

Experimental Deployment of a Web Server
over the Ipv6 Backbone

by
Mr. James Clark Baldwin

A Final Report for the Six-Credit Course
CS6998-CS6999 System Development Project

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Computer Information Systems

Assumption University

March 2004

Project Title Experimental Deployment of a Web Server over the IPv6 Backbone

Name James Clark Baldwin

Project Advisor Dr. Aran Namphol

Academic Year March2004

The Graduate School of Assumption University has approved this final report of the six
credit course, CS6998-CS6999 System Development Project, submitted in partial
fulfillment of the requirements for the degree of Master of Science in Computer
Information Systems.

Approval Committee:

Advisor

(Air Marshal Dr. Chulit Meesajjee)
Dean and Co-advisor

(Prof.Dr. Srisakdi Charmonman)
Chairman

(Asst.Prof.Dr. Vi chit A vatchanakom)
Member

(Assoc.Prof. Somchai Thayamyong)
CHE Representative

March 2004

ABSTRACT

This project report is a two-pronged effort. On the one hand, it details the problems

of the 1Pv4 Internet that led to the decision to revise the Internet protocol and the solutions

that are instantiated into 1Pv6. On the other hand, it details an effort to actually implement

a web server over the 1Pv6 test backbone. As such, it represents sort of a hybrid 'mini

thesis' rather than a traditional system development project.

The most extensive section of the report is an extended literature review structured

as a detailed comparative analysis of the shortcomings of the 1Pv4 protocol and the

solutions that were devised in IPv6. Topics include IP addressing, headers, extension

headers as the version 6 of the Internet Control Message Protocol, Flows and Multicasting,

Routing and Autoconfiguration.

This is followed by a chapter dealing with the IETF strategies for the transition from

1Pv4 to 1Pv6. Various tunneling mechanisms are described, as is the experimental 1Pv6

backbone called the 6Bone. Strategies for accessing the 1Pv6 backbone are presented.

The last section reports on an effort to establish connectivity through the 1Pv6

network, and, as a proof of concept, to serve HTTP clients through it. Various software

solutions are explored, feasibility and cost analyses performed and a candidate matrix

constructed. A system based on GNU Linux and the Apache web server was selected.

Details of the construction of the working system conclude the report.

ACKNOWLEDGEMENTS

Exhaustive acknowledgements always carry the danger of offending some valued

contributor to one's efforts through inadvertent omission. It therefore seems prudent to

avoid mentioning anyone by name, especially since this writer has such a long list of valued

mentors, teachers and friends who have contributed in so many ways to this effort.

There are a few people, however, who were so central to the production of this work

that it would seem downright churlish not to mention them.

Dr. Aran Namphol, my advisor in this project, taught the first class I attended at

Assumption University, the last class I attended and a large number of others in between.

He has been a marvelous teacher, a skillful advisor and a treasured friend. I thank him

from the bottom of my heart.

The Dean of the Graduate School of Computer Information Systems, Dr. Chulit

Meesajjee also deserves special mention. Far from the stereotype of the cold and distant

Dean, Dr. Chulit has blessed me with countless warm and fruitful hours in his office and in

his classroom. I am deeply grateful for his help, his advice and his friendship.

Domestic happiness obliges me to acknowledge the priceless (and often thankless)

role of my wife, Taneeya Runcharoen. She has been an unfailing fountain of support in all

things. I could not have done this without her.

To all my other teachers and friends, I am deeply grateful. You have all contributed

to me in ways that I shall always treasure. Thank you.

ll

St. .. G i.. ~ I' L.' ~!-aur..2 s mrary~ " .. u

TABLE OF CONTENTS

Chapter

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OFT ABLES

I. INTRODUCTION

I. I Background of the Project

1.2 Objectives of the Project

1.3 Scope of the Project

1.4 Deliverables

II. IPv4 PROBLEMS AND IPv6 SOLUTIONS

2.1 Overview

2.2 The Address Space

2.2.l IPv4 Addresses

2.2.2 Stopgap Measures

2.2.3 IPv6 Address Size

2.2.4 Typographical Expression of IPv6 Addresses

2.2.5 Categories of IPv6 Addresses

2.2.6 Address Space Assignment

2.2.7 Special Addresses

2.2.8 Unicast Addresses

2.2.9 Anycast Addresses

2.2. l 0 Multicast Addresses

111

Page

II

vii

IX

2

3

4

6

6

7

7

9

10

11

13

14

15

16

19

20

Chapter Page

2.3 The IP Header 22

2.3. l The 1Pv4 Header 22

2.3.2 The IPv6 Header 26

2.3.3 1Pv6 Extension Headers 32

2.4 ICMPv6 and Other Protocols 38

2.4.1 The Impact ofIPv6 on Other Protocols 38

2.4.2 ICMPv6 Overview 39

2.4.3 ICMPv6 Error Reporting Messages 39

2.4.4 ICMPv6 Query Messages 42

2.5 Multicasting and Flows in IPv6 47

2.5.1 1Pv6 Multicasting 47

2.5.2 Multicast Routing in IPv6 48

2.5.3 Multimedia and Flows 48

2.5.4 RSVP- The Resource Reservation Protocol 51

2.6 Routing in 1Pv6 52

2.6.1 Internal Routing Protocols 53

2.6.2 Exterior Routing Protocols 56

2.7 Autoconfiguration 58

2.7.1 Link Local Addresses 59

2.7.2 Stateless Autoconfiguration 59

2.7.3 Stateful Autoconfiguration 61

2.7.4 Site Renumbering 63

2.7.5 Address Resolution 64

2.7.5 Black Hole Detection 64

IV

Chapter Page

III. THE TRANSITION STRATEGY FOR IPv6 66

3.1 Overview 66

3.2 Dual Stacks 68

3.3 Tunneling 70

3.3.1 Automatic Tunneling 70

3.3.2 Configured Tunneling 71

3.4 Header Translation 73

3.5 The 6Bone 74

3.6 The Tunnel Setup Protocol and Freenet6 77

IV. THE IPv6 WEB SERVER PROJECT 79

4.1 Requirements Analysis 79

4.2 The Existing System 80

4.3 Platform and Software Selection for the Proposed System 82

4.3.1 Hardware for the Proposed System 82

4.3.2 Candidate Operating Systems for the Proposed System 82

4.3.3 Available IPv6 Protocol Stacks 84

4.3.4 HTTP Server Software 85

4.3.5 Candidate System Feasibility Analysis 86

4.4 Design of the Proposed System 92

4.5 Implementation of the System 95

4.5.1 Software Installation on the Server 95

4.5.2 Software Installation on the Client 97

4.6 Testing the System 100

4.6.1 Testing the System on an Ethernet LAN 100

v

Chapter

4.6.2 Testing the System on the 6Bone IPv6 Backbone

v. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5 .2 Recommendations

APPENDIX A

APPENDIX B

LOCATING THE SOFTWARE PACKAGES

IP PACKET HEADER DUMPS

B. l IPv4 Ping Headers

B.2 IPv6 Ping Headers

BIBLIOGRAPHY

VI

Page

107

114

114

115

117

118

118

119

120

LIST OF FIGURES

Figure Page

2.1 1Pv6 Hierarchical Global Address Structure 18

2.2 1Pv6 Link-local Address Structure 18

2.3 1Pv6 Site-local Address Structure 19

2.4 1Pv6 Multicast Address Structure 20

2.5 The 1Pv4 Header 22

2.6 The 1Pv6 Header 26

2.7 Format of a Source Routing Extension Header 34

2.8 General Format of ICMPv6 Messages 39

2.9 Format of Destination Unreachable Messages 40

2.10 Format of Packet Too Big Messages 41

2.11 Format of Redirection Messages 42

2.12 Format of Echo Request and Reply Messages 43

2.13 Format of Router Solicitation Messages 43

2.14 Format of Router Advertisement Messages 44

2.15 Format of Neighbor Solicitation Messages 45

2.16 Format of Group Membership Query Messages 46

3.1 Dual Stack Schematic 69

3.2 Automatic Tunneling 71

3.3 Configured Tunneling 72

3.4 Header Translation 73

3.5 The 6Bone Backbone at Present 75

4.1 Architecture of the Proposed System 93

Vil

Figure Page

4.2 Server Interface Configuration 101

4.3 Client Interface Configuration 101

4.4 Connectivity Test from Client to Server 102

4.5 Aliases in the etc/hosts File 103

4.6 Ping with Aliased IPv6 Address 104

4.7 Apache Test Page for the Address ipv6-localhost 105

4.8 Apache Test Page for the Address [::1] 106

4.9 Apache Test Page over the Ethernet Network 107

4.10 Initial Freenet6 Connection 108

4.11 The sitl Interface Added by Freenet6 109

4.12 Result of Freenet6 Configuration during Test Run 110

4.13 First Frame of the KAME Animation 111

4.14 Second Frame of the KAME Animation 111

4.15 Traceroute over IPv6 112

4.16 1Pv6 Web Page Served to a Global IPv6 Address 113

viii

LIST OF TABLES

Table Page

2.1 Estimated Network Address Populations per Address Size 11

2.2 Type Prefixes for IPv6 Addresses 15

2.3 Interpretation of Scope Values in Multicast Addresses 21

2.4 Priorities for congestion controlled traffic 27

2.5 Next Header Codes 29

4.1 Computer Hardware Specifications for the Existing System 80

4.2 Operating System Configuration of the Current System 81

4.3 Candidate Matrix for the Proposed System 87

4.4 Projected Costs for the Candidate Systems 88

4.5 Feasibility Matrix for the Candidate Systems 90

A.1 URL Addresses for Software Used in the Project 117

A.2 URL Addresses for Related Organizations 117

IX

I. INTRODUCTION

1.1 Background of the Project

The Internet Protocol version 4 (IPv4) became a Standard in 1981 after years of

development dating back to 1969. It has proven to be a very successful protocol, robust

and quite scalable, and it is, of course, the basis of the Internet as we know it.

By the early 1990s, however, the explosion in the size of the Internet began to

worry network engineers because the enormity of what had come to pass far surpassed

anything envisioned by the original protocol designers. Specifically, there was a fear of

the exhaustion of the Internet address space, although an equally pressing concern was

the overload on routing tables due to the relatively inefficient hierarchy of the class

based addressing system. While trying to solve these specific problems, a number of

other less critical issues were also addressed as well, in an effort to take advantage of

the intervening years of experience with internetworking.

After a long and contentious period of discussion, a consensus was reached and

the Internet Protocol version 6 (IPv6) became a standard in December of 1995, although

minor adjustments to the protocol continue to the present. During the last eight years,

great progress has been made towards the implementation of 1Pv6 and related protocols

on numerous platforms, and it seems certain that a large-scale transition to the new

standard is reasonably imminent.

This transition is certain to be a topic of widespread interest and not a little

controversy over the coming years. This project aims to explore the justification for the

potentially disruptive move to a new technology, the strategies for implementation of

this transition and the down-to-earth realities of setting up a system that speaks IPv6 to

the world. As a platform for investigating the last of these topics, this project proposes

1

to develop an experimental system capable of providing HTTP services in the new

environment.

1.2 Objectives of the Project

The objectives of this project are twofold: to examine the nature of the next

generation Internet Protocol and the rationales for its adoption, and to explore the

problems and concerns with its implementation.

This project was conceived as a hybrid (rather than traditional) systems

development project. It is hybrid in the sense that the literature review is extended to

form a kind of 'mini-thesis' that explains the problems with IPv4 and examines how

IPv6 was designed to address these problems. In this section of the report, specific

attention is paid to changes in ICMPv6 and other affected protocols, measures to

provide support for efficient multi-media streaming and mechanisms for network auto

configuration, in addition to the core concerns over the address space and routing

problems. This entails a careful comparative analysis of the two protocols.

The initial section concludes with a look at the strategies developed by the

Internet Engineering Task Force (IETF) for deployment of the new protocol, which

serves as an introduction to the actual system development effort.

The objective of the latter portion of the project is to evaluate several platforms

for an experimental deployment of an HTTP server over an IPv6 network. As this is

experimental in nature, the evaluation is based more on the feasibility of technical

implementation than on the prospects of profitability for an organization, and to this

extent, it differs from the traditional systems development project. This goal led to a

two-stage effort: the first to serve web pages over a local area network running on the

new protocol, and the second to provide HTTP services over the experimental IPv6

2

backbone (the 6Bone). Therefore, the objectives include the gathering and compiling

the following software:

(1) An appropriate Operating System

(2) An IP stack for that Operating System

(3) Various utilities for implementation and testing

(4) Software for tunneling through PPP and the IPv4 Internet, and

(5) IPv6 capable HTTP server software.

(6) An IPv6 enabled web browser

The overriding goal is to assess the hands-on concerns of an actual

implementation of a web server in the IPv6 environment and to deliver a working

system.

1.3 Scope of the Project

The scope of the first section of the project includes the IPv4 problem set as

conceived by the IETF engineers and the IPv6 solution set that they arrived at to serve

as the consensus standard as published in the final specification RFC (Request for

Comments). (Deering and Hinden 1995) Scope also includes a discussion of

transitional strategies for implementation of the new standard. Alternative solution-set

proposals are mentioned in passing, but a detailed discussion of the politics and

technical considerations of all the alternative solutions is explicitly beyond the scope of

this project.

In the latter section of the project, scope includes a feasibility analysis, which

explores the level of maturity and the degree of availability of the following platforms:

(1) Free BSD using the KAME project IP stack

(2) GNU/Linux using the 2.4.20 kernel stack

(3) GNU/Linux using the USAGI project IP stack

3

(4) Microsoft Windows 2003 Server using the available development IP stack

A cost analysis is also conducted to aid in the construction of a candidate matrix, but

a full business cost/benefit analysis is excluded from scope due to the non-commercial

nature of the project. Candidate selection is discussed, though other system components

such as server software and performance measurement tools are specific to the system

selected, and so are not analyzed formally.

The scope of this project includes the gathering, compilation and integration of the

selected system components, and a demonstration that the system is working using the

Ping6, Traceroute6 and Tcpdump utilities. Finally, project success is defined by

serving web pages over the IPv6 network. However, sophisticated performance

measurement of the network and the HTTP server are beyond the scope of this project.

Likewise, security issues will be discussed en passant, but this project is not about

security and no attempt will be made to deploy security in the implementation.

1.4 Deliverables

The first part of this project delivers a detailed analysis of IPv4 problems, IPv6

solutions to those problems and the deployment strategy of the IETF. This analysis

includes discussions of:

(1) Addressing

(2) Headers

(3) ICMPv6 and Other Protocols

(4) Multicasting and Flows

(5) Routing

(6) Autoconfiguration

(7) Strategies for the transition from IPv4 to IPv6

The second portion of the project will provide the following deliverables:

4

(1) A discussion of platform and software selection including a feasibility analysis, a

cost analysis, a candidate system matrix and a discussion of the selection.

(2) A description of gathering, compiling, installing and implementing the required

software.

(3) Reports on testing the system, both across a LAN and over the 6Bone network.

(4) A Report on testing the web server through an independent host

(5) Conclusions and recommendations.

5

II. 1Pv4 PROBLEMS AND 1Pv6 SOLUTIONS

2.1 Overview

IPv4 was (and still is) an excellent protocol, which succeeded beyond anyone's

expectations and proved itself simple and scalable. In fact, it was so successful that

Christian Huitema notes that it was a victim of its own success (Huitema 1996). The

worldwide Internet became such an explosive phenomenon that it introduced problems

of scale, especially in the address space and routing tables. These were the most

pressing issues that gave rise to the next generation Internet Protocol, but Huitema

points out that "years of experience [with IPv4] brought lessons ... IPv6 is built on this

additional knowledge. It is not a simple derivative of IPv4, but a definitive

improvement" (Huitema 1996). The overriding goal was to create a new Internet

protocol that is simpler to program and more efficient.

According to Feit, version 6 of the Internet protocol has changed in the following

major areas:

(1) It introduces 128-bit addressing, which may be hierarchically structured to make

address allocation and routing simpler and more efficient.

(2) It simplifies the IP header while providing for optional extension headers, which

makes for flexibility and extensibility as new networking functions are added in

the future.

(3) It supports authentication, confidentiality and data integrity at the IP level.

It introduces the concept of 'flows' which can be used to support multimedia and

real-time transmission requirements.

(4) It makes it easy to encapsulate other protocols and provides a mechanism for

congestion control when carrying these foreign protocols.

6

(5) It provides a new method for automatic address self-configuration and a built-in

test for address uniqueness.

(6) It improves router discovery and the detection of router failure or unreachable

neighbors on a link. (Feit 1997)

There have also been numerous mmor adjustments of interest, such as the

redefinition of the Time-to-Live (TTL) field as a straightforward hop count and the

elimination of hop-by-hop fragmentation and the header checksum. Discussion of these

streamlined mechanisms will be found in section 2.3.2, which discusses the IPv6

header. Security mechanisms are discussed in 2.3.3 since they are implemented using

extension headers.

In passing, one may wonder why this new protocol is numbered as version 6

rather than version 5. The version 5 designation was reserved for the Internet Stream

Protocol (STP), which can be examined in RFC 1819, although it never actually came

into widespread use.

In this section, we examine the problems that arose with IPv4 as the Internet

expanded exponentially and the solutions that the IETF ultimately decided on in

response to those problems. The rationales for these decisions are discussed, as are their

implications.

2.2 The Address Space

2.2.1 IPv4 Addresses

IPv4 uses 32 bits to encode its addressing scheme. In theory, that number of bits

is sufficient to encode some four billion unique Internet addresses, but by the early

1990s, those addresses began to seem scarce even though nothing like four billion

computers exist in the world today.

7

This discrepancy came about because of a flaw m the design of the IPv4

addressing scheme, specifically class-based addressing. To briefly review the IPv4

addressing system, recall that IP addresses are composed of two parts, the network

address and the host address. IP classes are defined by the number of bits allotted to the

network address as divided on 8-bit boundaries. Thus, we have the following classes:

(1) Class A addresses, where the network address is eight bits, yielding 128 networks,

each with about 16 million subnet addresses.

(2) Class B addresses, where the network address is 16 bits, yielding some 16,000

potential networks, each of which can contain about the same number of subnet

addresses.

(3) Class C addresses, where the network address is 24 bits, yielding around 2,000,000

available networks, but each of these networks is limited to 128 subnet addresses.

(4) The remaining classes take their distinguishing bits from the last eight bits available

and are used for multicasting (Class D) or reserved for research purposes (Class E).

While this seemed like an ocean of addresses 20 years ago, the potential problem is

obvious now.

There are simply too many addresses locked up in class A and class B, which

became essentially unavailable a decade ago. Moreover, class C networks don't offer

enough interface addresses for many organizational network needs. Organizations that

got their class A addresses early are sitting on a wealth of addresses that they could

never possibly use, and in all likelihood, most organizations that have class B addresses

would be hard pressed to put them all to work. With the possible exception of large

ISPs, which distribute their address pool via the Dynamic Host Configuration Protocol

(DHCP), those unused addresses are lost forever.

2.2.2 Stopgap Measures

8

In response to this situation, Classless Inter-Domain Routing (CIDR) was

introduced, which allows super-netting and sub-netting on boundaries other than 8 bits,

permitting much greater flexibility in network address assignment. Elements of the

CIDR solution, such as the slash notation for subnet masks, are employed in IPv6.

Another interesting stopgap solution is Network Address Translation (NAT).

With NAT, an internal network may be allocated any private addresses that the

administrator desires (although for safety reasons it is desirable to use reserved

addresses which are not routable, and so can't 'leak' out to the Internet). All outside

communication is handled through a gateway server, which has a valid global network

address on its external interface. The server keeps track of the local clients' external

communication traffic by assigning high port numbers for external TCP connections.

Needless to say, the disadvantage here is the amount of overhead on the server and the

lack of flexibility, since a server device cannot sit behind a NAT server.

The Dynamic Host Configuration Protocol (DHCP) mentioned above is yet

another stopgap measure that allows more efficient utilization of a limited pool of

available global IP addresses by allowing addresses to be assigned by a server at boot

time or as necessary. DHCP will continue in the IPv6 autoconfiguration mechanism.

For all the ingenuity of these methods, the exponential nature of the Internet

growth curve warned of its pending strangulation from a lack of addresses. Huitema,

who was deeply involved with the IETF discussions at that time, made an effort to

quantify the time span until 'doomsday' when no further Internet growth would be

possible. By plotting the estimated number of addresses allocated every month on a log

scale, he found that the curve crosses the theoretical maximum of four billion

somewhere between 2005 and 2015. (Huitema 1996) However, it is notable that on the

one hand, this quantification does not yet take into account the relative inefficiency of

9

address allocation procedures discussed above, nor does it take into account the

ameliorative effects of remedies such as CIDR and NAT on the other. A more nuanced

quantification was developed in an effort to determine a desirable address size, and this

will be discussed in the next section.

2.2.3 IPv6 Address Size

The IPv6 Protocol increases the address space to 128 bits or 16 bytes (octets).

Addresses with 128 bits will theoretically allow for 2128 IP addresses. The decimal

equivalent is 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456, a number

so large that there is no word for it in any human language. To put this in perspective,

this adds up to 6.65 x 1023 network addresses per square meter of the earth's surface,

which is of the same order of magnitude as Avogadro's number (6.02 x 1023
). To make

a contribution to the ever-growing body of anecdotes about how huge this number is, a

back-of-the-envelope calculation indicates that this will allow allocation of an interface

address for every molecule of a film of water almost 0 .19 millimeters deep covering the

entire earth. That should hold us for a while.

Such a huge address space may seem like overkill. In an illuminating discussion

of the controversy that this choice has engendered, Huitema notes that a considerable

number of network engineers who were involved thought that 64 bits would be

sufficient. (Huitema 1996) The arguments for the enormously larger address space

were: first that the allocation of network addresses is far from perfectly efficient, and

also that a vast number of embedded systems will be in need of network addresses in the

not-too-distant future. When every mobile phone, kitchen appliance, household control

device and automobile part in the world requires its own set of interface addresses, the

demand for addresses will very likely be of this order of magnitude.

10

2548
In order to address the issue of efficiency quantitatively, Huitema formulated a

logarithmic efficiency ratio called the H-Ratio, which takes into account the hierarchical

dependencies of network addresses. (Huitema 1994)

H = log(numberof addresses)
available bits

Because people tend to use powers of 10 when discussing large numbers, the

value of H is expressed in base 10 logarithms, and thus ranges in value from zero to a

theoretical maximum of 0.30103 (the value oflog10 (2)). RFC 1715 (Huitema 1994)

examines a number of existing example networks and asserts that reasonable values lie

between 0.14 and 0.26. Thus we can estimate the population of network addresses for a

given address size as given in Table 2.1.

Table 2.1. Estimated Network Address Populations per Address Size.

Address Space Pessimistic (H = 0.14) Optimistic (H = 0.26))

32 bits 3 x 104 2 x 101.S

64 bits 9 x 1015 4 x 1016

80 bits 1.6 x 1011 2.6 x 1027

128 bits 8 x 1017 2 x 103
j

2.2.4 Typographical Expression ofIPv6 Addresses

Huitema notes that the "hyperbolic estimate" of the number of Internet hosts over

the next 30 years is 1.0 x 1015
, so an address size of 128 bits will serve even ifthe most

pessimistic efficiency is achieved, assuring us that the address space problem will not

recur in the remotely conceivable future. (Huitema 1996) As we shall discuss later,

other alterations in the 1Pv6 header have resulted in efficiencies such that the header

11

size is not greatly increased despite the swollen address fields. Consider that the

minimum Maximum Transfer Unit (MTU) in IPv4 is 576 octets and the IPv6 MTU is

1280 octets, while the header length in IPv4 is 20 octets (as a minimum, it can increase

to 60 octets with 1Pv4 options) and in 1Pv6 it is 48 octets (fixed). This represents 3.4 %

ofMTU in IPv4 and 3.8 % ofMTU in IPv6. Thus, the header overhead is almost equal.

Oddly enough, there were experts who argued for even larger address fields (up to

255 octets) and that these field lengths should be variable. Their reasoning is that the

Internet becomes larger and more complex, additional layers of hierarchy will be

required, using up even more addressing bits. Therefore, 128-bit addressing represents

a true compromise in terms of length. As to variable length addressing, Huitema notes

that the allocation and management of memory for variable length addresses would

result in software that is larger, slower and more error prone. Furthermore, he adds,

"The little experience we have had with the OSI suite and the NSAP [Network Service

Access Point] addresses showed us that managers tend to use a fixed-length format even

if the protocol allowed variable length" (Huitema 1996).

Initially, only about 15% of the available address space has been allocated for

assignment, leaving the remaining 85% for future growth. The structure of the address

space will be discussed in a later section.

While IPv4 addresses are typographically represented with the familiar 'dotted

quad' notation, these very long numbers are expressed as eight groups of four

hexadecimal digits each separated by colons. Each group is thus composed of two

bytes. This results in addresses of the form:

FDEC:BA98:7654:3210:0BDF:OOOF:2922:FFFF.

12

Naturally, this is quite a mouthful, so abbreviations can be used if any of the

groups have leading zeros. Trailing zeros do not qualify. The address above thus

becomes FDEC:BA98:7654:321 O:BDF:F:2922:FFFF.

Initially, most of the groups of an address will consist entirely of zeros, allowing a

further compaction of the expression. For example, FDEC:O:O:O:O:BBFF:O:FFFF

becomes FDEC::BBFF:O:FFF. Loopback addresses are an extreme example of this,

taking the form : : 1. It is notable that only one contiguous series of zeros can be

abbreviated in this fashion without creating a fatal ambiguity.

The familiar CIDR slash notation, is also used in IPv6 to indicate the subnet

number, e.g. FDED::BBFF:O:FFFF/60.

This choice of typographical conventions does much to alleviate the cumbersome

nature of working with such large numbers, though there is bound to be a considerable

amount of complaining as people become familiar with the new system. To answer

such complaints, one need only to point to RFC 1924 (Eltz 1996), which suggests that

version 6 addresses be represented as base 85 numbers represented by 85 of the 96

printable ASCII characters. This completely official RFC is dated April 1, 1996, which

shows that Internet Engineers do have a sense of humor.

2.2.5 Categories of IPv6 Addresses

Like IPv4, IPv6 addresses can be split into network and host parts using subnet

masks. IPv4 has shown that it is sometimes desirable for more than one IP address to

be assigned to an interface, each for a different purpose (e.g. aliases or multi-cast). To

remain extensible in the future, IPv6 goes further in allowing more than one IPv6

address to be assigned to an interface. The RFCs do not define a limit to the number of

addresses that an interface may have, although implementations of the IPv6 stack may

do so to prevent Denial of Service attacks.

13

Given this large number of bits for addresses, 1Pv6 defines address types based on

sets of leading bits, an approach that will hopefully avoid the situation with 1Pv4 classes

A, B, C andD.

The new protocol defines three main types of addresses: unicast, anycast and

multicast. The concepts of unicast and multicast are familiar from 1Pv4 and other

protocols, but anycast is a new feature in 1Pv6. Basically, it defines a group of

computers whose addresses have the same prefix. A packet sent to an anycast address

must be delivered to exactly one (and only one) member of the group. This member

will be the one that is closest or most easily accessible to the sender as determined by

the routing table distance information.

Broadcast addresses are noticeably absent from 1Pv6, having been subsumed into

the multicast address architecture.

2.2.6 Address Space Assignment

1Pv6 addresses are divided into two segments, with the first segment being a

variable-length type prefix. This type prefix contains a code that is designed to assure

that no code is identical to the first part of any other code. Table 2.2 on the next page

lists the type prefixes according to RFC 2373 (Hinden and Deering 1998).

It must be stressed that this table is the correct one. During the course of this

research, it was discovered that the tables given by such authorities as Forouzan

(Forouzan 2003), Feit (Feit 1997) and Black (Black 1998) are in error. Calculated

comparisons with 1Pv6 addresses that have actually been assigned demonstrate that

engineers are following the RFCs rather than the texts and reference books. The

mistaken tables seem to have been borrowed from Huitema (Huitema 1996), who may

be forgiven as he wrote before the final standard had been published.

14

The most recent RFC on this topic, RFC 3513 (Hinden and Deering 2003), omits

the set of addresses for IPX protocol networks, lending support to Gai's prediction that

"IPv6 will be the only layer 3 protocol of the new millennium" (Gai 1998). However,

since one of the innovative design objectives for the new protocol was to carry traffic

from any of the network layer protocols, the address allocations for IPX and the OSI

Network Service Access Point (NSAP) addresses are included in this table.

Table 2.2. Type Prefixes for IPv6 Addresses.

Allocation Prefix (binary) Fraction of Address Space

Reserved 0000 0000 1/256
Unassigned 0000 0001 1/256
Reserved for NSAP 0000 001 11128
Reserved for IPX 0000 010 11128
Unassigned 0000 011 1/128
Unassigned 0000 1 1/32
Unassigned 0001 1116
Aggregatable Global 001 1/8
Unicast Addresses
Unassigned 010 1/8
Unassigned 011 1/8
Unassigned 100 1/8
Unassigned 101 1/8
Unassigned 110 1/8
Unassigned 1110 1116
Unassigned 1111 0 1/32
Unassigned 111110 1/64
Unassigned 1111 110 11128
Unassigned 111111100 1/512
Link-Local Unicast 1111111010 1/1024
Site-Local Unicast 1111111011 1/1024
Multicast Addresses 1111 1111 1/256

2.2. 7 Special Addresses

There exists a set of un-prefixed addresses (i.e. all zeros in the prefix space),

which serve purposes such as the loop back or local host address (: : 1) that is used by a

15

node to send an 1Pv6 packet to itself. It may never be assigned to any physical interface

and is treated as having link-local scope. It may be thought of as the link-local unicast

address of a virtual interface.

The unspecified host identification (:: , the all zero address) is mostly seen in

socket binding (to any 1Pv6 address) or in routing tables. It is used at initialization time

as the source address for address discovery, which relies on ICMPv6 rather than the old

ARP protocol. Note that this unspecified host address must never be used as a

destination address.

The other use for un-prefixed addresses is in embedding 1Pv4 addresses in order

to smooth the deployment of the new protocol by allowing it to exist side-by-side with

legacy networks. There are two kinds of imbedded 1Pv4 address prefixes. The first is

the 1Pv4-mapped 1Pv6 address, which has a special 96 bit prefix length of the form

O:O:O:O:O:FFFF:a.b.c.d/96, where a.b.c.d represents the 1Pv4 address. This is used for

carrying traffic from systems that do not support IPv6 through 1Pv6 networks. The

reader may refer to section 3.3 for a discussion of tunneling.

The other kind of imbedded 1Pv4 address is the 1Pv4-compatible IPv6 address,

which takes the form O:O:O:O:O:O:a.b.c.d/96. This was designed for tunneling through

1Pv4 networks (Gai 1998), but is being replaced by a newer mechanism called 6to4

tunneling, which is hierarchically prefixed and will be discussed below in section 3.3.

Unlike these special case addresses, unicast, multicast and anycast addresses all

have hierarchically organized prefixes.

2.2.8 Unicast Addresses

Unicast addresses include several categories distinguished according to their

scope: global aggregatable addresses, site-local addresses and link-local addresses.

Earlier RFCs had reserved a section of the address space for a geographical hierarchy,

16

but this is absent from more recent documents. One surmises that provider-based

hierarchies seem more practical at this transitional stage.

The type of address that is of the most immediate interest to many is the

aggregatable global unicast address type, which may also be thought of as provider

based addresses. After the first three-bit type identifier code, five bits are allocated to a

registry identifier code. At present, three registry centers have been defined.

INTERNIC, the center for North America, has been assigned code 11000, while

RIPNIC, the European registry, has code 01000 and APIC, our Asia and Pacific registry

has code 10100. Thus the first bytes of provider-based addresses are, in our

hexadecimal representation, Ox38, Ox28, and Ox34 respectively. Addresses assigned

outside of this registry framework fall in the 2001 ::/16 range

The remaining 120 bits of a provider-based address contains a provider identifier

of 16 bits, a subscriber identifier of 24 bits, a subnet identifier of 32 bits, and a node

identifier of 48 bits. Internet service providers are expected to obtain the provider ID

from the registries and in turn assign subscriber IDs to their customers. The length of

the node identifier was chosen to coincide with the length of an Ethernet link address

and will likely be used in the future to contain the node physical address.

These identifiers provide us with an address hierarchy as follows:

(1) A provider prefix consisting of the type, registry, and provider identifiers.

(2) A subscriber prefix consisting of the provider prefix and the subscriber identifier.

(3) A subnet prefix consisting of the subscriber prefix and the subnet identifier.

In this hierarchy, each prefix defines a level of the hierarchy uniquely from type to

registry to provider to subscriber to subnet, with the node identifier uniquely defining

the host on the subnet.

17

3 bits 5 bits 16 bits 24 bits 32 bits 48 bits

001 I ~gistry I ~~ovider I Subscriber ID I Subnet ID I Node ID

Figure 2.1. IPv6 Hierarchical Global Address Structure.

There are two types of local-use unicast addresses defined. These are Link-Local

and Site-Local. The Link-Local is for use on a single link and the Site-Local is for use

in a single site.

Link-Local addresses are designed to be used for addressing on a single link for

purposes such as auto-address configuration, neighbor discovery, or when no routers are

present. Routers must not forward any packets with link-local source or destination

addresses to other links. The structure of a link-local address is shown in Figure 2.2.

IO bits 54 bits 64 bits

1111111010 I 000000000000000000 ... 0 I Interface ID

Figure 2.2. IPv6 Link-local Address Structure.

Site-Local addresses are designed for addressing within a site where a global

prefix is not needed. An example of a situation where this would prove useful would be

an organizational intranet. The format of a site-local address is shown in Figure 2.3.

18

St. Gabriel's Library, Au

10 bits 38 bits 16 bits 64 bits

1111111011 I 0000 00000000 ... 0 I ~;bnet I Interface ID

Figure 2.3. 1Pv6 Site-local Address Structure.

Once again, routers must not forward any packets with site-local source or

destination addresses outside of the site. In 1Pv4, site-local scope is implemented by

limiting the Time-to-Live hop count.

2.2.9 Anycast Addresses

Anycast addresses are one of the more interesting innovations in IPv6. Examples

of the uses of anycast addresses might be 'fuzzy routing' where all the routers at a

particular service provider, all the routers at the boundary of an autonomous system

(AS) or all the routers attached to a given LAN might share one anycast address.

An 1Pv6 anycast address is a unicast address that is assigned to more than one

interface (typically belonging to different hosts or routers), such that a packet sent to an

anycast address is routed to the nearest interface having that address, according to the

routing protocol measure of distance. Anycast addresses are created from the unicast

address space, using any of the unicast address formats. Anycast addresses are

therefore identical to unicast addresses in terms of their syntax. When a unicast address

is assigned to more than one interface, it becomes an anycast address. The nodes to

which the address is assigned must be configured to know that the address is an anycast

address.

Initially, only routers will be assigned anycast addresses, in addition to their

normal unicast address, of course. An anycast address may be included in a source

19

route, indicating that the destination node should use any router that has the same

anycast address. This allows for a flexible efficiency in locating the shortest path back

to the source.

2. 9 .10 Multicast Addresses

An IPv6 multicast address is an identifier for a group of nodes. A node may

belong to any number of multicast groups. Multicast addresses have the format shown

in Figure 2.4.

8 bits 4 bits 4 bits 112 bits

11111111 I Flag I Scope I Group ID

Figure 2.4. IPv6 Multicast Address Structure.

The hexadecimal number OxFF (all ones) in the byte at the beginning of the prefix

marks the address as a multicast address.

The first three flag bits are reserved. If the fourth is a one, it indicates a

permanently assigned ('well-known') multicast address, assigned by the IANA. If it is

a zero, it indicates a non-permanently-assigned ('transient') multicast address.

Scope is a 4-bit multicast scope value used to limit the scope of the multicast

group. The values are shown in Table 2.3.

20

Table 2.3. Interpretation of Scope Values in Multicast Addresses

Value Interpretation

0 reserved
1 node-local scope
2 link-local scope
3 (unassigned)
4 (unassigned)
5 site-local scope
6 (unassigned)
7 (unassigned)
8 organization-local scope
9 (unassigned)
A (unassigned)
B (unassigned)
c (unassigned)
D (unassigned)
E global scope
F reserved

As mentioned above, IPv6 does not rely on broadcasts for control functions such

as address resolution or booting, but rather migrates these to the multicast system. The

reasons for this have to do with the inefficiency of having every node on a network

process every broadcast packet. All broadcast packets must be opened and their TCP

headers examined, which represents a great deal of overhead. With multicasting, only

the IP address needs to be examined, and the packet is dropped without further

processing if the node is not configured for that multicast address. Another result of this

decision is that it will be far easier to provide IP support for non-broadcast multiple

access (NBMA) networks such as frame relay or A TM networks.

21

2.3 The IP Header

2.3 .1 The IPv4 Header

The structure of the IPv4 header is quite familiar, but it will be briefly presented

here in order to provide a framework for examining the changes brought about in the

IPv6 header. Figure 2.5 provides a graphical guide.

Version I Header Length I Service Type Total Length
Identification Flags I Fragment Offset
Time to Live I Protocol Header Checksum
Source Address
Destination Address
Options I Padding

Figure 2.5. The IPv4 Header.

The Version field is four bits wide and specifies the version of the IP protocol of

the packet. Header length is also four bits and defines the length of the header in terms

of the number of 4-byte words. It is needed because the length of the header is variable

between 20 and 60 bytes depending on how many Options fields are included.

Service Type, which has recently been changed to Differentiated Services by the

IETF, is eight bits wide. The different names imply different interpretations of the bits

in the field. With a Service Type field, the first three bits define precedence, which is

the priority of the datagram in the event of issues such as congestion. The next four bits

define the type of service requested by the datagram. In order of position, a set bit in

this field means minimize delay, maximize throughput, maximize reliability or

22

minimize cost. The final bit is not used. In practice, this field is not much used for

reasons that will be discussed in the next section.

Differentiated Services interprets the first six bits of the field as a codepoint whose

set of values will be assigned by the IETF, although these have not yet been finalized.

This new field is backward compatible with the Service Type field when the first three

bits of the field are zeros.

The next four fields may be grouped as Segmentation Control fields. They are

used by routers to handle the fragmentation of datagrams in the case that the size of the

datagram exceeds the Maximum Transmission Unit (MTU) of the next hop.

Total Length is a 16-bit field that defines the total length of the header plus the

payload of the datagram in bytes. The upper limit of this value is 65,535 (i 6
- 1). It is

necessary to determine whether fragmentation is necessary in the light of the MTU of a

next-hop link.

Identification is a 16-bit field that is also used in fragmentation. This field, along

with the source address, must uniquely identify a datagram as it leaves the source host.

If the datagram is fragmented in transit, the receiving node can use this to know which

fragments belong to which datagram during reassembly.

The flags are three bits that indicate whether a datagram may be fragmented and

whether there are more fragments to follow. If the second bit (often called the 'don't

fragment' bit) is set, the packet must not be fragmented. Should the MTU of the next

link be smaller than the value in the Total Length and this bit is set, the packet will be

dropped and an ICMP message will be sent to the source address. The last bit is set to

one if there are more fragments to follow. If this is the last or only fragment, it is set to

zero.

23

The Fragmentation Offset is a 13-bit field that indicates the relative position of a

fragment in the entire datagram. It represents the offset of the fragment in units of eight

bytes, which forces the fragmenting router to choose the size of each fragment so that

the first byte number is divisible by eight.

It is notable how much effort is tied up into fragmentation, effort that did not seem

entirely justifiable to the 1Pv6 designers, as will be discussed in the next section.

The 8-bit Time-to-Live field was originally intended to hold a time-stamp, which

would be decremented by the amount of time that the datagram spent in each router that

it visited. As such a scheme requires synchronized clocks and quite a great deal of

processing at each router, almost all implementations treat this field a simple hop count

to be decremented by one at each visited router. The purpose of the hop count is to

prevent routing loops in the case of routing table corruption. No one wants a packet

bouncing back and forth among a set of routers forever or perhaps popping up much

later to the confusion of the upper level protocols. It is also useful in limiting the

distance that a packet can travel, as when, for example, one wants to confine a packet to

a local network. This mechanism is used by the Traceroute utility to discover the path

traversed by packets.

The 8-bit protocol field specifies the upper level protocol to which the datagram

should be delivered upon receipt by the network layer. A datagram can encapsulate

data from a number of higher-level protocols, such as TCP, UDP at the transport layer

or ICMP, IGMP and OSPF at the network layer. This field simply tells IP which upper

level protocol to hand the datagram off to.

The Checksum field takes up 16 bits and contains a one's complement checksum

calculated on the header alone (not the entire packet) at the source. The reason for

calculating the checksum in this manner is that the higher level protocols have already

24

included a checksum on the encapsulated data and that the header changes at every

router, so that a checksum on only the header, not the entire datagram, needs to be

recomputed at each router. Here again, the IETF designers thought that this effort was

hard to justify.

The Source and Destination Address fields are, of course, 32 bits long. Their

purpose is self-explanatory. These fields mark the end of the fixed-size portion of the

1Pv4 header.

Options are used for testing and debugging and are not required in every

datagram. They have an internal structure consisting of a I-byte code field, a I-byte

length field, and a variable-sized data field. The 8-bit code field contains three sub

fields. The Copy field is a I-bit sub-field that controls the presence of the option in

fragmentation. A zero bit means that the option must be copied only to the first

fragment, while a set bit means it must be copied to all fragments. The Class field

contains two bits and defines the general purpose of the option. The value 00 means

that it is used for datagram control, and a value of I 0 indicates that it is used for

management and debugging. Other values are not defined. The 5-bit Number sub-field

defines the type of the option. Of the 32 possible values, only six types are in use.

These option types are:

(I) No operation - used as a filler between options

(2) End of option - used as padding at the end of an option

(3) Record route - used to record up to nine routers that handle the datagram

(4) Strict source route - used to predetermine the route for the datagram

(5) Loose source route - similar to strict source route, but other routers may be visited

(6) Time stamp - used to record the time of datagram processing by a router

25

Next, an 8-bit length sub-field defines the total length of the option. Finally, there

is a variable length data sub-field that contains the data required for a specific option.

These last two sub-fields are not present in all option types.

As will be discussed shortly, the IETF decided on an entirely different mechanism

to handle the functionality provided by the Options field.

2.3.2 The 1Pv6 Header

Three major simplifications were thought desirable in the design of the 1Pv6

header: assignment of a fixed format to all headers, removal of the Header Checksum

and removal of the hop-by-hop segmentation procedure. This results in the suppression

of six fields: the Header Length, the Type of Service, the Identification, the Flags, the

Fragment Offset and the Header Checksum. Three fields are renamed and some of

these are redefined slightly: the Length, the Protocol Type and the Time-to-Live fields.

Two new fields are added: Priority and Flow Label. Finally, the option mechanism is

completely revised. Figure 2.6 provides a graphical representation of the 1Pv6 header

structure.

Version I Priority I Flow Label
Payload Length I Next Header I Hop Limit
Source Address

Destination Address

Figure 2.6. The 1Pv6 Header.

26

It is immediately noticeable how much simpler the new header is, with only six

fields and two addresses compared to the ten fields, two addresses along with the

possibility of options in the version 4 header. In this section, the changes and the

reasoning underlying them is explored as the header fields are discussed.

The 4-bit version field has a value of 6 (binary 0110) for IPv6, but is otherwise

unchanged. The original plan was to run version 4 and version 6 on the same wire and

differentiate between them based on this field. It now seems more likely that the two

versions will be demultiplexed at the Media Access (MAC) layer, for example by

assigning a value of 86DD to the Ethernet content type field rather than the IPv4 value

of8000.

The 4-bit priority field defines the priority of the packet with respect to

congestion-controlled traffic, where traffic congestion may increase the amount of time

that a packet spends in a router or even cause that packet to be dropped. In the version 4

header, this functionality is handled by three bits in the Service Type (or Differentiated

Service) field. The rest of the Service Type functionality has been adapted into the far

more comprehensive flow mechanism. Table 2.4 describes the Priorities.

Table 2.4. Priorities for congestion-controlled traffic.

Priority Interpretation

0 No specific traffic
1 Background data
2 Unattended data traffic
3 Reserved
4 Attended bulk data traffic
5 Reserved
6 Interactive traffic
7 Control traffic

27

Priorities can also be used for non-congestion controlled traffic when that traffic

expects minimum delay. For example, real-time audio and video is not the sort of

traffic that can adapt itself to congestion. If packets are dropped, retransmission is not

possible. A standard set of assignments for this kind of data has not yet been defined,

but a scale of 8 to 15 can be used depending on the amount of redundancy that the data

contains.

The Flow Label field is 24 bits long and provides for special handling for a

particular flow of data. Flows will be discussed at length in section 2.5.

The IPv4 Header Length field has been eliminated entirely because all headers are

of uniform size. The Options field, which is the cause of the variability in IPv4 header

length, has been replaced by a system of cascading headers, with extension headers

being added to the packet between the main header and the payload.

The Total Length field in the old header has been replaced by a Payload Length

field that is 16 bits wide. There is an important difference between the two in that the

Total Length field contained the length of the header plus the length of the payload,

while the Payload Length field, as its name implies, describes the length of the payload

alone. As a result of the size of this field, IPv6 payloads are limited to 64 kilobytes,

although provision has been made for 'jumbograms.' Large mainframes and

supercomputers on very high bandwidth networks often prefer to work with larger

packet sizes so that this provision has been made for them. A detailed description of

these jumbo payloads will be found in the discussion of extension headers in section

2.3.3.

1Pv6 takes a radically different approach to fragmentation than version 4 did, so

the Segmentation Control fields have been moved from the base header to an extension

header. Hop-by-hop fragmentation has been eliminated, with only end-to-end

28

fragmentation allowed. IPv6 routers always operate as if the 'don't fragment' bit were

set. The new protocol relies on MTU discovery, where the source host determines the

smallest MTU on the path to the destination before sending the packet or flow of

packets. If a source chooses not to determine or remember the path MTU, a payload

size of 536 octets may be chosen, as IPv6 requires a MTU of at least 576 octets of all

links. If a link cannot meet this constraint, it must provide a link layer fragmentation

mechanism. Details of path MTU discovery are available in RFC 119.

The Next Header field is eight bits wide and defines the header that follows the

base header in the packet. This field is somewhat analogous to the Protocol field of the

1Pv4 header. It is part of the mechanism to replace the IPv4 Options field with what

Huitema calls "a daisy chain of headers" (Huitema 1996). The next header is either one

of the optional extension headers used by IP or the header for an upper level protocol

such as TCP or UDP. Each extension header also contains this field, as will be seen in

the discussion of extension headers below. A list of the next header codes used in this

field and the next header type that they specify is given in Table 2.4. Note that the null

code (value= 59) specifies the termination of the chain of headers.

Table 2.5. Next Header Codes.

Code Next Header

0 Hop-by hop option

2 ICMP
6 TCP
17 UDP
43 Source Routing
44 Fragmentation
50 Encrypted security payload
51 Authentication
59 Null (No next header)
60 Destination option

29

Following the Next Header field is the 8-bit Hop Limit field. This field serves the

same purpose as the Time-to-Live field in the version 4 header. As was discussed

earlier, the original concept was to use a time value in this field and decrement it

according to the amount of time that the packet spent in routers or on the wire. It is not

surprising that this proved unfeasible due to the need for synchronous clocking and

processing at the router. As a result, the TTL field was more often implemented as a

hop count that was decremented by one at each router that it visited. Huitema refers to

the name change for this field as "truth in advertising." (Huitema 1996)

The purpose of a hop count is to prevent routing loops in the case of routing table

corruption. It is also useful in limiting the distance that a packet can travel, as when, for

example, one wants to confine a packet to a local network. With eight bits, the

maximum number of hops is 255, which seems very large. The somewhat dated

Routing Information Protocol (RIP) defines infinity as 15 hops, although some routes in

the modem Internet can require up to 32 hops. A hop count larger than eight bits was

thought to defeat the purpose of the hop count mechanism, but the use of a set hop limit

of255 provides a mechanism to prevent the spoofing of router messages by crackers.

The Source and Destination Address fields, both 128 bits long, are next. This

1Pv6 header is followed by any extension headers that may be present, and then by the

payload, which is, of course, a data segment :from an upper level protocol.

Note that the Header Checksum field has been entirely eliminated :from the

version 6 header in what Huitema describes as "a rather bold move" (Huitema 1996).

Other error detection mechanisms exist in the upper layers, notably in TCP, and in

lower layers, such as Ethernet or PPP, so the purpose of the header checksum is to catch

transmission errors that affect the header but might not be caught by media-level

30

mechanisms. In practice, however, this seems that this doesn't seem to occur on the

links, where the media-level checksums are quite effective, but rather within routers due

to defective memory boards or programming errors. Because each router must

recompute the header checksum when the Time-to-Live field changes, routers disguise

any errors they have made, and so the errors are, in fact, never detected.

The risk of corruption of the header can be analyzed as follows:

(1) Version field changes result in the packet being discarded

(2) Priority field changes result in the packet being routed with the wrong priority

(3) Flow Label field changes result in the packet being routed with the wrong priority

(4) Length field changes to a larger value result in the packet being discarded

(5) Length field changes to a smaller value would be detected by the TCP end-to-end

checksum

(6) Payload type changes result in correct delivery, but the packet will be rejected by

the destination.

(7) Hop count changes to a larger value are only a problem in the event of a routing

loop.

(8) Hop count changes to a smaller value may cause the packet to be discarded.

(9) Source address changes would be detected by the end-to-end checksum if the

source address was included in the pseudoheader.

(10) Destination address changes would normally result in an invalid address and the

dropping of the packet, but in the event of a mistaken delivery, the end-to-end

checksum would detect it. (Huitema 1996)

These errors only entail a serious risk in the event of systematic programming

error on an Internet router, which as we have seen is the type of error that routers are

guilty of hiding because they recompute the checksum at each hop. The IETF decided

31

that other management procedures would be more effective. Furthermore, removing the

header checksum allows routers to achieve better performance by eliminating the

overhead of checksum processing.

2.3.3 1Pv6 Extension Headers

The IPv4 Options field was seldom used in practice. The reason why this has

turned out to be the case is that router packet forwarding code is very highly optimized

to achieve the highest possible performance. The most frequently encountered types of

packets are given 'fast path' treatment to increase throughput. Packets with options

cannot take the fast path, and applications programmers noticed that their programs

suffered a performance disadvantage when options were used. For this reason it has

become a good programming practice to use only the simplest packets, avoiding options

if at all possible.

Nevertheless, the IETF designers felt that there were good reasons to include

options for special treatment of packets in 1Pv6, so they revised the mechanism in such

a way that processing of such options is compulsory.

As we have seen, the mechanism that replaces the Options field in the 1Pv6 header

is a system of chained extension headers. One major advantage of this is that the size of

the header is fixed at 20 octets, which saves router processing cycles. The extension

headers provide several other examples of the general 1Pv6 philosophy of avoiding

unnecessary processing by intermediate routers.

Fragmentation control and source routing have been moved to the extension

headers, and provisions for integrated IP Security are made here.

Most extension headers begin with a Next Header field, which encodes the type of

the next header, followed by an 8-bit Length field that contains the length of the current

extension header expressed in units of eight octets (64 bits). In tum, this is followed by

32

an options field that is further segmented according to the type of option. Table 2.5

(above) shows the next header codes, which include codes for the extension headers as

well as codes for upper layer protocol headers such as TCP and UDP. A null value in

the Next Header field indicates that the current extension header is the last one. The

types of extension headers are: hop-by-hop options, source routing, fragmentation,

authentication, encrypted security payload and a destination option. This section

examines each of these types of extension headers in the order recommended by the

IPv6 specifications; however, the actual order of the options in a packet is determined

by the initial sender. Receiving nodes will process the extension headers in the order

that they are received.

The hop-by-hop option is used when the source wants to send information to every

router visited by the packet and may contain control, management or debugging

information. The Option sub-field consists of eight bits of Code, eight bits of Length

and a variable length block of Data. The Code sub-field is further segmented into two

bits of Action, one bit that flags whether the option may be changed in transit, and five

bits to indicate the type of hop-by-hop option. At present, only three types of options

have been defined: PAD 1, P ADN and the jumbo payload, although this kind of

extension header obviously has the potential to serve as a very flexible tool.

PAD 1 is a 1-byte alignment option, which is analogous to the no operation

padding in the IPv4 Options field. PADN is similar, but allows a variable number of

zero padding bytes.

The only interesting current hop-by-hop option 1s the Jumbo Payload or

'Jumbogram' option that was discussed previously. If a payload longer than 65,535

bytes is required, the Jumbo Payload option defines the length of the payload. The

Length sub-field has a fixed value of 4 describing the length of the Data sub-field, so

33

that the maximum size of a Jumbogram is 232
- 1 or something over 4 billion bytes. This

indeed would be a pachyderm-sized packet.

The Source Routing extension header combines the strict source route and the

loose source root option types of IPv4, with a Type field following the Next Header and

Header Length fields to differentiate between the two. The Addresses Left field

contains the number of hops remaining to reach the destination, and the Strict/Loose

Mask field determines the rigidity of the routing: Strict indicates that the specified route

must be followed exactly and Loose means that other routers may be visited in addition

to those specified. The structure of a Source Routing extension header is shown

graphically in Figure 2.7.

Next Header HeaderLength I Type I Addresses Left
Reserved Strict/Loose Mask
First Address
Second Address

.

.

.
Last Address

Figure 2.7. Format of a Source Routing Extension Header.

The destination address in source routing is not the final destination of the packet,

but rather changes from router to router. The router at a given hop opens the Source

Routing extension header and uses the Addresses Left field as an index into the list of

addresses. The address thus found is placed in the destination address of the base

header, and the previous destination address is inserted into that same location in the list

34

of addresses in the extension header. Thus, both the base header and the extension

header are changed at every hop.

The Fragmentation extension header contains the Fragmentation Offset and

Fragmentation Identification fields that are in the IPv4 header. These fields are needed

in order to allow reassembly of fragments at the destination node. Fragmentation in

IPv6 is identical to that in version 4 with the exception of where the fragmentation takes

place. As discussed previously, IPv6 does not allow hop-by-hop fragmentation. End

to-end fragmentation using MTU discovery is the rule, and packets that are too large for

some hop will simply be dropped and an ICMP message returned to the source address.

It is important to understand that an IPv6 packet consists of a fragmentable portion

and one that cannot be fragmented. The unfragmentable part consists of the base header

and all the extension headers that must be processed by each node on the path. In

practice, these are all the headers up to and including the Source Routing extension

header. The fragmentable part is the rest of the packet, i.e. the extension headers that

need to be processed only at the destination node and the payload. Thus, all the

fragmented packets resulting from a fragmentation at the source host will consist of the

unfragmentable series of headers followed by a Fragmentation extension header, which

in tum is followed by a fragment of the fragmentable portion of the original packet.

The format of the rest of the Fragmentation header after the Next Header and

Header Length fields is comprised of a 13-bit Fragment Offset field, an 8-bit reserved

field, a 1-bit More Fragments field and a 32-bit Fragment Identification field. The

fragment offset is expressed as the number of 8-octet (64-bit) units by which the current

fragments contents are offset from the beginning of the fragmentable part of the original

packet before it is fragmented. The More Fragments bit is set to zero for the last

35

fragment and to one if there are more fragments to follow. The Fragmentation

Identification field is identical to that in 1Pv4.

The Authentication and the Encrypted Security Payload (ESP) extension headers

are a result of the effort to provide support for Internet Security (IP Sec) at the IP level.

IPSec in 1Pv4 was entirely optional, developed long after the Internet came into

existence and integrated into IP in a haphazard, ad hoc fashion. In 1Pv6, IPSec is tightly

integrated into the design of the protocol. All implementations must support it, which

removes any possible excuse for failing to implement good security policies.

The two functions of the Authentication extension header are to validate the

message source and to ensure the integrity of the data. The former is to ensure that the

message is from the genuine sender, while the latter is to ensure that no one has altered

the data in transit. This header is quite simple, consisting of only two fields. The

Security Parameter Index identifies the algorithm used for authentication since a

number of algorithms are available, while the Authentication Data field contains the

actual data that the algorithm has generated. When calculating the authentication data,

all fields that will change during routing, such as the hop count, and the Authentication

Data field itself are set to all zeros. The entire resulting IP packet is fed into the

algorithm along with a 128-bit security key and the output is written into the

Authentication Data field.

At the receiving node the process is reversed. The Authentication Data field is

copied and set to all zeros, as are the changeable header fields. The resulting packet is

run through the algorithm with the 128-bit secret key and the result is compared to the

original Authentication Data field. If they match, the packet is authentic. If they do not

match, the packet is dropped.

36

The purpose of the Encrypted Security Payload (ESP) extension header is to

provide confidentiality for the data. The format is similar to that of the Authentication

header; with a Security Parameter Index that identifies the type of encryption used and

an Encrypted Data field that contains the encrypted data.

There are two modes for transporting encrypted data over IP: the Transport mode

and the Tunnel mode. In Transport mode, a TCP segment or UDP user datagram is

encrypted and then encapsulated in an IPv6 packet. This packet consists of the base and

other headers in plaintext, the Security Parameter Index and the encrypted data as the

payload. This is the preferred mode for host-to-host transmission of confidential data.

Tunnel mode encrypts the entire IPv6 packet including its headers and then

encapsulates the whole encrypted packet into a new packet with plaintext headers. Such

a packet will consist of a plaintext header, a Security Parameter Index and an encrypted

packet that includes the original packet's headers in encrypted form. Tunnel mode is

mostly used by security gateways to encrypt data.

The last option, the Destination option, is a generic way to add functionality to

IPv6 without having to define a new extension header type. There are only 256 header

numbers available, so the definition of extension header types must be carefully

controlled.

The Destination option is used when the source node needs to pass information to

the destination node and doesn't want intermediate routers to be able to access this

information. The format of this extension header is identical to that of the Hop-by-hop

Options extension header, except that only the PADl and PADN option types have been

defined.

Following Forouzan, the differences between the IPv4 and IPv6 options can be

summarized as follows:

37

(1) The No-operation and End-of-option options in IPv4 are replaced by PADI and

P ADN options in IPv6.

(2) The Timestamp option is not implemented because it is never used.

(3) The Record Route option is not implemented because it is seldom used.

(4) The Authentication extension header is new in IPv6.

(5) The Encrypted Security Payload extension header is new in IPv6.

(6) The Source Route option is called the Source Route extension header in IPv6.

(7) The fragmentation fields in the base header section of IPv4 have moved to the

Fragmentation extension header in IPv6. (Forouzan 2003)

2.4 ICMPv6 and Other Protocols

2.4.1 The Impact of IPv6 on Other Protocols

Due to the increase in the IPv6 address size, almost every Internet-related protocol

and application suite will need to be modified to some degree. With regard to upper

layer protocols, the pseudoheader mechanism in TCP must be revamped to reflect the

increased IP address size, while the optional UDP checksum mechanism has become

mandatory now that the Header Checksum field has been removed from IP.

The most radical change impacts the set of network layer protocols. IPv4 utilizes

the Internet Control Message Protocol (ICMP), the Internet Group Management

Protocol (IGMP), the Address Resolution Protocol (ARP) and the Reverse Address

Resolution Protocol (RARP), all of which are layer 3 protocols in the OSI reference

model. In IPv4, RARP has been eliminated altogether as BOOTP has effectively made

it obsolete. IGMP and ARP have been consolidated into ICMP, leaving IPv6 and

ICMPv6 as the only network layer protocols. The new ICMP is discussed in this

section.

38

2.4.2 ICMPv6 Overview

ICMPv6 messages, as in version 4, are divided into two fundamental categories:

error-reporting messages and query messages. The general format of ICMP messages

starts with a Type field that indicates which of these general categories the message

belongs to. This is followed by a Code field, which specifies the purpose of the

message. After the Code field, there is a Checksum field, which is calculated in the

same way as in version 4. Further information and data come after these fields, as

illustrated in Figure 2.8.

Type I Code I Checksum
Other Information

Rest of the Data

Figure 2.8. General Format oflCMPv6 Messages.

2.4.3 ICMPv6 Error Reporting Messages

One of the primary responsibilities of ICMPv6 is the reporting of errors, which

include: destination unreachable, packet too big, time exceeded, parameter problems,

and redirection. Source quench has been eliminated in version 6, while the packet too

big message is new. Destination unreachable is unchanged :from version 4 and uses the

format shown in Figure 2.9.

39

Type: 1 I Code: 0 to 4 I Checksum
Unused (All zeros)
Part of the received IP packet, including the IP header
and the first 8 bytes of the data

Figure 2.9. Format of Destination Unreachable Messages.

The codes in the Code field explain the reason for discarding the packet. They are

specified as follows:

(1) Code 0. No path to destination.

(2) Code 1. Communication is prohibited

(3) Code 2. Strict Source Routing is not possible

(4) Code 3. Destination address is unreachable.

(5) Code 4. Port is not available.

Note that the IP header is returned to the source machine so that it can identify

which of its transmissions has caused the error. Likewise, the first eight bytes of the

data are included, which would normally be a portion of the upper layer protocol

segment header.

The packet too big message is a new addition to ICMPv6. It is a part of the

mechanism for the conversion from hop-by-hop to end-to-end fragmentation. If a router

receives a packet that is larger than the MTU of the next hop, the router discards the

packet and this type of ICMP error packet is sent to the source. There is only one code

and the MTU field lets the source node know the maximum size packet acceptable to

that network. The packet too big message format is shown in Figure 2.10

40

Type:2 I Code: 0 I Checksum
MTU
Part of the received IP packet, including the IP header
and the first 8 bytes of the data

Figure 2.10. Format of Packet Too Big Messages.

Time exceeded messages are very similar to those employed in version 4, though

the Type value is changed to three. When a router receives a packet with a hop count

value of zero, it drops the packet and sends this type of ICMP message to the source

address with a Code value of zero. When fragments of a packet are dropped because

other fragments have not arrived within the time limit, this type of error message is sent

to the source address with a value of one.

Likewise, parameter problem error messages now have a Type value of four, the

offset pointer field has been increased to four bytes and the Code field is increased to

three possible values instead of two. The Code field identifies the cause of the failure as

follows:

(1) Code 0. An error or ambiguity exists in one of the header fields. With this code,

the pointer field points to the byte with the problem.

(2) Code 1. There is an unrecognizable extension header.

(3) Code 2. There is an unrecognizable option.

The purpose of the redirection message is to update the source routing table, and

the format is similar to that of version 4 with the exception that the format of the packet

has been enlarged to accommodate IPv6 addresses. Figure 2.11 illustrates this new

format.

41

Type: 137 I Code: 0 I Checksum
Reserved
Target (router) IP address
Destination IP address
I Option code I Option length I

Target (router) physical address
Part of the received IP packet, including the IP header
and the first 8 bytes of the data

Figure 2.11. Format of Redirection Messages.

2.4.4 ICMPv6 Query Messages

The query category of messages is also the beneficiary of IETF alterations. Echo

request and reply and router solicitation and advertisement have been retained.

Timestamp and address mask requests and replies have been suppressed as the former

was never used and the IPv6 addressing scheme obviates the need for the latter. New

message types have been created to subsume ARP, for neighbor solicitation and

advertisement, and IGMP, for group membership management.

With echo request and reply messages, the only change has been in the value of

the type field. Echo request and echo reply messages are designed for diagnostic

purposes. The combination of the two messages allows network managers to determine

whether two systems, whether they are hosts or routers, are able to communicate with

each other. This mechanism is the basis of the Ping utility, which is so handy in

determining whether a host is reachable and providing delay statistics. Type number

128 indicates a request and 129 indicates a reply. Figure 2.12 shows the echo message

format.

42

Type: 128 or 129 I Code: 0 I Checksum
Identifier \ Sequence Number
Optional data
Sent by the request message and repeated by the reply message.

Figure 2.12. Format of Echo Request and Reply Messages.

Traceroute dumps of both 1Pv4 and 1Pv6 Ping headers can be found in Appendix

B. These dumps allow for a far more detailed and concrete inspection of the packet

headers.

Router solicitation and advertisement messages are identical in purpose and

similar in format to version 4 messages. An option to allow a host to announce its

physical address has been added in order to make it easier for the router to respond.

Figure 2.13 gives the format of a router solicitation message.

Type: 133 I Code: 0 I Checksum
Unused (All zeros)
I Option code: 1 I Option length I

Host physical address

Figure 2.13. Format of Router Solicitation Messages.

The router advertisement format differs from that in ICMPv4 in that the router

announces only itself. Several options may be appended to the message packet. One

option allows the router to announce its physical address for the convenience of the

host. Another is for informing the host of the MTU size of the router. The third option

lets the router define its preferred lifetime, which is the number of seconds that an entry

in the host routing table for that router should be considered valid.

43

Figure 2.14 shows the format of router advertisement messages.

Type: 134 Code: 0 Checksum
Hop limit Ml 0 I Unused Router Lifetime
Reachability lifetime
Reachability transmission interval (timer)
I OPT code: 1 I OPT length I

Router physical address

Option code:5 I Option length Unused (All zeros)

MTU size

Figure 2.14. Format of Router Advertisement Messages.

The I-bit M (managed address configuration) field indicates that nodes receiving

the advertisement must use the Stateful protocol for autoconfiguration as well as the

stateless address autoconfiguration. Similarly, the 1-bit 0 (other stateful configuration)

field tells the receiver that they must use the Stateful Configuration Protocol for

additional information. This protocol will be discussed in section 2. 7.2, which deals

with autoconfiguration.

In IPv6, neighbor discovery messages, which include both neighbor solicitation

and advertisement messages, take over the duties ofIPv4's Address Resolution Protocol

(ARP). With due allowance for the increased address size, the principle is exactly the

same. An IPv6 node transmits neighbor solicitation messages to request the link layer

addresses of target nodes while also providing the target nodes with its own link layer

address. These messages are sent to multicast addresses when a node needs to resolve

/ 44

an IPv6 address to a link layer address, and to unicast addresses when a node needs to

verify the reachability of a neighbor.

The source address of a neighbor solicitation message is either the unicast address

of the interface that transmits the message, or the unspecified address when the

Dynamic Host Configuration Protocol duplicate address detection procedure is being

utilized to ensure that a tentative address is unique. Further discussion of this latter

procedure may be found in section 2. 7, which discusses autoconfiguration.

The format of a neighbor solicitation message is given in Figure 2.15.

Type: 135 I Code: 0 I Checksum
Unused (All zeros)
Target IP address

I Option code: 1 I Option length I

Solicitor physical address

Figure 2.15. Format ofNeighbor Solicitation Messages.

A neighbor advertisement message is transmitted upon receipt of a neighbor

solicitation message and whenever the state of a node changes in order to propagate

knowledge about those changes through the network. The format of the neighbor

advertisement is quite similar to the solicitation format except that there are three

additional 1-bit fields following the Checksum field. The first of these is the R (router)

flag that is set to one if the source is a router. The second is the S (solicited) flag that

indicates that the message is being sent in response to a neighbor solicitation message.

45

The last of these is the 0 (override) flag which is set to indicate that the message should

update the cached link layer address.

The only other differences are that the Type value is 136, the Option code is 2 and

the Solicitor physical address is replaced by the target physical address. Neighbor

discovery messages can include zero, one or more options. Some options can appear

multiple times in the same message. Examples of these include the source/target link

layer address option and the prefix information option.

As ICMPv6 is subsuming the role of the Internet Group Management protocol, it

has acquired three new group membership message types: report, termination and

query. The report and termination messages are sent from the host to the router, while

the query message is sent from the router to the host. The first two of these are nearly

identical in format, differing only in their Type values, 131 and 132 respectively. The

query message replaces the first half of a reserved field following the Checksum with a

field for maximum response delay. Its Type value is 130. Figure 2.16 shows the group

membership query message format. Multicasting itself will be discussed in some detail

in section 2.5.

Type: 130 I Code: 0 I Checksum
Maximum response delay I Reserved

IPv6 multicast address

Figure 2.16. Format of Group Membership Query Messages.

46

2.5 Multicasting and Flows in 1Pv6

2.5.1 IPv6 Multicasting

Multicasting was formally added to the IPv4 protocol in 1988 with the addition of

Class E addresses. Its implementation was accelerated by the arrival of the Mbone

(Multicast Backbone) in 1993, but multicasting deployment is still somewhat sketchy

due to the fact that it is an add-on afterthought to the protocol. With IPv6, multicasting

becomes an integral part of the core protocol. We have seen the multicast address

structure in the Section 2.2.10 and examined the way in which ICMPv6 has subsumed

the IGMP in Section 2.4.4.

Recall that multicast addresses begin with a string of eight ones (OxFF), followed

by four bits of flags, four bits of scope and a 112 bit group ID. Only the last flag bit

contains meaning, and it defines whether an address is a permanent ('well-known' in

Internet parlance) address assigned by the IANA or a transient address, which is not

permanently assigned. The scope bits define a code (see Table 2.3) that is used to limit

the scope of multicast packets so that they do not, for example, leak out into the Internet

at large if they are privately scoped. The same functionality was obtained in IPv4

Mbone by carefully tuning the Time-to-Live hop count. However ingenious this may

be, it seems rather inelegant. The IPv6 specification allows for much more precise

scoping by obliging routers to enforce scope boundaries.

The IPv6 specification defines four permanent group identifiers that all nodes

must understand:

(1) The group identifier 0 is reserved and cannot be used with any scope.

(2) The group identifier 1 defines all IPv6 node addresses.

(3) The group identifier 2 defines all IPv6 router addresses.

47

(4) The group identifier Ox 10000 (hexadecimal) defines the group of all dynamic host

configuration servers such as DHCP servers and their relays.

These are used in coajunction with scoping boundaries to identify all nodes,

routers or configuration servers on a given node or link. A range of multicast addresses

from FF02:: 1 :0:0 to FF02:: 1 :FFFF:FFFF is reserved for ICMPv6 address resolution.

2.5.2 Multicast Routing in IPv6

Multicast routing is the routing of packets whose address is a multicast address,

i.e. the address of a group of stations. Some multicast addresses are associated with

predefined groups or only have a meaning with regard to a node or link. Other

multicast groups can have members spread out over the entire Internet. Packets

addressed to this latter type of group must be routed.

In IPv4, group membership was administered by IGMP, which has migrated to

become an integral part of ICMPv6, and multicast packets were routed using either the

Distance Vector Multicast Routing Protocol (DVMRP) or the Multicast Open Shortest

Path First (MOSPF) protocol. In order to route multicast packets, a distribution tree

must be created to reach all members of the group. Since new members may join a

group or existing members may leave, this tree must be dynamic. Addition of members

causes the tree to grow, while departure of members causes the tree to be pruned.

In IPv6, the MOSPF extensions were integrated into the OSPFv6 protocol. In

order not to drift too far out of the scope of this study, it will be sufficient to say that

multicast routing is an integral part of IPv6, in particular of the ICMPv6 and OSPFv6

protocols.

2.5.3 Multimedia and Flows

Discussion of multimedia traffic falls naturally into this section on multicasting

because multicasting will be the carrier of a large portion of the multimedia traffic

48

transmitted over the Internet. Gai states that experiments such as the Mbone "have

highlighted the intrinsic multicast nature of multimedia traffic" (Gai 1998).

Heretofore, the IPv4 Internet was essentially a carrier of best-effort traffic, making no

guarantee of packet delivery time or even of delivery at all.

The IPv6 header introduced the Flow Label field as a part of the effort to change

this situation. However, the concept of flows is not limited to multicasting. A flow is

defined in the IPv6 specification as "a sequence of packets sent from a particular source

to a particular (unicast or multicast) destination for which the source desires special

handling by the intervening routers" (Huitema 1996). A flow is a set of packets that

come from the same source to the same destination and carry the same flow label.

Thus, it is the combination of the provision of flow labels and priorities in the base

header, along with the availability of a large reservoir of multicasting addresses that is

responsible for the IPv6 promise of improved support for real-time traffic such as

streaming multimedia. IPv6 is a part of a larger project called the IS (Integrated

Service) Internet which aims to extend the Internet architecture to allow it to carry real

time traffic as well as best-effort traffic, and to control the utilization of transmission

links.

Multimedia applications often generate real-time traffic that is sensitive to queuing

delays and to packet losses due to congestion. Thus, such traffic needs a guaranteed

minimum bandwidth, so IPv6 introduces the concept of Quality of Service (QoS) and

the extended service model, which is also referred to as IS (Integrated Services). The

traffic control mechanisms of an extended service model router are considerably more

complex than those of a traditional router, particularly in the areas of packet scheduling

and buffer management. A brief summary of these two routing duties may be

considered here.

49

A packet scheduler determines the order in which each packet is retransmitted.

Traditional routers order packets in terms of their priority, which has tended to break

down into first-come-first-served or FIFO queuing. The queuing of real-time packets

has shifted to WFQ (Weighted Fair Queuing) as the algorithm of choice. Each queue is

associated with a weight proportional to the frequency with which it must be served.

WFQ alternates the transmission of packets belonging to several flows according to the

weights assigned to their queues. This works much like a low-pass filter.

Buffers in a router are necessary whenever packets arrive at a speed higher than

they can be retransmitted. If this condition persists, packets will simply have to be

dropped. The packets to be discarded should not be selected randomly, but rather as a

function of the type of application and of the services that they require. Thus, specific

buffer management mechanisms for different types of packets must be implemented.

This is not a straightforward process since TCP regards the loss of a packet as a sign of

network congestion and will reduce packet generation at the source. Paradoxically,

dropping a packet from a full buffer can contribute to the desired QoS because it

shortens the delay of the packets that follow the one discarded.

Obviously, this discussion points to the need for a method of packet classification.

Since we have the means to identify a flow using the Flow Label header, it is possible to

identify the type of application traffic that the flow carries by opening the upper layer

protocol header of a flow packet at the time that the flow is initiated. Trying to make

decisions based on header content allows QoS service for existing applications without

modification. Using the Flow Label and the Priority fields yields an even simpler, if not

quite so adequate solution.

50

2.5.4 RSVP- The Resource Reservation Protocol

The IETF has selected RSVP (the Resource Reservation Protocol) as the layer 3

protocol that allows the network to propagate the resources requested by applications.

RSVP is also a pun on the French language expression respondez s 'ii vous plait, as this

acronym often appears at the bottom of invitations that require a response.

RSVP supports resource reservations for both unicast and multicast applications

and dynamically adapts itself to variations in groups and routing paths. It is used by a

host to request a specific QoS from an application and by routers to retransmit QoS

requests along the entire routing tree and to maintain state information about the flows.

RSVP is for simplex data flows in that the sender is treated differently than the receiver

and the RSVP request is unidirectional with the receiver responsible for issuance.

In the RSVP admission control procedure, the receiver must specify the set of

necessary resources, called flowspecs, and the set of packets to which the resources are

to be allocated, called filterspecs in a request message, which is called a Resv message.

This Resv message visits all the routers on the path to the destination, and the resource

allocation is negotiated at each router. If the resource is unavailable due to either

congestion or policy constraints, the Resv message is dropped. If the resource

allocation is agreed upon, the router's state is updated with a definition of the class of

the flow and the necessary buffers are allocated. This proceeds stepwise until all

intervening routers have entered into the agreement so that the necessary state

information is created and managed in a distributed form all along the multicast tree.

The sender is limited to messages called Path messages, which inform receivers about

the type of transmissions to be made. Thus, RSVP messages only contain control

information about flows, not the actual data itself, which is encapsulated in flows of

multicast packets.

51

RSVP currently can use three different reservation styles: wildcard reservation,

fixed filter reservation and shared filter reservation. Wildcard reservations create a

single reservation shared by all the senders' flows. This is most appropriate for audio

flows such as audio conferencing, where a limited number of sources are active at the

same time and can share the same resources. In a fixed filter reservation, a dedicated

reservation for a particular sender is requested. This cannot be shared, even by other

senders in the same multicast group. Video flows typically request this style of

reservation. With shared filter reservations, a shared reservation for a set of senders that

are explicitly identified is requested. This is also used for audio applications as an

alternative to Wildcard style reservations.

It is important to note that not all Internet engineers are enthusiastic about RSVP.

The placement of state on routers goes against the basic principle of Internet

architecture, and Huitema argues forcefully for adaptive applications that can adjust

themselves to changing conditions as a preferable alternative to reservations (Huitema

1996).

2.6 Routing in 1Pv6

Recall that the major problems with IPv6 were the threat of exhaustion of the

address space and the collapse of the routing system due to the explosion in size of

router tables. These problems, in tum, were largely caused by the inefficient hierarchies

that arose from the Class-based allocation of network addresses. The IPv6 addressing

scheme should prove itself vastly more efficient, with its registry ID, provider ID,

subscriber ID, Subnet ID and Node ID hierarchy (see Figure 2.1).

A geographical hierarchy was also proposed and address space allocated for it, but

the free market nature of the Internet seems to militate against a simple geographical

solution. Provider-based addressing, however, seems to threaten the possibility of a

52

tyrannical monopoly, where organizations are locked into providers because of the

difficulty of changing the addresses in large networks of machines. However, we shall

see that provider-based addressing seems to hold out the best hope for a rational address

hierarchy that is needed to keep backbone routing tables down to a manageable size.

Autoconfiguration, which will be discussed in section 2.7, lessens the fear of lock-in by

Internet service providers.

Static routing refers to the manual configuration of a router's routing table by the

administrator and is certainly possible in IPv6. However, static routing is of only

limited interest, so only dynamic routing protocols will be considered in this section.

2.6. l Internal Routing Protocols

The cornerstone of the Internet is the Autonomous System (AS), which is broadly

defined as an internetwork under the administrative control of a single organization.

The network routing protocol used within an AS is decided by that organization and

may be chosen from a set of protocols that is referred to as Internal Routing Protocols.

Internal protocols have evolved as networking became more advanced and come in both

open and proprietary forms. Two main categories exist for internal protocols, distance

vector protocols and link state protocols.

The distance vector algorithm was the first distributed routing algorithm to be

implemented. In routers that use the distance vector algorithm, a data structure called

the distance vector for each line in the routing table is maintained. This structure

contains the address of each destination on the network and the cost metrics associated

with it. Each router sends its routing table to neighbor routers in the form of distance

vectors. When a router receives a routing table from a neighbor, it compares that table

with its own stored routing table. Any new destinations are merged into its routing

53

table, while already known destinations are examined for changes in state and lower

cost metrics in order to keep the tables congruent and up-to-date.

An early example of a distance vector protocol is the Routing Information

Protocol (RIP). This venerable protocol is considered by many to be out-of-date, due to

its slowness in router table state convergence, its dependence on hop count as the sole

cost metric and its limitation of 16 hops. It is, however, simple and reliable for small

networks, and a version of it, RIPv6, has been implemented for IPv6 routing.

Notable among the proprietary distance vector protocols are Cisco Systems

Interior Gateway Routing Protocol (IGRP) and extended IGRP (EIGRP). These are

more capable routing protocols that overcome many of the limitations of RIP by using a

system of cost metrics that can include such factors as line speed. It is expected that

Cisco will include IPv6 support for EIGRP.

Link state routing protocols are computationally more intensive, but put less

overhead on the network than distance vector protocols. Each participating router

advertises only its immediately connected links, both periodically and when the state of

a link changes, using link state advertisements (LSAs). LSAs are propagated

throughout the network by flooding, where routers send out the routing information

packets through all of their interfaces. Receiving routers retransmit all information

packets that they have received through all interfaces other than the interface where the

information packet was received. This information is stored in a database by all

receiving routers, and each router computes the topology of the network using the

Dijkstra algorithm. Link state routing protocols are inherently more stable than distance

vector protocols because each router maintains knowledge of the state of the entire

network. Advertising link state changes results in faster time to convergence. However,

54

link state protocols are more complex and reqmre better equipment to handle the

computation involved.

Open Shortest Path First (OSPF) 1s a hierarchical link state interior routing

protocol. The root of the hierarchy is the AS, which can be divided into areas, each one

of which contains a group of interconnected networks. OSPF routers can be classified

into four non-mutually exclusive categories: internal routers, area border routers,

backbone routers and AS boundary routers. Internal routers connect subnets belonging

to the same area and use only one instance of the OSPF algorithm. An area border

router connects one or more areas to the backbone area, and uses an instance of the

OSPF algorithm for each directly connected area as well as one instance for the

backbone. These routers collect reachability information from the areas and distribute it

to the backbone, which in tum distributes it to other areas. Backbone routers are any

routers with an interface on the backbone, so that area border routers are included in the

backbone router classification. If all router interfaces are on the backbone, a router is

considered to be an internal router. AS boundary routers exchange router information

with routers belonging to other ASs.

OSPFv6 is the interior routing protocol recommended for IPv6. It is simply OSPF

adapted to 128-bit addresses without any additional functionality added because it is

already state-of- the art. It is layered directly into IPv6, using the value 89 in the Next

Header field of the ICMPv6 header.

Another sophisticated internal routing protocol is the integrated Intermediate

System to Intermediate System Protocol (IS-IS), which was developed by the

International Organization for Standardization (ISO) for its Open System Interconnect

(OSI) Connectionless Network Protocol project. IS-IS has been extended to handle

IPv4 routing and is expected to be adapted for IPv6 as well.

55

2.6.2 Exterior Routing Protocols

While IPv6 interior routing protocols are, for the most part, simple adaptations of

existing protocols to the larger address space, the routing mechanism between

autonomous systems has received an overhaul in IPv6. In fact, the very expression

autonomous system is being dropped in favor of 'Routing Domain.' The Border

Gateway Protocol (BGP) proved to be too heavily optimized for 32-bit addressing, and

so has been replaced by Inter-Domain Routing Protocol (IDRP), which was originally

designed for use on the OSI architecture for the ISO CLNP protocol, and is, in fact,

derived from BGP. It includes all BGP-4 (BGP version 4) functionality and is based on

the same path vector philosophy. IDRPv2 is the version designed for operating over

IPv6.

Path vector algorithms are similar to distance vector algorithms. In place of cost

metrics, however, they advertise a list of Routing Domains to be crossed to reach each

destination. Routing Domain lists provide an easy way to check for possible routing

loops on the network. In addition, they make policy based routing possible by

specifying the Routing Domains to be traversed.

An important difference between BGP and IDRP is that in BGP routing messages

are carried over TCP, which introduces interactions between TCP flow control and error

detection strategies and BGP routing decisions. In contrast, IDRP uses bare IP

datagrams and has its own control mechanisms. Another difference is that IDRP may

carry several kinds of addresses, while BGP is strictly an IP protocol.

With autonomous systems, AS numbers were assigned by the IANA. Because

Routing Domains are identified by an IPv6 address prefix, AS numbers are no longer

56

necessary, so the IANA will be relieved of this burden. In addition, this implies that

there are as many IDRP Routing Domains as there are addresses. BGP encoded ASs on

16 bits, limiting the number of such systems to 65,5536. Routing Domains may be

grouped into a Routing Domain confederation, which is viewed as a unique entity.

Confederate Routing Domains can also be identified by IPv6 address prefixes, and may

contain an arbitrary number of levels of hierarchy.

Routing Domains are divided into two types in IDRP: End Routing Domains

(ERDs) and Transit Routing Domains (TRDs). ERDs are Routing Domains in which

routes are computed primarily to provide intra-domain routing services, whereas TRD

routes are computed primarily to care inter-domain or transit traffic. This concept is

similar to that of stub and transit networks. ERDs are associated with network end user

organizations that usually have connections with only one TRD, although sometimes an

ERD is connected with multiple TRDs in a multihomed configuration for purposes of

redundance or cost. TRDs are associated with Internet Service Providers (ISPs).

Each IDRP router computes its preferred routing toward a given destination and

transmits a path vector information packet to its IDRP-adjacent routers. This

computation is subject to the policy that can be configured in each individual router.

Furthermore, IDRP allows for multi-protocol routing with multiple address structures.

IDRP is layered directly on IPv6 and uses the value 45 in the Next Header field of the

ICMPv6 header.

The impact of this exterior routing scheme on the Internet as a whole is of interest.

ISPs can be categorized as direct service providers that connect end users to

international backbones via themselves or as indirect service providers that connect only

indirect service providers and large-scale users. The latter category consists of the

highest level of the hierarchy, organizations that directly administer the backbone.

57

Because direct service providers are allocated a set of addresses that it further

divides into smaller sets to be assigned to its users, these sets of addresses can be

hierarchically grouped according to the provider's own definition. For ERD routers, the

routing table situation remains similar to that in IPv4. Each router has a routing table

entry for each network within the ERD and a default entry toward the TRD. ERD

routers announce their set of addresses to the TRD with only one entry.

Indirect service providers, however, have a completely changed situation since

each direct service provider announces all its networks with only one entry. The routing

table size has become proportional to the number of service providers rather than the

number of networks as in IPv4. This represents an enormous breakthrough in the

problem of backbone router overload.

As mentioned above, other aggregation schemes have been considered, notably

geographically based aggregations. The rapidly developing free market in

telecommunications makes such schemes seem of questionable feasibility, especially in

the light of the advantages of a provider based hierarchy.

However, this provider based hierarchy offer some potential disadvantages for end

users. Organizations have come to think that they own their IP network address. With a

provider based addressing hierarchy, this is emphatically not the case. The provider

owns the address, and any organization that decides to switch providers must be

prepared to reconfigure all the hosts and routers on their networks. How IPv6 proposes

to address this situation is the topic of the next section.

2. 7 Autoconfiguration

Automatic configuration, or autoconfiguration, refers to the ability of computers to

discover and register the information that they need in order to be connected to and

communicate over a network. Because it is possible that addresses will be assigned to

58

an interface for a limited lifetime and an interface may have multiple addresses in 1Pv6,

dynamic multiple address configuration is an integral part of the 1Pv6 design standard.

There are two modes of autoconfiguration: stateless mode, which configures a

machine to communicate with other machines over the same link, and stateful mode,

which uses DHCP servers to assign addresses to a large network.

2. 7 .1 Link Local Addresses

Recall that link local addresses have a 64-bit field for the device ID (see Figure

2.2). When a device is initialized, it can build local addresses for its interfaces by

concatenating the link local prefix with a number that is unique to that interface. It was

envisioned by the designers that network administrators would likely want to use the

Media Access Control (MAC) layer physical addresses as this unique token, although it

would not be strictly necessary. On 64 bits, a random number generator would create

an address collision only about once in 300 million tries. Nonetheless, the physical

address encoded in 48 bits in an IEEE-802 Ethernet card is very handy and guaranteed

to be globally unique, at least if you don't use extremely cheap cards from unscrupulous

manufacturers. A machine can trivially manufacture its own link-local scoped address

of the form; FE80:0:0:0:0:xxxx:xxxx:xxxx:xxxx, where xxxx:xxxx:xxxx:xxxx

represents the Ethernet physical address.

These link local addresses can only be used on the local link, which would be fine

for a very small network without a router, but they are insufficient for organizing a large

network.

2.7.2 Stateless autoconfiguration

Gai reviews the requirements of stateless autoconfiguration. Stateless

autoconfiguration should not require any manual configuration or the presence of a

stateful DHCP server. It must have the capability of generating unique link local

59

addresses automatically and using them for communications. Hosts must be able to

derive site local or global addresses from router advertisements that contain lists of

prefixes associated with links. Furthermore, stateless autoconfiguration should simplify

renumbering operations and administrators should be able to choose between stateless

and stateful configuration (or both). (Gai 1998)

Only multicast capable interfaces are able to autoconfigure themselves. When an

interface is turned on or reset, it derives a link local address from the interface token.

This address is not assigned immediately to the interface, but rather a duplication

detection process is started. The host sends out neighbor solicitation packet on the

network and listens for a reply. If there is a reply, then there is an interface with an

identical address somewhere on the network, and a new address must be generated.

Because packets may be dropped, the host may be required to repeat this process several

times in order to be reasonably confident that the generated address is unique, although

at present the default configuration is that the message is only sent once. It is only after

this procedure that the address is assigned to the interface. The reasons for this

precaution are that bad Ethernet cards do, in fact, exist and other tokens such as random

number generation are allowed.

At this point the interface has a link local address. Both hosts and routers take this

initial step, but only hosts perform the procedures that follow. The host must now

obtain a router advertisement or verify that there are no routers on the network. The

time interval between periodic router advertisements is fairly long, so the host may opt

to send a router solicitation to the all-router (FF02::2) multicast address.

Recall that router advertisements contain to flags that indicate the kind of

autoconfiguration to be performed (see Figure 2.14). If the M flag is set, the host must

use stateful autoconfiguration for addresses. If the 0 flag is set, the host must use

60

stateful autoconfiguration for information other than addresses. Router advertisements

also contain the address prefixes to be used in the stateless autoconfiguration of both

site local and global addresses. Because these router advertisements are generated

periodically, the addresses assigned to the host are continually updated and new

addresses can be generated in response to new prefixes. As old addresses become

invalid, the router no longer advertises them.

It should be noted that stateful and stateless autoconfiguration are not mutually

exclusive. They can be used in parallel to configure both stateless derived addresses

and stateful derived addresses.

There are security concerns with stateless configuration that may prompt some

administrators to tum it off. The problem is that anyone who can bring a machine into

the physical site of an organization and plug it in to a network jack can gain access to

the network. It may be argued that this is also true of 1Pv4, but consideration should be

given to authentication and encryption in order to provide security in the light of this

particular vulnerability.

2.7.3 Stateful Autoconfiguration

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is a protocol that

was designed to provide 1Pv6 client nodes with configuration information that is stored

on a server. The information provided by DHCP is mainly concerned with 1Pv6

addresses, but other information can be provided as well. The DHCP server manages

the address and network parameters database. In a complex network, it is likely to be

infeasible to have a DHCP server on each link, so the concepts of intermediary relays

and agents have been introduced. A relay is a node that acts as an intermediary in the

transmission of a packet between a client and a server, while an agent may be either a

server or a relay.

61

DHCP uses the User Datagram Protocol (UDP) for communication, specifically

port UDP 546 for agents to send messages and port UDP 547 for receiving all

messages. There are six types of messages exchanged by the DHCPv6 protocol:

(1) Solicit: these are messages sent to the multicast address of all DHCP server/relay

agents (FF02::C). It is used when a client host doesn't know the address of a

DHCP server.

(2) Advertise: these are unicast messages sent to a client from a server in response to a

solicit message.

(3) Request: these are unicast messages from a client to a server requesting

parameters for network configuration.

(4) Reply: these are unicast messages from a server to a client in response to a request

message. It contains the addresses and parameters that the server has allocated for

the client.

(5) Release: these are unicast messages from the client to inform the server that client

has released previously allocated resources. The purpose of these messages is to

allow the server to reallocate those resources to other nodes.

(6) Reconfigure: these are unicast messages that are sent by the server to notify the

client of modifications on the network. The client must get the specifics of the

modifications through a request message and a server reply message.

It is worth noting that these messages are structured as request/reply pairs that

constitute transactions between the client and the server. This structure is a result of the

fact that UDP is an unreliable protocol, so the client and server must have a control

mechanism. If a message packet is dropped or corrupted, the request message is resent

until a valid reply message has been received. If the server needs to reconfigure the

client, it requests the client to start a transaction through a DHCP reconfigure message.

62

2. 7.4 Site Renumbering

We have discussed the problems of a provider based addressing hierarchy at some

length above. The process of renumbering an entire site as a result of a change of

providers is daunting indeed. Besides the enormous quantity of sheer labor involved,

the process is inordinately complex and errors are bound to occur. This process is much

simplified by the mechanisms provided in IPv6.

In the present version 4 TCP/IP protocol suite, upper level protocols such as TCP

identify connections, in part, by using the IP address. Thus, any change in the IP

address will terminate all of the TCP connections that are in progress. The IPv6

designers have provided TCP with a mechanism for identifying addresses that will

expire in the immediate future without actually mandating a change in the protocol. IP

addresses have thus acquired a specifiable lifetime - they have become mortal.

To understand the IPv6 solution to this, we have to look at addresses from the

upper level protocol point of view. There are two categories of addresses in IPv6: valid

addresses and invalid addresses. Valid addresses are further subdivided into preferred

addresses and deprecated addresses. When upper level protocols open a connection,

they always use the preferred address.

When an administrator begins a renumbering procedure, he or she first inserts the

new prefixes that will be used to build the new addresses into the routers and allows

these prefixes to propagate throughout the network over a matter of several days. Then

the prefixes of addresses that are no longer to be used are removed from the routers.

This procedure creates new preferred addresses on all interfaces and turns some

addresses that were preferred into currently deprecated addresses. These deprecated

addresses are allowed to remain in the system for another few days to allow all TCP

connections that were opened when the address was preferred to be closed gracefully.

63

The deprecated addresses are still valid, but they cannot be used for opening a new TCP

connection. At last, the deprecated address becomes invalid and the transition 1s

complete. Routers continue to announce both addresses during the transition.

2.7.5 Address Resolution

As we have seen in section 2.3.3, address resolution is accomplished through

ICMPv6 neighbor solicitations and neighbor advertisements. A node activates the

procedure by multicasting a neighbor solicitation packet that requests the target node to

return its MAC address. This neighbor solicitation packet is multicast to the solicited

node multicast address associated with the target address. Starting with this multicast

address, IPv6 algorithmically computes a multicast link layer address. This can happen

in different ways depending on the type of link.

The target returns its link layer address in a unicast neighbor advertisement packet.

This pair of messages is sufficient for both the initiator and the target to resolve each

other's link layer address, since the initiator includes its link layer address in the

neighbor solicitation message.

This neighbor solicitation/advertisement pair is the same one used in the duplicate

address detection procedure of stateless autoconfiguration, and it will be used again in

neighbor reachability detection, which is discussed in the next section

2.7.6 Black Hole Detection

A hybrid topic that concerns both autoconfiguration and router discovery is

neighbor unreachability detection. The results of the next hop computation are cached

along with neighbor MAC addresses in most IP implementations. If this information

becomes outdated, packets may be sent to a router that is no longer operational. As a

result, they will disappear into the electronic void, into the Internet black hole. Thus

64

neighbor unreachability detection 1s defined as a part of the neighbor discovery

mechanism.

A host can often learn that a destination is unreachable without any specific IP

procedure, as when TCP fails to receive acknowledgement messages for any segments

that it has sent to some address. IPv6 includes a procedure whereby TCP can pass

reachability indications to the IP process to indicate that it is receiving

acknowledgement messages as expected. If no reachability indications are received in a

set time period (usually 30 seconds), the reachability of the destination becomes

suspect.

The host may send a few more packets just in case, but after that a neighbor

solicitation will be sent to ascertain that the destination is reachable. If no response is

received this may be repeated a few times until the host decides that the neighbor has

become unreachable and discards all packets bound for that destination. If the host

receives a neighbor advertisement packet with the S (solicit) flag set from that

destination, its reachability is confirmed.

Neighbor unreachability detection operates in parallel to packet transmission and

is executed only in the presence of traffic.

For routers, the host must examine the R flag in the router advertisement message.

If the host has an interface listed as a router in its cache, but its entry in the

advertisement list lacks the R flag, that machine has ceased routing and packets should

not be routed through it.

Flows like video packets over UDP or multicast will not generate reachability

indicators and must be dealt with by other mechanisms such as the transmission of

probes.

65

III. THE TRANSITION STRATEGY FOR IPv6

3.1 Overview

The developers of IPv6 were quite aware of the problems entailed in such an

ambitious enterprise as upgrading the entire Internet to a new IP protocol. The solution

that they devised was one of gradual deployment, with both protocols existing side by

side for as long as it takes for the old IPv4 machines to expire of senescence. It must be

said, however, that the change over has not been as rapid as the optimists had expected.

Gai writes: "The years 1997 to 2000 will be characterized by the adoption of IPv6 by

ISPs and users. During 1997, users could still have problems related to the newness of

products, but starting from 1998, IPv6 will be part of mass-produced protocols

distributed on routers, on workstations and on PCs. At that point, users will begin to

migrate, less or more gradually, to IPv6." (Gai 1998)

Needless to say, this is not what has happened. The very process of implementing

the code for the IPv6 and related protocol stacks and testing it for compliance with the

protocol specifications has lasted well into this new millennium, an effort that

continues, to some extent, to this day. Part of this may be due to Microsoft announcing

delays to its support for IPv6 back in 1999. Furthermore, the urgency of the transition

seems to have been lessened by the stopgap measures discussed in section 2.2.2 such as

Classless Inter-Domain Routing (CIDR), Network Address Translation (NAT) and the

Dynamic Host Configuration Protocol (DHCP), all of which contribute to a more

efficient utilization of the available IPv4 address pool.

The underlying danger that the Internet will choke due to lack of address space

and the computational overhead of grotesquely obese routing tables has not gone away.

The implementations of the IPv6 stack for most operating systems are now reasonable

66

complete, mature and well tested. The United States Department of Defense has

announced that all of its future software development contracts must be compliant with

IPv6. Many large ISPs are maintaining an experimental presence on the 6Bone in order

to gain experience with the new protocol, and Verizon, one of the US' s largest

telecommunication providers, has announced that it plans make native IPv6 network

service available on a commercial basis in the near future. It is apparent that the

transition is on the verge of really taking off.

There are three main transition strategies, all of which are aimed at allowing the

two protocols to coexist on the same Internet as the migration to the new protocol

proceeds. These strategies are: dual stacks, tunneling and header translation. Each will

be discussed in its own section. Some IPv6 characteristics, such as the fact that IPv6

addresses can be automatically derived from IPv4 addresses, were explicitly designed to

facilitate the transition. In addition, a set of mechanisms called Simple Network

Transition (SIT) that consists of protocols and management rules to simplify the

transition has been implemented.

SIT has as its stated goals, according to Gai:

(1) The possibility of a progressive and non-traumatic transition: routers may be

updated to IPv6 one at a time without requiring that other routers be updated at the

same time.

(2) Minimum requirements for updating: hosts will only require the availability of a

DNS server that can hold IPv6 addresses. There are no special requirements for

updating routers.

(3) Addressing simplicity: routers and hosts that have been updated to IPv6 can still

use IPv4 addresses.

67

(4) Low initial costs: no preparatory work should be necessary to begin the transition

to IPv6. (Gai 1998)

SIT has defined the following specific mechanisms in order to guarantee that IPv6

hosts can interoperate with IPv4 hosts initially anywhere on the Internet.

(1) A structure of IPv6 addresses that allows the derivation of IPv6 addresses from

IPv4 addresses.

(2) Availability of a dual protocol stack on all hosts and routers during the transition.

A technique to encapsulate IPv6 packets within IPv4 packets to allow those

packets to transverse regions of the Internet not yet updated to IPv6.

(3) Ability for translation of IPv6 headers into IPv4 headers and vice versa to allow

IPv4-only nodes to communicate with IPv6-only nodes. This is optional and will

be used only in the advanced phases of the transition.

The purpose of this is to protect the current investment in IPv4 systems until they

are retired from service due to obsolescence. This section will examine these strategies

in some detail.

3.2 Dual Protocol Stacks

Until all hosts on the Internet have completely migrated to IPv6, it is

recommended that all Internet connected machines should run both IPv4 and IPv6

simultaneously. Since both IP and the OSI model visualize network software as a

layered hierarchy or stack of functionality, the term dual stack is used to describe this

strategy. Figure 3 .1 schematically represents the dual stack structure.

68

Applicatiors La~

lCP or l.DP

IGM" ICM"\4
IPl.4 IP\6 ICM"\6

PRP RPRP

Lh:.lerlyirg LAN
or W\N techrology

~ ~

"" ...
To IP\A RJuters To IP\6 RJuters

Figure 3.1. Dual Stack Schematic.

In a dual stack setup, the source host queries the Domain Name Server (DNS) for

the address of the destination. If the destinations address is an 1Pv4 address, the host

sends 1Pv4 packets. If the address returned is an 1Pv6 address, version 6 packets are

transmitted. In the situation where the destination address is an 1Pv6 address with an

embedded 1Pv4 address, 1Pv6 packets are encapsulated within 1Pv4 packets.

This can be a little tricky, as there are many more cases that are possible. RFC

2893 (cited in Gai 1998) contains a complete discussion of the handling of arcane

situations. An example is the situation where both 1Pv4 and 1Pv6 addresses are stored

in the DNS. It must be determined whether the node has direct 1Pv6 connectivity. If

not the use of the 1Pv6 address will require the transmission of an 1Pv6 packet in an

69

IPv4 tunnel. This solution is likely to be less convenient than using native IPv4 packets,

or may even be impossible if the destination node cannot use tunnels.

3.3 Tunneling

Tunneling is a nicely descriptive word for the practice of encapsulating packets of

one protocol type into packets of another protocol type. This strategy is useful when

two computers using IPv6 must send packets to each other through an IPv4 region of a

network. To transverse such a region, the packets must have an IPv4 address, so the

IPv6 packets are encapsulated into IPv4 packets as they enter the region, and may be

unencapsulated when they leave the region, just as if they had entered a tunnel that

passes through the region. The IPv4 packets that encapsulate the IPv6 packets are

readily identified by their protocol value of 41.

There are two basic types of transition tunneling, automatic tunneling and

configured tunneling. There are, of course, other uses for tunneling such as connecting

intranets through the Internet as is done with virtual private networks (VPNs). As we

shall see, the experimental IPv6 test bed backbone, the 6Bone, is based on tunneling

techniques.

3.3.l Automatic Tunneling

When the destination machine has an IPv6 address in the DNS, tunneling occurs

automatically and no further configuration is needed. The source transmits an 1Pv6

packet using the 1Pv6 address as the destination address. If the packet reaches the

boundary of an 1Pv4 network, the router encapsulates it in an 1Pv4 packet using the IPv4

address of the destination host. The destination host's 1Pv4 address is embedded in the

1Pv6 address and so is readily derived. When the destination host receives the packet, it

reads the 1Pv4 header and discovers through the protocol field value that the packet

70

contains an encapsulated IPv6 packet. This packet is passed to the IPv6 software for

processing. Figure 3.2 illustrates this process.

1Pv6/1Pv4
Host

. - > P.aY!oaci
...............

IPV4
Region

Roi« ..

1Pv4 Header

ler

1Pv6/1Pv4
Host

1Pv4 Header

Figure 3 .2. Automatic Tunneling.

Automatic tunneling is useful for host-to-host communication and for router-to-host

communication where dual stack computers must transmit over IPv4 infrastructure.

3 .3 .2 Configured Tunneling

When a destination node does not support an IPv6 compatible address, the DNS

returns a non-compatible IPv6 address to the sender. In this situation, the source node

sends the IPv6 packet using that non-compatible address. When this packet must transit

a IPv4-only region of the Internet, the router at the boundary of the region is configured

to encapsulate the IPv6 in an IPv4 packet using its own address as the source address

and the address of another router at the far end of the region as the destination address.

71

The second router decapsulates the packet and sends it on through the IPv6 region of the

Internet where the destination host resides. The destination host, of course, processes

the IPv6 packet normally. Figure 3.3 illustrates configured tunneling.

1Pv6
Host

D

............
-:-:-:.:-:-:.:.:.:.:-:.: .

pay16ad

1Pv4
Region

Ra.tar

1Pv4 Header

..................

.••.. · -...................... .

.

• • • • • f>C}yl()~cf • • • · • •

Figure 3.3. Configured Tunneling.

1Pv6
Host

This type of tunneling is used for host-to-router and router-to-router

communication since the router at the far end of the IPv4 region of the Internet must

decode the 1Pv4 packet and forward it to its ultimate destination. There is no

relationship between the address of the router and the final destination address.

Therefore, the address of the tunnel end point router must be configured manually at the

tunnel entry point.

72

3.4 Header Translation

Header translation will become necessary when the greater part of the Internet has

completed the transition to IPv6. The relevant situation is when the source wants to use

1Pv6, but the destination can't understand it. Tunneling doesn't work here because the

packet must be in the 1Pv4 format in order for the destination to understand it. In this

situation, the IPv6 header must be translated into an IPv4 header and then reattached to

the payload. Figure 3.5 illustrates this situation.

1Pv6
Host

1Pv4 Header

.................. ·.··.·.·p··.·.·c.,·.·.·.·.d·.·. ··.
••• ay oa • ••

Ro let

1Pv4 Header

.

·• P:ayl()aff •• ···•·

Figure 3.4. Header Translation.

1Pv4
Host

1Pv4 Header

Header translation uses the mapped address to translate an 1Pv6 address into an

1Pv4 address (See section 2.2.7). The following steps define the transformation of an

IPv6 packet header into an IPv4 packet header:

(1) The IPv6 address is changed to an IPv4 address by extracting the rightmost 32

bits.

73

(2) The value of the IPv6 priority field is discarded.

(3) The type of service field in IPv4 is set to 0.

(4) The checksum for IPv4 header is calculated and inserted into the header checksum

field

(5) The IPv6 flow label is ignored.

(6) Compatible extension headers are converted into options and inserted into the

IPv4 options field.

(7) The length of the IPv4 header is calculated and inserted into the length field.

(8) The total length of the IPv4 packet is calculated and inserted into the total length

field.

3.5 The 6Bone

At the time that the new protocol specifications were being implemented into

actual code, some sort of test bed was thought necessary, initially for testing of

standards and implementations and then later for testing transition and operational

procedures. Although it turns out to be fairly easy to deploy on a stand-alone network,

IPv6 is an Internet protocol and requires a real-world testing platform upon which to

work out issues and give the software a rigorous workout.

The successful experience with the Mbone multicast test bed backbone, which was

deployed in the spring of 1992, was fresh in the minds of the IETF engineers. A similar

tunneling strategy, usually called 6to4 tunneling, was developed for the 6Bone, as was

discussed in the previous section. The 6Bone was born during the IETF-Montreal

meeting of 1996, and initially implemented in June and July of that year with tunnels

between UL/PT, NRL/US and CISCO/US and between UNIC/DK, G6FR and

WIDE/JP. How much it has grown is shown in Figure 3.5.

74

Figure 3.5. The 6Bone Backbone at Present.

In Thailand, the following organizations are currently maintaining a presence on

the 6Bone: the Communications Authority of Thailand (CAT), Internet Thailand,

Loxley Information Services, the National Electronics and Computer Technology

Center (NECTEC) and Samart.

75

The 6Bone is an informal collaborative project that offers best-effort delivery for

IPv6 over both tunnel links and native links. Because the purpose is strictly for testing,

there are no service-level agreements among participating organizations. The 6Bone is

conceived of as a time-limited project that will go out of business by common

agreement as the production 1Pv6 Internet comes into service and becomes sufficiently

extensive and trusted.

It is important to note that the 6Bone does not use the 1Pv6 production Internet

address structures, but rather addresses allocated in RFC 1897 (Hinden and Postal

1996). These are considered test addresses, though any traffic to or from these

addresses is (and will remain) valid without any limitation. These addresses start with

the prefix 3FFE: :/16 as compared to the 2001: :/16 range given to non-test providers.

To connect to the 6Bone, a provider is required to connect to the service, but since

these are very scarce at present, a convenient work-around has been established. The

reserved 1Pv4 address 192.88.99.1 has been set aside for IPv6 tunneled traffic. The

1Pv4 backbone is configured so that any 1Pv4 traffic that is sent to this address will be

routed to the nearest 6to4 relay. These relays have been constructed to decapsulates

6to4 packets and route them on the 1Pv6 backbone as well as performing the reverse

process to packets on the return trip.

In order to accomplish this, a static 1Pv6 address is required. This will consist of

the network prefix, which for 6to4 tunnels is 2002::/16, and the 112-bit host suffix. The

first two blocks of four hexadecimal digits each are the unique global IPv4 address

represented in hexadecimal. Local gateways usually are configured with the manual

suffix ::1. As an example, the 1Pv4 address 209.81.9.15 produces the 1Pv6 address

2002:D 151:90F::1.

76

Three kinds of 6to4 connections are possible. The first two handle the traffic

between an IPv6 host and a 6to4 relay in either direction over IPv4 regions of the

network. The third kind is between 6to4 IPv6 addresses. These connections are used

within IPv6 clouds on the Internet so that a packet can pass from one 6to4 relay to

another at the far end of the region where it is, in tum, once again encapsulated as an

IPv4 packet for transmission to the destination over IPv4 links.

The fact that a static IPv4 address is required is a major problem with this scenario

from the perspective of this project. Static IPv4 addresses are scarce, expensive and

increasingly difficult to acquire now that NAT and DHCP are so widely deployed.

Parenthetically, 6to4 tunneling will not work at all from behind a NAT server, or for

that matter, from behind an IPv4 firewall. The next section discusses a solution to the

problem of accessing IPv6 with dynamically assigned IPv4 addresses.

3.6 The Tunnel Setup Protocol and Freenet6

Since there are as yet no commercial IPv6 service providers and it is so difficult to

obtain static IPv4 addresses, users interested in experimenting with IPv6 developed a

free and automated tunneling service that allows any individual or organization to

connect with the IPv6 Internet. This service is named Freenet6.net. It is currently

operated by Viagenie, a Quebec based consulting company, as a free, volunteer, best

effort based service.

Freenet6 is software that is based on the tunnel broker concept set forth in RFC

3053. This software uses the Tunnel Setup Protocol (TSP) to negotiate the

establishment of a tunnel between a client, which may be a host or a router, and the

tunnel server. In addition to the tunneling service, the TSP server provides a large

address space for routers, usually /48, which yields 16 bits of subnet addresses (up to

65,536 subnets), each of which may have up to 264 nodes (64 bits). This is astounding.

77

Just one Freenet6 router account offers more address space than the entire present-day

Internet.

This software automatically handles the changes in the configuration of the tunnel

whenever any of the endpoints of a connection change their IPv4 address. This is

accomplished by the client-side software sending updated and authenticated updates to

the server who maintains the account information. This relieves the problem of

changing addresses due to DHCP assignment and makes dial-up access to the IPv6

Internet possible.

Freenet6 client node software is available for Cisco IOS, FreeBSD, GNU/Linux,

NetBSD, OpenBSD, Solaris and Windows. The process of obtaining, installing,

configuring and operating this software will be discussed in sections 4.5 and 4.6.

78

IV. THE 1Pv6 WEB SERVER PROJECT

4.1 Requirements Analysis

The requirements for this system are extremely simple because this project is

simply an exercise in making a system serve web pages using the 1Pv6 protocol suite.

Formally, the system must meet the following requirements.

(1) All necessary software must be installed. It may either be compiled from source

code or installed from pre-compiled binaries.

(2) The software must interoperate successfully. This implies that it should actually

work using 1Pv6 protocol packets. This must be demonstrated using Ping,

Traceroute and packet dump utilities.

(3) 1Pv6 capable web server and web browser software must interact over the 1Pv6

experimental backbone (the 6Bone). These pieces of software must successfully

serve and retrieve web pages respectively.

The necessary software will include an appropriate operating system with an 1Pv6

IP protocol stack, the Freenet6 utility appropriate to that operating system, an 1Pv6

enabled HTTP server, an 1Pv6 enabled web browser and a set of testing utilities that are

compatible with the new protocol.

Ultimately, this project may be considered successful with regard to these

requirements when the 1Pv6 website set up on one machine connected to the 6Bone over

a dial-up connection serves web pages to another 1Pv6 enabled machine connected to

the 6Bone over a separate dial-up connection.

79

4.2 The Existing System

The existing system is a small network of four computers that the writer uses for

programming and experimentation. It might be thought of as a small computer

laboratory for educational use. The specifications of the network capable computers in

the existing system are listed in Table 4.1.

Table 4.1. Computer Hardware Specifications for the Existing System.

CPU Memory Hard Disk Network Card Comments

Intel Pentium III 256MB 40MB Ethernet 101100 Built at Pantip Plaza
1800 MHz Allied Telesys
Intel Pentium III 256MB 6MB Ethernet 10/100 Dell Optiplex GXl
460MHz Internal
DEC Alpha 128MB 4MB Ethernet 10
166 MHz DEChip 21040
Intel Pentium III 96MB 6MB Ethernet 10/100 Toshiba Laptop
330 MHz PCM CIA PCMCIA Modern

Additional peripherals used in the existing system include:

(1) Ethernet Switch: Surecorn EP808x, 8 port.

(2) Ethernet Hub: Surecorn 505ST, 5 port.

(3) External Modern: Lernel MD-56K.

(4) KVM Switch: Jr. Super Commander, 4 station.

(5) Ethernet Card: Billionton PCM CIA 10/100 Base

(6) Ethernet Card: Allied Telesyn AT2500 10/100

The computers in the existing system are configured as disk partitioned dual-boot

systems with the exception of the DEC machine, which can only run on GNU/Linux

because no current Microsoft product supports the 64-bit Alpha processor. The dual-

80

boot configuration is supported by the Partition Magic partitioning utility software.

Table 4.2 shows the current systems operating system configuration.

Table 4.2. Operating System Configuration of the Current System.

Machine First Operating System Second Operating System

Intel Pentium III SuSE 8.2 Linux Windows 2000
1800 MHz Professional Edition Professional
Intel Pentium III BSD 4.4 Windows 98
460MHz SE
DEC Alpha Red Hat Linux/Alpha None
166 MHz 4.2
Intel Pentium III SuSE Linux 7.1 Windows 98
330 MHz Professional Edition SE

These computers are all wired to the Ethernet switch using category 5 cables with

RJ45 connectors. The network currently uses the IPv4 TCP/IP protocol suite. The

Windows 2000 machine has an operational Internet Information Server (IIS) setup in

Windows 2000 partition. The DEC Alpha machine has an operational Apache web

server setup under Red Hat Linux. Neither of these server software suites is IPv6

compatible. The Netscape, Internet Explorer and Opera web browsers are available on

all Windows partitions, while the Netscape, Opera, Mozilla, Galeon and Konqueror

browsers are available on the GNU/Linux and BSD partitions. Of these, only the last

IPv6 capable in the versions presently installed on the system. Connection to the

external Internet is by way of the external modem, which may be attached to any of the

machines, or by way of the PCM CIA modem in the laptop. Connection is through dial-

up accounts held at KSC and Assumption University. There is one telephone line

available in the lab room.

81

4.3 Platform and Software Selection for the Proposed System

This section discusses the hardware available and the software choices that must

be made for an experimental implementation of a web server over the IPv6 Internet.

The hardware assets are fixed by what is available in the writer's small laboratory, but

the software choices are considerable. A feasibility analysis, a cost analysis, a candidate

system matrix and a discussion of the selection will be presented in the following

sections.

4. 3 .1 Hardware for the Proposed System

The DEC Alpha machine is quite an antique and is only capable of running

GNU/Linux. Unlike Intel machines, the Alpha uses a firmware bootstrap system that is

very difficult to modify safely. The 1800 MHz machine from Pantip Plaza is a

production machine that is needed for other critical uses. For these reasons, the

Optiplex will be employed as the web server using the external 56K modem. Since

there is only one telephone line installed in the laboratory room, the laptop will be

configured as the client because it can be transported to another location in order to

connect with the server over a separate PPP dial-up connection to the 6Bone. For initial

site-local testing, the available Ethernet switch will be used. The architecture of the

proposed system will be examined further after a discussion of software selection.

4.3.2 Candidate Operating Systems for the Proposed System

Three candidate operating systems will be considered: FreeBSD, GNU/Linux and

Microsoft. These are all readily available in Thailand and are stable and mature. In

order to compose a four-way candidate system matrix, two different IPv6 stacks will be

considered for the GNU/Linux option. There is a version of Solaris available for the

Intel x86 architecture, but it is excluded from consideration from the matrix for reasons

of unfamiliarity. The operating systems themselves will be discussed first.

82

,,_.. G ' . "' L., A
~:.. ~aon.i:! s · mrn:ry, u

FreeBSD is an offshoot of the Berkeley Software Distribution of Unix. As the

name implies, it is freely distributed and its source code is included with the binary

distributions. Other members of the BSD family, such as NetBSD and Open BSD, are

not considered because they are commercial products and rather expensive. At the

outset of the project, FreeBSD is already installed on the Optiplex machine. This

installed distribution, FreeBSD 4.4, was obtained, quite legally, from Pantip Plaza for

about $42, including a large reference book.

GNU/Linux needs little introduction. It is a freely available Unix clone, which,

contrary to the current allegations of the SCO Group, does not employ proprietary Unix

source code. The term Linux by itself refers only to the operating system kernel, so

GNU/Linux is used in this paper to give credit to the Free Software Foundation's GNU

project for all the many utilities and applications that they have made available to the

world. As an operating system is much more than just the kernel, this nomenclature

seems only just.

There are a large number of GNU/Linux distributions that vary in terms of the

number and variety of software packages included, the installation scripts provided and

the look and feel of the user interface. Although historically there were differences in

the directory structure among distributions, a standard structure has been negotiated and

is currently adhered to in general. The most well known distributions are Red Hat,

SuSE and Debian. The writer has used the German SuSE distribution for a number of

years because of its extensive provision of software packages and ease of installation.

Red Hat is also a well-engineered distribution that is very popular in the US. Debian is

a purist's distribution that is technically excellent, but contains no commercial or

restricted software packages. Further discussion will limit the GNU/Linux option to be

83

one of the recent SuSE distributions because its solid Teutonic engineering has proven

satisfactory in the past. SuSE Professional 8.2 was purchased previously for $69 USD.

Microsoft Windows offers three products that can support an IPv6 stack: Windows

2000, Windows XP and Windows 2003 Server. Windows 2000, however, does not

supply a native version 6 stack as it is distributed, and thus requires the downloading

and compilation of a patch. As this would entail the additional expense of the purchase

of compiler software, Windows 2000 is excluded from consideration. It is interesting to

note, however, that this patch is delivered as source code, which is a breathtaking

departure from the usual Microsoft policy.

Of the two remaining Microsoft operating systems, Windows 2003 Server is

considered by Microsoft itself to be the product of choice and so will be the option to be

considered here. The list price for Windows 2003 Server is $999 USD for up to five

processors. This is the cheapest package available, although street prices may be lower.

4.3.3 Available IPv6 Protocol Stacks

Microsoft provides an IPv6 stack integral to its Windows 2003 Server product.

This is no longer considered a beta product, although it is difficult to assess the relative

maturity of the stack because no recent test results are available.

Open source IPv6 software is largely the product of a series of Japanese

initiatives. The WIDE IPv6 working group was formed in 1995 for the purpose of

experimenting with and deploying IPv6. As the specification was verified and

interoperability became common, it was decided that the WIDE working group should

focus on technical research, and a new implementation group, the KAME Project, was

formed for implementation purposes. The KAME Project is a combined effort of a

consortium of companies: Fujitsu, Hitachi, the I.I.J. Research Laboratory, NEC,

84

Toshiba and Yokogawa Electric. Their code is perhaps the most solid and mature code

available. It is released under the BSD copyright.

For the purposes of conformance and interoperability testing, another group, the

TAHI Project was also initiated in 1998. The TAHI group works closely with the

WIDE working group and the KAME Project in providing verification technology and

quality control. Yet another Japanese consortium that is closely associated with these

efforts is the USAGI project, whose goal is to provide a quality IPv6 protocol stack for

GNU/Linux based systems. Members include the WIDE Project, CRL, GLUON

PARTNERS, INTEC, Toshiba, Hitachi, NTT, Yokogawa Electric, the University of

Tokyo and Keio University. This project started in October of2000.

The existing (version 2.4.5) Linux kernel also has its own native IPv6 protocol

stack, but at that time, it was not considered as mature as the KAME stack or the

Windows 2000 experimental stack (Haddad 2002) because of fluctuations in responsible

personnel in the Linux development team. The USA GI stack is essentially a port of the

KAME BSD stack to the GNU/Linux platform. Thus the open source stacks can be

ordered as KAME, USAGI and the Linux kernel IPv6 stack in terms of stability,

functionality and maturity. The deployment of the USAGI stack on GNU/Linux will

require that the kernel source code be patched and recompiled.

The provenance of these pseudo-acronyms is of passing interest. In the Japanese

language, KAME is the word for turtle or tortoise, and USAGI is the word for rabbit or

hare. The word TAHI signifies a field day or track meet. Open source developers in

Japan seem to be having an Aesopian field day indeed.

4.3.4 HTTP Server Software

To some extent, the selection of web server software is dependent on the operating

system chosen. For example, Microsoft Internet Information Server (IIS) runs only on

85

Microsoft operating systems, and is therefore not a consideration if an alternative

operating system is chosen. The Apache web server software package is available for

all of the hardware platforms under consideration. Other web server software does

exist, but since IIS and Apache currently have a combined market share of

approximately 90%, these other server products will not be considered. Should

Windows 2003 server be chosen, IIS is bundled with the operating system. In order to

install Apache on such a system, there are freely available binary builds of the software,

but this would require a reasonably large download. Since IIS is native to the Windows

environment, it would seem to be the web server software of choice for that platform.

Apache 1.3.8 comes bundled with the SuSE 8.2 distribution, both as source code

ready for compilation using the free GNU compiler (GCC) and as a binary RPM (Red

Hat Package Manager) package, but the level of support for 1Pv6 in this version is

marginal. It is likely that a download and compilation of Apache2 would be required.

The BSD option would require a download of the program source code, which is

smaller than the binary code, but compilation would be required.

4.3.5 Candidate System Feasibility Analysis

Four candidate systems will be considered for this project:

(1) Candidate 1: Windows 2003 Server and IIS web server software

(2) Candidate 2: SuSE Linux 8.2 Professional using the kernel 1Pv6 stack and Apache

web server software

(3) Candidate 3: SuSE Linux 8.2 Professional using the USAGI 1Pv6 stack and

Apache web server software

(4) Candidate 4: BSD 4.5 using the KAME 1Pv6 stack and Apache web server

software.

86

These four choices seem to be representative of the range of choices available for

the rather low-end server hardware that is available. It is perhaps regrettable that the

Sun Solaris operating system is not proposed, but the personnel available for this

experiment have no experience with Solaris whatsoever, so its feasibility is too

questionable to justify inclusion. Table 4.3 gives the Candidate.

Table 4.3. Candidate Matrix for the Proposed System.

Characteristics Candidate 1 Candidate 2 Candidate 3 Candidate 4

Benefits Integrated Inexpensive. Inexpensive. Inexpensive.
commercial Integrated Integrated Most stable
system. commercial commercial and mature
Installation system. system. IPv6 stack.
support Installation Installation
available. support support

available. available.
IPv6 Stack Acceptable
already in the IPv6 stack.
kernel. Familiar
Familiar system.
system.

Disadvantages Expensive. Least stable Must patch and Lacks
Lacks source and mature recompile the commercial
code. IPv6 stack kernel installation
Unfamiliar support.
system. Unfamiliar

system.
Hardware Existing Existing Existing Existing
requirements hardware is hardware is hardware is hardware is

sufficient. sufficient. sufficient. sufficient.
Software Windows 2003 SuSE 8.2 SuSE 8.2 Free BSD 4.5
requirements Server Professional Professional KAMEIPv6

Freenet6 Freenet6 USAGI kernel stack
download. download. patch download.
Utilities Utilities download. Apache
package package Freenet6 server
download. download. download. download.

Utilities Freenet6
package download.
download. Utilities

package
download.

87

It should be noted that these benefits and disadvantages vary across several

relevant factors including cost, availability of installation support, maturity and stability

of the IPv6 stack, difficulty of stack installation and previous familiarity with the

system. The lack of source code is a disadvantage in a system whose purpose is

instructional.

Since cost is an extremely important factor, Table 4.6 lists the projected costs for

each candidate system. The cost of already installed components is included.

Table 4.4. Projected Costs for the Candidate Systems (in US Dollars).

Item Candidate 1 Candidate 2 Candidate 3 Candidate 4

Dell OmniPlex 145 145 145 145
Computer
(used)
Toshiba Laptop 525 525 525 525
Computer
(used)
Surecom 56 56 56 56
Ethernet
Switch
Billion ton 40 40 40 40
Ethernet
Card
Allied Telesyn 29 29 29 29
Ethernet
Card
Ethernet Cat5 4 4 4 4
Cables
Lemel External 59 59 59 59
Modem
Apollo 39 39 39 39
PCM CIA
Modem
Operating 999 69 69 42
System

Total 1896 966 966 939

88

The only new cost is $999 USD for the operating system for Candidate System 1.

All other components have been long since bought and paid for. All other necessary

software is either included in the operating system packages or is free for downloading.

The feasibility of the candidate systems will be considered in terms of four

feasibility criteria: Operational Feasibility, Economic Feasibility, Technical Feasibility

and Schedule Feasibility. These criteria are weighted as follows:

(1) Operational Feasibility is factored at 10%. There is no plan to make this system

into an operational production system.

(2) Economic Feasibility is factored at 40%. Funds for this project are extremely

limited.

(3) Technical Feasibility is factored at 20%. It is believed that any of these candidate

systems can attain the minimal operability specified in the requirements.

(4) Schedule Feasibility is factored at 30%. There are time constraints on the

completion of this project that cannot be ignored.

In order to provide support for a reasonable choice among the candidate solutions,

it is useful to examine a Feasibility Matrix. Table 4.5 presents a Feasibility Matrix for

these candidate systems.

89

Table 4.5. Feasibility Matrix for the Candidate Systems.

Feasibility
Weight Candidate 1 Candidate 2 Candidate 3 Candidate 4

Criterion

Operational Operational All All
requirements requirements operational operational
are likely to are likely to requirements requirements
be met. be met. are met. are met.
The current There is some

Operational
10%

level of 1Pv6 concern about
Feasibility operability is whether the

something of kernel 1Pv6
a mystery. stack will

support this
sufficiently.

Score: 80 Score: 60 Score: 100 Score: 100

The Microsoft Not the most Not the most The most
2003 Server

. . . .
economical of mexpens1ve mexpens1ve

operating alternative, alternative, the
system is very but still very but still very candidates.

Economic
expensive. A economical. economical. This software

Feasibility
40% budget might This software This has already

be found for has already software has been
it, but not if been already been purchased in
an alternative purchased in purchased in any case.
exists. any case. any case.

Score: 10 Score: 97 Score: 97 Score: 100

90

Table 4.5. Feasibility Matrix for the Candidate Systems (continued).

Feasibility
Weight Candidate 1 Candidate 2 Candidate 3 Candidate 4 Criterion

It is difficult This is most This IPv6 TheKAME
to ascertain certainly the stack is ported stack is the
the level of least stable from the state-of-the-
technical and mature KAME stack art. Stable,
proficiency of 1Pv6 stack. It for BSD. It reliable and
Microsoft might manage may not have mature.
systems. As to meet the the same level

Technical
20%

this software requirements of code
Feasibility is no longer in but there is no maturity and

beta testing, guarantee. testing.
we can give
thema
cautious
benefit of the
doubt.

Score: 80 Score: 60 Score: 90 Score: 100

No particular This This Although
problems are candidate is candidate is this
foreseen, but very familiar very familiar candidate is
this product is to the person to the person a Unix
not familiar to implementing implementing variety, it is
the person the project the project. not very
implementing Installation Installation familiar to
the project. support is support is the person

Schedule
30%

Installation available. available. implementin
Feasibility support is gthe

available. project.
Details of
compilation
and
installation
will have to
be learned

Score: 90 Score: 100 Score: 100 Score: 85

Ranking
100%

55 86.8 96.8 95.5

91

----- ---------

Thus we see that the SuSE Linux using the USAGI stack narrowly edges out the

BSD with the KAME stack option. This decision is forced by the tight timeline that the

project must follow to achieve schedule feasibility. Nonetheless, such a compromise

should result in a successful implementation. The project will be implemented using the

SuSE 8.2 Professional edition on the server. The server's new 2.4.20 kernel will be

recompiled with the latest USAGI IPv6 stack patch. The client is a very small laptop

that lacks a CD-ROM drive and does not even have a parallel port. As such, software

installation is rather a delicate issue for this machine. However, since the source code

for the 2.2.7 Linux kernel is already on the machine, it is proposed that the USAGI

patch be applied to that kernel in lieu of a complete reinstallation. For reasons that will

be discussed in section 5, Opera version 7.23 was the browser originally chosen for

installation on the client, but circumstances dictated that Mozilla 1.2.1 be used during

the actual installation.

4.4 Design of the Proposed System

With the hardware and software platforms decided upon, design of the system can

proceed. Figure 4.1 depicts the hardware architecture for the proposed system, which

will prove useful in the subsequent discussion of the software architecture.

92

Dell
Optiplex
Apache
Server

PPP Dial-up
Connection

ABAC
Dial-up
Server

Free et6
Tun el
Se er

IPV4 Internet

6Bone
IP\16 Network

Free et6
Tun el
Se er

Dial-up
Server

Figure 4.1. Architecture of the Proposed System.

PPP Dial-up
Connection

The Dell Optiplex machine will have the following software configuration:

(1) SuSE Linux 8.2 Professional kernel recompiled with the USAGI IPv6 stack.

(2) Apache 4.5 HTTP server software.

(3) Freenet6 software utility software configured for the server.

This configuration will allow the server to produce IPv6 address compliant HTTP

responses, which are then converted into native IPv6 packets by the kernel. The

Freenet6 utility manages the encapsulation of the IPv6 packets into IPv4 packets as well

as the account information necessary for the Freenet6 server to manage the association

between the static IPv6 address and the dynamic IPv4 address of the server.

The encapsulated packets are then sent to the ABAC dial-up server via a dial-up

PPP connection through the Lernel 56K modern. The IPv4 header address of the

encapsulated IPv6 packets is that of the Freenet6 server. These packets are routed

through the IPv4 cloud and are decapsulated at the Freenet6 server. As mentioned

above, this server maintains a table that associates the account information of the

Freenet6 client machines with their dynamic IPv4 addresses and their static IPv6

93

addresses. The 6Bone routing architecture is such that these static IPv6 addresses are

automatically routed through the Freenet6 server system for further IPv4 tunneling

processing. The project web server and the project web client will maintain two

different Freenet6 client accounts.

The packets are then routed through the 6Bone cloud, at least theoretically. It is

entirely possible that the Freenet6 server will recognize the destination address in its

own routing table. However, since IPv6 decapsulation has taken place and re-

encapsulation follows, this is not considered detrimental to the requirements of the

project.

After being processed through the IPv6 portion of this journey, the re-

encapsulated packets pass back through the IPv4 portion of the Internet to the KFC dial-

up server that is connected via a separate PPP dial-up connection to the PCMCIA

modern on the Toshiba laptop. This machine uses its own Freenet6 utility software

configured for its own separate Freenet6 account. The packets are processed through a

SuSE Linux/USAGI protocol stack homologous to that in the web server machine, but

compiled separately so that it is properly configured for the different hardware. The

packets are then handed off to an IPv6 compliant Mozilla browser.

In addition, both machines will have three suites of testing utilities installed: the

net-tools collection, the iputils utilities and NetKit. The most important of these tools

are ping6, traceroute6 and tcpdurnp for debugging and exploration of the system.

After implementation of these software and hardware platforms and applications,

the plan is to initially test the software over the installed 10/100 Ethernet LAN. If

successful, the server machine will dial out to its ABAC account and establish a

connection with the Freenet6 server. The client laptop will be taken to another location

and a connection to its Freenet6 server will be established through the KSC dial-up

94

server. The client will then issue an HTTP request to the 1Pv6 address of the project

server. It is hoped that the server will receive this request and send a response through

the paths specified above.

4.5 Implementation of the System

This section describes in rather fine-grained detail the process of gathering

software packages, uncompressing archives and, in some cases, compiling software in a

Unix environment.

The commands discussed below were entered in either full screen console terminal

mode or into a console window in the X Window graphical user interface using one of

several window managers including KDE and Gnome. The default shell interpreter in

GNU/Linux systems is Bash (the Bourne Again Shell), which is an extension of the

original Unix Bourne shell. Other shells are available, notably the C, Z and Tel shells,

but bash is full-featured and reasonably easy to use. It is a revelation to anyone whose

shell programming experience is limited to MS DOS command.com. The frequent use

of the "./" prefix before a command in these examples is a mechanism that forces the

shell to include the current directory in the path.

It goes without saying that all these commands must be executed with root

privileges, as only the superuser should be allowed to delve so deeply in the internals of

the system.

4.5.l Software Installation on the Server

Implementation of the system began with an installation of SuSE Linux 8.2 on the

Optiplex machine. This went very smoothly with no technical problems. However, one

of the difficulties of working with an open source product is that there are not

necessarily good drivers for all hardware. This is especially problematic for those

Ethernet Network Interface Cards that are integrated on the motherboard. The one in

95

the Optiplex was recognized by the SuSE installation software, but the driver installed

did not allow communication on the network. Therefore, an Allied Telesys card was

scavenged from another machine and installed on the Optiplex. It was automatically

recognized by the operating system and the correct driver was installed, again

automatically. The results were quite satisfactory for Ping utility, and with the

proprietary YaST (Yet another System Tool) configuration tool, the Internet services

daemon inetd was properly configured to allow FTP and Telnet to other machines on

the Ethernet network.

A copy of the USA GI 2.4.19 RPM was obtained from the site listed in Appendix

A. The directory location was pub/usagi/stable/package/SuSE/RPMS/20021007/. This

download was quite large, amounting to almost 14 megabytes. It was decided to go

with the RPM package rather than compiling from source code, as the source packages

were two to three times larger.

The RPM package was installed on the server machine quite simply by typing

"rpm -i k_usagi-2.4.19.usagi-20021007.i386.rpm" at the command line. This was not

actually very demanding because the long filename can be completed in the bash shell

interpreter with the tab key. One major benefit of using RPM binaries in GNU/Linux is

that they are automatically checked for library dependencies. In addition, they are much

faster to download and install.

The net-tools, iputils and NetKit utilities packages were also downloaded from

their respective websites (see Appendix A). The net-tools package was a tar.bz2

archive, which was unzipped using the "tar xivf net-tools-l.60.tar.bz2" command. Then

the pre-compilation configuration program was invoked with "./configure.sh config.in".

This configuration utility asked several questions, and the defaults were accepted with

three exceptions: INET6 protocol family, SIT support and build iptunnel and ipmaddr

96

were changed to yes. Then "make && make install" started the compilation and

installation of the package.

The iputils package came as a tar.gz file inside of an RPM package. After running

RPM, the archive was unpacked using the "tar -xzf iputils-ssOOl 110.tar.gz" command.

This package does not have an install utility, so the "make" command by itself invoked

the compiler, and the binary was manually installed m the directory

/usr/local/iputils/bin.

The NetKit package was a tar.gz archive, which was unpacked with the command,

"tar-xzfnkit-0.5.1.tar.gz". The configuration utility was invoked with "./configure",

followed by "make" and "make clean". The resultant binaries were moved to

usr/local/bin.

The latest stable Apache2 server source code (version 2.2.4) was obtained from

the Apache website as another large download of just over 6 megabytes. It was

unzipped using the "gzip -d httpd-2.0.48.tar.gz" command followed by the "tar -xvf

httpd-2.0.48.tar" command. The configuration utility was invoked with "./configure'',

followed by "make" and "make install". The configuration installed the files into the

/usr/local/ apache2/ directory.

These compilations and installations all proceeded normally, and the resulting

software was operational. This was not always the case, as we shall see in the next

section. The testing of the installed server software will be discussed in section 4.6.

4.5.2 Software Installation on the Client

As was discussed in section 4.4, the Toshiba laptop is an ultra-light machine that

lacks a CD-ROM drive and even a fixed parallel port. The original GNU/Linux

installation on this machine required the painstaking process of booting into DOS,

loading of the contents of each installation CD into a dedicated partition of the hard

97

drive and rebooting into the SuSE installer for each of the five installation CDs. In

order to avoid a repetition of this, it was decided to keep the present installation, but to

compile version 2.4.20 of the Linux kernel to replace version 2.2.4 and use that for the

experiment.

The source code files of recent Linux kernels are very large, so it was decided to

use the source code file in the SuSE 8.2 distribution CDs. A Network File System

(NFS), with the Optiplex as the server system and the CD-ROM drive mounted as a

share, was set up to handle the transfer of this large source code file. The file was then

moved into the directory /usr/src/linux-2.4.20 and a symbolic link was made with the

command "ln -s /usr/src/linux-2.4.20 linux." At this point a boot floppy was made as

insurance against an unbootable system. In addition, the actual bootable kernel was

copied to a backup with the command "cp vmlinuz vmlinuz.old", and the following

lines were added to the boot loader configuration file, /etc/lilo.conf:

image = /boot/vmlinuz
root= /dev/hda7
label= old

This addition causes an option to be presented by the boot loader to boot the

original kernel image. This is necessary because the process of compiling and installing

a new kernel overwrites the original kernel.

The kernel was then custom configured using the "./xconfigure" command, which

invokes a graphical menu system for the custom design of kernel components to be

compiled into the new system kernel. This utility offers very fine-grained control over

both internal kernel features and modules that can be dynamically linked to the kernel at

run time. The output of this utility is a configure file that is a long list of C language

#define statements. The actual compilation process requires the regeneration of all the

dependency files introduced by the options that were configured. Thus, the first

98

compilation command is "make dep clean". This can be chained with the compilation,

module linkage and installation commands as follows: "bzlilo modules

modules install". These are commands that are defined in the makefile, which the

Make utility refers to in order to issue compiler commands with the proper arguments.

After issuing this command, the console will display a seemingly endless series of

compiler commands, reports and warnings, which can last for a very long time

depending on the processor speed and memory of the hardware. Anyone replicating this

installation needs to be aware of this and not to interfere with the process until the

system once again displays a command prompt.

This compilation completed successfully and the new kernel booted uneventfully.

The USAGI patch was applied against the new kernel using the steps outlined for the

server in section 4.5.1.

The problem of installing an IPv6 enabled web browser proved to be quite

vexatious. The browsers on the current system could not parse the long IPv6 addresses.

Source code for the Mozilla 1.3 browser was located and a compilation was attempted.

This compilation was a failure because it required a newer set of C and Qt (the

TrollTech Windowing Toolkit) libraries that were available on the machine. This is a

common problem in open source development because the software libraries are

constantly being extended and improved. This writer has worked around this problem

on occasion by symbolically linking the filenames required by the makefile to old

library modules, but this is precarious and often results in unstable or unpredictable

programs. It was felt to be easier to find a browser package that was already compiled

with statically linked Qt libraries than to track down and install the missing libraries.

The Opera browser version 7.19 has a Qt static Linux distribution at their website

(see Appendix A), which was downloaded and installed via the command: "rpm -i

99

opera-7 .23-20031119 .1-static-qt.i386-en.rpm". Once again, Bash filename completion

was appreciated. This browser installation was successful.

The Freenet6 client software was obtained as an RPM package. It was installed on

the server with no problems, but the client had four missing libraries. At this juncture, it

seemed more expeditious to simply install SuSE Linux 8.2 on the laptop than to track

down the missing libraries by hand. This was accomplished with some effort and the

Freenet6 software was installed successfully into the /usr/local/freenet6-client directory.

Two accounts were opened at the Freenet6 site, and the automatically assigned

passwords were emailed to the writer. In passing, it is important to note that two

separate email accounts are necessary, as only one account can be allocated per email

address. The usernames and passwords were cut and pasted into the file

/usr/local/freenet6-client/bin/tsp.conf in both the server and the client machines.

At this point the system was ready for initial testing over an Ethernet network, as

will be reported in the next section.

4.6 Testing the System

4.6.1 Testing the System on an Ethernet LAN

As mentioned in section 4.5.1, IPv4 capabilities were tested with Ping, FTP and

Telnet, and a Network File System was configured. In order to discover the link local

IPv6 addresses on the two machines, the "ifconfig" command was run. This command

displays the configuration of the network interfaces. The results of these dumps are

shown in Figures 4.2 and 4.3 for the server and client respectively.

100

Session Edit View Bookmarks Settings Help

thud:/hoNe/jiN V ifconfig
eth0 Link encap:Ethernet HWaddr 00:30:84:9D:70:4F

inet addr:192.168.0.1 Bcast:192.168.0.255 11ask:255.255.255.0
inet6 addr: fe80: :230:84ff:fe9d:704f/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:!
RX packets:753 errors:0 dropped:0 ouerruns:0 fraNe:0
TX packets:852 errors:0 dropped:0 ouerruns:0 carrier:0
collisions:147 txqueuelen:100
RX bytes:583107 (569.4 Kbl TX bytes:58823 (57.4 Kbl
Interrupt:10 Base address:0x8400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:ZSS.0.0.0
fnet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:!
RX packets:64 errors:0 dropped:0 ouerruns:0 fraNe:0
TX packets:64 errors:0 dropped:O ouerruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:4152 (4.0 Kbl TX bytes:4152 (4.0 Kbl

thud:/hONe/jiN VI
New.,.[j~Shell

Figure 4.2. Server Interface Configuration.

oot@Harle~:lho~e/ji~ > ifconfig
thO Link encap:Ethernet HWaddr 00:10:60:F3:0F:AD

inet addr:192.168.0.99 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::10:60f3:fad/10 Scope:Link
inet6 addr: fe80::210:60ff:fef3:fad/10 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:O errors:O dropped:O overruns:O fra~e:O
TX packets:12 errors:O dropped:O overruns:O carrier:O
collisions:O txqueuelen:100
Interrupt:3 Base address:Ox300

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:4 errors:O dropped:O overruns:O fra~e:O
TX packets:4 errors:O dropped:O overruns:O carrier:O
collisions:O txqueuelen:O

>I •

Figure 4.3. Client Interface Configuration.

101

The server was configured with the IPv6 address FE80::230:84FF:FE9D:704F/64

for the ethO interface, while the client configured itself with two 1Pv6 addresses for its

ethO interface. The address that it uses in practice is FE80::10:60F3:FAD.

Initial testing of the 1Pv6 connectivity was performed from the client to the server

using the "ping 6" command along with the link local 1Pv6 address. The result of this

command with the manually entered 1Pv6 address is shown in Figure 2.4:

oot@Harley:/home/jim > ping6 fe80::230:84ff:fe9d:704f
arning: no SO_TIMESTAMP support, falling back to SIOCGSTAMP
ING fe80::230:84ff:fe9d:704f(fe80::230:84ff:fe9d:704f} from fe80::10:60f3:fad :!
56 data bytes I
4 bytes from fe80::230:84ff:fe9d:704f! icmp_seq=O hops=64 time=1.264 msec I
4 bytes from fe80::230:84ff:fe9d:704f! icmp_seq=1 hops=64 time=622 usec
4 bytes from fe80!!230!84ff:fe9d!704f! icmp_seq=2 hops=64 time=612 usec
4 bytes from fe80!!230:84ff:fe9d:704f: icmp_seq=3 hops=64 time=617 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=4 hops=64 time=611 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=5 hops=64 time=625 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=6 hops=64 time=616 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=7 hops=64 time=656 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=B hops=64 time=661 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=9 hops=64 time=664 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=10 hops=64 time=660 usec
4 bytes from fe80::230:84ff:fe9d:704f: icmp_seq=11 hops=64 time=619 usec

--- fe80!!230!84ff:fe9d:704f ping statistics ---
12 packets transmitted, 12 packets received, 07. packet loss
ound-trip min/avg/max/mdev = 0.61110.68511.264/0.177 ms
oot@Harley!/home/jim >I

Figure 4.4. Connectivity Test from Client to Server.

..

..

...

The Tcpdump utility was used to capture a dump of all the 1Pv4 packet headers

during a Ping session for comparison of a similar dump of 1Pv6 packet headers during a

ping session. These are of interest because they illustrate the packet header contents

that were discussed extensively in section 2.3. The dumps are found in Appendix B.

102

Needless to say, typing in a full IPv6 address is laborious. Since there is no DNS

server configured at this point, these addresses were aliased to a host name in the

/etc/hosts files of the two machines. In addition, as we shall see later, these aliases can

be used in the browser address window. The /etc/hosts file of the client computer is

shown in Figure 2.5.

oot@Harley:/etc > more hosts

hosts

S\;Jntax:

This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly
used at boot time~ when no name servers are running.
On small systems~ this file can be used instead of a
"named" name server.

IP-Address Full-Qualif ied-Hostname Short-Hostname

special IPv6 addresses

127.0.0.1
192.168.0.1
192.168.0.20
192.168.0.22
192.168.0.32
::1

localhost
thud.davidson thud
Big-Momma.Davidson Big-Momma
alpha alpha.Davidson alpha.davidson alpha.local
biker biker.davidson Biker biker.local biker.local
localhost ipv6-localhost ipv6-loopback
ipv6-localnet
ipv6-mcastprefix
ipv6-allnodes
ipv6-allrouters

f02!!3 ipv6-allhosts
e80!!230!84ff:fe9d:704f thud6

127.0.0.2 Harley.Davidson
oot@Harley:/etc > I

Harley

Figure 4.5. Aliases in the etc/hosts File.

..

Using these aliases in the etc/hosts file, Figure 4.6 shows a Ping6 interaction that

is much easier to type.

103

St Gabriel's Library, Au

oot@Harley:/etc > ping6 thud6
arning: no SO_TIMESTAMP support, falling back to SIOCGSTAMP
ING thud6(thud6} 56 data bytes
4 bytes from thud6: icmp_seq=O hops=64 time=645 usec
4 bytes from thud6: icmp_seq=1 hops=64 time=607 usec
4 bytes from thud6: icmp_seq=2 hops=64 time=600 usec
4 bytes from thud6: icmp_seq=3 hops=64 time=602 usec
4 bytes from thud6: icmp_seq=4 hops=64 time=612 usec
4 bytes from thud6: icmp_seq=5 hops=64 time=601 usec
4 bytes from thud6: icmp_seq=6 hops=64 time=600 usec
4 bytes from thud6! icmp_seq=7 hops=64 time=601 usec
4 bytes from thud6: icmp_seq=8 hops=64 time=600 usec
4 bytes from thud6: icmp_seq=9 hops=64 time=602 usec
4 bytes from thud6: icmp_seq=10 hops=64 time=599 usec
4 bytes from thud6: icmp_seq=11 hops=64 time=612 usec

--- thud6 ping statistics ---
12 packets transmitted, 12 packets received, 0% packet loss
ound-trip min/avg/max/mdev = 0.599/0,606/0.645/0.032 ms
oot@Harley:/etc > I

DNew.I

Figure 4.6. Ping with Aliased IPv6 Address.

The next testing step was to try the Apache2 server on the loopback address. It

should be noted here that the SuSE Linux installation program installed Apache 1.3.27

as the default web server, and that this configuration cannot be removed without altering

dependencies. Since the server does not run at start up, this can be overcome by moving

to the /usr/local/apache2/bin/ directory and typing "./apachectl start". Using the Mozilla

1.2.1 browser that came with the distribution, the server was first tested for its IPv4

address and the aliased local host value of ipv6-localhost. The result of the latter test is

shown in Figure 4.7.

104

ti Home ; EJBoof<markS ~ The Mozilla or... ";:;,. susE - The u1i...

If you can see this, it means that the installation of the Apache web server software on this system was successful.
You may now add content to this directory and replace this page.

..:.::::==:::::::.J

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact
the person responsible for maintaining this server with questions. The Apache Software Foundation, which
wrote the web server software this site administrator is using,, has nothing, to do with maintaining, this site and cannot
help resolve configuration is sues.

.-. ,, ,,
·-----------··------~-----~-----~-

The Apache documentation has been included with this distribution.

You are free to use theimag,e below on an Apache-powered web server. Thanks for using, Apache!

Figure 4.7. Apache Test Page for the Address ipv6-localhost.

Using the actual loopback address required some research as the browser is

confused by the colons in the IPv6 address. In IPv4 addresses, the colon is used to

separate the port number from the address, e.g. 192.168.0.1 :80. The solution is simply

to surround the IPv6 address in square brackets, e.g. [:: 1] for the loopback address. This

technique is shown in Figure 4.8.

105

file gait 'j_iew §.o !lookmarks Iools :tllnciow J:!elp

If you can see this, it means that the installation of the Apache web server software on this system was successful.
You may now add content to this directory and replace this page.

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact
the person responsible for maintaining this server with questions. The Apache Software Foundation, which
VlI'ote the web server software this site administrator is using, has nothing to do with maintaining this site and cannot
help resolve configuration issues .

..

The Apache documentation has been included with this distribution.

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

~@[):Done
... _ "-·---- .. --··

Figure 4.8. Apache Test Page for the Address [::1].

These tests included following the documentation hyperlinks. Everything

functioned normatively, so installation of the web server was considered successful.

The next step was to try to serve pages over the Ethernet network. The result is shown

in Figure 4.9.

106

.e,ookmarks Iools

If you can see this, it means that the installation of the Apache web server software on this system was successful.
You may now add content to this directory and replace this page.

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact
the person responsible for maintaining this server with questions. The Apache Software Foundation, which
wrote the web server software this site administrator is using. has nothing to do with maintaining this site and
cannot help resolve configuration is sues.

The Apache docmnentation has been included with this distribution.

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

Figure 4.9. IPv6 Web Page over an Ethernet Network.

This demonstrates a successful service of web pages over an Ethernet LAN using

the IPv6 enabled web server and the Mozilla 1.2.1 browser. It should be mentioned that

there were problems with configuration, and the web service was only sporadically

successful. Further investigation will be required to resolve the issue of dependable

service.

The first portion of the project requirements has now been accomplished. The

next section will discuss the testing of the system over the IPv6 6Bone network.

4.6.2 Testing the System on the 6Bone IPv6 Backbone

There was a problem establishing a connection to the Freenet6 server over the

ABAC dial up connection. These tunnels cannot pass through a NAT server or through

a firewall that blocks tunneling. It is the hypothesis that something like this is the cause

107

of this failure. The KSC connection was successful, however. An additional account

was opened with Loxley Information Services in order to handle the other side of the

connection.

The initial connection results are displayed in Figure 4.10.

J Session Edit View Bookmarks Settings Help

thud:/etc/init.d/init.d # ./freenet6-client restart
Starting freenet6-clienttspc - Tunnel Server Protocol Client

Loading configuration file

Connecting to server

Using [203.107.214.161 as source 1Pu4 address.
Send request

Process response from server

TSP_HOST_TYPE host
TSP _TUl'll'IEL_Il'ITERFACE sitl
TSP_HOME_Il'ITERFACE
TSP_CLIEl'IT_ADDRESS_IPU4 203.107.214.16
TSP_CLIEl'IT_ADDRESS_IPU6 3ffe:Obc0:8000:0000:0000:0000:0000:4061
TSP_SERUER_ADDRESS_IPU4 206.123.31.115
TSP_SERUER_ADDRESS_IPU6 3ffe:Obc0:8000:0000:0000:0000:0000:4060
TSP_TUl'll'IEL_PREFIXLEl'I 128
TSP_UERBOSE 1
TSP_HOME_DIR /usr/local/freenet6-client
--- Start of configuration script.
cript: linux.sh

sitl setup
Setting up link to 206.123.31.115
This host is: 3ffe:ObcO:B000:0000:0000:0000:0000:4061/128
Adding default route
--- End of configuration script. --
Exiting with return code : 0 CO = no error)

Figure 4.10. Initial Freenet6 Connection.

This connection also set up a new interface on the server host. The interface is

called sitl, which displays the network reachable 1Pv6 Internet address that has been

assigned to the server. The name of this interface refers to the Simple Internet

108

Transition Protocol that was discussed in section 3.1. This result is illustrated in the

ifconfig dump shown in Figure 4.11.

Session Edit View Bookmarks Settings Help

thud:/etc/init.d/init.d # ifconfig
eth0 Link encap:Ethernet HWaddr 00:30:84:9D:70:4F

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::230:84ff:fe9d:704f/64 Scope:Link
UP BROADCAST RUMHIMG MULTICAST MTU:1500 Metric:1
RX packets:85 errors:@ dropped:O ouerruns:0 frame:@
TX packets:104 errors:O dropped:@ ouerruns:0 carrier:@
collisions:@ txqueuelen:100
RX bytes:11684 C11.4 Xb) TX bytes:33842 C33.0 Xb)
Interrupt:10 Base address:0x8400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACX RUMMIMG MTU:16436 Metric:1
RX packets:232 errors:@ dropped:@ ouerruns:0 frame:a
TX packets:232 errors:O dropped:O ouerruns:0 carrier:@
collisions:O txqueuelen:0
RX bytes:96619 C94.3 Xb> TX bytes:96619 C94.3 Xb)

sit1 Link encap:IPu6-in-1Pu4
inet6 addr: fe80::cb6b:d610/64 Scope:Link
inet6 addr: 3ffe:bc0:8000::4061/128 Scope:Global
inet6 addr: fe80::c0a8:1/64 Scope:Link
UP POIMTOPOIMT RUMMIHG MOARP MTU:1480 Metric:1
RX packets:! errors:0 dropped:@ ouerruns:0 frame:0
TX packets:@ errors:0 dropped:O ouerruns:0 carrier:@
collisions:0 txqueuelen:O
RX bytes:72 C72.0 b) TX bytes:0 C0.0 b)

New.,[j ~Shell

Figure 4.11. The sitl Interface Added by Freenet6.

After this initial configuration, a test run was conducted in which the Mozilla

browser attempted to retrieve the Apache test page over the circuit provided by the

Freenet6 service. First, a connection was made to the Internet via the KSC account.

Next the command "./etc/init.d/init.d/freenet6-client restart" was executed with root

privileges. The result of this operation is shown in Figure 4.12.

109

ii
I

I

Session Edit View Bookmarks Settings Help

Starting freenet6-clienttspc - Tunnel Seruer Protocol Client

Loading configuration file

Connecting to seruer

Using £203.107.215.1991 as source 1Pu4 address.
Send request

Process response f ron seruer

TSP_HOST_TYPE host
TSP_TUNNEL_INTERFACE sitl
TSP_HOME_INTERFACE
TSP_CLIENT_ADDRESS_IPU4 203.107.215.199
TSP_CLIENT_ADDRESS_IPU6 3ffe:0bc0:B000:0000:0000:0000:0000:4061
TSP_SERUER_ADDRESS_IPU4 206.123.31.115
TSP_SERUER_ADDRESS_IPU6 3ffe:0bc0:B000:0000:0000:0000:0000:4060
TSP_TUNNEL_PREFIXLEN 128
TSP_UERBOSE 1
TSP_HOME_DIR /usr/local/freenet6-client
--- Start of configuration script.
Script: linux.sh
sitl setup
Setting up link to 206.123.31.115
Renouing old 1Pu6 address 3ffe:bc0:B000::4061/12B
This host is: 3ffe:0bc0:B000:0000:0000:0000:0000:4061/12B
Adding default route
--- End of configuration script. --
Exiting with return code : 0 (0 = no error)

Ne~[I:~ Shell

Figure 4.12. Result ofFreenet6 Configuration during Test Run.

It should be noted that although the client IPv4 address has changed since the

initial configuration run (see Figure 4.10), the client IPv6 address remains static at

3FFE: BC0:8000::4061. Thus, the problem of accessing the 6Bone with dynamic IPv4

addresses has been overcome very elegantly.

Next, an effort was made to test the browser by requesting an IPv6 test page over

the Freenet6 tunnel. Such a page is available from the KAME project. This page

features a graphic of a turtle that is static for IPv4 connections but is animated if the

110

connection is made via IPv6. The connection was confirmed to be an IPv6 connection,

as is illustrated by the two frames of the animation shown in Figures 4.13 and 4.14.

am.11,t~1.113i11,1~i@il=tGtJllW$ WED;

~~·J

d<'lnrlnf, k;:::ime, by ateliermomcng,a

KAME Project is a joint effort of six companies in Japan
to provide a free IPv6 and IPsec(fotbothIPY4.adIPv6) stack for BSD variants to the

• Newsflash! N£W1
o Mareh 8, 2004: A SN AP kit was generated.. For the complete list of changes, chec< here.
o Mareh l, 2004: A SNAP l'Jt was generated. For the complete list of changes, died< here
o Pastne'ivsi'lash

• Latestreleases
(weekly): March 8, 2004 /.le'll

eeBSD4.9-RELEASE, N etBSD 1.6.1, and OpenBS~ 3.4.
o PlatfonnswithKAMEcodcmergedln;

Figure 4.13. First Frame of the KAME Animation.

KA ME Project

d.x.1cmg kom.e: by atelier l!l9filQ_IJA~
KAME Project is a joint effort of six companies in Japan

to provide a free IPv6 and IPsec (fm bothIPv4mdIPW) stack for BSD variants to the
• Newsflash! llf'i!

o M3I'Ch 8, 2004: A SNAP kit was generated. For the complete list of changes, check here.
o March 1, 2004: A ~.N.Af.M was generated.. For the complete list of changes, @_<;_9'.il""'·
o Past newsflash

• Latest releases

Figure 4.14. Second Frame of the KAME Animation

111

;j

This outcome was confirmed by using the Traceroute 6 utility to trace the IPv6

portion of the path over the 6Bone. The result of that test is shown in Figure 4.15.

\ Session Edit View Book.marks Settings

!+'1
thud : /etc/in it . d/i nit. d # traceroute6 www . kaflle. net '·-· 1

traceroute to www.kMe.net C2001:200:0:8902:203:47ff:fea5:3085), 30 hops J11ax, 40 •
byte packets I
1 3ffe:bc0:8000::4060 567.017 fllS 568.187 fllS 579.725 fllS 1

2 Viagenie-gw.int.ipu6.ascc.net C2001:288:3b0::55) 579.798 fllS 589.824 fllS
1

I
599.827 fllS

3 3ffe:b00:c18::6b 629.833 fllS 633.886 fllS 639.878 fllS 1'1

4 3ffe:80a::e 659.874 fllS 669.867 fllS 669.663 fllS

5 2001:2a0:0:bb0a::1 749.217 fllS 759.709 flls 769.847 fllS

6 2001:2a0:(:):bb(:)4::6 774.244 fllS 779.730 fllS 789.326 fllS '.•!'

7 hitachi1.oteJ11achi.wide.ad.jp C2001:200:0:1800::9c4:2) 739.257 fllS 749.811
fllS 749.715 fllS I!

8 pc3.yagaflli.wide.ad.jp C2001:200:0:1c04: :1000:2000) 759.750 fllS 769.812 fllS
779.826 fllS I

9 gr2000.k2c.wide.ad.jp (2001:200:0:4819::2000:1) 789.718 fllS 789.815 fllS 11; ·1

1

99.713 fllS
10 orange.kaflle.net C2001:200:0:8002:203:17ff:fea5:3085) 809.822 fllS 819.630 fll
S 829.810 fllS
thud:/etc/init.d/init.d # 0 Ii'

' l1

...... J

Figure 4.15. Traceroute over IPv6.

The next step was to test the server's global IPv6 address from the client over an

independent link. The server was started and the connection to KFC was initiated.

When the connection was established, the Freenet6 tunnel was set up as above. The

same series of actions were performed on the client from a neighboring location. The

server's global IPv6 address (3FFE:BC0:8000::4061) was typed into the browser's

Universal Resource Location (URL) window, causing an HTTP request to be sent over

the link to the Apache server. The result of this operation is shown in Figure 4.16.

112

file fdlt .}!Jew ~o f).ookmarks Iools .~Jndow !:!!~Ip

If you can see this, it means that the installation of the Apache web server software on this system was successful.
You may now add content to this directory and replace this page.

r···:
l--~v--,~~~~-~~·~~~···~~~-··-----·~·---~-,_.,..,,...,,j

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact
the person responsible for maintaining this server with questions. The Apache Software Folllldation, which
wrote the web server software this site administrator is using, has nothing to do with maintaining this site and cannot
help resolve configuration issues.

The Apache documentation has been included with this distribution.

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

Figure 4.16. IPv6 Web Page Served to a Global IPv6 Address.

The successful outcome of this test fulfills all the remaining requirements for the

project. The Apache server has successfully provided IPv6 HTTP service over both an

Ethernet local area network and the Freenet6 tunnel server to the 6Bone. Additionally,

the browser successfully traversed the 6Bone and retrieved an IPv6 only test page.

With the system thus configured, it is ready for further development as 1s

recommended in section 5.2

113

IV. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

It is absolutely certain that the next generation IPv6 protocol will eventually

overtake and supplant the present IPv6 protocol. Not only does it solve the critical

problems of address space exhaustion and router table collapse that threaten the current

Internet, but it provides well-designed and even elegant solutions to the emerging

requirements of the future Internet.

The question of how soon this transition will occur is somewhat unclear. It is

apparent that the early stages of a production IPv6 Internet are dawning. Most of the

coding, testing and technical implementation has already been accomplished. However,

the actual transition is still at an experimental stage. The software is not really mature;

and we may expect that there will be considerable resistance to such a major change.

There is an old adage that says, "if it isn't broken, don't fix it," which sums up the

attitude that we are bound to encounter.

In answer to that objection, we might reply that if we don't fix it soon, it most

certainly will be broken. Despite such clever stopgap measures as CIDR, NAT and

DHCP, backbone routing tables are seriously strained and the Internet is still growing

exponentially. Furthermore, the vision of a more secure Internet that will allow for the

massive streaming of vast amounts of multimedia and real time applications data

requires that the transition proceed apace.

One of the aims of this project was to tackle the somewhat daunting problem of

designing and assembling an IPv6 capable web server system over the experimental

6Bone without the benefit of a static IPv4 address. To the extent that this was

successful, it is very gratifying. The amount of frustration encountered, however,

114

St. Gabriel's Library, Au

indicates that 1Pv6 implementation is still very much at the beta stage. As commercial

production IPv6 networks come on line, the task of acquiring IPv6 connectivity will

become much simpler, but there will certainly be a need for personnel who are familiar

with the details of such networks.

5.2 Recommendations

When should an organization make the move to 1Pv6? This is extremely difficult

to answer. If an organization has enough 1Pv4 address space and no particular need for

IP integrated security or multicast streams of data, the answer is not very soon. For

such organizations, the gradual transition strategy can be very gentle indeed, allowing

them to make the change one LAN at a time. There is no onus to not changing until the

equipment becomes obsolete. The transition can proceed one machine at a time.

If however, an organization is unable to obtain sufficient globally reachable 1Pv4

addresses or has a need for state-of-the-art real time or multimedia data flows, the

answer is likely to be to make the transition as soon as a commercial production 1Pv6

provider becomes available. Application servers are likely to be among the systems that

are early adopters.

This strategic flexibility during the transition period allows solutions to be

customized according to each organization's individual needs. The only certainty is that

one day, perhaps fairly far into the future, 1Pv4 will be deployed no more.

There are many possible topics of major interest for further study. The writer

intends to further explore setting up a router on the system constructed for this project,

along with the implementation of security and autoconfiguration. On a more general

note, the drive for integration of distributed systems such as the .Net and Java initiatives

immediately raises the question of the degree to which they are IPv6 compliant. There

115

is also a great deal of work to be done in benchmarking and tuning the performance of

1Pv6 compliant software.

Designing networks that take advantage of the umque capabilities of 1Pv6

Intemetworking is one of the future's most interesting challenges.

116

APPENDIX A

LOCATING THE SOFTWARE PACKAGES

Table A.1. URL Addresses for Software Used in the Project

Software Title URL where available

Apache Web Server www.apache.org
Freenet6 Utility freenet6.net
Linux Kernel V 6rpm.j indai.net/v6rpm.html
Mozilla www.mozilla.org
Iputils ftp.inr.ac.ru/ip-routing
NetKit freshmeat.net/proj ects/netki t
Net-tools www.tazenda.demon.co.uk/phil/net-tools
Opera Browser www.opera.com
SuSE Linux www.suse.com
USAGI 1Pv6 stack www.linux.ipv6.org

Table A.2 URL Addresses for Related Organizations

Organization Contact URL

6Bone www.6bone.net
IETF (RFCs) www.ietf.org
1Pv6.org www.ipv6.org
1Pv6 Status Summary www.ipv6forum.com
Kame Project www.kame.net
T AHi Project www.tahi.org
Viagenie www.viagenie.qc.ca
Wide www.v6.wide.ad.jp

117

APPENDIXB

IP PACKET HEADER DUMPS

B.1 IPv4 Ping Headers.

The following are the IPv4 headers from a part of a ping session. They illustrate arp

and echo requests and replies. They were obtained by the command "tcpdump -x >

filename", where the -x signals an octal dump and> indicates that the results are to be

redirected into a file called filename.

21:00:03.087330 arp who-has thud.davidson tell 192.168.0.99
0001 0800 0604 0001 0010 60f3 Ofad c0a8
0063 0000 0000 0000 c0a8 0001 0000 0000
0230 84ff fe9d 704f 8800 64ac 4000

21:00:03.087371 arp reply thud.davidson is-at 0:30:84:9d:70:4f
0001 0800 0604 0002 0030 849d 704f c0a8
0001 0010 60f3 Ofad c0a8 0063

21:00:03.087804 192.168.0.99 > thud.davidson: icmp: echo request
4500 0054 0012 0000 4001 f8e2 c0a8 0063
c0a8 0001 0800 3131 dd03 0000 3ecf e647
0006 d9aa 0809 OaOb OcOd OeOf 1011 1213
1415 1617 1819 lalb lcld lelf 2021 2223
2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
3435

21:00:03.087846 thud.davidson > 192.168.0.99: icmp: echo reply
4500 0054 0951 0000 4001 efa3 c0a8 0001
c0a8 0063 0000 3931 dd03 0000 3ecf e647
0006 d9aa 0809 OaOb OcOd OeOf 1011 1213
1415 1617 1819 la lb lcld lelf 2021 2223
2425 2 627 2829 2a2b 2c2d 2e2f 3031 3233
3435

21:00:04.093844 192.168.0.99 > thud.davidson: icmp: echo request
4500 0054 0013 0000 4001 f8el c0a8 0063
c0a8 0001 0800 1806 dd03 0001 3ecf e648
0006 f2d3 0809 OaOb OcOd OeOf 1011 1213
1415 1617 1819 lalb lcld lelf 2021 2223
2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
3435

21:00:04.093893 thud.davidson > 192.168.0.99: icmp: echo reply
4500 0054 0952 0000 4001 efa2 c0a8 0001
c0a8 0063 0000 2006 dd03 0001 3ecf e648
0006 f2d3 0809 OaOb OcOd OeOf 1011 1213
1415 1617 1819 la lb lcld lelf 2021 2223
2425 2627 2829 2a2b 2c2d 2e2f 3031 3233
3435

118

B.2 IPv6 Ping Headers

The following are the IPv6 headers from a part of a ping session. They illustrate IPv6

neighbor discovery, with its three-way handshake, along with echo requests and replies.

It is of interest to compare these with the ones on the preceding page.

18:30:15.151202 fe80: :10:60f3:fad > ff02::1:ff9d:704f: icmp6: neighbor
sol: who has fe80::230:84ff:fe9d:704f

6000 0000 0020 3aff fe80 0000 0000 0000
0000 0010 60f3 Ofad ff02 0000 0000 0000
0000 0001 ff9d 704f 8700 3433 0000 0000
fe80 0000 0000 0000 0230 84ff fe9d 704f
0101 0010 60f3 Of ad

18:30:15.151292 fe80: :230:84ff:fe9d:704f > fe80::10:60f3:fad: icmp6:
neighbor adv: tgt is fe80: :230:84ff:fe9d:704f

6000 0000 0020 3aff fe80 0000 0000 0000
0230 84ff fe9d 704f fe80 0000 0000 0000
0000 0010 60f3 Ofad 8800 c819 6000 0000
fe80 0000 0000 0000 0230 84ff fe9d 704f
0201 0030 849d 704f

18:30:15.151332 fe80: :10:60f3:fad > ff02::1:fe9d:704f: icmp6: neighbor
sol: who has fe80::230:84ff:fe9d:704f

6000 0000 0020 3aff fe80 0000 0000 0000
0000 0010 60f3 Ofad ff02 0000 0000 0000
0000 0001 fe9d 704f 8700 3533 0000 0000
fe80 0000 0000 0000 0230 84ff fe9d 704f
0101 0010 60f3 Ofad

18:30:15.151851 fe80::10:60f3:fad > fe80::230:84ff:fe9d:704f: icmp6:
echo request

6000 0000 0040 3a40 fe80 0000 0000 0000
0000 0010 60f3 Of ad fe80 0000 0000 0000
0230 84ff fe9d 704f 8000 6555 df06 0000
2b66 d23e e4bl OaOO 0809 OaOb OcOd OeOf
1011 1213 1415 1617 1819 la lb lcld lelf
2021

18:30:15.151887 fe80::230:84ff:fe9d:704f > fe80::10:60f3:fad: icmp6:
echo reply

6000 0000 0040 3a40 fe80 0000 0000 0000
0230 84ff fe9d 704f fe80 0000 0000 0000
0000 0010 60f3 Of ad 8100 6455 df06 0000
2b66 d23e e4bl OaOO 0809 OaOb OcOd OeOf
1011 1213 1415 1617 1819 la lb lcld lelf
2021
2021

119

BIBLIOGRAPHY

1. Bieringer, Peter, The IPv6 Linux HOWTO. Available at: http://www.bieringer.de

/linux/IPv6, Updated January 2004.

2. Bieringer, Peter. "IPv6: The Future of Internet Addresses." Linux Magazine,
(May, 2002): 32-36ff.

3. Black, Ulysses. TCP/IP and Related Protocols, 3rd Edition. NY: McGraw-Hill,
1998.

4. Comer, Douglas E. Internetworking with TCP/IP: Principles, Protocols and
Architectures, 4th Edition. Upper Saddle River, NJ: Prentice Hall, 2000.

5. Conta, A. and S. Deering. RFC 1885: Internet Control Message Protocol
(ICMPv6). December 1995.

6. Delgrossi L. and L. Berger. RFC 1819: Internet Stream Protocol Version 2 (ST2)
Protocol Specification - Version ST2+, August 1995.

7. Deering S. and R. Hinden. RFC 1883: Internet Protocol, Version 6 (IPv6)
Specification, December 1995.

8. Eltz, R. RFC 1924: A Compact Representation ofIPv6 Addresses, April 1996.

9. Feit, Sidnie. TCP/IP: Architecture, Protocols, and Implementation with IPv6 and
IP Security, 2nd Edition. NY: McGraw-Hill, 1997.

10. Forouzan, Behrouz A. Data Communication and Networking, 2nd Edition.
Singapore: McGraw-Hill, 2001.

11. Forouzan, Behrouz A. TCP/IP Protocol Suite, 2nd Edition. Singapore: McGraw
Hill, 2003.

12. Gai, Silvano. Internetworking IPv6 with Cisco Routers. NY: McGraw-Hill, 1998.

13. Gilligan R. and E. Nordmark. RFC 2893: Transition Mechanisms for IPv6 Hosts
and Routers, August 2000.

14. Gouda, Mohamed G. Elements of Network Protocol Design. NY: John Wiley and
Sons, 1998.

15. Haddad, Ibraham. "Linux IPv6: Which One to Deploy?" Linux Journal, no. 96
(April, 2002): 86-90.

120

16. Haddad, Ibrahim and Marc Blanchet. "Supporting IPv6 on a Linux Server Node."
Linux Journal, no. 100 (August, 2002): 100-107.

17. Haddad, Ibrahim and David Gordon. "Apache Talking IPv6" Linux Journal, no.
105 (January, 2003): 86-90.

18. Hinden R. and J. Postal. RFC 1897: IPv6 Testing Address allocation, January
1996.

19. Hinden R. and S. Deering. RFC 2373: IP Version 6 Addressing Architecture, July
1998.

20. Hinden R. and S. Deering. RFC 3513: Internet Protocol Version 6 (IPv6)
Addressing Architecture, April 2003.

21. Huitema C. RFC 1715: The H Ratio for Address Assignment Efficiency,
November 1994.

22. Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice
Hall, 1996.

23. Mogul J. and S. Deering. RFC 1191: Path MTU discovery, November 1990.

24. Thomas, S. A. IPng and the TCP/IP Protocols. NY: John Wiley & Sons, 1996.

25. Thompson S. and C. Huitema. RFC 1886: DNS Extensions to support IP version
6, September 1995.

26. Todd, Peter. "Get IPv6 Now with Freenet6" Linux Journal, no. 105 (January,
2003): 65-67.

121

St. Gahdefs-Library, Au"

	Cover and Title Page
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter I : INTRODUCTION
	Chapter II : IPv4 PROBLEMS AND IPv6 SOLUTIONS
	Chapter III : THE TRANSITION STRATEGY FOR IPv6
	Chapter IV : THE IPv6 WEB SERVER PROJECT
	Chapter IV : CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX : A
	APPENDIX : B
	BIBLIOGRAPHY

