraw Test Cases 6 and 7

1. Enter A TM Card

PIN Box, - '"
2. Enter PIN [Valid]

Amount Box, Valid Pin-
A TM Login, Valid, 3. Verify Validity

Balance Insufficient Amount
Verification, 4. Enter Amount

ATM_ 06 I Check, Cash - Permission
Sufficient Amount,

0
[Insufficient] I Dispense Cash -

Dispenser, Granted - Dispense
Sufficient Balance, 5. Verify Permission. Ejected Card

Permission Amount
Dispense Amount, 6. Receive Dispensed

Check t!i Pennission Granted Amount _, 7. Receive Card
~e 8. Return

~i °' 1. Enter ATM Card

PIN Box, A TM Login, Invalid,
2. Enter PIN [Invalid]

Cancel Message

ATM 07 I Cancel
Invalid PIN - Cancel

3. Verify Error

Operation,
Verification, Cancel 0 4. Cancel Operation

"Operation

Message Box -~ Operation 5. View Cancel Message
Canceled" - Ejected

6. Eject Card
Card

7. Return

70

Test Cases are formatted in the same fashion that Hotel Management System Test Cases were

formatted which is based on a standard Test Case system. All the seven test cases derived

from the several traversed paths of the control flow (Figure 4-3) are listed in three separate

tables: Table 4-7, Table 4-8 and Table 4-9.

In order to measure independence the value required is the number of precursor test cases.

Since the entire precursor tests are zero (0) then the result is considered to be 100%

independent. Table 4-10 demonstrates how the calculation is done for each value.

Table 4 .. 10: Independence Measurement Results

Test Case
1

d d Independence
n epen cncc

ID Percentage

ATM 01 I(t) = 2-o = 1 100%

ATM_02 I(t) = 2-0 = 1 100%

ATM 03 I(t) = 2-0 = 1 100%

ATM 04 I(t) = 2-0 = 1 lOOo/o

ATM 05 I(t) = 2-0 = 1 100%

ATM 06 I(t) = 2-o = 1 100%

ATM 07 I(t) = 2-0 = 1 100%

71

In order to measure Simplicity the number of test items and the number of edges in the graph

test path are of main concern. Figure 4-3 includes all the various test paths which can be used

to measure test path Simplicity. The result of calculating each phase of simplicity is shown in

Table 4-11. Note that the final percentage is equal to the average value of both simplicity

factors multiplied by 100.

Table 4-11: Simplicity Measurement Results

Test Case Test Item Test Edge Simplicity

ID Simplicity Simplicity Percentage

1 1 1
ATM 01 Sr1(t) =-= 1 SE(t) =-=- 62.5%

Nr1 NE 4

1 1 1 1
ATM 02 Srr(t) =-=- SE(t) =-=- 16.35% - Nr1 4 NE 13

~-:,..-'

1 1 1 1
ATM 03 STJ(t) =-=- SE(t) =-=- 16.35%

Nr1 4 NE 13 .
1 1 1 1

ATM 04 Srr(t) =-=- SE(t) =-=- 14.54%
Nr1 5 NE 11

1 1 1 1
....

ATM 05 Sr1(t) = -= - S6 (t) =-=- 13.57%
Nr1 5 NE 14 OI

·-
1 1 1 1

ATM06 STJ(t) =-=- SE(t) =-=- 13.57%
Nr1 5 NE 14

1 1 1 1
ATM 07 Sr1Ct) = -=- S6 (t) =-=- 32.14°/0

Nr1 4 NE 7

72

Using the values calculated in Table 4-10 and Table 4-11 the following table is created and

the results are calculated as the average of the two values calculates the overall reusability of

a single test case.

I(t) + S(t)
R(t) =

2

Table 4-12: Reusability Measurement Results

ATM 02 100% 16.35% 58.2%
ATM 03 100% 16.35% 58.2%
ATM 04 100% 14.54% 57.3%
ATM 05 100% 13.57% 56.8%
ATM 06 100% 13.57% 56.8%
ATM 07 100% 32.14% 66.1%

tfl
~ ~

* * ~If S '\JCE- 969 ~Q\
?';}'Vlf} - ~ 'tt~~

1~!19

73

3. Hotel Management System Guest Login

The Hotel Management System Guest Login was designed and engineered based on the Hotel

Management System Login System [23]. The Login System is reengineered in order to be

used as an example for measuring how would the Test Case Measurement System behave

when faced with rare situations such as transitioning back to previous nodes and how would

precursor test case fit in a general scenario of test case production.

The login system is simple, the user insets username and password, and then clicks on login

and depending on the validity of the variables two outcomes are expected. A valid response

will result in a welcome message and sends the user to the guest menu where he can perform

his guest functions (this part of the system is not demonstrated in the control flow). An

invalid response would result in an error message which would return the user in entering his

username and password again. Figure 4-7 demonstrates the control flow of the guest login.

Figure 4-7: HMS GUEST LOGIN Control Flow

Following the steps, each traverse results in a test case, in this scenario we have two main

traverses which are shown in Figure 4-8.

74

Test Path 1 ={A-+ B-+ C-+ D-+ E}

Test Path 2 = {A -+ B -+ C -+ D -+ F -+ B}

Figure 4-8: HMS Guest Login Test Paths

Attributes used are: Test Case ID - a unique attribute to designate each specific test case for

later reference. Test Item - the main items that the test case is examining. Test Case

Description/Objective - describing the main objective of the test case. Test Case Keyword -

related keywords to the particular test case used for referencing and also for reusability

measures when they want to reuse test cases that cover a particular area. Test Case

Link/Prerequisites - the number of processes that comes before the test case and it is needed

to be tested first in order to successfully test that item. Steps to Execute - is basically Test

Steps (steps that must be taken in order to reproduce a certain test objective). Expected Result

- is the result that is expected to be seen when the test steps are successfully performed.

Test Data- also known as "Data required", is the data that is needed in order to successfully

test the test case. This information is stored in a separate table. Table 4-13 includes all the

data required to execute the related test case. c

Table 4-13: Test Case Required Data Table

Test Case ID Username Password

HM GL_Ol Usemame [Invalid] Password [Invalid]

HM GL 02 Username [Valid] Password [Valid]

75

Table 4-14: Sample Test Cases from Hotel management System Login Process

1. Euter Login Page

sername Box, ~ al"d Lo . ~gin, Verification,
~· Input Username.

nv 1 gm- . . Input Password. Fcrror Message: Invalid
HM GL 01 [_~sword Box, lank Usemame and valid, Usemame, 0 . Click on Login Credentials. Return to

1splay ________ ..J assword, Message
5. Confirm EITOr

..J I I
[._essage
'. Input Usemame

1. Enter Login Page
Username Box, (_5j Login, Verification, . Input Username.

alid Login- ...
~elcome Message:

HM GL 02 !Password Box, alid, Usemame, 3. Input Password.
Correct U semame 0 uccessful Login -

-isplay assword, Message . Click on Login
and Password uest Profile

!Message ox 5. Confirm Welcome

ONn ~- ~~ Message

76

Table 4-14 includes all the test cases that need to be executed. In order to apply the

measurement model the following data is required:

For independence the value required to be measured is the number of precursor tests. Since

most of the precursor tests are zero (0) then the result is considered to be 100% independent.

Table 4-15 demonstrates how the calculation is done for each value.

Table 4-15: Independence Measurement Results

Test Case
Independence

Independence

ID Percentage

HM GL 01 I(t) = 2-o = 1 100.0%

...... \

HM_GL_02 I(t) = 2-0 = 1 100.0%

-

For Simplicity two main values are of concern. Test Items and Test Steps/Stages/Flows

depending on the case used. In this test case we use test steps as indication of measuring test

case simplicity.

Table 4-16: Simplicity Measurement Results

Test Case Test Item Test Step Simplicity

ID Simplicity Simplicity Percentage

1 1 1 1
HM GL 01 STI(t) =-=- SE(t) =-=- 26.66%

Nrr 3 NE 5

1 1 1 1
HM GL 02 Sr1Ct) =-=- SE(t) =-=- 29.16%

Nrr 3 NE 4

77

Based on the provided information from Table 4-15 and Table 4-16 the following table is

created and the results are calculated as the average of the three values calculates the overall

reusability of a single test case.

l(t) + S(t)
R(t) =

2

Table 4-17: Reusability Measurement Results

Test Case ID Independence Simplicity

HM GL 01 100.0% ., .. , ~ u 26.66%

HM GL 02 100.0% 29.16%

78

Reusability
Percent

63.3%
64.58%

5. CHAPTER 5: RESULTS AND DISCUSSION

To analyze the results the five point linkert scale [40, 41] will be used to measure and identify

reusability. The scale is divided evenly into five separate points (Table 5-1):

Table 5-1 : Linkert Scale for Test Case Reusability

Percentage Range Linkert Scale Point

0%-20%

20%-40%

40%-60%

60%-80%

80%-100%

ff NotUsed

Difficult to Reuse

Neither Difficult nor easy
to reuse

Easy to Reuse

Very Reusable

The scale in Table 5-1 is used to analyze the values obtained via the model for measuring test

case reusability. The linkert scale can also be applied in translating the Independence and

Simplicity values.

79

A. Course Registration System

The course registration test cases are based on Rationale Edge from IBM [26]. The results of

the measurement for test case reusability result in:

Table 5-2: Course Register Test Case Reusability

Test
Independence Simplicity

Reusa bility
Case ID Percent

RC 1 100.00/o 14.58% 57.3%
RC 2 100.0% .66.66% 83.3%
RC 3 100.0% 35% 67.5%
RC 4 100.0%

,
35% 67.5%

RC 5 100.0% 35% 67.5%
RC 6 Q 100.0% 27.77% 63.9%
RC 7 ~~ 100.0% 27.77% 63.9%
RC 8

'I
100.0% 27.77% 63.9%

RC 9
J

50.0% 41.66% 45.8%
RC 10 50.0% 41.66% 45.8%
RC 11 50.0% 41.66% 45.8%

J

Test case RC_ 1 follows the basic flow which is also the longest. It contains 6 items and 8

edges and produces 14.58% simplicity and 100% independence. This indicates that the test

case RC_ l is considered not simple in any way. In its current form it can be divided by two

sections and separate the login section from the actual registration section, however that

would not affect the overall reusability by much since the division of flows would also reduce

the independence of the test case to 50%. With an overall reusability of 57 .3% is considered

to be average, neither easy nor difficult to reuse.

The second test case RC_2 is the shortest alternate flow, with an independence of 100% it is

considered fully independent. The simplicity is also measured to be 66.66% with only one

80

test item and three edges. The overall test case reusability is 83.3% and it is considered very

reusable by being between the range of 800/o and 100%.

Test cases RC_3, RC_ 4 and RC_S have 100% independence and do not start at a middle

node. The simplicity is also measured to be 35% with two items and five edges and it is

considered not simple. The overall reusability is measured to be 67.5% and it translates "easy

to reuse" based on the linkert scale range of over 60%.

Test cases RC_6, RC_7 and RC_8 are have also 100% independence. The simplicity is

27.7% with six items and nine edges. This means that it is not simple. The overall reusability

is 63.9% which considered is "easy to reuse".

Test cases RC_9, RC_lO and RC_l 1 starts at middle nodes and thus require a precursor test

in order to successfully run. Their independence is measure to be 500/o. The simplicity is

41.66% with two test items and three edges. The overall reusability is thus measured at

45.8% which based on the linkert scale is considered neither difficult nor easy to reuse.

It is observed that the longer the test case is, the more complex it becomes and thus less

simple. Longer test cases also tend to have more items involved, thus reducing the overall

simplicity which would lead to less reusability.

81

B. ATM Withdraw Based on Activity Diagram

The test case paths are based on the control flow diagram traverses which the researchers of

the article "Test case Generation Method Based on Activity Diagram" [40]. It has been

referred in the research the test cases have not been optimized at all [40] and thus are

expected to be average and below average in terms of reuse.

Table 5-3: ATM Withdraw Reusability Measurement Results

16.35% 58.2%
ATM 03 100% 16.35% 58.2°/o
ATM 04 100% 14.54% 57.3%
ATM_05 100% 13.57% 56.8%
ATM 06 100% 13.57% 56.8%
ATM 07 100% 32.14% 66.1%

tA
Test case ATM_Ol is considered very reusable mainly due to the value of 81.3% reusability

falling in the range of 80% - 100% in the linkert scale. Test cases ATM_02 and ATM_03

have a reusability percentage of 58.2% and thus are considered neither difficult nor easy to

reuse. Test cases ATM_04, ATM_05 and ATM_06 also fall into the same category since

their values 57.3%, 56.8% and 56.8% respectively are in the scale of neither difficult nor easy

to reuse. The last test case (ATM_07) is considered easy to reuse since the value 66.1% is

over 60% and below 80%.

Considering all the values generated, it enhanced the main idea that these test cases were not

optimized and expected to similar results in case of reusability. Depending on the type of

optimization the values may change the overall reusability.

82

C. Hotel Management System Guest Login

The test cases in HMS were designed based on the Guest Login Sub System. Based on the

use cases and system requirements two test cases were created to test all aspects of the Guest

Login. The test cases each were measured using the model for measuring test case reusability

which consisted of two main criteria: Independence and Simplicity. The results are

demonstrated in Table 5-4.

Table 5-4: HMS_ GL Test Case Reusability Results

HM GL 02 100.0% 29.16% 64.58%

The results indicate that test case HM_GL_Ol is easy to reuse since the value 63.3% falls in

between 60%-80% of the linkert scale. Test case HM_ GL _ 02 is also considered easy to reuse

since the value of 64.58%.

83

D. Test Case Reusability Metrics Model Comparison

In order to evaluate the results a comparison is needed compared to the previous system.

However after further examination it is observed that the comparison may not be possible due

to the following reasons:

1. Understandability was demonstrated by proof of example and logic that it is

unreliable to measure any form of reusability and thus its value cannot be considered

to measure test case reusability.

2. Universal requires information that is vague and unidentified. These values are not

included in most test case generation techniques and would mean that the TCRMM is

only suitable for certain generation methods.

3. Changeability formula does not reflect on the theory provided and thus any

measurement on that part would not have been accurate in any form.

4. After further analysis it is seen that Test Case Reusability Metrics Model can only be

used to successfully measure metrics from a certain test cases that are generated using

"Reusable Test Models and Application Based on Z Specification" [7] as main

research which is developed by the same researchers that devised the Test Case

Reusability Metrics Model [10].

Following the general concept, we cannot measure any of the current test cases with the

TCRMM.

84

6. CHAPTER 6: CONCLUSION AND FURTHER WORK

A. Conclusion

In the early stages of the research many factors were discovered that had a n effect on

measuring test case reusability. A Study of Reusability, Complexity and Reuse Design

Principles [36] introduced overall Understandability and Complexity as main factors of

measuring reusability. The researchers interpreted Understandability as how well defined the

interfaces were, and how clear the components were separately on their own without any link

to the other components. However the method used for measuring Understandability was via

surveys and hwnan perception, meaning that the degree of understandability was measured

via how the testers presumed it was and not based on solid measurement model.

The Complexity factor was mentioned in several other researches [36, 51, 54, 57 and 58] as a

prominent factor that affects reusability. This factor was later explored and expanded upon in

the solutions section and following previous research and calculation methods such as

Cyclomatic Complexity [54] and Hybrid Complexity measurement models [57, 58]

influenced the direction of which this research used to measure Simplicity (which is defined

as reverse complexity).

Other factors such as Changeability, Universal and Independence were elaborated and

measured in Test Case Reusability Metrics Model [10], but some such as Changeability and

Universal were dismissed due to the fact that they were limited to the scope of their research

and test case generation method, and they were not compatible with the objectives and scope

of this research.

When the potential factors of Reusability were identified, two of the prominent factors were

chosen and expanded upon for use in measuring test case reusability. A template metrics

85

system was generated that could measure test case reusability of test cases that are generated

only in a certain way. The template uses two factors of independence and simplicity as the

main criteria for measuring test case reusability. These two factors are considered as a base

for the template, and in later editions new factors could be introduced to the system in order

to make it more reliable and precise.

In order to evaluate the results of the test case reusability measurement model three main test

case samples were used. The firs sample is from IBM Rationale Edge article that

demonstrates how test cases are generated from use cases and use case scenarios. The results

yielded an average result which correlated with the base that all samples that are used

indiscriminately are without any optimization and thus expected to yield an average or below

average result. The actual results varied between the numbers 40% and 60% which according

to the linkert scale translated to average with the exception of one test case that yielded a

higher result of 86% which could have been lower if other factors are introduced. The results

will get more accurate to the expected results as more factors are added to the template, and

also if a weighing system is introduced among the criteria.

The second sample Hotel Management System was used as a basic introductory system to

evaluate how the system would behave when multiple returns are introduced. There is also an

experimentation of how precursor test cases function.

The third sample A TM Withdraw system test cases were also not optimized and were

expected to produce an average result. This was confirmed to be the case when the average of

the reusability was somewhere between 50% and 70% which is considered average and

above average. In IBM Rationale example for Register Courses the results vary depending on

the length of each test case. It has been seen that longer test cases have lower reusability.

86

B. Drawbacks

Although relatively accurate, the metrics model suffers from some drawbacks that need to be

addressed. The drawbacks are as following:

1. Lack of Metrics Weight

There is no weight system in place for the metrics model. In the current model for measuring

reusability all the metrics are considered equal in value and weight. This can be rather

problematic when a certain organization or developer wants to have a higher emphasis on a

certain criterion or factor. Such would be a higher emphasis on simplicity instead of

independence. The basic template for the formula is to have a definable weight for every

point. However a system must be defined in order to give proper weight to the variables. An

example would be: Q..

~
:::>

~
x.I(t) + y.S(t)

R(t)=---
x +y

In the above formula x and y are the weights of each factor. However there currently is no

method for assigning those values in an accurate manner.

2. Additional Factors

Currently the formula consists of two main criteria and this would make it inaccurate in most

cases. This is particularly the case where the simplicity is very low {closer to 10%) and

independence is 100%. This would average to 55% and thus consider it an average reusable

test case. Although it may very well be, if there were additional variables, the number could

have been more precise.

87

3. Limitations Due to Scope of Work

Currently the metrics model required the tester to have background knowledge from the test

case generation process. This is mainly because of the white box natures that exist within the

simplicity measurement factor. In order to design the test cases the tester needs to know about

the Control Flows and Use Case Scenarios which indicate the innate complexity of the test

case. Other than the white box requirement, there is also a need for Black Box attributes that

would aid in a more precise measurement of simplicity according to the hybrid complexity

theories mentioned in several researches.

This limitation prevents the model from being used in order to measure automated test cases

that do not have a black box aspect, and also it will prevent the use of test cases that are

generated without a control flow or that are from a generation method which requires

different set of attributed that are not identified in the measurement model.

88

C. Further Study

This research serves as a template for expanded work on a field that is currently rarely

worked upon. There are very few that concentrate on the aspect of singular test case

reusability and fewer tend to look for methods of quantifying it. In later researches the

drawbacks could be explored more.

New criteria such as changeability and understandability have a higher potential to be

considered for the reusability metrics. Both criteria are included in Test Case Reusability

Metrics Model, but they are measured based on factors that are not accurate and produce

results that are not.reliable.

89

7. REFERENCES AND BIBLIOGRAPHY

[1] Institute of Electrical & Electronics Engineers, Standard 1059 (1993), IEEE Guide for

Software Verification and Validation Plans. 1993.

[2] S. Schach, Software Engineering, Aksen Associates,Boston, MA, 1990.

[3] Antonia Bertolino and Eda Marchett4 Software Engineering Body of Knowledge

(SWEBOK), 2004 edition, Chapter 5.

[4] Gregg Rothermel and Mary Jean Harrold. "A Safe, Efficient Algorithm for Regression Test

Selection" , 1999

[5] Institute of Electrical & Electronics Engineers, Standard 610 (1990), reprinted in IEEE

Standards Collection: Software Engineering 1994 Edition.

[6] Cem Kaner, J.D., Ph.D., "What Is a Good Test Case?,", pp. 4-5, May 2003.

[7] Lizhi Cai, Weiqin Tong, Genxing Yang, Zhenyu Liu. "Reusable Test Models and

Application Based on Z Specification", pp 4. July, 2007.

[8] K.K Aggarwal & YogeshSingh, "Software Engineering", 3rd Edition, 2007, Chapter 9.

[9] Gregg Rothermel and Mary Jean Harrold. "Analyzing Regression Test Selection

Techniques", 1996 s N < 69

[10] Zhang Juan, Cai Lizhi, Tong Weiqing, Yuan Song, Li Ying, "Test Case Reusability Metrics

Model", 2010 2nd International Conference on Computer Technology and Development

(ICCTD), November, 2010.

[11] Huang, J.C .. "Measuring the effectiveness of a test case". appear on 1998 IEEE Workshop

on Application-Specific Software Engineering Technology, 1998. ASSET-98. Proceedings.

pp 157-159. March, 1998.

[12] Christian Pfaller, Stefan Wagner, Jorg Gericke, Matthias Wiemann "Multi-Dimensional

Measures for Test Case Quality", April, 2008.

90

[13] William Frakes, Carol Terry. Software reuse: metrics and models. ACM Computing

Surveys, Vol. 28, No.2, June 1996.

[14] ISOIIEC 9126 Software engineering Product quality, www.jtclsc7.org

[15] Jin-Chemg Lin, Kuo-Chiang Wu. "A Model for Measuring Software Understandability".

2006.

[16] Aggarwal KK, Singh Y ., and Chhabra J K , An Integrated Measure of Software

Maintainability, Proceedings ofReliability and Maintainability, 2002: 235-241

[17] Pan Liu, Huaikou Miao. "A New Approach to Generating High Quality Test Cases". 2010.

[18] Baldwin, C. Y. & Clark, K. B. Design rules, Volume 1: The power of modularity,

Cambridge, MA: MIT Press. 2000.

[19] Douglas D. Lonngren. Reducing the cost oftest through reuse. AUTOTESTCON98. IEEE

Systems Readiness Technology Conference, 1998 IEEE.

[20] Avon Mayrhauser, RT.Mraz, JWalls, and P Ocken. "Domain based testing: Increasing test

case reuse". In International Conference on Computer Design, pages 484-491, 1994.

[21] H. E. Hornstein. Test reuse in cbse using built-in tests. In Proc of the Workshop on

Component-Based Software Engineering, Composing Ssystems from Components, Los

Alamitos, CA, 2002. IEEE Computer Society Press.

[22] R. T. Mraz. Domain based testing: A reuse oriented test method. Technical report, colorado

state university, 1993.

[23] Mohammad Rava. "Hotel Management System", Assumption University, 2011.

[24] Weblnject. http://webinject.org/. November 29, 2012.

[25] Russell Turpin, "A Progressive Software Development Lifecycle", Engineering of Complex

Computer Systems, 1996.

[26] Jim Heumann, "Generating Test Cases from Use Cases", The Rational Edge, 2001.

[27] Alistair Cockburn, "Writing Effective Use Cases", Addison-Wesley, 2001.

91

[28] IBM, "Rational Untied Process", Rational Software White Paper, 2001.

[29] IEEE 829-1998 - Software Quality Engineering - Test Case Specification Template -

Version 7.0 - 2001

[30] R. van Ommering, "Software reuse in product populations," IEEE Transactions on Software

Engineering, vol. 31, pp. 537-550, 2005.

[31] P. Mohagheghi and R. Conradi, "Quality, productivity and economic benefits of software

reuse: a review of industrial studies," Empirical Software Engineering, vol. I 2, pp. 4 71-516,

2007.

[32] P. Mohagheghi and R. Conradi, "An empirical investigation of software reuse benefits in a

large telecom product," ACM Transactions on Software Engineering Methodology, vol. 17,

pp. 1-31, 2008.

[33] W. B. Frakes and G. Succi, "An industrial study of reuse, quality, and productivity," Journal

of Systems and Software, vol. 57, pp. 99-106, 2001. -
[34] M. Morisio, et al. , "Success and Failure Factors in Software Reuse," IEEE Transactions on

Software Engineering, vol. 28, pp. 340-357, 2002.

[35] W. C. Lim, "Effects of Reuse on Quality, Productivity, and Economics," IEEE Softw., vol.

11, pp. 23-30, 1994. ::i I 69

[36] R. Anguswamy, W. B. Frakes,. "A Study of Reusability, Complexity,and Reuse Design

Principles". ESEM'l2, September 19-20, 2012.

[37] M. D. Mcilroy, et al., ••Mass produced software components," Software Engineering

Concepts and Techniques, pp. 88--98, 1969.

[38] Frakes W. Systematic. "Software Reuse: A Paradigm Shift". In Proceedings of Third

International Conference on Software Reuse: Advances in Software Reuse. Los Alamitos,

California: IEEE Computer Society Press, I 994

92

[39] Shaojie Guo, Weiqin Tong, Juan Zhang, Zongheng Liu. "An Application of Ontology to

Test Case Reuse". International Conference on Mechatronic Science, Electric Engineering

and Computer August 19-22, 2011.

[40] L. Carmichael, T. Damarla, P McHugh, M. J. Chug. "Issues Involved in Reuse Library for

Design for Test". IEEE 1995.

[41] S. R. Nidumolu and G. W. Knotts, "The effects of customizability and reusability on

perceived process and competitive performance of software firms," MIS Q., vol. 22, pp.

105-137, 1998.

[42] R. Anguswamy and W. B. Frakes, "An Exploratory Study of One-Use and Reusable

Software Components," 24th International Conference of Software Engineering and

Knowledge Engineering, SEKE'l2, San Francisco, USA, 2012.

[43] W. B. Frakes and R. Baeza-Yates, Information retrieval: data structures and algorithms, 2nd

ed. vol. 77. Englewood Cliffs, NJ: Prentice-Hall. , 1998. -

[44] J. Sametinger, Software engineering with reusable components. Berlin Heidelberg,

Germany: Springer Verlag, 1997.

[45) Y. Matsumoto, "Some Experiences in Promoting Reusable Software: Presentation in Higher

Abstract Levels," IEEE Transactions on Software Engineering, vol. SE-10, 1984.

[46] B. Boehm, et al., "Cost estimation with COCOMO II," ed: Upper Saddle River, NJ:

Prentice-Hall, 2000.

[47] N. E. Fenton and M. Neil, "Software metrics: roadmap," presented at the Proceedings of the

Conference on The Future of Software Engineering, Limerick, Ireland, 2000.

[48] R. W. Selby, "Enabling reuse-based software development oflargescale systems," IEEE

Transactions on Software Engineering, vol. 31, pp. 495-510, 2005.

[49] A. Gupta, "The profile of software changes in reused vs. non-reused industrial software

systems," Doctoral Thesis, NTNU, Singapore, 2009.

93

[50] T. Tan, et al., "Productivity trends in incremental and iterative software development," in

ESEM '09 Proceedings of the 2009 3rd International Symposium on Empirical Software

Engineering and Measurement Lake Buena Vista, Florida, USA, 2009, pp. 1-10.

[51] S. Roongruangsuwan, J. Daengdej. "Test Case reduction Methods by Using CBR".

Autonomous System Research Laboratory. 2010.

[52] Bruce H. Barnes, Terry B. Bollinger. "Making Reuse Cost Effective". IEEE Software Vol: 8.

Issue: 1. Jan. 1991.

[53] Barry Smyth & Keane. "Remembering To Forget: A Competence Preserving Deletion

Policy for Case-Based Reasoning Systems" In Proceedings of the 14th International Joint

Conference on Artificial Intelligence, 377-382. Morgan-Kaufman, 1995.

[54] Thomas J. McCabe. "A Complexity Measure". IEEE Transactions on Software Engineering,

Vol. Se-2, No. 4, December 1976.

[55] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed A. Hashim, Mohamed F. Tolba. "An

Enhanced Test Case Generation Technique Based on Activity Diagrams". 2011 International

Conference on Computer Engineering & Systems (ICCES). Nov. 29 2011.

[56] Anthony Barrett, Daniel Dvorak, "A Combinatorial Test Suite Generator for Gray-Box

Testing", Third IEEE International Conference on Space Mission Challenges for

Information Technology. 2009.

[57] Lingzhong Meng, Minyan Lu, Baiqiao Huang, Xiaojie Xu, "Using relative complexity

measurement which from complex network method to allocate resources in complex

software system's gray-box testing", International Symposium on Computer Science and

Society, 2011.

[58] Harrison Warren,Cook Curtis. "A micro/macro measure of software complexity[J]". Journal

System Software. 1987: 213-219

94

8. APPENDIX A: PROGRAMMING CODES

/-r

• GuAst A Login.java

.,. CrAA t r-; d on Mar 4 , 20 11 , 12 : 22 :38 AM

'I

package Hotel_mgt_Guest;

import javax.swing.JOptionPane;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement ;

import java.sql.ResultSet;

import java.sql.SQLExce p t ion;

import java.sql.Staternent;

import java.util.Ar r ays;

import javax.swing.JFrame;

import javax.swing . UIManager;

I**

*

* @author Mohammad Rava

* I

public class Guest_A_Login exte nds javax.swing.JFrame {

II Dat a related to Database connection

private Connection connect = null;

private Statement statement • null;

private ResultSet resultSet = null;

String usr -null;

char[) psw = null;

String username;

char[] password;

String userPosition;

95

public static int userID = O;

/** Creates new form Staff_A_Login */

public Guest_A_Login() {

initComponents();

}

@SuppressWarnings ("1 ; ~ ")

II <editor-fold defaultstate="collapsed" desc="Generated Code">

private void initComponents() {

jLabell =new javax.swing.JLabel();

jLabel2 •new javax.swing.JLabel();

jUserField •new javax.swing . J TextFi eld ();

jPassField =new javax.swing.JPasswordFiel d();

btnLogin =new j a vax.swing.JButton();

btnCancel =ne w javax.swing.JButton();

setDefaultCloseOperation(javax.swing. WindowConstants.EXIT_ON_ CLOSE);

setTitle(" H) ;

setName (", "); /I NOil8N

setResizable (false);

jLabell.setText("Yocr ~ :");

jLabel2.setText("I ss rd: ");

btnLogin.setText("T : ::._ ") ;

btnLogin.add.ActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

btnLoginActionPerformed(evt);

}

}) ;

btnCancel.setText("C' ");

btnCancel.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

btnCancelActionPerformed(evt);

}

96

}) ;

javax.swing.GroupLayout layout =new
javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
layout.createSequentialGroup()

.addGap(33, 33, 33)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEAD
ING)

.addComponent(btnLogin,
javax.swing.GroupLayout.PREFERRED_SI ZE , 70 , ')-
j avax.swing.GroupLayout.PREFERRED_S I ZE) I,

.addGroup(layout. createParallelGroup(javax.swing.GroupLayout. Alignment.TRAI
LING)

J.,;;, .addComponent (jLabel2)

Cl.. .addComponent (jLabell)))

.addPreferredGap(j a vax.swing.LayoutStyle.ComponentPlacement .RELATED,
javax . swing.GroupLayo ut.DEFAULT_SIZE, Short . MAX_VALUE)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout . Alignment.LEAD
ING, false)

) ;

.addComponent (jPassField)

.addComponent(jUserField)

.addGroup(l a yout.createSequent i a l Group()

.addGap(59 , 59 , 5 9)

.addComponent(btnCancel)))

.addGap(31, 31, 31))

layout.linkSize(javax.swing.SwingConstants.HORIZONTAL, new
java.awt.Component[] {btnCancel, btnLogin});

layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
layout.createSequentialGroup()

.addContainerGap(24, Short.MAX_VALUE)

97

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASE
LINE)

.addComponent(jLabell)

.addComponent(jUserField,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASE
LINE)

.addComponent(jLabel2)

.addComponent(jPassField,
javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout. PREFERRED_S I ZE))

. addGap(18, 18 , 18)

.addGroup(layout. createParallelGroup(javax.swing.GroupLa yout. Alignment.BASE
LINE)

) ;

.addComponent(btnLogin)

.addComponent(btnCancel))

. a ddGap(25, 25, 25))

java.awt. Dimension screen Size =
java.awt.Toolkit. getDe faultToolkit().getScreenSize();

setBounds ((screenSize.width-277)/2, (screenSize.height-182)/2,
182) ;

}// </editor- fold> S N(

277,

private void btnCancelActionPerf ormed(java.awt.event.ActionEvent evt) {

}

!! TODO add your handling code here:

JOptionPane.showMessageDialog(rootPane,

" ~:· . -

JOptionPane.INFORMATION_MESSAGE);

System.exit(O);

private void btnLoginActionPerformed(java.awt.event.ActionEvent evt) {

!I TODD add your handling code here:

usr = jUserField.getText();

psw = jPassField.getPassword();

98

try {

usr + " ' ");

II This will load the MySQL driver , each DB has its ow~ drive r

Class. forName (" ·.·· , . . , Jbc . 8river ").newinstance();

II Setup t he c onnection with the DB

connect = DriverManager

.getConnection(" jdc·~ : ;: . y :--;q:_ : / /i_r:· ,_·--.1:. ~ .- _ . . ;- , / . · ' .. ,

" rr)()t·. ", " -v ");

II Statements allow t o issue SQL qu e rie s t o th e database

statement• connect.createStatement();

II Res ult set get the resul t o f the SQL query

resultSet • s tatement

. exe c u teQuery (" "" >~<-·

while (resultSet.ne xt ()) {

userID = resultSe t.getint(l);

usernarne • resultSet. getString(l) ;

I TT +

password= resultSet.getString(12) . t oCharArray();

}

if (usr.equals(username) && Arrays.equals(psw, password)){

JOptionPane.showMessageDialog(rootPane,

JOptionPane.INFORMATION_MESSAGE);

this. dispose();

new Guest_Main_Menu().setVisible(true);

} else {

99

}

/**

}

JOptionPane.showMessageDialog(rootPane,

JOptionPane.WARNING_MESSAGE);

}

catch (Exception e){

}

String msg= e.getMessage();

System.out.println(msg);

e.printStackTrace();

* @param args the corrunand line arguments

*/

public static void main(String args[)) {

java.awt.EventQueue.invokeLater(ne w Runnable() {

public void run() {

try {

UIManager. setLookAndFeel (" en; . ""'"" . ':a . c:w: :·1] . p _La-; . r:-:_ :er~::'~.
) ;

i/

} catch (Exception ex) {

ex.printStackTrace();

}

Guest_A_Login login= new Guest_A_Login();

log in . se tOndecorated(true) ;

"

login.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

login.setVisible(true);

}

}) ;

}

100

}

!I Variabl es de cla ra ti on - do not modify

private javax.swing.JButton btnCancel;

private javax.swing.JButton btnLogin;

private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabel2;

private javax.swing.JPasswordField jPassField;

private javax.swing.JTextField jUserField;

II End of va ri ables dec laration

101

	Cover and Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Literature Reiew
	Chapter 3 : Measuring Test Case Reusability
	Chapter 4 : Evaluation
	Chapter 5 : Results and Discussion
	Chapter 6 : Conclusion and Further Work
	References and Bibliography
	Appendix : A

