


~\~S (~F~/l) 
St. Gabriel's Library, Au 

DEVELOPMENT OF A COMPUTER SOFTWARE lj'OR PROJECT 
SCHEDULING WITH CRITICAL PATH METHOD (CPM) 

by 
Mr. Waha J unsangsuk 

A Final Report of the Six-Credit Course 
CE 6998 - CE 6999 Project 

Submitted in Partial Fulfillment 
of the Requirements for the Degree of 

Master of Science 
in Computer and Engineering Management 

Assumption University 

July 2002 



Project Title 

Name 

Project Advisor 

Academic Year 

Development of a Computer Software for Project 
Scheduling with Critical Path Method (CPM) 

Mr. YVahaJunsangsuk 

Rear Admiral Prasart Sribhadung 

July 2002 

The Graduate School of Assumption University has approved this final report of the 
three-credit course, CE 6998 PROJECT, submitted in partial fulfillment of the 
requirements for the degree of Master of Science in Computer and Engineering 
Management. 

Approval Committee: 

(Rear Admiral Prasart Sribha u g) 
Advisor 

(Dr. Ch~J~anich) 
Dean and Co-advisor 

July 2002 

(Prof.Dr. Srisakdi Charmonman) 
Chairman 

(Assoc.Prof. Somchai ayamyong) 
MUA Representative 



ABCTRACT 

The purpose of this project is to study the using of the Critical Path Method 

(CPM) for decision making to choose the path of production process. The production 

process will depend on the time of each activity that will show all activities on Gantt 

Chart. This Gantt Chart will show every thing about production process. However, there 

are many factors to do in a production process. 



ACKNOWLEDGEMENTS 

The author wishes to take this oppo1iunity to thank Rear Admiral Prasart 

Sribhadung, the advisor of this project, for his comments and recommendation for this 

course work. 

The author would like to thank all instructors of the Graduate School of 

Computer & Engineering Management of Assumption University for providing their 

valuable knowledge during his study at Assumption University. 

Finally, the author wishes to thank his family for their encouragement 

throughout this course. 

11 



St Gabriel's Library, Au 

TABLE OF CONTENTS 

Chapter 

ABSTRACT 

ACKNOWLEDGEMENTS 

LIST OF FIGURES 

LIST OF TABLES 

I. INTRODUCCTION 

1.1 Background of the Project 

1.2 Objectives 

1.3 Scope and Limitation 

1.4 Deliverables 

II. LITERATURE REVIEW 

2.1 The Critical Path Concept 

2.2 Gantt Charts and Critical Paths 

2.3 Calculating the Critical Path 

2.4 Project Costs and Timing and the Critical Path 

2.5 Windows of Time and the Critical Path 

2.6 Time Estimate Variations 

2.7 Some Principles for Project Managers 

III. THE NETWORK DIAGRAM 

3.1 The Network Diagram 

3.2 Network Conventions 

3.3 Deterministic Time: Estimates 

3.4 A Computing Algorithm 

3.5 Computing ES and EF Times 

lll 

II 

v 

Vil 

1 

2 

2 

2 

3 

3 

6 

6 

11 

12 

15 

16 

19 

19 

23 

28 

30 

34 



Chapter Page 

3.6 Computing LS and LF Times 36 

3.7 Computing Slack Times 38 

IV. FINANCIAL ANALYSIS 41 

4.1 Cost Analysis 41 

4.2 Intangible Benefits 41 

4.3 Break Even Analysis 42 

V. DEVELOPING VISUAL BASIC FOR CALCULATE CRITICAL PATH 
AND TABLE 43 

5 .1 Overview of Visual Basic 43 

5.2 Introduction for Uses CPM Program 44 

5.3 Problem about Visual Basic 49 

VI. CONCLUSIONS 50 

APPENDIX A EXAMPLE SOURCE CODE 51 

BIBLIOGRAPHY 83 

iv· 



LIST OF FIGURES 

Figure 

2.1 Precedence Diagram for a Plant Start-Up Project 5 

2.2 Early Start (Number at Upper Left of Book) and Early Finish (Number 
at Upper Right of Box) Months for the Plant Startup Project Delicate 
in Figure 2.1 8 

2.3 Late Start (Number at Upper Left of Box) and Late Finish (Number at 
Upper Right of Box) Months for Plant Startup Project Depicted in Figure 
2.1 9 

2.4 Composite of Starting and Finishing Months Given in Figure 2.2 and 
Figure 2.3 for the Plant Startup Project 10 

2.5 The Addition of Four Months (a Window of Time) to the Plant Startup 
Project 13 

2.6 A Network-Based Gantt Chart for the Startup Project 14 

3.1 Gantt Chart for Bank Example 20 

3.2 A Simple Project Network Diagram 21 

3.3 An Example Diagram, Activity a Must be Completed Before Activity b 
Can Begin, and Activity b Must Be Completed before Activity c Can Begin 24 

3.4 An Example That Both Activity a and Activity b Would Have to Be 
Completed before Activity c Could Begin 24 

3.5 An Example That Both band c, the Appropriate Network 25 

3.6 An Example That Activities a and b Must Both Be Finished before Either 
Activity c or Activity d Can Start 25 

3.7 An Example That Two Activities Have the Same Beginning and Ending 
Nodes 26 

3.8 An Example Different Uses of Dummy Activities 26 

3.9 An Example, Nodes Are Numbered Typically from Left to Right 27 

3.10 An Example Starting and Ending Arrows 27 

3.11 A Simple Example 28 

v 



Figures Page 

3.12 An Example for Compute the Earliest Starting Time and Earliest Finishing 
Time 31 

3.13 An Example to Determine and Place in the Brackets for Each Activity 31 

3.14 An Example for All Activities, Beginning at the Left Side of the 
Precedence Diagram and Moving to the Right Side 32 

3.15 An Example for The EF Time for an Activity Becomes the ES Time for 
the Next Activity 32 

3.16 An Example to Permits Calculation of the EF Times for These Activities 33 

3.16 An Example that ES for Activity 4-5 is the EF Time of Activity 2-4, 
Which Is 14. Urine this Value, We Fine the EF for Activity 4-5 is 17; 
EF 4-5 = 14 + 3 = 17 33 

3.18 An Example That EF for the Last Activity, 5-6, is 20; EF 5_6 = 19 + 1 = 20 34 

3.19 Example II 35 

4.1 Break Even Analysis 42 

5.1 Flow Chart for End User 44 

5.2 Example Network for Test Program 45 

5.3 The First Page when Run a CPM Program 45 

5.4 Input Number of Activity by Use Figure 5.2 46 

5.5 List of Activity 46 

5.6 Input Times Duration and Set Activity Connection 47 

5.7 Table from Calculates 48 

5.8 Gantt Chart 48 

Vl 



Table 

1.1 A Plant Startup Project 

LIST OF TABLE 

Vll 

Page 

4 



I. INTRODUCTION 

1.1 Background of the Project 

A project constructing the World Trade Center or sending a man to the moon -

shares many characteristics with other types of production processes. We can picture a 

project with the same kind of precedence relationship with which we pictured the line 

flow process. Certain activities must be completed before others begin, and each activity 

can be expected to take a given period of time, just as in other process types. But our 

concern for balance in the factory, so prominent in our thinking about production 

processes, does not trouble us in thinking about a project since a project is, by 

definition, a one-time endeavor and workers can generally expect to work only so long 

on it and then move on to something else. It is typical for a project to employ wildly 

fluctuating numbers of people, many with different skills. We do not worry about 

idleness - construction workers move on to the next project as do space scientists and 

engmeers. 

What does trouble us in a project is getting it done on time, for projects often have 

impo1iant deadlines to meet. Scheduling is thus absolutely critical to the management of 

a project. Several techniques have been developed to highlight the project activities that 

must be accomplished on time (or else risk delaying the entire project) and the activities 

that can be delayed somewhat. One such scheduling technique is called the critical path 

method; what follows is a brief description of its rationale and workings. 



1.2 Objectives 

(a) Developing computer software to calculate Critical path and table 

1.3 Scope and Limitation 

(a) Developing computer software to calculate Critical path and table using 

CPM for choosing a critical path. 

(b) Show Gantt Chart that contains all of descriptions. 

1.4 Deliverables 

(a) Project report 

(b) Computer software for project scheduling with critical path method (CPM) 

2 



II. LITERATURE REVIEW 

2.1 The Critical Path Concept 

As an illustration, let us consider the simplified example of a project many 

companies face - the startup of a new plant. The major tasks involved in a plant startup 

are arrayed and described in Table 2.1. The table makes clear that some tasks cannot be 

started until other tasks (predecessors) have been completed. 

The precedence relationships of the startup can be depicted in a graph or network, 

as shown in Figure 2. 1. This network follows a particular convention known as activity

on-node. This convention is intuitively appealing and somewhat less confusing than the 

alternative convention, known as activity-on-an-ow. 

The key principle of the critical path concept is that a project cannot be completed 

any faster than the longest time path between the project's start and its finish. In Figure 

1 the longest path from the start (project approval) to the finish (plant startup) involves 

the following activities - B, E, H, and K; they take a total of 17 months. The longest 

path between project approval. and plant staiiup is termed the critical path, primarily 

because any delay along this path of activities sets back the entire project. It is this 

critical path that merits the most management attention. 

All the other paths from start to finish enjoy at least a month's slack time, and so 

they can experience delays of varying lengths and still not harm the 17-month 

completion schedule. For example, the next two longest paths after the critical path 

involve the following activities: 

(1) B-E-H-L 16 months 

(2) A-D-G-K 16 months 

3 



Table 2.1. A Plant Startup Project. 

Job Job Immediate Time 

Name Description Predecessors (months) 

A Selection of plant manager - 3 

B Site survey soil test - 1 

c Extension of roads, water, utilities, sewer - 6 

D Selection and purchase of equipment A 2 

E Final engineering plans for construction B 3 

F Employment interviews and hiring A 3 

G Equipment delivery D 9 

H Construction of facility E 11 

I Precise layout of plant D,E 1 

J Institution of management system A 4 

K Worker training F,G,H 2 

L Equipment and system installation G,H,I,J 1 

There can be delays of up to a month on these two paths without setting back the 

entire project. However, note that the first path is very much like the critical path itself; 

it differs only in that activity L is substituted for activity K. The slack in this path then 

can be taken only on activity L (equipment and system installation). If a delay occun-ed 

on any other activity, say H (construction of the facility), the critical path would also be 

affected, and the entire project would be delayed. 

4 



l-'•01ett 
<l.'•f'lll'l,11 

B 

,-· A , F 
. Selection ot plant \ Employmen1 
, mar'll'IQer Rnd manaQe \ .. ( 1n1e1v1ews 
· men1 p111sonnP.t and h1rinQ 

(3 mon1hs\ (J mon1tis) 

; -- - ~- . ' 

o 
G . S1!1P.c11on anrj 

ou•chase or 
eou•pment 
I? monlhsJ 

... Eavrpm"n! dehvl!ty I 
(9 monlMJ 

E 
S•\t• <:ulV<?~ 

Final P.n9mee.,na' 

! '' .. , c6'~~~~~~1~ :• ·7-·-'1 .~ "'", ,mt !'!~I 
f\ .... ,_,,..th• 

11 nl01"1!ll!'.1 

'· c 
E)!ens•cn ol 

l road"!. wale• 
u111o11es sewer 

, 16 monlt)S) 

I 
P•ec•se layovl \ 

o! plant 1 

11 n1on1h) 

j" . 
lns111ut1on 01 
manaQemenl 

systerns 101 control of 
produn1ori 1nv<?nlory 

nurc•1a~ni;; accounr.r~ 

/.C mor11hs1 

K 
Worl<.(!1 
1ra1ninQ 

.,.., , 12 monlhs) 

; 

,· 

Figure 2.1. Precedence Diagram for a Plant Start-Up Project. 

The second path is much more flexible about where its slack can be used up. Only 

one of its activities, K (worker training), is shared with the critical path. Thus its month 

of slack can be used up on activities A, D or G without affecting the critical path in any 

way. 

Other paths, of course, have considerably more slack and can be accomplished at 

a more leisurely pace, if need be. For example, the uppermost path in the diagram (A-F-

K) is expected to take 8 months, with only activity K on the critical path. Activity F 

could be delayed as much as 9 months without making the project late. However, 

activity A could not be delayed that long, since it is on one of the second longest paths 

and can be delayed only a month before it would affect the project's completion time. 

5 



This example raises an important point about critical paths and project scheduling. 

As time wears on in a project's life, delays and even some speed-ups can be expected. 

What may look like the critical path at a project's start (such as B-E-H-K) may not 

remain the critical path if many delays (or speed-ups) strike the project. This means that 

the project manager should periodically recalculate the critical path to check that he or 

she is focusing on the activities that really matter to finishing a project in the least time. 

2.2 Gantt Charts and Critical Paths 

Gantt charts can capture some of what the critical path gives us, but not all. A 

Gantt chart of the table above could be constructed. (See Tour J for both a Gantt chart 

and a precedence diagram of the same project steps.) Whereas the precedence 

characteristics can be depicted, and some feel for the slack in the system can be shown, 

the links between activities are missing and the critical path itself is not evident from the 

diagram itself; it must be imposed on it from an outside calculation. 

2.3 Calculating the Critical Path 

To this point we have calculated the critical path solely by inspecting all the paths 

and choosing the one with the longest duration. In simple cases, such as this generalized 

plant startup, inspection is a perfectly feasible and reasonable way of selecting the 

critical path. When projects get more complicated, with many more activities, 

inspection as a means of computing the critical path bogs down. Happily there is an 

alternative procedure or algorithm, which can cut down the speed of solution markedly. 

6 



In essence, the critical path algorithm is a procedure to identify which activities 

have some slack time and which do not. Those with no slack time, of course, make up 

the critical path or paths. 

Before describing the algorithm, however, it is helpful to define some terms: 

Early Start (ES) - The earliest time a job can begin, which is the latest time that 

any of the job's predecessors are finished. 

· Early Finish (EF) - The earliest time a job can finish, which is the early start time 

plus the time it takes to do the job. 

For any job i, the early start and early finish can be represented symbolically. 

ES(i) =max [EF (all of i's predecessors)] 

or the start time of the project if we are considering the beginning jobs. 

EF(i) = ES(i) + t(i) 

where t(i) is the time to perform job i. 

Late Start (LS) - The latest a job can start without causing the entire project to be 

completed any late which is the late finish time less the time for the job. 

LS(i) = LF(i) - t)i) 

Late Finish (LF) - The latest time a job can finish, which is the earliest time that 

any of the job's successors have to be started. These can be represented symbolically, as 

well, for any job i. 

LE(i) = min [LS( all of i's successors)] 

or the earliest finish time for the project if we are considering the ending jobs. 

Total Slack (TS) - The difference between the early and late starts for a job, or the 

early or late finishes. Total slack is the time a particular job could be delayed without 

delaying the completion of the project. Symbolically, 

7 



TS(i) = LS(i) - ES(i) = LF(i) - EF(i) 

The critical path algorithm involves calculating ES, EF, LS, and LF for all the 

jobs in the network and then comparing them to discover which nodes have zero total 

slack (Or a minimum total slack ii there is some discretion about the completion time 

possible for the project. Note the later discussion of windows of time). These nodes are 

the ones comprising the critical path(s). The calculation and comparison involve three 

steps: 

3. 6, 

_1---;-i 
. (3 months) 15, 17. 
l. __ -

I 
\3 7, 

I 
J I 

(4 months) i 

\r- --~--~: __ 1 

(6month~)l 

Figure 2.2. Early Stmi (Number at Upper Left of Box) and Early Finish (Number at 
Upper Right of Box) Months for the Plant Stmiup Project Delicate in 
Figure 2.1. 

8 



(1) Forward pass. The forward pass through the network calculates the early 

start (ES) and early finish (EF) times. It does so by moving from start to 

finish, figuring first the early stari time and then adding the job's duration to 

it to figure the early finish. The early start for any job is calculated by 

scanning all of its immediate predecessor activities (those with arrows 

pointing into it in the path) and choosing as the job's early start the latest of 

all the predecessors' early finish times. The ES and EF times for our plant 

startup example are noted in Figure 2.3 . 

0 

. 1 .4 r·---- - . 
I A 

...-! 

.4 6 
,~. 

l (2 m~nths) 

0 I'. .1 .4 

'I (1 m~nlh) 
l · I -- l 

, l _I E > 
1 I I (3 rnonlhS) [ 

-- .... -·· .J 

12 15 -, 
F . 

-/ (3 .. months) j' 
L. 

.15 1 7 r· .. - I 
.. , K 

. 15, ,..I (2 months) 

i G ! / L---;-~-

-l_(9 ~on~h~ r // 
.6 

.4 

\ / 
15 '·1 , 16 , 17 17 17 

! ... -H ···1· "I -----~-I \f ____ l 
-1 (11 months) ,--·-1 (1 monlh) 

1
· -- Finish, 

- -·-···· --·-.J l_7 --··· -~· . l._ 
;>---.• J 

.15 ' 16 

'i ~~:-~~n~h~l 
I .12 16 
t, 
' J 

(4 months) 

1' 17 

c 
(6 monlhs) I 

Figure 2.3. Late Start (Number at Upper Left of Box) and Late Finish (Number 
at Upper Right of Box) Months for the Plant Startup Project 
Depicted in Figure 2.1. 

9 



(2) Backward pass. The backward pass through the network calculates the late 

start (LS) and late finish (LF) times. It does this by moving from the finish 

back to the start, figuring first the late finish times and then deriving the late 

start times by subtracting the job's duration from the late finish time. The 

late finish for any job is calculated by scanning all of its immediate 

successor activities (those with arrows leading away from it on the path) and 

choosing as the job's late finish the earliest of all the successors' late start 

times. The LF and LS times for our plant startup example are noted m 

Figure 2.3. 

0' 3. 12 6.15 
I - 1 

_, F 
(3 rnonlhs) 1 :, 1 ~' l ... 7 

A 
(.1 monttis) 

•I .... r ··-

3 4 ::i.6 
'I- - - . l 

; 0 ~ 
, (2 monlhs) 

Io B ' i \ r'' ~ •1.• 
{ 1 montt1) i 

1 
... (3 m~nths) 

5 15 , 6. 16 

'i I I J 
(1 monlh) 

3 '2 7 16 

" 
(4 monlhs) ; 

'· 
c 

(6 rnonttis) 

Figure 2.4. Composite of Starting and Finishing Months Given in Figure 2.2 
and Figure 2.3 for the Plant Staiiup Project. 

10 



~~S (CEM) 
St Gabriel's Library, Au 

2197 ~ ·'J 

(3) Comparison. The comparison of either early start with early finish or late 

start with late finish is the way to figure whether the job has any total slack 

(TS) associated with it. If the LS(i) - ES(i) or LF(i} - EF(i) calculations are 

zero, the job has no total slack and is on the critical path. Figure 2.4 com-

bines all the times in one diagram and displays the critical path. 

For very large projects, of course, and ones that go into significant detail, even 

following the critical path method can become tedious. To aid in the analysis, there are 

computer programs that calculate the critical path. These can be used with ease to 

determine how differences in expected completion times for various activities (and even 

the introduction of variations in the network of activities itself) affect the critical path 

(s). Because so many things can go awry in a project, it is advantageous to compute the 

critical path on a regular basis so as not to be caught napping. 

2.4 Project Costs and Timing and the Critical Path 

Frequently, actual projects (such as the new plant startup outlined in Figure 2.1) 

need not be finished in the least time possible but, rather, can be finished during any 

portion of a "window" of time. When during the acceptable window of time the project's 

finish ought to be targeted depends largely on the project's managers. Often they are 

influenced by cost considerations, because it is not uncommon for a project's contract to 

stipulate rewards for an early finish and penalties for a late finish. These rewards and 

penalties must be weighted against the costs that hurrying up any of the project's 

activities could impose on the project's budget. 

11 



SL Gabriel's Library, Au 

2.5 Windows of Time and the Critical Path 

Windows of time can be easily incorporated into the calculation of the critical 

path; in fact, the terminology is already in place to handle them. The acceptable window 

of time can be denoted as the difference between the early finish and the late finish (or 

between the early start and the late start). To return to our example, if the plant startup 

could be completed between 17 and 21 months from the start, the values for Figure 2.4 

would be recast as in Figure 2.5. 

Building a window of time in the critical path computation makes it important to 

distinguish between two different kinds of slack time during the project: total slack and 

free slack. Total slack, as discussed previously, is the difference between the early and 

late finishes (or early and late starts) for any activity. 

An activity's total slack time is the maximum time that activity may be delayed 

beyond its early start without forcing the delay of the entire project. As previously 

noted, this notion of total slack can be used to define the critical path; the critical path is 

composed of those activities that have the lowest total slack (the smallest differences -

possibly zero - between early and late starts or finishes). 

Free slack, on the other band, is the time by which an activity can be delayed 

without delaying the early start of any other activity. Free slack is defined as the 

difference between an activity's early finish time and the earliest of the early start times 

for all its immediate successor activities. Symbolically, the free slack (FS) for any job i 

can be defined as 

FS(i) =min [ES all of i's immediate successors] - EF(i) 

12 



Consider the path A-J-L in Figure 2.5. Activity L can be delayed at most a month 

without risking the delay of the entire project; as it is, its early finish time (16 months) 

is but 1 month shy of the project completion's early start month (17 months). Its free 

slack is 1 month. Activity J, on the other hand, has more free slack. Its early finish time 

of 7 months is 8 months shy of its only successor activity's (L's) early start time of 15 

months; its free slack is thus 8 months. Activity A, the predecessor to activity, has no 

free slack because its early finish time (3 months) is equal to the early start time of 

activities D, F and J. 

This lack of any free slack does not mean, however that if activity A were 

inadvertently delayed, the entire project would be delayed. Activity A, after all, does not 

lie on the critical path. It has a positive total slack and thus could be delayed by one 

month without necessarily delaying the project. It is often useful to employ a network-

based Gantt chart as an aid in tracking and scheduling non-critical activities. 

0 ~ 

Start 

0 •, J.B 3. 16 6. 19 

A F I (3 morHf15) : 

"· , _J 
... ~~1 months} _j 15, 19 17.21 

I 
""'! K 

J 8 5. 'J .S.10 14 19 · (2 monlhs) 
'r 1 : - - j /L __ --,'_j 

! 12 m~nlhs) J ---L~ ~:~lhsj( // \\ 

0.4 - 5 ' 1.5 'S ·. •.8 15.19 y 15.20 16.21 \ \p,21 11.21 

,f B ---i 1:, ~[ -E \ 1

1 

----=- ---(\[-~-1 :r-F· .. -n-•.• -~.l 
, fl month\ . (3 months) ·:-- -(-~-~ .. ::~::::~J (~month) - i " 

·' 16 -, 70 

'r 

u . ' ti 

' I (6 m~n1hs) I 
i . 

s ~ ~ \ 6,20 
') 
I 

(1 monlh) j 

~ ,,,. ,,,.- -._ 

Figure 2.5. The Addition of Four Months (a Window of Time) to the Plant Startup 
Project. 

13 



Such charts usually display two panels, one depicting all activities at their earliest 

starts and the other depicting all activities at their latest starts. Network-based Gantt 

charts can also include data on manpower schedules per time period and cost incurred 

per time period. Figure 2.6 refers back to Figure 2.4's network where there is no 

window of time for the completion of the project. Note how the activities on the critical 

path coordinate with one another on the chart. 

P 1 o]P.ct 

E~rly Siar\ Schedule (~II ~cl1v1t1esl 
Monlhs 

Ac\1v11y 'I 2 3 4 5 6 7 8 9 10I1 12 13 14 15 1617 ":' ~.------------------- _, 

c l ___________ -===:J. . . . . . . . . . 

D I 
F (_. 

c::.=J . 

F 

G 

H 

D·. 
J L ______ J. 

K 

D Ac!1v11y planned 

• Ac11v11v possible 11 slarled e11her early or lale 

Late Star\ Schedule (all ac1iv1\ies) 
Months 

,t 2 345678910111213141516171 
, _____ .. -11 

(l 
. c:::=::J' 

p 
. c: _________ J 

... ·D 

. c-~-=-~=J 
q 
·d 

0 

Figure 2.6. A Network-Based Gantt Chart for the Startup Project. 

14 



St. Gabriel's Library, Au 

2.6 Time Estimate Variations 

CPM can be used to provide some insight into likely variations in the completion 

time of the project. Individual estimates (an optimistic one, a pessimistic one, and a 

most likely one) of the variance in performing each activity are made. This is 

accomplished by assuming a certain distribution for these variances - the beta 

distribution (a skewed distribution that permits the possibility of occasional very late 

events, but no very early events - and by insisting on the independence of each activity 

from others. An estimate of the time variance in accomplishing the entire project (and 

thus the probability for completing it by various dates) can be made by summing the 

variances along the critical paths. The assumptions ensure that the distribution of the 

summed variances will be normal. 

The expected value of the time for each activity is where oe is the optimistic 

estimate, pe is the pessimistic estimate, and ml is the most likely estimate. The variance 

of the time for each activity is: 

T= oe+ 4ml + pe 
6 

It is the sum of these variances along any path in the network that is normally 

distributed. By using the summed variance for the path (e.g., the critical path) and the 

fact that the summed variance is distributed normally, a probability of completion of 

any event can be computed. 

15 



As may be surmised, using CPM in this way to calculate a project completion 

time variance and probabilities of completion by specified dates can be a bit concocted. 

The variance for the entire project can be only as good as the variance estimates for 

individual activities, and often there is little information on which to base such variance 

estimates. Using CPM in this way can be more trouble than it is worth. Nevertheless, 

CPM does make explicit a concern for time variations and the fact that the critical path 

itself cannot be known with certainty. These insights are useful reminders to any project 

manager. 

2.7 Some Principles for Project Managers 

Although critical paths, the critical path method, and PERT have been 

exceedingly useful to managers in scheduling projects, effective project management 

means more than the adept use of these techniques. Drawing on his own vast experience 

in project management, Herbert Spirer has arrived at a dozen principles that serve as a 

useful checklist for project managers: 

( l) A project has to have a clear objective or set of objectives and these 

objectives ought to be stated in terms of specific items (tangible or 

intangible) to be delivered to the project's sponsor. 

(2) The project manager ought to be able to structure the project clearly, 

detailing which bundles of major activities (work packages) are required 

and how they comprise the deliverable items that meet the project's objec

tives. Spirer calls this a "work breakdown structure," and he sees it as a 

hierarchical representation of the project. 

16 



(3) The work packages making up the work breakdown structure are composed 

of individual activities. These activities have to be listed and organized into 

groups that can be overseen by specific people. The specific activities for a 

major project can number in the thousands. Spirer recommends, how-ever, 

that no one manager have direct responsibility for more than 50 specific ac

tivities. Top-level management itself should not be responsible for more 

than 30 to 50 aggregations of these activities, a precept that highlights the 

need for an effective work breakdown structure. 

(4) These activities should then be placed in a precedence diagram or network, 

and a critical path developed with the concomitant early and late start and 

finish times and slack calculations. The development of the precedence 

diagram or network is an important task in itself; analyzing such a network 

can lead to various suggestions or to resequencing activities. Calculations of 

the critical path need to be done periodically as the project proceeds. 

(5) The calendar of activities and times that comes out of the network creation 

and the critical path analysis must be combined with some knowledge of 

resource constraints to produce a schedule that tells management when 

activities will be done, not simply when they must be done. 

(6) Managing the resources needed to meet the schedule is eased by making 

use of Gantt charts and plots of cumulative resource use such as are applied 

in manufacturing situations. 

17 



(7) Activity times can be estimated often by analyzing similar activities and 

modifying their times by using common sense. Sometimes more analytic 

methods (regressions, cross tabulation) can also be used. The estimation of 

activity time is often helped by referring explicitly to the network and the 

critical or near-critical paths that are implied by the first-round estimates. 

(8) Use pessimistic, optimistic, and most likely estimates for as many activities 

as possible. It is always helpful to recognize the uncertainty inherent in 

projects. 

(9) Tracking the progress of a project is helped by establishing milestones, 

which are easily grouped events. Such milestones can help serve as 

motivation for the project as well as checkpoints for the project's progress. 

( 10) Assign one and only one person to be accountable for every activity. 

(11) Use the plan to control the project. This is done by keeping the plan current 

and monitoring the actual perfonnance in timely fashion. Determine how 

the actual performance measures up to the plan and what variances are 

implied by that contrast. Take any corrective action that is necessary, 

assessing the likely consequences and adjusting the plan accordingly. 

(12) Assess the status of the project by using various "earned value concepts" 

such as the budgeted cost of work scheduled, the budgeted cost of work 

performed, and the actual cost of work performed. By comparing the 

budgeted cost of work scheduled against the budgeted cost of work per

formed, one can come up with a general measure of the on-schedule 

performance of the project. Similarly, by comparing the budgeted cost of the 

work performed with the actual cost of the work performed, a measure of 

the cost variance of the project can be ascertained. 

18 



St. Gabriel's Library, Au 

III. THE NETWORK DIAGRAM 

3.1 The Network Diagram 

CPM and PERT were developed independently during the late 1950s. PERT 

evolved through the joint efforts of Lockheed Aircraft, the U.S. Navy Special Projects 

Office, and the consulting firm of Booz, Allen & Hamilton in an effort to speed up the 

Polaris missile project. At the time, there was considerable concern on the part of the 

U.S. government that the Soviet Union might be gaining nuclear superiority over the 

United States, and early completion of the project was given top priority by the 

Department of Defense. The project was a huge one, with over 3,000 contractors 

involved, and many thousands of activities. The use of PERT was quite successful: 

PERT is generally credited for shaving two years off the length of the project. Partly for 

that reason, PERT or some similar technique is now required on all large government 

projects. 

CPM was developed by J. E. Kelly of the Remington Rand Corporation and M. R. 

Walker of Du Pont to plan and coordinate maintenance projects in chemical plants. 

Although these two techniques were developed independently, they have a great 

deal in common. Moreover, many of the initial differences between the two techniques 

have disappeared as users bon-owed certain features from one technique for use with the 

other. For example, PERT originally stressed probabilistic activity time estimates, 

because the environment in which it was developed was typified by high uncertainty. In 

contrast, the tasks for which CPM was developed were much less uncertain, so CPM 

originally made no provision for variable time estimates. 

19 



At present, either technique can be used with deterministic or probabilistic times. 

Other initial differences concerned the mechanical aspects of developing project 

networks. However, from a conceptual standpoint, most of these differences were 

relatively minor. To avoid confusion, we will not delve into the differences here. For 

practical purposes, the two techniques are the same; the comments and procedures 

described will apply to CPM analysis as well as to PERT analysis of projects. 

\X:ed<, .il'tcr 
"tart 

\«tivitY 

\1,1rt Ii H 10 12 14 I(, IS 211 
+-- I ----

Ll)(·;1tc fH.'\\" 

LH·1lit11.: ... 

l111crYi1.:\\' 

pn)spcl·ti\'c \LI ff 

!lire '""' i 
tr.1111 ''" 11 I 

-l-,,.,, ... , 
·"'" ·'rd(·1 1 ·11r1)ir1111. 

l{1'1llOdci .rnd 
imra 11 pho11cs 

I I 

F11rllil un: rt'tTi\·1.:d 

\\ <l\'l' i11.' • litarttq' 
----·-~ 

St;irt 2 ,, s J!i I~ 14 !11 I~ 211 

\Vl'ck, ,If(cr 

Figure 3.1. Gantt Chart for Bank Example. 

20 



One of the main features of CPM and related techniques is their use of network or 

precedence diagram to depict major project activities and their sequential relationships. 

Recall the bank example that used a Gantt chart (see Figure 3.1). A network diagram for 

that same problem is shown in Figure 3.2. The diagram is composed of a number of 

arrows and nodes. The arrows represent the project activities. Note how much clearer 

the sequential relationship of activities is with a network chart instead of a Gantt chart. 

For instance, it is apparent that ordering the furniture and remodeling both require that a 

location for the office have been identified. 

Figure 3.2. A Simple Project Network Diagram. 

21 



Likewise, interviewing must precede training. However, interviewing and training 

can take place independently of activities associated with locating a facility, 

remodeling, and so on. Hence, a network diagram is generally the preferred approach 

for visual portrayal of project activities. 

You should know that there are two slightly different conventions for constructing 

these network diagrams. Under one convention, the arrows are used to designate 

activities; under the other convention, the nodes are used to designate activities. These 

conventions are referred to as activity-on-arrow (A-0-A) and activity-on-node (A-o

N). To avoid confusion, the discussion here will focus primarily on the activity-on

arrow convention. Then, later in the chapter, a comparison of the two conventions will 

be given. For now, we shall use the arrows for activities. Activities consume resources 

and/or time. The nodes in the A-0-A approach represent the starting and finishing of 

activities, which are called events. Events are points in time. Unlike activities, they do 

not consume either resources or time. 

Activities can be referred to in either of two ways. One is by their endpoints (e.g., 

activity 2-4) and the other is by a letter assigned to an arrow (e.g., activity c). Both 

methods are illustrated in this chapter. 

The network diagram describes sequential relationships among major activities on 

a project. For instance, activity 2-4 cannot be started, according to the network, until 

activity 1-2 has been completed. A path is a sequence of activities that leads from the 

starting node to the finishing node. Thus, the sequence 1-2-4-5-6 is a path. There are 

two other paths in this network: 1-2-5-6 and 1-3-5-6. The length (of time) of any path 

can be determined by summing the expected times of the activities on that path. 

22 



The path with the longest time is of particular interest because it governs project 

completion time. In other words, expected project duration equals the expected time of 

the longest path. Moreover, if there are any delays along the longest path, there will be 

corresponding delays in project completion time. Conversely, attempts (0 sh01ten 

project completion must focus on the longest sequence of activities. Because of its 

influence on project completion time, the longest path is the critical path, and its 

activities are referred to as critical activities. 

Paths that are shorter than the critical path can experience some delays and still 

not affect the overall project completion time as long as the ultimate path time does not 

exceed the length of the critical path. The allowable slippage for any path is called the 

path slack, and it reflects the difference between the length of a given path and the 

length of the critical path. The critical path, then, has zero slack time. 

3.2 Network Conventions 

Developing and interpreting network diagrams reqmres some familiarity with 

networking conventions. Although there are many that could be mentioned, the 

discussion here will concentrate on some of the most basic, and most common, features 

of network diagrams. This will provide sufficient background for understanding the 

basic concepts associated with precedence diagrams and allow you to -solve typical 

problems. 

23 



One of the main features of a precedence diagram is that it reveals which activity 

must be performed in sequence (i.e., there is a precedence requirement) and which can 

be performed independently of each other. For example, in the following diagram, 

activity a must be completed before activity b can begin, and activity b must be 

completed before activity c can begin . 

• .._<l --· ·~b -· ·--·· 
Figure 3.3. An Example Diagram, Activity a Must Be Completed before Activity b 

Can Begin, and Activity b Must Be Completed before Activity c Can 
Begin. 

If the diagram had looked like this, both activity a and activity b would have to be 

completed before activity c could begin, but a and b could be performed at the same 

time; performance of a is independent of performance of b. 

c 

Figure 3.4 An Example That Both Activity a and Activity b Would Have to Be 
Completed before Activity c Could Begin. 

If activity a must precede b and c, the appropriate network would look like this: 

24 



a 

Figure 3.5. An Example That Both band c, the Appropriate Network. 

When multiple activities enter a node, this implies that all those activities must be 

completed before any activities that are to begin at that node can start. Hence, in this 

diagram, activities a and b must both be finished before either activity c or activity d can 

start. 

Figure 3.6. An Example That Activities a and b Must Both Be Finished Before Either 
Activity c or Activity d can Start. 

25 



When two activities have the same beginning and ending nodes, a dummy node 

and activity is used to preserve the separate identity of each activity In the diagram 

below, activities a and b must be completed before activity c can be started. 

h ~· 
Dummy 
;1cti\'itv 

Figure 3.7. An Example that Two Activities Have the Same Beginning and 
Ending Nodes. 

Separate identities are particularly imp01iant for computer analysis, because 

most computer programs identify activities by their endpoints; activities with the same 

endpoints could not be distinguished from each other, although they might have quite 

different expected times. 

There are actually a number of different uses of dummy activities. Another 

common use is depicted below: 

I 
I 

-~b -~·......___d --· 
Figure 3.8. An Example Different Uses of Dummy Activities. 

26 



In this situation, activities a and b must both precede activity c. However, d's start 

is dependent only on completion of activity b, and not on activity completion. 

The primary function of dummy activities is to clarify relationships. As far as time 

is concerned, a dummy activity has an activity time equal to zero. 

For reference purposes, nodes are numbered typically from left to right: 

.1 
(' 

b • 
Figure 3.9. An Example, Nodes Are Numbered Typically from Left to Right. 

Starting and ending arrows are sometimes used during development of a network 

for increased clarity. 

Start 
----·--·-- ... I 1"l 

b 

Figure 3.10. An Example Starting and Ending Arrows. 

27 



SL GabrieJ's Library, Au 

3.3 Deterministic Time: Estimatimates 

The main determinant of the way CPM and PERT networks are analyzed and 

interpreted is whether activity time estimates are probabilistic or deterministic. If time 

estimates can be made with a high degree of confidence that actual times will not differ 

significantly, we say the estimates are deterministic. On the other hand, if estimated 

times are subject to variation, we say the estimates are probabilistic. Probabilistic time 

estimates must include an indication of the extent of probable variation. 

This section describes analysis of networks with deterministic time estimates. A 

later section deals with probabilistic times. 

One of the best ways to gain an understanding of the nature of network analysis is 

to consider a simple example. 

EXAMPLE I 

Given the information provided in the accompanying network diagram, determine 

each of the following. 

·."-•. 
' . 

\ 
\ ..;> 
\4.. 
\i 

\1S 

Figure 3.11. A Simple Example. 

28 

1 week 
--·---



EXAMPLE I (concluded) 

(a) The length of each path. 

(b) The critical path. 

(c) The expected length of the project. 

( d) Amount of slack time for each path. 

Solution 

(a) As shown in the following table, the path lengths are 18 weeks, 20 weeks, 

and 14 weeks. 

(b) The longest path (20 weeks) is 1-2-5-6, so it is the critical path. 

(c) The expected length of the project is equal to the length of the critical path 

(i.e., 20 weeks). 

(d) The slack for each path is found by subtracting its length from the length of 

the critical path, as shown in the last column of the table. (Note: It is 

sometimes desirable to know the slack time associated with activities. The 

next section describes a method for obtaining those slack times.) 

Path 

1-2-4-5-6 

1-2-5-6 

1-3-5-6 

Length (weeks) 

8+6+3+1=18 

8+11+1=20* 

4+9+1=14 

*Critical path length. 

29 

Slack 

20 - 18 = 2 

20 - 20 = 0 

20-14 = 6 



3.4 A Computing Algorithm 

Many real-life project networks are much larger than the simple network 

illustrated in the preceding example; they often contain hundreds or even thousands of 

activities. Because the necessary computations can become exceedingly complex and 

time-consuming, large networks are generally analyzed by computer programs rather 

than manually. The intuitive approach just demonstrated does not lend itself to 

computerization because, in many instances, path sequences are not readily apparent. 

Instead, an algorithm is used to develop four pieces of information about the network 

activities: 

ES, the earliest time activity can start, assuming all preceding activities start as 

early as possible. 

EF, the earliest time the activity can finish. 

LS, the latest time the activity can start and not delay the project. 

LF, the latest time the activity can finish and not delay the project. 

Once these values have been determined, they can be used to find: 

(1) Expected project duration. 

(2) Slack time. 

(3) Which activities are on the critical path? 

The three examples that follow illustrate how these values are computed using the 

precedence diagram of Example I, which is repeated here for convenient reference. 

30 



Compute the earliest starting time and earliest finishing time for each activity in 

the diagram shown in Figure 3.12. 

Begin by placing brackets at the two ends of each starting activity: 

I 
_J 

Figure 3.12. An Example for Compute the Earliest Starting Time and Earliest 
Finishing Time. 

We determine and place in the brackets for each activity, the earliest starting time, 

ES, and the earliest finishing ti!'ne, EP as follows: 

jLS 
~ 

LF I 
!£J 

Figure 3 .13. An Example to Determine and Place in the Brackets for Each Activity. 

Do this for all activities, beginning at the left side of the precedence diagram and 

moving to the right side. 

Once ES has been determined for each activity, EF can be found by adding the 

activity time, t, to ES: ES+ t = EF 

Use an ES of 0 for all starting activities. Thus, activities 1-2 and 1-3 are assigned 

ES values of 0. This permits computation of the EF for each of these activities: 

EF1-2 = 0+8 = 8 and EF1-1=0+4 = 4 

31 



\ 
\~ 

/0 4 

Figure 3.14. An Example for All Activities, Beginning at the Left Side of the 
Precedence Diagram and Moving to the Right Side. 

The EF time for an activity become the ES time for the next activity to follow it in 

the diagram. Hence, because activity 1-2 has an EF time of 8, both activities 2-4 and 2-5 

have ES times of 8. Similarly, activity 3-5 has an ES time of 4 . 

.. u ·: 

Figure 3.15. An Example for The EF Time for an Activity Become the ES Time for 
the Next Activity. 

This permits calculation of the EF times for these activities: EF2-4 = 8 + 6 = 14; 

EF2-s= 8 + 11=19; and EF3_5= 4 + 9 = 13. 

32 



lf~.)ils 6 14; 
i\~;~ 

I 
I 

18 I; ·-._ 
\() 

•./ q 

. . ~/ \.,r:.. 

Figure 3.16. An Example to Permits Calculation of the EF Times for These Activities. 

The ES for activity 4-5 is the EF time of activity 2-4, which is 14. Urine this 

value, we fine the EF for activity 4-5 is 17; EF4_5 = 14 + 3 = 17. 

\ lL 
'6\ 

6 J 
/ 

"\; I 
!; /8 L.:l 

~ 

·, '· 
C) '·1.~ 
v '\_.....-

! 
•. •• !9/ 

l __ . . -.J 
\ I 

(0 <1 q <~\ __j 

,/--

I 
'\b., ·<'./ .,....,--

Figure 3.17. An Example That ES for Activity 4-5 is the EF Time of Activity 2-4, 
Which Is 14. Urine This Value, We Fine the EF for Activity 4-5 is 17; 
EF4_5= 14 + 3 = 17. 

In order to determine the ES for activity 5-6, we must realize that activity 5-6 

cannot start until every activity that precedes it is finished. Therefore the largest of the 

EF time for the three activities that precede activity 5-6 determines ES5_6. Hence, the ES 

for activity 5-6 is 19. 

33 



6 

I; 

·\~.-
'.\.•' 

19/ 
,. ' 

. 

"<:~~ j 

0 </ q 

Figure 3.18. An Example That EF for the Last Activity, 5-6, is 20; EF5_6=19 + 1=20. 

Then the EF for the last activity, 5-6, is 20; EFs-6 = 19 + 1 = 20. Note that the latest 

EF is the project duration. Thus, the expected length of the project is 20 weeks. 

3.5 Computing ES and EF Times 

Computation of earliest starting and finishing times is aided by two simple rules: 

(1) The earliest finish time for any activity is equal to its earliest start time plus 

its expected duration, r. 

EF =ES+ t 

(2) For nodes with one entering arrow, ES for activities at such nodes is equal to 

EF of the entering arrow. For nodes with multiple entering arrows, ES for 

activities leaving such nodes equals the largest EF of the entering arrow. 

34 



EXAMPLE JI 

Compute the earliest starting time and earliest finishing time for each activity in 

the diagram shown in Figure 3.19. 

Figure 3.19. Example II. 

Solution 

Assume an ES of 0 for activities without predecessors. Thus, activities 1-2 and 1-

3, as initial activities, are assigned early starting times equal to zero. The earliest 

finishing times for these activities are: 

EXAMPLE II (concluded) 

EF1-2=0+8=8 and EF1_3=0+4=4 

The EF of activity 1-2 becomes the ES for the two activities that follow it: 2-4 and 

2-5. Likewise, the EF of activity 1-3 becomes the ES for activity 3-5. Thus: 

ES2-4 = 8, ES2-s = 8, and ES3_5 = 4 

The corresponding EF times for these activities are: 

EF 2-s = 8 + 11 = 19 

35 



Activity 4-5 has an early starting time equal to EF2_4, or 14, and an early finish 

time of 14 + 3 = 17. Finally, activity 5-6, with three predecessors, has an early starting 

time equal to the largest EF of the three activities that precede it. Hence, it has an ES of 

19. Its EF time is 19 + l = 20. 

These results are summarized in the following. 

Activity Duration ES EF 

1-2 8 0 8 

1-3 4 0 4 

2-4 6 8 14 

2-5 11 8 19 

3-5 9 4 13 

4-5 3 14 17 

5-6 19 20 

Note that the latest EF is the project duration. Thus, the expected length of the 

project is 20 weeks. 

3.6 Computing LS and LF Times 

rules: 

Computation of the latest starting and finishing times is aided by the use of two 

(I) The latest starting time for each activity is equal to its latest finishing time 

minus its expected duration: 

LS= LF-t 

36 



(2) For nodes with one leaving arrow, LF for arrows entering that node equals 

the LS of the leaving arrow. For nodes with multiple leaving arrows: LF for 

arrows entering that node equals the smallest LS of leaving arrows. 

Finding ES and EF times involves a "forward pass" through the network; finding 

LS and LF times involves a "backward pass" through the network. Hence, we must 

begin with the EF of the last activity and use that time as the LF for the last activity. 

Then we obtain the LS for the last activity by subtracting its expected duration from its 

LF. 

EXAMPLE III 

Compute the latest finishing and starting times for each activity shown in Figure 

3.19. 

Solution 

Set LF of the last activity equal to the EF of that activity. Thus, 

LFs-6 - EFs-6 = 20 weeks 

Next, compute the latest starting time: 

LSs-6 LF 5-6- t 

20- 1 = 19 

In order for activity 5-6 to start no later than week 19, all immediate predecessors 

must finish no later than that time. Thus, 

LF4_5 - LF2-s = LF3_5 = 19 

The respective LS times for each activity are: 

LS4_5 = 19 - 3 = 16 

LS2-s = 19 - 11 = 8 

LS3_5 = 19 - 9 = IO 

37 



Similarly, LF2_4= LS4_5= 16, and LS2_4= 16 - 6 = 10. Hence, there are two arrows 

leaving node 2: 24, with LS = 10, and 2-5, with LS = 8. The latest finish for activity 1-2 

thus becomes 8, which is the smallest LS for a leaving arrow. The LF for 1-3 is equal 

to the LS for 3-5: 

LF1-J = LS3.5 = 10 

The LS for activity 1-3 is: 

LS1.3= 10-4 =6 

The LS for activity 1-2 is: 

LS,.2=LF12-t 

= 8-8 =0 

The LS and LF computations are summarized in the following. 

Activity Duration LF LS 

5-6 1 20 19 

4-5 3 19 16 

2-5 11 19 8 

3-5 9 19 10 

2-4 6 16 10 

1-2 8 8 0 

1-3 4 10 6 

3.7 Computing Slack Times 

The slack time can be computed in either of two ways: 

Slack= LS - ES or LF - EF 

38 



EXAMPLE4 

Compute slack times for the precedence diagram of Figure 3.19. 

Solution 

We have the option of using either the staiiing times or the finishing times. 

Suppose we choose the starting times. Using ES times computed in Example II and LS 

times computed in Example Ill, slack times are: 

(LS - ES) 

Activity LS ES Slack 

1-2 0 0 0 

1-3 6 0 6 

2-4 10 8 2 

2-5 8 8 0 

3-5 10 4 6 

4-5 16 14 2 

5-6 19 19 0 

The critical path using this computing algorithm is denoted by activities with zero 

slack time. Thus, the table in the proceeding example indicates that activities 1-2, 2-5, 

and 5-6 are all critical activities, which agrees with the results of the intuitive approach 

demonstrated in Example I. 

39 



::JL GabrieJ's Librarv, Au 

Knowledge of slack times provides managers with greater detail for planning 

allocation of scarce resources and for directing control efforts toward those activities 

that might be most susceptible to delaying the project than the more simplistic intuitive 

approach does. In this regard, it is important to recognize that the activity slack times 

are based on the assumption that all of the activities on the same path will be started as 

early as possible and not exceed their expected times. Furthermore, if two activities are 

both on the same path (e.g., activities 2-4, and 4-5 in the preceding example) and have 

the same slack (e.g., two weeks), this will be the total slack available to both. 

In essence, the activities have shared slack. Hence, if the first activity uses all this 

slack, there will be zero slack for the other activity and that much less slack for all 

following activities on that same path. 

40 



IV. FINANCIAL ANALYSIS 

Benefits/Cost Analysis 

4.1 Cost Analysis 

The costs of proposed system are as follows: 

Software cost 

(1) Microsoft Visual Basic 

(2) Microsoft Window Xp Thai Editions 

(3) Microsoft Office Xp 

Total cost of software 

Installation cost estimated: 

Pentium IV 2.0 GHz 

(1) Hard Disk 40.0 GB (7200rpm) 

(2) DVD-ROM 16X 

(3) DDR-RAM 256 MB(PC2700) 

(4) Monitor 1 T' Flat Screen 

(5) Case ATX 350 Walt(for Pentium IV) 

(6) Back Up unit 800 VA 

(7) Main Board INTEL socket 4 78 

(8) CPU INTEL 2.0 GHz(Pentium IV) 

Total cost of installation 

Total cost 

4.2 Intangible Benefits 

(I) It easy for end user. 

(2) It can change number of activity and activity time. 

(3) Can display Gantt chart that easy for planing. 

41 

12,000 Baht 

7,000 Baht 

8,650 Baht 

27,650 Baht 

60,000 Baht 

87.650 Baht 



( 4) User will know when they should to start their activity. 

(5) Can calculate when should be order a material. 

(6) For manager can use for long term planning. 

(7) Can reduce some position that knows only CPM. 

4.3 Break Even Analysis. 

Suppose that can reduce worker that knows only CPM, production manager that 

get salaries equal 20,000 Baht and user such as Forman to use this program. 

Ba ht 

100,000 

80,000 

60,000 

40,000 

20,000 

2 3 4 5 6 

Figure 4.1. Break Even Analysis. 

From Figure 4.1 will see, this project use just 5 months for return. 

42 

Month 



V. DEVELOPING VISUAL BASIC FOR CALCULATE CRITICAL PATH 

5.1 Overview of Visual Basic 

The emphasis with object-oriented/event-driven (OOED) languages, such as 

Visual Basic, is on the objects included in the user interface and on the events that occur 

through those objects. Consequently, the procedure-oriented approach to the 

programming solution of the step-by-step, top-to-bottom development is inappropriate. 

The goal of the Visual Basic programmer is to develop an interface that gives the 

user as much control as possible, while guarding against application errors. 

The programming process in Visual Basic consists of a five-step process: plan the 

application, build the user interface, code the application, test and debug the application, 

and deliver the application (which includes project documentation). The application 

plan culminates in an identification of tasks the application needs to perform, the 

objects needed to accomplish these tasks, and the events required to trigger an object to 

perfom1 its task. 

The interactive nature of the development environment allows the programmer to 

continue refinements and development of the user interface while involved in the coding 

process. You can test event code immediately as each event process is completed. 

Delivering the application involves gathering all documentation for delivery with the 

executable file. This text will emphasize the build, code, and test processes of 

application development. 

43 



5.2 Introduction for Uses CPM Program. 

A Figure 5.1. show the flow chart for end user to use CPM software and the other 

Figures show an CPM computer software step by step. 

Start 

Input 
number of 
activities 

List 
activities 

Input activities 
time and 

connection 

Calculation 
by compare 

and plus 

Display 
Gantt chart 
and table 

,, 
End 

Figure 5.1. Flow Chart for End User. 

44 



G<~--
~,_ 

'',--................._ 

Figure 5.2. Example Network for Test Program. 

Before use this program should have network like Figure 2.5. 

Qki! ~ancel! 

Figure 5.3. The First Page When Run a CPM Program. 

In this page you will see an opening for input number of activity that no over 25 

activities because the program use a capital in English for list a table. 

45 



Figure 5.4. Input Number of Activity by Use Figure 5.2. 

' Critical Palh Method Pm111am Version 1.0 " , ' 
File 

Critical Path Method Program 
The Aclivily Connection Of ,6,ctivity 
.....----___, A 

c 
I• 

r 
I 

B 
c 
D 
E 
F 

Duralion (Days) 

Qisplayl 

.Show Calculate 
1_••'1'1·".1.;,·,l··:,f, .. 

Figure 5.5. List of Activity. 

46 



!ll"lCritical Path Method Program Version 1.0 · · r 

File 

Critical Path Method Program 
~T l_1t? _lv:._ti· .. _, .. il}_' __ Ccin1·1ect1cin 01 Aciivity 

1·· 

[1 

E 

The .6.ctivity 
/>. 
/>. 
B 
c 
D 
E 

A 
B 
c 
D 
E 

Dwolion (Days) 
10 
10 
25 
17 
48 
38 

Input [1ura!.101"1 -

L• 
I 
I 
f 

Q.kl 

Qisplayl 

~how Calculale 

I 

Figure 5.6. Input Times Duration and Set Activity Connection. 

From Figure 5.6 will see that has activity A 2 times, that come from Figure 5.2 

will see activity A have connect to activity C and D. When end user use. this program 

they must input activity like a network, it mean when a network have more 1 connection 

(like activity A in Figure 5.2) they should input an activity equal the connection. If you 

input correctly the number of an opening "The Activity" will more than an opening 

"Connect Activity" by 1. 

47 



St. Gabriel's Library, Au 

~uwan 1Killj1iirmITT1;roprrnjj''GDiiliJ11 
F~e 

! Critical Path Method Program 

Th~Activity 

A 
.~ 

B 
( 

D 
E 

[onnecrion (If .t..clivil_y 

A 
B 
c 
D 
E 

Duration (Days) 
10 
10 
25 
17 
48 
38 

Input Duration 

Qkl 

J;oncen 

,, 

Connect ES 
c 0 
D 0 
E 
E 10 
F 11) 
F 27 

55 

[F 

10 
11) 
25 
.(.,' 

58 
li':-1 
85 

Figure 5.7. Table from Calculates. 

Figure 5.8. Gantt Chart. 

48 

---LS LF TF 
I) 10 0 
I 17 7 

d 2 
10 27 0 
17 135 
27 f,<, 0 
(,i.i 85 0 



5.3 Problem about Visual Basic 

In this program that use Visual Basic, that include about "Data Base" for generate 

table and Gantt chart. In this case the problem has happen when Compile, first of all 

when we have compiled that can have 2 type EXE file and SETUP file. The EXE file 

can run every where and every operation (Win9x,WinME and Windows2000) but 

SETUP file can setup into windows and run from Program File, that can setup only 

Windows 98 SE may be cause from "Data Base". Maybe this effect will relationship 

about "Data Base" that use Windows98 SE to develop. 

49 



VI. CONCLUSIONS 

The CPM program provides a convenient approach for solving complex network 

problems in production. However, as this paper demonstrated with some illustrative 

examples, its use to network diagram problems should be a cautious one. There is way 

to input data (times duration and connection) if input it correctly the program will show 

that you want to know about CPM. 

This is true with Critical Path method. The examples in this paper, will lookalike 

not complicated that was intentionally for have easy to understand especially to end user 

that sometime they have a network diagram and introduction of this program. 

In addition it can help another people such as manager to use for long planning for 

example to find when should order the material for each activity. 

The computer software the CPM can calculate the best way and it shows result 

step by step for studies how to use the CPM to choose the best way. 

50 



APPENDIX A 

EXAMPLE SOURCE CODE 

51 



Option Explicit 

Const NumFrames = 72 

Dim a, b, c, d, e, i, J, k, I, m, n, o, p, q, r, s, t, u, v, w, x, y, z, es, et, f, g, h, joe, jub, nha, 

phu, nhing, pop, jaib, Mm, Fly As Integer 

Dim Mun, Moon As String 

Dim picArray(l To NumFrames) As Picture 

Private Sub Commandl_Click() 

List5.Addltem Textl.Text 

Text! .Text="" 

End Sub 

Private Sub Command2 _Click() 

Dim i As Integer 

i = List2.Listlndex 

If i >= 0 Then 

List2.Removeltem i 

Else 

Beep 

End If 

End Sub 

Private Sub Command3 _Click() 

If List3.ListCount < Vlac Then 

MsgBox" ?", vbOKOnly, "CPM Confirm!" 

Listl .SetFocus 

Elseif List3.ListCount >= Vlac + 1 And List5.ListCount >= Vlac + 1 Then 

Dim er, wr, i, k, I, m, n, o, p, q As Integer 

52 



nub= 1 

er= Val(List3.ListCount - 1) 

wr = Val(List4.ListCount - 1) 

ReDim AC(l To er, 1 To wr) As Integer 

Fork= I To er 

For I= 1 To wr 

If I> wr Then 

GoTo Jrr 

El self I <= wr Then 

list3 <> list4 If List3.List(k) <> List4.List(I) Then 

List6.List(k) = "O": GoTo Prr 

list3 = list4 Elself List3.List(k) = List4.List(l) Then 

List6.List(k) = "-": GoTo Jrr 

End If 

End If 

Prr: 

Next I 

Jrr: 

Nextk 

Form= 1 To er 

I is t6 = 0 list7 = lists + list6 

If List6.List(m) = "O" Then 

List7.List(m) = Val(List5.List(m)) + Val(List6.List(m)) 

'list6 = - list7 = -

Elself List6.List(m) ="-"Then 

53 



List7.List(m) = "-" 

End If 

Nextm 

For n = 1 To er 

Zxx: 

Yxx: 

For p = 1 To wr 

'list3 list4 

GoTo Zxx 

If List3.List(n) <> List4.List(p) Then 

'list3 = list4 list6 = list7 

Elself List3.List(n) = List4.List(p) Then 

List6.List(n) = List7 .List(p) 

End If 

Nextp 

List7.List(n) = Val(List5.List(n)) + Val(List6.List(n)) 

GoTo Yxx 

Next n 

ReDim D14(1 To wr) As String 

For o =I To wr 

Dl4( o) = List4.List( o) 

Mm= Val(List7.List(o)) 

For p = 1 To wr 

IfD14(o) = List4.List(p) Then 

If Mm<= List7.List(p) Then 

54 



Mm= Val(List7.List(p)) 

For q = I To er 

If List3 .List( q) = Dl4( o) Then 

List6.List( q) = Mm 

List7.List(q) = Val(List6.List(q)) + Val(List5.List(q)) 

End If 

Next q 

End If 

End If 

Nextp 

Next o 

For r = 1 To er 

List8.Addltem "-" 

List9.Addltem "-" 

ListlO.Addltem "-" 

Listi l.Addltem "-" 

Listl5.Addltem "-" 

Next r 

List9.List(er) = List7.List(er) 

List8.List( er) = List6.List( er) 

es= er - 1 

et= wr - 1 

Fors= 0 To es 

Fort= 0 To et 

' Iist3 Iist4 

55 



Zxy: 

If List3.List(er- s) <> List4.List(wr - t) Then 

GoTo Zxy 

'list3 = list4 list6 = list7 

Elseif List3.List(er- s) = List4.List(wr- t) Then 

List9.List(wr- t) = List8.List(er - s) 

End If 

List8.List(wr - t) = Val(List9.List(wr - t)) - Val(List5.List(wr - t)) 

GoTo Zxy 

Next t 

Next s 

For j oe = 0 To es 

Moon= List3.List(er - joe) 

Fly= Val(List8.List(er - joe)) 

For jub = 1 To er 

If Moon = List3 .List(jub) Then 

If Fly< List8.List(jub) Then 

For phu = 1 To wr 

If List4.List(phu) =Moon Then 

List9.List(phu) = List8.List(er - joe) 

List8.List(phu) = Val(List9.List(phu)) - Val(List5.List(phu)) 

End If 

Next phu 

End If 

56 



End If 

Nextjub 

Nextjoe 

Listi l .List(er) = Val(List7.List(er)) - Val(List7.List(er)) 

For u =I To er 

ListlO.List(u) = Val(List9.List(u))- Val(List7.List(u)) 

Nextu 

For v =I To er 

Forw= I Towr 

If List3 .List(v) = List4.List(w) Then 

Listl 1.List(w) = Val(List6.List(v)) - Val(List7.List(w)) 

GoTo ker 

End If 

ker: 

Nextw 

Next v 

For x =I To er 

List12.List(x) = List3.List(x) 

Listl3.List(x) = List5.List(x) 

Nextx 

Fory= I Towr 

List14.List(y) = List4.List(y) 

Next y 

For z = 1 To er 

If ListlO.List(z) = "O" And Listl l.List(z) = "O" Then 

57 



Listl5.List(z) ="Critical Path" 

Else 

List15.List(z) = "***" 

End If 

Next z 

ReDim Limit(l To er) As Single 

Limit( 1) = 7200 I er 

Dim Art As Integer 

ReDim DtaN(l To er) As String 

'input duration 

For Art = 1 To er 

If Art > er Then 

GoTo Sat: 

El self Art<= er Then 

DtaN(Art) = List5.List(Art) 

frmDisplay.Label4(Art - 1 ).Caption= DtaN(Art) 

frmDisplay.Label4(Art - l).BackStyle = 0 

IfList5.List(Art) = List5.List(Art + 1) Then 

frrnDisplay.Label4(Art - !).Caption= List5.List(Art + 1) 

frmDisplay.Label4(Art - 1).BackStyle = 0 

End If 

End If 

Next Art 

Sat: 

'not main 

58 



Dim Po12 As Integer 

Dim Jat As Integer 

Dim Rtg, pol As Integer 

pol= Val(List7.List(er)) 

Pol2 =(pol/ IO)+ I 

Dim aa As Integer 

ReDim DtDu(l To Po12 + 1) As Integer 

ReDim Par( I To Pol2 +I) As Integer 

'if pol< 200 

If pol < 200 Then 

For 1 = 1 To Pol2 + I 

DtDu(l) = I 0 * 1 

frmDisplay.Label5(1- 1).Caption = DtDu(l) 

frmDisplay.Label5(1- 1).BackStyle = 0 

On Error GoTo hjk: 

Next 1 

hjk: 

Par( I)= 9600 I Pol2 

'plot vertical line 

For aa = I To Pol2 - I 

If aa > Pol2 Then 

GoTo Cft: 

Elself aa <= Po12 Then 

frmDisplay.LinelO(aa).XI = 2160 + Par(aa) 

frmDisplay.LinelO(aa).X2 = 2160 + Par(aa) 

59 



frmDisplay.LinelO(aa).Yl = 360 

frmDisplay.LinelO(aa).Y2 = 8160 

frmDisplay.Line 10( aa).BorderWidth = 2 

frmDisplay.LinelO(aa).BorderColor = vbBlue 

frmDisplay.Label5(aa - l).FontBold =True 

frmDisplay.Label5(aa - 1).AutoSize =True 

frmDisplay.Label5(aa - l).ForeColor = RGB(255, 0, 0) 

frmDisplay.Label5(aa - 1).Top = 600 

frmDisplay.Label5(aa- 1).Left = (2160 + Par(aa))- ((Par(l) I 2) + 150) 

Par(aa + 1) = Par(aa) + Par(l) 

On Error GoTo Cft: 

End If 

Next aa 

Cft: 

'if pol> 200 

Elself pol>= 200 Then 

Pol2 =(pol I 20) + 1 

For I= 1 To Pol2 + 1 

DtDu(l) = 20 * I 

frmDisplay.Label5(1- 1).Caption = DtDu(l) 

frmDisplay.Label5(1- 1).BackStyle = 0 

On Error Go To jjk: 

Next I 

jjk: 

Par(l) = 9600 I Pol2 

60 



For aa = 1 To Pol2 - 1 

If aa > Pol2 Then 

Go To jft: 

Elself aa <= Po12 Then 

frmDisplay.LinelO(aa).Xl = 2160 + Par(aa) 

frmDisplay.Linel O(aa).X2 = 2160 + Par(aa) 

frmDisplay.LinelO(aa).Yl = 360 

frmDisplay.Linel O(aa).Y2 = 8160 

frmDisplay.LinelO(aa).BorderWidth = 2 

frmDisplay.Linel O(aa).BorderColor = vbBlue 

frmDisplay.Label5(aa - l).BackStyle = 0 

frmDisplay.Label5(aa - l).FontBold =True 

fnnDisplay.Label5(aa - l).AutoSize =True 

frmDisplay.Label5(aa - l).ForeColor = RGB(255, 0, 0) 

frmDisplay.Label5(aa - l).Top = 600 

frmDisplay.Label5(aa - l).Left = (2160 + Par(aa))- ((Par(l) / 2) + 150) 

Par(aa + 1) = Par(aa) + Par(l) 

On Error Go To jft: 

End If 

Next aa 

jft: 

End If 

'plot time - schedul diagram 

For i = 1 To er + 1 

If i >er Then 

61 



St. Gabriel's Librarv Au . ' 

GoTo ggg: 

Elself i < er Then 

frmDisplay.LineS(i).Xl = (Val(List6.List(i)) * (9600 I (Po12 * 10))) + 2160 

frmDisplay.Line8(i).X2 = (Val(List7.List(i)) * (9600 I (Po12 * 10))) + 2160 

frmDisplay.LineS(i).Yl = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Line8(i).Y2 = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.LineS(i).BorderWidth = 4 

frmDisplay.LineS(i).BorderColor = vbGreen 

Limit(i + 1) = Limit(i) + Limit(l) 

Elself i = er Then 

frmDisplay.LineS(i).Xl = (Val(List6.List(i)) * (9600 I (Po12 * 10))) + 2160 

frmDisplay.Line8(i).X2 = (Val(List7.List(i)) * (9600 I (Po12 * 10))) + 2160 

frmDisplay.LineS(i).Yl = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Line8(i).Y2 = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.LineS(i).BorderWidth = 4 

frmDisplay.LineS(i).BorderColor = vbGreen 

End If 

Next i 

ggg: 

'plot horizontal line 

For i = 1 To er+ 1 

If i >er Then 

GoTo pgg: 

Elself i < er Then 

62 



frmDisplay.Line9(i).X I = 240 

frmDisplay.Line9(i).X2 = 11760 

frmDisplay.Line9(i).Yl = 960 + Limit(i) 

frm0isplay.Line9(i).Y2 = 960 + Limit(i) 

fnnDisplay.Line9(i).BorderWidth = 2 

frmDisplay.Line9(i).BorderColor = vbBlue 

frmDisplay.Label3(i - 1).BackStyle = 0 

fnnDisplay.Label3(i - !).Caption= List3.List(i) 

frmDisplay.Label3(i - I ).AutoSize =True 

frmDisplay.Label3(i - l).ForeColor = RGB(200, 100, 50) 

frmDisplay.Label3(i - l).Top = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Labe13(i - 1 ).Left= 600 

frmDisplay.Label3(i - 1 ).FontBold = True 

frmDisplay.Label4(i - l).BackStyle = 0 

frmDisplay.Label4(i - 1).FontBold =True 

frmDisplay.Label4(i - l).AutoSize =True 

frmDisplay.Label4(i - l).ForeColor = RGB(255, 0, I 00) 

frmDisplay.Label4(i - l).Top = (960 + Limit(i)) - (Limit( I) I 2) 

frmDisplay.Label4(i - 1 ).Left = 1480 

Limit(i + 1) = Lirnit(i) + Limit(l) 

Elself i = er Then 

frmDisplay.Line9(i).Xl = 240 

frmDisplay.Line9(i).X2 = 11760 

frmDisplay.Line9(i).Yl = 960 + Limit(i) 

frmDisplay.Line9(i).Y2 = 960 + Limit(i) 

63 



frmDisplay.Line9(i).BorderWidth = 2 

frmDisplay.Line9(i).BorderColor = vbBlue 

frmDisplay.Label3(i - I).BackStyle = 0 

frmDisplay.Label3(i - I ).Caption = List3 .List(i) 

frmDisplay.Label3(i - I ).AutoSize =True 

frmDisplay.Label3(i - l).ForeColor = RGB(200, I 00, 50) 

frmDisplay.Label3(i - I ).Top= (960 + Limit(i)) - (Limit(]) I 2) 

frmDisplay.Label3(i - I ).Left= 600 

frmDisplay.Label3(i - I ).FontBold =True 

frmDisplay.Label4(i - I ).BackStyle = 0 

frmDisplay.Label4(i - l).FontBold =True 

frmDisplay.Label4(i - l).AutoSize =True 

frmDisplay.Label4(i - I ).ForeColor = RGB(255, 0, I 00) 

frmDisplay.Label4(i - l).Top = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Label4(i - l).Left = 1480 

End If 

Next i 

pgg: 

Load frmDisplay 

frmDisplay.Show 

Me.Hide 

End If 

End Sub 

Private Sub Command4_ Click() 

64 



Frame2.Visible =False 

End Sub 

Private Sub Form_ Activate() 

Me.Frame2.Visible =True 

If nub = 1 Then 

GoTo Jasss 

El self nub = 0 Then 

Dim 111, n, o, p, q, r, s, t, u As Integer 

Me.Refresh 

Form= 1 To 8600 Step 0.04 

Label6.Visible =True 

Label6.Top = 9200 - m 

Nextm 

For n = 1 To 7400 Step 0.04 

Label?. Visible= True 

Label7.Top = 9200 - n 

Next n 

For o = 1 To 6440 Step 0.04 

Label8.Visible =True 

Label8.Top = 9200 - o 

Next o 

For p = 1 To 4280 Step 0.065 

Label9.Visible =True 

65 



Label9.Top = 9200 - p 

Next p 

For q = 1 To 3680 Step 0.065 

LabellO.Visible =True 

' LabellO.Top = 9200 - q 

Next q 

For r = I To 3080 Step 0.065 

Label 11.Visible =True 

Label 11.Top = 9200 - r 

Next r 

Fors= 1 To 2480 Step 0.065 

Label12.Visible =True 

Label 12. Top = 9200 - s 

Next s 

Fort= 1 To 1760 Step 0.065 

Label13.Visible =True 

Labell3.Top = 9200 - t 

Next t 

Listl .SetFocus 

End If 

Jasss: 

End Sub 

Private Sub Form_ Load() 

nub= 0 

66 



Me.Top= 0 

Me.Left= 0 

Text I.Visible= True 

Label4.Visible =True 

Frame2.Visible =True 

Label6.Visible =False 

Label7.Visible =False 

Label8.Visible =False 

Label9.Visible =False 

Label 10. Visible = False 

Labell l.Visible =False 

Label 12. Visible= False 

Label 13.Visible =False 

Dim i As Integer 

Dim strFile As String 

Dim inti As Integer 

For i = I To Vlac 

List I .Addltem Dataactivity(i) 

List2.Addltem Dataactivity(i) 

Next i 

List3.Addltem "The Activity" 

List4.Addltem "Connect Acctivity" 

List5.Addltem "Duration (Days)" 

List6.Addltem "ES" 

List7.Addltem "EF" 

67 



List8.Addltem "LS" 

List9.Addltem "LF" 

Listl O.Addltem "TF" 

Listl l .Addltem "FF" 

List 12.Addltem "Activity" 

List13.Addltem "Duration" 

List 14.Addltem "Connect" 

List 15 .Addltem "Remark" 

End Sub 

Private Sub Form_Unload(Cancel As Integer) 

End 

End Sub 

Private Sub Listl_DblClick() 

Dim n, i As Integer 

If List l .ListCount <> List2.ListCount Then 

For n = 0 To (Listi .ListCount - 1) 

If Listl.Selected(n) =True Then 

List2.Addltem Listi .List(n) 

End If 

Next n 

El self Listl.ListCount = List2.ListCount Then 

Text] .Visible= True 

Label4. Visible = True 

68 



St. Gabriel's Library~ Au 

For i = 0 To (List) .ListCount - I) 

If List 1.Selected(i) = True Then 

List3 .Adc!Item List I .List(i) 

End If 

Text I .SetFocus 

Next i 

End If 

End Sub 

Private Sub List2_Db!Click() 

Dim r As Integer 

For r = 0 To (List2.ListCount - I) 

If List2.Selected(r) =True Then 

List4.Aclc!Item List2.List(r) 

End If 

Next r 

End Sub 

Private Sub List3 _ Db!Click() 

Dim i As Integer 

i = List3 .Listlndex 

If i >= 0 Then 

List3 .Removeltem i 

Else 

Beep 

Encl If 

End Sub 

69 



Private Sub List4_DblClick() 

Dim i As Integer 

i = List4.Listlndex 

If i >= 0 Then 

List4.Removeltem i 

Else 

Beep 

End If 

End Sub 

Private Sub List5_Db!Click() 

Dim i As Integer 

i = List5.Listlndex 

If i >= 0 Then 

List5 .Removeltem i 

Else 

Beep 

End If 

End Sub 

Private Sub m2 _Click() 

If List3.ListCount < Vlac Then 

MsgBox "vbOKOnly, "Confirm !" 

List l .SetF ocus 

70 



Elself List3.ListCount >= Vlac + 1 And List5.ListCount >= Vlac + 1 Then 

Dim er, wr, i, k, I, m, n, o, p, q As Integer 

nub= l 

er= Val(List3.ListCount - 1) 

wr = Val(List4.ListCount - 1) 

ReDim AC(l To er, 1 To wr) As Integer 

list3 = list4 ? 

Fork= 1 To er 

For I= l To wr 

If I> wr Then 

GoTo Jn-

Elself l <= wr Then 

' list3 <> list4 I ist6 = 0 

If List3.List(k) <> List4.List(l) Then 

List6.List(k) = "O": GoTo Prr 

'list3 = list6 = -

Elself List3.List(k) = List4.List(I) Then 

List6.List(k) = "-": GoTo Jrr 

End If 

End If 

Prr: 

Next I 

Jrr: 

Next k 

Form= 1 To er 

71 



' list6 = O = lists + list6 

If List6.List(m) = "O" Then 

List7.List(m) = Val(List5.List(m)) + Val(List6.List(m)) 

list6 = - list7 = -

Elself List6.List(m) ="-"Then 

List7.List(m) = "-" 

End If 

Nextm 

For n = 1 To er 

Zxx: 

Yxx: 

For p =I To wr 

' list3 list4 

GoTo Zxx 

If List3.List(n) <> List4.List(p) Then 

Elself List3.List(n) = List4.List(p) Then 

List6.List(n) = List7.List(p) 

End If 

Next p 

List7.List(n) = Val(List5.List(n)) + Val(List6.List(n)) 

GoTo Yxx 

Nextn 

ReDim Dl4(1 To wr) As String 

Foro= I Towr 

Dl4(o) = List4.List(o) 

72 



Mm= Val(List7.List(o)) 

For p = 1 To wr 

If Dl4( o) = List4.List(p) Then 

If Mm<= List7.List(p) Then 

Mm= Val(List7.List(p)) 

Forq = 1 To er 

If List3 .List( q) = Dl4( o) Then 

List6.List( q) = Mm 

List7.List(q) = Val(List6.List(q)) + Val(List5.List(q)) 

End If 

Next q 

End If 

End If 

Next p 

Next o 

For r = I To er 

List8.Additem "-" 

List9.Addltem "-" 

ListlO.Additem "-" 

Listl l .Addltem "-" 

Listl 5.Addltem "-" 

Next r 

List9.List(er) = List7.List(er) 

List8.List( er) = List6.List( er) 

es= er - 1 

73 



et= wr - I 

Fors=OToes 

Fort= 0 To et 

list3 

If List3.List(er - s) <> List4.List(wr - t) Then 

GoTo Zxy 

list3 = list6 = list7 

Zxy: 

Elself List3.List(er- s) = List4.List(wr- t) Then 

List9.List(wr - t) = List8.List(er - s) 

End If 

List8.List(wr - t) = Val(List9.List(wr - t)) - Val(List5.List(wr - t)) 

GoTo Zxy 

Next t 

Next s 

Listl l.List(er) = Val(List7.List(er)) - Val(List7.List(er)) 

For u = 1 To er 

Listl 0.List(u) = Val(List9.List(u)) - Val(List7.List(u)) 

Next u 

For v =I To er 

For w =I To wr 

If List3.List(v) = List4.List(w) Then 

Listl 1.List(w) = Val(List6.List(v)) - Val(List7.List(w)) 

GoTo ker 

End If 

74 



ker: 

Nextw 

Next v 

For x = 1 To er 

Listl2.List(x) = List3.List(x) 

List I 3.List(x) = List5.List(x) 

Next x 

For y =I To wr 

List14.List(y) = List4.List(y) 

Next y 

For z = I To er 

If ListlO.List(z) = "O" And List I l.List(z) = "O" Then 

Listl5.List(z) ="Critical Path" 

Else 

Listl 5.List(z) = "***" 

End If 

Next z 

ReDim Limit(l To er) As Single 

Limit( 1) = 7200 I er 

Dim A1i As Integer 

ReDim DtaN(l To er) As String 

'input duration 

For Art= I To er 

If Art > er Then 

GoTo Sat: 

75 



Elself Art <= er Then 

DtaN(Art) = List5.List(Art) 

frmDisplay.Label4(Art - 1 ).Caption = DtaN(Art) 

frmDisplay.Label4(Art - l).BackStyle = 0 

If List5.List(Art) = List5.List(Art + 1) Then 

frmDisplay.Label4(Art - 1).Caption = List5.List(Art + 1) 

frmDisplay.Label4(Art - l).BackStyle = 0 

End If 

End If 

Next Art 

Sat: 

'not main 

Dim Pol2 As Integer 

Dim Jat As Integer 

Dim Rtg, pol As Integer 

pol= Val(List7.List(er)) 

Po12 = (pol / 10) + 1 

Dim aa As Integer 

ReDim DtDu(I To Pol2 + 1) As Integer 

ReDim Par(l To Pol2 + 1) As Integer 

'if pol< 200 

If pol < 200 Then 

For I= 1 To Pol2 + 1 

DtDu(I) = 10 *I 

frmDisplay.Label5(1- 1).Caption = DtDu(I) 

76 



frrnDisplay.LabelS(I - 1 ).BackStyle = 0 

On En-or GoTo hjk: 

Next I 

hjk: 

Par(l) = 9600 I Pol2 

'plot vertical line 

For aa = 1 To Pol2 - 1 

If aa > Pol2 Then 

GoTo Cft: 

El self aa <= Pol2 Then 

frmDisplay.LinelO(aa).Xl = 2160 + Par(aa) 

frmDisplay.LinelO(aa).X2 = 2160 + Par(aa) 

frmDisplay.Linel O(aa).Yl = 360 

frmDisplay.LinelO(aa).Y2 = 8160 

frmDisplay.Line I O(aa).BorderWidth = 2 

frmDisplay.LinelO(aa).BorderColor = vbBlue 

frmDisplay.LabelS(aa - l).FontBold =True 

frmDisplay.LabelS(aa - l).AutoSize =True 

frmDisplay.LabelS(aa - l).ForeColor = RGB(255, 0, 0) 

frmDisplay.LabelS(aa - l).Top = 600 

frmDisplay.LabelS(aa - l).Left = (2160 + Par(aa)) - ((Par(I) I 2) + 150) 

Par(aa + 1) = Par(aa) + Par(I) 

On Error GoTo Cft: 

End If 

Next aa 

77 



Cft: 

'if pol> 200 

Elself pol >= 200 Then 

Pol2 = (pol I 20) + 1 

For I= 1 To Pol2 + I 

DtDu(l) = 20 * 1 

frmDisplay.Label5(1- 1).Caption = DtDu(l) 

frmDisplay.Label5(1 - l).BackStyle = 0 

On Error GoTo jjk: 

Next I 

jjk: 

Par( I) = 9600 I Pol2 

For aa = I To Pol2 - I 

If aa > Pol2 Then 

Go To jft: 

Elself aa <= Pol2 Then 

frmDisplay.LinelO(aa).Xl = 2160 + Par(aa) 

frmDisplay.LinelO(aa).X2 = 2160 + Par(aa) 

frmDisplay.LinelO(aa).Yl = 360 

frmDisplay.LinelO(aa).Y2 = 8160 

frmDisplay.Linel O(aa).BorderWidth = 2 

frmDisplay.Linel O(aa).BorderColor = vbBlue 

frmDisplay.Label5(aa - l).BackStyle = 0 

frmDisplay.Label5(aa - l).FontBold =True 

frmDisplay.Label5(aa - 1).AutoSize =True 

78 



frmDisplay.Labe15(aa - 1).ForeColor = RGB(255, 0, 0) 

frmDisplay.Label5(aa - l).Top = 600 

frmDisplay.Label5(aa - 1).Left = (2160 + Par(aa)) - ((Par(l) / 2) + 150) 

Par(aa + 1) = Par(aa) + Par(l) 

On Error Go To jft: 

End If 

Next aa 

jft: 

End If 

'plot time - schedul diagram 

For i = 1 To er+ 1 

If i >er Then 

GoTo ggg: 

Elself i < er Then 

frmDisplay.Line8(i).Xl = (Val(List6.List(i)) * (9600 I (Pol2 * 10))) + 2160 

frmDisplay.Line8(i).X2 = (Val(List7.List(i)) * (9600 I (Pol2 * 10))) + 2160 

frmDisplay.Line8(i).Yl = (960 + Limit(i)) - (Limit(l) / 2) 

fnnDisplay.Line8(i).Y2 = (960 + Limit(i)) - (Limit(l) / 2) 

frmDisplay.Line8(i).BorderWidth = 4 

frmDisplay.Line8(i).BorderColor = vbGreen 

Limit(i + 1) = Limit(i) + Limit(l) 

Elself i = er Then 

frmDisplay.Line8(i).Xl = (Val(List6.List(i)) * (9600 I (Po12 * 10))) + 2160 

frmDisplay.Line8(i).X2 = (Val(List7.List(i)) * (9600 I (Pol2 * 10))) + 2160 

frmDisplay.Line8(i).Yl = (960 + Limit(i)) - (Limit(l) / 2) 

79 



frmDisplay.Line8(i).Y2 = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Line8(i).BorderWidth = 4 

frmDisplay.Line8(i).BorderColor = vbGreen 

End If 

Next i 

ggg: 

'plot horizontal line 

For i = 1 To er+ 1 

If i >er Then 

GoTo pgg: 

Elself i < er Then 

frmDisplay.Line9(i).Xl = 240 

frmDisplay.Line9(i).X2 = 11760 

frmDisplay.Line9(i).Yl = 960 + Limit(i) 

frmDisplay.Line9(i).Y2 = 960 + Limit(i) 

frmDisplay.Line9(i).BorderWidth = 2 

frmDisplay.Line9(i).BorderColor = vbBlue 

frmDisplay.Label3(i - 1 ).BackStyle = 0 

frmDisplay.Label3(i - l).Caption = List3.List(i) 

frmDisplay.Label3(i - l).AutoSize =True 

frmDisplay.Label3(i - 1).ForeColor = RGB(200, 100, 50) 

frmDisplay.Label3(i - l).Top = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Label3(i - !).Left= 600 

frmDisplay.Label3(i - I ).FontBold =True 

80 



frmDisplay.Label4(i - l).BackStyle = 0 

frmDisplay.Label4(i - 1).FontBold =True 

frmDisplay.Label4(i - 1 ).AutoSize =True 

frmDisplay.Label4(i - I ).ForeColor = RGB(255, 0, I 00) 

frmDisplay.Label4(i - 1 ).Top= (960 + Limit(i)) - (Limit(l) I 2) 

fnnDisplay.Label4(i - 1).Left = 1480 

Limit(i + 1) = Limit(i) + Limit(l) 

Elself i = er Then 

frmDisplay.Line9(i).Xl = 240 

frmDisplay.Line9(i).X2 = 11760 

frmDisplay.Line9(i).Yl = 960 + Limit(i) 

frmDisplay.Line9(i).Y2 = 960 + Limit(i) 

frmDisplay.Line9(i).BorderWidth = 2 

frmDisplay.Line9(i).BorderColor = vbBlue 

frmDisplay.Label3(i - l).BackStyle = 0 

frmDisplay.Label3(i - 1).Caption = List3.List(i) 

frmDisplay.Label3(i - 1).AutoSize =True 

frmDisplay.Label3(i - 1 ).ForeColor = RGB(200, 100, 50) 

frmDisplay.Label3(i - 1).Top = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Label3(i - 1 ).Left = 600 

frmDisplay.Label3(i - 1).FontBold =True 

frmDisplay.Label4(i - 1).BackStyle = 0 

frmDisplay.Label4(i - l).FontBold =True 

frmDisplay.Label4(i - l).AutoSize =True 

frmDisplay.Label4(i - 1 ).ForeColor = RGB(255, 0, 100) 

81 



frmDisplay.Label4(i - 1).Top = (960 + Limit(i)) - (Limit(l) I 2) 

frmDisplay.Label4(i - 1 ).Left= 1480 

End If 

Next i 

pgg: 

Load frmDisplay 

frmDisplay.Show 

Me.Hide 

End If 

End Sub 

Private Sub 1113 _Click() 

Frame2.Visible =False 

Frame I.Visible= True 

End Sub 

Private Sub m4_Click() 

End 

End Sub. 

82 



BIBLIOGRAPHY 

1. Hegde, B. K. Production Management: Text and Cases. New Delhi: Prentice-Hall 
of India Private, 1972. 

2. Pinney, William E. Management Science: An Introduction to Quantitative 
Analysis for Management. NY: Harper & Row, 1982. 

3. Prabhu, Vas. Production Management and Control. London: McGraw-Hill, 1986. 

4. Thierauf, Robert I. Management Science: A Model Fonnulation Approach with 
Computer Applications. Columbus: Charles R. Merrill, 1985. 

5. Thompson, Gerald E. Management Science: An Introduction to Modem 
Quantitative Analysis and Decision Making. NY: McGraw-Hill, 1976. 

83 

St. Gabriel's Library, Au-




	Cover and Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Literature Review
	Chapter 3 : The Network Diagram
	Chapter 4 : Financial Analysis
	Chapter 5 : Developing Visual Basic For Calculate Critical Path
	Chapter 6 : Conclusions
	Appendix : A
	Bibliography

