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Abstract

This  paper  considers data processing of time-resolved
photoluminescence (PL) spectra obtained with two-dimensional streak
camera. Effective numerical algorithms are implemented in an applied

software product (program LumFit).
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Introduction

The relaxation process of the
optical spontaneous emission (for
example  photoluminescence)  of
semiconductor heterostructures can be
described theoretically by means of a
series of phenomenological
parameters, the time-constants of the
recombination  processes (Bastard
1992). The radiative channel (after
laser pumping) is in competition with
the non-radiative relaxation processes
(photon emission, capture by deep
centers, Auger effect, etc.) which send
the excited carriers to lower states
from which they can emit photons or
relax non-radiatively, etc. (Fig.1).
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Pico-Second Photoluminescence, Data processing.

The theoretical and numerical
description of the relaxation pico-
second PL lineshapes in the presence
of a series of discrete recombination
levels is the subject of the present
work. The peculiarities of data
processing of experimental noisy
spectra are considered in terms of
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Fig.1. Schematic diagram of the
generation-recombination process of
three-energy level optical system.



multivariable constrained optimization
theory. The case of continuous
distribution of levels is described in
terms of the ill-posed problems theory.

Basic Theoretical Relations

The time-constants of the
recombination processes can be
described using the rate equations for
the non-radiative relaxation process n;
(), and the time process 7,(¢) from the
lower state (deep level)'
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where 1., 17, and 1, are
correspondingly the relaxation,
radiative and non-radiative time-

constants; p() is the line- shape of the
laser pump pulse.

The solutions of these equation
(having in mind the time distribution
of the pump laser source) are:
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In the case when the pump laser
pulse can be presented via time &-
function

p(t)=nyi(r) (6)
we obtain
s 0=y (exp(-——) (7
rel
A
ny(t)=nyY (t)——
7 rel
x {exp(- D)-exp(-——)} (8)
v 1o Trel
The experimental pump laser

pulse can be presented if the first
approximation via Gaussian distribu-
tion with time dispersion y (22 ps, for
example) and middle time point 7,

) = ——exp(-2 (’—") ) ©)
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However, it is more convenient to
measure the lineshape of the pump
laser pulse with the same experimental
set-up. Then the experimental
spectrum consists of two parts:

- the lineshape of the pump laser pulse;
- the pico-second photoluminescence
spectrum of the sample.

Time-Resolved PL in case of Series
of Discrete Levels

In the case of series of discrete
levels (Ohnesorge 1994).

number of levels z,
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where D, are the contributions (ratios)
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of each level to the photoluminescence
spectrum. The Eq.(10) is valid for &
function time pump source and eq.(11)
- for arbitrary p(f) pump lineshape.
This theoretical model represents a
constrained optimization problem from
numerical point of view.

We consider the case of two
discrete quantum levels with different
time-constants in order to obtain
qualitative information from noisy
experimental spectra by minimizing
the least-squares quadratic functional
between experimental data and
theoretical model.

The simplex method (Box 1965)
for constrained optimization can be
used for effective data processing of
such problems. The simplex method is
a non-gradient iterative method for
constrained optimization, which is
very convenient when:

- the number of theoretical parameters
is not so big. In our case, the fit
parameters are 5: T, 75, T, D; (we
assume that D; = I) and the starting
time point t for the
photoluminescence process;

- the calculation of the function for the
theoretical model needs time;

- the first derivatives of the function
for the theoretical model cannot be
calculated in real time;
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- the point of global minimum of the
quadratic functional has to be reached
neglecting the initial assumptions for
the searching solution.

The simplex method forms an
initial many-dimensional figure of
random points (simplex). The simplex
can change its form, size, and direction
during the iterative process searching
the point of global minimum. The
method can pass through some of the
points of local minimum, while the
corresponding  gradient  methods
depend strongly on the initial
assumptions for the searching solution.

Time-Resolved PL in case of
Continuous Distribution of Levels

In case of continuous distribution
of levels the corresponding theoretical
model can be represented by one-
dimensional Fredholm equation of the
first kind with two-dimensional
integral kernel

n (1)~ me(z)K(z,/)dz, b Sl
(12)
where
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This equation is a one-
dimensional special case of the general

operator equation qh= " Del,
SeZ with linear operatord and
approximately known left 4, and right



parts S, related to the wide class of

ill-posed problems(Tihonov et al.
1983). The regularization methods in
most cases search for a solution by
minimizing the quadratic functional

11~ 2
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by projection over some a priori
known multitude in given space DeU,
(U eU) below the sum of the
uncertainties 4||D| and & of the left and
right parts of the operator equation,
6
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Conclusion

The discrete level approach is
implemented in the program LumFit
(Batovski 1995; 1998), developed for
effective data processing in real time
of time-resolved pico-second photo-
luminescence spectra.

The assumption for continuous
distribution of levels can be useful in
case of data processing of both
disordered and amorphous quasi bi-
dimensional systems.
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