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Abstract

A handheld monitor consisting of six tin-oxide semiconductor sensors was used
for detecting organic volatiles in oriental sauces. Identification of the sauces by data
processing with an artificial neural net was performed on sensor peak height data
recorded and was found to be better than 90% efficient. The use of duplicate data sets
allowed the identification of 14 sauces. Net training was slower with a decreased
number of sensors, larger net size (number of test samples) and increased sensor
response pattern similarity.

Samples tested were Cornwell's, Kikkoman (sr) salt reduced, Yeo's, Pearl River
Bridge (PRB), Zu Miao, Farmland soy sauces, Songai and Pearl River Bridge
mushroom (MushPRB) soy sauces; Spiral and Pureharvest (PH) tamari sauces,
Pureharvest (PH) shoyu sauce; Ayam and Tiparos fish sauces; and Ayam teriyaki sauce.
Sauces with very high volatile contents, Kikkoman (sr), the two tamari sauces, shoyu
sauce, and teriyaki sauce, were diluted 1:10 just before testing. The results indicate the
possibility of development into an on-line monitor for quality control during the

production of sauces.

Keywords: Semiconductor gas sensors, battery-powered monitor, gas analyzer,

artificial neural network.
Introduction

A number of reviews on portable monitors
for gases, liquids and solids have been
published (Lopez-Avila and Hill 1997) due to
the interest in on-site analytical techniques. The
present paper is on an investigation concerning
application of a six-sensor handheld gas
monitor using tin-oxide semiconductor sensors
for identifying oriental sauces by monitoring
the volatile organic constituents in the
headspace.

Possible applications of portable field
analyzers for environmental monitoring,
quality control, quality assurance and food
technology have been described (Meuzelaar
1997). Development of tin-oxide MOS (metal

* Part 1 of the Report on Research conducted by
the author at the University of Tasmania.
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oxide semiconductor) for specific gas detection
was described by Di Benedetto et al. (1998).
Effect of gas characteristics on sensing
properties of thick film tin oxide based sensors
has been studied by Shimizu ef al. (1998). A
number of Taguchi tin-oxide MOS based
handheld analyzer applications have been
examined at the University of Tasmania. These
include beer identification using six sensors
and ethanol determination using two sensors.
A Langmuir model based linear calibration
method for ethanol determinations using two
Taguchi MOS sensors was also developed by
Di Benedetto et al. (1998).

Applications attempted in  other
laboratories include discrimination of meat
products, sausages and hams, and bacterial
strains, aromatic or pathogenic, using six
Taguchi tin-oxide MOS sensors (Vernat-Rossi
et al. 1996); identification of gases using a



temperature modulated single tin-oxide MOS
sensor (Kato et al. 1997) and a commercial
cooking oil tester (Mittal 1996).

Another interesting application is odor
sensing electronic noses which have been develop-
ed. These normally consisted of multi-sensor
arrays and artificial neural net (ANN) with back
propagation or fuzzy logic (Garnder et al.
2000; Nanto et al. 1996; Vlachos et al. 1996).
Fuzzy c-means algorithm, FCMA in conjunc-
tion with a radial basic function (RBF) neural
network was claimed to improve ANN
performance (Wang and Xie 1996). A novel
variation is the electronic tongue such as that
used for beverage tasting and multi-component
analysis of polluted water (Legin et al. 1997).

Soy sauce production usually consisted
of two main fermentation stages: (i) solid state
fermentation where the soybeans were exposed
to air, and (ii) solution fermentation where the
above partially fermented beans were further
fermented in salt solution. Various volatiles
were produced, which presumably contributed
to the aroma and taste of the sauces (Roling et
al. 1996).

Total sensor response is the accumulation
of the responses to each of the individual sauce
volatiles; the total response for each sensor
gave six data peaks corresponding to the six
sensors. This pattern or "fingerprint" of the
sauces was then identified via the neural
network or via statistical MAP functions. Use
of more sensors would give better different-
iated "fingerprint" and increased sensors should
therefore yield improved sauce identification
efficiency.

In general, commercial multi-sensor
monitors, such as AromaScan from Meeco
Holdings Pty. Ltd. which uses a 32 conduction
polymer array (Lardner 1997), or Alpha MOS
Fox from Analytical Equipment Co., which
uses 12 sensors in 55 different combinations
(Fotheringham 1997), can be considered to be
better than the present six-sensor monitor.
However the increased identification efficiency
with increased sensors could not be expected to
be linear indefinitely. A saturation point would
exist, above which increased use of sensors
would be of no real practical significance. It
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could even be economically unsound. Hence
the use of the minimum number of sensors just
sufficient for efficient performance is desirable.
It was decided to test the capability and
efficiency of the in-house built (University of
Tasmania) six-sensor monitor, complemented
with ANN, for identifying oriental sauces.

The use of the gas analyzer depends on
the sensors chosen and an Artificial Neural Net
for data processing. MOS type semiconductors
and conducting polymers (CP) are commonly
used types of gas sensors. Higher sensitivity,
better day-to-day reproducibility, longer service
life, less replacement cost, greater humidity
tolerance, and easier regeneration on saturation
were the advantages of MOS sensors over CP
sensors (Fotheringham 1997). Thus, MOS
sensors were chosen.

In ANN, usual threshold functions are
step-functions or hard-limiters. In real neurons,
information was encoded in terms of firing
frequency rather than pulse presence or
absence. To represent this in ANN, the step
function was ‘softened’ or ‘squashed’; fuzzy
logic and sigmoid function were examples.
However, back propagation employed in the
first ANN softwares is still widely used.
Design, theory, and applications of neural
networks are discussed thoroughly by Lawrence
(1994). A summary of Brainmaker, California
Scientific Software, used in this work is
dsecribed elsewhere (Di Benedetto et al. 1998).

The present work used a six-sensor MOS
array in the FIA mode similar to that described
before (Di Benedetto e al. 1998). A back propa-
gation ANN was used for pattern recognition
and discrimination. Fourteen local and imported
oriental sauces readily available at Australian
supermarkets were tested.

Experimental
Reagents and Solutions

Kikkoman (sr) salt reduced and Yeo's soy
sauces; Pureharvest and Spiral tamari sauces;
Pureharvest shoyu sauce and Ayam teriyaki
sauce were diluted 1:10 just before testing.
Cornwell's, Pearl River Bridge (PRB), Zu Miao



and Farmland soy sauces; Songai and Pearl
River Bridge mushroom soy sauces; and
Tiparos and Ayam fish sauces were used
straight. 50 mL of sample sauce liquids were
taken in 100 mL volumetric flasks.

The Monitor

The hand-held monitor, similar to that
described before by the author (Tin 1999),
consisted of six Taguchi tin-oxide MOS
sensors TGS 880, 825, 824, 822, 813, 800
(referenced as sensors 1, 2, 3, 4, 5 and 6,
respectively) from Figaro, Osaka, Japan, and a
Tattletale data-logger which allowed array
options of 2, 3, 4, 5 sensor combinations in
addition to the full six-sensor array for on-site
delayed or timed measurements. It was used to
sample well-stabilized saturated headspaces at
a constant flow rate of 1 .L/min; a rate of 0.33
volume changes per second or one volume
change every three seconds. The analog output
voltage was captured on the data logger
(Tattletale data logger) and real-time voltage
readings were simultaneously displayed on an
Acer/Extensa 355 computer via an RS232C
connector. Collected data files were then
downloaded to the computer and saved as text
files in Txtools, transferred to a spreadsheet,
plotted out as graphs on the VDU and used for
data analysis.

Procedures

A head-space sampling method was used.
The sampling tube was inserted for 10 seconds,
into the well-stabilized saturated headspace,
without shaking, to a point about 5 cm
above the liquid surface of a 50 mL sample,
contained in a 100 mL volumetric flask.

The responses from the six sensors were
recorded on the Tattletale data logger, while
being monitored in real time on the computer
screen. The recorded sensor responses for
the samples were downloaded onto the computer
and saved as text files in Txtools. Single,
duplicate or triplicate measurements, using 2,
3, 4, 5 or 6 sensor arrays, in different sensor
combinations, were done on each of the 14
sauce samples. Peak height measurements were
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made manually and entered in Excel files,
which were then loaded into the ANN
Brainmaker (from California  Scientific
Software Inc., CA, USA), where Brainmaker
files were created and the network was trained.
The process was repeated on chosen test
sample sauces; peak height data were loaded
onto the Brainmaker, where Running Fact files
were created and fed to the above trained net
for sauce identification.

Results and Discussion

Net Training Parameters

The data, saved as text files in Txtools,
were trained in the ANN using 200 hidden
neurons, a Sigmoid nonlinear saturation
transfer function, a tolerance level of 10%,
and a learning rate of 1.000.

It was found that 200-220 hidden
neurons gave the shortest net training times, at
10% tolerance and 1.000 learning rate.
Increased hidden neurons tend to push neural
nets towards memorizing rather than
predicting, and excessive use of hidden
neurons was generally discouraged. Unlike
stock market cases, where daily predictions
based on previous data were required, sauce
identification demanded the net to memorize
the input patterns and identify the test samples
by comparing test patterns to input patterns,
embedded in the net memory. Memorizing
rather than predicting was necessary. Therefore
use of such a high number of hidden neurons,
in order to promote net memory, was justified
in this case.

There were two important sets of
variables in the Neural nets; the set of sauce
sensor responses, which depended on the
number of sauces used and the individual
variations of these responses, which depended
on repeated measurements. The tolerance level,
used in net training, referred to the latter. A
variation of 10% was tolerated by the trained
net, i.e. any response pattern or fingerprint
within 10% of a sample pattern would be
recognized as the sample.



ANN Net Training

The ease of net training should depend on
number of sauce samples, number of sensors,
response similarity of sensors in the array and
number of repeats. The number of samples was
fixed at 14, and only the latter three factors
would affect net training.

Number of Sensors:
an array would give better pattern recognition
factors, and should consequently make net
training faster. This was observed in Table 1,
where six sensor arrays had net training times
of just over a minute, as compared to around
two minutes for 3 or 4 arrays, and over 10
minutes for two sensor arrays.

Response Similarity of Sensors: Obviously
similar response patterns would make it harder
for the net to recognize and memorize the
differences.. This should make net training
more difficult. For example in Table 1, the
three-sensor array (2, 4, 6) had less similar
responses among its three sensors than the (1,
2, 3) array. For a net size of 14 x 2 = 28, the net
training times were two minutes for the former
and five minutes for the latter. The (2, 6) two-
sensor array with similar responses between the
two sensors could not be trained fully at all.

Repeated Measurements: Using single
measurement for each sauce, a net size of
14x1=14, net training was achieved for sauce
sets of five members or less. If six or more
members were used, one member, usually the
sixth, was ignored during training, and was
consequently identified incorrectly. Thus, only
13 of the 14 facts, patterns created by 14 sauce
responses, were recognized (Table 1). Tiparos
fish sauce, the sixth sauce item, was always
identified incorrectly (identifications marked B,
bad identifications) when using the 14 x 1 = 14
nets of 2, 3 and 6 sensor arrays. Thus
identification of sauce samples were limited to
a maximum of five, if wusing single
measurements.

Increased repeats should promote net
training by improved statistical significance,

More sensors in -

174

brought about by increased data. This, should
make the net more effective at identification.
Thus all 14 sauces, including Tiparos, were
identified correctly when using duplicate,
triplicate or quintuplet data with 3, 4, 5 or 6
sensor combinations (Table 1). However, the
larger data set should make training times
longer. As shown in Table 1, in the six-sensor
array, training times for the 14 x 5 = 70 fact
net, quintuplet data, was over two min and the
corresponding 14 x 1 = 14 fact net, single data,
was 1.5 min.

As shown in Table 1, only 25 facts were
recognized in the duplicate data, 14 x 2 = 28
fact nets of two-sensor arrays. Three facts of
two sauces were ignored in turn. Similarly,
only 38 facts were recognized in the 42 fact
nets and only 63 facts were recognized in the
70 fact net.

Multiplicates obtained by copying single
measurement data were sufficient to obtain
efficiently trained nets which were capable of
identifying the 14 sauces. Thus, practical
multiple measurements were unnecessary for
net training purposes.

Sauce Identification

Single Peak Height Measurements: With
a six-sensor array, using single measurements
of the head space volatiles for each sauce, no
identification difficulties were encountered if
less than six sauces were analyzed at any one
instance, with corresponding small nets. For
example, any five of the 14 sauces set, could be
identified by using appropriate five fact nets.
Fig. 1 shows successful identification of five
low volatile sauces, and Fig. 2 shows efficient
identification of 1:10 diluted high volatile
sauces, using six sensor arrays, single data set
and five fact nets. If more than five were
attempted, one sauce, usually the sixth, was
ignored during net training as mentioned
above, with consequent error in identifying that
particular sauce, Tiparos fish sauce in this case.
It was interesting to note that even Tiparos was
identified correctly in the five fact net (Fig. 1).

The five-sample limit can be attributed to
statistical insufficiency of presented data. In



ANNSs used for market predictions, previous
variations on prices of items, such as gold,
silver, copper, were used to obtain a trained
net. In the case of sauces, each sauce would be
an item, analogous to gold, silver or copper;
and the repeated measurements would be
analogous to -price variations. Thus it was
decided to try multiple data.

Duplicate Peak Height Measurements:
As mentioned earlier, in 28 fact nets, only 25 of
the 28 facts of duplicate data were recognized.
The sixth and twelfth sauces of the set were
ignored at alternate runs during net training, but
identification was not inhibited. Identification of
14 sauces was achieved. Response peak heights
of 14 sauces to six sensors used for net training
and identification were shown in Table 2. Fig.
3 shows efficient 14 sauce identification, using
six sensors and 28 fact nets. Similarly, efficient
14 sauce identification was observed with all 6,
5, 4, 3 sensor arrays, using 28 fact net (Table
1). The three-sensor arrays (2, 4, 6), (1, 3, 5),
(1,2, 3) and (4, 5, 6) were all efficient. _

Since the number of sauces, 14, was an
obviously very high figure, which none of the
sauce companies would produce, it was
important for the net to be capable of
identifying less number of sauces. Identification
of Cornwell’s and Kikkoman (sr) soy sauces with
low and high volatile contents, respectively,
Tiparos fish sauce and Pearl River Bridge
mushroom soy sauce, selected for their
different nature, were tested. Fig. 4 shows
correct identification of the selected four
different sauces, using a three-sensor array, 28
fact nets. The five-sauce limits for single data
set 14 fact nets mentioned earlier was useful in
itself, but identification was restricted to the
five sauces used in net training. The 14 sauce,
28 fact trained net would give a variety of
options concerning sauce numbers and sauce
combinations.

Triplicate Measurements: Triplicate and
quintuplet data, 14 x 3 =42 and 14 x 5 =70
fact nets of six-sensor arrays were also efficient
at 14-sauce identification. However, the
identification fractions did not improve over
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the three- sensor array 28 fact nets. Thus three-
sensor arrays with duplicate data were the

minimum  requirements  for  efficient
identification.
Measurement Difficulties: Continued

fermentation of sauces on exposure to the
atmosphere and variable headspace build up,
were the two main difficulties in obtaining
reproducible sensor responses, in addition to
the well known difficulties, such as humidity
and temperature variations. Hence these factors
had to be controlled by refrigeration, working
in a temperature, humidity regulated room, and
by giving enough time for build up of saturated
equilibrated headspace, between repeated
measurements.

Possible Applications

One possible application area was quality
control or quality assurance. Proactive quality
standards like the ISO 9000, required
continuous assessment all along the production
stream, as opposed to the reactive standards
which simply required checking the finished
product output. Thus small, efficient on-line
testers would be in great demand in the future.

Any variation from the norm would have
sensor responses different from the standard
values. Thus, if these variations could be
detected by the ANN trained net, then any sub-
standard quality sample batch would be
identified. Hypothetical variations of +0.5%, +
1%, +2%, +5%, +7% and *10%, in the
Cornwell’s soy sauce test response data were
fed into the three-sensor (2,4,6) array duplicate
data 28 fact ANN trained nets, for
identification. Fig. 5 shows that distinct
identification pattern differences were observed,
starting from 1% response variation. The
sharpest changes were in the Zu Miao
component of the identifications. Thus this
change could be used to set the required quality
standard of Cornwell’s soy sauce. Therefore
the present six-sensor tester had a potential for
being developed into an online tester for
oriental sauce production. This possibility was
being explored.



Another application of importance to
Asia was process monitoring in soy sauce
production. A tester, similar to the six-sensor,
possibly with less sensors, could be used to
follow fermentation during soy sauce
production, and optimum production parame-
ters could be determined. Work on similar lines
had been done on Japanese miso (soy paste).
Lipid membranes were used as taste transdu-
cers in a multi-channel taste sensor, an electronic
tongue analogous to the electronic nose.

Advantages Over Multi-sensor Arrays

The main advantages of the six-sensor
MOS array over multi-sensor MOS arrays were
comparable identification capabilities at
comparatively lower cost and the minimized
error  probability due to less peak
measurements. Thus in sauce identification, the
six-sensor tester, being much less costly, was
preferable to the much more costly multi-
sensor monitors. It also had a potential for
development into an online quality assurance
tester, for proactive, rather than reactive,
conformity to standards, in accordance with
ISO 9000 quality standards; and a soy sauce
production monitor.

Conclusion

The six-sensor monitor, coupled with
Brainmaker ANN software, has been shown to
identify up to 14 oriental sauces efficiently.
The monitor is of comparatively lower cost,
and it could be developed into an online tester
for quality assurance in sauce production, and
also extended for use in other fermentation
industries. It therefore offers an alternative
method in sauce manufacturing and wine and
beer production to the more sophisticated but

costly  multi-sensor  monitors  presently
available commercially.
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Table 1. ANN net training and identification data
No. Net Size NetFile  Training Facts  Facts  Sauces Run File Out File Remark
Sensors Time  Used Trained
6 14x1=14 s6nl4x~1l.net 1:32 14 13 14 r14s6t~1.in rl4s6nl4.out B
6 14x2=28 s6nl4x~2.net 1:44 28 25 14 r14s6t~1.in rl4s6n28.out G
6 14x3=42 s6nl4x~3.net 1:29 42 38 14 rl4s6t~1l.in  rl4s6nd2.out G
6 14x5=70 s6bnl4x~5.net 2:13 70 63 14 rl4s6t~l.in  rl4s6n70.out G
6 14x2=28 s6nl4x~2.net 1:44 28 25 4 r4s6t~1.in r4s6n28.out G
6 5x1=5 S5LSau6.net  0:34 5 5 5 5LSau6.in SLSau6.out G
6 5x1=5 5HSau6.net  0:44 5 5 5 SHSau6.in SHSau6.out G
5 14x2=28 s5nl4x~2.net 1:10 28 25 14 rl4s5t~1.in  rl4s5n28.out G
4 14x2=28 s4nl4x~2.net 2:19 28 25 14 rl4s4t~1.in rl4s4n28.out G
3(2,4,6) 14x1=14 s3nl4x~l.net 2:04 14 13 14 rl14s3t~2.in rl4s3nl4.out B
32,4,6) 14x2=28 s3nl4x~2.net 2:06 28 25 14 rl4s3t~2.in  rl4s3n28.out G
3(1,3,5) 14x2=28 s3anl4x2.net 3:19 28 25 14 rl4s3a~l.in  rl4s3a28.out G
3(1,2,3) 14x2=28 s3bnl4~l.net 5:07 28 25 14 rl4s3b~l.in  rl14s3b28.out G
3(4,5,6) 14x2=28 s3cnl4~l.net 3:39 28 25 14 rl4s3c~1.in  rl4s3c28.out G
2(1,3) 14x1=14 s2nl4x~l.net 10:36 14 13 14 rl4s2t~l.in  rl4s2nl4.out B
2(1,3) 14x2=28 s2nl4x~2.net 43:07 28 25 14 rl4s2t~l.in  rl4s2n28.out B
2(2,6) 14x2=28 s2anl4x2.net 70% 28 25 14 rl4s2a~l.in  rl4s2a28.out B
Trained

G = Good. Correct Identification
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B = Bad. Incorrect Identification.



Table 2. Sample net training and identification six sensor responses

Training Peak Heights / mV Identification Peak Heights / mV

No. Sauce/Sensor 1 2 3 4 5 6 1 2 3 4 5 6
1 Cornwell's 160 170 50 120 50 180 150 160 50 115 60 180
2 Spiral Tamari 750 760 230 520 160 560 730 740 220 540 150 50
3 Kikkoman(sr) 540 550 150 330 100 360 520 530 150 320 100 350
4 PH Tamari 50 60 20 40 20 50 50 60 20 40 20 50
5 Yeo's . 230 - 240 50 150 50 180 220 230 50 150 60 200
6 Tiparos 120 -130 50 120 - 50 120 130 140 50 120 50 130
7 Ayam Fish 170 180 60 160 30 130 160 170 60 150 30 130
8 Songai 70 80 30 60 30 80 80 90 30 60 30 80
9 PH Shoyu 350 360 100 260 60 250 330 340 100 260 60 250
10 PRB 100 110 20 70 20 80 100 110 20 70 20 80
11 MushPRB 70 80 20565007 20,580 80 90 20 60 20 50
12 Teriyaki 320 330" 100+, 230 . 80 230 320 330 100 220 80 220
13 Zu Miao 170 180 50 110 60 150 160 170 50 100 60 150
14 Farmland 120 130 30 80 40 120 110 120 30 70 50 110

Legend: PH = Pureharvest PRB = Pearl River Bridge MushPRB = Pearl River Bridge Mushroom Soy
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Fig. 1. Identification of five low volatile sauces 6 sensors.
Single Data Set; 5 Fact Net
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Fig. 2. Identification of five 1:10 diluted high volatile sauces.
6 Sensors; Single Data Set; 5 Fact Net
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Fig. 3. Identification of fourteen sauces, six sensors.
Duplicate Data Set; 28 Fact Net
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Fig. 4. Identification of four selected sauces three sensors (2, 4, 6).
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Fig. 5. Hypothetical variations of Cornwell's sauce.

Pro-active quality assurance possiblity
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