

T.H!ASSUMPTION UNIVERSITYLmR.UT

The Software Screenplay Storyboard Model (S3M)

by
Mr. Jia Cherng Hsu

A Thesis of the Twelve-Credit Course
CE 7000 Master Thesis

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Computer and Engineering Management

Assumption University

July 2007

Thesis Title The Software Screenplay Storyboard Model (S3M)

Name Mr. Jia Chemg Hsu

Thesis Advisor Dr. Chamnong Jungthirapanich

Academic Year July 2007

The Graduate School of Assumption University has approved this final thesis of the
twelve-credit course, CE 7000 Master Thesis, submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer and Engineering
Management

Approval Committee:

(Prof.Dr. Srisakdi Charmonman)

Chairperson of Examination Committee

~ <d·
(Dr. Chamnong ?Jlth1rapanich)

Advisor

Member

July 2007

(Assoc.Prof.Somchai Thayamyong)

CHE Representative

(Dr. Chanintom Jittawiriyanukoon)

Member

ABSTRACT

Software buyers and developers are still experiencing difficulties in

communicating functional requirements. A universal software model is needed to bridge

the buyer-developer gap.

Using concepts derived from the Unified Modeling Language (UML), software

prototypes, film screenplays and storyboards, this research devises a new

communication tool called the Software Screenplay Storyboard Model (S3M). It is

designed to define and demonstrate functional requirements effectively and efficiently

by creating non-technical software models that combine structured nairntions with

illustrations. S3M is further clarified and exemplified by applying it to a real-world

application, the Student Information System (SIS).

With full comprehension of S3M, the new software model is compared with all

software models that have been studied in a table. S3M is found to satisfy the need for a

non-technical, yet comprehensive and precise software model. However, it is not

intended to replace other softwai·e models, which may be optionally employed to reflect

other aspects, technicalities, or views of a system.

ACKNOWLEDGEMENTS

The accomplishment of this thesis is made possible with the kind guidance and

encouragements of my advisor, Dr. Chamnong Jungthirapanich, and the education

opportunity, financial support, and patience of my family.

ii

THEASSUMPTIONUNIVERSlTYLIBRAR''

TABLE OF CONTENTS

Chapter Page

ABSTRACT

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

LIST OFT ABLES Vil

I. INTRODUCTION

1.1 Background of the Thesis 1

1.2 Objectives of the Thesis 5

1.3 Scope of the Thesis 5

II. LITERATURE REVIEW 7

2.1 Unified Modeling Language (UML) 7

2.1.1 History 8

2.1.2 Diagrams 9

2.1.3 Criticisms 26

2.2 Software Prototypes 29

2.2.1 Sketches 31

2.2.2 Storyboards 33

2.2.3 PICTIVE 34

2.2.4 Canonical Abstract Prototypes 35

2.2.5 User Interface Flow Diagrams 37

2.3 Filmmaking 38

2.3.l Film Screenplay 38

2.3.2 Film Storyboard 40

iii

2.3.3 Best Practices 44

III. THE SOFfW ARE SCREENPLAY STORYBOARD MODEL (S3M) 45

3.1 Introduction 45

3.2 The README Document 47

3.3 The Reportslntro Document 48

3.4 The BlankFunctionReport Document 54

3.5 The BlankScreenReport Document 55

3.6 The BlankPopupRepmt Document 56

3.7 The FunctionList Document 57

3.8 The S3Mexample Document 59

IV. TESTING S3M 63

4.1 Student Information System (SIS) 63

4.2 SIS Blueprint Excerpt 63

4.3 Change Management 94

v. MODELS COMPARISON 97

VI. CONCLUSIONS AND RECOMMENDATIONS 103

6.1 Conclusions 103

6.2 Recommendations 104

BIBLIOGRAPHY 106

iv

LIST OF FIGURES

Figure Page

1.1 Some Software Models Require Multiple Interpretations 2

1.2 Universal Software Model Requires Single Interpretation 3

2.1 Hierarchy of UML 2.0 Diagrams in a Class Diagram 10

2.2 "Web Portal Caching" Class Diagram 11

2.3 Composite Structure Diagram Example 12

2.4 UML 2.x Component Diagram 13

2.5 UML 2.x Deployment Diagram for University Information System 14

2.6 UML l .x Object Diagram 15

2.7 Package Diagram for Automated Teller Machine (ATM) 17

2.8 'Black-Box' Activity Diagram 18

2.9 "Seed Management" Use Case Diagram for Crop Industry 19

2.10 State Machine Diagram of Parser for Escape and Control Sequences 20

2.11 Sequence Diagram of Seagull, an OOP Framework 22

2.12 Communication (Collaboration) Diagram 23

2.13 Interaction Overview Diagram for Use Case Withdraw Funds 25

2.14 Timing Diagram 26

2.15 Transition of Prototyping Techniques 31

2.16 Two Screen Sketches 32

2.17 Essential UI Prototype for Enrolling in Seminars 33

2.18 Storyboard Representing System Function and Sequence 34

2.19 Some PICTNE Plastic Icons 35

2.20 Scene in PICTNE Session 35

v

2.21 Generic Too] or Action 36

2.22 Generic Material or Container 36

2.23 Extensions and Combinations Between Generic Actions and Containers 36

2.24 Canonica] Abstract Prototype with Key Notational Elements 37

2.25 User Interface Flow Diagram for University System 38

2.26 'P' is for Psycho Storyboard 42

3.1 Paper--based S3M Blueprint with Standard Items in Suspension Fo1ders 46

3.2 Digital S3M Blueprint with Standard Items in Computer Hard Drive 47

5.1 Iterative Modeling 98

vi

4.1

5.1

LIST OF TABLES

SIS Change Request

Comparison of S3M, UML Models, and Software Prototypes

Vll

Page

95

99

I. INTRODUCTION

1.1 Background of the Thesis

Software buyers and developers are still facing communication difficulties

during software purchases today. Buyers - especially those inexperienced in software

purchasing, and developers - especially those inexperienced in buyer servicing, convey

in different communication frequencies. For instance, Figure 1.1 demonstrates how

buyers' perception of the software model is impaired due to multiple layers of

interpretations before they can begin to comprehend the software. Can there be a

universal software model, a trne link that is able to synchronize buyers and developers

easily as in Figure 1.2? Failing to tune in or communicate well with one another

inevitably leads to ineffective requirements engineering - one of the most critical and

early phases in all software methodologies.

1

THE ASSUMPTION UNIVERSITY LIBRA.N.t

Buyer~

llSC

,,.._. _ _._ ___ .

l, lhmrnn

Language
. ./

~rpret
/' ----...

·-..

Modeling
Language

interpret

--~ - -a

develop

Modeling

J Langimgc

II

use

Developers

Figure 1.1. Some Software Models Require Multiple Interpretations.

2

Buyers

--=i:
[' L~:;,:~;e -
'~ ,,J

interpret
and/or
develop

//" ' ' --~ ... ,,,,,,

/ U,nive,rsal)
(Sofhvarc ,
\ Jv·lodel
\' ' / .• . , .

......... ,.,,..,...,.../'

develop develop

Hum~m Modeling
Language Lang;uage

\use
\

(opti<mal)

use

Developcn;

Figure 1.2. Universal Software Model Requires Single Interpretation.

Requirements engineering "(in the context of systems engineering) is concerned

with the acquisition, analysis, specification, validation, and management of software

requirements" (Aaby, 2000). The first truth topping expert Karl Wiegers' list of five

3

universal truths on software requirements engineering is: "If teams don't get

requirements right, it doesn't matter how well they execute the rest of the project"

(Borland, 2006) - quality assurance professionals can't agree more. The "Man on the

Street" poll conducted by the Borland Software Corporation at the ST AR WEST

conference in Anaheim, California, surveys nearly 250 quality assurance professionals

and reveals that, "poorly defined or mismanaged requirements and inadequate time for

proper testing are the two biggest problems QA professionals are grappling with today"

(Borland, 2006). Problematic requirements also earn high ranks in the Standish Group's

annual CHAOS report, which indicates that three of the top five reasons for project

failure are related to requirements (Borland, 2006).

Two ptime types of requirements are described in many texts. Functional

requirements are actions a software system performs, such as inputs, outputs, and

calculations. On the other hand, non-functional requirements are properties a software

system possesses, such as performance, availability, and accessibility. As non­

functional requirements are also known as technical requirements, quality of service

(QoS) requirements, and service-level requirements (Ambler, 2006), it is the functional

requirements that chiefly link software buyers and developers, and outnumber non­

functional requirements. Moreover, Ambler (2006) firmly believes that purely technical

requirements should be minimized due to rapid changes in technology that will

ultimately require changes to corresponding technology-dependent requirements.

Hence, the challenge is often: how to communicate functional requirements effectively

as well as efficiently.

This research devises a new communication tool called the Software Screenplay

Storyboard Model (S3M). It is designed to define and demonstrate functional

requirements effectively and efficiently by creating non-technical software models that

4

combine structured narrations with illustrations. For uniformity, this research utilizes

the same definitions for 'modeling' and 'model' as the Object Management Group

(2006) - "Modeling is the designing of software applications before coding ... A model

plays the analogous role in software development that blueprints and other plans (site

maps, elevations, physical models) play in the building of a skyscraper."

1.2 Objectives of the Thesis

The research possesses four objectives:

(1) To study the Unified Modeling Language (UML) and software

prototypes to find their strengths and weaknesses.

(2) To study film screenplays and storyboards to find their best practices.

(3) To devise and test a new software model that incorporates

aforementioned strengths, eliminates aforementioned weaknesses, and

reinforced by aforementioned best practices.

(4) To compare all software models that have been studied.

1.3 Scope of the Thesis

S3M builds on concepts derived from the Unified Modeling Language (UML),

software prototypes, film screenplays and storyboards. UML is considered to be the de

facto standard for building software models. Software prototypes possess the closest

resemblance to S3M in terms of using narrations coupled with illustrations to model

software. Film screenplays and storyboards have proven best practices that can be

incorporated into S3M. UML, software prototypes, and film screenplays and

storyboards are studied in the second chapter. Findings from chapter two are then used

to develop S3M in chapter three. Chapter four tests S3M by applying it to a real-world

5

application, which also helps clarify any remaining queries regarding S3M. With full

comprehension of S3M, chapter five compares all software models that have been

studied in a table, and the final chapter concludes findings and recommendations.

6

II. LITERATURE REVIEW

2.1 Unified Modeling Language (UML)

UML, consisting of graphical notations, is used to fabricate abstract models of

software systeins as well as non-software systems (Object Management Group, 2006).

Keywords such as business process, systems engineering, and organizational structure

are covered by its extensive modeling capabilities. UML is able to describe almost any

type of software - from its overall structure to internal mechanisms in various views or

diagram types.

UML is built on fundamental object-oriented (00) concepts. For this reason, it

works well with 00 programming languages such as C++, Java, and C#. However,

UML is also flexibly designed allowing it to be hardware, operating system,

programming language, middleware and network- independent. In addition, it offers

UML Profiles that allows users to define stereotypes to introduce concepts that are

unavailable in the base language. These customized subsets of UML help streamline the

modeling of Transactional, Real-Time, and Fault-Tolerant systems (Object

Management Group, 2006).

UML also enjoys being methodology-independent, which has helped it gain

widespread support. UML can model results regardless of how a software project is

conducted. And with the XML Metadata Interchange (XMD technology from OMG,

UML models can migrate from one tool to another for refinement or preparation for the

next step in the chosen methodology.

Abundant UML-based tools are currently available in the market to analyze

requirements and design software solutions. Some tools are able to generate codes from

UML diagrams, or reverse engineer existing codes to produce UML diagrams. Some

7

tools are designed for certain industries such as telecommunications or finance, as some

generate test and verification suites from UML models.

UML has fueled model-driven technologies such as Model Driven Development

(MDD) and Model Driven Engineering (MDE). It is also the foundation of OMG's

Model Driven Architecture (MDA) (Object Management Group, 2006). UML is also

able to produce platform-independent and platform-specific models. The MDA

development process utilizes both features to create Platfonn-bldependent Models

(PIM) and Platform-Specific Models (PSM) in the UML language via MDA-enabled

development tools. PIM represents business functionalities and behavior accurately, as

PSM represents the implementation or running code. Moreover, it is possible to use the

new Query-View-Transformations (QVT) standard to transform a UML model,

serialized in XMI, into a Java or Enterprise Java Bean (EJB) implementation by using a

Model Transformation Language (MTL).

2.1.1 History

UML stems from the efforts by James Rumbaugh, Ivar Jacobson, and Grady

Booch to unify several object modeling languages. The best of Rumbaugh's Object­

modeling Technique (OMT), Jacobson's Object-oriented Software Engineering

(OOSE), and Booch's Booch Method are synthesized to create the more standardized

Unified Modeling Language (UML) at Rational Softwru·e Corporation in the mid-1990s.

In 1996, the UML authors decide to work with professionals from other companies to

respond to the Object Management Group's (OMG) request for an object modeling

standard. The UML specification draft is submitted to OMG on January 1997, followed

by the final proposal in September 1997 (Rumbaugh et al. 1999). The initial semantic

integration, however, is still relatively weak and requires several minor revisions and a

8

major revision to conceive UML 2.0, which is the current OMG standard. Even then,

UML is still changing and UML 2.1 is scheduled for release in the first semester of

2006 in the form of an XMI 2.1 version.

Despite ongoing changes, the International Organization for Standardization

(ISO) has declared UML an international standard, and it is available as ISO/IEC

19501; ITU-T Recommendations Z.100 (SDL) and Z.109 (SDL UML profile) (Object

Management Group, 2006).

2.1.2 Diagrams

UML 2.0 defines thirteen diagram types under two major categories and one

subset. Six structure diagrams pmtray the static application structure (what must be in

the system), three behavior diagrams represent dynamic object interactions (what must

happen in the system), and four special behavior diagrams known as interaction

diagrams model the flow of control and data among the things in the system. Diagrams

also have the option of nesting inside one another, for example a state machine nests

inside another structure diagram. Figure 2.1 depicts the hierarchy of UML 2.0 diagrams.

9

Ciimpo!>ih·
StruchJU!·
Oug1·.:.m

Stn~crure

Dia91.am

Comirnnt-nt
01;.g1am

Deplc:iyme-ni
Diilgr:am

Obj~i;;t

Dktg,am

P3ckage
Oi~l.gram

ActivH;'
Dia(iram

Se-quEH1ce
Diaurarn

Beh.;;v1or
Di.l~P"iWP

lnt~t:i.c.ti-on

0•1e~view

01,;i"nm

!t1.1il· M>Jt;hmt·
Ot3gr;iim

Tuning
Oi~gr.<in

Figure 2.1. Hierarchy of UML 2.0 Diagrams in a Class Diagram (Object Management

Group, 2005).

Class diagram, a very common structure diagram, shows classes and their

relationships within a system. A class is a distinct concept used to encapsulate related

variables and functions or methods. According to Rumbaugh et al. (1999), it can assume

many forms: a physical concept such as an airplane, a business concept such as a

customer order, a logical concept such as a broadcasting schedule, an application

concept such as a cancel button, a computer concept such as a hash table, or a

behavioral concept such as a task. Various association notations used to pmtray class or

object relationships may appear from simple connections and ends, to ones with

complicated multiplicity and separate classes of their own. Figure 2.2 is an example of a

class diagram.

10

THE ASSUMPTION UNIVERSITY LIBRARl

Data.A.ccessObjPct
·-·-------------··------------------------------

..-----'------·---··
Client

011 e,·/
Web Portal Caching - Class Diagram

CacheRegions (Interface)

y.String DEFAULT_REGION
.;.String TEST_CACHE_REGIOl"·I
.pString MEMORY_ CA.CHE_REGIOI·~
¢String MRU _MEMORY_ CACHE _REGIOI'~
9-String Dlm<_CACHE_REGIOl\J
V>String SCHED _E>:F'IRE _CACHE _REGIOl'J

" -····-····-----------------·-·····----------------------------------···-·········--·----------··i
·····----------~::..7--·-------------·-··············-----···-·····-·······------------------;

/
/

~/

//Uses

IC achel"11anager (Interface)

<i>(lbject getCacheObjectO
•object getCacheObjectO
.,mid putCacheObjectO

·····---~-:_e_:_ ______ ···> ~oid putCacheObjectQ

BaseEirception
~r~i~~-t-~-Thro··~;;t;1~·cau~~ --

(l.BaseEl:ceptionO
BaseElrceptionO
~BaseEJ:ceptionO
.. BaseExceptionO
.. Throwable getCauseO
""void setCauseO
~oid printStackTraceO
~void printStad:T1aceO
~void pnntStackT1aceO
.. Stnng toStringO

·-·--··-···-······j~---··········=·· ._Object peekO
•boolean isF'resentO
"'void rernoveCacheObjectO

-. _______ uses CachingExcepti~~

-----~-::c-':·----------1
""' "'oid clearO

.µses ~oid clearCacheO
. .,void setCacheloaderO

1mplemen~:--·---~2i-·····-·-··:::~=~===~:::~·-····-z;-···--··-····--·--···
ICacheKe11 (Interface)

.. Object getCachel<eyO
implements '--

ICacheloader (Interface)

~\­

·~7es
\,

' \
'-Object loadCacheObjectO BaseCacheManager

CacheElementlnfo
~s;·;1;;·9k.ey
~boolean eternal
~String createTime
~long ma>rlifeSeconds
~long expireslnSeconds
~int hitCountAux
~int hitCountRam
~int missCountExpired
~nt missCountNotFound
~long totalMemory
~long usedMemory

~CacheElementlnfoO
~id loadCacheStatsO
~String toStringO

----. . _:_ . * -~jc:·s;;-~~i:;;;-·-·········-··-··----···-·-···

---.• ,.:::, ~Cacheloader cacheloader
~int checkedOut
~static CacheManager instance
~String cacheMame
~double readFromCache
~double readF romDataSource
-----···--·-------·-·---··

1 .. * j:J d'BaseCacheManagerO
// 41-static CacheManager getlnstanceQ

~ 4l>void setConfigFileO
. ~ill!'!.9..9.!il.l:JiIB~!L. _______________________ _

1..*

Cache (3rd party Cache
API)

.. CachingEJ<cept ionO
~CachingEi:cept ionO
~CachingEirceptionQ
~CachingEJrceptionQ

,-----····--··-········-··--····-
Cachelist

~Cachelist instance

1 ~Map table
c~ ~int scheduleEr.piryltemCount

~Cachelist getlnstanceO
~Object getCacheQ

---~-~-~~~~:?9_ -.............. ----··-·--···

Figure 2.2. "Web Portal Caching" Class Diagram (Penchikala, 2003).

Composite structure diagram, another type of structure diagram, reveals the

internal structure of a class, including structured classifiers, pa.its, ports, connectors, and

collaborations. A structured classifier is a class whose behavior is described through

parts interactions. Parts are roles played during runtime by an instance or group of

11

instances. A part may name a role, an abstract superclass, or specific concrete class.

Ports enable the interaction between a structured classifier and its environment. They

may specify the services a classifier provides or requires. Structured classifiers

containing pmts are called encapsulated classifiers. Connectors are drawn as lines that

bind patts, ports, and structured classifiers - allowing them to interact at runtime, and

collaborations specify sets of roles working together to represent certain functionalities.

Lastly, Ambler (2006) does not find composite structure diagrams to be of much use,

at1d instead, suggests using sequence diagrams which possess more robust notations and

are more widely understood. Figure 2.3 is an example of a composite strncture diagram.

Com

C c;rnpo;:itB:=::truc1 urn

IReqF'os:ilion
0

J ~1oundstationPor1
I.A.let~ ICt.~t'PC>Silic n

aciivi' cl~ss SatelliteControlSystem {:/'}

ac: .A.UiludeConhL11!er
SensorPort

us Port

81aP01t

Senso1Po11

db. Duta8us
sPort

IDataToBus

IDaleFromrA•s

UserEquipmentPort

1:::-;ert~N

0

28

Figure 2.3. Composite Structure Diagram Exatnple (SysML Partners, 2004).

12

Component diagram, a type of structure diagram, depicts components such as

files, headers, link libraries, modules, executables, and packages, and their dependencies

or semantic relationships in a system. Components are physical units of implementation

of certain classes with interfaces, and they can be replaced by other components with

the same interfaces (Rumbaugh et al. 1999). Interfaces, or lists of operations supported

by pieces of software or hardware according to Rumbaugh et al. (1999), are used to

render dependencies among components. Components generate some interfaces as well

as require interfaces from other components. Figure 2.4 is an example of a component

diagram.

lbHa;a meul
·'!".:<.t.11·.:..>

,..,.,.

F;,(;iJi!i~

/
/

Studt~nt

Se,~•u·icy·
~

·•;.:«-;lftffA!fll''U('fm·r,r.,;...:>

Figure 2.4. UML 2.x Component Diagram (Ambler, 2006).

Deployment diagram, the final type of structure diagram in this study, captures

the configuration of run-time hardware nodes and corresponding software components

that run on those nodes (Ambler, 2006). Nodes, such as server machines, operating

systems, Web servers, application servers, and database servers represent the

environment in which a component or set of components execute, and can be linked to

13

demonstrate interdependencies (Chitnis et al. 2006). Basically, deployment diagrams

display the hardware of the system. being modeled, the software installed in that

hardware, and the required middleware to connect disparate machines. Ambler (2006)

suggests that deployment diagrams are appropriate in examining system installation,

system dependencies with other systems, major deployment configurations,

hardware/network infrastructure of an organization, and the hardware and software

configuration of an embedded system. Figure 2.5 is an example of a deployment

diagram.

"''d•"!'l••.1·m1'ftt •l''""''
R~lli~m1tim1

<"~f~uti.l~wt~ Uitt-;t.d
IOMol~lll' flltllS~<'ll"1>: lfil~

f'~niS!Nlct I)
"-·~:.infra~uctuf't->·'>

t"f.lntlc.tr~{Aml~y~orri

(\usrs~

i\h11~1];Nll~nf

f~C~!k
+.:<:u·t.h- ~t:t"\k~:\'.~,;;.-.

<-o:dt'\'iL'.JI..'">>

;.HH1!~.• .. \tr
!!l~·"'l.il•µX)

l.'.1tl•~r•ity Ult ~J
··~:..-:datithl.1~c:-"':>

l"'-!tt:d1,r:-:4)nn~h-~

--~,(~ttr.viL',.; .. >

MniP-!l:"lll.~
(OS=\lhl

C<ttff:'iot~
M~•t1:ttgf~t11.t1-nt

~.c:k~tJ sy~•~m·:":-.

Figure 2.5. UML 2.x Deployment Diagram for University Information System

(Ambler, 2006).

14

THE ASSUMPTION UNIVERSITY LIBRA.lU

Object diagram, a derivative of the class diagram, is a snapshot of an entire or

partial view of a system at a point in time (Rumbaugh et al. 1999). The diagram is

named after the elements that it contains: objects, att1ibutes, and associations between

objects. The founders of UML concisely define an object, "A discrete entity with a well-

defined boundary and identity that encapsulates state and behavior; an instance of a

class" (Rumbaugh et al. 1999, p. 360). Each set of objects or instances created from a

certain class retains similar structure, behavior, and relationships. Object diagrams are

useful as illustrated examples of a system, test cases for class diagrams, or to observe

how a system behaves through a series of snapshots over time. Figure 2.6 is an example

of an object diagram.

SeguusVr.tll1 ·lfcW<tll Sequus 'Wall Plan:lfcWorhPlc.n

+lily : tfCr.Jli!:as~ = IUIJ sq ft . 3$KS : I c UU0flt aSK = nstan IUleta ;){UUS' nstan ~neet t<OOK' f'PP y 3pmg

-Schedules : ifc\IVorl< Sohedule = Sequus Schedule ·Ope rat ti lnProCN;!sses : ifo Rel Process Operates On

- - Install Metal S'tuds:tfcWorkTask
Install Studs0per:ates0n\1Villl1: nc Rel ProcusOperatesOn

1-."'Ro.,.1•"'•..,,dO"'bi.,...•.,,.ot-: "°ifo""O"'b;."'ot.,.__-_ s""e-qu-u~"",.=.,.,11,------i----+--1 :~:~=~i:~~~ i~tt~~,:~~~;~~~~~r:=1 7:~~" Studs Schedul~ Bem~nts
-RelatmgProoess ifoProo~ss = lnstaH Mital Studs -Vtlori<ptan: iic\nlorkPlan = Sequus \W3ll Plan - - -

• Uses Resources . ifo RetUseResouroie: = Sequus Res Use Crou11 , Sequus Res UsE! Stud

L~--~
S~quu:: Rel Seq1 :tfcRel Sequence

-Rel3tedProcess ifo\fllorkTask::: lnst::1ll l\Mtal Studs
-Rel3tingProcess i1c'dliorklask =Install Sheet Rock
-Sequ&noeType ifoSeqEnum = FS
-Tmelag: ifcT1meDurationMe:asun:t = 0

I
Install Sheet RocldfcWorkTaisk

Install Sheet Rook Operates0nWall1 : le Rel Process Operates On

r..,-=cc:=c-.-.,.,.c==o-~=-c==-------i---1----l·lsPredecessorTo: ifcRelSequeooe = Sequus_Re1Seq2
-RelatedObjeot: itcObject = SequusWall1 ·Sched!AeBements: ifoWorkScheduleBements = lnstall_Sheet Rock_Schedule_Bements

~

-RelatingProct:ss: ifoProcess = lnstall_Sheetrock -\fl/ork Ptan: ifc\NOO(Plan 1e Sequus W3H Plan

Pppl yTapingOperates On\1¥'4111 :lie Rel Process Oper~es On

·t1e1a1eaUPJect : llCUIJJeci z::: ~equuswvoftl

·RelatmgProoess itcProoess = ~pf\• Taping

-isSuccessc-rfrom : itcRelSequence = Sequus Re1Seq1

I

L~---~
Sequu:: Rel Seq2: ltc Rel Sequence

·1ie1atl€!arrocess : ncwofl(13Stc::: 1nsta11 rvm31 b-1uas
·RelatingProcess : itcWor1<Task = lnS1aU Sheet Rock
-Sequence Type ifoSeqEnum = F'S
-Ttme Lag : itc Ttme OurationtoAeasuN = 0

Ppply Taping:lfcWorkTask

-lsSuccessorTo : ifcRetSequeMe::: %quus_Re1Seq2
-~cheduleBements: ifoWoficScheduli<!Bements::: A:opl~,_Taping_Schedule_Bem<!rits
-Work Plan : itc Worl< Plan = Sequus \IVall Plan

Figure 2.6. UML 1.x Object Diagram (Froese et al. 1999).

15

Package diagram, a type of structure diagram, models logical containers or

packages and their relationships at a high-level overview (Sparx Systems, 2006). The

diagram helps modulaiize a complex diagram and organize the source code (Ambler,

2006). Packages are commonly used to group use cases and classes, and can be built to

represent either physical or logical relationships. All elements in a package share the

same namespace as well as possess a unique identifier. Packages may be applied on any

UML diagram, and they are easily recognized as they are drawn as file folders. Figure

2.7 is an example of a package diagram.

16

CJ
" \\'· ..

2esg~jl'L
physical I

--nl "\\\\

1,-. + Ca:ffiRee.der

. ······-1 ...
+ CashDisperiser
+ CustomerCo:nsole
+ EnwlopeAcceptor
+Log
+ HetworkToB ank
+ Op eratorPariel

.\~' + I=~eceiptPrinter

+ J]~1.-Yt'it~Ul7Jj

+ Withdra--wol
+Deposit
+Transfer
+ Inquily

bitxudng j

+ Accountlnfonnation
+B~es
+Card
+ Meo::s~e
+Money
+ Receip'
+ S"latu.s

Figure 2.7. Package Diagram for Automated Teller Machine (ATM) (Bjork, 2001).

Activity diagram, a type of behavior diagram, demonstrates the progression of

events in a system (Sparx Systems, 2006). From start to finish, decision paths as well as

parallel processing may occur. A diagram may involve several use cases, a small

portion of a use case, or no use cases at all. Ambler (2006) suggests that activity

17

diagrams are, in many ways, the object-oriented equivalent of flow charts and data flow

diagrams (DFDs). Activity diagrams typically model business processes, the logic

captured by a single use case or usage scenario, or the detailed logic of a business mle

(Ambler, 2006). Figure 2.8 is an example of an activity diagram.

I Ol>'..lVeC'it;.-

[Cms.t-P)-;t~(;U·····r·····,····

.:~~~~~., .. /~,.t., .. ,.,:::'
··--., .. 1_, -

Figure 2.8. 'Black-Box' Activity Diagram (Hoffmann, 2005).

Use case diagram, a common behavior diagram, is used to identify the roles and

discrete functionalities in a system. Roles are called actors, and functionalities are

known as use cases. Despite its name, actors may assume any entity (or entities), from

humans to another system. Actors interact with use cases, as use cases may share

different kinds of relationships with one another. Chitnis et al. (2006) believe that use

case diagrams help users: discover significant system characteristics, create great

storyboard tool for user meetings, and write test scripts for the modeled system. Chitnis

et al. (2006) also recommends that technical staffs need not participate in creating use

cases. Figure 2.9 is an example of a use case diagram.

18

'.

·~h ·~"'
: •• ~!It.I...._. 1111 ·~·
1--~..:_ noN•N
' ' ' ' ' '
' ' : : + l"U-"' "' ·---.

:···••\;.h,,.·1·:· ·'
S:'--- ---

(~"' .. ""'1o11w) •. ,(""" t;i~tt·.-.~·~
~It: •·••It< • ,_ Qlllll~ ___ .,,.

·~
~ A

: '

'fn, .. J ••

~
•

~, .. ~
\ '

. • ... ~
~

..,._J
.... ····--·····

... ,,.

. :

~
~

1---<i-~~·~~ --~
, _~
'-~·------- __

'

~

I
f.._ ... -_,,.

II
~:.i t

-

Figure 2.9. "Seed Managemem" Use Case Diagram for Crop Industry (Rherrera.

2005).

Srare machine diagram. formerly known as s1a1e chart diagram.~ in UML l.x,

illus1rmcs how an object responds to \lnriuus C\len ts depending on its ct11Tcni ~1<11c

19

(Ambler, 2006). A siate is described as a \t.agc in an object's behavior pauem, and there

can be initial and final s1a1es. Also cal led a creation &tole, an initial Slate is where an

object is first created. A final state 1s where no tr:u1si11011s lead om of it. /\ t rani.ilion is a

progression from one staie to another. State machine diagrams help comprehend

complex behaviors of classes. actor~. subsystems, or component,~. Ambler (2006)

recommends ~tatc machine diagrams for modeling rc:il time systems. Figure 2. l 0 is an

example of a \late machine diagram.

'

., __

•
.,.--..

\

··-- ~· -=l r=-···~~ __J c:_ -~~-~'----' " . -
.......

...... -
'-.:..~·. ~-.··

··- _ ...
•;:t,_"_
"' --.. --..... - ... _ ... --... --~·~~ -·-

.• - .r " -:::1
l: ; 2!'..:.J • ~:·1 irr

-~~-~·v ... "'' - -·
~·-

...........

Figure 2.10. State Machine Dingrnm of Parser for E.o;cape and Control Sequences

(Williams, 2005).

Sequence diagram, a prominent interaction diagram. displays two primary items:

objects drawn as vertical lifelines. and their interactions drawn as hori1ontal arrowi.

spanning from 1hc source lifeline to Lhe target lifeline (Sparx Systems, 2006). /\s the

20

diagram is read from top to bottom, interactions appear over time in the order in which

they occur. In a nutshell, sequence diagrams model communications between objects

and the messages that trigger those communications. Sequence diagrams are

inappropriate for modeling complex procedural logic as well as large number of objects.

UML 2.0 sequence diagrams retain similar notations from its predecessors with added

support for modeling variations to the standard flow of events. Figure 2.1 J is an

example of a sequence diagram.

21

•·"·:::::::~

~
~::: ' ..
......

"'"''

r
L
r
L ...

;.. b,.,,; ... J

··· 1~

Figure 2.11. Sequence Diagram of Seagull, an OOP Framework (Turner, 2006).

Communication diagram, formerly known as the collaboration diagram in UML

1.x, is the second interaction diagram in this study. Providing similar information to

sequence diagrams, communication diagrams focus on object relationships via

sequenced messages coupled by arrows pointing in the direction of the message flow

(Sparx Systems, 2006). Although communication and sequence diagrams can be

22

transformed into one another, it is not immediately visible. In contrast, it is evident that

elements io a communfoation diagram ru·e arranged in a free-fom1 manner. To read the

diagram. always s1ar1 from message 1.0 and follow Lhc chronological messages from

ohject 10 object. Figure 2. 12 is an example of a communic!llion diagram.

1::t t!f~Cff Pp4 :o'.l· t.c!E>t.1 V1.1Httd1'lw1¥10nftf 11 -ertrer nrtu.'K,.

w i'. __ __..c_..,

I; ll'iS"'1 Cli!r(I 3$1· ""<I
'1t ~

...

';'

Figure 2.J 2. Communicalion (Collaborn1io11) Diagram (Wright, 2005).

23

THE ASSUMPTION UNIVERSITY LIBRAP'·

Interaction overview diagram, another type of interaction diagram, is closely

related to the activity diagram. Although many notations from activity diagrams such as

initial, final, decision, merge, fork, and join nodes are shared by interaction overview

diagrams, two new elements are introduced: interaction occurrences and interaction

elements (Sparx Systems, 2006). Interaction occurrences are references to existing

interaction diagrams. Interaction elements are depicted similarly to interaction

occurrences except that they display the contents of the references diagram in line (Sparx

Systems, 2006). Because interaction overview diagrams may incorporate sequence,

communication, interaction overview, and timing diagrams, Ambler (2006) doubts that

interaction overview diagrams will be practiced. The extensive size of the diagram

easily outruns whiteboards. Figure 2.13 is an example of an interaction overview

diagram.

24

(notaut.he11t1r.aledJ-------._

J "-sei.:ct .A.mount ~

1~t=~ .. ~
t T-dt.C I~ >I

Figure 2.13. Interaction Overview Diagram for Use Case Withdraw Funds (Garcia et

al. 2005).

Timing diagram, a new interaction diagram recently added to UML 2.x, shows

the change in state or value of one or more objects throughout a given pe1iod of time.

Moreover, interactions between timed events can also be shown, as well as

corresponding time and duration constraints (Sparx Systems, 2006). A timing diagram

is drawn with a Y-axis labeled with a list of states, an X-axis labeled with time in a

25

chosen unit, state lifelines to show object state changes over time, and value lifelines to

show object value changes over time. State and value lifelines can be stacked in any

combination, and lifelines may send messages to another. Because it is difficult to

model multiple lifelines at once, Ambler· (2006) recommends two lifelines per diagram.

He also observes that timing diagrams are often used to design embedded software as

well as occasional uses in business software. Figure 2.14 is an example of a timing

diagram.

td li mir1g Diagram/

'(- {d .. d'3} --+I

"fl I ~. -----------------

\ll/aitMcoass ._
di

"' \•\'<tit Card ::>

Idle:

Code

St•rt m' {l H3}

E .. No Card 'Iii
>. I
(I)

u
Has Card <(

f- {d .. d'3} 1

Idle X IP/aitCard \•~s~-------ld_le: _______ _

Time (ms) 0 10 20 30 40 50 00 70 80 90 100 110 120 130 140 150 160 170 180 190

Figure 2.14. Timing Diagram (Sparx Systems, 2006).

2.1.3 Criticisms

UML is enomwus. As a result, this requires huge efforts to master the language.

The Object Management Group (2006) openly admits that UML 2.x is a "large

specification", consisting of four pruts: Superstructure, Infrastructure, Object Constraint

Language (OCL), and Diagram Interchange. The Superstructure is straightforward - it

is a 700+ page document defining the thirteen diagram types and elements that comprise
26

them. The Infrastmcture is a 210+ page document defining base classes that form the

foundation for the Superstructure and Meta Object Facility (MOF) 2.0. The OCL is a

180+ page document allowing setting of pre- and post-conditions, invariants, and other

conditions, and the Diagram Interchange is an 80+ page document providing a

supplementary package for graph-oriented information, which allows models to be

exchanged or stored/retrieved and then displayed as they were originally. Moreover, the

Object Management Group (2006) also documents UML Profile for CORBA®,

CORBA Component Model (CCM), Ente1vrise Application Integration (EAI),

Ente1vrise Distributed Object Computing (EDOC), QoS and Fault Tolerance,

Schedulability, Performance, and Time, Testing, and one related specification: the UML

Human-Usable Textual Notation (HUTN). Finally, object-oriented knowledge and

perhaps, experience are prerequisites for any UML starter.

UML is still changing. This is extremely costly as an army of published

materials, especially books, web pages, tools, and projects, need to be revised, rewritten,

or redrawn. The Object Management Group (2006) acknowledges that there are more

than a 100 book titles on UML. The group has also accumulated more than 40 links on

UML information and tools. Inevitably, UML users and management require careful

selection of vast UML resources - including old and new, more training to leam both

the language and tools, and if necessary, recertification from the OMG Certified UML

Professional program for new versions of UML. Botting (2006) provides several

publications illustrating concerns for UML changes and ambiguity. He also provides

comments made by Rick Bmner, "The OMG has engaged in a courageous effort to keep

the size of UML 2.0 to a minimum. Despite the fact that it has retired 25 predefined

elements and removed 28 other features, it ADDED 56 NEW features and 5 NEW

diagram types (Object, Package, Interaction Overview, Timing, and Composite

27

Structure Diagrams). The UML documentation went from slightly over 600 pages to a

little over 800 pages!"

UML is complex. Although the UML specifications can be downloaded for free,

the Object Management Group (2006) agrees that "it's also highly technical, terse, and

very difficult for beginners to understand." OMO argues that the specifications are the

formal definition of UML, and are written for programmers who implement compliant

software products. The specifications, however, are "not an instruction book on "How

to Model Using UML"" (Object Management Group, 2006), and not intended for

application developers and users (Siegal, 2005). OMO recommends that modelers

should start with online tutorials, and apply for training from OMO member companies,

or purchase a book on modeling with UML.

UML is source code related. This stems from the fact that, given details are in

agreement, some UML-based tools are able to compile UML diagrams to generate

codes or vice versa. This is a problem if UML diagrams are presented to non-technical

software buyers. More confusion can be expected if UML is used to model software

written in 00 programming languages. Developers will try to conform to 00 concepts

as accurately as possible for their convenience in code generation.

Grady Booch, one of the original developers of UML, asserts that it takes more

than blind adoption and usage of UML for its sake to achieve success (Booch, 2004). As

Booch acknowledges that many organizations have not enjoyed successes from using

UML, he maintains that success with the UML must be coupled with thought, planning,

and understanding of UML' s purpose, limitations, and strengths. The rush to embrace

UML is actually generating cost and schedule trauma on many current software

projects. Booch (2004) observes that many organizations simply misunderstand UML

by modeling every single line of code, representing a front-end syntax to define the

28

context for comprehensive simulations, drawing insignificant diagrams, and replacing

the software development process.

2.2 Software Prototypes

A prototype is a preliminary and incomplete design, serving as a basis from

which other designs are developed or copied. In the software industry, software

prototypes are created for future full-featured software programs. Software prototypes

may allow developers to test the feasibility of certain technical aspects of a system (Carr

and Verner, 1997), or allow users to provide feedback for early ideas of the completed

software program or p01tions of it. Users may observe whether or not requirements are

met, detect potential en-ors, or make critical changes or additions before proceeding to

full-scale implementations. According to Lu (1998), software prototypes should be

cheap and quickly developed. Hoffer et al. (2002) adds that software prototypes are the

product of iterative development processes that convert requirements to a working

system through close collaboration between analysts and users. This can help avoid the

great expense and difficulty in making significant changes to a mature software program

during the final stages of software development.

Carr and Verner (1997) agree that there is much confusion in the software

prototyping literature, especially in the field of prototyping terminologies. Various

researchers attempt to name different prototypes designed to achieve different goals, as

wel1 as different prototyping processes and strategies to construct those prototypes. For

instance, Carr and Verner (1997) exemplify with Budde et al.'s four types of prototypes:

presentation prototypes, prototype proper, breadboard prototypes, and pilot system,

which are constructed using either horizontal or ve1tical prototyping teclmiques.

Software prototypes must be distinguished from the prototyping processes that create

29

them, since software prototypes are the actual agents that provide the communication

link between developers and buyers. This research classifies software prototypes

according to their fidelity.

Prototype fidelity concerns "the degree to which the prototype accurately

represents the appearance and interaction of the product, not the degree to which the

code and other attributes invisible to the user are accurate" (Lu, 1998). There are three

conunon degrees of prototype fidelity: low, medium, and high. At one end, low-fidelity

prototypes involve chiefly paper-based mock-ups. They are intended to demonstrate the

user interface, and require a knowledgeable facilitator to perform the run-through.

Sketches, storyboards, and PICTIVE mock-ups are examples of low-fidelity prototypes,

which will be further discussed and exemplified. On the other end, high-fidelity

prototypes are computer-based simulations of much of the system functionalities. By

possessing user inte1faces that closely resemble the final product, high-fidelity

prototypes are not as quick and easy to create as low-fidelity prototypes. Software

prototyping tools and current programming languages may help ease computer-based

prototyping. Situated in between the two extremes, medium-fidelity prototypes simulate

some system interactions and functionalities. Medium-fidelity prototypes are largely

about the approaches to limit or test prototype interactions and functionalities. Figure

2.15 displays the transition of prototyping techniques.

30

Low-Fidelity

Paper-based sketches

Paper-based storyboard I FICTIVE

Computer aided sketches I storyboard

\Vizard of Oz l Slide shows I Video prototyping

Computer-based scenario simulation

Computer-based Horizontal simulation

Computer-based Vertical simulation

Computer-based full functionality simulation

High-Fidelity

Figure 2.15. Transition of Prototyping Techniques (Lu, 1998).

2.2.1 Sketches

Sketches are quick drawings. Utilizing paper-and-pencil to illustrational

software applications, sketches of the software user interfaces are useful for exploring

all kinds of design ideas (Lu, 1998). Sketches allow developers to see new ways to

refine and revise current ideas in a very simple and cheap manner. However, sketches

portray only high level concepts, and are inefficient in showing system progression.

Figure 2.16 is an example consisting of two screen sketches.

31

St'1Jt~ ~!lfr: 191*)07 ... Z>.1 ffi!l
nr,~~{ 2£ot\ .]
M.JJ1, '. (9!ij.;; ::·:.::;;;;
SM•M ! ra;;g,. :J
~.M, \ t.B:I3

~tt. f.r~r teft.J, ~Jf\l l11/IJ3

~..,. fer~ Y.u4x.'\ llrr.~

~?$0A1k~ f.ti ~~ '! """'V·
C$C.1DO ~,jd. f s, .. ,~.s 11 1,.,>,s.
c~ >to At\ .. ~'-* w.~ 5ri 241, fJ ~ll>~l

5f~:

-

Figure 2.16. Two Screen Sketches (Ambler, 2006).

Ambler (2006) presents a prototype similar to sketches called the essential user

interface (UI) prototype. It represents the general ideas behind the user interface in a

technology-independent manner by using whiteboards, flip-chart paper, and sticky

notes. The essential user interface prototype also differs from traditional user interface

prototyping by focusing on users and their usage of the system, not system features

(Ambler, 2006). Figure 2.17 is an example of an essential UI prototype.

32

Figure 2. 17. Essential U1 Prototype for Enrolling in Seminars (Ambler, 2006).

2.2.2 Storyboards

Originating from the lilrn industry, a storyboard is a "graphical depict.ion of Lhe

outward appearance of the intended system withont accompanying system

functionalitY' (Lu, J 998). 1t provides soapshoLS. with corresponding annotations, of the

user interface at differem points in an interactfon. Storyboards can be constrnc1ed using

office stationery to modern graphical dr.iwing packages. According to Dalbey (2002),

33

illustrating each interface screen on separate pieces of paper is cheap, fast, and very

effective in terms of value gain versus construction time. Figure 2.18 is an example of a

storyboard.

0Jok Mame I u~obilityE119inE-t.ri19 I
Li brCI')' 5ystG111

Book Mt1me I UsohilityEh9i·1eerb9

Help Library SystG111

I QA1658 I Coll Mo.

=

mpmmg ~et um

Don't lmow bow to inp1d Help scnen fo1· Call No. Field Finish input Call No.
_____,. _____,.

Click Hel1• Click Ret1u11 after reading Ready fo DlJmf the next field

Figure 2.18. Storyboard Representing System Function and Sequence (Lu, 1998).

2.2.3 PICTIVE

PICTIVE (Plastic Interface for Collaborative Technology Initiatives tlu·ough

Video Exploration) is a participatory system design technique developed by Bell

Communications Research (Bellcore) in 1990 (Lu, 1998). In a nutshell, the technique

makes video and voice recordings of users modifying PICTIVE mock-ups of a system,

which are used to determine how the system will look and behave. PICTIVE mock-ups

consist of two categories of design objects. The first category is a colorful ass01tment of

simple office materials (e.g. pens, paper, clips, etc), and the second is materials prepared

by the developer (e.g. plastic icons of menu bars, dialogue boxes, etc). Figure 2.19

shows some PICTIVE plastic icons, and Figure 2.20 depicts a scene in a PICTIVE

session.

34

Figure 2.19. Some PICTIVE Plastic Icons (Lu, 1998).

Interactive,
"Equal Opporlunity"
Oesl9n Surf a.co

• . .

Figure 2.20. Scene in PICTIVE Session (Lu, 1998).

2.2.4 Canonical Abstract P1·ototypes

Canonical abstract prototypes are designed to bridge between abstraction and

realization in user interface design (Constantine, 2003). It is intended to be less abstract

and more precise to resolve design issues in very complex user interfaces. Canonical

abstract prototypes are constructed from sets of symbols, each with a specific interactive

function. Moreover, the symbols also model the position, size, layout, and composition

of the user interface features. There are basically two types of symbols: a generic tool or

action (Figure 2.21), and a generic material or container (Figure 2.22) - plus extensions

and combinations between the two (Figure 2.23). Figure 2.24 is an example of a

canonical abstract prototype.

35

SYMBOL INTERACTIVE FUNCTION EXAMPLES
I' action/operation*
,,. st~rtigo/to
;'! stop/end/complete
r ··s•h~tt
/"' create

.···.~.. ~el~te, erase
r modify
r move
r duplicate
I' pe.rform (& r(!turn}

~ toggle
. /IP view

Print symbol table, Color selected shape
.·· $egihtq~sist¢~ey eh,tk,•·· Q~~firhf purehoie

Finish inspection session, Interrupt test

~rollp. memb*!:r.J?:itkt:t",··QbJeet sef~ctor
New customer, Blank slide
~r.ak conntttion.Jlne, Clear form
~han~e shiJ>~ing ~dd~~ss, Edit client details
Put int9. odf;fress .Jist. Mov.~ up/down<
Copy address, Duplicate slide

ObJeet ft)rro<-tt•~9.(sef Rrihf layout .

Bol~. on/oft'.··$~.~~ypt~~ ~d~ i . .· · .. ··•·•.·· .

Show fit~ qetalls7 Swft:chitq summary .

Figure 2.21. Generic Tool or Action (Constantine, 2003).

SYMBOL INTERACTIVE FUNCTION EXAMPLES

D container* Conf igurction holder, Employee history
< El •••fu••t J .· . · .. • .. · .. ·.· ··) ~ii~f6M~h tP.~. '~5Jy9~i~iµtd~~(t. ~rn~~~<

El collection Personal addresses, Electrical Components
···/ID ~~tlfiilltia~ }(>> / · ····. ~m~!~ ~cil~rfl~~~!9f~; ~~Pf~'•'r ''~f~s·····.····

Figure 2.22. Generic Material or Container (Constantine, 2003).

SYMBOL INTERACTIVE FUNCTION EXAMPi.ES

lJ active material* Expandable thumbnail, Resizoble chart

·······>.·Ail.••••·•·• ~~;;;~;~·····r~i1~i~;~ •·•·····•·•·········•····~ii;~1~~~i1~~mEliiii~~Eit~~•·•·•••········· .···· Aa selectable collection Performance choices, Font selection

All··••••••••· ~ei~~tibl; i<ti6~ $~i ••. ii !~ e~i~~·~~~!n ~€i!~ Rl~~~!?h}• >···• .·
.;fg) selectable view set Choose patient document, Set display mode

Figure 2.23. Extensions and Combinations Between Generic Actions and Containers

(Constantine, 2003).

36

Film Clip Vicwct'

lJf I Film Clip ID/Title ll.i'Find I 1-1 Film Clip View

1-1 Frame Image lf'IFramc I AaFilm Clip::;

IEJTimc I /
i:E[Title (modifiable) 111-1 Le1'gth I v·
~ { synchronized . / v

to selection ~--~
.. !IJ'Up 1 Frame lil'Back 1 Fcomc Ii

~~ l !;'PLAY !!~stop I !
·--- - - - -- .. ---------- .. -- ... -- -- - -- - -- - -- ----- - _.,l

~
~~---·~·~·-~·-··~-~~...,.,.~~"""""--~·,...,.,,~~-~...-~---·-~~··- ··~··~ ·-~~ ~

Figure 2.24. Canonical Abstract Prototype with Key Notational Elements

(Constantine, 2003).

2.2.5 User Interface Flow Diagrams

The user interface flow diagram allows stakeholders to model high-level

relationships and interactions between major user interface elements of a system

(Ambler, 2006). Also called storyboards, interface-flow diagrams, windows navigation

diagrams, and context-navigation maps, the user interface flow diagram uses boxes to

represent major user interface elements, and arrows to represent the flow between them.

The diagram may span a single use.case to model the interactions that users have with a

system, or several use cases to gain a high-level overview of a system's user interfaces.

Figure 2.25 is an example of a user interface flow diagram.

37

THE ASSUMPTION UNIVERSITY LIBRA.M.1

Figure 2.25. User Interface Flow Diagram for University System (Ambler, 2006).

2.3 Filmmaking

The film or movie industry is a vigorous multi-billion dollar business. A film

can be translated into multiple languages allowing its customer base to span the entire

world. Films can also be sold and resold, as the shelf life of a timeless film is virtually

endless. Such lucrative possibilities invoke astronomical investments, which includes

the willingness to spend extensive periods of time, massive funds and effort, and

employ diverse teams of professionals. The entire complexity of filmmaking, however,

sources from two vital pieces of compositions that serve as the foundation for a film:

screenplays and storyboards.

2.3.1 Film Screenplay

A screenplay is a written description of a film. Also known as a script, it is

composed in the earliest stage of filmmaking: the Development Stage. h1 this stage, an

idea or story is developed into a working script. Based on a concept, previous literary

38

compositions or films, or an original work in itself, a screenplay is a vital blueprint of

the film and may comprise of everything from character names, descriptions, dialogue

and actions, to scene descriptions. Although there are no single format for writing a

screenplay, Craig (2005) argues that screenplays must be kept very simple since any

investor, in or out of the film industry, a banker, or lawyer must be able to understand

the story without having to learn another special language. As thousands of screenplays

are circulated at any given time, a writer should capture the imagination of readers in

the first few pages than scare them off with jargons and cluttered complex scripts.

Leave the production versions of a screenplay, such as shooting scripts, to production

staffs. Alice (2001) provides the following example of a screenplay:

T T T T T T T T Start screenplay example T T T T T T TT

10. INT. ALBERT'S LIVING ROOM. DAY

Seventy-year-old ALBERT JOHNSON is sitting in an armchair wearing worn but
comfortable shoes. He is an amiable man out with a well -worn face exhibiting a
lifetime of drudgery.

STEWART lies on the cru-pet coloring in a picture book. The room is well furnished and
well maintained but the first thing to grab your attention is the tick-tock of a mantel
piece clock. On top of the drinks cabinet there is an abundance of shining trophies for
Albe1t's prized fishing catches.

LOUISE enters carrying a tray of food.

ALBERT
(sarcastic)

I told you it was no good for you.

LOUISE smiles and hands ALBERT the tray.

LOUISE
Dad, Jim's a good man. Now, eat your tea.

LOUISE picks up an ouster and tin of polish from a table and begins to clean the room.

LOUISE

39

Fuss, fuss, fuss.

How's your chest?

ALBERT
Not so bad since I started on the pills. (to Stewart) Fuss, fuss,
fuss.

STEWART

A A A A A A A A End screenplay example A A A A A A A A

The first draft of a screenplay may require several months to complete, and it is

rewritten until all stakeholders agree that it is sufficient for filming. Even then, the

writer is often summoned during film production to rewrite sections of the screenplay.

To avoid film crews having different updates of the screenplay, page-locking is

employed. Changes are added or replace pages of the page-locked screenplay by means

of colored pages.

2.3.2 Film Storyboard

A film's storyboard is a sequence of drawings designed to visualize a film or

sections of a film beforehand. Its appearance resembles that of a comic strip, illustrating

the location, characters, props and settings of each camera shot. Each drawing is further

adorned with technical instructions and affows describing actions, camera and lighting

directions, and occasionally basic dialogue. Basically, the storyboard represents what

the camera lens or viewers will see. Figure 2.26 is an example of a film storyboard.

40

1 fat 11;'4.i 'l<ho~ (WS) /\ t>~ "''~~k
(l-· k'1'f 1tt~111t~f l .. J rC>Om i~ ., 111~& lh~:

3 l,.zy;v in~t (MS) 4 High J<~ip (W) P-.1,n ~rm1. ~u ,,.1$~)

41

1 fCU' l'!Mil)f !113:!if;(1,

(J(i@('.h fa~:t

9 (MS} 8C)' ~t~n rotm~
.R·l

11 (tGV) m~\ ·~·.· (Sh~di>W1A•n4'll'dtt~
rmr1 ''l#i.P MQVf, KJO :•

1~0. l(i

bl~tk

8 t<Vr h~~·0 t1<w•;~ ,, blv•i qukl~y Vlght to k'fr}
f\>L {tw~. bi.ek,htl SIX:®tH· 6fm*\it'1:

Figure 2.26. 'P' is for Psycho Storyboard (Alice, 2001).

Based on a shooting script, a storyboard is first drawn as a rough sketch in the

second stage of filmmaking: the Preproduction Stage. At this stage, a film is planned,

42

designed, and the storyboard is extensively used until the completion of the film. The

storyboard matures as the director discusses the 'look' of the film with the director of

photography. During film production, copies of the storyboard are distributed to the

crew and casts, virtually as job descriptions for each camera shot. Finally, during post­

production, the storyboard visually reminds film editors of the original intentions,

sequence, and timing of the film.

Lower budget or smaller films may discard the process of storyboarding

altogether. However, storyboards are time worthy and indispensable if there are

hundreds if not thousands of film crews and casts. Sometimes it replaces a screenplay

entirely. The benefits of storyboards extend far beyond a visual consensus or framework

which changes can be judged. It is an essential piece of conrnmnication, a tool used to

inspire more ideas or discover potential problems, and costs estimator as well as saver.

It can accurately position actors in an imaginary world, as well as help them to perform

convincingly with an imaginary character. It also defines the scope and number of shots

for each event. A close-up shot of an object, for instance, may only require an indoor

backdrop rather than a long strenuous trip to the actual location. Without the storyboard,

ten different directors may even produce ten different interpretations of how to shoot the

same written event.

Matthew Jones, a script editor, concisely expresses his gratitude for storyboards,

"In a production meeting, a picture really is worth a thousand words. You can script a

sequence in words as clearly as you like, and there will always be some

misunderstanding. But if you use storyboards, it's so much easier to communicate your

visual and dramatic ideas" (Alice 2001, p. 1).

Storyboards find its uses in business as well such as ad campaigns, commercials,

and computer games. It is used to convince investors of a potential project, or as a

43

"Quality Storyboard" that paints the Quality Control process within an organization.

Human resources involved in a storyboard can now learn how and when to explain their

part in a story.

2.3.3 Best Practices

The study of screenplays and storyboards reveals valuable best practices

pertaining to blueprints:

Create narrative blueprints. Nairntive blueprints, such as screenplays, are

written plans based on original concepts or works. They allow elaborate details to be

documented, and may provide the basis for visual blueprints. Narrative blueprints'

appearances in the earliest project stage indicate their profound importance.

Create visual blueprints. Visual bluepiints, such as storyboards, are consensuses

of how the final product may appear to the audience or users beforehand. Commonly

deriving from narrative blueprints, they work to bring narrative blueprints to life.

Without the visual blueprint, visual interpretations may vary from person to person.

Create non-technical blueprints. Larry Sherby, a digital camera owner said," ..

. I have to consult a manual anytime I try other features and then I forget how to do it"

(The Associated Press, 2004). Larry Sherby has demonstrated that too many products

are built for technicians. Similarly, there is a dire need for non-technical, intuitive

blueprints that do not depend on other special bodies of knowledge or experts to

understand.

44

III. SOFTWARE SCREENPLAY STORYBOARD MODEL (S3M)

3.1 Introduction

S3M models are intended to be design plans that can be distributed to any

software buyers and developers, and all will still be able to perceive the same exact

software system. To make this happen, S3M employs two crucial features. First, S3M

levels usability to a common ground - one that is not favorable for, or operational by

only particular groups of people and vendors. Special tools, languages, and expertise are

only hindrances to the reconciliation between software buyers and developers. S3M

models are described using only human languages, preferably English, which is

extensively used as a second language and as an official language in many countries.

Visual sections of the model can be illustrated using the simplest of office tools: the pen

and paper, or virtually any illustrational software. Secondly, S3M is self-contained.

Each individual S3M model or group of S3M models are accompanied by standard

items consisting of folders and documents that are designed to be extremely portable,

and contain all the essentials to create, store, and guide project stakeholders through an

entire group of S3M models. This produces three momentous benefits for stakeholders

who are involved with S3M models: anyone can learn S3M, learn by themselves, and

learn instantly. Moreover, S3M's standard items are highly flexible. They are editable,

or translated if necessary, to allow optimal fitting for each individual softwru·e system.

Altered standard documents, however, should at least continue to realize the objectives

of each document.

This research refers to the set of S3M models and corresponding standard items

simply as a 'blueprint'. S3M blueprints have three formats to select from: paper-based,

digital, or both (for example, paper-based nrurntions with digital illustrations). Figure

45

3.1 suggests one way to store paper-based S3M b1ueprints, and Figure 3.2 suggests one

way to store digital S3M blueprints. Because S3M blueprints can be entirely in paper-

based form, it has been extensively scrutinized and simp1ified to minimize software-

dependency, albeit modern system designers being more 1ike1y to opt for word

processors and stencil-based drawing software. Lastly, S3M blueprints are photocopy-

friendly - meaning every element has been designed in only three colors: white, black,

and gray.

r

. . . .
!
f

; !,
f' f

~-+----....... --~~(.-¢' f: !
; (i
~ ~ - ~!

~ [' :

t ' 1 J j

~-=v 1··---·

'
!
t

r··-···-i-··········T~· .____,~_r:_/ ... _.D_M·t_' ~

r·····-1 ,,., ... "_J··""

i L.
, '- l.1!.·nkfu;>~.li<"'R't"""

t:::::: ···~,. ___ _ ~.-.:~····

....... _ :::::.:
Bim~l:}k!·t~H:R~;:<l(!

: t
!
!
i
!
t. -·······

!
J\~.::w-1.t-;:ml-iltf

l J
t .. ~

~---~

Figure 3.1. Paper-based S3M Blueprint with Standard Items in Suspension Folders.

46

f
~ :
lt-+-tt+: +++

. :
L;,,,., .. J A:'.(~.ofr::,l\'i:: Sy-:itt•;~ --·--·-··!

(: ,:' ll«c•m .. ,·ul. r··-··-·· L.~;,;·-~}
l .
I
:
4.-

Figure 3.2. Digital S3M Blueprint with Standard Items in Computer Hard Drive.

3.2 The README Document

README is a commonly distributed file containing infmmation concerning

other files in a directory or archive. The capitalized name is chosen to attract users to

read the file first. Similarly, all S3M blueprints are delivered with a single README

document in a README folder. It should also be the first standard item created, as

everything else branches from here. The S3M README document aims to meet the

following objectives:

(1) To introduce S3M concisely.

(2) To introduce S3M standard items.

(3) To provide other essentials S3M users need to know before proceeding.

The following is an example of the READ ME document:

47

TT TT TT TT StartREADMEdocument T TT T TTT T

READ ME

This software system is designed using the Software Screenplay Storyboard
Model (S3M), which narrates and visualizes the system before actual development. The
narrative and visual aspects of S3M models are documented in separate reports. S3M is
also self-contained. Each individual S3M model or group of S3M models are
accompanied by standard items consisting of 4 folders and 7 documents that are
designed to be extremely portable, and contain all the essentials to create, store, and
guide project stakeholders through an entire group of S3M models. The first folder,
called README, stores all 7 documents named respectively: README, Reportslntro,
BlankFunctionReport, BlankScreenReport, BlankPopupReport, FunctionList, and
S3Mexample. These documents should also be read in the same sequence. The other 3
folders are named according to their contents: FunctionReports, ScreenReports, and
PopupReports.

S3M, as well as this point henceforth, utilizes two literary conventions. First,
nouns enclosed in square brackets "[]" mean to insert contents, as indicated by the
given nouns, at the same location as the square brackets. For example, "[system name]"
means: inse11 a system name here. Any word formatting such as bold, italic, or
underline applied to the bracketed nouns also applies to the corresponding insertion. In
some cases where insertion is optional or unavailable at the time, system designers may
either leave the insertion intact, or if possible, simply erase the square brackets and its
contents. Lastly, three periods separated by spaces" ... "mean: so on so forth.

A A A A A .A A .A End README document A A A .A A .A A .A

3.3 The Reportslntro Document

The modern user interface of a computer is a remarkable demonstration of

simplicity. Virtually anything can be achieved in three actions: type, click, and drag.

S3M reports are substantially based on these actions. They document what system users

will type, click, and drag in the user interface. A forthcoming S3Mexample document

will evidently corroborate the sufficiency of these actions in modeling a software

system.

The Reportslntro document is essentially the hea11 of S3M. S3M users will be

able to create the reports after reading this one single document. The Repo11slntro

document aims to meet the following objectives:

48

(1) To introduce S3M repmts and their key elements.

(2) To explain how to use the repo1ts.

The following is an example of the Reportslntro document:

T T T T T T T T Start Reportslntro document T T T ,, T T T T

Reportslntro

S3M models consist of tlu·ee types of report: function reports constitute the
narrative aspect of the model, and screen and popup reports constitute the visual aspect
of the model. S3M standard items also include a blank function report, a blank screen
report, and a blank popup report as templates to provide convenience in creating the
reports. The following sections are introductions to each type of report:

Function Report Introduction

Jn S3M, a function is a set of steps or actions users perform on a computer
system to achieve a particular end. Steps can be described murntively as well as
pictorially. Smaller steps may be fused into or described in a single step, and vice versa.

A function report provides full description of a particular function pe1formed by
users of a computer system. A function report is read alongside screen reports that it
calls. Function reports mainly describe steps performed by users, unless developers
decide they need a technical version of the function report that also details steps
performed by the system. The following is the layout and full description of a function
report:

Function Name:

Category Path:

Description:
Functions Involved:

Screens Involved:

Popups Involved:

Designers:

[function name] Function Report

< Function names are preceded by a letter 'f. All other words
that the name comprises begin with a capitalized letter to
distinguish each individual word.

< This lists the category and subcategories that the function
belongs to. Categories and subcategories are separated by the
"greater than" symbol with spaces " > ".

< This is a description of the function.
< This lists other functions used by this particular function, and

helps designers retrieve relevant function reports beforehand.
Disabling functions listed here will affect the current
function that requires those other functions in a system.

< This lists all screens used by this function, and helps
designers retrieve relevant screen reports beforehand.

<This lists all popups used by this function, and helps
designers retr~eve relevant popup reports beforehand.

< This lists all developers or buyers that create or edit this

49

Function:

Exceptions:

1
2
...

repmt.

Description

<These are things that can go wrong when users perform the
function.

Descripton Response
< How the system respond to an
exception that is detected.

*Please see the Step Tutorial section on how to name steps.

Steps Tutorial

Steps must be uniquely named for reference puq:>oses. For example in a
recursion, a later step tells the user to perform an earlier step. There are sequential steps
and alternative steps. Sequential steps are normally formulated by adding one to the
previous step. Alternative steps are normally fonnulated by adding one and a non­
capitalized English alphabet to the previous step. However, S3M recommends that
designers avoid multiple alternative steps simply by creating separate function reports
for each alternative step path, or create a function report for the most significant step
path. The step naming convention is demonstrated by the following table. Notice that
tllere is always a single first Step 1 as the starting point. Also, notice how step paths
influence the step sequence. It is more natural to think step paths one by one, than all
alternatives at once.

Step Steps Illustration How to Read Step Paths
Sequence

lsrl (~;-~) Perform Step 1, 1>2
perform Step 2

"·--~/

~
(stop)

~)

Steps Perform Step 1, 1>2a
1 perform either Step 1>2b

2a 2a (stop) or Step 2b
2b (stop)

50

(.,,,

. l)
>"'--"~< / \,

1 ~.
,/,-~,, /"'''''"""'-, _

(2a } (2b)
"'~~~~/ -~~-"/

Steps (·~~~'·,) Perform Step 1, 1>2a>3
1 >~~-·~

perform either Step 1>2b>3
2a ,/ \~. 2a or Step 2b,
2b /,...-·.v...,...,.......,\ l/,,..J'-"N-...-.... , perform Step 3

3 { 2a f (2b ! (stop)
'-..,___,,./ ~_/

\ I *Notice that there \, ,I
~ ,,
/~-....,;, may be as many

(l; \ alternatives \,.) ,.,,, ___
necessary, but Step 3
succeeds all.

St.eps ,··"'·-·-......., Perfonn Step 1, 1>2a>3a
(J) 1 perform either Step 1>2b , __ _..,,.-·"

2a I \ 2a or Step 2b (stop),
3a ,It \ perform Step 3a

~\
,--...,

I' \ (stop) 2b (2a } (2b)
\.,,...__,,) "-.......... _......

+
*Notice that Step 3a
only ends the

/-·~.,\

(3a } alternative path 'a'.
\.,....__,/'

Steps ri·~) Pe1form Step 1, 1>2a>3a>4
1 1·--/, perform either Step 1>2b>4

2a \ 2a or Step 2b,
3a \ perform Step 3a,

~} r;) 2b \;~/
perform Step 4

4 "-~ (stop)

+ I *Notice that there
/~ I (3a · / may be as many
'"-. __ ./ I alternatives and

\ I paths necessary, but \,. __ .,
Step 4 succeeds all.

(4 '•,)
_,,/

I Ste~s I Perform Step 1, 1>2a>3aa
perform either Step 1>2a>3ab
51

2a
3aa
3ab
2b

Steps
1

2a
3aa
3ab
2b
4

Steps
1

2a
3aa
3ab
2b

4aa+b

Screen Report Introduction

2a or Step 2b (stop),
perform either Step
3aa (stop) or Step
3ab (stop)

Perform Step 1,
perform either Step
2a or Step 2b,
perform either Step
3aa or Step 3ab,
perform Step 4
(stop)

*Notice that there
may be as many
alternatives and
paths necessary, but
Step 4 succeeds all.

Perform Step 1,
perform either Step
2a or Step 2b,
perform either Step
3aa or Step 3ab
(stop), perform Step
4aa+b (stop)

*Notice that Step
4aa+b only ends the
alternative paths 'aa'
and 'b'. Try to avoid
this.

1>2b

1>2a>3aa>4
1>2a>3ab>4
1>2b>4

1>2a>3aa>4aa+b
1>2a>3ab
1>2b>4aa+b

A screen is basically an instance of a system's user interface (UI). All widgets,
or UI components a system user interacts with such as buttons and text boxes, are
uniquely tagged for reference in function rep01ts. Multiple widgets can also be tagged as
a group. Tags are formed according to the following convention: [screen name]-# (for

52

example, sLogin-1, sLogin-2, and so on). Tag numberings usua11y start from left to right
and top to bottom of the screen.

A screen report describes and illustrates a particular screen. Screen reports are
used with function repo1ts that call them. The following is the layout and full
description of a screen report:

lk,ci'pfr1r
f 1.r;;,,:lwrn. bw1d1,0J

.· ~-.::fl~.:~ n::1~·:w:-. H\"~ 1!r:~1~1;.:df.:tJ b-1; <l ~1:1l1.:r \', iJ:·> <l.:l fJ!bt:i \\u:d:-- th.1~ the '$~:W>:::: ::1.R:·1prb .. ~~ h."'~~h \>":E"J I~ <·4:i;i.~\:1'1:~J \t>('::1:1 h! 1foi:~!;Ui":-.::; 1,.•;>,::h
~r1iJ!•..-·:1.fa;:1i W(l:>,l,

I'h~!; ~~:a (h:~.uirni1m ul th:..· ::,;.:~c:<:"n.

· l~;·;~~:;~1~~i'.::1 ~;:~~·.;· ,-~~;:'.··:~;f~~:/~\~;~';r~-1~~-:;;:~;11_,!; ;~·~·;:;~~ l;)1t~:l~1-1t't'll. :m~i hdp;; di.·~~:;··t:~\ 1~:;1H:\·-.: ~-;.·k·v~1r1: fu1p::.:i:1!:· ~q::11:·;:, k•ftr·t·lmnd Ldi!rn)-'. ih1:

< D~::;,~~He:~ .. ff:· m1{h;n:.; ~)f tlri::. n:fi.a;·1

~Jl)¥J

·····~~:,',:~'.~1:·t;~;::~::::~:t:·~> ·,7···
/ /

l;~/~ul;(1\~,.., ./ I
l ,

Ri·~.~o:J\' FJ::~t£tm /
I

Wm,i1J..w:, (.'.i11~~·
t;wk1~1

Popup Report Introduction

A popup is a window that appears over a screen, and calls the system user to
perform a specific function. For example, a popup may require the user to confirm the
deletion of a piece of critical infmmation, or inform the user of exceptions and errors. A
popup may call another popup, although rarely practiced. A popup disappears and
allows the user to return to the screen or popup that calls the popup only when the user
performs the specified function or cancels the popup. This distinguishes popups from
screens, which are less strict than popups. To decrease documentation, S3M
recommends that popup reports are only composed for complex functions. Simple
popups can be directly described in function reports. The following is the layout and full
description of a popup report:

53

•· .. p111:np 11mnc:~ 1~.r..: Jli"<.'l:t......Jl·d hy lb•: h~1·~;:.·~~i 'p:. ;~~1 a!l 11fot·-i \'~•.<JJ., foil~ ll!i..: 1mm1: -:ornp: ~: .. r·" hq~rn v .. U: ;1 ;.: . .i~1it<ili:.:e:J kl:•~·~ h• .. b.1111~!.~w-.11 t•.01d1
Pl• 1yi.dn:~t wnr1t

· .. ·1·1li·~ 1~. ~ <1t.~r.r.:ption nt (~1~ wi.pn~~-fk'M:riptJ.;,m.
l;tulU~IJfl.'= lt·11;·~1i_'i.·t~fl· ,· nn~ i.ih::ntir~t':'-. ft1n .• :.1J1.)n\ frp;t)!h: ~~:di l.Ybl"·~ ~hi~ rup1.~·· :~firJ :.1.dp'-. d1:-:;ip1l"r:, :dr.:1:-·~·t' t"1:k'.'>1.nl. hi1n:ti·:.)\"1!fTi'tr;~;1.:-~·f(W::·h:tw.I L'di:hr th1: !;1.r:~~n~

popup rn;1;: ~d;.>~:1 tht.:' t~w11.':1ln!h i~sr~-d ht0 r.;:
· :. Di..~~q.m?.'f'i. N 111.11 h•.i1~; ol thl:< n;rN:.

-·-··--·----···--···--·--····· ---···-···--·----··-----.--,-----~······----.-------, .

.. ~~~:!~''!:_~;~1~:.1 -·~····---·-··-··-· ···················--·········~~~::.;,~i::·~~::::;'.::;:~:.71
\Viflll.:):,j/:-:.. // /.

/ I
H~:::hwc ~:"h1.;.1,yri /

\.\-"~nd·;)',,,::- Ck{.

A A A A A A A A End Reportslntro document A A A A A A A A

3.4 The BlankFunctionReport Document

The following is a typical BlankFunctionReport document created with and

designed for use with word processors:

'Y 'Y 'Y 'Y 'Y 'Y 'Y 'Y Start BlankFunctionReport document 'Y 'Y 'Y 'Y 'Y 'Y 'Y 'Y

Function Report

Function Name:
Category Path:
Description:
Functions Involved:
Screens Involved:
Popups Involved:
Designers:

Function:
Description

54

E '"'xcept1ons:
Description Response
1
2

A A A A A A A A End BJankFunctionReport document A A A A A A A A

3.5 The BlankScreenReport Document

The following is a typical BlankScreenReport document created with and

designed for use with stencil-based drawing software:

T T T T T T T T Start BlankScreenReport document T T T T T T T T

55

S.::cei NM11~':
r:h;:;,1~:t1.pti1H1
F1m~t·;o.1~': ln\'ilh -ed.
l)l,.":-;i_~\lWi':-.:

.A .A .A .A .A .A .A .A End BlankScreenReport document .A .A .A .A .A .A .A .A

3.6 The BlankPopupReport Document

The following is a typical BlankPopupReport document created with and

designed for use with stencil-based drawing software:

T T T T T T T T Start BlankPopupReport document T T T T T T T T

56

THE ASSUMPTION UNIVERSITY LIBRAR\

I~ ,,1rp N:xr1u:·
lkM'llpli·O:i:
J"-1111d::l1a ... ,J1r(,'(•li.'t~iJ·
t)i·:~:::r~)t::." r:(:

.A .A .A .A .A .A .A .A End BJankPopupReport document A A A A A A .A .A

3. 7 The FunctionList Document

Function reports are gateways to screen and popup reports because both types of

reports are designed to be called by function reports. However, when there can be

hundreds, perhaps thousands of functions, the FunctionList document is vital in aiding

S3M users in function searches as well as creation. The document aims to meet the

following objectives:

(1) To explain the impmtant purpose of the document.

(2) To aid S3M users in function search and creation.

The following is an example of the FunctionList document:

T T T T T T T T Start FunctionList document T T T T T T T T

FunctionList

57

This document provides an introduction to the software system and a pmtal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
cmTesponding reports. This document initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system model development.

[software syst.em name]

[software system introduction]

1. [category} name]

[categoryl description]

Function reports in this category include:

1.1. [function report 1 name]

[function repmtl description]

1.2. [function report2 name]

[function report2 description]

1.3

2. [category2 name]

[category2 description]

Function reports in this category include:

2.1. [function reportl name]

[function report! description]

2.2. [function report2 name]

[function report2 description]

2.3

3

• • • • • • • • End FunctionList document • • • • • • • •

58

3.8 The S3Mexample Document

The S3Mexample document is intended to be read last. It demonstrates S3M

with a classic example found in many introductory texts for teaching progranuning

languages: a simple software program that displays "Hello world!" With slight additions

to the program, the S3Mexample document aims to meet the following objectives:

(1) To show how prime standard items and reports may appear in practice.

(2) To show how prime standard items and rep01ts work together.

(3) To prove the feasibility of S3M.

The following is an example of the S3Mexample document:

T T T T T T T T Strut S3Mexample document T T T T T T T T

S3Mexample

This document does not present a complete S3M solution, but provides a
demonstrative S3M example. It has excluded the README, Reportslntro,
BlankFunctionReport, BlankScreenReport, and BlankPopupRepmt documents because
their contents normally remain the same. Designed for a software system called Hello
World, the example consists of a FunctionList document, a function repmt, a screen
report, and a popup report. Sepru·ated by rows of asterisks, the document and reports ru·e
intended to demonstrate how descriptions from the FunctionList document can be used
to generate functions, how steps and exceptions may be described, how widgets may be
tagged, how the reports relate to one another, and clarify other queries new S3M users
may have after reading through the standru·d items. New S3M designers may also adopt
the design· sequence and logic implied by the example, although S3M does not impose
any in particular.

Function List

This document provides an introduction to the software system and a portal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
corresponding reports. This document initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system model development.

59

Hello World

Hello World is a software system that calls a popup to display the message,
"Hello world!"

1. Main Functions

Hello World has two types of users: authorized and unauthorized.
Authorization is checked by the system when users attempt to log in by entering a
username and password. Only users with valid combinations of username and
password are able to view the popup that displays the "Hello world!" message.

Function reports in this category include:

1.1. tLogin

All users log into the system here.

Function Name:
Category Path:
Description:
Functions Involved:
Screens Involved:
Popups Involved:
Designers:

Function:
Steps

fLogin Function Report

fLogin
Hello World> Main Functions
All users log into the system here.

sLogin
pDisplay
Jia

Description
1 In sLogin, type in username and password in sLogin-1, and click sLogin-2 to

attempt to log into the system. If username and password is valid, system
calls Dis la .

2

E f xcep 10ns:
Description Resoonse
1 The username and password are not System calls popup that states: "The

found. username and password are not found."

60

:::ir.t'i!l'll N~~f.a:~·:
D~':;<..:t; p1~•,m,
1"1m:nom hwnJ1.~·~t
.l)::"::i5ptt'r:~

sL·1!!J1:~
/\~l .11~,t·f:i)<)::. in~n tti~: '.;·v:1:i,:;~J ?.1-.~~~~
1Ln6u ~ ·
Jk ..

1·;.:,::r~ ~~.-,,~ -.-- ~--J,.1..,!t•i ...)
Pa~;.woid ! ~ • . ::

;ZS~~;D!

61

l"11p1.1p Nt~tll('
fk'.-icrlpt.i.(1~1:
h:in,-1:1.1th)m-:.il·1't.~1l
f)1:~.:~gp.n;;·

pD!'.~pl-:1y
Di.~P=.~~y the mi;~>::J.1.;~i~. ··t·klh·: ·~;:1:·i&''
tl_ . .,.;1gm
.Ji;•

A A A A AA A A End S3Mexamp1edocument A AA A A A A A.

62

IV. TESTING S3M

4.1 Student Information System (SIS)

In contrast to the "Hello World" software program in the S3Mexample

document, SIS is a practical real-world application - demonstrating actual scenarios that

require the creative harness of S3M. The SIS blueprint excerpt presented here not only

abides by the S3M framework, but incorporates narration-illustration principles in

various areas of the blueprint to maximize users' comprehension. Again, this section is

not intended to provide the entire blueprint, but presents only a set of related functions

concerning academic program setup. The READ ME, Repo1tsintro,

BlankFunctionReport, BlankScreenReport, BlankPopupReport, and S3Mexample

documents are excluded, as their contents normally remain the same in all blueprints.

The SIS blueprint excerpt will strut with the FunctionList document, and work its way

through the reports that build upon the FunctionList document. The excerpt is created

using only a word processor and stencil-based drawing software.

4.2 SIS Blueprint Excerpt

To eliminate clutter, individual documents and reports of the SIS blueprint

excerpt will each strut on new pages, starting from the next page. Moreover, reports will

not be regrouped according to report types, but they will remain in the same sequence

they are created to provide some insights to the exce1pt' s design sequence and logic.

63

FunctionList

This document provides an introduction to the software system and a portal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
corresponding reports. This document: initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system blueprint development.

Student Information System (SIS)

SIS is a generic system concerning all functions sun-ounding student information
such as grades and attendance. Four primary types of users of SIS are system
administrators, which are simply referred as administrators, instructors, students, and
parents. Administrators typically perform technical functions such as system or user
access configurations. Instructors perform functions related to students such as grading
and issuing progress reports. Students and parents share similar functions, which mostly
pertain to viewing student infonnation. All user information, despite their status, is
stored permanently and requires authorized personnel to perform any deletion.

1. Generic Functions

For security reasons, each type or individual user may be configured to allow
access to only certain information or functions. User access rights are checked each
time the user attempts to log into the system with his/her usemame and password.

Function rep01ts in this category include:

1.1. fLogin

All users log into the system here.

2. Academic Program Functions

Most educational institutes possess more than one academic program. For
example, a typical grade 1 - 12 school may be divided into Elementary School,
Middle School, and High School. As for universities, the academic program
hierarchy may branch as far as 3 to 4 tiers. For example, a university may possess
Bachelor, Master, and Doctorate Degree Programs. Master Degree Programs may be
divided into several schools such as Business, Computer, and Engineering. Finally,
the School of Computer may be further divided into Computer Information Systems,
Computer and Engineering Management, and Internet & E-Commerce Technology.

Each academic program may possess its own set of calendars, daily
schedules, and students, as well as address (academic programs are not necessarily
located at the same place). A branch of academic programs, however, may possess a
single publicly-accessible master calendar that oversees the entailing set of publicly­
and privately-accessible calendars. School day indications (full, partial, and no

64

school) and events added or edited in a master calendar will be inherited by all
publicly- and privately-accessible calendars of the corresponding branch of
academic programs, unless inhibited by the user. As a consequence, a master
calendar cannot be overseen by another master calendar as shown in Figure I, nor
can two or more master calendars reside in the same node. If a master calendar is
deleted, information previously conveyed to all publicly- and privately-accessible
calendars of the corresponding branch of academic programs will also be deleted.
Lastly, all calendars display the current month by default when accessed.

Figure 1. A master calendar overseeing another master calendar is illegal and
confusing.

65

Academic programs need to organize marking periods to inform students of
their grades or progress throughout an academic year. Marking periods should be
named meaningfully, and possess no more than three tiers. For example, Academic
Year 2007 (1st tier) has 2 Semesters (2nd tier), and each Semester has 2 Quatters (3rd
tier). Marking periods appear as non-recurring events in calendars hence, they are
recreated for each academic year.

On a daily basis, academic programs abide by daily schedules. An academic
program may possess multiple daily schedules, for instance, one for fu11 school days
and another for partial school days. The daily schedule displays information such as
class periods and breaks.

Function reports in this category include:

2.1. f AddAcad

Add a new academic program.

2.2. tview Acad

Added academic programs may be viewed, edited, deleted, or saved as
new academic progrmns.

2.3. fAddMarkPer

Add up to three tiers of marking periods.

2.4. tviewMarkPer

Added marking periods may be viewed, edited, or deleted.

2.5. fAddCal

Add a calendar for an academic progratn.

2.6. tviewCal

Added calendars may be viewed or deleted.

2. 7. fSchDayCal

Indicate full, partial, or no school days on a calendar.

2.8. ffiventCal

Add, edit, or delete events in calendars.

2.9. fAddDlySchd

66

Add a daily schedule for an academic program.

2.10. fViewDlySchd

Added daily schedule may be viewed, edited, or deleted.

67

Function Name:
Category Path:
Description:
Functions Involved:
Screens Involved:
Popups Involved:
Designers:

Function:
Steps

fLogin Function Report

fLogin
Student Information System > Generic Functions
All users log into the system here.

sLogin, slndex

Jia

Description
I In sLogin, type in username and password in sLogin-1, and click sLogin-2 to

attempt to log into the system. If usemame and password is valid, system
loads the user's access rights and displays slndex.

E xcept10ns:
Description Response
1 The username and password are not System calls popup that states: "The

found. username and password are not found."

68

Sn~~1..·11 N;:ira:::·
1'>~:: .• ~· ~ ~ p l~1.:J).
J· 1.tH~·tw1.i:-. ~nvr~h,~-.j
lJ::-.c;j~Silt'\:-.

·,i..~·1!? Jf:
/\.~1 ·U~r('\::)<)::· ill~O th~.' :;\;,\·~n ;K'~(
n.npri
J t.~

-----------·-·--

69

~tmh.>i Sicn•t1:1 l{wmi

•:lrnl:?>: ~~·;'.::1:--;~~I N;.<!l'h':,

l.k~;n:ipu1m· 'f h;.._ h 1.ht· 1·1:.-:>.t !1,·~·02:·1 ~~m: ..:1pp1:Hr..: :Jbcr di·:~ u:,.;::· k:K' ill}.: t1::w ti1e ('~)-'-;t.i:n1. Hd'.·. :ii:.n.>21 :.· .. ;Ji':-.:.' n:;e:.\ !ti Lk·.;i:rih:. ?h~: ~:1~(11u:. :..·n<:'Hl~11~dy l·:~1;_-,!:.1\:..•d
~n Ul•bl ~li?. ~(:fffm<

F 1u1r~~ir~~- I! IHth\'iL
De:;·1~rn:1;;·.

l/~1f<1:\::iHl.. tVh;1.>, '\i.:::i<I: i'/-i.<ld~·f::fj,;Pe~, f\.i1:·'l, ~,~;ff!< I\'::·, f,\(1(\(.;.;1._ t'\'j,'\~·(·;~! f:\,fdD1;:Sct11.·(j
Ji.;i

"'i;;;;;;~···-•·-'""""'""~'"-,:;•;;;;;:;:::;~"""""''"'''''''"'''''··•""·"•"·"•"'·"•"·"'"•"""'"""'"''"'""~••~-"·"'•"•"~''"'"""""'"·"'"···•·-"·'·'"""•"""·"""""'""""~ .. www-"""'""·"''""""""''"'""·• ••···µJ"(i'')?'
~nv.,,,..._..w .. ·~.•.u..u..·; • ..,..,...,_,_.,, ... N •• ,,..,. .. ~"/"•'•"·"~--.........,,,,,_-...,......~ •• ·.·_..·o.·.·.;..-...,.·..-.·-•-•• -.-.·.·. ·'.••··'~""""'.'AV•''-"•'.....,_....,""..,_..v.,.........,,,.www~.............,.,....,,, ... ,,.,_..._..., .•. ,, •.••...• .;.v.,..·.w.·.·.-.-...-.-.-.._....w •. -._v..,...,.,.,v.••"""'~""""'w•........_.·....,"'·""""'w

1::;;:;;i~::;;i:··j;;;;;:;;;l;;;;·"······•~:j

G~·1u·~ 111 JJ~ftnm:uth.m .-fN't.i:
b;·/firmofu.•;: "~ .:.<;,'.) ;p)"f.I .,,q;'U.'<
ji~.tw:i-.w< -~!r' ii'i/i,,.'m.c0i:Y•I /;, ,.;,<:
F!tt,1;::r1.:n S.:·/:..·d1~1,·i ,·J.r::t<' imd
rf(w,~;~IJ~ r;·r.·o.

<bk>o-

['"""" ------.... ,_/
;\-.:1~dr . .>nt~l P':l~J?.f:.:1111 ~-et11p,. Add A~:mlt".r:w .. : t"1vp·;·ffl'.l

\"tl' 1.\." A ... ·i~k1H~l P::'EY.n«l!l
.-\dll ~Vh:t'k~n2; p~'l'i>.~ll
\'k\~· Mar}: in::~ PtTH:•J

.<\t·M C;1.lt<n.d:~·
\."ll'1-\' (:~1l 1.:•:1J:H

Add Oai\y Sd11:·iluic
Vi~:\~· l);:dy Srh:~dBI~·

--"""'-"'"""'"·'·"·"·"•·"-"··,•.•.•.·•.•.•••

!~;;:,;:~~;~<;~~'%: :i~·~;~·;::::~:-tfr
·y,~·.1q~ V•i.~if;.

~------------~-------------------·---------·-----·

70

fAddAcad Function Report

Function Name: fAddAcad
Category Path:
Description:

Student Information System > Academic Program Functions
Add a new academic program.

Functions Involved:
Screens Involved: slndex, sAddAcad
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, place the cursor on "Academic Program Setup .,. " until a function
menu appears.

2 Click on "Add Academic Program" in slndex-1 to display sAddAcad.
3 In sAddAcad, complete the form for a new academic program in sAddAcad-

l.
4 Click on sAddAcad-2 to save the new academic program. The form will

reappear blanked to indicate to the user that the new academic program has
been successfully saved.

E xceptlons:
Description Response
1 Academic program name must be Depending on which, or both exceptions

unique. are detected at once, system selectively
2 Established date may not exceed state the followings in a popup:

current date. 1. Academic program name must be
unique.

2. Established date may not exceed
cmi-ent date.

71

~,,_::~>:~;i N(;(ttW
r: .. :.•:,1,:fipt~m1
f;UIKL>(J.1~;: ln\"·~1l"i.·"(:d.
[J:;:-·.;ignr:T·.

.'}/\<ld.'\1:::111
/\dd ;~Hi)•;·. :(:,::1&,·i~~k' pa1;J_n:;l!l.
t/ui.t/\o;:m1
}i:i

N-:i:·iti:.

t~·ftmit hi!! S,.:~H)(I~ rJ.-iy·

r· Su11dlly r Mc011J.iy r luc:.d;oy 1- \',\•iln<:,,Jay r Hmr:'<llly r hid":-' j ~'iltin:by
L'.....__ __ ••-~-.•---·-·----•·w--.. ••ww•-••-·w»w•--••--·-·--w--•

72

fView A cad Function Report

Function Name: fViewAcad
Category Path: Student Information System >Academic Program Functions

Added academic programs may be viewed, edited, deleted, or
saved as new academic programs.

Description:

Functions Involved:
Screens Involved: sJndex, sViewAcad
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program.
2 Place the cursor on "Academic Program Setup 1111-" until a function menu

appears.
3 Click on "View Academic Program" in slndex-1 to display information of

the selected academic program in s View Acad.
4a In s View Acad, to edit the selected academic program, revise the form in

sViewAcad-2 except "Name". Click on sViewAcad-3, to save any changes
made to the selected academic program. A popup appears to inform of the
successful save.

4b In sViewAcad, to save as new academic program, change the "Name" of the
academic program. Click on sViewAcad-3 to save as a new academic
program. A popup appears to inform of the successful "save as".

4c In s View Acad, to delete the current academic program, click on s View Acad-
4 to display a popup that warns the user that a deletion is about to be
performed. Click "Ok" in the popup, and a new blank form will reappear to
indicate to the user that the academic program has been successfully deleted.

E xcept10ns:
Description Response
1 In both cases of editing the selected System calls popup that states:

academic program and saving as a "Established date may not exceed current
new academic program, established date."
date may not exceed current date.

73

S.:·::t'x';~ t'1u11r;: ::.\"it•w:\,::ml
D·.::.i:-·tipti1m.
f·m,1::tim:i:i: ln\·~ih·'(:d:
l), .. :-,i,¥1W'r:~

;\:dd:(.d :~1..~:1•.kr:iii' p-n:~tinr:.1~. :·11<1:,. l.:.;.· \' !f;\1,-;,.'.I,!. i:~;J). 1 . .'il. <.1rk~r.:d. <•i" :.wd,:d ;~~, lh'~), ;<(.:!J:::n~>: 1·~:: 1 ;rr.;,:.11:, ~: •. 1 :i:;pk .}:}1;:1 i~; ;:d~<· ::,br:l~·~,
tVk··.,_,·,<\1.':oHi
.li:I

.,,:i~~~-:,~~~~~1;;;·i;r;~·i;;;~;-·VVA·-~-~=:=:~.~=~.:·Y»Y·~==:·~==~~:~~--~~-.. ~·•nv.·~·····~~--'····-~~~==~-~-~=1F-.V.>Y~=~~~=:~~~====~=~=~~~=~=~~A:1·~-~
j::·1to1:tt~ n;1y·\h111~·l~·Yc1rJ

r~~111~,1t ~:(~~~a ~
:;.\"'J(.'•,\·.-1~$. ."I~:.

,.-~-----.

L'.t;:m:1cm:;; t;:q

O<'ii1ult Fu ti s,1,._,; Di!y:

r ;;..,,J~~ F/ Mrni:by p: T\l<'wuy f7 \\'<Jue>d"~·
L'...,_.---···-------~----
!1*i*~ j,~~w;r4

~;\'i('t.'ti\~:td·; \
sV JL''-~\1:;1~J.4

74

f'AddMarkPer Function Report

Function Name: f AddMarkPer
Category Path: Student Information System > Academic Program Functions

Add up to three tiers of marking periods. To demonstrate the
function, the following marking periods are created for the
School of Computer: Academic Year 2007 (1st tier) has 2
Semesters (2"d tier), and each Semester has 2 Quarters (3rd tier).

Description:

Functions Involved:
Screens Involved: slndex, sAddMarkPer
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup .,.. " until a function menu
appears.

3 Click on "Add Marking Period" in slndex-1 to display sAddMarkPer for the
selected academic program.

4 In sAddMarkPer, the initial state of the screen is shown, which no marking
periods have been added yet. sAddMarkPer-3 and sAddMarkPer-4 are both
disabled, and can only be enabled when a marking period of the previous tier
is selected. sAddMarkPer-5 is blanked and disabled, and can only be enabled
when any "Add Marking Period 'Y" button is clicked. Lastly, sAddMarkPer-
6 is disabled, and can only be enabled when required fields of sAddMarkPer-
5, indicated by asterisks '*' , are typed in or selected.

To add a marking period in the first tier, for instance "Academic Year 2007",
click on sAddMarkPer-2 to enable sAddMarkPer-5. Complete the form in
sAddMarkPer-5 like the following figure, and click on sAddMarkPer-6 to
save.

I l~~I :] I T'.~~·l ~ ::i l : : : :r~~·~:: I
£['ii~mWJ~'!~ I ······' ··•

.••.••• -.::.:'•! .,

;,.<\<klM;~rl;P.,f·~ .. \
,;.l\ddM1.1;kf><':. • .J: u ··-····-·-· ...

:<:\<ld'-·\;nk Per· .5

r- ---
Nmm.~,.:: 1x~;;~1·;:;~~;;:·::;:~:;;;··£;)(;7··

Bt"y:i!1~:~ 1~) 1 . Ei !.1"'.~"!!'Y LI !21);11 fill b1<i''·: fii .. _llJ ~);~;;;i;~·----L!J pm, EiJ
\br.k h,,,11~: 11:i:;:: .. E1 1~:i~~;1:i; lil 1;;:;;;;: .. l;JI

··-
.h;-~,l

.>.·\ddMJ1<ki'cr-i\ :t'N~:ir~ci~:: s., .. n~;.~.n h:t:i-i ht~.::~1~ cn,··Thpn.~:..-v.:J.

5 The following figure portrays the screen after "Academic Year 2007" has
been successfully added. sAddMarkPer-5 is again blanked and disabled, as
well as sAddMarkPer-6.

75

,;...,.\dd\l~r~I: Pr:-r-~

---------./

I
r-·---··-··-----··-····-·····-····-·····---·-·-·--·-··-·-

bd'• Fi~;TLJ li;;:;;;;ii:;···· ··T:J Fi;;;,;···f2.11 1

To add a child marking period in a succeeding tier, for instance "Semester 1 ",
click on a parent marking period in the preceding tier, for instance
"Academic Year 2007", to highlight it. Then click on the "Add Marking
Period T" button in the succeeding tier, for instance "sAddMarkPer-3", to
enable sAddMarkPer-5. Complete the fom1 in sAddMarkPer-5 like the
following figure, and click on sAddMarkPer-6 to save.

r~--·1:1;~:i--"·---#-1

b.i'..lil .. :l~;~iii~l~~"'~-\'.Jl
»AddMm.!<J'cr ..)

6 The following figure portrays the screen after "Semester 1" has been
successfully added, and connected to "Academic Year 2007". sAddMark.Per-
5 is again blanked and disabled, as well as sAddMarkPer-6.

Tkrl T"l~r.l. J r

Nm.r1t•~: :j

76

To add the entire set of maTking periods, follow similar instructions in Step 4
if you want to add a marking period in the first tier, or follow similaT
instructions in Step 5 if you want to add a child marking period in a
succeeding tier. The following figure portrays the screen after the entire set
of marking periods has been successfully added.

[:~~::::.:IJ; -~ .. ::.: .. :'.'.?~': .. _.-......... _!- -- ·~ l§i:~'.:.''.'!:~.! ___ ... __ = =:=J• ~ 1 G~,:~:~.~-~ ... -.. nww•.•n.••.~.··•••·-·J
:.:.twi~~~l~i~~g.r~[i~;.i:icJ t-[Fillcl,~·~~-· I LF;;:~;:,""' i. ·=i

Lk;!in '' f6:;;:··E.l[I v1;;;~if;···· . .li.1 f•''~~;···f.3]
>,:Jark t,,1.1.:: [o"y CE} !~·lonlh ITl IYt·ar IEE'J

E xceptions:
Description Response
1 A child maTking period may not Calls popup that states: "A child maTking

possess a time frame that exceeds period may not possess a time frame that
the time frame of parent maTking exceeds the time frame of parent marking
period. period."

2 MaTking periods in same tier may Calls popup that states: "Marking periods
not overlap in time. in same tier may not overlap in time."

3 "MaTk Issue" may not occur before Calls popup that states: "Mark Issue" may
"End" date. not occur before "End" date."

77

~ ft."l~;t t-.J.i.11·11;:
f)..::1~'.tiptiu:1·

F'tll1i.:1.~1lt-.~. lr11,·~)!·,.,:i:.J:
(),~~I{.~!!\:'!:;;

I•:u~Jt-u:: n.1y.\h1n~l(·Y1:-;1)J

J~-,l:h1,~;1l ,,.1{(\1rnpukr -~

!;/:.ddt\1:.l1~)t(.'~. 1

•ArltlM•rkPcr Scrnni lkpm1

Tier-!

.•..... ~~~~~l§llf~?ft!!\;.d
::.:\dd\t:vt:f'ri -:~

78

fView MarkPer Function Report

Function Name: fV iew Mark.Per
Category Path: Student Information System > Academic Program Functions

Added marking periods may be viewed, edited, or deleted. To
demonstrate the function, the following marking periods from the
School of Computer are used: Academic Year 2007 (1st tier) has
2 Semesters (211d tier), and each Semester has 2 Qumters (3rd tier).

Description:

Functions Involved:
Screens Involved: slndex, sViewMarkPer
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup ,... " until a function menu
appears.

3 Click on "View Marking Period" in slndex-1 to display sViewMarkPer for
the selected academic program.

4a In sViewMarkPer, to view the details of a marking period, dick on the
marking period to highlight it. For instance, click on sViewMarkPer-2, -3, -4,
-6, or -7. Details of the marking period will appear in s View MarkPer-10.

4b In sViewMarkPer, to edit the details of a marking period, perform step 4a to
view the details of a marking period. Revise the form in s ViewMarkPer-10,
and click on sViewMarkPer-11 to save. sViewMarkPer-10 is blanked and
disabled, as well as s View MarkPer-11 and -12, to indicate to the user of the
successful save.

4c In sViewMarkPer, to delete a marking period, perform step 4a to view the
details of a marking period. Click on sViewMarkPer-12 to delete the marking
period. A popup appears to wam the user that child marking periods
associated with the marking period that is about to be deleted will also be
deleted. The user confirms the deletion by clicking 'Ok'. sViewMarkPer-10
is blanked and disabled, as well as sViewMarkPer-11 and -12, to indicate to
the user of the successful deletion.

E xcept10ns:
Description Response
1 Child marking periods may not Calls popup that states: "Child marking

possess time frames that extend periods may not possess time frames that
beyond the time frame of parent extend beyond the time frame of parent
marking period. marking period."

2 Marking periods in same tier may Calls popup that states: "Marking periods
not overlap in time. in same tier may not overlap in time."

3 "Mark Issue" may not occur before Calls popup that states: "Mark Issue" may
"End" date. not occur before "End" date."

79

:','v'il>'\~'ttfad.Pn· S~·.n~·::·H .1'-:;11\lt';,

fJn("::ip1it1:i· /H.kk:d m .. :1;.l;i~1;~:. rr.i"i1.x..b niil)" hr ~.-i~:(>,•1:1.1..1.:t.liis:.1. l.t: t_h-k~t'tl. lt~ Mi:t.;11bl5\lk !!it h1n.:k<t1, lhi• !'1:i1iu\\'./j~:. ':c~q~:,ihf pnip,1. !~o~ i r:1(' '.)d11.u.~t iJf

Cr·rn.flmt'!' ~;\1 ll!i>.'·d: :'\{·;:1d~·::i1.k \'.:.:';~1· ;'.HO'i (p· ti·::-r} lu:: ;: ~~i'l'iii:·:itO~:i (l··:i: li<.>rl._ ;i:xl >.'(idi ~,;_'ll'1i"=;1i'i h:~'i 2 l)~1;;m~·r:; (ta1 f:1.:r1
Fm1..::~~11n, bvn:=wd·
J:h•::i.?.fW!:<:

l\.'i<.'w.MiwkP·:.":'
J::;1

\:;;;~;-;;-,.ll-it~tg .. I;;;;;;;-· ···"'"""" ____ ,_,, '" --.. """"-·~----"'""""'"''"""''""·"-~ ,.. -.. -~-·-· .. ·-·--.. --................ _,..4fdt Xl
-·-·------....,•--•-•'~-·,__....,_...,,,..,,..,,.,., ___ ,._.......,. .. ___ .,,., __ ,,. .•.• ·,·,w~.w • ..-.-. .. w.• ...

\ft1:·n~n!· D.1~,..,>·1<i11fo.·Y ,::J: I

1~~j""'\;;i(;~,::.1il: ... M:§l•r.

80

fAddCal Function Report

Function Name: fAddCal
Category Path: Student Information System > Academic Program Functions

Add a calendar for an academic program, for instance, the
"School of Computer".

Description:

Functions Involved:
Screens Involved: slndex, sAddCal
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup ..,... " until a function menu
appears.

3 Click on "Add Calendar" in slndex-1 to display sAddCal for the selected
academic program.

4 In sAddCal, the followings are possible initial states of the screen:

• sAddCal-3 is only enabled when no master calendar has been created for
the branch of academic programs, and user is authorized to create one.

• sAddCal-4 is only enabled when user is authorized to create one .

• sAddCal-7 is disabled, and can only be enabled when required fields,
indicated by asterisks '*',are typed in or selected.

These authorized users can also edit and delete the calendars that they have
added.

Complete the form, spanning from sAddCal-2 to -6, for a new calendar. If
sAddCal-3 is selected, sAddCal-6 becomes unchecked and disabled.

5 Click on sAddCal-7 to save the new calendar. The fmm will reappear
blanked to indicate to the user that the new calendar has been successfully
saved.

E t' xcep 10ns:
Description Response
1 Calendar name must be unique. System calls popup that states: "Calendar

name must be unique."

81

s~'.fN(~i NatH("
Dc:;l.ripnof1:
l'ISW.t~lrN~. J11',i1~\i:'d .
n~::.igi11:i-~'.

THE ASSUMPTION UNIVERSITY LlBliB~

,;i\(i.JC.il
,\:.td :~ ..:..~knrJ;;w l•.r: m1 ;1.;:.:.;id1.~1wt ptr:·f.'.l~H~\ 1\':-r ~n:;J.:l;n:::e:. :h': ··s,~:·1n1.1·: 11i'C.:irr1 1 ~~t:~(·
. 1':\,MC'•!
}ia

"\
.... \dd('~11·-.2:

(· hn1t')-;.' ::: ..;;~kr1clm '!'Yf1i.' ~

r~. Puhlidy-n·;: ... :,::«.:lhJ.:: ~ ... fa:.;lt.':r Cr~!r1ubr
···;.;\1ld('.i1.l--Ol

(~·--~~!l!i(:!i~'i:~:l~:h•;H··I·:< ('nk;i:,ias

ft;, J•t3\>j\(·~ ~·. 3·:~1,.~1:·:;:;h1k C1ll(,'"~~~lm
· ,,,·\&Jc.1 .. s

82

tviewCal Function Report

Function Name: fViewCal
Category Path: Student Information System> Academic Program Functions

Added calendars may be viewed or deleted. To demonstrate the
function, the School of Computer is selected.

Description:

Functions Involved:
Screens Involved: sJndex, sViewCal

Jia Designers:

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup ._."until a function menu
appears.

3 Click on "View Calendar" in slndex-1 to display sViewCal for the selected
academic program.

4 Jn s ViewCal, the initial state of the screen is shown: a calendar waits to be
selected in sViewCal-2, sViewCal-3 and -4 automatically selects the current
month and year by default, and a calendar is shown in default values.

To view a calendar that has been added, click on sViewCal-2 to select a
calendar, click on sViewCal-3 and -4 to select a month and year respectively
that the calendar will display, and click on s ViewCal-5 to display the
calendar. All saved information such as school day indications and events
will also be displayed in the calendar.

5 To delete the calendar in display, click on sViewCal-6 to display a popup that
warns the user that a deletion is about to be performed. Click "Ok" in the
popup, and the screen will return to the initial state as described in Step 4 to
indicate to the user that the calendar has been successfully deleted.

E xcept1ons:
Description Response
1 Deletion is attempted before a System calls popup that states: "A

calendar is selected. calendar must be selected before
deletion."

83

~·:ff:>.:·a t...=~•:111:
lk:·1;:-ir1iua
h1:1o::;:m~ J:1; oh1~.l·
tk:;i,:J,ti(f:::

:;.Vi..-t{·(":d
. .\J1i~J t::~h':ul1f.1··; t:::1•; I~: 1·i<·v.. t"\i ;v J.:::l't;d t"H ·k:11(:w,1r;1~t: tht- 1rn1..:::(;i;. t:·v: '.li.·i:11• ·I ·~f (:1m1111: . .::1 ~-: .,,.; :.:-.il·d
lti.:wt;il. i~d1D•~~·Lil. ti .. 1.1:nH :d
)»

\7;;•7:;l;~~t;;~v--,.·,·~·.-N,---~~~-~.v~., .. ,.,_,,~·~-~WhhW<::.::·:~~.:vm,.·~:;:~~~~-~::::~~'"''~~~~::~~:;.VN~~~~·;~·::~:~;W~·.w,•,_,~~-·~''•W<•-·•-••V''~'~'•"··"''''•'::J(J·~~T
;;;~;-~:~~~:~:~~;;:;:;i,i~:~~-F·~::~-.~:;:;:~:;~~:~=-~~;;::=::=-~::;:,:~~r·-···:;;~~;i·r----------------······---··--·--

,v,!"~\c:;I~: Smuhn Mi:.mdt>,. Ttu.1!\dar \\··nh1r~Jnr nmn•.i») l·rid11~ :--.urnnbn

'?;N0''.~.:!1•~··!
:\1.kl fw:·::

l;liN,<"i-.IH);"1!

:\1.i-1.l Fvi::·::

'l.ljN,:i~.::tl!"Y.·1!

:\d.:.i Fi:(.':':'i

J-: :.{ jN;·. :'-.•:h<'<'~
Add ~.\·.:n!

2J1~,,..;.·.:-;.,::·11)\)i

,·\d·d ~;-..·~0 01

:2j If f·fo ~)i.'iV \,_i':

,'\·.~~ r. ,-~·«:

i!....11v·Jo·:x'.~q\,/:

,'\1~:.:1·: .. ·1'l<l

::~; ~.v'..iii &~~'"')'·':
.-\ .. M1-: ... -.·m

.2j!.~ JN<' .;,_,h~:-11!

:\;,kl f•,.:-~s!
-.:.: .:! ~i".;1 '':~::tt\:

:\.J;Jh·('"t1

,,1;. ~{!j!'-i1' ~.J.0%f" 1= ti~\;,\-:.,:;::·~,:
:\;,kl /.'.-.;;::51 r\d1J r .. ·,~:tl

±11:fr'k: ~rd1:.·f~:
:\d-.1 Fw::~I

.J1jft4!Nt: ~;,·!1;·;Hl

:\:J.:.i F.\'.;,'::))

84

l'lll~:--;01S1;~:-:lO'.

,\@Jh,,:·11

1t :.?~~;..~, '\1."::(11):

Add Frv:·~t

,,.!... 5 ::·.Ji· ~1<::w .. 1l
. .\·Jd !. ~-~·11\

~f.J 1::0;:-1~. S: ·~1~:11
,-\.Jd °f '<-;'),{(

~ 16/·i~.i \:·: :l(\:.d
. .\.J•I f. v-:~~t

..:Z.J1f' ::f-.:-:1 ~~;·1: ... 11]

:\~~11 r 'r:~!

....:!J;i\N(i~;.;·h;.o! .:...!..
;'\(~ti hl"':~J

>:~. J'"li:N(1S.:%:0J ~

)\~~ii h ~-:u

Function Name:
Category Path:
Description:
Functions Involved:
Screens Involved:
Popups Involved:
Designers:

Function:
Ste s

fSchDayCal Function Report

fSchDayCal
Student Information System > Academic Program Functions
Indicate full, paitial, or no school days on a calendar.
NiewCal
sViewCal

Jia

Descri tion
1 Perform NiewCal to view a calendar in s ViewCal.

2a In sViewCal, to indicate full or no school for a particular day, click on the
school day combo box such as s ViewCal-7. Select "Full School" or "No
School", and the selection will be displayed in the school day combo box.
The following figure provides a demonstration:

I ~:N{1 S;~· ~~)rt 1 · · •
:\dd LH.;1~1

Clkk

2b In sViewCal, to indicate partial school for a pruticular day, click on the
school day combo box such as sViewCal-7. Select "Partial School", and a
popup will appear asking for the start and end time the school will be in
attendru1ce. Select the start and end time and click "Ok". The statt and end
time will be displayed in the school day combo box. The following figure
provides a demonstration:

1- ... N,J S<:ll(:•t•I
Adi.IFVdll

I ?31J • 12Ji(l /~

A1ME\'t:11;

Pl'CJI~~ sdt'<:!: ihl" '~I.ml: m~:l {'.11id iirm: ('4-lm1:1r

fonnRt) lh~ 8;;hud will b~ i11 •1t1ei•d~ni:c-.

85

E "'xceptJons:
Description Response --
1 No exceptions. -

86

fEventCal Function Report

Function Name: fEventCal
Category Path: Student Information System> Academic Program Functions

Add, edit, or delete events in calendal"S. Description:
Functions Involved: 1ViewCa1
Screens Involved: sViewCal
Popups Involved: pEventCal
Designers: Jia

Function:
Steps

1
2a

3a

Description
Perform 1ViewCal to view a calendar in sViewCal.
In sViewCal, to add an event for a particular day, click on "Add Event" such
as sViewCal-8 to display pEventCal.
In pEventCal, the initial state of the popup is shown:
• pEventCal-4 to -6 are only enabled when pEventCal-3 is anything but

"Never".
• pEventCal-9 is only enabled when required fields, indicated by asterisks

'*', are typed in or selected.
• pEventCal-7 and -8 are only enabled when a recurring event that has been

saved is displayed.
• pEventCal-10 is only enabled when an event, recurring or non-recurring,

that has been saved is displayed.

To add an event, type in the name and description of the event in pEventCal-
1 and pEventCal-2 respectively. Click on pEventCal-3 to select whether to
never repeat the event, repeat daily, weekly, monthly, or yearly, from the
current day onwards. If select to repeat event, you may choose to select the
end date of the recurring event in pEventCal-4 to -6. The end date before the
current day is unavailable. Click on pEventCal-9 to save the event. The
event's name appears on the calendar similar to the following figure:

I !No Sdit\O! !Mi: r .,_.
1\t$d [Yelfl
- Mt!et tifonds.

*Scroll bars will appear if space is insufficient for
displaying events in a particular day.

2b In sViewCal, to edit an existing event, click on the event to display
pEventCal that contains details of the event.

3b In pEventCal of the event, edit the name and description of the event in
pEventCal-1 and pEventCal-2 respectively.

If the event is a non-recurring event and the user wants to change it into a
recurring event, click on pEventCal-3 to select whether to repeat daily,
weekly, monthly, or yearly, from the cmTent day onwards. You may choose
to select the end date of the recurring event in pEventCal-4 to -6. The end
date before the current day is unavailable. Click on pEventCal-9 to save the

87

event and return to sViewCa1 to indicate to the user that the event has been
successfu11y saved.

If the event is a recurring event and the user wants to app1y the changes only
to the current event, click on pEventCaJ-8 and the system ignores and
disables pEventCal-3 to -6. Click on pEventCal-9 to save the event and return
to sViewCal to indicate to the user that the event has been successfully saved.

If the event is a recurring event and the user wants to apply the changes to all
recurring events, click on pEventCal-7, optionally change pEventCal-3 to -6,
and click on pEventCal-9 to save the event and return to sViewCal to indicate
to the user that the event has been successfu1ly saved.

2c In s ViewCal, to delete an existing event, click on the event to display
pEventCal that contains details of the event.

3c In pEventCal of the event ...

if the event is a non-recurring event, click on pEventCal-10 to delete the
event and return to s ViewCaJ to indicate to the user that the event has been
successfully deleted.

if the event is a recurring event and the user wants to delete only the current
event, click on pEventCal-8, dick on pEventCal-10 to delete the current
event, and return to s ViewCaJ to indicate to the user that the event has been
successfully deleted.

if the event is a recurring event and the user wants to delete all recurring
events, click on pEventCal-7, click on pEventCaJ-10 to delete all recurring
events, and return to s ViewCaJ to indicate to the user that the events has been
successfully deleted.

Descri tion Res onse
1

88

(~-i)t)U.p N:~IW:''
[k;i~ t·.~f'fii.1:.1:
Funi.":l~l!H'i ln1,:;,h:c-d:
Dt'~:1~!)lr~~r~, ·

r1.:v(·:r:{:·.at
-\dd, ~?~~it. o.~ ,Jd-:.'~1;· ~•,\·Hh in t:.~h:mld:""~ ..
tLf;:m("r1i.
.kt

D~:.• .. ri.pl:•.v.r

pfv~.'1·tti:.·a1 · .3 pl:.·~·-c"i~tC~tl-4

lfrprnil cwric: 1~;;:;; ··-·----·-··---~ Em! (hit: [i);,;:"'111

~
~ l::·~-~~1{'.31·;

f;i. ·
r-t·>co11~t!---,,o. ~;

89

fAddDlySchd Function Report

Function Name: fAddDlySchd
Category Path: Student Information System > Academic Program Functions

Add a daily schedule for an academic program, for instance, the
"School of Computer".

Description:

Functions Involved: -
Screens Involved: slndex, sAddDlySchd
Popups Involved:
Designers: Jia

Function:
Ste1>s Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup .,.. " until a function menu
appears.

3 Click on "Add Daily Schedule" in slndex-1 to display sAddDlySchd for the
selected academic program.

4a In sAddDlySchd, the initial state of the screen is shown:

• sAddDlySchd-3 is only enabled when "Row Name" in sAddDlySchd-5 is
typed in.

• sAddDlySchd-4 is only enabled when the coITesponding row has been
added. However, there must be at least one remaining row.

• sAddDlySchd-6 is only enabled when sAddDlySchd-2 has been typed in .
These conditions also similarly apply in s View DlySchd.

To add a row in the daily schedule, type in and select row details in
sAddDlySchd-5, and click sAddDlySchd-3 to add the row. A new row
appears to inform the user that the previous row has been successfully added.

4b To delete a row in the daily schedule, click on sAddDlySchd-,4 of a row that
has been added.

5 To save the daily schedule, type in daily schedule name in sAddDlySchd-2,
and click sAddDlySchd-6. A popup appears to inform the user that the daily
schedule has been successfully saved.

E xceptions:
Description Response
1 Daily schedule name must be System calls popup that states: "Daily

unique. schedule name must be unique."
2 'Start' and 'End' time cannot be the Depending on which time is selected first,

same. system prohibits the user from selecting
the same time in the later set of combo
boxes.

90

,,;'41DIYSd11j S.·.:1('~~(Ni>.!W?-'
1'.l('si::·i11r!11:·1:
J·un•::.itllb l~1v;ii~·::J:
rk:;ltlWl'-'

/1idd ;.:: d:td\." ;.;~·::~r>Juk ~l}: ;J.:;. ,1;:.a krn:::; P\\"J~.r;1~~·1, {m ir1:'.:.-1:"1L'C', t~K' ":'}·;.~}·:in: nff'.:·1:·n~'n\"C'1"
I ·\•llDI ,.,;,~ hd
,E11 .

,.,._,.,.,.,...,.,.,,........,.,..,,.,._..,.,.,.,."""".....,,,,.,,,_... . .,. ,..,, . ..,....,,._.,, . .,..,,....,...,.,.,,.,..,,..........,..,...,.,..,~,,......,,.., .. -,,,, •.. .-,,.,_.,..---,.,.,_,,,,,..,.,,..,,.,,, •• ,..,~·.·"".-. .. ,..,.,.,...,... ... w ... w_,,,,...,.,,,"...,"""""'•''''"'"°'""''''•"W• .,....,,,,.,,,....,_,..,......,.,.,,,.,.........,,,_. . ..,.~,~ ... ·.-.....-.,,,.~.,,., .. ,,,,...,.,...,

·-----~. --~"----··-·--·:;,;,~ ti!L~ ~~~:_:·~-~~'.'._U-1•_' ----- ~-···--~---~lli::i!:l.lJ:2. .
. ~n·:·n:.ur n.1:1··~ .. 1 .. :iin::l.Y •'"-:1:1 ~.(·

N~u~h ... ~. ;
~~1;l~1i (ii ('1.~;~p~~~;-----~

.~ .. '\(~JOt)·S;.-hJ ~ Lod ~·2:k1r:1lr: h~1m.it1 ~ 1.;;t'~S!~Hk
'

>!\,\dll• ·?i~t~- ··.,:\,, 1!~T;~,:l~;~:-~~c::~ :: .. :=~-;: .. :j~c~::~'.'.'' .. ~~::c ... '.
1

.

1

'. .. ~:;:~:~::::~~-.•.... · ;;:.;:;.~: .. ~==:=.::·.~;:'.)
.-.\,-·:;,_d_:~·-m-i.-:..-!-~r-,.>-pt-.J-;:-t-~ :-s~-.,-.. l-' -.. ---1 £L:t±2ij ·· ~:\ddDh ·•;.;:h::k~

sA&Ji)!~"...;dul-ti

-----·-----· --------------

91

tViewDlySchd Function Report

Function Name: fViewDlySchd ·
Category Path: Student Information System > Academic Program Functions

Added daily schedule may be viewed, edited, deleted, or saved as
new daily schedule. To demonstrate the function, the School of
Computer and its "Full School" daily schedule are selected.
fAddDlySchd

Description:

Functions Involved:
Screens Involved: slndex, sAddDiySchd, sViewDiySchd
Popups Involved:
Designers: Jia

Function:
Steps Description

1 In slndex, click on slndex-2 and select an academic program, which in this
case is the "School of Computer".

2 Place the cursor on "Academic Program Setup ~" until a function menu
appears.

3 Click on "View Daily Schedule" in slndex-1 to display sAddDlySchd for the
selected academic program.

4 In sAddDlySchd, to view a schedule, select a daily schedule such as "Full
School" in sAddDlySchd-2. Details of the daily schedule will be loaded onto
the screen, and the selected daily schedule's name will appear in
sAddDlySchd-3. The screen now becomes sViewDlySchd.

5a In sViewDlySchd, to edit row details, type in or select row details such as
those found in sViewDlySchd-6.

5b In sViewDlySchd, to add or delete rows, consult Step 4a or 4b in
fAddDlySchd.

5c In sViewDlySchd, to save the edited daily schedule, click on sViewDlySchd-
7. A popup appears to inform the user that the daily schedule has been
successfully saved.

5d In sViewDlySchd, to save as new daily schedule, change the "Name" of the
daily schedule in sViewDlySchd-3. Click on sViewDlySchd-7 to save as a
new daily schedule. A popup appears to inform of the successful "save as".

5e In sViewDlySchd, to delete a daily schedule, click on sViewDlySchd-8 to
display a popup that warns the user that a deletion is about to be performed.
Click "Ok" in the popup, and sAddDlySchd will be displayed to indicate to
the user that the daily schedule has been successfully deleted.

E xcept1ons:
Description Response
1 Daily schedule name must be System calls popup that states: "Daily

unique. schedule name must be unique."
2 'Start' and 'End' time cannot be the Depending on which time is selected first,

same. system prohibits the user from selecting
the same time in the later set of combo
boxes.

92

:-,\;ir:1~·~JlyS;. fol s~·rn:"!i ~;;.(:nr.
["h·~.(":·ip1i11:1 ~:~·:~~.:~l\~!i1;1;(~. ~;~!;~·~:.\~~~f. :·w:ty h~~ \·i~··;.\·1\l. 1'.1ti::t-tL (1r tkk1::-d To il~:rni;1:i-;;~J.1ti: t!:.i: f1,1:i:_·ii·~f1, dk: ~1.;.·hlJ..::! (··(C1:ir:(f1mu 1uii!)~: ... ,. i.:1!: S·;.''::~1l1l" .. fody

hm~~;imt" 1:11.'11;,,.;:d·
Do.i.:;.iwf:.·

f\·'it'wDl\.·S~.:hd
J:·;, .

!
-~~~~~~,~~~~:: ~:.~~,~=-~~---~"""" ___ ,,_,, _,_, ""'"" -,, .. -~· ,~~·~~ \::.;,:5=,(~!~~~~=:~:=~.~:ip~:;-:"·~~~:_ __ ~;c~ ·~:
-~--- ----~- r:1 '.')vj, I," J.~ 1~ '•i !f..~lllll' fl till·~. h110[LL1 '\,lfjj:.'~ ! ~ tJ;, , ?~·nu! ~

' Sd1tY,l1 H~ l_.. PlflpUlc.:' ~

I .. v;,.,"·:i1,,~;,;\1.1
i

93

4.3 Change Management

S3M blueprints also face edits, deletions, or save as new. For instance, SIS

reports are created sequentially according to function report lists in the FunctionList

document. This causes earlier reports to miss some features found in subsequent reports,

features are added to earlier reports on request, or widget numberings do not start with

the usual convention from left to right and top to bottom of the screen. Although earlier

reports are sufficient in their own rights, they still need to synchronize with subsequent

reports for screen transition uniformity.

System designers may perform minute changes instantly, and document the

more significant potential blueprint alterations simply as "change requests". Change

requests may simply serve as reminders to system designers, or require the decisions of

project stakeholders to proceed. In the later case, formal documentations are required.

In S3M, change requests can be documented in the README document. If the

README document belongs to a new folder containing the updated version of the

blueprint, it can be used to inform stakeholders of "what is new" in the latest blueprint.

Table 4.1 is one possible change requests table that adopts the familiar layout from the

exceptions table found in function reports. The table comprises of SIS change requests,

which provides more insights into S3M. The 'Description' column describes the

concepts behind each change requests, the 'Response' column suggests specific actions

required to realize each change requests, and the "Designer/Request Status" column

identifies the system designer responsible for each change requests and status of the job.

Again, by applying nruTation-illustration principles, change requests can be

communicated accurately. Inevitably, the system designer also needs to be able to assess

the impact of each change request, and revise other documents and reports associated

with each change request.

94

Table 4.1. SIS Change Request

Ch ange R t eques s:
Description Response Designer/

Request Status
1 In slndex, there is no Include the current date like .Tia

indication of ctment date the following figure: Work in
above slndex-2 in the General jctllWtH D'.ly-Mnnlli-Yi::irj progress
Information Area. This causes p;;;;:;:.11·1it 1•1·ot;:;;;:;;-;·W·-m
variance among screens.

2 In slndex, widget numberings Retag widgets in the screen. Jia
does not start from left to right

Rejected and top to bottom of the
because slndex

screen.
is used by many
functions.

3 sAddAcad and s View Acad 3.1 Change both screen titles Jia
have similar compositions to "Academic Program".
therefore, synchronize the 3.2 Include the "Academic
screens. Programs" combo box in Work in

sAddAcad like the progress
following figure:
(i::1.u:r<'n1 Day-Mrmt11- 'l·1~:ir]

rx~:;;~1;;;'.;;;'.~'."i;;;;;;;l.lb ·~·-·
3.3 Insert sViewAcad-4 into

sAddAcad.
3.4 Change "Add Academic

Program" and "View
Academic Program" in
slndex-2 to "Academic
Program".

4 sAddMarkPer and 4.1 Change both screen titles Jia
sViewMarkPer have similar to "Marking Period". Work in
compositions therefore, 4.2 Insert sViewMarkPer-12 progress
synchronize the screens. into sAddMarkPer.

4.3 Change "Add Marking
Period" and "View
Marking Period" in
slndex-2 to "Marking
Period".

5 Jn sAddCal, there is no check Insert a check box with the Jia
box for the calendar to inherit following description: Work in
default full school days from "Inherit default full school progress
sAddAcad. days from the academic

program".
6 Calendar have no place to be 6.1 Change both screen titles Jia

95

T~!-~.!SUMPTION UNIVERSITY LmRARl

edited and save-as. To solve to "Calendar". Work in
this, synchronize sAddCal and 6.2 Insert sAddCal-2 to -7 progress
sViewCal. into s ViewCal.

6.3 Insert sViewCal-2 to -8
into sAddCal.

6.4 Change "Add Calendar"
and "View Calendar" in
slndex-2 to "Calendar".

7 sAddDlySchd and 7.1 Change both screen titles Jia
sViewDlySchd have similar to "Daily Schedule". Work in
compositions therefore, 7.2 Insert sViewDlySchd-2 progress
synchronize the screens. and -8 into

sAddDlySchd.
7.3 Change "Add Daily

Schedule" and "View
Daily Schedule" in
slndex-2 to "Daily
Schedule".

8 Unanswered questions - Jia
concerning marking periods: Pending
• Are there limits in the

number of marking periods in
a tier?

• How long are marks that are
issued, posted?

9 Unanswered questions - Jia
concerning calendars: Pending
• How will a master calendar

influence other calendars
residing in the same node?

• What are publicly-accessible
calendars?

• What are privately-accessible
calendars?

96

V. MODELS COMPARISON

This section comparns S3M, UML models, and software prototypes in Table 5.1.

The table has six colunu1s: Name, Sho1t Description, Modeling Category, Prerequisite,

Narrative Aspect, and Visual Aspect. Name and Short Description are straightforward,

but remaining colunms require more discussions.

The Modeling Category column asks the question: which modeling category

does the model fall into? Receiving multiple categories reflect the model's

comprehensive capabilities. Eight modeling categories and their corresponding models

are based on Ambler's Iterative Modeling figure (Figure 5.1). The Usage Modeling

category identifies how people work with the system, and questions to ask are: what

will users do with the system, and how will the system support that usage? Similar to

Usage Modeling, Process Modeling also identifies how people work with the system,

but takes into account the flow of activities being performed. User Interface (UI)

Modeling identifies UI requirements and addresses system usability issues. The

Supplementary Requirements Modeling category recognizes details that usage or UI

modeling activities may not be able to identify effectively. The Conceptual Domain

Modeling, also called conceptual modeling or domain modeling, identifies the entities,

their responsibilities, and their relationships within the problem domain. Architectural

Modeling identifies the high-level design or "general landscape" of a system. Dynamic

Object Modeling identifies the behavioral aspects of an object system, and finally,

Ambler (2007) did not define the Detailed Structural Modeling category but provides

only the modeling activities in this category.

97

ll£ago Mo1Ming
, A~.,:~ii.;t;mu.: rt~~~~;
· t:s~•••Pll'11 lh~ t)~Jtf!r.

, ~·;ifslf:m U:-x·: Cr1~~~f,
l.f:;I)~~ ~;(.~~::im~>

O~talltid StFucturnJ Modolinfl

· f..:t.·~~111;;sl !1~~~rfo{~.< (ti'.: b~e<:·t,f...1ll>'.'fl
-1 1r:ir-,1c;.;·i: D~lVi fl(X:ici lf>PMl
· • JMI. (J;J~>:i Dm1.;1 c1m

1Jl11n. (Jt;j1;:;1 !);;,H,~r;m1

Dynamic Object Modulin9

tJMI. Cllr1:1wmi\~:Ar.11H1 [)i;>UWff:
1JMl Gvn:11i;S~i\l) ~itn11..~1~<1\' c:•i\l'})l:.~:11

lJMl l:<)ti<;:c\lt',.f} Ov.;·> ;.tt'.,,. r~itli,Jt ,.n-;
tJMl. Sml~·:t~m::c:i f)1t1f.;t;m1

- l!Ml. f>E;.~t~~ .._.~:~<~J1im~ C:t~i~~snun
. Ut .. ,1l. nr::Kl\j Ci'W,ll'<1{(1

Archlleclural Modeling

· Clmn\~ Cl~l:ltib'.
.1=11;-~1 f1;.m: ~;w;i~u::{:t
• St'•::.v1it1 rtl~~.mt ~lt:fJ'J~:n§:
· iJMi C0<np(1r~•!':t UhJf<C)j~~
• tiMt f}&(IJ"~'flllt'>at C'i;,J};t3ui
, tif,H. Pm;i1.n~;1 tJ~~\l(.t:>.i:1

\

.. I
Utler h1lvrfaev Duvelopmvnt

· t ~:,f·nt: 31 U~<~r l!'li·::.:·foq: h:·i~ftlype
, IJ~f;~ lNf:d1'1:';(i f!;.w.i· OiCl'i:>ff:ffJ

• IJt:'g tNf;ft;1::t~ 1ir'!'>!(Jt'.J~:i.'

Prcr:c&$ Mod1Jlin9

, ~)~H;J ~;11m Oin;p~~m (UHi;
, Flow{:hM
· UMt ~~·:.11\'<h' O~y,a11~
, Vak<~ $ll ~:am M:si;;.
, 'i'Vl~*1tt;...v {1:;J.omm

Supplemcritary Req1.f11·emrmls
Mod~llng

• ~h•l\.lf:.f;S':• ~i~d~·~7

. ~..:<:~":(~!·l.U~1: C,>),:,f~ ~~

· \'..,:,~::·,1r.~i11h

Concoplwll 0(lma1n Modollng

, c1~~<.:~ H._1t:M;~"i$!t/i:1w C;,~11,;1,~-,1-_::k':t t.:~~c; c;.;in%
. U~!jic;~~ 0.:.<l;.i ~~''"J~>t H.0>.A)
· :'..H1ie<;l H,;~" Mf:i.df.': 1:C-RM! l>:i1;ir~1ru
· ~<;bi..H::li".Ot'v f'..t.~:1~;mrn

~;r~~I~ (:t:.;;;.~. ~~1:1~}mm

(:·::p~'.c:{t:~ :"1)'.11-~fJX1 foAW

w ..'1)-:l~~~

Figure 5.1. Iterative Modeling (Ambler, 2007).

The Prerequisite column asks what the user needs to master before he/she can

build the model. A prerequisite is not part of the method, but something external. It is

also not part of the software system being studied. Having prerequisites reflect the

technicality or difficulty of the model. Technical prerequisites, especially, hinder users

from building the model effectively. The Prerequisite column allows two possible

answers: a listing of outstanding prerequisites, or None.

The Narrative Aspect column asks whether the model inc1udes narrations or not,

and the Visual Aspect column asks whether the model includes illustrations, graphics,

or not. The response to these columns is a simple Yes or No. However, it is most

beneficial for the mode] to possess both structured nrurntions and il1ustrations. This is

heavily influenced by best practices from fi1mmaking. Narrative aspect complements

the visual aspect by c1ru·ifying illustrations, as visual aspect complements the nru-rative

98

aspect by representing each set of nairntions with a single visual interpretation to

minimize ambiguity. In this way, precision is achieved.

Table 5.1. Comparison of S3M, UML Models, and Software Prototypes.

Name Short Modeling Prerequisite Narrative Visual
Description Category Aspect Aspect

Activity Demonstrates the Process Object- No Yes
Diagram progression of Modeling oriented

events in a concepts
system.

Canon- Bridges User None No Yes
ical abstraction and Interface
abstract realization in user Modeling
prototype interface design

by using specially
designed sets of
symbols.

Class Shows classes Detailed Object- No Yes
Diagram and their Structural oriented

relationships Modeling concepts
within a system.

Commun- Focus on object Dynamic Object- No Yes
ication relationships via Object oriented
Diagram sequenced Modeling concepts

messages coupled
by arrows
pointing in the
direction of the
message flow.

Compo- Depicts Architec- Object- No Yes
nent components such tural oriented
Diagram as files, headers, Modeling concepts

link libraries,
modules,
executables, and
packages, and
their
dependencies or
semantic
relationships in a
system.

Compo- Reveals the Dynamic Object- No Yes
site internal structure Object oriented
Structure of a class, Modeling concepts
Diagram including

99

structured
classifiers, parts,
ports, connectors,
and
collaborations.

Deploy- Captures the Architec- Object- No Yes
ment configuration of tural oriented
Diagram run-time Modeling concepts

hardware nodes
and
corresponding
software
components that
run on those
nodes.

Essential Represents the User None No Yes
User general ideas Interface
Interface behind the user Modeling
Prototype interface in a

technology-
independent
manner by using
whiteboards, flip-
chart paper, and
sticky notes.

Interac- Closely related to Dynamic Object- No Yes
ti on the activity Object oriented
Overview diagram, but Modeling concepts
Diagram introduces two

new elements:
interaction
occurrences and
interaction
elements.

Object Provides a Detailed Object- No Yes
Diagram snapshot of an Structural oriented

entire or partial Modeling concepts
view of a system
at a point in time.

Package Models logical Architec- Object- No Yes
Diagram containers or tural oriented

packages and Modeling concepts
their relationships
at a high-level
overview.

PICTIVE A participatory User None Yes Yes
system design Interface
technique that Modeling
makes video and

100

voice recordings
of users
modifying
PICTIVE mock-
ups of a system.

Sequence Models Dynamic Object- No Yes
Diagram communications Object oriented

between objects Modeling concepts
and the messages
that trigger those
communications.

Sketches Are quick User None No Yes
drawings of Interface
software user Modeling
interfaces.

Software Creates non- Usage None Yes Yes
Screen- technical software Modeling,
play models that User
Story- combine Interface
board structured Modeling
Method nmrntions with
(S3M) illustrations to

define and
demonstrate
functional
requirements.

State Illustrates how an Dynamic Object- No Yes
Machine object responds to Object oriented
Diagram various events Modeling concepts

depending on its
cmTent state.

Story- Provides User None Yes Yes
board snapshots, with Interface

corresponding Modeling
annotations, of
the user intetface
at different points
in an interaction.

Timing Shows the change Dynamic Object- No Yes
Diagram in state or value Object oriented

of one or more Modeling concepts
objects
throughout a
given period of
time.

Use Case Used to identify Usage Object- No Yes
Diagram the roles and Modeling oriented

discrete concepts
functionalities in

101

a system.
User Models high-level User None No Yes
Interface relationships and Interface
Flow interactions Modeling
Diagram between major

user interface
elements of a
system.

102

VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The suitability of software models depends on users' need. If the case is the need

for a non-technical, yet comprehensive and precise software model, UML models and

software prototypes may not entirely satisfy users. Hence, S3M is designed to fill in this

missing link and bridge the communication gap between software buyers and

developers. It is not intended to replace other software models, which may be optionally

employed to reflect other aspects, technicalities, or views of a system.

S3M is built with some of the strengths of UML and software prototypes, and

avoids some of the weaknesses of the two. Some of the strengths of UML that S3M

retains are the ability to describe almost any type of software, ability to be hardware,

operating system, programming language, middleware, methodology and network­

independent, and the ability to allow introductions of concepts that are unavailable.

Some of the strengths of software prototypes that S3M retains are the ability to allow

users to provide feedback for early ideas of the completed software program or portions

of it, ability to be cheap and quickly developed, and the ability to focus on users and

their usage of the system. However, S3M avoids the use of graphical notations,

dependency of external concepts, enormity, ongoing changes, complexity, and the close

relation to source code that can be found in either UML or software prototypes.

S3M discards the huge investments that buyers require to learn UML before

they can communicate with developers, and produces structured nrurntions and

illustrations that software prototypes lack. Although some models can be vigorously

used, exceeding its original intention to pmtray in-depth details of a software system,

S3M is designed from the start to be a comprehensive solution by serving at least two

103

modeling categories. For instance, S3M function reports are very similar to Usage

Scenario models of the Usage Modeling category. They both delineate events and

accompanying steps users take to achieve those events. Moreover, S3M screen and

popup reports allow S3M to be clearly categorized under the User Interface Modeling

category.

6.2 Recommendations

The non-technical nature of S3M discloses many possibilities. S3M users,

including software buyers and developers, can now focus on functional requirements

and technical requirements separately. Background in software development may be

helpful to S3M users, but is no longer a necessity. Buyers are now empowered to be

able to create their own S3M blueprints, or check and edit developers' blueprints. As a

consequence, buyers need to understand their increased share of responsibilities in

verifying the blueprints' accuracy that arrives with the empowerment.

S3M also allows software buyers and developers to evaluate and select one

another. If a developer's S3M blueprint does not meet buyer standards or the developer

is incapable of implementing a buyer's S3M blueprint, the buyer may approach other

developers without losing the know-how since S3M is technology-independent and

does not generate source codes. On the other hand, a buyer's S3M blueprint allows

developers the opportunity to assess their capabilities against the software project.

Developers may then choose to reject, accept, or accept and outsource the project.

Developers may also want to reject buyers who are highly uncertain about their

requirements to avoid the risks of excessive or ongoing requirements change. All in all,

buyers can now save costs by avoiding incompetent developers, as developers save

costs by avoiding overdue fines.

104

The comprehensiveness and precision of S3M blueprints may a11ow them to be

included in contracts. Although S3M blueprints are good representations of the final

product, they may be further enhanced by studying remaining software models, and

introduce their strengths into S3M as well as avoid their faults. The end product may

then be tested with a complete software system, or customized for various industries.

105

BIBLIOGRAPHY

References

1. Aaby, Anthony. 2000. Requirements Engineering. Walla Walla College.
http://cs.wwc.edu/-aabyan/435/Requirements.html (accessed January 12, 2007).

2. Alice. 2001. Screenplay. Film Education.
http://www.filmeducation.org/secondary IS tudyGuides/screenpla y. pdf (accessed
July 28, 2006)

3. Alice. 2001. The Storyboard. Film Education.
http://www.filmeducation.org/secondary/Stud yGuides/storyboard. pdf (accessed
July 28, 2006)

4. Ambler, Scott W. 2007. Development Phases Examined: Why Requirements,
Analysis, and Design No Longer Make Sense. Ambysoft Inc.
http://www.agilemodeling.com/essays/phasesExamined.htm (accessed March 9,
2007).

5. Ambler, Scott W. 2006. Essential (Low Fidelity) User Interface Prototypes.
Ambysoft Inc. http://www.agilemodeJing.com/artifacts/essentialUl.htm (accessed
September 27, 2006).

6. Ambler, Scott W. 2006. Technical ("Non-Functional") Requirements. Ambysoft
Inc. http://www.agilemodeJing.com/rutifacts/teclmicalRequirement.htm (accessed
December 25, 2006).

7. Ambler, Scott W. 2006. UML 2 Activity Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/rutifacts/acti vityDiagram.htm (accessed August
30, 2006).

8. Ambler, Scott W. 2006. UML 2 Composite Structure Diagrams. Ambysoft Inc.
http://www.agilemodeJing.com/artifacts/compositeStructureDiagram.htm
(accessed March 14, 2007).

9. Ambler, Scott W. 2006. UML 2 Deployment Diagramming Guidelines. Ambysoft
Inc. http://www.agilemodeling.com/style/deploymentDiagram.htm (accessed
August 30, 2006).

10. Ambler, Scott W. 2006. UML 2 Interaction Overview Diagrams. Ambysoft Inc.
http://www.agiJemodeling.com/artifacts/interactionOverviewDiagram.htm
(accessed September 6, 2006).

11. Ambler, Scott W. 2006. UML 2 Package Diagramming Guidelines. Ambysoft Inc.
http://www.agiJemodeling.com/style/packageDiagram.htm (accessed August 30,
2006).

106

12. Ambler, Scott W. 2006. UML 2 State Machine Diagrammjng Guidelines.
Ambysoft Inc. http://www.agilemodeling.com/style/stateChartDiagram.htm
(accessed September 1, 2006).

13. Ambler, Scott W. 2006. UML 2 State Machine Diagrams. Ambysoft Inc.
http://www.agi Jemodel in g.com/aitifacts/stateMachineDiagram.htm (accessed
September 1, 2006).

14. Ambler, Scott W. 2006. UML 2 Timing Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/timingDiagram.htm (accessed September
5, 2006).

15. Ambler, Scott W. 2006. User Interface Flow Diagrams (Storyboards). Ambysoft
Inc. http://www.agilemodeling.com/a1tifacts/uiFlow Diagram.htm (accessed
September 27, 2006).

16. Booch, Grady. 2004. The Fever is Real. Association for Computing Machinery,
Inc.
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid= 131
&page=l (accessed September 12, 2006).

17. Borland. 2006. Borland Addresses the Leading Cause of Software Project Failure
with New Requirements Definition and Management Solution. Borland Software
Corporation.
http://www.borland.com/us/company /news/press_releases/2006/04_17 _ 06 _borlan
d_addresses_the_leading_cause.html (accessed December 22, 2006).

18. Borland. 2006. Borland QA Professionals Survey Reiterates the Impact of
Requirements on Software Quality. Borland Software Corporation.
http://www.borland.com/us/company/news/press_releases/2006/10_31_06_borlan
d_qa_professionals_survey.html (accessed December 22, 2006).

19. Borland. 2006. Software Requirements Management Processes. Borland Software
Corporation.
http://www.borland.com/us/company/newsletter/issue3/strategies_more_effective
_requirements.html (accessed December 22, 2006).

20. Botting, Richard J. 2006. Changes in the Unified Modeling Language. California
State University. http://www.csci.csusb.edu/dick/papers/200505020utli ne.html
(accessed August 30, 2006).

21. Botting, Richard J. 2006. Directory. California State University.
http://www.csci.csusb.edu/dick/papers/ (accessed September 12, 2006).

22. Carr, Mahil and June Verner. 1997. Prototyping and Software Development
Approaches. City University of Hong Kong.
http://www.is.cityu.edu.hk/Research/WorkingPapers/paper/9704. pdf (accessed
October 20, 2006).

107

23. Chitnis, Mandar, Pravin Tiwari, and Lakshmi Ananthamurthy. 2006. Creating Use
Case Diagrams. Jupitermedia Corporation.
http://www.developer.com/design/article.php/2109801 (accessed August 30,
2006).

24. Chitnis, Mandar, Pravin Tiwari, and Lakshmi Ananthamurthy. 2006. Deployment
Diagram in UML. Jupitermedia Corporation.
http://www.developer.com/design/article.php/3291941 (accessed August 30,
2006).

25. Constantine, Larry L. 2003. Canonical Abstract Prototypes for Abstract Visual
and Interaction Design. Constantine & Lockwood, Ltd.
http://fomse.com/articles/abstract.pdf (accessed September 27, 2006).

26. Craig, Bill. 2005. Slug Lines (Master Scene Lines). Screenwriting Help.
http://www.screenwritinghelp.com/z-sluglines.html (accessed July 28, 2006).

27. Craig, Bill. 2005. The Dreaded Screenplay Fmmat. Screenwriting Help.
http://www.screenwritinghelp.com/z-dreadedformat.html (accessed July 28,
2006).

28. Dalbey, John. 2002. User Interface Prototype Document Format. California
Polytechnic State University.
http://www.csc.calpol y .edu/-jdalbey/205/Deli ver/prototype.html (accessed
September 27, 2006).

29. Hoffer, Jeffrey A., Joey F. George, and Joseph S. Valacich. 2002. Modem Systems
Analysis & Design. 3rd ed. New Jersey: Prentice-Hall International, Inc.

30. Lu, Guang. 1998. Prototyping for Design and Evaluation. University of Calgary.
http://pages.cpsc.ucalgary.ca/-saul/68 l/1998/prototyping/survey.html (accessed
October 12, 2006).

31. Object Management Group. 2005. Unified Modeling Language: Superstmcture.
Object Management Group, Inc. http://www.omg.org/docs/formal/05-07-04.pdf
(accessed August 3, 2006).

32. Object Management Group. 2006. Catalog of OMG Modeling and Metadata
Specifications. Object Management Group, Inc.
http://www.omg.org/technology/documents/modeling_spec_catalog.htm (accessed
September 7, 2006).

33. Object Management Group. 2006. Introduction to OMG's Unified Modeling
Language™ (UML®). Object Management Group, Inc.
http://www.omg.org/gettingstarted/what_is_uml.htm (accessed July 31, 2006).

34. Object Management Group. 2006. UML® Resource Page. Object Management
Group, Inc. http://www.uml.org/#UML2.0 (accessed September 7, 2006).

108

35. Rumbaugh, James, Ivar Jacobson, and Grady Booch. 1999. The Unified Modeling
Language Reference Manual. Massachusetts: Addison Wesley Longman.

36. Siegel, Jon. 2005. Getting Specifications and Products. Object Management
Group, Inc. http://www.omg.org/gettingstarted/specsandprods.htm#HardToRead
(accessed September 7, 2006)

37. Sparx Systems. 2006. UML 2.0 Tutorial. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/um12_tutorial/ (accessed August 30, 2006).

38. Sparx Systems. 2006. UML 2 Activity Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_activitydiagram.htm1
(accessed August 30, 2006).

39. Sparx Systems. 2006. UML 2 Communication Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/um12_communicationdiagram
.html (accessed September 5, 2006).

40. Sparx Systems. 2006. UML 2 Interaction Overview Diagram. Sparx Systems Pty
Ltd.
http://sparxsystems.com.au/resources/uml2 __ tutorial/um12_interactionoverviewdia
gram.html (accessed September 6, 2006).

41. Sparx Systems. 2006. UML 2 Package Diagram. Sparx Systems Pty Ltd.
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.
html (accessed August 30, 2006).

42. Sparx Systems. 2006. UML 2 Sequence Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/um12_tutorial/um12_sequencediagram.html
(accessed September 5, 2006).

43. Sparx Systems. 2006. UML 2 State Machine Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/um12_tutorial/um12_statediagram.html
(accessed September 1, 2006).

44. Sparx Systems. 2006. UML 2 Timing Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_timingdiagram.htm1
(accessed September 5, 2006).

45. The Associated Press. 2004. Newest Electronics Short on Simplicity. Cable News
Network LP, LLLP.
http://edition.cnn.com/2004/TECH/ptech/01/30/unfriendlier.electronics.ap/
(accessed September 15, 2006).

Image References

109

1. Alice. 'P' is for Psycho, 2001. Film Education, London.
http://www.filmeducation.org/secondary/StudyGuides/storyboard. pdf (accessed
July 28, 2006)

2. Ambler, Scott W. componentDiagramUMLJ.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/componentDiagram.htm (accessed
August 25, 2006).

3. Ambler, Scott W. componentDiagramUML2.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/componentDiagram.htm (accessed
August 25, 2006).

4. Ambler, Scott W. deploymentDiagram.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/deploymentDiagram.htm (accessed
August 30, 2006).

5. Ambler, Scott W. modelingOverview.jpg, 2005. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/essays/phasesExamined.htm (accessed March 9,
2007).

6. Ambler, Scott W. uiEssential.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/aitifacts/essentialUI.htm (accessed September 27,
2006).

7. Ambler, Scott W. uiFlow.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/rutifacts/uiFlow Diagram.htm (accessed October
11, 2006).

8. Ambler, Scott W. uiSketches.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/uiPrototype.htm (accessed September 27,
2006).

9. Bjork, Russell C. Packages.gif, 2001. Gordon College, Massachusetts.
http://www.math-cs.gordon.edu/courses/cs211/ ATMExample/Package.html
(accessed August 29, 2006).

10. Constantine, Larry L. Example of a Canonical Abstract Prototype show examples
of key notational elements, 2003. Rowley, Massachusetts.
http://fornse.com/ruticles/abstract.pdf (accessed September 27, 2006).

11. Froese, Thomas, Martin Fischer, Francois Grabler, John Ritzenthaler, Kevin Yu,
Stuart Sutherland, Sheryl Staub, Burcu Akinci, Ragip Akbas, Bonsang Koo, Alex
Barron, and John Kunz. paper03.gif, 1999. Kruisplein, Rotterdam.
http://www.itcon.org/1999/2/paper.htm (accessed August 25, 2006).

12. Garcia, Jose Daniel, Jesus Carretero, Jose Marfa Perez, Felix Garcia, and Rosa
Filgueira.figure3.gif, 2005. Journal of Object Technology (JOT), Zurich.
http://www.jot.fm/issues/issue_2005_11/article5 (accessed September 6, 2006).

110

13. Hoffmann, Hans-Peter. 0511Hoffinan_fi.g6.jpg, 2005. Ogden Air Logistics Center,
Hill AFB. http://www.stsc.hill.af.mil/crosstalk/2005/11/0511 Hoffman .html
(accessed August 30, 2006).

14. Lu, Guang. low.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/-saul/681 /1998/prototyping/survey .html (accessed
October 12, 2006).

15. Lu, Guang. pictivel.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/-saul/681/ 1998/prototyping/survey .html (accessed
October 12, 2006).

16. Lu, Guang. pictive2.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/-saul/681I1998/prototyping/survey .html (accessed
October 12, 2006).

17. Lu, Guang. story.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/-saul/681I1998/prototypin g/survey .html (accessed
October 12, 2006).

18. Object Management Group. The taxonomy o.f structure and behavior diagram,
2005. Needham, Massachusetts. http://www.omg.org/docs/formal/05-07-04. pdf
(accessed August 3, 2006).

19. Penchikala, Srini. ClassDiagram.gif, 2003. N01th Sebastopol, California.
http://www.onjava.com/onjava/2003/12/23/graphics/ClassDiagram.gif (accessed
August 25, 2006).

20. Rherrera. SMT_USE_CASE.png, 2005. International Crop Information System
(ICIS). http://cropwiki.irri.org/icis/images/7173/SMT _USE_ CASE.PNG (accessed
August 30, 2006).

21. Spane Systems. comOJ.gif, 2006. Spane Systems, Victoria.
http://spanesystems.com.au/resources/um12_tutorial/uml2_communicationdiagram
.html (accessed September 5, 2006).

22. Spane Systems. com02.gif, 2006. Spane Systems, Victoria.
http://spanesystems.com.au/resources/uml2_tutorial/um12_communicationdiagram
.html (accessed September 5, 2006).

23. Spane Systems. td03.gif, 2006. Spane Systems, Victoria.
http://spanesystems.com.au/resources/um12_tutorial/um12_timingdiagram.htm1
(accessed September 5, 2006).

24. SysML Partners. vpict-28.jpg, 2004. Consultative Committee for Space Data
Systems (CCSDS). http://www.ccsds.org/docu/dscgi/ds.py/GetRepr/File-
1514/html/vpict-28.jpg (accessed August 29, 2006).

111

25. Turner, Demian. seagull_uml_sequence_diagram.png, 2006. Seagullproject.org.
http://seagullfiles.phpkitchen.com/images/seagull_uml_sequence_diagram.png
(accessed September 5, 2006).

26. Williams, Paul. vt500_parser.png, 2005. West Sussex, England.
http://vtlOO.net/emu/vt500_parser.png (accessed September 1, 2006).

27. Wright, Nikki collaboration.png, 2005. University of Illinois at Urhana­
Champaign.
http://ilabs.inquiry.uiuc.edu/ilab/wqdl/documents/889/home/uml+design (accessed
September 5, 2006).

THE ASSUMPTION UNIVERSITY LIBR.AB.1

112

	Cover and Title page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter I Introduction
	Chapter II Literature Review
	Chapter III Software Screenplay Storyboard Model (S3M)
	Chapter IV Testing S3M
	Chapter V Models Comparison
	Chapter VI Conclusions and Recommendations
	Bibliography

