

Object-Relational Technology for Data Warehousing

by
Mr. Samit Bhakta

A Final Report of the Six-Credit Course
CS 6998 - CS 6999 System Development Project

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Computer Information Systems

Assumption University

November 2002

Project Title Object-Relational Technology for Data Warehousing

Name Mr. Samit Bhakta

Project Advisor Assoc.Prof.Dr. Suphamit Chittayasothom

Academic Year November 10, 2002

The Graduate School of Assumption University has approved this final report of the six­
credit course, CS 6998 - CS 6999 System Development Project, submitted in partial
fulfillment of the requirements for the degree of Master of Science in Computer
Information Systems.

Approval Committee:

(Assoc.Prof.Dr. Suphamit Chittayasothom)
Advisor

(Air Marshal Dr. Chulit Meesajjee)
Dean and Co-advisor

... s: '
(Prof.Dr. Srisakdi Charmonman)

Chairman

(Asst.Prof.Dr. Vichit Avatchanakom)
Member

)
(Assoc.Prof. Somchai Thayah1yong)

MUA Representative

November 10, 2002

ABSTRACT

Although data warehousing and object-relational database are no longer

considered as recent technology, very limited work has been reported on object­

relational data warehousing. Most data warehouses are built on relational databases.

This study attempts to develop a warehouse data model, which could be implemented

using an object-relational DBMS.

It has been found out that the object-relational database can support an improved

data warehouse that might not be achieved using relational or object-oriented databases.

Object-relational technology is capable of capturing and handling the slowly

changing attributes of entities by using complex data structures involving time, which

would not be possible using a relational database. Handling slowly changing attributes

remains a major issue in data warehousing.

On the other hand, it is possible to eliminate the major drawback of object­

oriented databases - the inability to formulate query using the SQL language. Object­

relational databases support the SQL3 language, which is similar to the popular SQL92

language, and therefore, the task of formulating queries remains easy.

Despite those advantages, non-standardization of SQL3 language remains one of

the major obstacles in commercially implementing the object-relational technology.

ACKNOWLEDGEMENTS

It is a great pleasure for the writer to acknowledge the assistance of a large

number of individuals to this project.

First of all, the writer would specially thank Associate Professor Dr. Suphamit

Chittayasothorn, his advisor for this project, for his valuable guidance and advice,

without which this work would not have been possible. The quality and depth of

instmction in his database classes and his active involvement in this project have been

the key to its success.

The writer would also like to extend his thanks to all his instmctors of

Assumption University for their valuable instruction in the course of pursuing his

degree.

The writer acknowledges the support of his classmates for their continuous

encouragement. In particular, the writer recognizes the effort of James C. Baldwin, for

suggesting various improvements in this project. Of course, any mistakes should be

attributed to the writer alone.

Last, but not least, the writer gratefully acknowledges the support,

encouragement, and patience of his family, without forgetting little Ankita.

11

TABLE OF CONTENTS

Chapter

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OFT ABLES

I. INTRODUCTION

1.1 Overview

1.2 Objectives

1.3 Scope of Work

1.4 Organization of This Report

II. LITERATURE REVIEW ON DATA WAREHOUSING

2.1 Data Warehousing and Its Benefits

2.2 Warehousing Data Models

III. OBJECT-RELATION AL DBMS

3.1 Relational DBMS (RDBMS)

3.2 Object-Oriented DBMS (OODBMS)

3.3 Object-Relational DBMS (ORDBMS)

IV. OBJECT-RELATIONAL DATA WAREHOUSING

4.1 ER Diagram of Transaction Processing Database

4.2 ER Diagram of Warehousing Database

4.3 Modification of the Warehousing Database Schema

lll

11

v

Vl

1

1

3

3

3

5

5

7

9

10

11

12

15

15

19

27

Chapter

V. IMPLEMENTATION OF THE DATA WAREHOUSE

5.1 Building Objects and Tables

5.2 Data Manipulation - Insert, Update, and Delete Operations

5.3 Query Formulation

VI. RESULTS AND DISCUSSION

6.1 Dealing with Slowly Changing Attributes

6.2 Formulation of Queries

6.3 Drawbacks of Object-Relational Database

VII. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

7.2 Recommendations

TEST DATA APPENDIX A

APPENDIX B

BIBLIOGRAPHY

SAMPLE SQL QUERY AND RESULT

IV

Page

29

29

40

46

51

51

54

55

57

57

57

59

64

69

Figure

4.1

4.2

4.3

5.1

5.2

5.3

5.4

5.5

5.6

LIST OF FIGURES

ER Diagram of the Transaction Processing Database

ER Diagram of the Warehouse Database

Modified ER Diagram of the Warehouse Database

ER Diagram of the Implemented Warehouse Database

Object-Relational Representation of the Time Dimension Table

Object-Relational Representation of the Product Dimension Table

Object-Relational Representation of the Customer Shadow
Dimension Table

Object-Relational Representation of the Customer Dimension Table

Object-Relational Representation of the Sales Fact Table

v

16

22

26

31

32

33

34

37

39

LIST OF TABLES

Table Page

Al Test Data of the time_dimension_objtab Table 59

A.2 Test Data of the product_ dimension_ obj tab Table 60

A.3 Test Data of the cust_shadow _dimension_objtab Table 61

A.4 Test Data of the customer_dimension_objtab Table 62

A.5 Test Data of the sales_fact_objtab Table 63

VI

I. INTRODUCTION

1.1 Overview

The concept of data warehousing has been evolving for quite a long time. In the

eighties, a single database used to serve both operational and analytical needs.

Databases were designed for the transaction processing system. Data analysis was based

mostly on human interactions by extracting data from a transaction processing database.

This was acceptable to the organizations when the cost of hardware and software was

too high to maintain a separate database for analytical purposes and the number of

records to deal with was limited. Also, business had yet to realize the value of analyzing

data in the service of crucial decision-making.

However, there is a limited technology available today to optimize a database for

both transaction processing and analytical requirements, though their processing

characteristics are fundamentally different.

A transaction processing database deals with present data, which needs to be

updated frequently. The presence of a vast amount of historical data degrades the

performance of an operational database. Redundancy must be kept at a minimum level,

as it causes insert, update, and delete anomalies.

On the other hand, data analysis is based on historical data, which are read-only in

nature. Therefore a warehouse database must be able to deal with a huge amount of

data, which are only rarely updated. Redundancy is not a major issue for a data

warehouse if it improves the query performance.

However, based on the above-mentioned aspects of transaction processing and

warehouse databases, it is not impossible to design a database to serve the purposes,

particularly if the volume of data involved is not too large. What makes data

warehousing indispensable is that it integrates the data scattered around the business in

1

different forms e.g. relational database files, spreadsheets, flat databases, and common

text files. Data warehousing extracts information from the different heterogeneous types

of databases in an organization and places them in a common database structure so that

the user community is able to access all data from a single database.

Therefore, a warehouse database uses a completely different approach to

organizing the data even though the source of the data is the transaction processing

database. The data warehouse extracts data from the transaction processing system,

cleans it, and maps it to a different schema, which can deal with large data volumes and

provide good query performance.

There are different data models to satisfy these data warehouse needs. Among

them the star schema, which uses de-normalized tables, and the starflake schema, which

is a variation of the star schema that selectively normalizes some dimension tables, are

popular and widely used.

An Object-Relational Database Management System (ORDBMS) is considered a

hybrid, combining the concept of Object-Oriented Database Management Systems

(OODBMS) to deal with complex and user-defined data structures and the strength of

Relational Database Management Systems (RDBMS), i.e. the simplicity of data

representation at the conceptual level in tabular form and the support of a query

language for data definition and manipulation. According to Ullman et al. 1999, support

of non-atomic attributes, reference pointers, abstract data type, and user defined

methods within tabular data representation made object-relational database unique from

other existing database technologies.

Recent literatures on data warehousing suggest that current research focuses

mostly on relational technology, although a few use OODBMS. This may not be the

case at present when major DBMS have already incorporated object-relational features.

2

The use of ORDBMS to build a warehouse database could result in an improved

warehouse. This study attempts to discover potential opportunities for improvement of

warehouse databases using ORDBMS.

1.2 Objectives

The objective of this project is to examine the effects of some of the object­

relational features of ORDBMS on data warehousing, which is traditionally built on

relational databases. This project attempts to investigate the possibility of improvement

if an ORDBMS is used for a warehouse database. The issue of slowly changing

attributes is also investigated in the light of object-relational technology. The study is

limited to the conceptual level in the form of data definition and manipulation using

structured query language. Performance implications are considered to be out of the

scope of the current study.

1.3 Scope of Work

To study the impact of object-relational technology on data warehousing, a case

study was undertaken to build a warehouse database incorporating some features of

object-relational technology. A hypothetical database was considered for a transaction

processing system, based on which the warehouse data model was developed using the

star schema data model. This database schema was then implemented using an

ORDBMS, Oracle Si. The strengths and drawbacks of object-relational technology were

then measured based on the implementation.

1.4 Organization of This Report

This report is divided into seven chapters. This chapter, Chapter I, presents an

introduction to the project. Chapter II reviews the recent literature on data warehousing.

Chapter III provides a close look at object-relational technology - its evaluation and its

advantages over relational and object-oriented databases. In Chapter IV, a data

3

warehouse schema is developed. This schema is implemented in Chapter V using

Oracle Si. Chapter VI illustrates the results and presents a discussion based on the

schema developed and its implementation. Finally, Chapter VII contains the conclusions

of this study and the scope of further work in this field.

4

II. LITERATURE REVIEW ON DATA WAREHOUSING

Study of the recent literature suggested that very little work has been done to build

data warehouse on object-relational technology. Surprisingly, not a single published

article was found proposing object-relational data model for data warehousing, despite

the fact that object-relational DBMS has been commercially available for more than

four years now.

This chapter is broadly classified into two sections. Section 2.1 generally

reviews data warehousing and its benefits. Reviews are also conducted in this section on

how a warehouse database differs from a transaction processing database. Section 2.2

reviews the different types of data models available for warehouse databases, and

discusses their strengths and weaknesses.

2.1 Data Warehousing and Its Benefits

A data warehouse contains information that is collected from individual data

sources and integrated into a common repository for efficient query and analysis. The

concept of data warehousing was first proposed by Inmon and Kelley 1993 (Chen et al.

1999).

An operational or transaction database system helps to run the operations of the

organization using conventional methods. However, it has become increasingly obvious

that these legacy systems are unable to handle information management functions such

as planning, forecasting, and financial analysis. The structure of operational data is

often complex as the data is highly normalized and it is not always meaningfully

presented to the end user (Chelluri and Kumar 2001).

On the other hand, data stored in a data warehouse is historical in nature, which

provides the analyst with information for analyzing the past performance of the

organization and plans for future activities. To achieve this, the analyst needs immediate

5

access to the terabytes of information stored in heterogeneous databases. According to

Hanson 1997, there are two primary focuses of effort as to how information from

heterogeneous databases should be integrated to provide the user community with the

ability to access this information through a single access method. The first method

involves the creation of either a relational, or an object-oriented Multidatabase System

structure that contains the necessary information to access the underlying, or source

databases. The second method involves extracting the information, which could be the

entire database, and placing it in a database structure that is available to the user

community. The second methodology is the one being primarily implemented by the

commercial vendor community under the title of data warehousing.

Even if there is a single database used for transaction processing system, using

only one database for both online transaction processing and decision support

concurrently degrades the performance of the operational system and user response time

(Chelluri and Kumar 2001).

Furlow 2001 described the five principle benefits of data warehousing. The first,

and most obvious, is that data warehousing simplifies decision making because it

provides a single view of the data by pulling it together from disparate and potentially

incompatible locations throughout the organization. The second benefit is easy and

quick access to data, leading to increased productivity and efficiency gains. Increased

performance of operational systems is the third benefit of warehousing, since queries

generated by the user do not interfere with normal operations. The fourth benefit is the

flexibility and the scalability of data warehouses since they give an organization a

computing infrastructure that can support change in both the computer system and the

business structure. Finally, with a data warehouse in place, an organization can better

6

manage and use its knowledge, which in turn helps the organization become more

competitive, better understand its customers, and more rapidly meet the market demand.

Furlow 2001 has also pointed out the potential disadvantages of data warehousing,

which are the complexity and anticipation in development, making data warehousing

project costly and time consuming. An iterative development approach starting with a

pilot system could be the key to a successful data warehousing project.

2.2 Warehousing Data Models

Kimball 1997 described Dimensional Modeling (DM), a logical design technique,

for data warehousing. DM seeks to present the data in a standard, intuitive framework

that allows for high-performance access. It is inherently dimensional, and it adheres to a

discipline that uses the relational model with some important restrictions. Every

dimensional model is composed of one table with a multipart key called the fact table,

and a set of smaller tables called dimension tables. Each dimension table has a single­

part primary key that corresponds exactly to one of the components of the multi part key

in the fact table. This characteristic "star-like" structure is often called a star join. Due

to this, the dimensional data model is also called a star schema. Kimball 1997 described

many benefits of DM for warehouse data modeling, among which flexibility,

adaptability, expandability, and standardization are prominent.

An alternative to the dimensional data model described above is the

multidimensional data model described by Agrawal et al. 1997. This model is based on

the "hypercube" paradigm. Here, the business measures, i.e. facts, are stored within the

cells of a hypercube whose axes or edges represent business entities or attributes, which

are also called dimensions.

Although the above data models, i.e. dimensional modeling and multidimensional

data modeling, are structurally similar, they are implemented using different

7

technologies. Dimensional modeling uses a relational database, whereas

multidimensional data modeling uses a multidimensional database. Trujillo et al. 2001

proposed the use of multidimensional modeling using an object-oriented database.

However, Giovinazzo 2000, preferred a relational-based dimensional modeling in

implementing the database, as many cells of the multidimensional database remain

empty which wastes a significant amount of storage space.

Sarda 2000 pointed out that changes to a dimension are a major issue for data

warehousing which is not adequately addressed either in the hypercube-based

multidimensional model or in star schema based dimensional modeling. Kimball 1996

proposed three different techniques to deal with slowly changing dimension attributes.

Giovinazzo 2000 proposed two additional possibilities. Incidentally, as explained in

Chapter VI, all of them were using the relational framework. Sarda 2000 suggested two

orthogonal time measures, called valid (real-world) time and transaction (system) time,

to maintain the complete history of entities. This paper shows that the dimensions and

facts can be modeled as temporal states or event relations to ensure the consistency of

data in a data warehouse. This idea was basically derived from the temporal database

concept. However, this paper does not specify the implementation technology for this

logical model.

Chelluri and Kumar 2001 proposed a multidimensional grid frame organization to

deal with very large data warehouses. This helps to manage the size of the warehouse

database using a kind of garbage collection scheme, which categorizes the data

warehouse components and relocates them to specific locations. Thus, active data and

stale reside at different places, which improves the usefulness of the warehouse.

8

III. OBJECT-RELATIONAL DBMS

In the commercial world of Database Management Systems (DBMS), there are

several families of DBMS products available. Two of the most dominant ones are

Relational DBMS (RDBMS) and Object-Oriented DBMS (OODBMS). Other types of

DBMS products, which are based on the hierarchical and network data models, are now

being referred as legacy DBMS (Elmasri and Navathe 2000).

During the past few years, several major software companies· including IBM,

Informix, Oracle, and Sybase have all released Object-Relational versions of their

products. These companies are promoting these new, extended versions of relational

database technology as Object-Relational DBMS, also known as ORDBMS. The main

forces behind the development of ORDBMS stem from the limitation of the legacy and

basic relational DBMS, which are unable to meet the challenge of non-traditional new

applications such as storing images and multimedia objects in the database.

Consequently, the objects and related operations are becoming more complex. Initially

OODBMS looked promising to handle the objects and related operations such as

images, geographical information systems, multimedia objects, 3-D, and temporal data.

However, they have been unable to live up to the expectation. This leads to the

development of new technology, ORDBMS, which is a combination of both relational

and object-oriented concepts. The main advantages of ORDBMS are massive scalability

and support for object-oriented features.

This chapter compares and contrasts this new class of database (ORDBMS) with

the relational databases (RDBMS) from which they are evolving and also with efficient

object-oriented databases (OODBMS). The concepts of RDBMS and OODBMS are

discussed in Section 3.1 and 3.2. In Section 3.3, the concept of ORDBMS is presented

and the advantages of ORDBMS over RDBMS and OODBMS are discussed.

9

' s

3.1 Relational DBMS (RDBMS)

The relational model was formally introduced by Dr. E. F. Codd in 1970 and has

evolved since then, through a series of writings and later through implementations by

IBM, Oracle, and others. The defining standard for relational databases is published by

ANSI (the American National Standard Institute) as SQL (ANSI 1986) or SQLl, also

called SQL-86. A revised standard is called SQL2, also referred to as SQL-92.

A relational database is composed of relations in the form of two-dimensional

tables of rows (tuples) and columns. Organizing data into tables, in which form data is

presented to the user and the programmer, is known as the logical view of the database.

The stored data on a computer disk system is called the internal view. The tuples are

called records and the columns (fields in the record) are called attributes. Each column

has a data-type (i.e., integer, float, date). There are various restrictions on the data that

can be stored in a relational database. These are called constraints. The constraints

include domain constraints, key constraints, entity integrity constraints, and referential

integrity constraints. These constraints ensure that there are no ambiguous tuples in the

database.

RDBMS use Structured Query Language (SQL, currently SQL2) as the Data

Definition Language (DDL) as well as the Data Manipulation Language (DML). SQL

includes statements for data definition, modification, querying, and constraint

specification. The types of queries vary from simple single-table queries to complicated

multi-table queries involving joins, nesting, set union I differences, and others. All

processing is based on values in fields of records. Examples of RDBMS include Oracle,

developed by Oracle Corporation, DB2, developed by IBM, and Microsoft SQL Server

developed by Microsoft. The SQL standard enables users to easily migrate their

database applications across database systems. In addition, users can access data stored

10

2408

in two or more RDBMS without changing the database sub-language (SQL). The other

merits include rapid data access and large storage capacity. The main disadvantages of

Relational Databases include their inability to handle application areas like spatial

databases (e.g. CAD), applications involving images, special types in databases (e.g.

complex numbers, arrays, etc.) and other applications that involve complex

interrelationships of data (Elmasri and Navathe 2000).

3.2 Object-Oriented DBMS (OODBMS)

The desire to represent complex objects in a way that facilitates Object-Oriented

(00) systems design, has led to the development of OODBMS. The concept of abstract

data-types (ADT) evolved, in which the internal data structure is hidden and the external

operations can be applied on the object that is specified, led to the concept of

encapsulation. The main features of 00 programming languages are encapsulation,

inheritance and polymorphism (Bahrami 1999). Encapsulation can be thought of as a

protective layer that prevents the code and the data from being accessed by other code

defined outside the layer. The process in which one object inherits the properties of a

previously defined object is called inheritance. Inheritance aids in the reuse of existing

definitions for creating new objects. Polymorphism allows the same operator or symbol

to have different implementations, depending on the types of objects to which the

operator is applied.

00 databases employ a data model that supports the object-oriented features

discussed above as well as abstract data-types (Date 1999). 00 databases provide

unique Object Identifier (OID) so that the objects can be uniquely identified. This is

similar to a primary key in the relational model. 00 databases utilize the power of 00

programming languages to provide excellent database programming capability. The data

in OODBMS is managed through two sets of relations, one describing the interrelations

11

of data items and another describing the abstract relationships (inheritance). These

systems employ both relation types to couple data items with procedural methods

(encapsulation). As a result, a direct relationship is established between the application

data model and the database data model. The strong connection between application and

database results in more compact code, more natural data structures, and better

maintainability and reusability of code. 00 languages, such as C++ or Java, are able to

reduce code size by not having to translate code into a database sublanguage such as

SQL and ODBC or JDBC.

The main drawback of OODBMS has been poor performance. Unlike RDBMS,

query optimization for OODBMS is highly complex. OODBMS also suffer from

problems of scalability, and are unable to support large-scale systems. Some examples

of OODBMS are Ardent (formerly 02) developed by Ardent Software, and the

ObjectStore system produced by Object Design Inc. (Elmasri and Navathe 2000).

3.3 Object-Relational DBMS (ORDBMS)

The main objective of ORDBMS design was to achieve the benefits of both the

relational and the object models such as scalability and support for rich data-types.

ORDBMS employ a data model that attempts to incorporate 00 features into RDBMS.

All database information is stored in tables, but some of the tabular entries may have

richer data structure, termed abstract data-types (ADT). An ORDBMS supports an

extended form of SQL called SQL3 that is still in the development stages and, hence,

not standardized. Extensions are needed because ORDBMS have to support ADT' s. The

ORDBMS subsumes relational model because the data is stored in the form of tables

having rows and columns, because SQL is used as the query language and because the

result of a query is also a table or a set of tuples. But the relational model has to be

drastically modified in order to support the classic features of 00 programming.

12

According to Stonebraker and Brown 1999, the principle characteristics of

ORDBMS are (1) base data-type extension, (2) support for complex objects, (3)

inheritance, and (4) implementation of a rule system.

ORDBMS allow users to define data-types, functions and operators. As a result,

the functionality of the ORDBMS increases along with their performance.

The following is an example schema of an employee relation, which ORDBMS

supports:

EMPLOYEE (ID, Name (last, first, middle), Sex, BirthYear, Address (Street,

City, State, Zip), Phones (Location, Number), DepartName, DateOfHire, Salary,

Picture)

This is to be noted that "Name" and "Address" are composite attributes, "Phones"

is a combination of multivalued and composite attributes, and "picture" is an image.

None of the above is supported by traditional RDBMS technology.

Stonebraker and Brown 1999 have classified the DBMS applications into four

types - simple data without query, simple data with query, complex data without query,

and complex data with query. These four types describe file systems, Relational DBMS,

Object-Oriented DBMS, and Object-Relational DBMS, respectively. The current

ORDBMS in commercial market include Oracle9i from the Oracle Corporation, DB2

from IBM, and Universal Server by Informix (recently taken over by IBM). Stonebraker

and Brown 1999 predicted that applications from Relational DBMS (simple data with

query) would slowly move towards the Object-Relational DBMS (complex data with

query).

The main advantage of ORDBMS is their massive scalability. Oracle9i, released

by the Oracle Corporation, is designed to manage large amounts of information. In spite

of their many advantages, ORDBMS also have a drawback. The architecture of object-

13

relational models is not appropriate for high-speed web applications. However, with

advantages like large storage capacity, access speed, and the manipulation power of

object-databases, ORDBMS has conquered the database market. The support from

major DBMS vendors and its features have made ORDBMS the market leader.

14

IV. OBJECT-RELATIONAL DATA WAREHOUSING

The strengths of ORDBMS over RDBMS are discussed in the last chapter.

Considering the present trend in database technology and support by leading database

vendors, new generation data warehousing should take the advantage of ORDBMS. In

this chapter, a data warehouse schema will be presented and discussed using object­

relational technology. To make the things simple, the warehouse database schema will

be based on the popular star schema data model of data warehousing.

In Section 4.1, an Entity Relationship (ER) Diagram of a transaction processing

database is presented on which basis the data warehousing schema was developed. The

warehousing database is presented in Section 4.2. Section 4.3 proposes a modification

of the data warehousing schema described in Section 4.2 by tuning it in accordance to

the needs of the practical requirements of the specific application. Finally, in Section 4.4

a conclusion is drawn based on the presented data warehouse schemas. It is worth

mentioning here that the schemas presented in this section are application independent

The implementation of the schema is considered in the next chapter.

4.1 ER Diagram of Transaction Processing Database

To study the effect of object-relational technology on data warehousing, the case

of a car dealer's sales transaction processing system is considered. The car dealer

records the sales transactions using a transaction processing database. As the study

concentrates on data warehousing, discussion of this transaction database is limited to

describing the schema only, without detailing how the schema is achieved. Further, the

transaction database is considered as an object-relational type as well, which allows

multivalued and composite attributes although these do not satisfy the first normal form

requirements of relational technology.

15

m
ar

it
al

_s
ta

tu
s

pr
ic

e

st
re

et

0
\

N

sa
le

s
da

te

sa
le

s
ke

y

F
ig

ur
e

4.
1.

E

R
 D

ia
gr

am
 o

f T
ra

ns
ac

ti
on

 P
ro

ce
ss

in
g

D
at

ab
as

e.

Figure 4.1 represents an ER Diagram of the transaction database based on Peter

Chen's classical entity relationship model. It consists of three entities - "customer",

"product", and "sales". Entity type "customer" holds data about the customer. It has few

simple attributes like "reg_key" (a unique key serving as the key attribute of the

customer entity type) "sex" (customer's sex, e.g. male or female), "birth_ date"

(customer's date of birth), "marital_status" (customer's marital status, e.g. unmarried,

married, separated etc.), and "yearly_income" (customer's yearly income). Entity type

"customer" has a composite attribute like "name" (customer's name), which consists of

three simple attributes - "last" (customer's last name), "first" (customer's first name),

and "middle" (customer's middle name). Entity type "customer" also has another

composite attribute "address" (customer's address), which consists of four simple

attributes - "street" (customer's street name), "city" (customer's city), "state"

(customer's state), and "zipcode" (customer's zipcode). Attribute "address" is not

considered as a multivalued attribute, and therefore, only one address (e.g. home or

office) per customer can be registered at a time. Entity type "customer" also has a

multivalued composite attribute called "phones". Multiple sets of "location" (location of

a phone number e.g., home, office) and "phone_number" (phone number associated

with the location) of a customer can be registered under "phones" attribute.

Other than those mentioned above, the entity type "customer" has two more

simple attributes - "reg_date" and "cust_ref' which require some special attention. It is

assumed that the cuslumer needs separate registration every time a new car is

purchased. The "reg_ date" (registration date) simply records the system date on the date

of registration. The attribute "cust_ref' (customer reference) is to identify a customer

who has registered multiple times while purchasing several new cars. As "reg_key" is a

key attribute of the "customer" entity type, it is unable to identify the uniqueness of a

17

customer in case of multiple registrations. Attribute "cust_ref' resolves this issue. A

"cust_ref' is allotted during the first registration of a customer. On subsequent

registrations, the "cust_ref' remains unchanged. This also assists the data warehouse

schema to cope up with the slowly changing attributes of the customer. In the next

section, this is discussed more elaborately.

As it is considered that the schema will be implemented using object-relational

technology, technically there is no need of having a key attribute (like "customer_key"

in case of "customer" entity type) for entities. Each tuple of a table will be allotted a

unique OID (Object Identifier) by the ORDBMS, which could be served as primary key.

However, there is no harm in keeping a primaiy key, as it would assist readers familiar

with the relational database.

Entity type "product" records data about a product (car). It consists of simple five

attributes - "product_key" (a key attribute identifying each tuple of the "product" table

uniquely), "model_name" (model name, the name of the model of the product),

"manufacturer" (manufacturer of the product), "type" (describes the type of the product,

e.g. 4 door sedan), and "engine_size" (engine size, describing the size of the engine, e.g.

2000CC). Attribute "product_key" is optional for the reasons mentioned above.

Entity type "sales" describes the sales transaction. It has three simple attributes -

"sales_key" (key attribute of the "sales" entity type), "date" (transaction date which will

be same as system date), and "price" (price paid for the product). Moreover, entity type

"sales" have a many-to-one relationship with the "customer" and "product" entity types.

Due to this, the "sales" table shall have two foreign keys "customer_key" related to the

"customer" entity type, and "product_key" related to the "product" entity type. For

object-relational technology, the conventional primary I foreign key relationship can be

more effectively implemented using pointers. Therefore, each tuple of "sales" table

18

requires two pointers pointing the associated tuples of the "customer" and "product"

tables.

The schema for the sales transaction database is a basic one and may not seem to

be very practical. The schema is kept simple intentionally, so that the points associated

with the objective of this study could be highlighted. The objective of this study is to

examine the implementation of object-relational technology in data warehousing and

not to develop a database for a car dealer information system.

4.2 ER Diagram of Warehousing Database

Based on the transaction processing database described in Section 4.1, the ER

diagram of warehousing database is described in this section. The warehousing database

is based on simple star schema data model, indicating that there are two basic types of

tables - dimension and fact. The fact table is the center table which contains the facts,

i.e. numbers that describe the characteristics of the relationship between the dimensions.

Dimension tables surround the fact table and the primary keys of the dimension table

are foreign keys of fact table.

Unlike a transaction processing database, where all tables need to be normalized

to reduce redundancy, the dimension tables of a star schema data model are

denormalized which improves performance and simplifies the queries. This makes

sense, as redundancy and data integrity are not a major issue in data warehousing, which

basically consists of read-only data.

The basic purpose of data warehousing is to analyze historical data. Due to this, it

is not necessary to have all the attributes of a transaction processing database mapped in

the warehouse database. For example, in this case study, it is unlikely that the name,

street address and phone numbers of the customer will be queried. Therefore, these

attributes need not be a part of the dimension table. However, as demonstrated by

19

Giovinazzo 2000, some of those data, which are of a nonanalytical type, could be a part

of a shadow dimension table, which could be retrieved on the rare occasion when a

business question demands it. A shadow dimension table is not a true dimension in the

sense that it binds the analysis space. The shadow dimension hardly provides additional

information concerning the dimension required for data analysis. The shadow

dimension can be joined to the dimension table it shadows in a one-to-one relationship.

It may also be joined to the fact table in a one-to-many relationship.

Following the preceding discussion, Figure 4.2 represents an ER Diagram for a

warehouse database corresponding to the ER Diagram of the transaction database

described m Figure 4.2. In this diagram, the "customer_dimension",

"product_dimension'', and "time_dimension" entity types form the dimension tables,

whereas the entity type "sales_fact" forms the central fact table binding the dimensions

together. The "customer_shadow _dimension" entity type, which contains nonanalytical

data of customer dimension, is joined to the "customer_dimension" in a one-to-one

relationship. Data of the "customer_ dimension" and "customer_shadow _dimension"

tables are to be mapped from the "customer" table of transaction database, whereas data

of "product_dimension" and "sales_fact" are to be mapped from the "product" and

"sales" tables respectively.

The "customer_dimension" entity type is designed to handle slowly changing

attributes of customer, which may affect the data analysis. For example, the shopping

behavior of customer may change with the marital status. When an unmarried customer

purchases a car the customer data is registered. A few years later, the same customer

purchases another car after being married and the customer's new marital status is

registered again. In the warehouse database, if the customer's new record replaces the

20

old one, an analysis on purchasing behavior of customers based on marital status may

produce a misleading result.

It depends on the application and user requirement whether the slowly changing

attributes of the entity are to be captured. One of the objectives of this study is to

examine the issue of slowly changing attributes of dimension entities. For this purpose,

four attributes of the "customer_dimension" entity type are assumed to be slowly

changing. Those are "marital_status", "yearly _income", "city", and "state". Each of

those changing attributes is considered to be multivalued composite type, which is

supported by object-relational technology. They store the attribute values on the date of

registration and the validity period of the values, i.e. from when to when were the

attributes valid.

For example, if the case of marital status is considered, when an unmarried

customer is registered for the first time, the "marital_status" value is set to unmarried,

"from_date_key" is set to the date of registration, and "to_date_key" is set to maximum

(the maximum possible date value permitted by the DBMS). Next time, when the same

customer purchases a second car after being married, a new set of value is appended by

setting the "marital_status" value to married, "from_date_key" is set to the date of

second registration, and "to_date_key" is set to infinity. Also, the "to_date_key" value

of the first set of records is set at the second registration date. Therefore "unmarried"

was valid from the first registration date to the second registration date, whereas

"married" is valid from the second registration date to the maximum. If the marital

status remains unchanged at the time of the second purchase, update of marital status is

not required. With this kind of data structure, it is possible to identify the exact value of

the attributes of the customer at the time of purchase, and thus accurate analysis would

be possible.

21

N

N

ci
ly

.st
re

et

se
x

ti
m

e_
 di

m
en

si
on

cu
st

om
er

 _d
im

en
si

on

N

sa
le

s_
fa

ct

cu
st

om
er

 _s
ha

do
w

_ d
im

en
si

on

pr
od

uc
t_

di
m

en
si

on

pr
od

uc
t

kc
v

F
ig

ur
e

4.
2.

E

R
 D

ia
gr

am
 o

f W
ar

eh
ou

se
 D

at
ab

as
e.

fis
ca

l_
yc

ar

fis
ca

l_
 qu

ar
te

r

li
sc

al
_m

on
lh

sa
le

s
kc

v

qu
an

ti
ty

pr
ic

e

m
o

d
cl

_
n

a
m

c

m
an

uf
ac

tu
re

r

ty
pe

cn
gi

nc
_s

iz
c

The attributes "cust_ref' and "reg_date" of entity type "customer" of the

transaction database assist in this kind of mapping from transaction to warehouse

database. Attribute "cust_ref' keeps track of customer's uniqueness, and "reg_ date"

assists mapping the "from_date_key" and "to_date_key" values.

The "customer_dimension" entity type has few simple attributes like

"customer_key" (the key attribute of the "customer_dimension" entity type), "sex" (the

customer's sex, e.g. Male or Female), and "birth_date" (the customer's date of birth).

These simple attributes are considered nonchanging, signifying that the "sex" or

"birth_date" does not change over time. Other attributes of "customer_dimension" are

multivalued composite attributes and are considered to be changeable over time. Those

are "marital_status_desc" (material status description, keeping track of the customer's

marital status on the date of purchase), "yearly _income_desc" (yearly income

description in $, keeping track of the customer's yearly income on the date of purchase),

"city _desc" (city description, keeping track of the city where the customer resides on

the date of purchase), and "state_desc" (state description, keeping track of the state

where the customer resides on the date of purchase). Each of these slowly changeable

attributes are multivalued in nature and consists of three simple attributes - the name of

the attribute itself (like "marital_status" or "yearly _income") which holds the variable

value, and "from_date_key" and "to_date_key" attributes representing the period of

time for which the attribute was valid. The attributes "from_date_key" and

"to_date_key" are considered foreign keys of the "time_dimension" entity type

(described in the next paragraph) based on the key attribute "time_key". With this

arrangement, it is possible to answer a time-related query involving slowly changing

attributes.

23

In this case study, for the warehouse database, the granularity of the time is

considered as one month. The entity type "time_dimension" serves to filter the facts

with respect to time for time-related queries, which are frequent in reality. It has four

simple attributes - "time_key" (the key attribute of "time_dimension" entity type),

"fiscal_year" (fiscal year), "fiscal_quarter" (fiscal quarter), and fiscal_month (fiscal

month).

The entity type "product_dimension" is similar to the "product" entity type of the

transaction database. All of the attributes remain intact, as business queries are expected

on any of those attributes.

The center of the star schema is the "sales_fact" entity type. It consists of a key

attribute "sales_key", and two other simple attributes, "price" (indicating the price of

the car) and "quantity" (indicating the quantity of cars sold). Attribute "quantity" is a

derived one (the transaction database records sales of each car in separate tuples), but

there is no harm in having it in warehouse database. It may help in the formulation of

"number of cars sold" related queries which is quite common. The entity type

"sales_fact" has a many-to-one relationship with each of the dimension tables,

indicating that the "sales_fact" table shall have three foreign keys, each of which are a

primary key of a dimension table - "customer_key" from the "customer_dimension"

table, "time_key" from the "time_dimension" table, and "product_key" from the

"product_dimension" table. Although the combination of those foreign keys is also

unique, a separate primary key "sales_key" is provided as recommended by Giovinazzo

2000.

The last entity type considered m warehouse database 1s the

"customer_shadow _dimension". As described before, this entity does not contain

analytical data. This entity type is joined to the "customer_ dimension" entity type with a

24

one-to-one relationship. The entity type "customer_shadow _dimension" contains only

the latest information about the customer, such as name, address, and telephone

numbers. They are mapped directly from the "customer" table of the transaction

database. It has two composite attributes - "name" (consisting of "last", "first", and

"middle") and "address" (consisting of "street", city", "state", and "zipcode"). It also

has a multivalued composite attribute "phones" which is identical to the one discussed

under the transaction processing database in Section 4.1.

This warehouse schema was implemented using an ORDBMS and tested against

standard business queries. The result was found satisfactory and was able to answer

general queries with ease. However, some difficulties were experienced in formulating

time-related queries involving slowly changing attributes.

To solve a query such as finding car sales to unmarried customers during some

year, it is necessary to find the intersection of the sets of the sales fact tuples satisfying

two conditions: (1) the transaction date lies in the given year and (2) the customer

associated to the sales fact was unmarried on the transaction date. Therefore, to check

both of these conditions, at least two accesses to the time dimension table are required.

Longer codes are required if the time involves a time range other than a particular year,

such as from the second quarter of 1999 to the first quarter of 2000. Code to access and

check the time condition is of a repetitive type, which is not desirable. Moreover, if the

query involves more than one slowly changing attribute, similar examinations need to

be performed repeatedly.

Considering this kind of business questions, which is common m reality, a

modification of the basic schema is proposed in the next section.

25

N
 °'

se
x

hi
nh

_d
at

c

st
re

et

st
at

e

ti
m

e_
 di

m
en

si
on

cu
st

om
er

 _d
im

en
si

on

1
sa

le
s_

fa
ct

cu
st

om
er

 _s
ha

do
w

 _d
im

en
si

on

pr
od

uc
t_

 di
m

en
si

on

nr
od

uc
t

kc
v

F
ig

ur
e

4.
3.

M

od
if

ie
d

E
R

 D
ia

gr
am

 o
f W

ar
eh

ou
se

 D
at

ab
as

e.

fi
sc

al
_y

ca
r

fi
sc

al
_q

ua
rt

cr

fis
ca

l_
m

on
th

sa
le

s
ke

y

qu
an

tit
y

pr
ic

e

m
od

cl
_n

am
c

m
an

uf
ac

tu
re

r

ty
pe

cn
gi

nc
_s

iz
c

4.3 Modification of the Warehousing Database Schema

Although the schema for the warehousing database described in the last section,

which effectively makes use of the time to deal with slowly changing dimension

attributes, seems to be theoretically sound, answering time-related queries becomes a

little complicated. Some modification of the schema is made to handle time-related

queries more efficiently.

The modification is based on the assumption that the customer registers on the

same day of purchase. And therefore, the values of slowly changing attributes of

"customer_dimension" table are the values on the date of registration, and the exact date

from when the attributes actually changed. If the customer marries on July 15, 1999

prior to buying a car on August 15, 1999, the "from_date_key" captures the later date.

This is unavoidable, because the transaction database just records the date of

registration. Further, a car dealer database is not supposed to keep track of the

customer's status change.

If a row of slowly changing attributes (which are multivalued composite type) are

added at each purchase indicating the attribute value at purchase time, irrespective of

whether the attribute is changed or not, query formulation could be easier. For a time­

related query, facts can be first filtered out based on time (using the attributes of

"time_dimension" table), followed by a simple matching of attribute value and

corresponding date. In fact, the attribute "to_time_key" is found to be redundant in this

case and therefore, can be deleted. Therefore, for each slowly changing attribute, the

attribute value at the time of each purchase is recorded, even if the value remains

unchanged.

This solution leads to identical "from_time_key" for each changing attribute of

the "customer_dimension" table. The redundant "from_time_key" attributes can be

27

eliminated, by having only one multivalued composite attribute "status" instead of four.

Accordingly, the ER Diagram of the data warehouse is modified and represented in

Figure 4.3. Only the attributes of the "customer_dimension" table have been modified.

The rest of the diagram is same as Figure 4.2. Implementation of this schema is

described in the next chapter.

28

V. IMPLEMENTATION OF THE DATA WAREHOUSE

In the last Chapter, the schema of an object-relational data warehouse was

developed. The schema has been implemented using an ORDBMS. This chapter is

devoted towards the implementation process.

The Oracle 8i (version 8.1.6) database server by Oracle Corporation was chosen

to implement the schema. Although this version of Oracle server was released in 1999,

it has all the basic features of object-relational technology. In 2001, Oracle Corporation

released Oracle 9i, but there was no major change as far as object-relational features are

concerned.

The reasons behind choosing Oracle among the leading ORDBMS are twofold.

The primary one is that the author had access to one of the Oracle Servers, which makes

this work possible. The other is the author's familiarity with Oracle database servers and

their associated documentation. The schema developed in Chapter 4 was DBMS

independent, implying that it could have been implemented using any DBMS product

supporting object-relational technology.

This chapter starts with the Data Definition Language (DDL) statements in

Section 5.1 to build the objects and tables associated with the warehouse database.

Section 5.2 shows the Data Manipulation Languages (DML) to perform insert, update,

and delete operations. Finally in Section 5.3, queries are presented to support business

questions. Oracle's standard SQL3 language is used to formulate the SQL statements.

To improve readability, uppercase letters are used for SQL keywords.

5.1 Building Objects and Tables

As discussed before, the implemented database schema is based on Figure 4.3 of

Chapter 4. For easy understandings of the mapping of entities and attributes of the ER

Diagram to tables, some entities and attributes of the original ER Diagram were

29

renamed. The modified ER Diagram, presented in Figure 5 .1, gives an overview of all

the tables and the relationships between them as they are implemented.

The section starts with the development of relatively simple time dimension and

product dimension tables. This is followed by relatively more complex ones like the

customer shadow dimension and customer dimension tables. Finally, the sales fact table

is described.

5.1.1 Time Dimension Table

The time dimension table, time_dimension_objtab, consists of simple attributes.

The attribute "time_key" is the primary key of the table. Attributes "fiscal_year",

"fiscal_quarter", and "fiscal_month" signify the associated value to which a time key

belongs. For example, a "time_key" 2002Q3M09 belongs to fiscal year 2002, fiscal

quarter 3, and fiscal month September.

As the rows of time_dimension_objtab table are to be referenced by other tables

(like "sales_fact_objtab", using "REF" data-type), to maintain primary key I foreign key

equivalent relationship in the RDBMS, they need to be declared as objects. This could

be done by creating an object-type "time_dimension_objtyp" as shown in the following

statement:

CREATE TYPE time_dimension_objtyp AS OBJECT (
time_key CHAR(lO),
fiscal_year NUMBER(4),
fiscal_quarter CHAR(lO),
fiscal_month CHAR(lO));

The data-types of the attributes are defined inside the object-type definition. This

newly created object-type can now be used to define any new object or table. The

constraints such as primary key, index, etc., are the attributes of a table and hence, shall

be specified during table definition.

30

lis
ca

l_
yc

ar

fis
ca

l_
 qu

ar
te

r

fo
ca

l_
 m

on
th

se
x

cu
st

om
er

 _d
im

en
si

on
_o

bj
ta

b

sa
le

s
ke

y

qu
am

itv

hi
rt

h_
da

tc

1
sa

le
s_

fa
ct

_o
bj

ta
b

pr
ic

e

V
J

.....
..

m
od

el
_ n

am
e

cu
st

_s
ha

do
w

 _d
im

en
si

on
_o

bj
ta

b
m

an
uf

ac
LU

rc
r

pr
od

uc
t_

 di
m

en
si

on
_ o

bj
 ta

b

ty
pe

st
re

et

pr
od

uc
t

ke
y

cn
gi

nc
_s

iz
c

F
ig

ur
e

5.
1.

E

R
 D

ia
gr

am
 o

f
Im

pl
em

en
te

d
W

ar
eh

ou
se

 D
at

ab
as

e.

The time_dimension_objtyp table is created next using the following statement:

CREATE TABLE time_dimension_objtab OF time_dimension_objtyp (
PRIMARY KEY (time_key),
fiscal_year NOT NULL,
fiscal_quarter NOT NULL,
fiscal_month NOT NULL)
OBJECT ID SYSTEM GENERATED;

The rows of the newly created table are objects of "time_dimension_objtyp". As

this table is made of objects, it can also be called an object table. The last part of the

table name signifies so. The row objects of the table can be referenced from other

objects. This is demonstrated later.

Each row object of the table has an Object Identifier (ID), by which the row object

can be referenced. This Object ID (OID) could be a 16 byte system generated globally

unique identification, or else it could be the primary key of the table, which is locally

unique. This is specified in the last line, "OBJECT ID SYSTEM GENERATED",

signifying that the OID for this table is a system generated 16 byte ID. This is the

default. The primary key can also be made OID by specifying "OBJECT ID PRIMARY

KEY". The choice of primary key as OID may be more efficient in cases where the

primary key value is smaller than the default 16 byte system generated identifier

(Russell 1999). An object-relational representation of the time dimension table is shown

in Figure 5.2.

Table time_dimension_objtab (of time_dimension_objtyp)

time_key fiscal_year fiscal_ quarter fiscal_month

Text Nember Text Text
CHAR (10) NUMBER(4) CHAR(lO) CHAR (10)

PK NOT NULL NOT NULL NOT NULL

Figure 5.2. Object-Relational Representation of the Time Dimension Table.

32

The constraints on the table (primary key and not null) are specified during the

table definition.

5.1.2 Product Dimension Table

Like the time dimension table, the product dimension table,

product_dimension_objtab, also consists of simple attributes. The primary key of this

table is "product_key". Other attributes are "model_name", "manufacturer", "type", and

"engine_size". An object-type "product_dimension_objtyp" is first created followed by

the table definition. The SQL statements are identical to those for the time dimension

table described in section 5.1.1. An object-relational representation of the product

dimension table is shown in Figure 5.3. Following SQL statements are used to build the

product_dimension_objtab table.

CREATE TYPE product_dimension_objtyp AS OBJECT (
product_key CHAR(6),
model_name VARCHAR2(30),
manufacturer VARCHAR2(25),
type VARCHAR2(50),
engine_size CHAR(6));

CREATE TABLE product_dimension_objtab OF product_dimension_objtyp(
PRIMARY KEY (product_key) ,
model_name NOT NULL,
manufacturer NOT NULL,
type NOT NULL,
engine_size NOT NULL)
OBJECT ID SYSTEM GENERATED;

Table product_dimension_objtab (of product_dimension_objtyp)

product_key model_name manufacturer type engine_size

Text Text Text Text Text
CHAR(6) VARCHAR2(30) VARCHAR2 (2 5) VARCHAR2 (5 0) CHAR(6)

PK NOT NULL NOT NULL NOT NULL NOT NULL

Figure 5.3. Object-Relational Representation of the Product Dimension Table.

33

5.1.3 Customer Shadow Dimension Table

The customer shadow dimension table, cust_shadow _dimension_objtab, consists

of simple, composite, and multivalued composite attributes. Figure 5.4 shows an object-

relational representation of the complete structure of cust_shadow_dimension_objtab

table.

Table cust_shadow _dimension_objtab (of cust_shadow _dimension_objtyp)

customer_key name_obj address_ obj phones_ var

Text Object-type Object-type Varray
CHAR(6} name_objtyp address_objtyp phones_vartyp

PK

I
I

Column Object name_obj (of name_objtyp) _u
last first middle

Text Text Text
VARCHAR2(30) VARCHAR2 (3 0) VARCHAR2 (15)

NOT NULL NOT NULL

Column Object address_obj (of address_objtyp) __ LJ

street city state zipcode

Text Text Text Text
VARCHAR2 (100) VARCHAR2 (2 5) VARCHAR2 (2 5) VARCHAR2(8}

NOT NULL NOT NULL NOT NULL NOT NULL

Varray phones_ var (of phones_ vartyp)

location phone_number

Text Number
VARCHAR2 (15) VARCHAR2 (12)

Figure 5.4. Object-Relational Representation of the Customer Shadow Dimension Table.

34

Oracle considers a multivalued composite attribute (e.g. phones_ var) as a

collection of composite attributes. Two collection data-types are supported - "varray"

and nested table. For "varray", the order of elements is defined. The maximum number

of elements is also predefined in the case of "varray", although the upper bound can be

changed. A nested table can have any number of elements and behaves as a regular table

where update, delete, and insert operations are possible. The order of elements is not

defined in the case of a nested table. If the entire collection is to be manipulated as a

single set, "varray" is a better option. Update is not supported for "varray" (Russell

1999).

In case of "phones_ var" of cust_shadow _dimension_objtab table, phone numbers

are to be treated as a single set. It is assumed that no data manipulation will be done

based on "phones_ var" Therefore "phones_ var" is treated as data-type "varray".

For both multivalued composite and composite attributes, the underlying

composite attribute is defined first as a new object-type. This is done using the

following statements:

CREATE TYPE name_objtyp AS OBJECT (
last VARCHAR2(30),
first VARCHAR2(30),
middle VARCHAR2(15));

CREATE TYPE address_objtyp AS OBJECT (
street VARCHAR2(100),
city VARCHAR2(25),
state VARCHAR2(25),
zipcode VARCHAR2(8));

CREATE TYPE phones_objtyp AS OBJECT
location VARCHAR2(15),
phone_number VARCHAR2(12));

The following statement defines the "varray" data-type phones_ vartyp. In this

case the "varray" is designed to hold a maximum of 10 elements of phones_objtyp

object-type.

CREATE TYPE phones_vartyp AS VARRAY(lO) OF phones_objtyp;

35

Once the building blocks are created, cust_shadow_dimension_objtyp is defined.

Finally the object table cust_shadow _dimension_objtab is created, each row of which is

a cust_shadow _dimension_objtyp object-type. The associated SQL statements are

presented below:

CREATE TYPE cust_shadow_dimension_objtyp AS OBJECT (
customer_key CHAR(6),
name_obj name_objtyp,
address_obj address_objtyp,
phones_ var phones_vartyp);

CREATE TABLE cust_shadow_dimension_objtab OF
cust_shadow_dimension_objtyp (
PRIMARY KEY (customer_key),
CHECK (name_obj.last IS NOT NULL),
CHECK (name_obj.first IS NOT NULL),
CHECK (address_obj.street IS NOT NULL),
CHECK (address_obj.city IS NOT NULL),
CHECK (address_obj.state IS NOT NULL),
CHECK (address_obj.zipcode IS NOT NULL))
OBJECT ID SYSTEM GENERATED;

5.1.4 Customer Dimension Table

The customer dimension table, customer_dimension_objtab, is probably the most

complex table in this study. The structure of customer_dimension_objtab is shown in

Figure 5.5. It contains a multivalued complex attribute "status_desc" which is used to

deal with slowly changing attributes of the dimension table. This collection is a nested

table, as the individual elements of the collection are to be accessed and the collection

needs to be updated each time an old customer purchases a new car. The statements to

create a nested table are similar to "varray". The composite is defined using a new

object-type, and a table of that object-type is created. The following statements created

the nested table:

CREATE TYPE status_desc_objtyp AS OBJECT (
reg_number CHAR(3),
reg_date_ref REF time_dimension_objtyp,
marital_status VARCHAR2(10),
yearly_income NUMBER,
city VARCHAR2(25),
state VARCHAR2(25));

CREATE TYPE status_desc_ntabtyp AS TABLE OF status_desc_objtyp;

36

Once the nested table has been created, the row object-type of

customer_dimension_objtab is defined. To do so, a new object-type called

customer_dimension_objtyp is created. The definition of customer_dimension_objtyp

contains a reference (REF) data-type "cust_des_ref'. "REF" is a built-in data-type of

ORACLE. It is a logical pointer, which points to a row object of another object table.

As shown in Figure 5.5, "cust_des_ref' is created to point to a row object of

"cust_shadow _dirnension_objtyp" object-type.

Table customer_dimension_objtab (of customer_dimension_objtyp)
cust_des_ref sex birth_date status_desc_ntab

Reference Text Date Nested Table
cust_shadow_ dimension_ CHAR(6) DATE status_desc -
objtyp ntabtyp

NOT NULL NOT NULL

,,
Refers to a row of

cust_shadow _dimension_objtab

Column status_desc_ntab (of status_desc_ntabtyp (as table of _J
status_desc_objtyp))

reg_ reg_ date_ marital - yearly_ city state
number ref status mcome
Text Reference Text Number Text Text
CHAR (3) time - VARCHAR2 NUMBER VARCHAR2 VAR CHAR

dimension_ (10) (25) (25)
objtyp

PK NOT NULL NOT NULL NOT NULL NOT NULL NOT NULL
I

I
l,

T

Refers to a row of

time_dimension_objtab

Figure 5.5. Object-Relational Representation of the Customer Dimension Table.

37

"REF" allows association among the objects. It reduces the need for foreign keys.

It also provides an easy mechanism for navigating between objects. The "cust_des_ref'

joins the customer_dimension_objtab and cust_shadow _dimension_objtab tables, which

have a one to one relationship among them. It is to be noted that the object composite

data-type for nested table "status_desc_objtyp" also has a "REF" data-type,

"reg_date_ref', which helps to establish the one-to-many relationship between the

nested table of customer_dimension_objtab and type_dimension_objtab.

Object-type "customer_dimension_objtyp" is created as follows:

CREATE TYPE customer_dimension_objtyp AS OBJECT (
cust_des_ref REF cust_shadow_dimension_objtyp,
sex CHAR(6),
birth_date DATE,
status_desc_ntab status_desc_ntabtyp);

Finally, the table "customer_dimension_objtab" is created using the following

statement:

CREATE TABLE customer_dimension_objtab OF
customer_dimension_objtyp (
FOREIGN KEY (cust_des_ref) REFERENCES

cust_shadow_dimension_objtab,
cust_des_ref NOT NULL,
sex NOT NULL,
birth_date NOT NULL)
OBJECT ID SYSTEM GENERATED
NESTED TABLE status_desc_ntab STORE AS status desc store __ ntab

(PRIMARY KEY (NESTED_TABLE_ID, reg_number),
reg_date_ref NOT NULL)
ORGANIZATION INDEX COMPRESS);

There is no primary key for the table defined above. In fact, "cusr_des_ref'

pointer, which is a foreign key relating this table and the cust_shadow _dimension_table

with a one-to-one relationship, is the primary key of the table. However, surprisingly,

Oracle does not allow the "REF" data-type to be a primary key or part of a primary key.

As each row of the customer_dimension_objtab object table is an object and each object

can have unique system generated OID, there is no exclusive need of having a primary

key for this table.

38

The nested table is stored separately. A table name is to be given for the nested

table, using which it will be stored, although the table is not directly accessible using

that name. All the constraints of the nested table are also defined here. However the

scope of any "REF" data-type of the nested table could not be defined within the main

table statement. The scope of "reg_date_ref' is defined separately as follows:

ALTER TABLE status_desc_store_ntab
ADD (SCOPE FOR (reg_date_ref) IS time_dimension_objtab);

5.1.5 Sales Fact Table

The central fact table, sales_fact_objtab, has a relatively simple structure, which is

described in Figure 5.6.

Table sales_fact_objtab (of sales_fact_objtyp)
sales_key cust_dim - product_dim_ time_dim - quantity price

ref ref ref

Text Reference Reference Reference Number Number
CHAR{6) customer - product_ product_ NUMBER NUMBER

dimension dimension dimension - - -
objtyp objtyp objtyp

PK NOT NOT
NULL NULL

I I

.~ ~;
T T

Refers to a row of Refers to a row of

custiomer_dimension_objtab time_dimension_objtab

Refers to a row of

product_dimension_objtab

Figure 5.6. Object-Relational Representation of the Sales Fact Table.

Like other tables, a row object-type "sales_fact_objtyp" is created first. It has

three "REF" data-type pointers pointing to the data-types of the dimension tables. Based

39

on this new object-type, the object table sales_fact_objtab is created. The DDL

statements for creation of sales_fact objtyp and sales_fact_objtab are provided below:

CREATE TYPE sales_fact_objtyp AS OBJECT (
sales_key CHAR(6),
cust_dim_ref REF customer_dimension_objtyp,
prod_dim_ref REF product_dimension_objtyp,
time_dim_ref REF time_dimension_objtyp,
quantity number,
price number) ;

CREATE TABLE sales_fact_objtab OF sales_fact_objtyp
PRIMARY KEY (sales_key),
FOREIGN KEY (cust_dim_ref) REFERENCES

customer_dimension_objtab,
FOREIGN KEY (prod_dim_ref) REFERENCES product_dimension_objtab,
FOREIGN KEY (time_dim_ref) REFERENCES time_dimension_objtab,
cust_dim_ref NOT NULL,
prod_dim_ref NOT NULL,
time_dim_ref NOT NULL,
quantity NOT NULL,
price NOT NULL)
OBJECT ID SYSTEM GENERATED;

The foreign key constraints define the scope of the RFF data-types naturally.

Other constraints of the sales_fact_objtab table are incorporated in the table definition.

5.2 Data Manipulation - Insert, Update, and Delete Operations

Conventionally, data warehouses contain read-only data. Data correction is not

required frequently. However, update and delete is required to cope up with changing

attributes of the dimension. If an attribute of a table changes with time, either the old

data needs to be replaced with the new data, or only the new data is inserted leaving the

old data untouched. Deletion is a rare possibility, paiticularly when data storage is

inexpensive. Irrespective of the above, in this section, all three basic data handling

functions - insert, update, and delete will be examined.

Like the last section, this section is divided into five sub-sections, each of which

deals with one of the object tables.

40

5.2.1 Time Dimension Table

A typical data insertion statement m the time dimension table,

time_dimension_objtab, looks as follows:

INSERT INTO tirne_dirnension_objtab VALUES (
'1999Q1M01', 1999, 'Quarter l', 'January');

Data update could be made using a statement similar to the following:

UPDATE tirne_dirnension_objtab
SET fiscal_year = 1998,
fiscal_quarter = 'Quarter 2',
fiscal_rnonth = 'April'
WHERE tirne_key = '1999Q1M01';

Deletion could be performed using the following statement:

DELETE FROM tirne_dirnension_objtab
WHERE tirne_key = '1999Q1M01';

In this study, the primary key of the time dimension table, i.e. the "time_key",

was assigned meaningful values. This was done intentionally with the sole purpose of

easy understanding. The advantages of meaningful values were not applied during query

formulation. In practice, meaningful primary keys should generally be avoided, as it

may lead to the necessity of re-valuing or re-sequencing the primary key values in the

future.

5.2.2 Product Dimension Table

Insert, update, and delete statements on the product dimension table,

product_dimension_objtab, are as simple as on the time dimension table described

above. The insert statement looks like the following:

INSERT INTO product_dirnension_objtab VALUES
'POOl',
'Corolla',
'Toyota',
'CE 4dr Sedan (4cyl, 4A) ',
'1800CC');

Data could be updated with the following statement:

41

UPDATE product_dimension_objtab
SET model_name = 'Civic',
manufacturer= 'General Motors',
type= '2 Door Sedan',
engine_size = '500CC'
WHERE product_key = 'P001';

The following statement is for deletion:

DELETE FROM product_dimension_objtab
WHERE product_key = 'P001';

As in a relational database, a row cannot be deleted if another table, usmg a

scoped "REF" statement, references the row object.

5.2.3 Customer Shadow Dimension Table

Until this point the DML statements were similar to those in a relational database,

as the associated tables were simple. Complexity arises with composite data structures,

particularly if they are collection types, e.g. "varray" or nested tables. A typical insert

statement for the customer shadow dimension table, cust_shadow_dimension_objtyp, is

as follows:

INSERT INTO cust_shadow_dimension_objtab VALUES
'COOl',
name_objtyp ('Abbott', 'Jonathan', NULL),
address_objtyp ('1421 S Sheridan Road', 'Tulsa', 'Oklahoma',

'74112'),
phones_vartyp (

phones_objtyp ('Home', '918-835-3161'),
phones_obj typ ('Mobile' , '33 8-331-4463'))) ;

The following statement shows a complete update of a customer's record, when

an old customer registers again to purchase a new car.

UPDATE cust_shadow_dimension_objtab
SET name_obj = name_objtyp ('Clinton', 'Bill', NULL),
address_obj = address_objtyp ('2922/282 New Petchburi road',

'Westside', 'New York', '00000'),
phones_var = phones_vartyp (

phones_obj typ ('Home', '001-000-0000'),
phones_objtyp ('Office', '002-999-9999'),
phones_obj typ ('Mobile', '003-111-1111'))

WHERE customer_key = 'C001';

In case the customer has no contact number, the following statement sets the

phones_ var value to NULL:

42

UPDATE cust_shadow_dimension_objtab
SET name_obj = name_objtyp ('Clinton', 'Bill', NULL),
address_obj = address_objtyp ('2922/282 New Petchburi road',

'Westside', 'new York', '00000'),
phones_var = NULL
WHERE customer_key = 'C001';

Deletion of a record could be done with the following statement:

DELETE FROM cust_shadow_dimension_objtab
WHERE customer_key = 'C001';

5.2.4 Customer Dimension Table

Since it is the most complicated of all the tables in the database, data manipulation

is complex for customer dimension table, customer_dimension_objtab. The situation

becomes worse when a new row is inserted in the nested table without changing the

attributes of the main table. This is considered as an insert from the nested table's point

of view, but the main table sees it as an update. Furthermore, this kind of operation is

required every time an old customer buys a new car. The main table also has attributes

of "REF" data-types "cust_ref_des" and "reg_date_ref', which point to rows of the

customer shadow dimension and time dimension tables respectively. To insert this

"REF" data-type, select statements on parent tables are required. As discussed before,

the "REF" data-type enforces the data integrity establishing an equivalent relationship

parallel to a primary key I foreign key in a relational database.

When a customer purchases a car for the first time, an insert operation is required

similar to the following:

INSERT INTO customer_dimension_objtab VALUES (
(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim

WHERE customer_key = 'COOl'),
'Male',
'22-DEC-1964',
status_desc_ntabtyp

status_desc_objtyp ('R01',
(SELECT REF(t) FROM time_dimension_objtab t WHERE

time_key = '1999Q3M09'),
'Unmarried', 60000, 'Tulsa', 'Oklahoma')));

43

After a couple of years, if the same customer purchases another new car, a new

row will be inserted in the nested table alone using the following statement:

INSERT INTO TABLE (
SELECT cdim.status_desc_ntab
FROM customer_dimension_objtab cdim
WHERE cdim.cust_des_ref =

(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'C001'))

VALUES ('R02',
(SELECT REF(t) FROM time_dimension_objtab t WHERE

time_key = '2002Q1M03'),
'Unmarried', 70000, 'Skokie', 'Illinois');

Like insert, update statements for main and nested tables are handled differently.

Update of main table is straightforward and is shown below:

UPDATE customer_dimension_objtab
SET sex = 'Female',
birth_date = '20-MAY-1960'
WHERE cust_des_ref =

(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'COOl');

Piecewise update of "varray" is not possible, the entire array needs to be rewritten.

For nested table, however, any part can be updated as shown below:

UPDATE TABLE (
SELECT cdim.status_desc_ntab
FROM customer_dimension_objtab cdim
WHERE cdim.cust_des_ref =

(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'COOl'))

SET reg_date_ref = (SELECT REF(t) FROM time_dimension_objtab t
WHERE time_key = '2002Q2M06'),

yearly_income = '100000'
WHERE reg_number = 'R02';

Deletion of an entire row of the main table is done as follows:

DELETE FROM customer_dimension_objtab
WHERE cust_des_ref =

(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'COOl');

To delete a row from the nested table, the following statement can be used:

DELETE TABLE (
SELECT cdim.status desc_ntab
FROM customer_dimension_objtab cdim
WHERE cdim.cust_des_ref =

(SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'COOl'))

WHERE reg_number = 'R02';

44

5.2.5 Sales Fact Table

The attributes of sales fact table, sales_fact_objtab, are simple type. This fact table

is linked with the dimension tables using "REF" data-type pointing to row objects of the

dimension object tables. New rows can be inserted into the sales_fact_objtab table using

the following statement:

INSERT INTO sales_fact_objtab VALUES (
'S0001',
(SELECT REF(cdim) FROM customer_dimension_objtab cdim

WHERE cust_des_ref = (
SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'COOl')),

(SELECT REF(p) FROM product_dimension_objtab p
WHERE product_key = 'P004'),

(SELECT REF(t) FROM time_dimension_objtab t
WHERE time_key = '1999Q3M09'),

1,
21550);

Rows can be updated using the following statement:

UPDATE sales_fact_objtab
SET cust_dim_ref = (SELECT REF(cdim) FROM

customer_dimension_objtab cdim WHERE cust_des_ref
SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim
WHERE customer_key = 'C002')),

prod_dim_ref = (SELECT REF(p) FROM product_dimension_objtab p
WHERE product_key = 'P006'),

time_dim_ref = (SELECT REF(t) FROM time_dimension_objtab t
WHERE time_key = '1999Q3M09')

WHERE sales_key = 'SOOOl';

Deletion of a record is also simple. There could be two possible situations for

deletion. The following statement deletes a record having a specific "sales_key":

DELETE sales_fact_objtab
WHERE sales_key = 'S0001';

If a record belonging to a specific customer is to be deleted, the following

command could be issued:

DELETE sales_fact_objtab
WHERE cust_dim_ref = (SELECT REF(cdim) FROM

customer_dimension_objtab cdim WHERE cust_des_ref = (
SELECT REF(csdim) FROM cust_shadow_dimension_objtab csdim

WHERE customer_key = 'C001'));

45

5.3 Query Formulation

The objective of the entire exercise, from database design to implementation using

object-relational technology, is to obtain correct query results and ease of query

formulation. While calculating results, the database should be able to handle time-

related queries involving slowly changing attributes of the dimension tables. Ease of

query formulation is essential for ad-hoc queries, which is essential for executive

support systems.

This section will examine a few queries addressing common business questions.

For easy understanding, simple queries involving less complexity will be discussed first,

followed by harder ones.

A simple but common inquiry is to determine number of cars sold in a certain

year, for example during fiscal year 2000. This question involves the fact table and time

dimension table, which are bound together using the "REF" data-type attribute

"time_dim_ref'. Unlike queries on relational tables, for object-relational database, no

exclusive join statement is required, which makes the query simple. The ORDBMS

makes an internal join between the two tables, which is more efficient. The query looks

like the following:

SELECT count(*)
FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000;

The time dimension table is accessed from the sales fact table through "REF"

data-type. These tables, together with the relationship between them, logically behave

like a single table.

The next query serves to answer how many cars manufactured by Jeep were sold

during fiscal year 2000. This involves two dimension tables, time and product, in

addition to the fact table. The query is formulated below:

46

SELECT count(*)
FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf.prod_dim_ref.manufacturer = 'Jeep';

This was similar to the last one. An additional statement was included to satisfy

the manufacturer constraint.

The next example involves a sub-query. It finds which manufacturer had the

maximum sales amount (i.e. total price) during fiscal year 2000. The statement looks

like the following:

SELECT sfl.prod_dim_ref .manufacturer
FROM sales_fact_objtab sfl
WHERE sfl.time_dim_ref.fiscal_year = 2000
GROUP BY sfl.prod_dim_ref .manufacturer
HAVING SUM(sfl.price) >=ALL (SELECT SUM(sf2.price) FROM

sales_fact_objtab sf2
WHERE sf2.time_dim_ref.fiscal_year = 2000 GROUP BY
sf2.prod_dim_ref.manufacturer);

Object-relational technology eliminates the need of a join statement, but the sub-

query is unavoidable.

The next query serves to answer how many cars manufactured by Jeep were sold

to male customers during fiscal year 2000. Clearly this involves all three dimension

tables - customer, product, and time. As all three tables are bounded by "REF" data-

type with the fact table, formulation of the query is similar to the ones discussed earlier

as is shown below:

SELECT count(*)
FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf.prod_dim_ref.manufacturer = 'Jeep'
AND sf.cust_dim_ref.sex = 'Male';

The next query demonstrates the use of the built-in functions of the standard SQL

language on "REF" data-type. Suppose it is required to find out how many male

customers purchased a car during fiscal year 2000. The query looks like the following:

SELECT COUNT(DISTINCT sf .cust_dim_ref)
FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf.cust dim_ref .sex 'Male';

47

The above query is similar to the ones in relational SQL language.

Until this point, the queries have not involved the nested table of the customer

dimension database. The nested table contains the status attributes, which are slowly

changing in reality, and the nested table captures the value of the attributes at the time

of the purchase of each car. Fortunately, Oracle allows handling the nested table as a

normal relational one. The only difference is that the nested table has to be declared in

the FROM clause. If it is required to identify the number of different (distinct) divorced

female customers from Massachusetts who purchased cars manufactured by Jeep during

fiscal year 2000, the following query could be used:

SELECT COUNT(DISTINCT sf.cust_dim_ref)
FROM sales_fact_objtab sf,

TABLE (sf.cust_dim_ref.status_desc_ntab) sdes
WHERE sf.time_dim_ref .fiscal_year = 2000
AND sf.cust_dim_ref.sex = 'Female'
AND sdes.marital_status = 'Divorced'
AND sdes.state = 'Massachusetts'
AND sdes.reg_date_ref = sf .time_dim_ref;

In the above statement, the nested table is identified by the alias "sdes" in the

FROM clause. Subsequently the alias "sdes" is used like an ordinary relational table

name. The sales fact records are filtered out for the required time period (in this case,

fiscal year 2000) only once, using the "REF" data-type of fact table pointing to the time

dimension table. Later (in the last line), when the validity of the attribute value (in this

case, state name) is to be checked against time, the time reference of the attribute is

simply equated with the previously filtered time key. This is how this database structure

eliminates the need for rechecking time for each slowly changing attribute to be

considered in the query. This was the main reason for modifying the original warehouse

database. This saves a massive amount of repetitive code when formulating queries.

Another example, similar to the last one, involving two slowly changing

attributes of the customer table would be to find the total quantity and price amount of

48

cars having engine size 4000cc or more, sold to unmarried customers with a yearly

income of 75,000 or less during first quarter of the fiscal year 2000.

SELECT SUM(sf.quantity), SUM(sf.price)
FROM sales_fact_objtab sf,

TABLE (sf.cust_dim_ref.status_desc_ntab) sdes
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf.time_dim_ref.fiscal_quarter = 'Quarter 1'
AND sf.prod_dim_ref.engine_size >= '4000CC'
AND sdes.marital_status = 'Unmarried'
AND sdes.yearly_income <= 75000
AND sdes.reg_date_ref = sf .time_dim_ref;

The following query identifies a single customer from the customer shadow

dimension table, which is connected to the sales fact table indirectly using two "REF"

data-types, "cust_dim_ref' and "cust_des_ref'. The query also handles a complex time-

related inquiry. Suppose it is required to find out which customer purchased the

maximum number of cars from quarter 3 of fiscal year 1999 to quarter 2 of fiscal year

2000. This can be solved using the following query, which also includes a sub-query to

resolve the "maximum" issue.

SELECT sfl.cust_dim_ref .cust_des_ref .customer_key,
sum(sfl.quantity)

FROM sales_fact_objtab sfl
WHERE ((sfl.time_dim_ref.fiscal_year = 1999

AND sfl.time_dim_ref.fiscal_quarter = 'Quarter 3')
OR (sfl.time_dim_ref .fiscal_year = 1999

AND sfl.time_dim_ref.fiscal_quarter = 'Quarter 4')
OR (sfl.time_dim_ref.fiscal_year = 2000

AND sfl.time_dim_ref.fiscal_quarter = 'Quarter 1')
OR (sfl.time_dim_ref.fiscal_year = 2000

AND sfl.time_dim_ref.fiscal_quarter = 'Quarter 2'))
GROUP BY sfl.cust_dim_ref.cust_des_ref.customer_key
HAVING SUM(sfl.quantity) >=ALL (SELECT SUM(sf2.quantity)

FROM sales_fact_objtab sf2
WHERE ((sf2.time_dim_ref.fiscal_year = 1999

AND sf2.time_dim_ref.fiscal_quarter = 'Quarter 3')
OR (sf2.time_dim_ref.fiscal_year = 1999

AND sf2.time_dim_ref.fiscal_quarter = 'Quarter 4')
OR (sf2.time_dim_ref.fiscal_year = 2000

AND sf2.time_dim_ref.fiscal_quarter = 'Quarter 1')
OR (sf2.time_dim_ref.fiscal_year = 2000

AND sf2.time_dim_ref.fiscal_quarter = 'Quarter 2'))
GROUP BY sf2.cust_dim_ref.cust_des_ref.customer_key);

The customer shadow dimension table assists in identifying a customer's most

recent information such as name, address, or phone number. The following query

49

reveals the details of customers who purchased cars manufactured by BMW during the

fiscal year 2000.

SELECT sf.cust_dim_ref.cust_des_ref.name_obj,
sf.cust_dim_ref.cust_des_ref.address_obj,
sf.cust_dim_ref.cust_des_ref.phones_var

FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf.prod_dim_ref.manufacturer = 'BMW';

Pure time-related problems could be answered with ease. A common question

would be to identify the quarter of a year which generally experienced the most sales.

The solution to the above follows:

SELECT sfl.time_dim_ref.fiscal_quarter
FROM sales_fact_objtab sfl
GROUP BY sfl.time_dim_ref.fiscal_quarter
HAVING SUM(sfl.quantity) >=ALL (SELECT SUM(sf2.quantity)

FROM sales_fact_objtab sf2
GROUP BY sf2.time_dim_ref.fiscal_quarter);

The last query of this section is to rank customers by marital status according to

the number of cars purchased during the fiscal year 2000. This type of problem is

common m data warehousing. This warehouse database can handle it efficiently as

follows:

SELECT sdes.marital_status, SUM(sf .quantity)
FROM sales_fact_objtab sf,

TABLE (sf.cust_dim_ref.status_desc_ntab) sdes
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sdes.reg_date_ref = sf .time_dim_ref
GROUP BY sdes.marital_status
ORDER BY 2;

50

VI. RESULTS AND DISCUSSION

The objective of this project was to study the effect of object-relational

technology on data warehousing. It was to examme whether object-relational

technology can be used to build an improved data warehouse, which is commonly built

with a relational database. It was also to explore whether the object-relational database

can handle the slowly changing dimension attributes in a better way than a relational

database.·

The study was conducted in two phases. In the first phase, which is described in

Chapter IV, a database was developed, based on an operational database, to fulfill the

warehousing needs. Although the warehouse database was theoretically acceptable,

some problems were encountered while formulating queries. This led to a modification

of the database - all the five nested tables handling slowly changing dimensions were

combined together to form one, which was expected to improve the ease of querying. In

the second phase, implementation of the database was demonstrated in Chapter V using

Oracle 8i.

Two important improvements were achieved while usmg object-relational

technology in data warehousing - efficient handling of slowly changing dimension

attributes and ease of query formulation. These are discussed in detail in Sections 6.1

and 6.2 respectively. Some of the technical difficulties of object-relational databases are

discussed in Section 6.3.

6.1 Dealing with Slowly Changing Attributes

Ideally, a data warehouse is nonvolatile in nature and contains only read-only

data. New tuples are appended frequently in the fact table, which is usual. Occasionally,

tuples may be appended in the dimension table as well, for example in the case study, if

a new customer purchases a car. Although update of existing data in the dimension table

51

does not happen theoretically, it is not uncommon in real life. In this case study, the

annual income of the existing customer could be changed during the second or

subsequent times of purchase. If slowly changing attributes are not handled correctly, it

may lead to incorrect analysis.

As described in Section II, different solutions were suggested to handle slowly

changing attributes, all of them based on relational technology. Giovinazzo 2000

summarized different approaches as listed below:

(1) Record Overwriting:

A new value overwrites an old dimension attribute value. This wipes

out the old data permanently destroying the integrity of the data warehouse

and therefore may produce an incorrect analysis.

(2) New Record Creation:

A new record containing updated attributes value is appended, without

making any change to old record. This solution cannot relate the old record

with the new one. In this case study, this may result in losing valuable

information about the customer's behavior.

(3) Old/Current Fields:

The structure of dimension record is changed to accommodate both

the old and new values of the dimension record. The solution is not realistic

as it is difficult to predict beforehand the number of times the attribute

values may be changed.

(4) Record Versioning:

A version number field is provided in addition to the primaiy key of

the dimension record to keep track of the change. Although this solution is

52

theoretically correct, it complicates the relationship between the fact and

dimension tables. Preparation of a query becomes a difficult issue.

(5) Record Linking:

When the dimension changes, a new record is created with a new

primary key. The client ID is carried over from the operational system and is

used to link different versions of dimension records to one another.

According to Giovinazzo 2000 this is the best approach discovered so far

using relational database.

This study makes use of object-relational technology to deal with slowly changing

dimensions. This is accomplished using two techniques. First, the values of changing

attributes are stored in the record itself using a nested table, without inserting any

additional row as the case was for a relational database. Second, a time reference field is

added, similar to a temporal database, to determine the period during which the attribute

value was valid. Both of them together provide the database with unique capabilities to

handle slowly changing attributes. The strengths of this approach over any of the five

techniques described above using relational database are the following:

(1) All values of changing attributes are stored inside the entity's record, which

improves logical thinking about the entity. Each record describes the entity

completely.

(2) As one entity is represented by exactly one record, it is simple to navigate

the dimension table, which can be traced directly from the fact table.

(3) As attributes of an entity are stored exactly once, less space is required for

storage.

(4) For the same reason as mentioned in Point 3, insert, update, and delete

operations on an entity record is easier and faster.

53

Contrary to the common belief that the complex data structure of this model may

complicate the formulation of query, object-relational technology actually simplifies

query formulation. This is described in the next section.

6.2 Formulation of Queries

Data definition (i.e. construction of the tables) and data manipulation (i.e. insert,

update, and delete operations) on an object-relational warehouse database are discussed

in Section 5.1 and Section 5.2 of Chapter V. If compared with a relational database, the

statements seem to be more complex. This becomes prominent when multivalued (e.g.

nested table and "varray") and composite objects are encountered.

However, creation of objects, tables, and views, is a one-time event. Once those

are created, there is no need to touch them again unless the database structure needs to

be modified, which is rare in the case of a good design. Data manipulation (i.e. mapping

from a transaction processing database to a warehouse database) is generally done

periodically using automated software where the associated statements are defined once.

Therefore complication of data definition and data manipulation (insert, update, and

delete) statements may not be a drawback

The objective of data warehousing is to satisfy analytical needs. Therefore ease of

"select" query formulation is probably one of the most important requirements of a data

warehouse. Besides form-based queries, ad-hoc queries on data warehouse are common.

Section 5.3 of Chapter V described how to handle queries related to business

questions using the object-relational database. Despite the presence of nested tables and

complex objects, formulation of queries was found to be shorter and easier when

compared to a relational database. The reasons are the following:

(1) Using the "REF" data-type to build primary key and foreign key

relationships eliminates the need of code exclusively for joining the tables.

54

Tables are joined internally, which make the navigation easier. This can be

considered a major advantage. In a real world data warehouse, there may be

many dimension tables, and joining them together in each query requires a

lot of code and effort. The dot (.) operator of object-relational SQL allows

joining of tables quickly whenever required.

(2) Querying nested tables, which are designed to handle slowly changing

dimensions in this study, is similar to querying ordinary tables. The only

small difference is that the nested table is defined by an alias in the

"FROM" clause. Therefore little extra effort is required in querying nested

tables.

6.3 Drawbacks of Object-Relational Database

Although an object-relational database was found to be advantageous over a

relational database in building a data warehouse, it should not be considered perfect.

One of the major weaknesses of this technology is lack of standardization. Although it

is there in the commercial database market for the last few years, the user interface

language, SQL3 is not yet consistent. All leading vendors use their own version of the

language. Although they are conceptually the same, users need to refer to the vendors'

specifications to work with the database.

The second problem, which is worthwhile to mention here, is also due to non­

standardization of object-relational database technology. Different vendors treat

multivalued differently in their products. Oracle supports "varray" and nested tables,

each of which has its own strengths. Some other commercial DBMS call them set, bag,

or list. Those may lead to confusion if the specific DBMS manual is not referred to. The

method of creation of objects and table structure and manipulation of data (insert,

update, and delete) differs significantly among different DBMS.

55

The above problems would be resolved in the near future after standardization of

object-relational database is achieved. However, the strengths of the technology

probably outweigh the drawbacks, which make it suitable, at the very least, for data

warehousing needs.

56

VII. CONCLUSIONS AND RECOMMENDATIONS

Being a hybrid of relational database and object database, the object-relational

model certainly enjoys an edge over both. This study has utilized some of the features of

object-relational technology to build a warehouse data model, which was implemented

using Oracle 8i DBMS. In this chapter, the key findings from this study are summarized

and those are presented in Section 7 .1. Section 7 .2 states some recommendations for

future work to strengthen the conclusions arrived at in this study.

7.1 Conclusions

This study concludes that object-relational technology assists m building an

improved data warehouse, one that is better than those based on conventional

technologies, including relational database, with respect to the following considerations:

(1) Object-relational allows multivalued attributes (e.g., in case of Oracle 8i,

nested tables). Multivalued attributes assist in representing entities with

slowly changing attributes effectively. This ensures correct data analysis in

an efficient way.

(2) The formulation of queries, which need frequent joins of the fact table with

multiple dimension tables, is easier and needs fewer lines of code if an

object-relational database is used.

However, this study is unable to arrive at a conclusion on performance issues, as

those depend on the individual implementation of the database such as the hardware

platform, operating system, physical access mechanism, and query optimizer.

7 .2 Recommendations

There is scope for fmther research in this field. This study has been carried out at

a conceptual level involving a limited number of tables and records of a sample

database. This is probably not enough to arrive at a definitive conclusion. More studies

57

with practical data need to be carried out to support the conclusions derived from this

study. The cost of development of a data warehouse using object-relational technology

also needs to be compared with that of a warehouse built on conventional technology.

The implementation of the data warehouse was done at a very basic level, using

SQL statements. However, leading DBMS vendors provide software tools to map from

transaction database to warehouse database. Due to the unavailability of any

commercially available product, the data model developed here could not be verified

against such software tools. Doing so, however, is essential in order to evaluate the

practical usability of the model developed in this report.

58

APPENDIX A

TEST DATA

Table A.1. Test Data of the time_dimension_objtab Table.

time_key fiscal_ year fiscal_quarter fiscal_month

(CHAR(lO)) (NUMBER(4)) (CHAR(lO)) (CHAR(lO))

1999Q1M01 1999 Quarter 1 January

1999Q1M02 1999 Quarter 1 February

1999Q1M03 1999 Quarter 1 March

1999Q1M04 1999 Quarter 2 April

1999Q1M05 1999 Quarter 2 May

1999Q1M06 1999 Quarter 2 June

1999Q1M07 1999 Quarter 3 July

1999Q1M08 1999 Quarter 3 August

1999Q1M09 1999 Quarter 3 September

1999Q1M10 1999 Quarter 4 October

1999Q1Mll 1999 Quarter 4 November

1999Q1M12 1999 Quarter 4 December

2000Q1M01 2000 Quarter 1 January

2000Q1M02 2000 Quarter 1 February

2000Q1M03 2000 Quarter 1 March

2000Q1M04 2000 Quarter 2 April

2000Q1M05 2000 Quarter 2 May

2000Q1M06 2000 Quarter 2 June

2000Q1M07 2000 Quarter 3 July

2000Q1M08 2000 Quarter 3 August

2000Q1M09 2000 Quarter 3 September

2000Q1M10 2000 Quarter 4 October

2000Q1Mll 2000 Quarter 4 November

2000Q1M12 2000 Quarter 4 December

2001QlM01 2001 Quarter 1 January

2001Q1M02 2001 Quarter 1 February

2001QlM03 2001 Quarter 1 March

2001Q1M04 2001 Quarter 2 April

2001Q1M05 2001 Quarter 2 May

2001Q1M06 2001 Quarter 2 June

2001Q1M07 2001 Quarter 3 July

2001Q1M08 2001 Quarter 3 August

2001Q1M09 2001 Quarter 3 September

2001Q1Ml0 2001 Quarter 4 October

2001Q1Mll 2001 Quarter 4 November

2001QlM12 2001 Quarter 4 December

2002Q1M01 2002 Quarter 1 January

2002Q1M02 2002 Quarter 1 February

2002Q1M03 2002 Quarter 1 March

2002Q1M04 2002 Quarter 2 April

2002Q1M05 2002 Quarter 2 May

2002Q1M06 2002 Quarter 2 June

59

0
\

0

T
ab

le
 A

.2
.

T
es

t D
at

a
o

f
th

e
pr

od
uc

t_
di

m
en

si
on

_o
bj

ta
b

T
ab

le
.

p
ro

d
u

ct
_

ke
y

m
o

d
e

l_
n

a
m

e

m
a

n
u

fa
c
tu

re
r

(C
H

A
R

(6
))

(V

A
R

C
H

A
R

2
(3

0
))

(V

A
R

C
H

A
R

2
(2

S
))

P
O

O
l

C
o

ro
lla

T

o
yo

ta

P
0

0
2

R

A
V

4
T

o
yo

ta

P
0

0
3

A

cc
o

rd

H
o

n
d

a

P
0

0
4

C

R
-V

H

o
n

d
a

PO
O

S
G

o
lf

V

o
lk

sw
a

g
e

n

P
0

0
6

B

M
W

 S
 S

e
ri

e
s

B
M

W

P
00

7
A

4
 S

e
ri

e
s

A
u

d
i

PO
O

S
C

ro
w

n
 V

ic
to

ri
a

F

or
d

P
0

0
9

G

ra
n

d
 C

h
e

ro
ke

e

Je
e

p

P
O

lO

G
S

 3
0

0

L
e

xu
s

ty
p

e

e
n

g
in

e
_

si
ze

(V
A

R
C

H
A

R
2

(S
O

))

(C
H

A
R

(6
))

C
E

4
d

r
S

e
d

a
n

 (
 4

cy
l,

 4
A

)
1

8
0

0
C

C

4
W

D
 4

d
r

S
U

V
 (

4
cy

l,
 4

A
)

2
0

0
0

C
C

E
X

 4
d

r
S

e
d

a
n

 (
 4

cy
l,

 4
A

)
2

3
0

0
C

C

E
X

 A
W

D
 4

d
r

S
U

V
 (

4
cy

l,
 4

A
)

2
4

0
0

C
C

G
LS

 T
D

I
4

d
r

H
a

tc
h

b
a

ck
 (

4
cy

l,
 4

A
)

1
9

0
0

C
C

S
40

i
4

d
r

S
e

d
a

n
 (

S
cy

l,
 S

A
)

4
4

0
0

C
C

Q
u

a
tt

ro
 A

W
D

 4
d

r
S

e
d

a
n

 (
6

cy
l,

 6
A

)
3

0
0

0
C

C

LX
 4

d
r

S
e

d
a

n
 (

S
cy

l,
 4

A
)

4
6

0
0

C
C

L
a

re
d

o
 4

W
D

 4
d

r
S

U
V

 (
S

cy
l,

 S
A

)
4

7
0

0
C

C

4
d

r
S

e
d

a
n

 (
6

cy
l,

 S
A

)
3

0
0

0
C

C

T
ab

le
 A

.3
.

T
es

t
D

at
a

o
f

th
e

cu
st

_s
ha

do
w

_d
im

en
si

on
_o

bj
ta

b
T

ab
le

.

n
a

m
e

_
o

b
j

a
d

d
re

ss
_

 o
b

j
p

h
o

n
e

s_
 va

r
cu

st
o

m
e

r _
ke

y
la

st

fi
rs

t
m

id
d

le

st
re

e
t

ci
ty

st

a
te

zi

p
co

d
e

lo

ca
ti

o
n

p

h
o

n
e

_
n

u
m

b
e

r

(C
H

A
R

(6
))

(V

A
R

C
H

A
R

2
(3

0
))

 I
 (V

A
R

C
H

A
R

2
(3

0
))

 I
 (V

A
R

C
H

A
R

2
(1

5
))

(V

A
R

C
H

A
R

2(
 1

0
0

))

(V
A

R
C

H
A

R
2(

25
))

(V

A
R

C
H

A
R

2(
25

))

(V
A

R
C

H
A

R
2

(2
5

))

(V
A

R
C

H
A

R
2

(1
5

))

(V
A

R
C

H
A

R
2

(1
2

))

C
O

O
l

Jo
n

a
th

a
n

A

b
b

o
tt

1

4
2

1
 S

 S
h

e
ri

d
a

n
 R

oa
d

T
ul

sa

O
kl

a
h

o
m

a

7
4

1
1

2

H
o

m
e

I 9

1
8

-8
3

5
-3

1
6

1

-

M
ob

ile

3
3

8
-3

3
1

-4
4

6
3

-
-

C
00

2
A

le
xa

n
d

a
r

S
te

p
h

e
n

p

1
7

0
0

 W
e

st
 L

oo
p

S
o

u
th

H

ou
st

on

T
ex

as

7
7

0
2

7

H
o

m
e

7

1
3

-6
2

1
-9

7
2

0

O
ff

ic
e

7

1
3

-5
6

5
-7

8
6

5

M
ob

ile

8
3

4
-7

3
6

-6
9

3
5

- C

00
3

A
lle

n
N

o
re

n
e

15
 S

o
u

th
w

e
st

 P
ar

k
W

e
st

w
o

o
d

M

a
ss

a
ch

u
se

tt
s

0
2

0
9

0

H
o

m
e

7

8
1

-3
2

9
-3

3
5

0

O
ff

ic
e

7

8
1

-3
2

9
-9

8
7

5

M
ob

ile

4
5

6
-4

5
3

-9
8

9
9

- C

00
4

L
o

ff
re

d
o

R

o
b

e
rt

9

9
2

2
 R

o
o

se
ve

lt
B

o
u

lv
e

a
rd

E

d
w

a
rd

sv
ill

e

P
en

n
sy

lv
an

ia

1
8

7
0

4

H
o

m
e

5
7

0
-2

8
3

-1
8

6
0

O
ff

ic
e

2

1
5

-6
7

6
-0

9
8

9

M
ob

ile

6
1

0
-9

2
1

-0
7

1
9

-
-

co
os

S

h
e

fa
li

M
e

h
ta

3

4
2

4
 P

ea
ch

tr
ee

 R
oa

d
B

os
to

n
M

as
sa

ch
us

et
ts

0

2
1

1
6

H

o
m

e

I 6
1

7
-5

7
2

-2
0

2
2

--

--

O
ff

ic
e

7

8
2

-4
5

3
-8

9
6

3

-
-

C
00

6

I
C

h
im

e
n

ya

E
st

h
e

r
5

8
8

 N
or

th
 G

ul
ph

 R
oa

d
N

ew
 Y

or
k

N
ew

 Y
or

k
1

1
3

7
3

H

o
m

e

O
ff

ic
e

7
1

2
-5

2
5

-3
6

3
6

7
1

2
-5

2
7

-4
2

4
2

0
\

M
ob

ile

2
6

3
-7

8
3

-9
8

9
8

.....

..
C

00
7

C
h

e
e

sb
ro

u
g

h

Jo
hn

1

2
8

 I
n

te
rv

a
le

 R
oa

d
B

u
rl

in
g

to
n

T

e
xa

s
7

5
0

0
1

H

o
m

e

9
7

2
-6

6
1

-8
9

6
0

O
ff

ic
e

9

7
2

-3
8

1
-0

8
1

7

M
o

b
ile

4

4
5

-6
7

7
-6

5
5

5

-
-

-
-
-

co
os

H

o
lm

q
u

is
t

I
Ji

m

A
lb

e
rt

o

1
1

7
1

1
 B

er
ry

es
sa

 R
oa

d
S

an
 J

os
e

C
a

lif
o

rn
ia

2

3
4

3
4

H

o
m

e

4
0

8
-4

8
7

-3
1

3
8

O
ff

ic
e

4

0
8

-2
8

8
-4

0
8

1

M
ob

ile

7
3

7
-7

8
4

-7
4

7
4

-
-

-
C

00
9

C
la

yd
on

G

ra
h

a
m

1

1
2

2
0

 A
lli

so
n

vi
lle

 R
oa

d
F

is
he

rs

In
d

ia
n

a

6
4

0
3

8

H
o

m
e

3

1
7

-8
4

2
-1

0
4

0

O
ff

ic
e

3

8
1

-7
8

4
-8

4
3

2

M
ob

ile

6
3

3
-7

3
4

-7
8

4
3

-
-

C
01

0
C

o
n

w
a

y
W

a
rw

ic
k

5
8

0
1

 E
.

7
6

th
 A

ve
n

u
e

C

o
m

m
e

rc
e

 C
ity

C

ol
or

ad
o

8
0

0
2

2

H
o

m
e

3

0
3

-2
8

6
-0

4
0

6

O
ff

ic
e

3

0
3

-6
3

7
-9

1
9

2

M
ob

ile

7
2

2
-3

7
3

-9
6

4
3

°" N

T
ab

le
 A

.4
.

T
es

t
D

at
a

o
f

th
e

cu
st

om
er

_ d
im

en
si

on
_ o

bj
 ta

b
T

ab
le

.

st
a

tu
s_

d
e

sc
_

n
ta

b

cu
st

_
d

e
s_

re
f

se
x

b
ir

th
_

d
a

te

re
g

_
n

u
m

b
e

r
re

g
_

d
a

te
_

re
f

m
a

ri
ta

l_
st

a
tu

s
ye

a
rl

y _
in

co
m

e

(R
E

F
D

a
ta

ty
p

e
)

(C
H

A
R

(6
))

(D

A
T

E
)

(C
H

A
R

(3
))

(R

E
F

D
a

ta
ty

p
e

)
V

A
R

C
H

A
R

2(
10

)
(N

U
M

B
E

R
)

C
O

O
l

M
al

e
2

2
-1

2
-1

9
6

4

---~
-6~-

--+-
--~~

~i~~
~-6~

+--~
~s~~

~:~-

-+--

~~~6
-6--

----
----

----
---

R
03

 
20

02
Q

1M
03

 
M

ar
ri

ed
 

7
0

0
0

0
 

C
0

0
2

 
M

al
e 

0
3

-0
4

-1
9

7
3

 
----

~~~-


f---
-~-~

~~~~
~b-~

----
----

+--G
~~~;

~~~-
----

----
-+--

~~~b
-b-6

C
00

3
F

em
al

e
1

4
-0

6
-1

9
5

6

---~
~~--

---f

~~~~
~~~-

b~--

--+-
-~r~

:;~;
~~d-

+--i

~b-b
-60-

--

R
03

20

01
Q

4M
12

M

a
rr

ie
d

1

5
0

0
0

0

C
0

0
4

M

al
e

2
1

-0
5

-1
9

6
7

R

01

19
99

Q
4M

12

M
a

rr
ie

d

5
0

0
0

0

R
02

20

01
Q

4M
12

M

ar
ri

ed

6
0

0
0

0

R
03

20

02
Q

2M
06

M

a
rr

ie
d

7

0
0

0
0

co
os

F

em
al

e
0

6
-0

2
-1

9
5

6

;6~-

f---

-;-6
~;~-

i~-b
-~--

--+-

-~~~
~~~-

----
----

----
--

1
0

0
0

0
0

 

1
0

0
0

0
0

 

C
0

0
6

 
F

em
al

e 
1

4
-0

4
-1

9
7

2
 

----
~-6-

~---
----

----
----

----
+---

;-6~
~~1~

-6-~
----

----
+--~

~s~:
~~:-

~---
----

----
4

5
0

0
0

 
---

---
---

---
---

---
---

---
---

--
2

0
0

0
0

 

R
03

 
20

02
Q

2M
O

S
 

D
iv

o
rc

e
d

 
6

0
0

0
0

 

C
00

7 
M

al
e 

0
8

-0
9

-1
9

6
4

 
R

01
 

20
00

Q
2M

06
 

M
a

rr
ie

d
 

9
0

0
0

0
 

co
os

 
M

al
e 

1
2

-1
0

-1
9

5
3

 
R

01
 

20
00

Q
3M

08
 

M
a

rr
ie

d
 

1
0

0
0

0
0

 

R
02

 
20

02
Q

1M
01

 
M

a
rr

ie
d

 
1

2
0

0
0

0
 

C
0

0
9

 
F

em
al

e 
1

5
-0

9
-1

9
7

1
 

R
01

 
20

00
Q

1M
03

 
U

n
m

a
rr

ie
d

 
6

5
0

0
0

 

R
02

 
20

02
Q

2M
O

S
 

M
ar

ri
ed

 
7

0
0

0
0

 

C
0

1
0

 
M

al
e 

2
4

-0
8

-1
9

6
9

 
----

;6~-
----

----
----

----
----

f---
-;~~

~~~~
-i-i

+--~
~s~:

~~:-
~---

---+

--~~
~b-6

-
R

03

20
01

Q
4M

12

D
iv

o
rc

e
d

1

1
0

0
0

0

ci
ty

st

a
te

(V
A

R
C

H
A

R
2(

25
))

(V

A
R

C
H

A
R

2(
25

))

T
ul

sa

O
kl

a
h

o
m

a

S
ko

ki
e

Il

lin
o

is

T
u

ls
a

O

kl
a

h
o

m
a

N
as

hu
a

N
ew

 H
a

m
p

sh
ir

e

H
o

u
st

o
n

T

e
xa

s

W
e

st
w

o
o

d

M
a

ss
a

ch
u

se
tt

s

W
e

st
w

o
o

d

M
a

ss
a

ch
u

se
tt

s

W
e

st
w

o
o

d

M
a

ss
a

ch
u

se
tt

s

R
ea

di
ng

P

e
n

n
sy

lv
a

n
ia

--
--

~-
~~

-~
~-

?!
:~

_:

_ j_

~'.

:'.
"._

}_:
:::

:::
y ___

 _

E
d

w
a

rd
sv

ill
e

P

e
n

n
sy

lv
a

n
ia

C
hi

ca
go

Il

lin
o

is

B
o

st
o

n

M
a

ss
a

ch
u

se
tt

s

K
in

g
o

f
P

ru
ss

ia

J
P

h
ila

d
e

lp
h

ia

--

O
tt

a
w

a

Il
lin

o
is

N
ew

 Y
o

rk

N
ew

 Y
o

rk

B
u

rl
in

g
to

n

T
e

xa
s

R
ed

w
oo

d
C

ity

C
a

lif
o

rn
ia

S
an

 J
os

e
C

a
lif

o
rn

ia

E
liz

a
b

e
th

to
w

n

K
e

n
tu

ck
y

F
is

he
rs

In

d
ia

n
a

La
s

V
eg

as

J
N

ev
ad

a

--

S

a
It

 L
ak

e
C

ity

U
ta

h

--

C
o

m
m

e
rc

e
 C

it
y

C
o

lo
ra

d
o

Table A.5. Test Data of the sales_fact_objtab Table.

sales_key cust_dim_ref prod_dim_ref time_dim_ref quantity price

(CHAR(6)) (REF Datatype) (REF Datatype) (REF Datatype) (NUMBER) (NUMBER)

50001 COOl P004 1999Q3M09 1 21,550

50002 COOl P006 2001Q1M01 1 4S,650

50003 COOl POOl 2002Q1M03 1 15,550

50004 C002 P002 1999Q4Mll 1 lS,750

50005 C002 POOS 2000Q2M06 1 16,500

50006 C003 POOl 1999Q4M12 1 14,330

50007 C003 POOS 2000Q3M09 1 17,72S

5000S C003 POlO 2001Q4M12 1 37,6SO

50009 C004 P003 1999Q4M12 1 22,440

50010 C004 P007 2001Q4M12 1 31,340

50011 C004 P004 2002Q2M06 1 22,?0S

50012 coos P009 2000Q1M03 1 2S,670

50013 coos POOS 2002Q1M03 1 27, ?SO

50014 C006 P006 2000Q1M03 1 so,sss
50015 C006 P005 2001Q2M06 1 lS,560

50016 C006 P007 2002Q2MOS 1 31,SOO

50017 COO? P004 2000Q2M06 1 23,6S5

50018 coos P003 2000Q3MOS 1 22,760

50019 coos POOl 2002Q1M01 1 14,655

50020 C009 P006 2000Q1M03 1 Sl,S4S

50021 C009 POOS 2002Q2M05 1 27,?SS

50022 COlO P005 2000Q3MOS 1 lS,650

50023 COlO P009 2000Q4Mll 1 29,605

50024 COlO POlO 2001Q4M12 1 39,lSO

63

APPENDIX B

SAMPLE SQL QUERY AND RESULT

1. How many cars were sold during the fiscal year 2000?

Query:

SELECT count(*) AS NO_OF_CAR
FROM sales_fact_objtab sf
WHERE sf .time_dim_ref .fiscal_year = 2000;

Result:

NO_OF_CAR

9

2. How many cars manufactured by Jeep were sold during the fiscal year 2000?

Query:

SELECT count(*) AS NO_OF_CAR_OF_JEEP_MANUFACTURER
FROM sales_fact_objtab sf
WHERE sf .time_dim_ref .fiscal_year = 2000
AND sf .prod_dim_ref.manufacturer = 'Jeep';

Result:

NO_OF_CAR_OF_JEEP_MANUFACTURER

2

3. Which manufacturer had the maximum sales amount (i.e. total price) during the

fiscal year 2000?

Query:

SELECT sfl.prod_dim_ref .manufacturer AS MANUFACTURER
FROM sales_fact_objtab sfl
WHERE sfl.time_dim_ref .fiscal_year = 2000
GROUP BY sfl.prod_dim_ref .manufacturer
HAVING SUM(sfl.price) >=ALL (SELECT SUM(sf2.price)

FROM sales_fact_objtab sf2
WHERE sf2.time_dim_ref.fiscal_year = 2000
GROUP BY sf2.prod_dim_ref.manufacturer);

Result:

MANUFACTURER

BMW

64

4. How many cars manufactured by Jeep were sold to male customers during the

fiscal year 2000?

Query:

SELECT count(*) AS NO_OF_CAR_OF_JEEP_MANUFACTURER
FROM sales_fact_objtab sf
WHERE sf .time_dim_ref .fiscal_year = 2000
AND sf .prod_dim_ref.manufacturer = 'Jeep';

Result:

NO_OF_CAR OF JEEP MANUFACTURER

1

5. How many married male customers purchased a car during the fiscal year 2000?

Query:

SELECT COUNT(DISTINCT sf .cust_dim_ref) AS
MARRIED_MALE_CUSTOMER

FROM sales_fact_objtab sf
WHERE sf.time_dim_ref.fiscal_year = 2000
AND sf .cust_dim_ref .sex= 'Male';

Result:

NO OF_MARRIED_MALE_CUSTOMER

4

6. How many different (distinct) divorced female customers from Massachusetts

purchased car manufactured by Jeep during the fiscal year 2000?

Query:

SELECT COUNT(DISTINCT sf .cust_dim_ref) AS
NO_OF_DIVORCED_FEMALE_CUSTOMER

FROM sales_fact_objtab sf,
TABLE (sf .cust_dim_ref .status_desc_ntab) sdes

WHERE sf .time_dim_ref .fiscal_year = 2000
AND sf .cust_dim_ref .sex= 'Female'
AND sdes.marital_status = 'Divorced'
AND sdes.state = 'Massachusetts'
AND sdes.reg_date_ref = sf.time_dim_ref;

65

Result:

NO OF_DIVORCED_FEMALE_CUSTOMER

1

7. What was the total price amount and quantity of cars having engine size 4000CC or

more sold to unmarried customer having yearly income $75,000 or less during the

first quarter of fiscal year 2000?

Query:

SELECT SUM(sf .price) AS SALES_AMOUNT, SUM(sf .quantity) AS
SALES_QUANTITY

FROM sales_fact_objtab sf,
TABLE (sf .cust_dim_ref .status_desc_ntab) sdes

WHERE sf .time_dim_ref .fiscal_year = 2000
AND sf.time_dim_ref.fiscal_quarter = 'Quarter 1'
AND sf .prod_dim_ref .engine_size >= '4000CC'
AND sdes.marital_status = 'Unmarried'
AND sdes.yearly_income <= 75000
AND sdes.reg_date_ref = sf .time_dim_ref;

Result:

SALES_AMOUNT SALES_QUANTITY

102730 2

8. What is the customer_key and number of cars purchased for customer(s) who

purchased maximum cars from fiscal quarter 3 of fiscal year 1999 to fiscal quarter 2

of fiscal year 2000?

Query:

SELECT sfl.cust_dim_ref .cust_des_ref .customer_key AS
CUSTOMER_KEY, sum(sfl.quantity) AS NO_OF_CAR

FROM sales_fact_objtab sfl
WHERE ((sfl.time_dim_ref.fiscal_year = 1999 AND

sfl.time_dim_ref.fiscal_quarter = 'Quarter 3')
OR (sfl.time_dim_ref .fiscal_year = 1999 AND

sfl.time_dim_ref.fiscal_quarter = 'Quarter 4')
OR (sfl.time_dim_ref .fiscal_year = 2000 AND

sfl.time_dim_ref.fiscal_quarter = 'Quarter 1')
OR (sfl.time_dim_ref .fiscal_year = 2000

AND sfl.time_dim_ref.fiscal_quarter = 'Quarter 2'))

66

GROUP BY sfl.cust_dim_ref .cust_des_ref .customer_key
HAVING SUM(sfl.quantity) >=ALL (SELECT SUM(sf2.quantity)

FROM sales_fact_objtab sf2
WHERE ((sf2.time_dim_ref.fiscal_year = 1999 AND

sf2.time_dim_ref.fiscal_quarter = 'Quarter 3')
OR (sf2.time_dim_ref.fiscal_year = 1999 AND

sf2.time_dim_ref.fiscal_quarter = 'Quarter 4')
OR (sf2.time_dim_ref.fiscal_year = 2000 AND

sf2.time_dim_ref.fiscal_quarter = 'Quarter l')
OR (sf2.time_dim_ref.fiscal_year = 2000 AND

sf2.time_dim_ref.fiscal_quarter = 'Quarter 2'))
GROUP BY sf2.cust_dim_ref.cust_des_ref.customer_key);

Result:

CUSTOMER_KEY NO_OF_CAR

C002 2

9. Which customers purchased car manufactured by BMW during the fiscal year

2000?

Query:

SELECT sf.cust_dim_ref .cust_des_ref .name_obj AS
CUSTOMER_NAME, sf .cust_dim_ref.cust_des_ref .address_obj
AS CUSTOMER_ADDRESS,
sf .cust_dim_ref .cust_des_ref .phones_var AS
CUSTOMER_PHONE

FROM sales_fact_objtab sf
WHERE sf .time_dim_ref .fiscal_year = 2000
AND sf .prod_dim_ref .manufacturer = 'BMW';

Result:

CUSTOMER_NAME(LAST, FIRST, MIDDLE)

CUSTOMER_ADDRESS(STREET, CITY, STATE, ZIPCODE)

CUSTOMER_PHONE(LOCATION, PHONE_NUMBER)

NAME_OBJTYP('Chimenya', 'Esther', NULL)
ADDRESS_OBJTYP('588 North Gulph Road', 'New York',

' New York ' , ' 113 7 3 ')
PHONES_VARTYP(PHONES_OBJTYP('Home', '712-525-3636'),

PHONES_OBJTYP('Office', '712-527-4242'),
PHONES_OBJTYP('Mobile', '263-783-9898'))

67

NAME_OBJTYP('Claydon', 'Graham', NULL)
ADDRESS_OBJTYP('ll220 Allisonville Road', 'Fishers',

'Indiana', '64038')
PHONES_VARTYP(PHONES_OBJTYP('Home', '317-842-1040'),

PHONES_OBJTYP ('Office', '381-784-8432'),
PHONES_OBJTYP ('Mobile' , '63 3-73 4-7 843 '))

10. Based on past trend, ·which quarter of the year generally experiences more car

sales?

Query:

SELECT sfl.time_dim_ref .fiscal_quarter AS QUARTER_NAME
FROM sales_fact_objtab sfl
GROUP BY sfl.time_dim_ref .fiscal_quarter
HAVING SUM(sfl.quantity) >=ALL (SELECT SUM(sf2.quantity)

FROM sales_fact_objtab sf2
GROUP BY sf2.time_dim_ref.fiscal_quarter);

Result:

QUARTER_NAME

Quarter 1
Quarter 4

11. Order customers by marital status according to the number of car purchased during

the fiscal year 2000.

Query:

SELECT sdes.marital_status AS MARITAL_STATUS,
SUM(sf .quantity) AS NO_OF_CAR

FROM sales_fact_objtab sf,
TABLE (sf .cust_dim_ref .status_desc_ntab) sdes

WHERE sf .time_dim_ref .fiscal_year = 2000
AND sdes.reg_date_ref = sf .time_dim_ref
GROUP BY sdes.marital status
ORDER BY 2;

Result:

MARITAL_STATUS NO_OF_CAR

Divorced 1
Unmarried 4
Married 4

68

BIBLIOGRAPHY

1. Agrawal, Rakesh, Ashish Gupta, and Sunita Sarawagi. "Modeling
Multidimensional Databases," Proceedings of the 13 111 International Conference on
Data Engineering - 1997, Institute of Electrical and Electronics Engineers,
Birmingham, 1997.

2. Armstrong, Rob. "Seven Steps to Optimizing Data Warehouse Performance."
IEEE Computer 34, no. 12 (December, 2001): 76-79.

3. Anahory, S. and D. Murray. Data Warehousing in the Real World. England:
Addison-Wesley, 1997.

4. Bahrami, A. Object-Oriented Systems Development. Illinious: Irwin/McGraw­
Hill, 1998.

5. Chaudhuri, S. and U. Dayal. "An Overview of Data Warehousing and OLTP
Technology." ACM Sigmod Record 26, no. 1 (1997).

6. Chelluri, I<iran and Vijay Kumar. "Data Classification and Management in Very
Large Data Warehouses," Proceedings of the Third International Workshop on
Advances Issues of E-Commerce and Web-Based Information System
(WECWIS'Ol), Institute of Electrical and Electronics Engineers, San Juan,
California, June 21-22, 2001.

7. Chen, Wei-Chou, Tzung-Pei Hong, and Wei-Yang Lin. "A Composite Data
Model in Object-Oriented Data Warehousing," Proceedings of the 31st
International Conference on Technology of Object-Oriented Language and
Systems, Institute of Electrical and Electronics Engineers, Nanjing, China,
September 22-25, 1999.

8. Date, C. J. An Introduction to Database Systems. Massachusetts: Addison­
Wesley, 1999.

9. Elmasri, R. A. and S. B. Navathe. Fundamentals of Database Systems. California:
Addison-Wesley, 2000.

10. Furlow, Gerri. "The Case for Building a Data Warehouse." IEEE IT Professional
3, no. 4 (July/August, 2001): 31-34.

11. Giovinazzo, W.A. Object-Oriented Data Warehouse Design: A Star Schema. New
Jersey: Prentice Hall PTR, 2000.

12. Hanson, Joseph H. and Mary Jane Willshire. "Modeling a Faster Data
Warehouse," Proceedings of the International Database Engineering and
Applications Symposium (IDEAS'97), Institute of Electrical and Electronics
Engineers, Montreal, Canada, August 24-27, 1997.

69

13. Inmon, W. H. Building the Data Warehouse. Wellesley: John Wiley & Sons,
2002.

14. Inmon, W. H. and C. Kelley. Rdb/VMS: Developing the Data Warehouse.
Boston: QED Publishing Group, 1993.

15. Kimball, R. "A Dimensional Modeling Manifesto." DBMS Online 10, no. 9
(1997).

16. Kimball, R. The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses. New York: J. Wiley, 1996.

17. Russell, J. Oracle 8i: Application Developer's Guide - Object-Relational Features,
Release 2 (8.1.6). Redwood City: Oracle Corporation, 1999.

18. Sarda, N. L. "Temporal Issues in Data Warehouse Systems," Proceedings of the
International Symposium on Database Applications in Non-Traditional
Environments (DANTE'99), Institute of Electrical and Electronics Engineers,
Koyto, Japan, November 28-30, 1999.

19. Singh, H. Data Warehousing. New Jersey: Prentice Hall PTR, 1998.

20. Stonebraker, M. and P. Brown. Object-Relational DBMS: Tracking the Next
Great Wave. San Francisco: Morgan Kaufmann, 1999.

21. Trujillo, Juan, Manuel Palomar, Jaime Gomez, and Il-Yeol Song. "Designing
Data Warehouses with 00 Conceptual Models." IEEE Computer 34, no. 12
(December, 2001): 66-75.

22. Ullman, Jeffrey D., Jennifer Widom, and Jennifer D. Widom. A First Course in
Database Systems. New Jersey: Prentice Hall PTR, 2001.

23. Wixom, Barbara, Paul Gray, and Hugh J. Watson. "Introduction to the Minitrack
on Data Warehousing," Proceedings of the 34th Hawaii International Conference
on System Sciences - 2001 (HICCSS'Ol), Institute of Electrical and Electronics
Engineers, Hawaii, 2001.

70

	Cover and Title Page
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I : INTRODUCTION
	CHAPTER II : LITERATURE REVIEW ON DATA WAREHOUSING
	CHAPTER III : OBJECT-RELATIONAL DBMS
	CHAPTER IV : OBJECT-RELATIONAL DATA WAREHOUSING
	CHAPTER V : IMPLEMENTATION OF THE DATA WAREHOUSE
	CHAPTER VI : RESULTS AND DISCUSSION
	CHAPTER VII : CONCLUSIONS AND RECOMMENDATIONS
	APPENDIX : A
	APPENDIX : B
	BIBLIOGRAPHY

