

AN APPLICATION OF CLASS-BASED STORAGE POLICY TO REDUCE WAREHOUSE COST: A CASE STUDY OF A THIRD-PARTY LOGISTICS PROVIDER

By YUICHI TADOKORO

A Proposal of the Six-Credit Course SCM 7203 Graduate Project

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN SUPPLY CHAIN MANAGEMENT

> Martin de Tours School of Management Assumption University Bangkok, Thailand

> > JULY 2014

AN APPLICATION OF CLASS-BASED STORAGE POLICY TO REDUCE WAREHOUSE COST: A CASE STUDY OF A THIRD-PARTY LOGISTICS PROVIDER

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN SUPPLY CHAIN MANAGEMENT

Martin de Tours School of Management Assumption University Bangkok, Thailand

JULY 2014

WAREHOUSE COST REDUCTION BY IMPROVING STORAGE POLICY: A CASE STUDY OF A THIRD-PARTY LOGISTICS PROVIDER

By

YUICHI TADOKORO

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Supply Chain Management Assumption University

Examination Committee:

- 1. Dr. Ismail Ali Siad
- 2. Dr. Piyawan Puttibarncharoensri (Member) .

SINC

3. Dr. Athisarn Wayuparb

(Advisor)

69(Chair)

Approved for Graduation on: July 26, 2014

Martin de Tours School of Management and Economics Assumption University Bangkok, Thailand

May 2014

Assumption University Martin de Tours School of Management and Economics Master of Science in Supply Chain Management

Declaration of Authorship Form

I, Yuichi Tadokoro declare that this project and the work presented in it are my own and has been generated by me as the result of my own original research.

AN APPLICATION OF CLASS-BASED STORAGE POLICY TO REDUCE WAREHOUSE COST: A CASE STUDY OF A THIRD-PARTY LOGISTICS PROVIDER

I confirm that:

- 1. This work was done wholly or mainly while in candidature for the M.Sc. degree at this University;
- 2. Where any part of this dissertation has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- 3. Where I have consulted the published work of others, this is always clearly attributed;
- 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this dissertation is entirely my own work;

I have acknowledged all main sources of help;

- 6. Where the project is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- 7. Either none of this work has been published before submission, or parts of this work have been published as: [please list references in separate page]:

Signed / 11 Date 15 september 2014

Assumption University Martin de Tours School of Management and Economics Master of Science in Supply Chain Management

Student Name:Yuichi TadokoroID:552-9540

ADVISOR'S STATEMENT

I confirm that this project has been carried out under my supervision and it represents the original work of the candidate.

	SU			A
Signed	<u>OF</u> (<u>A⁴41(SA Y11</u>	NT W. Wayuparb	VINCIT	AN ND
Date	T	<u>110 2.5</u> 2.04	E 1969	2

ACKNOWLEDGEMENT

I would like to acknowledge the support of my adviser, Dr. Athisarn Wayuparb throughout the entire scope of this work. His insightful input in terms of efficient methods and in-depth wisdom have been invaluable in the completion of this work.

I would also like to express my gratitude to Mr. Kanit Nuntasukon, associates and my family for their enormous help. Without their moral support and assistance it would have made the project's completion a difficult task.

ABSTRACT

The eventual objective of enterprise activity converges with optimizing profitability through increasing revenue and decreasing costs. The results of the enterprise activity reflect the values for shareholders, customer satisfaction and employee satisfaction. Supply chain management and logistics management are one effective methods to pursue the eventual profit objective. This research focuses on the decreasing cost of a warehouse through the optimizing of traffic inside the warehouse. Warehousing costs have a high commonality in the manufacturing industry from upstream to downstream. The logical approach of eliminating the needlessness contributes to reducing the total supply chain costs.

The methodology of class-based storage policy is studied and applied in this research. Class-based storage policy ranks items in the warehouse depends on cargo volume and frequency. The items in the warehouse are partitioned into several storage classes and assigned storage locations within their own storage class area. The comparison between the random storage policy, a current storage policy and class-based storage policy was worked out using the operational data of substantial logistics company.

SINCE1969

The results indicated that applying a proper storage policy reduces the asset level and maintenance costs, which includes the direct and indirect manpower with the warehouse operation and management. The application and improving storage policy does not require a huge investment and idling period of the work days. Management of the warehouse can start studying the storage policy and it can be worked out by using excel spreadsheets. Additionally, the significant relationship between the storage policy and the expense of the warehouse was revealed in this research.

ME ASSUMPTION UNIVERSITY LIBR

TABLE OF CONTENTS

Page

Committee Approval Form	
Declaration of Authorship Form	ii
Advisor's Statement	iii
Acknowledgement	\mathbf{iv}
Abstract	
Table of Contents	vi
List of Tables	viii
List of Figures	ix
Proofreader Form	
Chapter I: Generalities of the Study	
1.1 Background of the Study	1
1.2 Statement of the Problem	5
1.3 Research Objectives	5
1.4 Scope of the Research	5
1.5 Significance of the Research	6
1.6 Limitations of the Research	7
1.7 Definition of Terms SINCE1969	7
<i>่ ^{วิท}ย</i> าลัยอัสลิช	
Chapter II: Review of Related Literature	
2.1 Slotting Process	9
2.2 ABC Analysis	13
2.3 Travel Distance	15
2.4 Cost of Warehouse	20
2.5 Summary	20
Chapter III: Research Methodology	
3.1 Research Method	22

23
23
29
30
36

Chapter IV: Presentation and Critical Discussion of Results

4.1 Data Alignment	37
4.2 Evaluate the Travel Distance	42
4.3 Evaluate the Required Electric Forklift Quantity for TO-BE Process	43
4.4 Evaluate the Total Expense by Applying the Result to the Cost Structure	43
4.5 Summary	45

Chapter V: Summary Findings, Conclusions and Recommendations

5.1 Conclusions and Summary of the Findings	46
5.2 Theoretical Implications	47
5.3 Managerial Implications	47
5.4 Limitations and Recommendations for Future Research	50

INCIT **BIBLIOGRAPHY APPENDICES**53 Appendix 1: Historical Data of XYZ (a) and (b)5354 Appendix 2: Historical Data of XYZ (c) and (d) Appendix 3: Layout of Warehouse with Distance55 Appendix 4: Result of ABC Analysis to Customers (Table)56 57

Appendix 5: Allocated Location by Customer	
Appendix 6: Result of ABC Analysis to Items of Class A (Table)	58
Appendix 7: Allocated Location by Item of Class A Customer	59
Appendix 8: Result of ABC Analysis to Items of Class B (Table)	60
Appendix 9: Allocated Location by Item of Class B Customer	61
Appendix10: Inbound Volume and Class by Customers and Items	62

LIST OF TABLES

TABLE		Page
2.1	The Table of Profile Component to Perform Slotting	10
3.1	Manpower Allocation of Warehouse Department	25
3.2	Actual In/Outbound Quantity and Travel Distance on Sept. 2013	26
3.3	Current Cost Structure (Unit: Thousand Baht)	27
3.4	Expected Results (Unit: Thousand Baht, Per Year)	28
3.5	Scenario (Unit: Thousand Baht)	28
3.6	Evaluating Structure of Total Travel Distance	31
4.1	Result of Definition of Allocated Location	38
4.2	Summary of Inbound Pallet Quantity per Year by Class	40
4.3	Summary of Distance	41
4.4	Difference of Travel Distance between Actual and Average	41
4.5	Total Travel Distance of AS-IS Process (T ₁)	42
4.6	Total Travel Distance of Alternative 1 (T2)	42
4.7	Total Travel Distance of Alternative 2 (7'3)	43
4.8	Result of the Total Expense for Alternative 1	44
4.9	Result of the Total Expense for Alternative 2	44
4.10	Result of Evaluation (Unit: Thousand Baht)	45
5.1	Suggested Implementation Plan	49

LIST OF FIGURES

FIGURE	2S	Page
1.1	Company Organization Chart	3
1.2	Revenue Structure of Company, Result of Fiscal Year 2013	4
1.3	Revenue Structure of Warehouse Department, Result of Fiscal Ye	ear 2013 4
2.1	Dollar Usage Curves for Inventory Items	14
2.2	Example of Item Popularity Distribution	15
2.3	Warehouse Shape	16
2.4	Example of Warehouse Layout (Alternative 1, 2 and 3)	18
2.5	Routing Policy	19
2.6	Optimal Routing Policy	19
2.7	Diagram of Related Literature	20
3.1	Research Method	23
3.2 La	ayout of WH6	24
3.3	Zoning Plan of Alternative 1	29
3.4	Zoning Plan of Alternative 2	30
3.5	Example of Evaluating Travel Distance	34
4.1	Result of ABC Analysis to Customers (Pareto Chart)	38
4.2	Result of ABC Analysis to Items of Class A (Pareto Chart)	39
4.3	Result of ABC Analysis to Items of Class B (Pareto Chart)	40

Assumption University Martin de Tours School of Management and Economics Master of Science in Supply Chain Management

Form signed by Proofreader of the Thesis/Project

	INIVE	RSITU
I,	Michael Welch	have proofread this thesis/project entitled
	WAREHOUSE COST REDUCTION BY	IMPROVING STORAGE POLICY:
	A CASE STUDY OF A THIRD PARTY	LOCISTICS PROVIDER

Mr. Yuichi Tadokoro

. 0.

and hereby certify that the verbiage, spelling and format is commensurate with the quality of internationally acceptable writing standards for a master degree in supply chain management.

. .

	*		*
Signed	huld	SINCE1969	aler,
	Michael L. Welch	<u>ายา</u> ลยอล •••	

Contact Number / Email address michaelwelch21@gmail.com

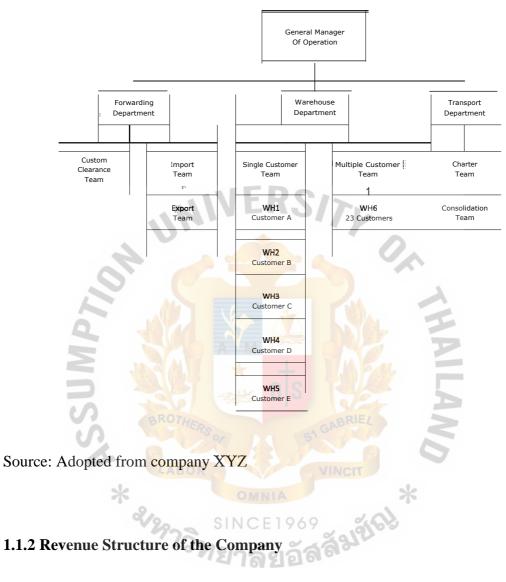
Date:	

CHAPTER I

GENERALITIES OF THE STUDY

This chapter presents an introduction to the business of the Company XYZ. The company organization, revenue structure of the company and revenue structure of the warehouse department are firstly explained. The revenue structures indicate which department and team generates the majority of revenue. The statement of the problem, research objectives, scope of the research, limitations of the study, significance of the study and definition of terms will be presented later.

1.1 Background of the Study


1.1.1 Company Background

Company XYZ is the third party logistics provider established in the 1980's in Pathumthani Province, Thailand. Its three major business functions are freight forwarding, transportation and warehousing. XYZ provides the services to various groups of customers such as manufacturers, trading companies and logistics companies who are the prime contractors of original cargo owners. Therefore, a wide variety of the commodities are handled by XYZ, for example, plastic resin supplied to the automotive industry, electrical parts for semiconductor industry, milk powder supplied to the distribution center of department stores, etc. And to win a place in a highly competitive market of the logistics industry, XYZ is setting warehousing services as its core competency of the establishment.

XYZ is divided into three operational departments, i.e., the forwarding department, transportation department and warehouse department as shown in Figure 1.1. The `forwarding department' provides the international freight forwarding service with the custom clearance services. The origin and destination is decided by the customer, however, the majority of it is transported to Japan, Indonesia and Vietnam. This department handles the mode of air export, air import, ocean export, ocean import and

also border custom clearance at the Thai-Laos and Thai-Malaysia borders. The `transportation department' provides the charter transportation service and the consolidation transportation service that connects the port, airport, warehouse and customer's place in the major industrial estates in the Thailand. The 'warehouse department' provides the storage services. This department is separated into two major teams based on the type of customers, i.e., single customer and multiple customer teams. In combination, there are six units of warehouses totaling 25,000 square meters. Five units belong to a single customer team and one unit belongs to a multiple customer team.

In addition, XYZ places importance in the collaboration between the departments. For instance, the forwarding department provides the freight forwarding from overseas and does the import custom clearance while the transportation department provides the delivery of the container from the port to the warehouse. The warehouse department stores the cargo and the finally transportation department delivers the cargo to the final end-users by truck. Thus, XYZ realizes the one stop service and provides the total logistics services to the customer and the customer can enjoy the one-stop-service related logistics activity so they can concentrate on their original activities. Moreover, the other department revenue is conducted by the warehouse department. Warehousing service motivates the customers to choose the forwarding and transportation service of XYZ.

Figure 1.1: Company Organization Chart

The revenue is made up of 46% by the warehouse department, 33% by the forwarding department and 21% by the transportation department as shown in Figure 1.2. The warehouse department takes possession of the majority and this distribution of revenue indicates the success of selecting it as the core competency and the importance of the combination among departments.

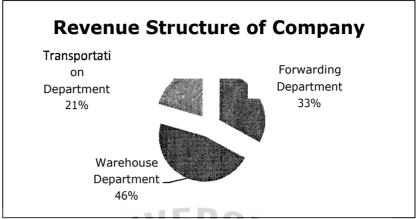
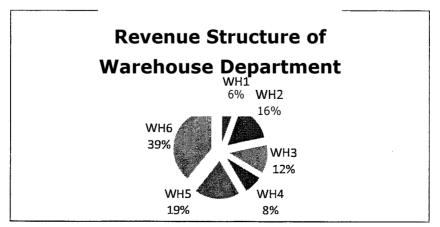


Figure 1.2: Revenue Structure of Company, Result of Fiscal Year 2013


Source: Adopted from company XYZ

1.1.3 Revenue Structure of Warehouse Department

The warehouse department has six units of warehouses and it is separated into two teams that are a single customer team and a multiple customer team. The single customer team handles only one customer per one unit of warehouse; and the multiple customer team handles 23 customers in one unit of warehouse. The core revenue is earned by the WH6 that is the multiple customer team as illustrated in Figure 1.3. It is evident from the data that WH6 is the most important team in the company from the view point of the revenue structure. Hence, this study concentrates on the activity of the WH6.

Figure 1.3: Revenue Structure of Warehouse Department, Result of Fiscal Year

2013

Source: Adopted from company XYZ

1.2 Statement of the Problem

This study focuses on improving the efficiency in the worksite operation of Company XYZ, its warehouse department and multiple customer team, named WH6.

The company adopts a random storage policy that applies the empty locations to the incoming cargo with equal probability. This causes problems that high volume and frequent customer's cargo is put away to the long distance locations in the warehouse as well as low volume and frequent customer's cargo is put away to the short distance locations.

As a result, total travel distance in the warehouse is long and it causes a high level of equipment costs and manpower costs. Therefore, this research attempts to answer the question of "How the storage policy impacts the cost of warehouse?"

1.3 Research Objectives

The objectives of this research are as follows:

1.3.1 To reduce the cost of the warehouse using the class-based storage policy and ABC analysis.

1.3.2 To reduce the cost of warehouse using ABC analysis to the customer group A and group B.

1.4 Scope of the Research

The scope of this research is to study the performance between the random storage policy and class-based storage policy. This will be evaluated in the travel distance from the entrance of the warehouse to the location of storage. The total travel distance between the two policies will be compared and analyzed for its effectiveness to the warehouse cost.

The study focuses on the operation costs that are impacted by the decreasing of the travel distance e.g., quantity of heavy equipment, maintenance cost and manpower cost.

The historical data of cargo volume, frequency and operational cost will be collected from XYZ from January 2013 to December 2013. The scale of the warehouse, layout of the warehouse which defines the distance inside the warehouse was also collected from XYZ.

The slotting process and techniques of ABC analysis will be studied by document review. The slotting process will be applied for deciding the appropriate location for the incoming cargo. ABC analysis will be applied for classing the customers and items.

1.5 Significance of the Research

The results of this study motivate the logistics company and internal warehouse of the manufacturer to implement the proper storage policy. The implementer of this method can enjoy the benefit of decreasing expenses and maximizing profits. Furthermore, the implementer can reduce the service charge of warehousing activity to the manufacturer. The manufacturer can then reduce the price of its products.

The study has significance in increasing operational efficiency of the warehouse as well as decreasing the cost of warehouse activities. Warehousing costs have a high commonality in the manufacturing industry from upstream to downstream. The logical approach of eliminating the needlessness contributes to the reduction of the total supply chain cost.

1.6 Limitations of the Research

There are limitations concerned in the implementation of this research.

1.6.1 The case study focuses on the selected operational processes of a worksite in the warehouse that has inbound and outbound processes. Thus, other external factors are excluded.

1.6.2 The configuration of the warehouse shape and layout is the method of reducing the travel distance. However, it requires a huge investment and XYZ adopts strict safety policies when operating. Therefore, this study will examine the solution under the range of the current warehouse configurations.

1.6.3 XYZ operates by pallet unit for inbound and outbound cargo by simple backtracking. Therefore, the batching and routing policy that reduces the travel distance of picking activity from multiple locations is not applicable.

1.6.4 The warehouse has four levels of rack systems or two levels of floor storage. The simulation does not include the height of the levels for the distance.

1.7 Definition of Terms

ABC Analysis

An analytical method for inventory management that categorizes inventory into three classes, that is A, B and C (Flores & Whybark, 1986).

Class-Based Storage Policy

Class-based storage policy ranks all items in the warehouse. The items are partitioned into several storage classes and randomly assigned storage locations within their own storage class area (Petersen, Gerald R, & Daniel, 2004).

A measure of the number of potential times an operator will visit the location for a particular item (Frazelle, 2002).

Slotting is the process of determination that optimizes storage mode and location for storage (Frazelle, 2002).

Storage Policy

Popularity

Slotting

Travel Distance

Storage policy is the rule of how to assign the storage location to the cargo in the warehouse. (Petersen, 1999).

Travel distance is the distance from the entrance of the warehouse to the location for storage and from the location for storage to the entrance of the warehouse. Reducing travel distance is concerned with both the layout design and the operating policies (Caron, Marchet, & Perego,

2000).

CHAPTER II

REVIEW OF RELATED LITERATURE

This chapter presents the review of the literature that is related to this study. There are four topics to be described, i.e., the slotting process, ABC analysis, travel distance and the cost of the warehouse. The slotting process and ABC analysis are applied for designing the warehouse operation. Travel distance and the cost of the warehouse are studied regarding its nature and what is the key factor which impacts these topics.

2.1 Slotting Process

Frazelle (2002) stated that slotting is the process of determination that optimizes storage mode and location for storage. It results in the substantial impact on all of the warehouse activities. However, some of the research indicates that more than 85 percent of the items in a warehouse are slotted improperly and there is the potential to improve and bottom-up operational efficiency of warehouse activity. Hassan (2002) explained that slotting is an important process in the design of a warehouse due to its impact on workload in the warehouse operations. It is directory combined with labor cost, productivity of picking operation, and traffic congestion.

2.1.1 Index of Slotting

Frazelle (2002) and Petersen, Gerald R, and Daniel (2004) emphasized the importance of profiling information before slotting is performed. Table 2.1 present a profile component to perform the slotting process that indicates what kind of information is required to perform. To perform slotting, there are several targets to solve as key questions and the profiling of operational data is analyzed and utilized to find the solutions.

ราการ SINCE 1969

Planning and Design Issue	Key Questions	Required Profile	Profile Components
Slotting	• Zone Definition	Item activity profile	• Popularity profile
	 Storage mode 		• Cube-movement/
	selection and sizing		volume profile
			Popularity-volume
			profile
	• Pick face sizing	DC	 Order Completion
	• Pick face sizing	-13/7	profile
	 Item location 	•	 Demand correlation
	assignment		profile
6			 Demand variable
			profile

Table 2.1: The Table of Profile Component to Perform Slotting

Source: Adopted from Frazelle (2002)

Petersen et al. (2004) stated that slotting is the method to determine the order or ranking of the SKUs and storage policies which are used to determine how to assign the SKU to the appropriate storage locations. The index is summarized as followings.

(1) Popularity: the number of requests for a given SKU sometimes called the number of hits. The picker and/or forklift must travel to a storage location depending on the number of hits. And Frazelle (2002) stated popularity is the most frequently used slotting measure in practice.

(2) Turnover: the total number of a SKU called during a certain period of time. In other words, turnover is referred to as the demand of an SKU.

(3) Volume: the request for an SKU multiplied by the cube of the SKU. In other words, volume is referred to the cube movement of an SKU.

ASSUMPTION UNIVERSITY LIBRARY

(4) Pick density: The ratio of the popularity of an SKU to the cube (volume) of the SKU. This identifies the SKUs that have the highest pick activity per a given amount of space.

(5) Cube-per-order index (COI): The ratio of the SKU's total required cube to the number of trips required to satisfy its requests per period. The SKU with the lowest COI is considered to be located near to the shortest travel distance location.

Petersen et al. (2004) concluded that popularity and COI were the best indexes for slotting for reducing the travel distance. Moreover, popularity is easier to understand and apply than COI. Hassan (2002) stated that information of demand of items would be used in making storage assignment decision. Frazelle (2002) stated that popularity is the requests per period and is used with volumes to determine an assignment to storage mode and location that is shown in Table 2.1, a popularity profile or a popularity-volume profile. Popularity is an important measure of the number of potential times of traveling to the location for the item. Most of the workload of warehouse activity is travelling from the entrance to the storage location, from the storage location to the entrance and between the locations. And Frazelle (2002) emphasized that the number of demands for an SKU is a true measure of popularity for defining the location of storage. Nevertheless, many operators of warehouse adopt the wrong measure of popularity such as dollar sales, usages, etc.

2.1.2 Storage Policies

There are more than a few storage policies to assign to the location of the cargo. Petersen et al. (2004) presents three types of storage policies that are widely used.

้^{วท}ยาลัยอัสลั^ง

(1) Random storage: The policy which is most commonly used in warehouses today. All incoming cargoes are randomly assigned to vacant locations with equal probability. This policy results in a high utilization of space and reduces the congestion of aisles. However, it requires more travel distance and cargo identification. (2) Volume-based storage: The policy places high volume items to the nearest location of the pick-up and drop-off point. This policy is effective to reduce travel distance.

(3) Class-based storage: This policy is similar to the volume-based storage policy. However, items are classed by the popularity and the storage zone and classed by the distance from the pick-up and drop-off locations.

Hassan (2002) stated that the warehouse shall be designed by its objective such as distribution center, a manufacturer warehouse, or a public warehouse. Moreover, the selection of storage policies to assign to the location would be impacted by the objective of the warehouse.

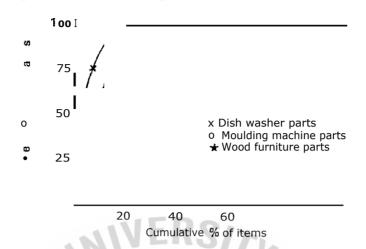
The storage policy is the most important term to define in the warehouse operation and is required to be selected by its objective. The volume-based storage policy assigns each SKU to the specific location, class-based storage policy classifies the SKUs and classing of the storage zones. The two storage policies should be creatively used by their purpose and characteristics of the operational usability.

The XYZ Company handles over seven hundred SKUs holding from over twenty customers. And the location for storage exists over three thousand. It is not realistic that the operator identifies the hundreds of SKUs and allocates the cargo to the unique location for the each SKU. Thus, this study applies the class-based storage policy considering operational usability.

2.1.3 Zoning

The wording of a fast moving area, slow moving area and a dead stock area is widely used in the warehouse industry. Frazelle (2002) stated that a fast moving area should be the most accessible warehouse locations and used for the most popular items and

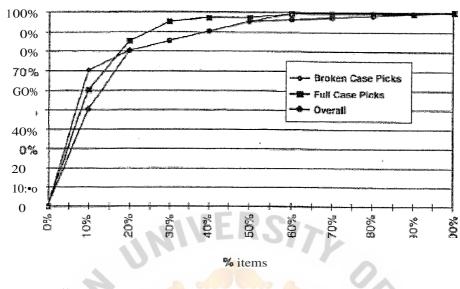
defined by physical zoning in the warehouse in three classes, i.e., Golden Zone, Silver Zone and Bronze Zone. The Golden Zone is the closest to the travel aisle and nearest to the waist level of the picker.


Hassan (2002) explained that high demanded item classes should not be stored in one zone in order to reduce the traffic congestion. Moreover, items of class that are probable to be ordered together shall be allocated relative to their location to reduce the travel distance. And dedicated storage zones should have the compatibility with the randomized storage zone in case some items are required to more from the storage zone.

2.2 ABC Analysis

ABC analysis is occasionally called Pareto analysis or the rule of 80/20. This originated from the observation of Pareto that a minority of the persons has a majority of the wealth in the world, e.g., 20 percent of the population owned 80 percent of the wealth or 20 percent of the items occupies the 80 percent of workload in the warehouse operation. The ABC analysis is the technic of ranking and classification the importance for the mass quantities of objects. The ABC analysis is frequently adopted in inventory management to classify the inventory that refers to the activity of ranking for procurement and/or warehouse layout.

Flores and Whybark (1986) stated that ABC analysis is the most commonly used method in inventory management. Items are categorized as A, B and C based on its cost or usage. The study examined the relationship between dollar usage (cost-volume) of the item and item quantity for three companies as shown in Figure 2.1. This distribution is sometimes called the ABC curve, Pareto distribution or popularity distribution. After the distribution has been shown, it helps management to define the alternative strategies to handle the important items (and vice versa) with priority. ABC analysis has a significance in the meaning to reflect what is important to management. The curves verify the minority items which occupy a high usage of the dollars.


Figure 2.1: Dollar Usage Curves for Inventory Items

Source: Flores and Whybark (1986)

Regarding to the practical method of classing, Flores and Whybark (1986) described that after the distribution has been determined, the cutoffs for each of class A, B and C must be set by the management. To help the decision of cutoffs, some firms use a rule of Pareto. That is, the number of A items should be the order of 20 percent of the total. The description indicates the firms management should decide the criteria based on the rule of Pareto with consideration for order of priority and the firm's managerial limitations.

Frazelle (2002) examined the association between the percentage of pick and items as shown in Figure 2.2. This popularity distribution indicates that 10 percent of the most popular items represent 70 percent of the picking activity.

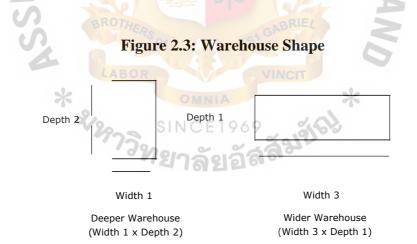
Figure 2.2: Example of Item Popularity Distribution

Source: Frazelle (2002)

This methodology is applied to classes of items e.g., the top 5 percent of the items (Family A) occupies 50 percent of the picking activity, the next 15 percent of the items (Family B) occupies 80 percent of the picking activity, and the rest of the 80 percent of the items (Family C) covers the remaining picking activity.

And then Frazelle defined the most popular items of Family A to the most accessible warehouse locations (Class A zone called the golden zone) as alternatives i.e., : Family A item: Applies to the golden zone (Class A zone) Family B item: Applies to the silver zone (Class B zone) Family C item: Applies to the bronze zone (Class C zone)

2.3 Travel Distance


Travel distance is the distance from the entrance of the warehouse to the location for storage and from the location for storage to the entrance of the warehouse. Travel distance in a warehouse is constructed by the motion of horizontal and vertical distance by the picker or forklift. In the warehouse, the operator spends more than half of the workload moving the cargo from place to place. The transportation inside the warehouse is the most time consuming motion (Bartholdi & Hackman, 2005).

Reducing the travel distance has a significance in increasing the productivity of picking operation. Generally speaking, reducing travel distance is concerned with both layout design and operating policies (Caron et al., 2000).

The literature indicates travel distance is impacted by the several issues. These issues affect each other, because once the layout design is changed, the same operating policy cannot be conducted and return the same results.

2.3.1 Warehouse Shape

Petersen (1997) examined the warehouse shape factor and found that a deeper warehouse (1 X 2) has a shorter travel distance than a wider warehouse (3 X 1). The figure of '1 X 2' and '3 X 1' is the ratio of the depth and width. For instance, '1 X 2' indicates the warehouse which has 100 meters of width and 200 meters of depth. However, Hall (1993) mentioned that a wider warehouse results in better performance. Petersen (1997) explained that this difference originated from the objective of the layout to determine the storage space.

Source: Author's own

2.3.2 Warehouse Layout

The warehouse layout has an eternity of combinations caused by its shape, usage and operating policies, etc. Some theorists argue that best warehouse design and layout is

not yet fixed and policy and methodology includes design for all problems which are still under consideration. Designing the best layout for a given case is not easy because of the variety of factors such as racks types, accessibility to the rack, entrance and dock location, etc. (Bartholdi and Hackman, 2005). Over the past 30 years, layout design and product allocation for increasing the space capacity and decreasing the travel distance and material handling cost have been the most argued problems of a warehouse (Van Den Berg, 1999).

Regarding to the aisle inside the warehouse, Petersen (1997) stated that the efficient warehouse may consist of one aisle. And the number of aisles impacts the travel distance significantly (Caron et al., 2000). On the other hand, Hassan (2002) stated that the main aisles crossed by other aisles would improve accessibility, routing flexibility, and travel time and distance in a warehouse.

Huertas, Ramirez, and Salazar (2007) examined the layout comparison which impacts the average picking time that effects labor and equipment as shown in Figure 2.4 and conducted results that give an alternative of three as the most efficient layout in terms of operators' number, forklift number and average picking time. However, it increases the space usage 11 percent. The Figure 2.4 explains the shape of the warehouse with the aisle and the unload zone that will be used for the inbound operation and shipment zones that will be used for the outbound operation.

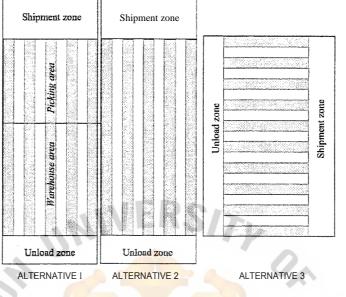
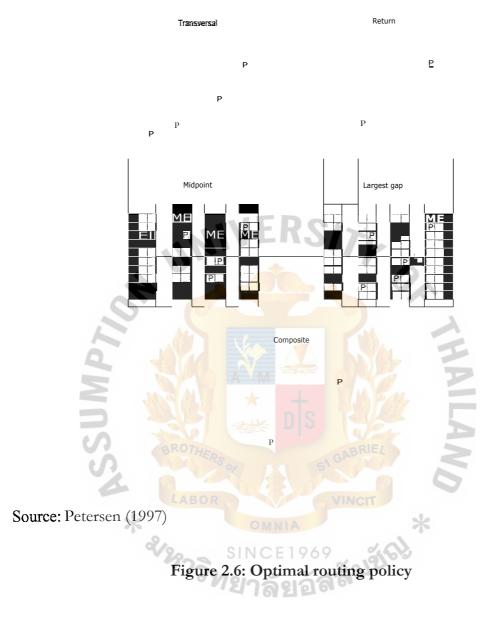



Figure 2.4: Example of Warehouse Layout (Alternative 1, 2 and 3)

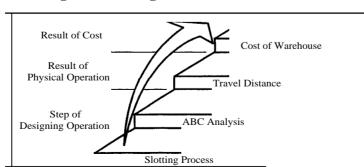
Source: Huertas et al., (2007)

2.3.3 Routing policy

Petersen (1997) examined six different routing policies, i.e.,: transversal, return, midpoint, largest gap, composite and optimal as shown in Figure 2.5 and 2.6 and concluded that the optimal routing policy is the most efficient routing policy. The figures show routing by arrows and picking point by 'p'. It presents the routing of picking inside the warehouse. And Petersen (1997) concluded the travel distance is affected by the routing policy and indicates the routing policy is the method of increasing the efficiency in case the picking object is the multiple.

Figure 2.5: Routing Policy

Source: Petersen (1997)


2.4 Cost of Warehouse

Napolitano (2003) stated that warehouse cost can be categorized into two majorities, i.e., the capital cost and the operating cost. Capital costs are involved in investment such as planning, designing, construction and implementation to start up the new warehouse or when renovating a warehouse. Operating costs are the daily expenses occurred in actual running of a warehouse after start-up. Bartholdi and Hackman (2005) mentioned the total operational costs are impacted on the layout and the operational policies.

Huertas et al. (2007) explained typical operational cost of a warehouse is involved in space utilization, labor, equipment utilization and maintenance, utilities (power, water, etc.) and material. The latter four costs are the variable costs and they are altered by usage levels. Costs of material handling equipment are mostly composed of equipment utilization costs such as purchase, depreciation, leasing, and maintenance cost.

2.5 Summary

The described four topics have the association as shown in Figure 2.7. The slotting process and ABC analysis are located as the steps of designing an operation. Travel distance is the result of the physical operations in a warehouse based on the designing operation. Finally, the cost is constructed by the physical operation.

Figure 2.7: Diagram of Related Literature

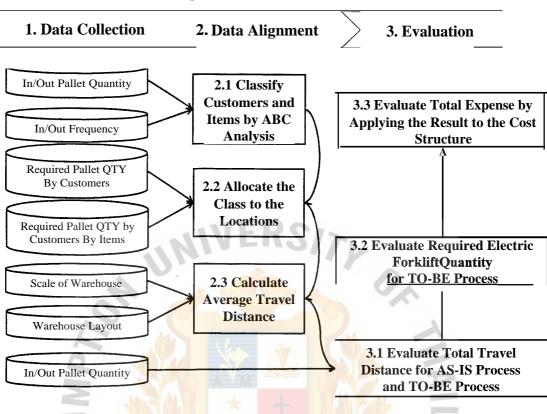
Source: Author's own

The diagram of related literature (Figure 2.7) is backed up by literature's description that total operational costs are impacted by the layout and the operational policies. And the literature also indicates that reducing travel distance concerns both layout design and operating policies. Therefore, the layout design and operating policy impacts both travel distance and cost structure.

CHAPTER III

RESEARCH METHODOLOGY

This chapter describes the methodology applied in this study. Firstly, the research method will be explained. And then it explains what are the data points required for this study, AS-IS Process including configuration of the warehouse and cost structure of this company and TO-BE Process including alternatives in order to fulfill the research objectives and methodology of evaluation.


3.1 Research Method

This study attempts to evaluate the performance between the random storage policy and class-based storage policy. The performance will be evaluated in the cost effectiveness through measuring the total travel distance for the current process model and alternatives.

The structure of the research method is shown in Figure 3.1. There are three basic steps, i.e., data collection, data alignment and evaluation. Data alignment will be done based on the collected data in order to do the evaluation.

หาวิทยา

วัสสัมย์ด

Figure 3.1: Research Method

Source: Author's own

3.2 Data Collection

The research methodology requires the historical data of cargo moving and the configuration of the warehouse from XYZ, i.e.,

(a) Historical data of inbound and outbound pallet quantity by customers from January 2013 to December 2013.

(b) Historical data of inbound and outbound frequency by customers from January

- 2013 to December 2013.
- (c) Required pallet quantity per month.
- (d) Required pallet quantity by customers by items.
- (e) Layout of warehouse with distances.

3.3 AS-IS Process

3.3.1 Configuration of Warehouse, Multiple Customer Team, WH6

3.3.1.1 Warehouse Facility

WH6 has 80 meters of width, 50 meters of depth and a total 4,000 square meters of space with three shutters, and also has a platform that is 80 meters wide and, six meters of deep for a total of 480 square meters with three dock levelers. WH6 has the total of 3,196 pallet position of storage capacity consisting of the selective rack system with 2,416 pallet positions and floor location with 780 pallet positions. The layout is shown in Figure 3.2.

Source: Adopted from company XYZ

3.3.1.2 Equipment

The cargo is moved by forklift on pallets and there is one diesel forklift for external operations and four electric forklifts for internal operation. The electric forklifts are equipped with four additional batteries and battery chargers.

3.3.1.3 Manpower of Warehouse

WH6 has two employees in the back office and ten employees on the worksite of the warehouse that consists of two office staff, one supervisor, five forklift drivers and four checkers. The job scope of each of the title is described as follows. Manpower allocation of the warehouse department is shown in Table 3.1.

(a) Supervisor: Allocate the inbound and outbound cargo to forklift drivers and checkers considering the job volume and each employee's capability.

(b) Forklift Driver: Drive the forklift to unload and load the cargo from the truck or container and move the cargo from the entrance of the warehouse to the location of storage.

(c) Checker: Check the identity of the inbound and outbound cargo and document that shows customer orders to register the location of the cargo co-work with the forklift driver.

(d) Office Staff: Communicate with the customer and expand the inbound and outbound information to the supervisor and register the operational results to the warehouse management system.

Team Name	Office Staff	Supervisor	Forklift Driver	Checker	Total Headcount
WH1	1		0.5	1	2.5
WH2	1	1	1.5	2	5.5
WH3	1	0	0.5	1	2.5
WH4	1	0	0.5	1	2.5
WH5	1	1	2	2	6
WH6	2	1	5	4	12
Total Headcount	7	3	10	11	31

Table 3.1: Manpower Allocation of Warehouse Department

Source: Adopted from company XYZ

3.3.2 Actual Data of Travel Distance

The actual operational data of Company XYZ is shown in Table 3.2. This table indicates WH6 has 23 registered customer and 23 of 13 customers had inbound cargo totaling 1,240 pallets. Measuring the distance from the entrance to location, the travel distance of a single trip was 44,368 meters. After allocating the cargo to the location, a forklift will track back to the entrance. Once the company receives the order of outbound cargo from customers, the cargo will be picked up by same motion of the forklift. Therefore, a single distance from the entrance to a location will be multiplied by four to work out the total travel distance. Eventually, a total travel distance of WH6 on Sept. 2013 was 177,470 meters.

Customer Name	Inbound pallet QTY per Month	Outbound Pallet QTY per Month	Distance from Entrance to Location for Inbound	Multiplied by	Travel Distance
C1	475	349	18,321	4	73,283
C2	226	681	8,078	4	32,312
C3	159	105	4,439	4	17,756
C4 (116	171	4,073	4	16,293
C5	92	61	2,462	4	9,847
C6	30	47	1,509	4	6,034
C7	23	BOR 49	1,182	4	4,728
C8	* -	ONTRA	0	4	-
C9	0.7	14	-	4	-
C10	82	SIN C46	969 2,793	4	11,171
C 11	4	5	286	4	1,142
C12	22	13	626	4	2,503
C13	8	6	389	4	1,555
C14		I	0	4	
C15	-	4	0	4	-
C16	2	3	141	4	563
C17	-	H	0	4	-
C18	-	-	0	4	-
C19	1	-	70	4	282
C20	-	-	0	4	
C21	-	I	0	4	-
C22	-	-	0	4	-
C22	-	-	0	4	-
TOTAL	1,240	1,554	44,368		177,470

Source: Adopted from Company XYZ

3.3.3 Cost Structure

The allocated cost for WH6 in the fiscal year 2013 was 20,684 Thousand Baht. This cost is constructed of logistical operating expenses and administrative expenses that are shown in Table 3.3. Out of 20,684 Thousand Baht, 5,153 Thousand Baht comes from the logistical operating expenses and 15,531 Thousand Baht comes from the administrative expenses. The logistical operating expenses are tangible cost that can be reduced if activity is reduced, i.e., heavy equipment rental, fuel or electricity for forklifts, maintenance for equipment. Administrative expenses are intangible costs that are allocated based on the employee's head count. Salaries and wages include the allowances for employees, depreciation of assets and all the overhead costs.

	Heavy Equipment Rental	Fuel or Electricity	Maintenance for Equipment	Expense per Month	Quantity	Monthly Expense	Yearly Expense
Diesel Fork Lill	19	3	9	31	1	<u>31</u>	372
Electric Fork Lift	27	2	9	38		152	1,824
Additional Battery	35	-		35	4	140	1,680
Battery Charger	2			2	4	8	96
Total Expence related with Travel Distance	10 Mar			1		331	3,972
Other Expense	-	-		-	-	98	1,181
	HEP		CABRIE	Total Logist	ics Expense	429	5,153
(b) Administration Expense	30		3	Yearly	6		
A	Expence per Month	Head Count	Monthly Expense	Yearly Expense	0		
A	Expence per Month	Head Count	Monthly Expense 216	-	6		
Office Staff	ADUK	Head Count	VINCII	Expense	0		
Office Staff Supervisor Forklift Driver	108	Head Count 2 1 5	216	Expense 2,589	6		
Office Staff Supervisor Forklift Driver	108 108 108 108 108	2 MNIA 1 5 CE14	216 108 539	Expense 2,589 1,294	0		
(b) Administration Expense Office Staff Supervisor Forklift Driver Checker	108 108 108	2 MNIA 1 5 CE14	216 108 539	Expense 2,589 1,294 6,471	0		
Office Staff Supervisor Forklift Driver	108 108 108 108 108	2 MNIA 1 5 CE14	216 108 539 431	Expense 2,589 1,294 6,471 5,177	0		

429

1,294

1.724

 Table 3.3: Current Cost Structure (Unit: Thousand Baht)
 Current Cost Structure (Unit: Thousand Baht)

Source: Adopted from company XYZ

Logistics Expense

Total Expense

Administration Expense

There are several cost items that are impacted by the travel distance, i.e., 'Electric Fork Lifts', 'Additional Batteries' and 'Battery Chargers' from the logistical operating expenses. This equipment are rented from suppliers and rental fee is paid on a monthly basis. 'Electricity' and 'Maintenance costs' are related costs to this equipment. The costs of 'Forklift drivers' and 'Checkers' are allocated in the

5,153

15,531

20.684

administrative expenses. As it was explained, forklift drivers operate the forklift and move the cargo inside the warehouse and checkers register the location of the cargo co-work with forklift drivers. Therefore, seven items are impacted by the quantity of forklifts. The expected scenario of the reduction of travel distance is summarized in Table 3.4. The Scenario is the case that succeeds in reducing one forklift shown in Table 3.5.

	Current Cost Structure	Scenario	Decreased Percentage
Logistics Operating Expense	5,153	4,253	17.47%
Administration Expense	15,531	12,943	16.67%
Total Expense	20,684	17,196	16.87%

 Table 3.4: Expected Results (Unit: Thousand Baht, Per Year)

Source: Author's own

(a) Logistics Operating ense		M	2 A.K.			1	
	Heavy Equipment	Fuel or	Maintenance for	Expense per	Quantity	Monthly	Yearly
	Rental	Ele	n dit mie	Month	Quantity	a ense	nose
Diesel Fork Litt	19	3	9	31	- 1	31	372
Electric Fork Lift	27	2	9	38	3	114	1,368
Additional Battery	35			35	3	105	1,260
Battery Charger	2		RIF	2	3	6	72
Total Expence related with Travel Distance	TERO	_	GADIN	-	-	256	3,072
Other Expense	- 10	-	5			98	1,181
				Total Logist	tics Expense	354	4.253

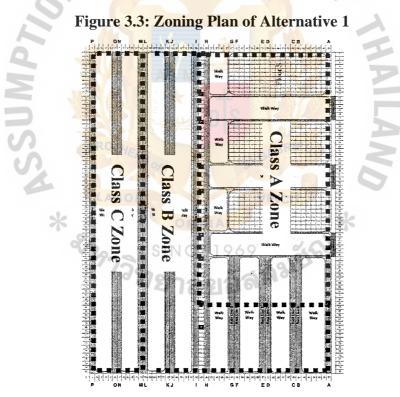
Table 3.5: Scenario (Unit: Thousand Baht)

(b) Administration Exper	nse	BOR		VINCIT	
	*	Expence per Month	Head Count	Monthly Expense	Yearly Expense
Orme Staff	2	108	2	216	2,589
Supervisor	V20	S 108	CE19	69 108	1,294
Forklift Driver	7	108	4	431	5,177
Checker		108	∞ 3	324	3,883
		Total Administra	ation Expense	1.079	12.943

(c) Total Expense		
	Monthly Expense	Yearly Expense
Logistics Expense	354	4,253
Administration Expense	1,079	12,943
Total Expense	1,433	17,196

Source: Author's own

3.3.4 Storage Policy

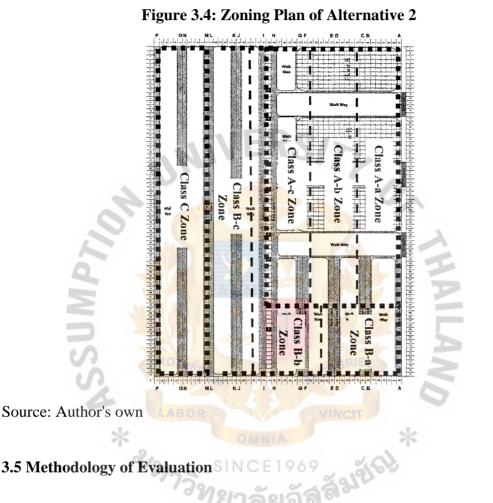

XYZ applies a random storage policy for incoming cargo which is randomly assigned to vacant locations with an equal probability.

3.4 TO-BE Process

As mentioned in the research objectives, this study attempts to reduce the cost of warehouse using a class-based storage policy and ABC analysis. The Alternative 1 attempts to apply it to the customers' classification and it is applied to the twenty three customers. The Alternative 2 attempts to apply it to the items of customer class A and B. It means customer class A and B have sub-classes based on the items.

3.4.1 Alternative 1

The Alternative 1 applies a class-based storage policy base on the customers and the warehouse will be separated into zone A, B and C as shown in Figure 3.3. The customers and locations will be classified to zone A, B, and C.



Source: Author's own

3.4.2 Alternative 2

The Alternative 2 applies a class-based storage policy based on the customers similar to Alternative 1, but the items of customer class A and B will be applied to ABC analysis again and set the sub-class for the item of class A and B. The warehouse will

be separated to zone A, B and C, and zone A and B will be classified sub-classes. Therefore, Alternative 2 holds the class A-a, A-b, A-c, B-a, B-b, B-c and C as shown in Figure 3.4.

The methodology of evaluation works out the 'Required electric forklift quantity for Alternative 1 and 2' through the process of measuring total travel distance. The figure of the 'Required electric forklift quantity for alternative land 2' will be applied to the cost structure of the current operation model. Eventually, it evaluates the cost effectiveness of alternatives. The evaluating structure is shown in Table 3.6.

	Applied Storage Policy	Classification by Item	Input	output
AS IS Process	Random Storage	Not applied	Volume×Average Distance	Total Travel Distance
Alternative 1	Class-based Storage	Not applied	Volume×Average Distance	Total Travel Distance
Alternative 2	Class-based Storage	Applied	Volume×Average Distance	Total Travel Distance

Source: Author's own

Microsoft Office Excel 2010 is used for all the calculation and evaluation. Abbreviations stand for as following.

- T1: Total travel distance of AS-IS process
- T2: Total travel distance of alternative 1
- T3: Total travel distance of alternative 2
- VT: Volume (Inbound pallet quantity)
- VA: Pallet quantity of customer class A
- V_{B} : Pallet quantity of customer class **B**
- 17c: Pallet quantity of customer class C
- V_{Aa} : Pallet quantity of customer class A of sub-class a
- V_{Ab} : Pallet quantity of customer class A of sub-class b
- V_{AC} : Pallet quantity of customer class A of sub-class c
- V_{Ba} : Pallet quantity of customer class B of sub-class a
- V_{Bh} : Pallet quantity of customer class B of sub-class b
- $V_{\mu c}$: Pallet quantity of customer class B of sub-class c
- AA: Average distance of zone class A
- AB: Average distance of zone class B
- A_c : Average distance of zone class C
- A_{Aa} : Average distance of zone class A of sub-class a
- \bar{A}_{Ab} : Average distance of zone class A of sub-class b
- $A_{A_{t}}$: Average distance of zone class A of sub-class c
- $A_{B\mu}$: Average distance of zone class B of sub-class a
- \bar{A}_{BD} : Average distance of zone class B of sub-class b
- \bar{A}_{Bc} : Average distance of zone class B of sub-class c

- *F* : Travel distance per electric forklift
- R_2 : Required electric forklift quantity of alternative 1
- R_3 : Required electric forklift quantity of alternative 2

3.5.1 Classify customers and items by ABC analysis and allocate the class to the locations

This evaluation starts from data alignment using ABC analysis to the customers. Customers are allocated to the three classes that are either A, B and C by volume index. And Items of Customer class A and B are applied the ABC analysis again and sub-classified by it. Therefore, the class will exist totally of nine classes, i.e., A, B, C, A-a, A-b, A-c, B-a, B-b and B-c.

WH6 has 3,196 pallet locations and the locations will be classified to each class following the ratio of 'Required pallet quantity per month' to fulfill the storage demand for the warehouse space. The practical method will be explained as follows:

(a) Apply the method of ABC analysis to customers by volume index and classify the customers by three classes and calculate the volume per class (V_A , V_B and V_L).

(c) Define the space allocation for zone class A, B and C using the data of 'Required pallet quantity per month' and results in the classing of customers.

(d) Apply the method of ABC analysis to items of class A's customers by volume index and sub-classify the items by three classes and calculate the volume per subclass (V_{Aa} , V_{Ab} and V_{AC}).

(e) Define the space allocation for sub-class of zone A customers using the data of `Required pallet quantity per month' and the results of sub-classifing of the items. (f) Apply the method of ABC analysis to items of class B's customer by volume index and sub-classify the items by three classes and calculate the volume per sub-class $(V_{Ba}, V_{Bb} \text{ and } V_{Bc})$.

(g) Define the space allocation for the sub-class of zone B customers using the data of `Required pallet quantity per month' and the results of sub-classifying the items.

3.5.2 Calculate Average Travel Distance

(a) Calculate the average distance of each zone of A-a (A_{Au}) , A-b (A_{AD}) and A-c (\bar{A}_{Ac}) .

(b) Calculate the average distance of zone A (A_A) by calculating the average distance among zone A-a (\bar{A}_{Aa}), A-b (A_{Ab}) and A-c (\bar{A}_{Ac}).

(c) Calculate the average distance of each zone of B-a \tilde{A}_{Ba} , B-b (A_{Bb}) and B-c (AB).

(d) Calculate the average distance of zone B (A_B) by calculating the average distance among zone B-a (\bar{A}_{Ba}), B-b (\bar{A}_{Bb}) and B-c (\bar{A}_{Bc}).

(e) Calculate the average distance by zone C (A_c).

3.5.3 Evaluate Total Travel Distance for AS-IS Process and TO-BE Process

Travel distance is evaluated based on the inbound pallet quantity and average travel distance. Inbound pallet quantity is multiplied by the average travel distance. The average travel distance is multiplied by four because the cargo to storage starts to move from entrance to the storage location for inbound cargo and after the forklift allocates the cargo, it goes back to the entrance. And in case outbound cargo, the

SAE ASSUMPTION UNIVERSITY LIBRARY

forklift starts to move from entrance to the storage location and after the forklift picks the cargo, it goes back to the entrance. Thus, the average travel distance is multiplied by four for evaluating travel distance for inbound and outbound operation. Figure 3.5 presents an example in case the cargo is allocated to 80 meters' distance location. The single travel distance is calculated by the combination of depth and width and single travel distance is multiplied by four. Hence, total travel distance for inbound and outbound will be measured. To verify the method of calculation by average distance, actual travel distance shown in Table 3.2 will be compared with this methodology in chapter 4.

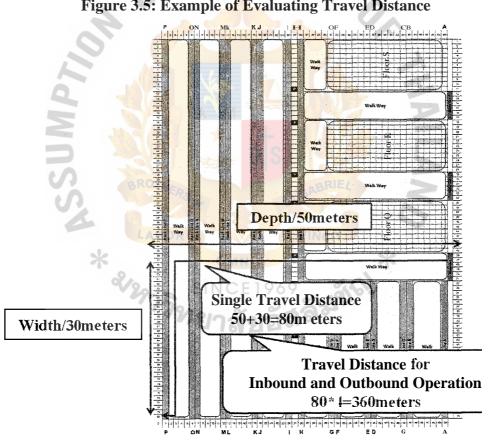


Figure 3.5: Example of Evaluating Travel Distance

Source: Author's own

In addition, the company adopts a random storage policy and the incoming cargo is allocated to the empty locations with equal probability in the current operation. To compare with the alternatives in same condition, the total volume will be distributed to each zone class with an equal probability, i.e., total volume will be multiplied to 0.3333 based on three classes of A,B and C.

(a) Evaluate the total travel distance of AS-IS Process (T₁) by using the following formula:

$$T_1 = (((V_T \ge 0.3333) \ge A_A) + ((V_T \ge 0.3333) \ge \bar{A}_B) + ((V_T \ge 0.3333) \ge A_c)) \ge 4$$

(b) Evaluate the total travel distance of alternative $1(T_2)$ by using the following formula:

$$T_2 - ((VA \times \overline{A}_A) \quad (V_B \times AB) + (V_C \times A_C)) \times 4$$

(c) Evaluate the total travel distance of alternative $2(T_3)$ by using the following formula:

$$T3 = \left(\left(V_{Aa} X A_{Au} \right) \left(V_{Ab} X A_{Ab} \right) \left(V_{Ac} X \bar{A}_{Ac} \right) \right) \\ \left(\left(\left(V_{Ba} X A_{Ba} \right) \left(V_{Bb} X A_{Bb} \right) \left(V_{Bc} X \bar{A}_{Bc} \right) \right) + \left(V_{C} X A_{C} \right) \right) \times 4$$

3.5.4 Evaluate Required Electric Forklift Quantity for TO-BE Process

The total expense of alternative 1 and alternative 2 will be evaluated by following the process:

(a) The value of T_1 will be divided by four, i.e. quantity of electric forklifts as shown in Table 3.3. And evaluate the travel distance per electric forklift (*F*). In case the value of T_1 is 1,000,000 meters, the travel distance per electric forklift is 250,000 meters.

That is:

$$F = T_1 = 4$$

(b) The value of T2 and T3 will be divided by travel distance per electric forklift. And evaluate the required electric forklift quantity (R2 and R_3) by alternatives. In case the value of T2 is 750,000 meters, it is divided by the travel distance per electric forklift of 250,000 meters and the required electric forklift quantity will be three. That is:

$$R2 = T2 \div F$$
$$R3 = T3 \div F$$

3.5.5 Evaluate Total Expense by Applying the Result to the Cost Structure

The logistical operating expense and administrative expense will be simulated by the alternative 1 and alternative 2. The quantity of electric forklifts, additional battery and batteries chargers will be deducted from the logistical operating expense followed by the required electric forklift quantity. The head count of forklift drivers and checkers will be deducted from administrative expenses followed by the required forklift quantity. And then the total expenses will be calculated.

3.6 Summary

The total travel distance and total expenses are the key measurements of this study. Reduction of the total travel distance should impact to the required forklift quantity and head count of forklift drivers and checkers. The simulation results will be compared and analyzed by AS-IS Flow, Alternative1 and Alternative 2.

The proposed alternatives are expected to improve operational efficiency in the warehouse via reducing the travel distance and the company should benefit from applying the slotting process and ABC analysis as the research objectives pursue. The next chapter will discuss the analysis and compare the result of the proposed model.

CHAPTER IV

PRESENTATION AND CRITICAL DISCUSSION OF RESULTS

In this chapter, the results of the evaluation are presented. It conducts the total expense of the TO-BE Process through the data alignment and evaluation. The results of the TO-BE Process will be analyzed and compared with the AS-IS Process.

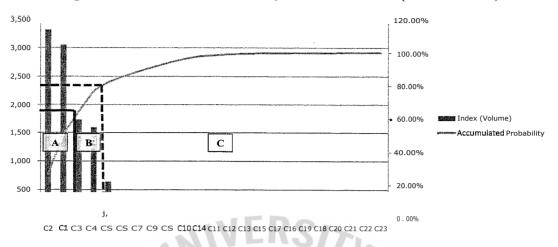
4.1 Data Alignment

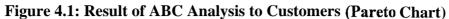
The following data is collected from XYZ and it is shown in Appendix 1, 2 and 3.

NIVERS/7L

(a) Historical data of inbound and outbound pallet quantity by customers from January 2013 to December 2013(Appendix 1).

(b) Historical data of inbound and outbound frequency by customers from January 2013 to December 2013 (Appendix 1). The frequency is the operating days throughout the year.


(c) Required pallet quantity per month (Appendix 2).


(d) Required pallet quantity by customers by items (Appendix 2).

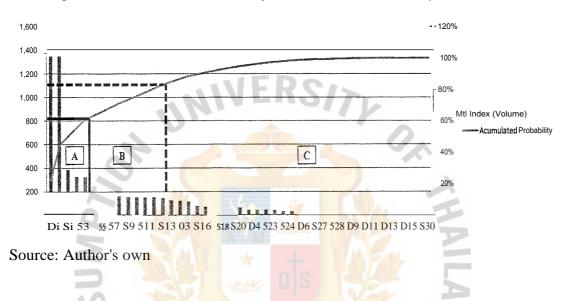
(e) Layout of warehouse with distance (Appendix 3).

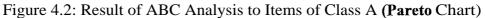
4.1.1 Result of Classification of Customers and Location

(a) The results of the ABC analysis to customers are shown in Appendix 4 and Figure 4.1. 23 customers are classified into three classes. Two customers are classified into Class A, two customers are classified into Class B and rest 19 customers are classified into Class C.

(b) The results of allocated locations for customer Class A, B and C are shown in Table 4.1 and the basic calculation of working out the allocated locations is shown in Appendix 5. The ratio of 'required pallet quantity per month' per class occupied is expanded to the actual location quantity.

	Required Pallet	Allocation	Allocated
LABOR	QTY Per Month	Ratio	Location
Class A	1,591	51%	1,620
Class B	OMNIA 832	27%	847
Class C	716	23%	729
Total	3,138	100%	3,1%


	Required Pallet QTY Per Month	Allocation Ratio	Allocated Location
Class A-a	963	61%	980
Class A-b	319	20%	324
Class A-c	310	19%	315
Total	1,591	100%	1,620


	Required Pallet QTY Per Month	Allocation Ratio	Allocated Location
Class B-a	519	62%	529
Class B-b	177	21%	180
Class B-c	136	16%	138
Total	832	100%	847

Source: Author's own

Source: Author's own

(c) The results of the ABC analysis to items of Class A customers are shown in Appendix 6 and Figure 4.2. 45 items are classified to three of sub-classes. Five items are classified into Class A-a, eight items are classified into Class A-b and rest 32 items are classified into Class A-c.

(d) The results of allocated locations for Class A-a, A-b and A-c is shown is Table 4.1 and the basic calculation of working out the allocated locations is shown in Appendix 7.

(e) The results of the ABC analysis for items of Class B customers are shown in Appendix 8 and Figure 4.3. 29 items are classified to three of sub-classes. Six items are classified into Class B-a, six items are classified into Class B-b and rest 17 items are classified into Class B-c.

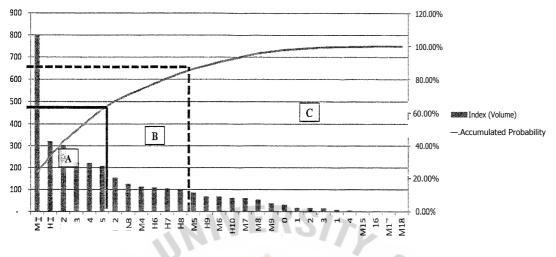


Figure 4.3: Result of ABC Analysis to Items of Class B (Pareto Chart)

Source: Author's own

(f) The results of the allocated locations for Class B-a, B-b and B-c are shown in Table 4.1 and the basic calculation of working out the allocated locations is shown in Appendix 9.

In addition to the ABC analysis and allocating locations, volume (Inbound pallet quantity per year) per classes are shown in Table 4.2 and the basic data of volume per customers and items are shown in Appendix 10.

Equation and Meaning	Class	Inbound Pallet QTY Per Year
:Pallet quantity of customer class A	Class A	6,362
: Pallet quantity of customer class B	Class B	3,327
:Pallet quantity of customer class C	Class C	2,862
	Total	12,551
:Pallet quantity of customer class A of sub-class a	Class A-a	3,850
:Pallet quantity of customer class A of sub-class b	Class A-b	1,123
:Pallet quantity of customer class A of sub-class c	Class A-c	1,389
	Total	6,362
a : Pallet quantity of customer class B of sub-class a	Class B-a	2,076
Pallet quantity of customer class B of sub-class b	Class B-b	707
	Class B-c	544
	Total	3,327

Table 4.2: Summary of Inbound Pallet Quantity per Year by Class

Source: Author's own

4.1.2 Result of Calculation of Average Travel Distance

The average distance of zone A (AA), B (AB), C (A_c), A-a (\overline{A}_{Au}), (\overline{A}_{Ab}), A-c (\overline{A}_{Ac}), B⁻a (ABa), B-b (\overline{A}_{Bb}) and B-c (A_{Bc}) are shown in Table 4.3.

Equation and Meaning		Class	Number of Entries	Average	Minimum Value	Maximum Value
			Location	Meter	Meter	Meter
4^{-}_{4}	: Average distance of zone class A	Class A	1,620	29.67	6.1	53
A_B	: Average distance of zone class B	Class B	847	45.57	30	60.4
4c	: Average distance of zone class C	Class C	729	55.71	42	72.4

Table 4.3: Summary of Distance

Equation and Meaning		Class	Number of Entries	Average	Minimum Value	Maximum Value	
			Location	Meter	Meter	Meter	
\bar{I}_{Aa}	: Average distance of zone class A of sub-class a	Class A-a	980	20.57	6.1	36	
А́ _{АЪ}	: Average distance of zone class A of sub-class b	Class A-b	325	34.10	15.4	51.6	
\overline{A}_{AC}	: Average distance of zone class A of sub-class c	Class A-c	315	34.35	24	53	
			N/BL	1			

	Equation and Meaning	Class	Number of Entries	Average	Minimum Value	Maximum Value
			Location	Meter	Meter	Meter
Ba	: Average distance of zone class B of sub-class a	Class B-a	529	42.61	30	59.4
km,	: Average distance of zone class B of sub-class b	Class B-b	180	44.50	37	55.4
A_{Bc}	: Average distance of zone class B of sub-class c	Class B-c	ARIE/ 138	49.59	42	60.4

Source: Author's own

4.1.3 Comparison of Actual Travel Distance and Average Travel Distance

SINCE1969

As described in Chapter 3.5.2, the actual travel distance and travel distance calculated by average distance are compared. The results are shown in Table 4.4 and the basic data of the average travel distance is shown in Appendix 11. The difference is 7.64%.

Table 4.4: Difference of Travel Distance between Actual and Average

Actual Travel Distance (Meter)	Travel Distance by Ave rage Distance (Meter)	
177,470	192,155	7.64%

Source: Author's own

4.2 Evaluate the Travel Distance

(a) The results of the evaluation of the total travel distance of AS-IS Process (T_1) is shown in Table 4.5. Total travel distance of AS-IS Process is 2,191,114.65 meters per year.

Zone of the Class	Total Volume Per Year	Allocation Ratio	Inbound Pallet QTY Per Year	Average Distance	Trip Frequency	Trawl Distance
Class A	12,551	33.33%	4,183	29.67	4	496,511.63
Class B	12,551	33.33%	4,183	45.57	4	762,490.36
Class C	12,551	33.33%	4,183	55.71	4	932,112.65
	Total Pallet QTY			Total T	ravel Distance	2,191,114.65

Table 4.5: Total Travel Distance of AS-IS Process (T₁)

Source: Author's own

(b) The results of the evaluation of the total travel distance of alternative $1(T_2)$ is shown in Table 4.6. Total travel distance of alternative 1 is 1,999,240.36 meters per year. 191,847.29 meters of travel distance is decreased from AS-IS Process.

 Table 4.6: Total Travel Distance of Alternative 1(T2)

Class	Inbound Pallet QTY Per Year	Average Distance	Trip Frequency	Travel Distance
Class A	6,362	29.67	4	755,108.66
Class B	NCE 1 93,327	45.57	4	606,420.00
Class C	2,862	55.7	1 4	637,711.70
Total Pallet QTY	12,551	Total T	rawl Distance	1,999,240.36

Source: Author's own

(c) The results of the evaluation of the total travel distance of alternative $2(T_3)$ is shown in Table 4.7. Total travel distance of alternative 2 is 1,886,112.55 meters per year. 305,002.10 meters of travel distance is decreased from AS-IS Process.

Class	Inbound Pallet QTY Per Year	Average Distance	Trip Frequency	Travel Distance
Class A-a	3,850	20.57	4	316,762.29
Class A -b	1,123	34.10	4	153,181.35
Class A -c	1,389	34.35	4	190,837.14
	Summary of Class A			
Class B-a	2,076	42.61	4	353,863.42
Class B-b	707	44.50	4	125,852.28
Class B-c	544	49.59	4	107,904.37
		Summary of Class B		r 587,620.08
Class C	2,862	55.71	4	637,711.70
Total Pallet QTY	12,551	Total Travel Distance		1,886,112.55

 Table 4.7: Total Travel Distance of Alternative 2(T3)

Source: Author's own

4.3 Evaluate the Required Electric Forklift Quantity for TO-BE Process

(a) The results of the evaluation of the travel distance per electric forklift *(F)* is shown as follows:

547,778.66 (F) = 2,191,114.65

4

(b) The results of the evaluation of the required electric forklift quantity for alternative 1 (R_2) and alternative 2 (R_3) is shown as follows:

4.4 Evaluate the Total Expense by Applying the Result to the Cost Structure

The results of R2 and R3 are applied to the cost structure that is related with the forklift quantity as shown in Table 4.8 and 4.9.

Table 4.8: Result of the Total Expense for Alternative 1

(a) Logistics Operating ense							
	Heavy Equipment	Fuel or	Maintenance for	Expense per	Quantity	Monthly	Yearly
	Rental	Electric'	· m ment	Month	Quantity	ense	tense
Diesel Fork Lift	19			31		31	372
Electric Fork Lift	27			38	3.65	13830	1,664
Additional Battery	35		Maintenia.	35	3.65	127.75	1,533
Battery Charger	2	-	-	2	3.65	7.30	88
Total Expence re ted with Travel Distance	-	-	-			305	3,657
Other Expense	-		-		-	98	1,181
Total Logistics Expense							4.838

(b)	Administration	ense

	Expence per Month	Head Count	Monthly Expense	Yearly Expense
Office Staff	108	2	216	2,589
Supervisor	108	1	108	1,294
Forklift Driver	108	4.65	502	6,018
Checker	108	3.65	394	4,724
Total Administration Expense			1,219	14,625

|--|

	Monthly Expense	Yearly Expense
Logistics ense	403	4,838
Administration Expense	1,219	14,625
Total Expense	1,622	19,463

Source: Author's own

Table 4.9<mark>: Result o</mark>f the T<mark>otal Expense for Al</mark>ternative 2

(a) Logistics Operating Expense	Heavy Equipment	Fuel or	Maintenance for	Expense per	Quantity	Monthly	Yearly
A REAL	Rental	Electricity	Equipment	Month	Quantum 5	Expense	Expense
Diesel Fork Lilt	19	3	GA-9	31	1	31	372
Electric Fork Lilt	27	2	5 9	38	3.44	. 130.72	1,569
Additional Battery	35	522-		35	3.44	120.40	1,445
Battery Charger	2	245-12	-	2	3.44	6.88	83
Total Expence related with Travel Distance	BOR		VINCIT	-	-	289	3,468
Other Expense	-	-	-	5.0.		98	1,181
Total Logistics Expense 387						4,649	

(b) Administration Expense		SIN	CE19	69 0	
	1	Expence per Month	Head Count	Monthly Expense	Yearly Expense
Office Staff		108	2 2	216	2,589
Supervisor		108		108	1,294
Forklift Driver		108	4.44	479	5,746
Checker		108	3.44	371	4,452
		Total Administra	ation Expense	1,173	14,081

_ c Total Expense		
	Monthly Expense	Yearly Expense
Logistics Expense	387	4 , 649
Administration Expense	1,173	14,081
Total Expense	1,560	18,730

Source: Author's own

4.5 Summary

The results indicate the improved storage policy decreased the cost of warehouse by 5.9 percent, 1,221 Thousands Baht per year in alternative 1 and 9.4 percent, 1,954 Thousands Baht per year in alternative 2. The results are shown in Table 4.8.

	Yearly Expense				
	Logistics Expense Administration Expense Total Expe				
AS-IS Process	5,153	I I I I I I I I I I	20,684		
Alternative 1	4,838	14,625	19,463		
Alternative 2	4,649	14,081	18,730		

	Decreased Amount				
	Logistics Expense	Administation Expense Total Expense			
Alternative 1	315	906	1,221		
Alternative 2	504	1,450	1,954		

	Improved Percentage		
	Logistics Expense	Administation Expense	Total Expense
Alternative 1	6.1%	5.8%	5.9%
Alternative 2	BROTHER 9.8%	ABRIE 9.3%	9.4%

Source: Author's own

CHAPTER V

SUMMARY FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the four sections that are the conclusions and summary of the findings, theoretical implications, managerial implications and lastly the limitations and recommendations for future research.

5.1 Conclusions and Summary of the Findings

This study applies a class-based storage policy to the warehouse operating by a random storage policy. And it was examined by two methods, i.e., classifying customers by ABC analysis (Alternative 1) and classifying the items of Class A and B customer's and assigning the sub-class for it (Alternative 2). The positive results were obtained from both alternatives.

The answer of the core-question; "How the storage policy impacts the cost of the warehouse?" is that "An improved storage policy reduces the travel distance and it finally affects the cost of the warehouse positively". Applying a suitable storage policy reduces the traffic inside the warehouse and it has the possibility of reducing the manpower and equipment.

In addition to reducing the manpower and equipment, the reduction of the travel distance shortens the operating hours as well. XYZ limits the maximum speed of forklifts inside the warehouse at 5km per hour. The distance decreased in alternative 1 could be converted to 38.37 hours of forklift operating hours and in alternative 2 could be converted to 61 hours of forklift operating hours.

The ABC analysis is applicable for improving the storage policy. Generally speaking, ABC analysis is the method to optimize the procurement and management of the inventory level. This study attempted to apply the classifying of customers and, items

and the results were applied to allocating locations in the warehouse. And this study also attempted to apply the 'ABC of ABC' that classifies the items of Class A and B customers and assigns the sub-class and obtained positive results. The results indicated that detail classifications contribute to shortening the travel distance.

This study found an equal relationship between volume and frequency that operates by pallet units for inbound and outbound cargo. XYZ operates by pallet units using a forklift by simple backtracking for moving the cargo. The volume has an equal meaning of frequency in this operation. On the other hand, the case of inbound cargo by pallet and outbound cargo by carton, the frequency of outbound cargo has a direct impact on the travel distance in terms of multiplying and depends on the customer's call of the cargo. In this case, a routing policy that defines the shortest picking route has much more significance to enhance the most efficient picking operation.

5.2 Theoretical Implications

This study makes contributions to the cost reduction of the warehouse as proposed by previous research findings and studies in the application of storage policy. The transportation inside the warehouse is the most time consuming motion and the findings indicate the application of storage policy reduces its motion. Also, the results indicate that the application of storage policy affects the cost structure of XYZ Company. The series of results and findings advocates both the theory, i.e., total operational costs are impacted by the layout and the operational policies (Bartholdi & Hackman, 2005) and reducing travel distance is concerned with both layout design and operating policies (Caron et al., 2000).

5.3 Managerial Implications

The application of a proper storage policy reduces the asset level and maintenance cost including the direct and indirect manpower related to the warehouse operation and management. The results indicate the possibility of reduction of equipment and manpower without changing configuration and layout that require a huge investment. This is the significant point of improving the storage policy for the warehouse operation. The reduction of the equipment and manpower is easy to affect operational quality even it is reducible. The management of XYZ should pay attention to protect safety regulations in the warehouse operation and secure operational accuracy to maintain the customer satisfaction.

The scale of the W116 is 4,000 square meters and four forklifts are equipped in it. Even the results cannot achieve the reduction of one forklift, the management of XYZ should improve the storage policy in the other warehouse in addition to WH6 and try to reduce the total forklift quantity as a whole company. Furthermore, the larger warehouses were affected in a greater figure of cost. The management of the warehouse should realize the importance of applying a suitable storage policy.

This study focused on reducing costs of the warehouse through improving the storage policy and examining it by using the historical data of the XYZ. XYZ could further use the results and findings in their current operations in order to enhance the company's cost structure and operational efficiency. Even though the results indicate detailed classification contributes to shortening the travel distance, management of the warehouse should consider the difference of a storage policy between the volumebased storage policy and the class-based storage policy. The much detailed classification enforces the warehouse operator complexity. Class-based storage policy has an advantage in applying the wide area to the multiple customers and items. This advantage should be utilized in the practical operation. And it is obvious that the complexity beyond the operator skill and current operation results negatively. The alternative 1 could obtain the positive results and firstly XYZ should select the Class A customer and start the segregation of Class A customers and other customers. The application of Class A for XYZ means a conversion about the storage policy from a random storage policy to the class-based storage policy. There is a great significance in switching policies.

A proper implementation plan is required to secure the operational quality for conversion of a storage policy. The action plan is suggested from two perspectives,

THE ASSUMPTION UNIVERSITY LIBRAR

i.e., training for operator and implementation in actual operation. Table 5.1 presents the suggested implementation plan.

a) Training for Operators
a-1: Storage Policy
a-2: Objective of Conversion of Storage Policy
a-3: Difference between the Random Storage Policy and Class-Based Storage Policy
a-4: Sharing Results after the Implementation
b) Implementation in Actual Operation
b-1: ABC Analysis and Ranking the Customers and Items
b-2: Conversion of Storage Policy
b-3: Operating by Class A and Others
b-4: Operating by Class A, B and C
b-5: Operating by Class A, B, C and Sub-Class

Table 5.1: Suggested Implementation Plan

Source: Author's own

The training for operator should be started from the question of "What is the 'Storage Policy'?" for smooth implementation in physical operation. Generally speaking, the operator of a warehouse that operated by the random storage policy shall not aware the existing of a storage policy. Starting from promoting the awareness of a storage policy, the objective of conversion of a storage policy and the difference between current storage policy and newly applied storage policy should be trained. Sharing results after the implementation support and encourage the operator to work by the newly applied storage policy.

On the occasion of the implementation of class-based storage policy, the ranking by the ABC analysis should be worked out. The ranking clarifies the most important customers in terms of increasing the efficiency in operation. As a first step of implementation of physical operation, the warehouse should be operated by the two classes, i.e., Class A customers and other customers. A simple segregation would be workable in the physical operation. The operation by two classes has significance in the conversion of the storage policies and also supports operator's comprehension of different storage policy. After the observation of operation by two classes, more complex model should be implemented step-by-step. Management of the warehouse should try to fuse the theory of a storage policy and the practice at the worksite in the warehouse.

Warehouse management system (WMS) is widely used in the logistics industry and XYZ also uses basic function of WMS in registering the operational result to the WMS such as inbound and outbound activity and stock information in current operation. Even though it requires investment in upgrading system from the basic function, adding the function of identifying class of items and allocating the appropriate location for inbound cargo from WMS to the operator would help to reduce the complexity of operation and workload of operator.

XYZ needed to improve on their operational efficiency towards the eventual objective of enterprise activity which is optimizing profitability in order to achieve the higher domain in the logistics industry and to win the severe completion in the industry.

5.4 Limitations and Recommendations for Future Research

In this study, the configuration of the warehouse shape and layout was fixed by one model, that is, the current shape and layout of XYZ. The modification of the configuration requires a huge investment and it is concerned with the safety policy of the company. Therefore, the results were adapted from the application of a different storage policy to the unique layout of the warehouse. The future study could use a different storage policy to the several layouts of a warehouse in order to find the best level of travel distance for the warehouse.

The relationship between volume and frequency and operational difference is described previously. The routing policy is one of the important elements to impact the travel distance even if the case of XYZ is not applicable. Needless to say, the combination of a storage policy, warehouse configuration and a routing policy are infinite. The researcher and the management of the warehouse should pay keen attention to research and define it in order to achieve the best of best results.

BIBLIOGRAPHY

- Ballard, R.L. (1996). Methods of inventory monitoring & measurement. *Logistics Information Management*, 9 (3), 11-18
- Ballou, R.H. (1978). Improved stock location in the physical distribution channel, International Journal of Physical Distribution & Logistics Management, 3 (5), 332-340

K2/1

- Bartholdi, J.J. III & Hackman, S.T. (2005), Warehouse and Distribution Science, Bartholdi & Hackmann, Atlanta, GA.
- Caron, F., Marchet, G., & Perego, A. (2000). Layout design in manual picking systems a simulation approach. *Integrated Manufacturing Systems*, 11 (2), 94-104
- Faber, N., De Koster, M.B.M., & Smidts, A. (2013). Organizing warehouse management. *International Journal of Operations & Production Management*, 33 (9), 1230-1256
- Flores, B. E. & Whybark, D. C. (1986). Multiple criteria ABC analysis. International Journal of Operations & Production Management, 6 (3), 38-46
- Frazelle, E. (2002). World-class warehousing and material handling: McGraw-Hill, New York, NY.
- Hassan, M. M.D. (2002). A framework for the design of warehouse layout. *Facilities*, 20, (13/14), 432-440
- Huertas, J., Ramirez, J., & Salazar, F. T. (2007) Layout evaluation of large capacity warehouses. *Facilities*, 25, (7/8). 259-270

- Jane, C. C. (2000). Storage location assignment in a distribution center. *International Journal of Physical Distribution & Logistics Management*, 30 (1), 55-71
- McKibbin, B. (1976). The role of warehousing. *International Journal of Retail & Distribution Management*, 4 (4), 57-69
- Napolitano, M. (2003). *The Time, Space &Cost Guide to Better Warehouse Design:* Alexander Communications group, Inc., New Jersey, NJ. 2nd Edition
- Petersen, C. G. (1997). An evaluation of order picking routeing policies. *International Journal of Operations & Production Management*, 17 (11), 1098-1111
- Petersen, C. G. (1999). The impact of routing and storage policies on warehouse efficiency. International Journal of Operations & Production Management, 19 (10), 1053-1064
- Petersen, C. G., Gerald R. A., & Daniel, R. H., (2004). Improving order-picking performance through the implementation of class-based storage. *International Journal of Physical Distribution & Logistics Management*, 34 (7), 534-554
- Van Den Berg, J.P. (1999). A literature survey on planning and control of warehousing systems. *IIE Transactions*, 34, 751-762

APPENDICES

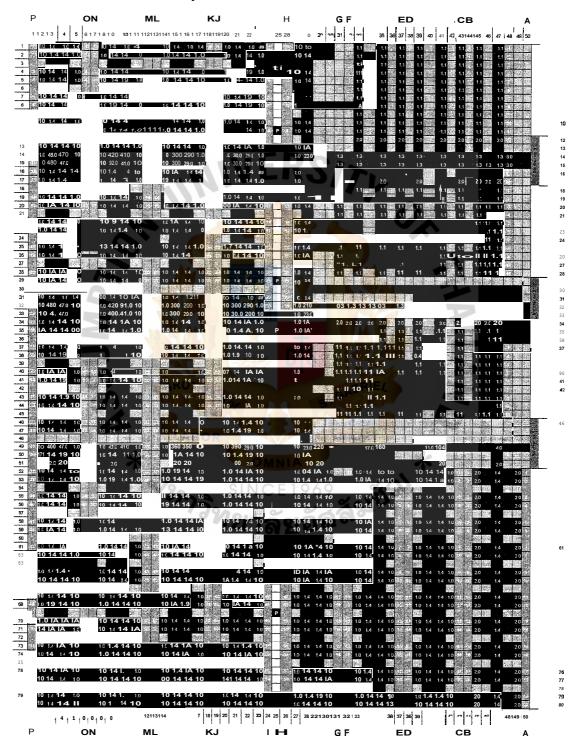
APPENDIX 1

Historical Data of XYZ (a) and (b)

(a) Historical data of inbound and outbound pallet quantity by customers from January 2013 to December 2013.

(b) Historical data of inbound and outbound frequency by customers from January 2013 to December 2013.

	INFROM						
Customer Name	Inbound Pallet QTY per Year	Outbound Pallet QTY per Year	Total Pallet Qty per Year	Inbound Frequency	Outbound Frequence	Total Frequency	
C1	3,046	3,214	6,260	66	274	340	
C2	3,316	3,088	6,404	64	176	240	
C3	1,732	1,798	3,530	75	214	289	
C4	1,595	1,612	3,207	44	205	249	
C5	641	864	1,505	41	107	148	
C6	313	465	778	63	128	191	
C7	394	501	895	15	46	61	
C8	446	640	1,086	10	33	43	
C9	328	343	D Q 671	7	54	61	
C10	272	278	550	22	34	56	
C11	79	OTHER 113	192	RIEL 23	33	56	
C12	77	or 112	189	5	36	41	
C13	47	82	129	8	44	52	
C14	204	ABOR 173	377	5	12	17	
C15	28	62	90	7	12	19	
C16	6	22	28	3	20	23	
C17	16	SI 200	E1969 36	5	6	11	
C18	4	25	29	1	12	13	
C19	5	13		3	11	14	
C20	2	4	6	2	3	5	
C21	-	7	7	-	2	2	
C22	-	-		-	-	-	
C23	-	-	-	-	-	-	
	12,551	13,435	25,986	469	1,462	1,931	


Historical Data of XYZ(c) and (d)

(c) Required Pallet Quantity per Month

(d) Required Pallet Quantity by Customers by Items

Customer	Required Pallet	Item Name of	Required Pallet	Item Name of	Required Pallet
Number	QTYPer Month	Class A	QTY Per Month	Class B	QTY Per Month
C1	762	D1	352	M1	200
C2	829	D2	352	H1	80
C3	433	S1	97	H2	76
C4	399	S2	82	H3	56
C5	160	S3	81	H4	55
C6	78	S4	47	H5	52
C7	99	S5	41	M2	39
C8	112	S6	40	M3	32
C9	82	S7	40	M4	28
C10	68	S8	38	H6	27
C11	20	S 9	38	H7	26
C12	19	S10	38	H8	25
C13	12	S11	38	M5	22
C14	51	S12	37	H9	17
C15	7	S13	31	M6	17
C16	2	S 14	30	H10	16
C17	4	D3	28	M7	15
C18		S15	19	M8	14
C19		S 16	17	M9	10
C20	BRP	S17	B17	M10	8
C21		S18	5 17	M11	5
C22		S19	17	M12	4
C23	1 AI	S20	16	M13	4
TOTAL	3,138	S21	11	H11	2
	×	D4 OM	NIA 10	M14	2
	210	S22	10	M15	1
	21297	S23	E1909 10	M16	1
		D 5	8	M17	0
		S24	8	M18	0
		S25	6	TOTAL	832
		D6	4		
		S26	3		
		S27	3		
		D7	2		
		S28	2		
		D8	2		
		D9	1		
		D10	1		
		D11	1		
		D12	1		
		D13	1		
		D14	1		
		D15	0		
		S29	0		
		S30	0		
		TOTAL	1,591		

Layout of Warehouse with Distances

Result of ABC Analysis to Customers (Table)

	stomer Name	Index (Volume)	Accumulated Probability	Class
	C2	3,316	26.42%	А
	C1	3,046	50.69%	А
	C3	1,732	64.49%	В
	C4	1,595	77.20%	В
	C5	641	82.30%	С
	C8	446	85.86%	С
	C7	394	89.00%	С
	C9	328	91.61%	С
	C6	313	94.10%	С
	C10	272	96.27%	С
	C14	204	97.90%	С
	CI 1	79	98.53%	C
	C12	77	99.14%	С
	C13	47	99.51%	С
	C15	28	99.74%	С
	C17	16	99.86%	С
	C16	6	99.91%	C
	C19	5	99.95%	С
	C18	4	99.98%	C C
	C20BOR	2	100.00%	С
×	C21	Ontrail	100.00%	C
	C22	OWNTA	100.00%	С
No.	C23	SINCE1	969100.00%	С
	1.98	12,551	อัสลิ้มเ	

Allocated Location by Customer

	Customer Number	Class	Required Pallet QTY Per Month	Allocation Ratio	Allocated Location
	C1	A	762	24.27%	776
	C2	A	829	26.42%	844
	C3	В	433	13.80%	441
	C4	В	399	12.71%	406
	C5	С	160	5.11%	163
	C6	С	E C 78	2.49%	80
	C7	С	99	3.14%	100
	C8	С	112	3.55%	114
	C9	С	82	2.61%	84
	C10	С	68	2.17%	69
	C11	С	20	0.63%	20
	C12	C	19	<mark>0.6</mark> 1%	20
2	C13	C	12	0.37%	12
	C14	C	51	1.63%	52
	C15	С	- 7	0.22%	7
N D C C	C16	C		0.05%	2
h	C17	C	4	0.13%	4
	C18	HEC	10	0.03%	1
	C19	C	1	0.04%	1
-	C20	C	1	0.02%	1
	C21	С	-	0.00%	ale -
	C22	С	OMNIA	0.00%	*
	C23	CS	NCE1969	0.00%	- 1
	TOTA	AL .	3,138	100.00%	3,196

	Index	Acumulated	
Item Name	(Volume)	Probability	Class
Dl	1,408	22%	A-a
D2	1,406	44%	A-a
Si	386	50%	A-a
<u>S2</u>	327	55%	A-a
<u>S3</u>	323	61%	A-a
<u>S4</u>	189	63%	A-b
<u>S5</u>	164	66%	A-b
<u>S6</u>	159	69%	A-b
<u>S7</u>	-158	71%	A-b
<u>58</u>	151	73%	A-b
<u>S9</u>	151	76%	A-b
S10	151	78%	A-b
<u><u>S11</u></u>	151	81%	A-b
<u>S12</u>	146	83%	A-c
S13	124	85%	A-c
S13	118	87%	A-c
D3	110	88%	A-c
S15	76	90%	A-c
<u>S16</u>	69	91%	A-c
<u>S17</u>	67	92%	A-c
<u>S18</u>	67	93%	A-c
<u>S19</u>	67	94%	A-c
S20	62	95%	A-c
S21	43	95%	A-c
<u>D4</u>	41	96%	A -c
S22	OMN41	97%	A-c
S23	_40	97%	A-c
D5	30	98%	A-c
S24	30	98%	A-c
<u>S25</u>	24	99%	A-c
<u></u> <u>D6</u>			A-c
S26		99%	
<u>S21</u>			
<u>D</u>			
<u>S28</u>			
D			
<u>D1</u> D1			
D1 D1			
<u>D1</u> D1			
D1 D1		1007	
D1 D1		1009	
<u>52</u>		1009	
<u>52</u> S3		1009	

58

Alloca	Allocated Location by Item of Class A Customer						
		Required Pallet	Allocation	Allocated			
Item Name	Class	QTY Per Month	Ratio	Location			
D1	A-a	352	22.13%	359			
D2	A-a	352	22.10%	358			
Si	A-a	97	6.07%	98			
S2	A-a	82	5.14%	83			
S3	A-a	81	5.08%	82			
S4	A-b	47	2.97%	48			
S5	A-b	41	2.58%	42			
S6	A-b	40	2.50%	40			
S7	A-b	40	2.48%	40			
S8	A-b	38	2.37%	38			
S9	A-b	- 38	2.37%	38			
S10	A-b	38	2.37%	38			
S11	A-b	38	2.37%	38			
S12	A-c	37	2.29%	37			
S13	A-c	31	1.95%	32			
S14	A-c	30	1.85%	30			
D3	A-c	28	1.74%	28			
S15	A-c	19	1.19%	19			
S16	A-c	17	1.08%	18			
S17	A-c	17	1.05%	17			
S18	A-c	17	1.05%	17			
S19	A-c	17	1.05%	17			
S20	A-c	16	0.97%	16			
S21	A-c	11	0.68%	11			
D4	A-c	10	0.64%	10			
S22	A-c	10	0.64%	10			
S23	A-c	OMNIA ₁₀	0.63%	* 10			
D5	A-c		0.47%	8			
S24	A-c	SINCE 196	0.47%	8			
S25	A-c	1010 - 6	0.38%	6			
D6	A-c	121624	0.25%	4			
S26	A-c	3	0.17%	3			
S27	A-c	3	0.16%	3			
D7	A-c	2	0.14%	2			
S28	A-c	2	0.14%	2			
D8	A-c	2	0.14%	2			
D9	A-c	1	0.06%	1			
D10	A-c	1	0.05%	1			
D10	A-c	1	0.05%	1			
D11 D12	A-c	1	0.03%	1			
D12 D13	A-c	1	0.03%	1			
D13	A-c	1	0.03%	1			
D14 D15	A-c	0	0.03%	0			
S29	A-c	0	0.02%	0			
S30	A-c	0	0.02%	0			
Total	_ <u>_</u>	1,591	100.00%	1,620			
Iotal		1,591	100.00%	1,020			

Allocated Location by Item of Class A Customer

Index Accumulated Item Name (Volume) Probability Class 798 23.99% M1 B-a H1 321 33.63% B-a H2 304 42.77% B-a H3 224 49.50% B-a H4 221 56.15% B-a H5 208 62.40% B-a M2 154 67.03% B-b M3 126 70.81% B-b M4 113 74.21% B-b 109 77.49% H6 B-b H7 105 80.64% B-b H8 100 B-b 83.65% M5 86 86.23% B-c H9 69 **SSUMP** 88.31% B-c M6 68 90.35% B-c H10 62 92.22% B-c M7 61 94.05% B-c **M**8 54 95.67% B-c M9 38 96.81% B-c M10 32 97.78% B-c M11 18 98.32% B-c M12 17 98.83% B-c M13 16 99.31% B-c H11 9 99.58% B-c 6 M14 99.76% B-c M15 3 99.85% B-c 3 M16 99.94% B-c 99.97% M17 1 B-c M18 1 100.00% B-c

Result of ABC Analysis to Items of Class B (Table)

Allocated Location by Item of Class B Customer

[Required Pallet	Allocation	Allocated
	Item Name	Class	QTY Per Month	Ratio	Location
	M1	B-a	200	23.99%	203
	H1	B-a	80	9.65%	82
	H2	B-a	76	9.14%	77
	H3	B-a	56	6.73%	57
	H4	B-a	55	6.64%	56
	H5	B-a	52	6.25%	53
	M2	B-b	39	4.63%	39
	M3	B-b	32	3.79%	32
	M4	B-b	28	3.40%	29
	H6	B-b	27	3.28%	28
	H7	B-b	26	3.16%	27
	H8	B-b	25	3.01%	25
	M5	B-c	22	2.58%	22
	H9	B-c	17	2.07%	18
D	M6	B-c	17	2.04%	17
	H10	B-c	16	1.86%	16
\geq	M7	B-c	15	1.83%	16
	M8	B-c	14	1.62%	-14
	M9	B-c		1.14%	10
1 CR	M10	B-c	8	0.96%	8
	M11	B-c	5	0.54%	5
	M12	B-c	4	0.51%	4
	M13	B-c	4	0.48%	4
	H11	B-c	2	0.27%	2
	M14	B-c	OMNIA 2	0.18%	* 2
	M15	B-c	SINCELORD	0.09%	1
	M16	B-c	SINCEIVOY	0.09%	1
	M17	B-c	ຍາວັນວັດ	0.03%	0
	M18	B-c		0.03%	0
l	TOTAI	_	832	100.00%	847

Inbound Volume and Class by Customers and Items

Class	Customer Name	Inbound Pallet QTY per Year	Class	Item Name	Inbound Pallet QTY per Year	Class	Item Name	Inbound Pallet QTY per Year
A	C1	3,046	A-a	Dl	1,408	B-a	M1	Q11 per 1ear 798
A	C2	3,316	A-a	D2	1,406	B-a	H1	321
B	C3	1,732	A-a	SI	386	B-a	H2	304
B	C4	1,595	A-a	S2	327	B-a	H3	224
C	C5	641	A-a	S3	323	B-a	H4	22
C	C6	313	A-b	S4	189	B-a	H5	20
C	C7	394	A-b	S5	164	B-b	M2	154
C	CS	446	A -b	S 6	159	B-b	M3	126
C	C9	328	A-b	S7	158	B-b	M4	113
C	C10	272	A -b		151	B-b	H6	10
C	Cu	79	A-b	S9	151	B-b	H7	10:
<u>C</u>	C12	77	A-b	S10	151	B-b	H8	10.
C	C12 C13	47	A -b	S10	151	B-c	M5	86
C	C13	204	A-c	S11	146	B-c	H9	6
<u>C</u>	C14	204	A-c	S12	124	B-c B-c	M6	
<u>с</u>				S14	118	Cart .		62
	C16	6	A-c	D3	~	B-c	H10 M7	61
C	C17	16	A-c		111	B-c	-	
C	C18	4	A-c	S15	76	B-c	M8	54
C	C19	5	A-c	S16	69	B-c	M9	38
C	C20	2	A-c	S17	67	B-c	M10	
<u>C</u>	C21	BROTH	A-c	S18	67	B-c	M11	18
С	C22		A-c	S19	67	B-c	M12	17
С	C23	-	A-c	S20	62	B-c	M13	16
	TOTAL	12,551	A-c	S21	VINC ⁴³	B-c	HII	
		*	A-c	D4	41	B-c	M14	6
			A-c	S22	41	B-c	M15	3
		×20	A-c	CE S23	69 40	B-c	M16	3
		* 2/297	A-c	D5	30	B-c	M17	1
		-	A -c A-c	S24 S25	24	B-c	M18 TOTAL	1 3,327
			A-c A-c	D6	16		IUIAL	3,321
		F	A-c	S26	10			
		F	A-c	S27	10			
			A-c	D7	9			
			A-c	S28	9			
			A-c	D8	8			
			A-c	D9	4			
		Ļ	A-c	D10	3			
		F	A-c	D11	3			
		F	A-c	D12	2			
		ŀ	A -c	D13	2 2			
		ŀ	A-c	D14	1			
		F	A-c A-c	S29	1			
		F	A-c	S30	1			
		L		TOTAL	6,362			

Travel Distance Calculated by Average Distance on Sept. 2013

Customer Name	Class	Inbound Pallet QTY per Month (Sept)	Average Distance	Multiplied by	Travel Distance by Average Distance (Me ter)
C1	А	475	29.67	4	56,378
C2	А	226	29.67	4	26,824
C3	В	159	45.57	4	28,981
C4	В	116	45.57	4	21,144
C5	С	92	55.71	4	20,499
C6	С	30	55.71	4	6,685
C7	С	23	55.71	4	5,125
C8	С		55.71	4	-
C9	C		55.71	4	-
C10	С	82	55.71	4	18,273
C11	С	4	55.71	4	891
C12	С	22	55.71	4	4,902
C13	C	8	55.71	4	1,783
C14	С		55.71	4	-
C15	С		D \$ 55.71	4	-
C16	С	2	55.71	4	446
C17	С	BROTHERS	55.71	RIEL 4	
C18	С	97	55.71	4	-
C19	С	LABOR 1	55.71	4	223
C20	С	-	55.71	4	-
C21	С	×	55.71	*4	-
C22	С	StN	CE19655.71	4	-
C22	С	772.	55.71	4	-
TOTAL		1,240	ลียอลต		192,155

THE ASSUMPTION UNIVERSITY LIBRARY