The Software Screenplay Storyboard Model (S3M)

by
Mr. Jia Cherng Hsu

A Thesis of the Tweive-Credit Course
CE 7000 Master Thesis

Submitted in Partial Fuifiliment
of the Requirements for the Degree of
Master of Science
in Computer and Engineering Management
Assumption University

July 2007

THE ASSUMPTION UNIVERSITY LIBRARY

The Software Screenplay Storyboard Model (S3M)

by
Mr. Jia Cherng Hsu

A Thesis of the Twelve-Credit Course
CE 7000 Master Thesis

s Submitted in Partial Fulfiliment
of the Requirements for the Degree of
Master of Science
in Computer and Engineering Management
Assumption University

July 2007

Thesis Title The Software Screenplay Storyboard Model (S3M)

Name Mr. Jia Cherng Hsu
Thesis Advisor Dr. Chamnong Jungthirapanich
Academic Year July 2007

The Graduate School of Assumption University has approved this final thesis of the
twelve-credit course, CE 7000 Master Thesis, submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer and Engineering
Management

Approval Committee:

s 2 SE A

(Prof.Dr. Srisakdi Charmonman) (Assoc.Prof.Somchai Thayarnyong)

Chairperson of Examination Committee CHE Representative

(Dr. Chamnong JuiYgthirapanich) (Dr. Chanintorn Jittawiriyanukoon)

Advisor Member

(Dr. Chamit Somprakij)
Member

July 2007

ABSTRACT

Software buyers and developers are still experiencing difficulties in
communicating functional requirements. A universal software model is needed to bridge
the buyer-developer gap.

Using concepts derived from the Unified Modeling Language (UML), software
prototypes, film screenplays and storyboards, this research devises a new
communication tool called the Software Screenplay Storyboard Model (S3M). It is
designed to define and demonstrate functional requirements effectively and efficiently
by creating non-technical software models that combine structured narrations with
illustrations. S3M is further clarified and exemplified by applying it to a real-world
application, the Student Information System (SIS).

With full comprehension of S3M, the new software model is compared with all
software models that have been studied in a table. S3M is found to satisfy the need for a
non-technical, yet comprehensive and precise software model. However, it is not
intended to replace other software models, which may be optionally employed to reflect

other aspects, technicalities, or views of a system.

ACKNOWLEDGEMENTS

The accomplishment of this thesis is made possible with the kind guidance and

encouragements of my advisor, Dr. Chamnong Jungthirapanich, and the education

opportunity, financial support, and patience of my family.

i

THE ASSUMPTION UNIVERSITY LIBRAR™

TABLE OF CONTENTS

Chapter Page
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF FIGURES v
LIST OF TABLES vii
L INTRODUCTION 1
1.1~ Background of the Thesis . 1

1.2 Objectives of the Thesis 5

1.3 Scope of the Thesis 5

IL LITERATURE REVIEW 7
2.1 Unified Modeling Language (UML) 7

2.1.1 History 8

2.1.2 Diagrams 9

2.1.3 Criticisms 26

2.2 Software Prototypes 29

2.2.1 Sketches 31

2.2.2 Storyboards 33

2.2.3 PICTIVE 34

2.2.4 Canonical Abstract Prototypes 35

2.2.5 User Interface Flow Diagrams 37

2.3 Filmmaking 38

2.3.1 Film Screenplay 38

2.3.2 Film Storyboard 40

iii

2.3.3 Best Practices 44

1I. THE SOFTWARE SCREENPLAY STORYBOARD MODEL (S3M) 45
3.1 Introduction 45
3.2 The README Document 47
3.3 The Reportsintro Document 48
3.4 The BlankFunctionReport Document 54
3.5 The BlankScreenReport Document 55
3.6 The BlankPopupReport Document 56
3.7 The FunctionList Document | 57
3.8 The S3Mexample Document 59
IV. TESTING S3M 63
4.1 Student Information System (SIS) 63
4.2 SIS Blueprint Excerpt 63
4.3 Change Management 94
V. MODELS COMPARISON 97
VI. CONCLUSIONS AND RECOMMENDATIONS 103
6.1 Conclusions 103
6.2 Recommendations 104

BIBLIOGRAPHY 106

v

Figure

1.1

1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

LIST OF FIGURES

Some Software Models Require Multiple Interpretations
Universal Software Model Requires Single Interpretation
Hierarchy of UML 2.0 Diagrams in a Class Diagram

“Web Portal Caching” Class Diagram

Composite Structure Diagram Example

UML 2.x Component Diagram

UML 2.x Deployment Diagram for University Information System
UML 1.x Object Diagram

Package Diagram for Automated Teller Machine (ATM)
‘Black-Box’ Activity Diagram

“Seed Management” Use Case Diagram for Crop Industry
State Machine Diagram of Parser for Escape and Control Sequences
Sequence Diagram of Seagull, an OOP Framework
Communication (Collaboration) Diagram

Interaction Overview Diagram for Use Case Withdraw Funds
Timing Diagram

Transition of Prototyping Techniques

Two Screen Sketches

Essential UI Prototype for Enrolling in Seminars

Storyboard Representing System Function and Sequence
Some PICTIVE Plastic Icons

Scene in PICTIVE Session

10

11

12

13

14

15

17

18

19

20

22

23

25

26

31

32

33

34

35

35

2.21

222

2.23

2.24

2.25

2.26

3.1

3.2

5.1

Generic Tool or Action

Generic Material or Container

Extensions and Combinations Between Generic Actions and Containers
Canonical Abstract Prototype with Key Notational Elements

User Interface Flow Diagram for University System

‘P’ is for Psycho Storyboard

Paper-based S3M Blueprint with Standard Items in Suspension Folders
Digital S3M Blueprint with Standard Items in Computer Hard Drive

Iterative Modeling

vi

36

36

36

37

38

42

46

47

98

Table
4.1

5.1

LIST OF TABLES

SIS Change Request

Comparison of S3M, UML. Models, and Software Prototypes

vii

95

99

I. INTRODUCTION

1.1 Background of the Thesis

Software buyers and developers are still facing communication difficulties
during software purchases today. Buyers — especially those inexperienced in software
purchasing, and developers — especially those inexperienced in buyer servicing, convey
in different communication frequencies. For instance, Figure 1.1 demonstrates how
buyers’ perception of the software model is impaired due to multiple layers of
interpretations before they can begin to comprehend tt;e software. Can there be a
universal software model, a true link that is able to synchronize buyers and developers
easily as in Figure 1.2?7 Failing to tune in or communicate well with one another
inevitably leads to ineffective requirements engineering — one of the most critical and

early phases in all software methodologies.

THE ASSUMPTION UNIVERSITY LIBRAR:

Buyers

LA

PR, AS—

&

Huaman
Languape

Vi

) mierpret

- S

Modeling
Lapguage

interpret

develop

Moadeling
Language

Developers

Figure 1.1. Some Software Models Require Multiple Interpretations.

Bayers

SR

Y

s SV

Humiin
Languape

nterpret

andfor
develop . -
v @ P - S |
. \l . T,
- N
./ Unpversal .f/ y Y
s 100 Software
Software ' ’
\ . Model
. Model § g
. e “ Ve

Human
Language

Modeling

t

|

|

|

|

!

|

|

|

l

‘ |
develop
|

|

|

|

|
Language :
|

|

|

=

L4

o

s .
£

t

{optiomal)
nse

Developers

Figure 1.2. Universal Software Model Requires Single Interpretation.

Requirements engineering “(in the context of systems engineering) is concerned
with the acquisition, analysis, specification, validation, and management of software

requirements” (Aaby, 2000). The first truth topping expert Karl Wiegers’ list of five

universal truths on software requirements engineering is: “If teams don’t get
requirements right, it doesn’t matter how well they execute the rest of the project”
(Borland, 2006) — quality assurance professionals can’t agree more. The “Man on the
Street” poll conducted by the Borland Software Corporation at the STARWEST
conference in Anaheim, California, surveys nearly 250 quality assurance professionals
and reveals that, “poorly defined or mismanaged requirements and inadequate time for
proper testing are the two biggest problems QA professionals are grappling with today”
(Borland, 2006). Problematic requirements also earn high ranks in the Standish Group’s
annual CHAOS report, which indicates that three of the top five reasons for project
failure are related to requirements (Borland, 2006).

Two prime types of requirements are described in many texts. Functional
requirements are actions a software system performs, such as inputs, outputs, and
calculations. On the other hand, non-functional requirements are properties a software
system possesses, such as performance, availability, and accessibility. As non-
functional requirements are also known as technical requirements, quality of service
(QoS) requirements, and service-level requirements (Ambler, 2006), it is the functional
requirements that chiefly link software buyers and developers, and outnumber non-
functional requirements. Moreover, Ambler (2006) firmly believes that purely technical
requirements should be minimized due to rapid changes in technology that will
ultimately require changes to corresponding technology-dependent requirements.
Hence, the challenge is often: how to communicate functional requirements effectively
as well as efﬁciently.

This research devises a new communication tool called the Software Screenplay
Storyboard Model (S3M). It is designed to define and demonstrate functional

requirements effectively and efficiently by creating non-technical software models that

4

combine structured narrations with illustrations. For uniformity, this research utilizes
the same definitions for ‘modeling’ and ‘model’ as the Object Management Group
(2006) — “Modeling is the designing of software applications before coding . . . A model
plays the analogous role in software development that blueprints and other plans (site

maps, elevations, physical models) play in the building of a skyscraper.”

1.2 Objectives of the Thesis

The research possesses four objectives:

¢)) To study the Unified Modeling Language (UML) and software
prototypes to find their strengths and weaknesses.

2) To study film screenplays and storyboards to find their best practices.

3) To devise and test a new software model that incorporates
aforementioned strengths, eliminates aforementioned weaknesses, and
reinforced by aforementioned best practices.

“) To compare all software models that have been studied.

1.3 Scope of the Thesis

S3M builds on concepts derived from the Unified Modeling Language (UML),
software prototypes, film screenplays and storyboards. UML is considered to be the de
facto standard for building software models. Software prototypes possess the closest
resemblance to S3M in terms of using narrations coupled with illustrations to model
software. Film screenplays and storyboards have proven best practices that can be
incorporated into S3M. UML, software prototypes, and film screenplays and
storyboards are studied in the second chapter. Findings from chapter two are then used

to develop S3M in chapter three. Chapter four tests S3M by applying it to a real-world
5

application, which also helps clarify any remaining queries regarding S3M. With full
comprehension of S3M, chapter five compares all software models that have been

studied in a table, and the final chapter concludes findings and recommendations.

II. LITERATURE REVIEW

2.1 Unified Modeling Language (UML)

UML, consisting of graphical notations, is used to fabricate abstract models of
software systems as well as non-software systems (Object Management Group, 2006).
Keywords such as business process, systems engineering, and organizational structure
are covered by its extensive modeling capabilities. UML is able to describe almost any
type of software — from its overall structure to int.ernai mechanisms in various views or
diagram types.

UML is built on fundamental object-oriented (OO) concepts. For this reason, it
works well with OO programming languages such as C4++, Java, and C#. However,
UML is also flexibly designed allowing it to be hardware, operating system,
programming language, middleware and network- independent. In addition, it offers
UML Profiles that allows users to define stereotypes to introduce concepts that are
unavailable in the base language. These customized subsets of UML help streamline the-
modeling of Transactional, Real-Time, and Fault-Tolerant systems (Object
Management Group, 2006).

UML also enjoys being methodology-independent, which has helped it gain
widespread support. UML can model results regardless of how a software project is
conducted. And with the XML Metadata Interchange (XMI) technology from OMG,
UML models can migrate from one tool to another for refinement or preparation for the
next step in the chosen methodology.

Abundant UML-based tools are currently available in the market to analyze
requirements and design software solutions. Some tools are able to generate codes from

UML diagrams, or reverse engineer existing codes to produce UML diagrams. Some

7

tools are designed for certain industries such as telecommunications or finance, as some
generate test and verification suites from UML models.

UML has fueled model-driven technologies such as Model Driven Development
(MDD) and Model Driven Engineering (MDE). 1t is also the foundation of OMG’s
Model Driven Architecture (MDA) (Object Management Group, 2006). UML is also
able to produce platform-independent and platform-specific models. The MDA
development process utilizes both features to create Platform-Independent Models
(PIM) and Platform-Specific Models (PSM) in the UML language via MDA-enabled
development tools. PIM represents business functionalities and behavior accurately, as
PSM represents the implementation or running code. Moreover, it is possible to use the
new Query-View-Transformations (QVT) standard to transform a UML model,
serialized in XM], into a Java or Enterprise Java Bean (EJB) implementation by using a

Model Transformation Language (MTL).

2.1.1 History

UML stems from the efforts by James Rumbaugh, Ivar Jacobson, and Grady
Booch to unify several object modeling langnages. The best of Rumbaugh’s Object-
modeling Technique (OMT), Jacobson’s Object-oriented Software Engineering
(OOSE), and Booch’s Booch Method are synthesized to create the more standardized
Unified Modeling Language (UML) at Rational Software Corporation in the mid-1990s.
In 1996, the UML authors decide to work with professionals from other companies to
respond to the Object Management Group’s (OMG) request for an object modeling
standard. The UML specification draft is submitted to OMG on January 1997, followed
by the final proposal in September 1997 (Rumbaugh et al. 1999). The initial semantic

integration, however, is still relatively weak and requires several minor revisions and a

8

major revision to conceive UML 2.0, which is the current OMG standard. Even then,
UML is still changing and UML 2.1 is scheduled for release in the first semester of
2006 in the form of an XMI 2.1 version.

Despite ongoing changes, the International Organization for Standardization
(ISO) has declared UML an international standard, and it is available as 1SO/IEC
19501; ITU-T Recommendations Z.100 (SDL) and Z.109 (SDL UML profile) (Object

Management Group, 2006).

2.1.2 Diagrams

UML 2.0 defines thirteen diagram types under two major categories and one
subset. Six structure diagrams portray the static application structure (what must be in
the system), three behavior diagrams represent dynamic object interactions (what must
happen in the system), and four special behavior diagrams known as interaction
diagrams model the flow of control and data among the things in the system. Diagrams
also have the option of nesting inside one another, for example a state machine nests

inside another structure diagram. Figure 2.1 depicts the hierarchy of UML 2.0 diagrams.

Diagrem

i

I 1
Streeture Behavior
Diagram Diayrany
[I I] | _J
.. Companent Object Activity Use Case Bhate Maciune
Class Diagram Dingsam Dizgram Diagram Diagram Diagram
c;;::“:‘::;:v Deplaymeni Fackage ntesaction
Bisgram Diagram Diagram Diagiam
[4)
£ I
Sexgquence “(‘)‘:::3;:?
iapram
Giay Uiagram
Communication Timing
Biagram Biagran

Figure 2.1. Hierarchy of UML 2.0 Diagrams in a Class Diagram (Object Management

Group, 2005).

Class diagram, a very common structure diagram, shows classes and their
relationships within a system. A class is a distinct concept used to encapsulate related
variables and functions or methods. According to Rumbaugh et al. (1999), it can assume
many forms: a physical concept such as an airplane, a business concept such as a
customer order, a logical concept such as a broadcasting schedule, an application
concept such as a cancel button, a computer concept such as a hash table, or a
behavioral concept such as a task. Various association notations used to portray class or
object relationships may appear from simple connections and ends, to ones with
complicated multiplicity and separate classes of their own. Figure 2.2 is an example of a

class diagram.

10

THE ASSUMPTION UNIVERSITY LIBRARY

Web Portal Caching - Class Diagram

CacheRegions {Interface) -
: &String DEFAULT_REGION . Basebxception
DataAccessObject $String TEST_CACHE_REGION Suprivate Throwable cause
&String MEMORY_CACHE_REGION ®)
&String MRU_MEMORY_CACHE_REGION %BaseExcem!onO
7 &String DISK_CACHE_REGION @BaseEncemnnO
; $5ting SCHED_EYPIRE CACHE_REGION BaseException)
SEaseException()
: 2 :Thmw-able getCausel)
: void setCause
) ” ICacheanager (Interface) %\ig:g pzn181aczl9Trac:e0
o %void printStackTrace()
: < uses ®0bject getCacheObject() %yoid printStackTrace()
Client ®0hject getCacheCbject() ®Stiing 10Stringl)
%ygid putCacheCbject() iy
uses %yoid putCacheChject () L
®0bject pesk()
Bhoolean isFresent() . e :
Syoid removeCacheObject() To-Ages CachingException
AN Soid clear() _ ,
“.uses Syvaid clearCache() %Cachngxcem!OnO
X ypid setCacheloader) @CachingException()
implements \ " %CachingException()
B LA %CachingException()
ICacheKey (Interface)
®0Object getCacheey())
o implements
¥ i
iCacheloader (nterface) u»g\;es
®Object loadCacheObject() 3 BaseCacheManager
\""-\1;" &JCS cache
| &Cacheloader cacheLoader Cachaliat
&int checkedOut e
& static CacheManager instance &pCachelist instance
&String cacheName 1 %Map table ,
CacheElementinfo & double readFromCache] &int scheduleExpiryllemCount
{3 o
g;:)g?ga:?temai &idouble readFromDataSource SCacheList gethtance(
RString createTime 1.+ - @BaseCacheManager() :Object getCache()
&long maxLifeSeconds 77| ®static CacheManager getinstance() opname2()
&long expiresinSeconds - Svoid setConfigFile()
&int hitCountAux ®String_getHitRate

&int hitCountRam

&int missCountExpired
&int missCountNotFound
&long totalMemory
&long usedMemaory

%CacheElementinfo()
%void loadCacheStats()
¥String toString(

hr*

Cache (3rd party Cache
APl

Figure 2.2. “Web Portal Caching” Class Diagram (Penchikala, 2003).

Composite structure diagram, another type of structure diagram, reveals the
internal structure of a class, including structured classifiers, parts, ports, connectors, and
collaborations. A structured classifier is a class whose behavior is described through

parts interactions. Parts are roles played during runtime by an instance or group of

11

instances. A part may name a role, an abstract superclass, or specific concrete class.
Ports enable the interaction between a structured classifier and its environment. They
may specify the services a classifier provides or requires. Structured classifiers
containing ports are called encapsulated classifiers. Connectors are drawn as lines that
bind parts, ports, and structured classifiers — allowing them to interact at runtime, and
collaborations specify sets of roles working together to represent certain functionalities.
Lastly, Ambler (2006) does not find composite structure diagrams to be of much use,
and instead, suggests using sequence diagrams which possess more robust notations and

are more widely understood. Figure 2.3 is an example of a composite structure diagram.

»

GyS

IComposite Structure Diagram Exampl l«
|

CornpasiteStrusiure arthes class SatelliteControlSystem {11%1)
! 1Gensar
tactustor z % H 5 .
L pe: FowerControfier ac : AttitudeControlier] :}—‘—O
IsctustorPort [ActuatorPort usPort ,—-BusPtS)r-;nsorpﬂb Sensorport

DetaF rorEis

ID&-;flszl’r-:un}s/w

~DataPort

DataToBuy

db - BDalaBus
—PataPort
DataToBus

DateFromBis
=BusPort

ReqPosiion Comnsin

cc: CommmmicationsControler
UserEquipmentPort |

SroundStationPort UserEquipmeritPort

1&jert WarPositich

ionPort

tlommaCLE

28

Figure 2.3. Composite Structure Diagram Example (SysML Partners, 2004).

12

Component diagram, a type of structure diagram, depicts components such as
files, headers, link libraries, modules, executables, and packages, and their dependencies
or semantic relationships in a system. Components are physical units of implementation
of certain classes with interfaces, and they can be replaced by other components with
the same interfaces (Rumbaugh et al. 1999). Interfaces, or lists of operations supported
by pieces of software or hardware according to Rumbaugh et al. (1999), are used to
render dependencies among components. Components generate some interfaces as well
as require interfaces from other components. Figure 2.4 is an example of a component

diagram.

Cenadnoess @
O Fachitles
F;}(‘:i:ii!ie:ess
Ee Engrypding
- o
1 - . Sexwrity
- \
Kemnay %3 -~ " - @ Brcans Coagees § Setadoastragturess
Datapuoenss
Management . oo Starde
e T 4
oAl .. - Shdesy
N
N ™ —
\ oman = &
\ % Semingy s Persistenty
Sendeit Sarming . BESHONCR | <olnfrastractine~
AbInIArstion fome o o .\Q’ﬁﬂ%m v T— . ,
<oyt N] X
b
| ALGENPISENEN he ol i
Da&;mom\%-‘ . <erandires>>
Schedule
Bohetuie !
G =1 i
Lniversiey DR 't'
fubabnpsiie 0BG

Figure 2.4. UML 2.x Component Diagram (Ambler, 2006).

Deployment diagram, the final type of structure diagram in this study, captures
the configuration of run-time hardware nodes and corresponding software components
that run on those nodes (Ambler, 2006). Nodes, such as server machines, operating
systems, Web servers, application servers, and database servers represent the

environment in which a component or set of components execute, and can be linked to

13

demonstrate interdependencies (Chitnis et al. 2006). Basically, deployment diagrams
display the hardware of the system. being modeled, the software installed in that
hardware, and the required middleware to connect disparate machines. Ambler (2006)
suggests that deployment diagrams are appropriate in examining system installation,
system dependencies with other systems, major deployment configurations,
hardware/network infrastructure of an organization, and the hardware and software
configuration of an embedded system. Figure 2.5 is an example of a deployment

diagram.

K2R 1% ey

N sApplicatlonderver N
e WAL {0 =Rabarisg < SRy
LEIBCurgloer
Staelent EJ
Aalovinistration i . .
(453 et Sewtheut &“J Liniversity DB &’J
. <sighatnhiase e
{vencor={rucie}
Seminny
Schedule @

<dhiplen it speco
Repicaration
ExtLation: diveid
sttt T eansasciiig: triy

Persisiener D SIRRSESAYR Bush> wedevie
<infrastrocteres>> Mauiplrme
Sreendors Arehywdt) HOS=MVR

Cowrsy
Miaspeinem
CAREACY NYStem
Cowrss:
RMnspeisent
Froadie

s<weh sepvdeeses |

Figure 2.5. UML 2.x Deployment Diagram for University Information System

(Ambler, 2006).

14

THE ASSUMPTION UNIVERSITY LIBRARY

Object diagram, a derivative of the class diagram, is a snapshot of an entire or
partial view of a system at a point in time (Rumbaugh et al. 1999). The diagram is
named after the elements that it contains: objects, attributes, and associations between
objects. The founders of UML concisely define an object, “A discrete entity with a well-
defined boundary and identity that encapsulates state and behavior; an instance of a
class” (Rumbaugh et al. 1999, p. 360). Each set of objects or instances created from a
certain class retains similar structure, behavior, and relationships. Object diagrams are
useful as illustrated examples of a system, test cases for class diagrams, or to observe

how a system behaves through a series of snapshots over time. Figure 2.6 is an example

of an object diagram.

SequuisVyali1: HeWall
F0Ty * ehasureWRhUnd = 10D s5q

Sequus Wall Plar:fcWorkPlan

q
-Operaesinfrocesses . ifcRelProcess Dperates On

Install Studs Operates Onvwal!1 : ic Rel Process Operates On

Install Metal Studs:icWorkTask

-RelatedObject : ifc Object = SequusYyalll
-RefatingProcess : ifcProcess = Install Metal Studs

install Sheet Rook Dper ates On'Wall1 :#eRel Process Operates On

IsPredece'sor'lo ncRelSequence Sequus RelSeq‘
* ifetork

WorkP'an ifcWorkPlan = Sequue\wallman
-UsesR. < ifcRelUseR:

= Instali_Studs_Schedule _Bements

= Sequus ResUseCrew!, Sequus ResUse Stud)

joner

Sequus Rel Seql:feRel Sequence

-RelatedProcess : ifcWork Task: = Install Metal Studs
-Relating Process : ifcW¥ork Task = Install Sheet Rock
-SequenoeType : ifcSeqEnum = F S

-TimeLag : ifcTime Durationheasure = 0

instatl Sheet Rock:HoWorkTask

IsPredecessmTo |icRel$equence Sequus RelSeq?

-RelatedObjeat : ifcObject = Sequusitalll
-Relating Process : ifcProcess = install_Sheetrock

Work
\mork Pan : iteWork Flan L Sequur Waﬂ Plan
-is From : ifeR = Sequus ReiSeql

HpplyTaping Operates OnWall1 :¥cRel Process Operates On

= Install_Sheet Rock_Schedule_Hements

L

Sequus Rel Seqz:KeRel Sequence

~RefaledFrocess : HoWork Task: = lnstal al Studs
-RelatingProcess : itcWorkTask = Install Sheet Rock
-SequenceType : ifcSeqEnum = F§

-Timelag : ifcTime Durationieasure = 0

Apply Teping: FeWorkTask

“Re aleaﬂsjeci THC DBJ&C‘I = §equusW§ﬂ|
-RelatingProcess : ifcProvess = Apply Taping

-Is" To :ifcRelSeq = Sequuf _RelSeq2

Work Plan - ifcWork Plan = Sequus Wtall Plan

; iteWork d = Apply_Taping_Schedule _Bemerts

Figure 2.6. UML 1.x Object Diagram (Froese et al. 1999).

15

Package diagram, a type of structure diagram, models logical containers or
packages and their relationships at a high-level overview (Sparx Systems, 2006). The
diagram helps modularize a complex diagram and organize the source code (Ambler,
20006). Packages are commonly used to group use cases and classes, and can be built to
represent either physical or logical relationships. All elements in a package share the
same namespace as well as possess a unique identifier. Packages may be applied on any
UML diagram, and they are easily recognized as they are drawn as file folders. Figure

2.7 is an example of a package diagram.

16

AT Main

LHTMEDPlEt

atm
2,
ETH
=y -
e phvsical
Zeasion
T "l + CandResader
+ CashDispenser
|+ CuswmerConsole
\ %1 + EnvelopeAcceptor
& +Log
T 4 + He twork ToB ank
! + OperatorPangl
trensaction X ¥+ ReceiptPrinter
+ TiRencoi
+ Withdrewal
+ Depuosit
+ Transfer
+ Inguiry

harnlking

+ Accountnformation
+ Balances
+ Card
+ Message
+ Money
+ Receipt
+ Status

Figure 2.7. Package Diagram for Automated Teller Machine (ATM) (Bjork, 2001).

Activity diagram, a type of behavior diagram, demonstrates the progression of
events in a system (Sparx Systems, 2006). From start to finish, decision paths as well as
parallel processing may occur. A diagram may involve several use cases, a small
portion of a use case, or no use cases at all. Ambler (2006) suggests that activity

17

diagrams are, in many ways, the object-oriented equivalent of flow charts and data flow
diagrams (DFDs). Activity diagrams typically model business processes, the logic
captured by a single use case or usage scenario, or the detailed logic of a business rule

(Ambler, 2006). Figure 2.8 is an example of an activity diagram.

¥

S e

l [P GRS wivl st}

e

e o,

et I
NP

1]

Banmagtison | {Cemrpating

engaged} i Rispasl

S e S caefnuly L stelusmer |

Lo Lotiles) i o Lamlpwg (0T
{..m,.{ mpeolins | f oy
o | b Leata
2 9
*" Autsheasn

$ abignlawi@apy [BRI]

jix P S)
EAVBIGER) .

{‘C&inuh’:v‘f‘iﬁh
SN

......................

} X po— .
e Fn, WEVGLOS enatiell [RlianGpedtite |

vy, e

o

1605 Gl weatiad] l
Aol 25ps } _______ .,% aligaidundtipy }

Figure 2.8. ‘Black-Box’ Activity Diagram (Hoffmann, 2005).

Use case diagram, a common behavior diagram, is used to identify the roles and
discrete functionalities in a system. Roles are called actors, and functionalities are
known as use cases. Despite its name, actors may assume any entity (or entities), from
humans to another system. Actors interact with use cases, as use cases may share
different kinds of relationships with one another. Chitnis et al. (2006) believe that use
case diagrams help users: discover significant system characteristics, create great
storyboard tool for user meetings, and write test scripts for the modeled system. Chitnis
et al. (2006) also recommends that technical staffs need not participate in creating use

cases. Figure 2.9 is an example of a use case diagram.

18

f:'lﬁa f“_log

I} " .
¥ - _Ll-..i:r_

- e P

x '
B ez emomey
e "_-‘g.'?i'

Figure 2.9. *“Seed Management™ Use Case Diagram for Crop Industry (Rherrera,
2005).

State machine diagram, formerly known as state chart diagrams in UML 1.x,

illustrates how an object responds to various events depending on its current state
19

(Ambler, 2006). A state is described as a stage in an object’s behavior pattern, and there
can be initial and final states. Also called a creation state, an initial state is where an
object is first created. A final state is where no transitions lead out of it. A transition is a
progression from one state lo another. State machine diagrams help comprehend
complex behaviors of classes, actors, subsystems, or components, Ambler (2006)
recommends state machine diagrams for modeling real-time systems. Figure 2,10 is an

example of a state machine diagram.

Figure 2.10. State Machine Diagram of Parser for Escape and Control Sequences

(Williams, 2005).

Sequence diagram, a prominent interaction diagram, displays two primary ilems:
objects drawn as vertical lifelines, and their interactions drawn as horizontal arrows

spanning from the source lifeline to the target lifeline (Sparx Systems, 2006). As the
20

diagram is read from top to bottom, interactions appear over time in the order in which
they occur. In a nutshell, sequence diagrams model communications between objects
and the messages that trigger those communications. Sequence diagrams are
inappropriate for modeling complex procedural logic as well as large number of objects.
UML 2.0 sequence diagrams retain similar notations from its predecessors with added
support for modeling variations to the standard flow of events. Figure 2.11 is an

example of a sequence diagram.

21

¥
4 5
F
Figufe 2.11. Sequence Diagram of Seagull, an OOP Framework (Turner, 2006).

Communication diagram, formerly known as the collaboration diagram in UML
1.x, is the second interaction diagram in this study. Providing similar information to
sequence diagrams, communication diagrams focus on object relationships via
sequenced messages coupled by arrows pointing in the direction of the message flow

(Sparx Systems, 2006). Although communication and sequence diagrams can be

22

transformed into one another, it is not immediately visible. In contrast, it is evident that
elements in a communication diagram are arranged in a free-form manner. To read the
diagram, always start from message 1.0 and follow the chronological messages from

object to object. Figure 2.12 is an example of a communication diagram.

Figure 2.12. Communication (Collaboration) Diagram (Wright, 2005).
23

THE ASSUMPTION UNIVERSITY LIBRAR

Interaction overview diagram, another type of interaction diagram, is closely
related to the activity diagram. Although many notations from activity diagrams such as
initial, final, decision, merge, fork, and join nodes are shared by interaction overview
diagrams, two new elements are introduced: interaction occurrences and interaction
elements (Sparx Systems, 2006). Interaction occurrences are references to existing
interaction diagrams. Interaction elements are depicted similarly to interaction
occurrences except that they display the contents of the references diagram inline (Sparx
Systems, 2006). Because interaction overview diagrams may incorporate sequence,
communication, interaction overview, and timing diagrams, Ambler (2006) doubts that
interaction overview diagrams will be practiced. The extensive size of the diagram
easily outruns whiteboards. Figure 2.13 is an example of an interaction overview

diagram.

24

st WithdrawFuisds IHelines Actounttinlder, (Bank, :AW

so J

Anssanttiniest

TR [ows | el

tdentily

Request suthetticat:on
‘ Provide msheesication i ,
FnERECHie Ientiny

s X
Confirm idensity

S i

[asopunmesyaec| | o |

Anvalidite it I

1 t "\

L2

hau (socEbio)

[zukhwnticaiech
weh 1
Brmaethioling Aded

Roegquest Qgoralion

; Bete Operotion I

ot auﬁl'n&n(ll;a[‘éd"www\\

fogs exi
[op=withdraw’ \F \
N W
[oomumaiant | | | |)
Rt st AMoven I-;mmm.-.mmﬁ [HYM }
" Belgot Amouat § M-:.Iai’f:;)k&:nd 5

v r
[0t vatic) moyns) J\ T} }
{valid armpunt}

et Py

wl J 1 Ruolosue kl I

-am, B =t Take l
K Bl

Request auth
ae
I Authorize ’

L } wd ,, ad ,J
Privanie it Relpsee g Casapiss fngis
l Take recet I Toke if :4 l ks fundy |

Figure 2.13. Interaction Overview Diagram for Use Case Withdraw Funds (Garcia et

al. 2005).

Timing diagram, a new interaction diagram recently added to UML 2.x, shows
the change in state or value of one or more objects throughout a given period of time.
Moreover, interactions between timed events can also be shown, as well as
corresponding time and duration constraints (Sparx Systems, 2006). A timing diagram

is drawn with a Y-axis labeled with a list of states, an X-axis labeled with time in a

25

chosen unit, state lifelines to show object state changes over time, and value lifelines to
show object value changes over time. State and value lifelines can be stacked in any
combination, and lifelines may send messages to another. Because it is difficult to
model multiple lifelines at once, Ambler (2006) recommends two lifelines per diagram.
He also observes that timing diagrams are often used to design embedded software as
well as occasional uses in business software. Figure 2.14 is an example of a timing

diagram.

td Timing Diagram /)
]t— {d.d*31 —>|
‘Waitfrcess
& COCQ 0..1%
Y weitCard ﬁ
&
Idle /
St".‘;‘d s I\ i L :// IC'H {1('t+3}| 1 — 1 1 1 1. i i X 1
ﬁ NoCard
[2ad
‘&) HasCard /
d..d*3
3 |- QR
%
0] & Y4
g idle X WaitCard VhitAcceks idie
®
v
o}
i 1 iy A J i) il [l 3 i - I } 1 1 1 1 1. i
Ti () T 1 i ¥ i T T T 1 1 1 I 1 T 1 1
tme (ms, 0 10 20 30 40 S0 60 70 €0 90 100 110 120 130 140 150 160 170 180 190

Figure 2.14. Timing Diagram (Sparx Systems, 2006).

2.1.3 Criticisms

UML is enormous. As a result, this requires huge efforts to master the language.
The Object Management Group (2006) openly admits that UML 2.x is a “large
specification”, consisting of four parts: Superstructure, Infrastructure, Object Constraint
Language (OCL), and Diagram Interchange. The Superstructure is straightforward — it

is a 700+ page document defining the thirteen diagram types and elements that comprise
26

them. The Infrastructure is a 210+ page document defining base classes that form the
foundation for the Superstructure and Meta Object Facility (MOF) 2.0. The OCL is a
180+ page document allowing setting of pre- and post-conditions, invariants, and other
conditions, and the Diagram Interchange is an 80+ page document providing a
supplementary package for graph-oriented information, which allows models to be
exchanged or stored/retrieved and then displayed as they were originally. Moreover, the
Object Management Group (2006) also documents UML Profile for CORBA®,
CORBA Component Model (CCM), Enterprise Application Integration (EAI),
Enterprise Distributed Object Computing (EDOC), QoS and Fault Tolerance,
Schedulability, Performance, and Time, Testing, and one related specification: the UML
Human-Usable Textual Notation (HUTN). Finally, object-oriented knowledge and
perhaps, experience are prerequisites for any UML starter.

UML is still changing. This is extremely costly as an army of published
materials, especially books, web pages, tools, and projects, need to be revised, rewritten,
or redrawn. The Object Management Group (2006) acknowledges that there are more
than a 100 book titles on UML. The group has also accumulated more than 40 links on
UML information and tools. Inevitably, UML users and management require bcareful
selection of vast UML resources — including old and new, more training to learn both
the language and tools, and if necessary, recertification from the OMG Certified UML
Professional program for new versions of UML. Botting (2006) provides several
publications illustrating concerns for UML changes and ambiguity. He also provides
comments made by Rick Bruner, “The OMG has engaged in a courageous effort to keep
the size of UML 2.0 to a minimum. Despite the fact that it has retired 25 predefined
elements and removed 28 other features, it ADDED 56 NEW features and 5 NEW

diagram types (Object, Package, Interaction Overview, Timing, and Composite

27

Structure Diagrams). The UML documentation went from slightly over 600 pages o a
little over 800 pages!"

UML is complex. Although the UML specifications can be downloaded for free,
the Object Management Group (2006) agrees that “it's also highly technical, terse, and
very difficult for beginners to understand.” OMG argues that the specifications are the
formal definition of UML, and are written for programmers who implement compliant
software products. The specifications, however, are “not an instruction book on “How
to Model Using UML”” (Object Management Group, 2006), and not intended for
application developers and users (Siegal, 2005). OMG recommends that modelers
should start with online tutorials, and apply for training from OMG member companies,
or purchase a book on modeling with UML.

UML is source code related. This stems from the fact that, given details are in
agreement, some UML-based tools are able to compile UML diagrams to generate
codes or vice versa. This is a problem if UML diagrams are presented to non-technical
software buyers. More confusion can be expected if UML is used to model software
written in OO programming languages. Developers will try to conform to OO concepts
as accurately as possible for their convenience in code generation.

Grady Booch, one of the original developers of UML, asserts that it takes more
than blind adoption and usage of UML for its sake to achieve success (Booch, 2004). As
Booch acknowledges that many organizations have not enjoyed successes from using
UML, he maintains that success with the UML must be coupled with thought, planning,
and understanding of UML’s purpose, limitations, and strengths. The rush to embrace
UML is actually generating cost and schedule trauma on many current software
projects. Booch (2004) obserQes that many organizations simply misunderstand UML

by modeling every single line of code, representing a front-end syntax to define the

28

context for comprehensive simulations, drawing insignificant diagrams, and replacing

the software development process.

2.2 Software Prototypes

A prototype is a preliminary and incomplete design, serving as a basis from
which other designs are developed or copied. In the software industry, software
prototypes are created for future full-featured software programs. Software prototypes
may allow developers to test the feasibility of certain technical aspects of a system (Carr
and Verner, 1997), or allow users to provide feedback for early ideas of the completed
software program or portions of it. Users may observe whether or not requirements are
met, detect potential errors, or make critical changes or additions before proceeding to
full-scale implementations. According to Lu (1998), software prototypes should be
cheap and quickly developed. Hoffer et al. (2002) adds that software prototypes are the
product of iterative development processes that convert requirements to a working
system through close collaboration between analysts and users. This can help avoid the
great expense and difficulty in making significant changes to a mature software program
during the final stages of software development.

Carr and Verner (1997) agree that there is much confusion in the software
prototyping literature, especially in the field of prototyping terminologies. Various
researchers attempt to name different prototypes designed to achieve different goals, as
well as different prototyping processes and strategies to construct those prototypes. For
instance, Carr and Verner (1997) exemplify with Budde et al.’s four types of prototypes:
presentation prototypes, prototype proper, breadboard prototypes, and pilot system,
which are constructed using either horizontal or vertical prototyping techniques.

Software prototypes must be distinguished from the prototyping processes that create

29

them, since software prototypes are the actual agents that provide the communication
link between developers and buyers. This research classifies software prototypes
according to their fidelity.

Prototype fidelity concerns “the degree to which the prototype accurately
represents the appearance and interaction of the product, not the degree to which the
code and other attributes invisible to the user are accurate” (Lu, 1998). There are three
common degrees of prototype fidelity: low, medium, and high. At one end, low-fidelity
prototypes involve chiefly paper-based mock-ups. They are intended to demonstrate the
user interface, and require a knowledgeable facilitator to perform the run-through.
Sketches, storyboards, and PICTIVE mock-ups are examples of low-fidelity prototypes,
which will be further discussed and exemplified. On the other end, high-fidelity
prototypes are computer-based simulations of much of the system functionalities. By
possessing user interfaces that closely resemble the final product, high-fidelity
prototypes are not as quick and easy to create as low-fidelity prototypes. Software
prototyping tools and current programming languages may help ease computer-based
prototyping. Situated in between the two extremes, medium-fidelity prototypes simulate
some system interactions and functionalities. Medium-fidelity prototypes are largely
about the approaches to limit or test prototype interactions and functionalities. Figure

2.15 displays the transition of prototyping techniques.

30

Low-Fidelity
Paper-based sketches

Paper-based storyboard / PICTIVE

Computer aided sketches/ storyboard

Wizard of Oz / Slide shows / Video prototyping
Computer-hased scenario simulation
Computer-based Horizontal simulation
Computer-based Vertical simulation

Computer-based full functionality simulation

v
High-Fidelity

Figure 2.15. Transition of Prototyping Techniques (Lu, 1998).

2.2.1 Sketches

Sketches are quick drawings. Utilizing paper-and-pencil to illustrational
software applications, sketches of the software user interfaces are useful for exploring
all kinds of design ideas (Lu, 1998). Sketches allow developers to see new ways to
refine and revise current ideas in a very simple and cheap manner. However, sketches
portray only high level concepts, and are inefficient in showing system progression.

Figure 2.16 is an example consisting of two screen sketches.

31

* g"\l(kn" [nfofmtip, j %v ﬂ:wslqrw:;; @%
R K | I
Firss:[Sco o]
M}Jkim:(m &sm:» T Tt | fe
Sortane | W %‘\m : ‘;lm.ls.
%Mznim ngm ﬂffé&:’;: e o
Dbe firsk Gl o 1t 203 Gt M i e 7 }i&m;!
B Y Ny
10 v T3 (Y e _
st;mam Fy s m . fesrghn -
503 Aol A0 { Sy Y™ (5090 Ayl Ddchen Tecapps
Th (ot by Oy Joti Sl
fz’ S e hw!w% % w\:.ogm.orﬁr
thds,

Figure 2.16. Two Screen Sketches (Ambler, 2006).

Ambler (2006) presents a prototype similar to sketches called the essential user
interface (UI) prototype. It represents the general ideas behind the user interface in a
technology-independent manner by using whiteboards, flip-chart paper, and sticky
notes. The essential user interface prototype also differs from traditional user interface
prototypiﬁg by focusing on users and their usage of the system, not system features

(Ambler, 2006). Figure 2.17 is an example of an essential UI prototype.

32

Figure 2.17. Essential UI Prototype for Enrolling in Seminars (Ambler, 2006).

2.2.2 Storyboards

Originating from the film industry, a storyboard is a “graphical depiction of the
outward appearance of the intended system without accompanying sysiem
functionality™ (Lu, 1998). It provides snapshots, with corresponding annotations, of the
user interface at different points in an interaction. Storyboards can be constructed using

office stationery to modern graphical drawing packages. According to Dalbey (2002),

33

illustrating each interface screen on separate pieces of paper is cheap, fast, and very
effective in terms of value gain versus construction time. Figure 2.18 is an example of a

storyboard.

Bwk Flame Byok Home

Library System Help Library Systam

000 00X X 00000000 MNX XXX

E 166 Iy sob
Call bo. XXX X0 w0 Eat M.
QATE 58
2000¢

000 XX

0 G0 () s G G0 () vy
\ \
Don’t know hew to input Help screen for Call No. Field Finish input Culf No.
—_— _ —
Click Help Click Retsern after reading Ready to input the next field

Figure 2.18. Storyboard Representing System Function and Sequence (Lu, 1998).

2.2.3 PICTIVE

PICTIVE (Plastic Interface for Collaborative Technology Initiatives through
Video Exploration) is a participatory system design technique developed by Bell
Communications Research (Bellcore) in 1990 (Lu, 1998). In a nutshell, the technique
makes video and voice recordings of users modifying PICTIVE mock-ups of a system,
which are used to determine how the system will look and behave. PICTIVE mock-ups
consist of two categories of design objects. The first category is a colorful assortment of
simple office materials (e.g. pens, paper, clips, etc), and the second is materials prepared
by the developer (e.g. plastic icons of menu bars, dialogue boxes, etc). Figure 2.19
shows some PICTIVE plastic icons, and Figure 2.20 depicts a scene in a PICTIVE

session.

34

i & |

Figure 2.19. Some PICTIVE Plastic Icons (Lu, 1998).

Interactive,
"Equal Dpportunity”
Casign Surtacs

Figure 2.20. Scene in PICTIVE Session (Lu, 1998).

2.2.4 Canonical Abstract Prototypes

Canonical abstract prototypes are designed to bridge between abstraction and
realization in user interface design (Constantine, 2003). It is intended to be less abstract
and more precise to resolve design issues in very complex user interfaces. Canonical
abstract prototypes are constructed from sets of symbols, each with a specific interactive
function. Moreover, the symbols also model the position, size, layout, and composition
of the user interface features. There are basically two types of symbols: a generic tool or
action (Figure 2.21), and a generic material or container (Figure 2.22) — plus extensions
and combinations between the two (Figure 2.23). Figure 2.24 is an example of a

canonical abstract prototype.

35

SYMBOL INTERACTIVE FUNCTION EXAMPLES 7

7 _umonlopemilon _ Prmf symbol table, Color selected shape
" . 4 ! : ,,_onﬁrm purchnse
/l siop/end/(omplefe ansh mspec'hon sessnon }In‘rerrup? ’rcst

77 selet " Ob

/'* reate Ne.w customer Blcmk shde
/X delete,ersse Break connection line, Clear form

/" ~ modify Changc shnppmg address Edn‘ chen‘t detmis
Vi duplicute

perform (& return}
% toggle
R

Figure 2.21. Generic Tool or Action (Constantine, 2003).

SYMBOL INTERACTIVE FUNCTION EXAMPLES A

D container® Configuration holder, Employee history

collection

Figure 2.22. Generic Material or Container (Constantine, 2003).

SYMBOL INTERACTIVE FUNCTION EXAMPLES '

A editable element Patient naome, Next appointment date

| E selectuble collection Performance choices, Font selection

AE) selectable view set Choose patient document, Set display mode

Figure 2.23. Extensions and Combinations Between Generic Actions and Containers

(Constantine, 2003).

36

Film Clip Viewer
Film Clip ID/Title S Find E—] Film Clip View

i G ‘P.o 34! e

N
\\f synchronized
to selection

7= A

S—
—S—

—— o 20 3t Bt B o e 0 ot O O L S e e i

JUp 1 Frame || #Back ! Frame

2 PLay || A stop

oy
v

Figure 2.24. Canonical Abstract Prototype with Key Notational Elements

(Constantine, 2003).

2.2.5 User Interface Flow Diagrams

The user interface flow diagram allows stakeholders to model high-level
relationships and interactions between major user interface elements of a system
(Ambler, 2006). Also called storyboards, interface-flow diagrams, windows navigation
diagrams, and context-navigation maps, the user interface flow diagram uses boxes to
represent major user interface elements, and arrows to represent the flow between them.
The diagram may span a single use case to model the interactions that users have with a
system, or several use cases to gain a high-level overview of a system’s user interfaces.

Figure 2.25 is an example of a user interface flow diagram.

37

THE ASSUMPTION UNIVERSITY LIBRARY

K\Q’h’? shu'-.i
L

o
b e
Farseri p \\5
Bulun,

Pkivg |
fiy | bt
N Lo 7T

Figure 2.25. User Interface Fiow Diagram for University System (Ambler, 2006).

2.3 Filmmaking

The film or movie industry is a vigorous multi-billion dollar business. A film
can be translated into multiple languages allowing its customer base to span the entire
world. Films can also be sold and resold, as the shelf life of a timeless film is virtually
endless. Such lucrative possibilities invoke astronomical investments, which includes
the willingness to spend extensive periods of time, massive funds and effort, and
employ diverse teams of professionals. The entire complexity of filmmaking, however,
sources from two vital pieces of compositions that serve as the foundation for a film:

screenplays and storyboards.

2.3.1 Film Screenplay

A screenplay is a written description of a film. Also known as a script, it is
composed in the earliest stage of filmmaking: the Development Stage. In this stage, an
idea or story is developed into a working script. Based on a concept, previous literary

38

compositions or films, or an original work in itself, a screenplay is a vital blueprint of
the film and may comprise of everything from character names, descriptions, dialogue
and actions, to scene descriptions. Although there are no single format for writing a
screenplay, Craig (2005) argues that screenplays must be kept very simple since any
investor, in or out of the film industry, a banker, or lawyer must be able to understand
the story without having to learn another special language. As thousands of screenplays
are circulated at any given time, a writer should capture the imagination of readers in
the first few pages than scare them off with jargons and cluttered complex scripts.
Leave the production versions of a screenplay, such as shooting scripts, to production

staffs. Alice (2001) provides the following example of a screenplay:

VYV VYV VVVY Start screenplay example VY VVVVVY
10. INT. ALBERT’S LIVING ROOM. DAY

Seventy-year-old ALBERT JOHNSON is sitting in an armchair wearing worn but
comfortable shoes. He is an amiable man out with a well -worn face exhibiting a
lifetime of drudgery.

STEWART lies on the carpet coloring in a picture book. The room is well furnished and
well maintained but the first thing to grab your attention is the tick-tock of a mantel
piece clock. On top of the drinks cabinet there is an abundance of shining trophies for
Albert’s prized fishing catches.

LOUISE enters carrying a tray of food.
ALBERT
(sarcastic)
I told you it was no good for you.

LOUISE smiles and hands ALBERT the tray.

LOUISE
Dad, Jim’s a good man. Now, eat your tea.

LOUISE picks up an ouster and tin of polish from a table and begins to clean the room.

LOUISE
39

How’s your chest?

ALBERT
Not so bad since I started on the pills. (to Stewart) Fuss, fuss,
fuss.
STEWART

Fuss, fuss, fuss.

AAAAAAAAEndscreenplayexample AAAAAAAA

The first draft of a screenplay may require several months to complete, and it is
rewritten until all stakeholders agree that it is sufficient for filming. Even then, the
writer is often summoned during film production to rewrite sections of the screenplay.
To avoid film crews having different updates of the screenplay, page-locking is
employed. Changes are added or replace pages of the page-locked screenplay by means

of colored pages.

2.3.2 Film Storyboard

A film’s storyboard is a sequence of drawings designed to visualize a film or
sections of a film beforehand. Its appearance resembles that of a comic strip, illustrating
the location, characters, props and settings of each camera shot. Each drawing is further
adorned with technical instructions and arrows describing actions, camera and lighting
directions, and occasionally basic dialogue. Basically, the storyboard represents what

the camera lens or viewers will see. Figure 2.26 is an example of a film storyboard.

40

P’ Is for Psycho

¥ K vt {WS};‘%; fonw pnghe. & o B dngle (ARSE
{haow ey Bghting) 1 - voam in - el ghat

S 185 iaps v 5

fasss

& phigh sogie {C4 Pae atross cldonts
LR {oury slow)

L8 1 £

5 o) plag - bole! B (€U “hardsge < weappiog”

41

oL up i

e
9 PM3) Boy sntery ronm ‘ 10 a5 oans wocks gon ok bt
R4
T k0
bidsuk

T8 LECU) maey's eprs. {Shado
e CERALY MOMWE, B30

Y Bk Pasae) BANG BANG!

Figure 2.26. ‘P’ is for Psycho Storyboard (Alice, 2001).

Based on a shooting script, a storyboard is first drawn as a rough sketch in the

second stage of filmmaking: the Preproduction Stage. At this stage, a film is planned,

42

designed, and the storyboard is extensively used until the completion of the film. The
storyboard matures as the director discusses the ‘look’ of the film with the director of
photography. During film production, copies of the storyboard are distributed to the
crew and casts, virtually as job descriptions for each camera shot. Finally, during post-
production, the storyboard visually reminds film editors of the original intentions,
sequence, and timing of the film.

Lower budget or smaller films may discard the process of storyboarding
altogether. However, storyboards are time worthy and indispensable if there are
hundreds if not thousands of film crews and casts. Sometimes it replaces a screenplay
entirely. The benefits of storyboards extend far beyond a visual consensus or framework
which changes can be judged. It is an essential piece of communication, a tool used to
inspire more ideas or discover potential problems, and costs estimator as well as saver.
It can accurately position actors in an imaginary world, as well as help them to perform
convincingly with an imaginary character. It also defines the scope and number of shots
for each event. A close-up shot of an object, for instance, may only require an indoor
backdrop rather than a long strenuous trip to the actual location. Without the storyboard,
ten different directors may even produce ten different interpretations of how to shoot the
same written event.

Matthew Jones, a script editor, concisely expresses his gratitude for storyboards,
“In a production meeting, a picture really is worth a thousand words. You can script a
sequence in words as clearly as you like, and there will always be some
misunderstanding. But if you use storyboards, it’s so much easier to communicate your
visual and dramatic ideas” (Alice 2001, p. 1).

Storyboards find its uses in business as well such as ad campaigns, commercials,

and computer games. It is used to convince investors of a potential project, or as a

43

“Quality Storyboard” that paints the Quality Control process within an organization.
Human resources involved in a storyboard can now learn how and when to explain their

part in a story.

2.3.3 Best Practices

The study of screenplays and storyboards reveals valuable best practices
pertaining to blueprints:

Create narrative blueprints. Narrative blueprints, such as screenplays, are
written plans based on original concepts or works. They allow elaborate details to be
documented, and may provide the basis for visual blueprints. Narrative blueprints’
appearances in the earliest project stage indicate their profound importance.

Create visual blueprints. Visual blueprints, such as storyboards, are consensuses
of how the final product may appear to the audience or users beforehand. Commonly
deriving from narrative blueprints, they work to bring narrative blueprints to life.
Without the visual blueprint, visual interpretations may vary from person to person.

Create non-technical blueprints. Larry Sherby, a digital camera owner said, . .
. I have to consult a manual anytime I try other features and then I forget how to do it”
(The Assqciated Press, 2004). Larry Sherby has demonstrated that too many products
are built for technicians. Similarly, there is a dire need for non-technical, intuitive
blueprints that do not depend on other special bodies of knowledge or experts to

understand.

44

III. SOFTWARE SCREENPLAY STORYBOARD MODEL (S3M)

3.1 Introduction

S3M models are intended to be design plans that can be distributed to any
software buyers and developers, and all will still be able to perceive the same exact
software system. To make this happen, S3M employs two crucial features. First, S3M
levels usability to a common ground — one that is not favorable for, or operational by
only particular groups of people and vendors. Special tools, languages, and expertise are
only hindrances to the reconciliation between software buyers and developers. S3M
models are described using only human languages, preferably English, which is
extensively used as a second language and as an official language in many countries.
Visual sections of the model can be illustrated using the simplest of office tools: the pen
and paper, or virtually any illustrational software. Secondly, S3M is self-contained.
Each individual S3M model or group of S3M models are accompanied by standard
items consisting of folders and documents that are designed to be extremely portable,
and contain all the essentials to create, store, and guide project stakeholders through an
entire group of S3M models. This produces three momentous benefits for stakeholders
who are involved with S3M models: anyone can learn S3M, learn by themselves, and
learn instantly. Moreover, S3M’s standard items are highly flexible. They are editable,
or translated if necessary, to allow optimal fitting for each individual software system.
Altered standard documents, however, should at least continue to realize the objectives
of each document.

This research refers to the set of S3M models and corresponding standard items
simply as a ‘blueprint’. S3M blueprints have three formats to select from: paper-based,

digital, or both (for example, paper-based narrations with digital illustrations). Figure

45

3.1 suggests one way to store paper-based S3M blueprints, and Figure 3.2 suggests one
way to store digital S3M blueprints. Because S3M blueprints can be entirely in paper-
based form, it has been extensively scrutinized and simplified to minimize software-
dependency, albeit modern system designers being more likely to opt for word
processors and stencil-based drawing software. Lastly, S3M blueprints are photocopy-
friendly — meaning every element has been designed in only three colors: white, black,

and gray.

README.

Pupurtsiatia

Pk PuncsonRepan

BlankSereviflepon

Bisnd Popupliepan

ABE Sofiware Keston

Froawtionad ist

A3bbexampis

Figure 3.1. Paper-based S3M Blueprint with Standard Items in Suspension Folders.

46

LR @

B e |

b
H
H
i
¥
3
-
¥

oo n ey

' ; ABC Sofreare Sesten

Ay Decoraents

Saexample dar

guvesavavengorvrmud

a
.
1
3
5

v Enmnsneast AR otlvan: Sustes 00y Ploamrnenis A BC Softsare SvueneHEADMY

Figure 3.2. Digital S3M Blueprint with Standard Items in Computer Hard Drive.

3.2 The README Document

README is a commonly distributed file containing information concerning
other files in a directory or archive. The capitalized name is chosen to attract users to
read the file first. Similarly, all S3M blueprints are delivered with a single README
document in a README folder. It should also be the first standard item created, as
everything else branches from here. The S3M README document aims to meet the
following objectives:

1 To introduce S3M concisely.

2) To introduce S3M standard items.

(3) To provide other essentials S3M users need to know before proceeding.

The following is an example of the README document:

47

VVYVVVVYVYV Stat README document YYVYVYVYVVY
README

This software system is designed using the Software Screenplay Storyboard
Model (S3M), which narrates and visualizes the system before actual development. The
narrative and visual aspects of S3M models are documented in separate reports. S3M is
also self-contained. Each individual S3M model or group of S3M models are
accompanied by standard items consisting of 4 folders and 7 documents that are
designed to be extremely portable, and contain all the essentials to create, store, and
guide project stakeholders through an entire group of S3M models. The first folder,
called README, stores all 7 documents named respectively: README, Reportsintro,
BlankFunctionReport, BlankScreenReport, BlankPopupReport, FunctionList, and
S3Mexample. These documents should also be read in the same sequence. The other 3
folders are named according to their contents: FunctionReports, ScreenReports, and
PopupReports.

S3M, as well as this point henceforth, utilizes two literary conventions. First,
nouns enclosed in square brackets “[]” mean to insert contents, as indicated by the
given nouns, at the same location as the square brackets. For example, “[system name]”
means: insert a system name here. Any word formatting such as bold, italic, or
underline applied to the bracketed nouns also applies to the corresponding insertion. In
some cases where insertion is optional or unavailable at the time, system designers may
either leave the insertion intact, or if possible, simply erase the square brackets and its
contents. Lastly, three periods separated by spaces “. . .” mean: so on so forth.

AAAAAAAAENREADMEdocument AAAAAAAA

3.3 The Reportsintro Document

The modern user interface of a computer is a remarkable demonstration of
simplicityv. Virtually anything can be achieved in three actions: type, click, and drag.
S3M reports are substantially based on these actions. They document what system users
will type, click, and drag in the user interface. A forthcoming S3Mexample document
will evidently corroborate the sufficiency of these actions in modeling a software
system.

The ReportsIntro document is essentially the heart of S3M. S3M users will be
able to create the reports after reading this one single document. The ReportsIntro

document aims to meet the following objectives:

48

(1) Tointroduce S3M reports and their key elements.
(2) To explain how to use the reports.

The following is an example of the ReportsIntro document:

VVYVVYVYYYVYYV Start Reportslntro document YVVYVVYVY

Reportsintro

S3M models consist of three types of report: function reports constitute the
narrative aspect of the model, and screen and popup reports constitute the visual aspect
of the model. S3M standard items also include a blank function report, a blank screen
report, and a blank popup report as templates to provide convenience in creating the
reports. The following sections are introductions to each type of report:

Function Report Introduction

In S3M, a function is a set of steps or actions users perform on a computer
system to achieve a particular end. Steps can be described narratively as well as
pictorially. Smaller steps may be fused into or described in a single step, and vice versa.

A function report provides full description of a particular function performed by
users of a computer system. A function report is read alongside screen reports that it
calls. Function reports mainly describe steps performed by users, unless developers
decide they need a technical version of the function report that also details steps
performed by the system. The following is the layout and full description of a function
report:

[function name] Function Report

Function Name: < Function names are preceded by a letter ‘f”. All other words
that the name comprises begin with a capitalized letter to
distinguish each individual word.

Category Path: < This lists the category and subcategories that the function
belongs to. Categories and subcategories are separated by the
“greater than” symbol with spaces “ > ”.

Description: < This is a description of the function.

Functions Involved: < This lists other functions used by this particular function, and
helps designers retrieve relevant function reports beforehand.
Disabling functions listed here will affect the current
function that requires those other functions in a system.

Screens Involved: < This lists all screens used by this function, and helps
designers retrieve relevant screen reports beforehand.

Popups Involved: < This lists all popups used by this function, and helps
designers retrieve relevant popup reports beforehand.

Designers: < This lists all developers or buyers that create or edit this

49

report.

Function: :
Steps* Description
1
2
Exceptions: < These are things that can go wrong when users perform the
function.
Descripton Response
< How the system respond to an
exception that is detected.
1
2

*Please see the Step Tutorial section on how to name steps.

Steps Tutorial

Steps must be uniquely named for reference purposes. For example in a
recursion, a later step tells the user to perform an earlier step. There are sequential steps
and alternative steps. Sequential steps are normally formulated by adding one to the
previous step. Alternative steps are normally formulated by adding one and a non-
capitalized English alphabet to the previous step. However, S3M recommends that
designers avoid multiple alternative steps simply by creating separate function reports
for each alternative step path, or create a function report for the most significant step
path. The step naming convention is demonstrated by the following table. Notice that
there is always a single first Step 1 as the starting point. Also, notice how step paths
influence the step sequence. It is more natural to think step paths one by one, than all
alternatives at once.

Step Steps Illustration How to Read Step Paths
Sequence
Steps 4 wr“) Perform Step 1, 1>2
1 s perform Step 2
2 i (stop)
®
Steps Perform Step 1, 1>2a
1 perform either Step | 1>2b
2a 2a (stop) or Step 2b
2b (stop)

50

(1)
e ’)(‘\’*A g
{ 2a \} {i;b)
N e
Steps (’_Im} Perform Step 1, 1>2a>3
1 S perform either Step | 1>2b>3
2a AN 2a or Step 2b,
2b f~3 }"f.,f-w«,\ perform Step 3
3 {22) (26) | (stop)
\,.,_/‘& s"\“__,_..f)
X"}‘ ’;-"J *Notice that there
T may be as many
{x 3 /} alternatives
o necessary, but Step 3
succeeds all.
Steps f" T‘\ Perform Step 1, 1>2a>3a
1 {‘\,Wx} perform either Step | 1>2b
2a SN 2a or Step 2b (stop),
4 |
3a P N perform Step 3a
2b (2a) (Zb)? (stop)
$ *Notice that Step 3a
o only ends the
(/ 14 ‘} alternative path ‘a’.
5\‘\....//
Steps 6\ ’%b Perform Step 1, 1>2a>3a>4
1 " perform either Step | 1>2b>4
2a / A 2a or Step 2b,
3a | —~ A perform Step 3a,
2b (\?.d } (/ 2b> perform Step 4
4 i \.?, (stop)
£ / *Notice that there
(’f g} { may be as many
N / alternatives and
”\ ’f paths necessary, but
. Step 4 succeeds all.
4) .
v
Perform Step 1, 1>2a>3aa
perform either Step | 1>2a>3ab

51

1 P 2a or Step 2b (stop), | 1>2b
2a :{kl /} perform either Step
3aa VAR 3aa (stop) or Step
3ab - 4 | 3ab (stop)
1,)
2b () (*)
yoooN
o o
(3aa :} 1 3ub)
S S v
Steps _{»“"T\ Perform Step 1, 1>2a>3aa>4
1 W __,..} perform either Step | 1>2a>3ab>4
2a AN 2a or Step 2b, 1>2b>4
3aa /Mf ‘M perform either Step
3ab i \39 (oh) 3aa or Step 3ab,
b Ry 7/ perform Step 4
/ B ' sto
4 . { ‘P\ fi (stop)
(30a] 3ab)]j *Notice that there
_,.{\% T’ / may be as many
T ¥ { alternatives and
*;,m\" paths necessary, but
{ 4 } Step 4 succeeds all.
RN
Steps 4."7\«} Perform Step 1, 1>2a>3aa>4aa+b
1 DN perform either Step | 1>2a>3ab
2a ’/ \ 2a or Step 2b, 1>2b>4aa+b
3aa P "~ | perform either Step
3ab { \30 (7h || 3aa or Step 3ab
2b R s’ | (stop), perform Step
4aatb VAR / 4aa+b (stop)
Q-aa ‘ i %:i) * Notice that Step
- Ny 4aa+b only ends the
S, .
S / alternative paths ‘aa’
*u—\r and ‘b’. Try to avoid
{;‘aaﬂiw@ this.
\"'x_...»

Screen Report Introduction

A screen is basically an instance of a system’s user interface (UI). All widgets,
or UI components a system user interacts with such as buttons and text boxes, are
uniquely tagged for reference in function reports. Multiple widgets can also be tagged as
a group. Tags are formed according to the following convention: [screen name]-# (for

52

example, sLogin-1, sLogin-2, and so on). Tag numberings usually start from left to right
and top to bottom of the screen.

A screen report describes and illustrates a particular screen. Screen reports are
used with function reports that call them. The following is the layout and full
description of a screen report:

sereen agme| Seeees Repary

Sereen arne: wre preeoeded b bt ' i el athes wensds thep the gzt Ciesgrises egds with g cipinebized etz o diviagiisi csh

13
Evishod. % sreen, and belps desigess peieve solevant funoies seponts befusehind. Vilisag ibe

GO

Dtz g

{seeeen it

s
- I 4
Resamy Bt f
¢
E ot
8 isudny Chose
Psattont

{trvests durafing

Popup Report Introduction

A popup is a window that appears over a screen, and calls the system user to
perform a specific function. For example, a popup may require the user to confirm the
deletion of a piece of critical information, or inform the user of exceptions and errors. A
popup may call another popup, although rarely practiced. A popup disappears and
allows the user to return to the screen or popup that calls the popup only when the user
performs the specified function or cancels the popup. This distinguishes popups from
screens, which are less strict than popups. To decrease documentation, S3M
recommends that popup reports are only composed for complex functions. Simple
popups can be directly described in function reports. The following is the layout and full
description of a popup report:

53

L s Bagsnge Repont

Fopup e i] ey wovadds B iz misvee oo baes Sapbn et a capitolion] betier ki agetsh zach

Pdenoripstian:

Ay <f K T
Frnwtons lvaised y

itk [ise shads. puspinge, wird Sl desigpiers retviree selevant Bmoion veporis otirekand Edizing the cavrent

HE
Ehszymers: <5 Desigzrs, of miathirs o8 this 1

{papup title]

femypags sdetaile)

AAAAAAAAENdReportsintrodocument AAAAAAAA

3.4 The BlankFunctionReport Document
The following is a typical BlankFunctionReport document created with and

designed for use with word processors:

VYV V V¥V VY VYV Start BlankFunctionReport document VVVVVVVYY

Function Report

Function Name:
Category Path:
Description:
Functions Involved:
Screens Involved:
Popups Involved:
Designers:

Function:

Steps Description
1
2

54

Exceptions:
Description Response
1
2

A A AAAAAAENdBlankFunctionReportdocument AAAAAAAA

3.5 The BlankScreenReport Document

The following is a typical BlankScreenReport document created with and

designed for use with stencil-based drawing software:

VYV V¥V YVY Start BlankScreenReport document VY VVVYVYVY

55

X

AAAAAAAAEndBlankScreenReportdocument AAAAAAAA
3.6 The BlankPopupReport Document
The following is a typical BlénkPopupReport document created with and

designed for use with stencil-based drawing software:

VYV VY VYV VY Start BlankPopupReport document VY VVVVVY

56

THE ASSUMPTION UNIVERSITY LIBRARY

Lo Bupert

A A AAAAAAEnNBlankPopupReport document AAAAAAAA

3.7 The FunctionList Document

Function reports are gateways to screen and popup reports because both types of
reports are designed to be called by function reports. However, when there can be
hundreds, perhaps thousands of functions, the FunctionList document is vital in aiding
S3M users in function searches as well as creation. The document aims to meet the
following objectives:

(1) To explain the important purpose of the document.

2) To aid S3M users in function search and creation.

The following is an example of the FunctionList document:

VV VYV YVYVYV Start FunctionList document VYV VVVVYY

FunctionList

57

This document provides an introduction to the software system and a portal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
corresponding reports. This document initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system model development.
[software system name]
[software system introduction]
1. [categoryl name]
[category] description]
Function reports in this category include:
1.1. [function report1 name]
[function report] description]
1.2. [function report2 name]
[function report2 description]
1.3....
2. [category2 name]
[category2 description]
Function reports in this category include:
2.1. [function report] name]
[function report] description]
2.2. [function report2 name]

[function report2 description]

23....

AAAAAAAAEndFunctionlistdocument AAAAAAAA

58

3.8 The S3Mexample Document

The S3Mexample document is intended to be read last. It demonstrates S3M
with a classic example found in many introductory texts for teaching programming
languages: a simple software program that displays “Hello world!” With slight additions
to the program, the S3Mexample document aims to meet the following objectives:

1) To show how prime standard items and reports may appear in practice.

(2) To show how prime standard items and reports work together.

3) To prove the feasibility of S3M.

The following is an example of the S3Mexample document:

VVVVVVYVYV Start S3Mexample document YVVVVVYVVY

S3Mexample

This document does not present a complete S3M solution, but provides a
demonstrative S3M example. It has excluded the README, Reportsintro,
BlankFunctionReporit, BlankScreenReport, and BlankPopupReport documents because
their contents normally remain the same. Designed for a software system called Hello
World, the example consists of a FunctionList document, a function report, a screen
report, and a popup report. Separated by rows of asterisks, the document and reports are
intended to demonstrate how descriptions from the FunctionList document can be used
to generate functions, how steps and exceptions may be described, how widgets may be
tagged, how the reports relate to one another, and clarify other queries new S3M users
may have after reading through the standard items. New S3M designers may also adopt
the design sequence and logic implied by the example, although S3M does not impose
any in particular.

s s sk e s e o s e s e s ke sk b ok e st o st e s sk s e o o e s ot e o s s e s e o ool ok o s e o e stk sk o sk o e o s e sk s sk ot s sk ok ok e s s e ke

FunctionList

This document provides an introduction to the software system and a portal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
corresponding reports. This document initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system model development.

59

Hello World

Hello World is a software system that calls a popup to display the message,

“Hello world!”

1. Main Functions

Hello World has two types of users: authorized and unauthorized.

Authorization is checked by the system when users attempt to log in by entering a
username and password. Only users with valid combinations of username and
password are able to view the popup that displays the “Hello world!” message.

Function reports in this category include:

1.1.

fLogin

All users log into the system here.

s s s o ok o s o ok oo ofe ol s o ke o ol s o ofe s e o s e s s o ke o ol e oo e kel s s sk s ke s ke s e se s sfe e s st s s f e e e ke of ok sk ke o ke

fLogin Function Report

Function Name: flLogin
Category Path: Hello World > Main Functions
Description: All users log into the system here.

Functions Involved:

Screens Involved: sLogin
Popups Involved: pDisplay

Designers: Jia
Function:
Steps Description
1 In sLogin, type in username and password in sLogin-1, and click sLogin-2 to

attempt to log into the system. If username and password is valid, system
calls pDisplay.

2

In pDisplay, click pDisplay-1 to return to sLogin.

Exceptions:

#

Description Response

1 | The username and password are not | System calls popup that states: “The
found. username and password are not found.”

e 3¢ s s o o 34 ok sfe sde afe oo sbe se ofe 2o ofe s o ke ofe she e 2fe sk oo she sfe ofe s ok ol ke sfe ok sk s she oo s sfe s ok ofe she she s sfe e 2 sk ofe sfe s sfe sk sfe sfe sk sfesdeske e she sfe e sfe ok

60

nests B AL
v M

Login - w% @ x

s i)

-

{
Ll §

ANt AR AP

Passwoid §

sl 3 =)

sk st e st ok s e o ok ok s o se o sk o sk ofe e s e o s s o s o o sk o o ok ke s fe s ke sk s oo sk of ook e st e s ke s e st sk o o e ke sl ke sl ke s ke s ke s sk ke

61

pi¥splus Ropun Bad

Feopmgs Nagng
henirigsticon:

Fanctioes Tovoteed:
Draignet

g the s, Hedio waeld™

Disply Message

Bty weabit

plisplan i

AAAAAAAAENdS3Mexampledocument AAAAAAAA

62

IV. TESTING S3M

4.1 Student Information System (S1S)

In contrast to the “Hello World” software program in the S3Mexample
document, SIS is a practical real-world application — demonstrating actual scenarios that
require the creative harness of S3M. The SIS blueprint excerpt presented here not only
abides by the S3M framework, but incorporates narration-illustration principles in
various areas of the blueprint to maximize users’ comprehension. Again, this section is
not intended to provide the entire blueprint, but presents only a set of related functions
concerning academic program setup. The README, Reportsintro,
BlankFunctionReport, BlankScreenReport, BlankPopupReport, and S3Mexample
documents are excluded, as their contents normally remain the same in all blueprints.
The SIS blueprint excerpt will start with the FunctionList document, and work its way
through the reports that build upon the FunctionList document. The excerpt is created

using only a word processor and stencil-based drawing software.

4.2 SIS Blueprint Excerpt

To veliminate clutter, individual documents and reports of the SIS blueprint
excerpt will each start on new pages, starting from the next page. Moreover, reports will
not be regrouped according to report types, but they will remain in the same sequence

they are created to provide some insights to the excerpt’s design sequence and logic.

63

FunctionList

This document provides an introduction to the software system and a portal to its
S3M reports. The portal is virtually a table of contents of functions and their
descriptions. Function categories and subcategories may also be described as well to aid
function search and creation. For convenience, function descriptions may be copied into
corresponding reports. This document initially provides a blank outline of the table of
contents, which will eventually be filled as the document is open for updates throughout
the system blueprint development.

Student Information System (SIS)

SIS is a generic system concerning all functions surrounding student information
such as grades and attendance. Four primary types of users of SIS are system
administrators, which are simply referred as administrators, instructors, students, and
parents. Administrators typically perform technical functions such as system or user
access configurations. Instructors perform functions related to students such as grading
and issuing progress reports. Students and parents share similar functions, which mostly
pertain to viewing student information. All user information, despite their status, is
stored permanently and requires authorized personnel to perform any deletion.

1. Generic Functions

' For security reasons, each type or individual user may be configured to allow
access to only certain information or functions. User access rights are checked each
time the user attempts to log into the system with his/her username and password.

Function reports in this category include:
1.1. fLogin
All users log into the system here.
2. Academic Program Functions

Most educational institutes possess more than one academic program. For
example, a typical grade 1 — 12 school may be divided into Elementary School,
Middle School, and High School. As for universities, the academic program
hierarchy may branch as far as 3 to 4 tiers. For example, a university may possess
Bachelor, Master, and Doctorate Degree Programs. Master Degree Programs may be
divided into several schools such as Business, Computer, and Engineering. Finally,
the School of Computer may be further divided into Computer Information Systems,
Computer and Engineering Management, and Internet & E-Commerce Technology.

Each academic program may possess its own set of calendars, daily
schedules, and students, as well as address (academic programs are not necessarily
located at the same place). A branch of academic programs, however, may possess a
single publicly-accessible master calendar that oversees the entailing set of publicly-
and privately-accessible calendars. School day indications (full, partial, and no

64

school) and events added or edited in a master calendar will be inherited by all
publicly- and privately-accessible calendars of the corresponding branch of
academic programs, unless inhibited by the user. As a consequence, a master
calendar cannot be overseen by another master calendar as shown in Figure 1, nor
can two or more master calendars reside in the same node. If a master calendar is
deleted, information previously conveyed to all publicly- and privately-accessible
calendars of the corresponding branch of academic programs will also be deleted.
Lastly, all calendars display the current month by default when accessed.

Femar v

me]

e s

g

]
\
|
/

" |
N,) =

Possesses i mmsrer calensdar,

. bt

ey
o

Y
/
!

Nchood of

Crunpater
oy e

¥

&

*

3

¥

t

¢

13
P g *
4 ¢ H
¢ 3 ¢
¢ . H
& 1 H
¢ H N
t { !
& x M
¥ € *
P T s

,/“"'W" m\ i BN

e

y

Figure 1. A master calendar overseeing another master calendar is illegal and
confusing.

65

Academic programs need to organize marking periods to inform students of
their grades or progress throughout an academic year. Marking periods should be
named meaningfully, and possess no more than three tiers. For example, Academic
Year 2007 (1% tier) has 2 Semesters (2™ tier), and each Semester has 2 Quarters (3"
tier). Marking periods appear as non-recurring events in calendars hence, they are
recreated for each academic year.

On a daily basis, academic programs abide by daily schedules. An academic
program may possess multiple daily schedules, for instance, one for full school days
and another for partial school days. The daily schedule displays information such as
class periods and breaks.

Function reports in this category include:
2.1. fAddAcad
Add a new academic program.

2.2, fViewAcad

Added academic programs may be viewed, edited, deleted, or saved as
new academic programs.

2.3. fAddMarkPer

Add up to three tiers of marking periods.
2.4. fViewMarkPer

Added marking periods may be viewed, edited, or deleted.
2.5. fAddCal

Add a calendar for an academic program.
2.6. fViewCal

Added calendars may be viewed or deleted.
2.7. fSchDayCal

Indicate full, partial, or no school days on a calendar.
2.8. fEventCal

Add, edit, or delete events in calendars.

2.9. fAddDlySchd

66

Add a daily schedule for an academic program.
2.10. fViewDlySchd

Added daily schedule may be viewed, edited, or deleted.

67

{Login Function Report

Function Name: fLogin
Category Path: Student Information System > Generic Functions
Description: All users log into the system here.
Functions Involved: -
Screens Involved: sLogin, sIndex
Popups Involved: -
Designers: Jia
Function:

Steps Description

1 In sLogin, type in username and password in sLogin-1, and click sl.ogin-2 to

attempt to log into the system. If username and password is valid, system
loads the user’s access rights and displays sIndex.

Exceptions:

#

Description Response

1 | The username and password are not | System calls popup that states: “The
found. username and password are not found.”

68

slawgin Sevven Repurt

Logfin

g

Lingeranie ¢
e

slagan-d

69

slndes Severn Regnart

fr e St oty caeabaaal

7 &5 i wsesd i deseri

4 mat s sDer Qe nsey R g iy v spsten, Yz s

DivAched

FAGA G, 13 o

Per, 637 30w kit

Desagnens: g

finden

Coenvved Snformution deen;

Vel etnsticsts ¢
Sl

P .z';'ﬁ'rr'(

Add

Al Mok
View dm

cifn Sidevtion dren

s TR

70

fAddAcad Function Report

Function Name: fAddAcad
Category Path: Student Information System > Academic Program Functions
Description: Add a new academic program.
Functions Involved: -
Screens Involved: sIndex, sAddAcad
Popups Involved: -
Designers: Jia
Function:
Steps Description

1 In sIndex, place the cursor on “Academic Program Setup P until a function
menu appears.

2 | Click on “Add Academic Program” in sIndex-1 to display sAddAcad.

3 | In sAddAcad, complete the form for a new academic program in sAddAcad-
1.

4 | Click on sAddAcad-2 to save the new academic program. The form will
reappear blanked to indicate to the user that the new academic program has
been successfully saved.

Exceptions:
Description Response

1 | Academic program name must be

unique.

current date.

Depending on which, or both exceptions

unique. are detected at once, system selectively
2 | Established date may not exceed state the followings in a popup:
current date. 1. Academic program name must be

2. Established date may not exceed

71

sAddAcnd Serven Regont

5ok
Addd oo acad
tauklacad

Fit

* PN,

Nayiewr!

Avkfross:

FATE T

s Ere Setugr e

Pl Exsensian:

Fax:

el

Priipal

#anblbded S

Laotuuir Bl of Sy
ij Sumdry 7 Wby 7 Paeadsy 7 Welnesdsy |7 The

™ Frdee 7 Sanodder

=4

A cad-1

72

fViewAcad Function Report

Function Name: fViewAcad
Category Path: Student Information System > Academic Program Functions
Description: Added academic programs may be viewed, edited, deleted, or

Functions Involved:

saved as new academic programs.

Screens Involved: sIndex, sViewAcad
Popups Involved: -
Designers: Jia
Function:
Steps Description
1 In sIndex, click on sIndex-2 and select an academic program.
2 | Place the cursor on “Academic Program Setup » ” until a function menu
appears.
3 Click on “View Academic Program” in sIndex-1 to display information of
the selected academic program in sViewAcad.
4a | In sViewAcad, to edit the selected academic program, revise the form in
sViewAcad-2 except “Name”. Click on sViewAcad-3, to save any changes
made to the selected academic program. A popup appears to inform of the
successful save.
4b | In sViewAcad, to save as new academic program, change the “Name” of the
academic program. Click on sViewAcad-3 to save as a new academic
program. A popup appears to inform of the successful “save as”.
4c | In sViewAcad, to delete the current academic program, click on sViewAcad-
4 to display a popup that warns the user that a deletion is about to be
performed. Click “Ok” in the popup, and a new blank form will reappear to
indicate to the user that the academic program has been successfully deleted.
Exceptions:

#

Description Response

1 | In both cases of editing the selected | System calls popup that states:

academic program and saving as a | “Established date may not exceed current
new academic program, established | date.”

date may not exceed current date.

73

i
i3 Invidved:
Eesipriers:

B s aleds mhosan

View Aviademic Progeam

et

i Sohisd ef Cowpinier

Haster Dhegrie Prow

LABC Buifiding, 123

dosa, Bravpard, Thonhand

Fig e i

Avadessic Frogras Seiup g

Plume: 1234

ettt Fitd Schond Dy
lf“ Sedpy O Mimdby D Yue

P oWedaesday BF Tlupsdsy B ¥

™ Sawaday

74

fAddMarkPer Function Report

Function Name: fAddMarkPer
Category Path: Student Information System > Academic Program Functions
Description: Add up to three tiers of marking periods. To demonstrate the

Functions Involved:

function, the following marking periods are created for the
School of Computer: Academic Year 2007 (1% tier) has 2
Semesters (2nd tier), and each Semester has 2 Quarters (3"d tier).

Screens Involved: sIndex, sAddMarkPer
Popups Involved: -

Designers: Jia
Function:
Steps Description
1 In sIndex, click on sIndex-2 and select an academic program, which in this

case is the “School of Computer”.

2

Place the cursor on “Academic Program Setup P until a function menu
appears.

3

Click on “Add Marking Period” in sIndex-1 to display sAddMarkPer for the
selected academic program.

In sAddMarkPer, the initial state of the screen is shown, which no marking
periods have been added yet. sAddMarkPer-3 and sAddMarkPer-4 are both
disabled, and can only be enabled when a marking period of the previous tier
is selected. sAddMarkPer-5 is blanked and disabled, and can only be enabled
when any “Add Marking Period ¥ button is clicked. Lastly, sAddMarkPer-
6 is disabled, and can only be enabled when required fields of sAddMarkPer-
5, indicated by asterisks ‘*’, are typed in or selected.

To add a marking period in the first tier, for instance “Academic Year 20077,
click on sAddMarkPer-2 to enable sAddMarkPer-5. Complete the form in
sAddMarkPer-5 like the following figure, and click on sAddMarkPer-6 to
save.

Tier 3 l

| Ther ¢ i

Tier 2 ;

s AdIME Par-2

{

Naerme™ !:\usmﬂvmiu Yot 267
Bepia® [il% . (f_'i'?‘,‘f“‘”'f ‘ o
Sk B !iﬁ)‘.&ry f)ﬁcmiﬁ

ok Per i ot Soreen s b commrosand,

The following figure portrays the screen after “Academic Year 2007” has
been successfully added. sAddMarkPer-5 is again blanked and disabled, as
well as sAddMarkPer-6.

75

| Tier §

g
-

Thr 3

| Acadesrie Year J007 ~

JelSdui e

Ak Per-3

Manw®: |

g o [o

EYE TR R T T | § m lﬁ‘m*th

Py FPintice: Soren bay P sagressed.
To add a child marking period in a succeeding tier, for instance “Semester 17,
click on a parent marking period in the preceding tier, for instance
“Academic Year 2007”, to highlight it. Then click on the “Add Marking
Period ¥” button in the succeeding tier, for instance “sAddMarkPer-3”, to
enable sAddMarkPer-5. Complete the form in sAddMarkPer-5 like the
following figure, and click on sAddMarkPer-6 to save.

| O Tird i [Tier 3 |

lhl(iﬁ?

“Motioe: Sonmen s bees comgprzised.

The following figure portrays the screen after “Semester 1” has been
successfully added, and connected to “Academic Year 2007”. sAddMarkPer-
5 is again blanked and disabled, as well as sAddMarkPer-6.

| Ver 1 | | Tier | | Tier 3 |

I Agadionic Year 207 W ek ‘{ Sevaeater |

sAdib k-4

sk P8

Misrne™

Pegisi®

vt [y L] (Mot

Mak e [ﬁ;; =

sk Pey-f ENative: Sereer hits beea cormpressad,

76

To add the entire set of marking periods, follow similar instructions in Step 4
if you want to add a marking period in the first tier, or follow similar
instructions in Step S if you want to add a child marking period in a
succeeding tier. The following figure portrays the screen after the entire set
of marking periods has been successfully added.

| Tier 4 | [Tier l [Tier 3
l Agudzane Year 20057 l-« o oy { Semener § }« o g4 { Mpggrrey |
31"«, Semmesice 2 —, ivwl ke 3

et l

Dy

ki

fHegin®:

 Idonth

I"t’"ciu

!
) E?"Aamna

sdar dsane

oo
T %]J § Pvlwih

%Yr:m‘

e i")“'vilzr

Fdostice: Seneen s hoen compresand

Exceptions:

Description

Response

1 | A child marking period may not
possess a time frame that exceeds
the time frame of parent marking
period.

Calls popup that states: “A child marking
period may not possess a time frame that
exceeds the time frame of parent marking
period.”

2 | Marking periods in same tier may
not overlap in time.

Calls popup that states: “Marking periods
in same tier may not overlap in time.”

3 | “Mark Issue”” may not occur before
“End” date.

Calls popup that states: “Mark Issue” may

not occur before “End” date.”

77

ez Naatne:
RN

Aaimberic ¥

Functins, lencodvsl:

Ousigrivs Hia

4

Wy 6T 0 1 e hie
Addharh Prrr

Addal Marking Perimd

Jeuoge Ty honth.

ey

iféchm\’; wf Cuputer

shibthdariles

t Seig g

Aasdusdc Er

Tier 1

Fier 3

Tiwr 3

sdibaddack

Febvieers Pue-%
‘

{

F

Mo ;

th

ber 2

78

fViewMarkPer Function Report

Function Name: fViewMarkPer
Category Path: Student Information System > Academic Program Functions
Description: Added marking periods may be viewed, edited, or deleted. To

Functions Involved:

demonstrate the function, the following marking periods from the
School of Computer are used: Academic Year 2007 (1* tier) has
2 Semesters (2™ tier), and each Semester has 2 Quarters (3rd tier).

1

Screens Involved: sIndex, sViewMarkPer
Popups Involved: -
Designers: Jia

Function:

Steps

Description

1

In sIndex, click on sIndex-2 and select an academic program, which in this
case is the “School of Computer”.

2

Place the cursor on “Academic Program Setup P until a function menu
appears.

3

Click on “View Marking Period” in sIndex-1 to display sViewMarkPer for
the selected academic program.

4a

In sViewMarkPer, to view the details of a marking period, click on the
marking period to highlight it. For instance, click on sViewMarkPer-2, -3, -4,
-6, or -7. Details of the marking period will appear in sViewMarkPer-10.

4b

In sViewMarkPer, to edit the details of a marking period, perform step 4a to
view the details of a marking period. Revise the form in sViewMarkPer-10,
and click on sViewMarkPer-11 to save. sViewMarkPer-10 is blanked and
disabled, as well as sViewMarkPer-11 and -12, to indicate to the user of the
successful save.

4c

In sViewMarkPer, to delete a marking period, perform step 4a to view the
details of a marking period. Click on sViewMarkPer-12 to delete the marking
period. A popup appears to warn the user that child marking periods
associated with the marking period that is about to be deleted will also be
deleted. The user confirms the deletion by clicking ‘Ok’. sViewMarkPer-10
is blanked and disabled, as well as sViewMarkPer-11 and -12, to indicate to
the user of the successful deletion.

Exceptions:

#

Description Response

1

Child marking periods may not Calls popup that states: “Child marking
possess time frames that extend periods may not possess time frames that
beyond the time frame of parent extend beyond the time frame of parent
marking period. marking period.”

Marking periods in same tier may Calls popup that states: “Marking periods
not overlap in time. in same tier may not overlap in time.”

“Mark Issue” may not occur before | Calls popup that states: “Mark Issue” may
“End” date. not occur before “End” date.”

79

te the Tupstion,
tiey), and it Sen

previads o e el st
1’:{';-'

View Marhiaey Porivd

Tier t ; i Yier 2

l

fier &

I Al Yot

x*

o e gy { U |

~

X %w« e g { Seapriter |
Bl

TR

3§

5—! Seseter 7

x

L—‘ iSwaner 1

Y
A ';,\;l\l;g,{g;f’ci -4

R tewhdarkber -5

|
\i"
"

i

2Bk P18

AViewhlack -1z

A l

Biogn™:

Blash oo

Y
'
s¥irwurPer-12

K™ E

Ponili

80

fAddCal Function Report

Function Name: fAddCal
Category Path: Student Information System > Academic Program Functions
Description: Add a calendar for an academic program, for instance, the

Functions Involved:

“School of Computer”.

Screens Involved: slndex, sAddCal
Popups Involved: -
Designers: Jia
Function:
Steps Description

1 In sIndex, click on sIndex-2 and select an academic program, which in this
case is the “School of Computer”.

2 | Place the cursor on “Academic Program Setup »” until a function menu
appears.

3 [Click on “Add Calendar” in sIndex-1 to display sAddCal for the selected
academic program.

4 In sAddCal, the followings are possible initial states of the screen:

e sAddCal-3 is only enabled when no master calendar has been created for
the branch of academic programs, and user is authorized to create one.
sAddCal-4 is only enabled when user is authorized to create one.
sAddCal-7 is disabled, and can only be enabled when required fields,
indicated by asterisks ‘*’, are typed in or selected.

These authorized users can also edit and delete the calendars that they have

added.

Complete the form, spanning from sAddCal-2 to -6, for a new calendar. If

sAddCal-3 is selected, sAddCal-6 becomes unchecked and disabled.

5 | Click on sAddCal-7 to save the new calendar. The form will reappear
blanked to indicate to the user that the new calendar has been successfully
saved.

Exceptions:
Description Response
1 | Calendar name must be unique. System calls popup that states: “Calendar
name must be unique.”

81

RO sheavied § i, BT gt e ¥ o €t

wp, b oived,
¥

Ak Catoneduy

Avahenic Prograss Setug g

of vhie o ke seironad e

&

A

82

fViewCal Function Report

Function Name: fViewCal
Category Path: Student Information System > Academic Program Functions
Description: Added calendars may be viewed or deleted. To demonstrate the

Functions Involved;

function, the School of Computer is selected.

Screens Involved: sIndex, sViewCal
Designers: Jia

Function:

Steps

Description

1

In sIndex, click on sIndex-2 and select an academic program, which in this
case is the “School of Computer”.

2

Place the cursor on “Academic Program Setup ™ ” until a function menu
appears.

3

Click on “View Calendar” in sIndex-1 to display sViewCal for the selected
academic program.

In sViewCal, the initial state of the screen is shown: a calendar waits to be
selected in sViewCal-2, sViewCal-3 and -4 automatically selects the current
month and year by default, and a calendar is shown in default values.

To view a calendar that has been added, click on sViewCal-2 to select a
calendar, click on sViewCal-3 and -4 to select a month and year respectively
that the calendar will display, and click on sViewCal-5 to display the
calendar. All saved information such as school day indications and events
will also be displayed in the calendar.

To delete the calendar in display, click on sViewCal-6 to display a popup that
warns the user that a deletion is about to be performed. Click “Ok” in the
popup, and the screen will return to the initial state as described in Step 4 to
indicate to the user that the calendar has been successfully deleted.

Exceptions:

#

Description Response

1 | Deletion is attempted before a | System calls popup that states: “A
calendar is selected. calendar must be selected before

deletion.”

83

sVivetul Sereep Repun,

A Ve cleenarae the it

] o gt ¢

¢4

8 17 L an

o Nubkisid
A Evessy

Vimwilal- Buaday Nonduy ‘Yuesday I Wednendiny [Tharssiay } Friddny Nutnnitay

i) £yt

Acadeene Brogras

i*

13500

Al

TR
) Evest

TE
A Eveat

i it

. feavt
S Event

NG S

Add £yt

‘}

P

L Sl gl E

REAFRCH)

84

fSchDayCal Function Report

Function Name: fSchDayCal

Category Path: Student Information System > Academic Program Functions
Description: Indicate full, partial, or no school days on a calendar.
Functions Involved: {ViewCal

Screens Involved: sViewCal

Popups Involved: -

Designers: Jia

Function:

Steps

Description

1

Perform fViewCal to view a calendar in sViewCal.

2a

In sViewCal, to indicate full or no school for a particular day, click on the
school day combo box such as sViewCal-7. Select “Full School” or “No
School”, and the selection will be displayed in the school day combo box.
The following figure provides a demonstration:

I TPl St
Add Faem

{lick Select, Frodid

2b

In sViewCal, to indicate partial school for a particular day, click on the
school day combo box such as sViewCal-7. Select “Partial School”, and a
popup will appear asking for the start and end time the school will be in
attendance. Select the start and end time and click “Ok”. The start and end
time will be displayed in the school day combo box. The following figure
provides a demonstration:

e Sehenl
Add Event

(1.;,‘:“&_’ Sg-](;(_ﬁ;. - i -

Partint Heheaol

Ploase sebck ibe start and eod e (Od-hrowie
Tormma) te schond will b2 s stiesdunee.

S3art f"é‘ : Eaad fE2

Eates timee.

85

Exceptions:

#

Description

Response

1

No exceptions.

86

fEventCal Function Report

Function Name: fEventCal

Category Path: Student Information System > Academic Program Functions
Description: Add, edit, or delete events in calendars.

Functions Involved: {ViewCal

Screens Involved: sViewCal

Popups Involved: pEventCal

Designers: Jia

Function:

Steps

Description

1

Perform fViewCal to view a calendar in sViewCal.

2a

In sViewCal, to add an event for a particular day, click on “Add Event” such
as sViewCal-8 to display pEventCal.

3a

In pEventCal, the initial state of the popup is shown:

e pEventCal-4 to -6 are only enabled when pEventCal-3 is anything but
“Never”.

e pEventCal-9 is only enabled when required fields, indicated by asterisks
“*° are typed in or selected.

¢ pEventCal-7 and -8 are only enabled when a recurring event that has been
saved is displayed.

e pEventCal-10 is only enabled when an event, recurring or non-recurring,
that has been saved is displayed.

To add an event, type in the name and description of the event in pEventCal-
1 and pEventCal-2 respectively. Click on pEventCal-3 to select whether to
never repeat the event, repeat daily, weekly, monthly, or yearly, from the
current day onwards. If select to repeat event, you may choose to select the
end date of the recurring event in pEventCal-4 to -6. The end date before the
current day is unavailable. Click on pEventCal-9 to save the event. The
event’s name appears on the calendar similar to the following figure:

1 NoSeheol x) *Scroll bars will appear if space is insufficient for

A Evont : : : ot
1 M feieneds. displaying events in a particular day.

2b

In sViewCal, to edit an existing event, click on the event to display
pEventCal that contains details of the event.

3b

In pEventCal of the event, edit the name and description of the event in
pEventCal-1 and pEventCal-2 respectively.

If the event is a non-recurring event and the user wants to change it into a
recurring event, click on pEventCal-3 to select whether to repeat daily,
weekly, monthly, or yearly, from the current day onwards. You may choose
to select the end date of the recurring event in pEventCal-4 to -6. The end
date before the current day is unavailable. Click on pEventCal-9 to save the

87

event and return to sViewCal to indicate to the user that the event has been
successfully saved.

If the event is a recurring event and the user wants to apply the changes only
to the current event, click on pEventCal-8 and the system ignores and
disables pEventCal-3 to -6. Click on pEventCal-9 to save the event and return
to sViewCal to indicate to the user that the event has been successfully saved.

If the event is a recurring event and the user wants to apply the changes to all

recurring events, click on pEventCal-7, optionally change pEventCal-3 to -6,

and click on pEventCal-9 to save the event and return to sViewCal to indicate
to the user that the event has been successfully saved.

2c

In sViewCal, to delete an existing event, click on the event to display
pEventCal that contains details of the event.

3c

In pEventCal of the event . . .

if the event is a non-recurring event, click on pEventCal-10 to delete the
event and return to sViewCal to indicate to the user that the event has been
successfully deleted.

if the event is a recurring event and the user wants to delete only the current
event, click on pEventCal-8, click on pEventCal-10 to delete the current
event, and return to sViewCal to indicate to the user that the event has been
successfully deleted.

if the event is a recurring event and the user wants to delete all recurring
events, click on pEventCal-7, click on pEventCal-10 to delete all recurring
events, and return to sViewCal to indicate to the user that the events has been
successfully deleted.

Exceptions:

#

Description Response

1

No exceptions. -

88

pEventCud Eogon Brpert,

et Uondigiratioy X
Evey henrating ot

b

et

fteniptan

Repuat oo

th-¢

&9

fAddDlySchd Function Report

Function Name: fAddDlySchd
Category Path: Student Information System > Academic Program Functions
Description: Add a daily schedule for an academic program, for instance, the

Functions Involved:

“School of Computer”.

Screens Involved: sIndex, sAddDlySchd
Popups Involved: -
Designers: Jia

Function:

Steps

Description

1

In sIndex, click on sIndex-2 and select an academic program, which in this
case is the “School of Computer”.

2

Place the cursor on “Academic Program Setup P until a function menu
appears.

3

Click on “Add Daily Schedule” in sIndex-1 to display sAddDlySchd for the
selected academic program.

4a

In sAddDlySchd, the initial state of the screen is shown:

¢ sAddDlySchd-3 is only enabled when “Row Name” in sAddDlySchd-5 is
typed in.

e sAddDlySchd-4 is only enabled when the corresponding row has been
added. However, there must be at least one remaining row.

e sAddDlySchd-6 is only enabled when sAddDlySchd-2 has been typed in.

These conditions also similarly apply in sViewDlySchd.

To add a row in the daily schedule, type in and select row details in
sAddDlySchd-5, and click sAddDlySchd-3 to add the row. A new row
appears to inform the user that the previous row has been successfully added.

4b

To delete a row in the daily schedule, click on sAddDlySchd-4 of a row that
has been added.

To save the daily schedule, type in daily schedule name in sAddDlySchd-2,
and click sAddDlySchd-6. A popup appears to inform the user that the daily
schedule has been successfully saved.

Exceptions:

#

Description Response

1 | Daily schedule name must be System calls popup that states: “Daily
unique. schedule name must be unique.”

2 | ‘Start’ and ‘End’ time cannot be the | Depending on which time is selected first,
same. system prohibits the user from selecting

the same time in the later set of combo
‘1 boxes. '

90

sAbIEEySshel: o
H
A

A E Nk ;
B BAN I P Sipnie™

Eud £ 203wy fusimaty

LiMin

X

sAddDlSetnS

91

fViewDIlySchd Function Report

Function Name: fViewDlySchd -
Category Path: Student Information System > Academic Program Functions
Description: Added daily schedule may be viewed, edited, deleted, or saved as

new daily schedule. To demonstrate the function, the School of
Computer and its “Full School” daily schedule are selected.
Functions Involved: fAddDlySchd
Screens Involved: sIndex, sAddDlySchd, sViewDlySchd
Popups Involved:
Designers: Jia

Function;
Steps Description

1 In sIndex, click on sIndex-2 and select an academic program, which in this
case is the “School of Computer”.
2 Place the cursor on “Academic Program Setup P until a function menu
appears.
3 | Click on “View Daily Schedule” in sIndex-1 to display sAddDlySchd for the
selected academic program.
4 In sAddDlySchd, to view a schedule, select a daily schedule such as “Full
School” in sAddDlySchd-2. Details of the daily schedule will be loaded onto
the screen, and the selected daily schedule’s name will appear in
sAddDlySchd-3. The screen now becomes sViewDlySchd.
5a | InsViewDlySchd, to edit row details, type in or select row details such as
those found in sViewDlySchd-6.

5b | In sViewDlySchd, to add or delete rows, consult Step 4a or 4b in
fAddDlySchd.

5¢ | In sViewDlySchd, to save the edited daily schedule, click on sViewDlySchd-
7. A popup appears to inform the user that the daily schedule has been
successfully saved.

5d | In sViewDlySchd, to save as new daily schedule, change the “Name” of the
daily schedule in sViewDlySchd-3. Click on sViewDlySchd-7 to save as a
new daily schedule. A popup appears to inform of the successful *“save as”.

5e | InsViewDlySchd, to delete a daily schedule, click on sViewDlySchd-8 to
display a popup that warns the user that a deletion is about to be performed.
Click “Ok” in the popup, and sAddDlySchd will be displayed to indicate to
the user that the daily schedule has been successfully deleted.

Exceptions:
Description Response
1 | Daily schedule name must be System calls popup that states: “Daily
unique. schedule name must be unique.”
2 | “Start’ and ‘End’ time cannot be the | Depending on which time is selected first,
same. system prohibits the user from selecting
the same time in the later set of combo
boxes.

92

vty B vieased, eabined, o et To demisnsicate the Raacsnn, ¢

choed of Comganer wnd i bl af” Jaily

View Dily Schwedule

Aonh-y |

AV EHY - 1 EN R o M DT Y T
¥
]

¢

facly 'ﬂf'hz\;]\\lrf';;l'ulf L |

iNchoat of Corapater

] D

How

atiend

Moo Bne” St 1. Fasmark

Akt el

 tre-Peipnd

Nati] o

AdkbTbelete

Peiad

Avadwanic #Frogrnnr Setug p

Ak ke

Akt ety

A Ot

AdDuere
Add Do

sVigwd

1% tendy

93

4.3 Change Management

S3M blueprints also face edits, deletions, or save as new. For instance, SIS
reports are created sequentially according to function report lists in the FunctionList
document. This causes earlier reports to miss some features found in subsequent reports,
features are added to earlier reports on request, or widget numberings do not start with
the usual convention from left to right and top to bottom of the screen. Although earlier
reports are sufficient in their own rights, they still need to synchronize with subsequent
reports for screen transition uniformity.

System designers may perform minute changes instantly, and document the
more significant potential blueprint alterations simply as “change requests”. Change
requests may simply serve as reminders to system designers, or require the decisions of
project stakeholders to proceed. In the later case, formal documentations are required.

In S3M, change requests can be documented in the README document. If the
README document belongs to a new folder containing the updated version of the
blueprint, it can be used to inform stakeholders of “what is new” in the latest blueprint.
Table 4.1 is one possible change requests table that adopts the familiar layout from the
exceptions table found in function reports. The table comprises of SIS change requests,
which provides more insights into S3M. The ‘Description’ column describes the
concepts behind each change requests, the ‘Response’ column suggests specific actions
required to realize each change requests, and the “Designer/Request Status” column
identifies the system designer responsible for each change requests and status of the job.
Again, by applying narration-illustration principles, change requests can be
communicated accurately. Inevitably, the system designer also needs to be able to assess
the impact of each change request, and revise other documents and reports associated

with each change request.

94

Table 4.1. SIS Change Request

Change Requests:
Description Response Designer/
Request Status

1 | In sIndex, there is no Include the current date like | Jia
indication of current date the following figure: Work in
above sIndex-2 in the General | fcurreur Duy-tlosiiheYear) progress
Information Area. This causes | jAwsdemic Programs
variance among screens.

2 | In sIndex, widget numberings | Retag widgets in the screen. | Jia
does not start from left to right -
and top to bottom of the Rejected
screen. pecause sIndex

is used by many
functions.

3 { sAddAcad and sViewAcad 3.1 Change both screen titles | Jia
have similar compositions to “Academic Program”.
therefore, synchronize the 3.2 Include the “Academic
screens. Programs” combo box in | Work in

sAddAcad like the progress
following figure:

{enwreny Dray-Munth-Yow}

[Aeadimi P

3.3 Insert sViewAcad-4 into
sAddAcad.

3.4 Change “Add Academic
Program” and “View
Academic Program” in
sIndex-2 to *“Academic
Program”.

4 | sAddMarkPer and 4.1 Change both screen titles | Jia
sVivewMarkPer have similar to “Marking Period”. Work in
compositions therefore, 4.2 Insert sViewMarkPer-12 progress
synchronize the screens. into sAddMarkPer.

4.3 Change “Add Marking
Period” and “View
Marking Period” in
sIndex-2 to “Marking
Period”.

5 | In sAddCal, there is no check Insert a check box with the Jia
box for the calendar to inherit | following description: Work in
default full school days from “Inherit default full school progress
sAddAcad. days from the academic

program”.

6 | Calendar have no place to be 6.1 Change both screen titles | Jia

95

THY ASSUMPTION UNIVERSITY LIBRARY

edited and save-as. To solve to “Calendar”. Work in
this, synchronize sAddCal and | 6.2 Insert sAddCal-2 to -7 progress
sViewCal. into sViewCal.
6.3 Insert sViewCal-2 10 -8
into sAddCal.
6.4 Change “Add Calendar”
and “View Calendar” in
sIndex-2 to “Calendar”.
sAddDlySchd and 7.1 Change both screen titles | Jia
sViewDlySchd have similar to “Daily Schedule”. Work in
compositions therefore, 7.2 Insert sViewDlySchd-2 progress
synchronize the screens. and -8 into
sAddDlySchd.
7.3 Change “Add Daily
Schedule” and “View
Daily Schedule” in
sIndex-2 to “Daily
Schedule”.
Unanswered questions - Jia
concerning marking periods: Pending
e Are there limits in the
number of marking periods in
a tier?
o How long are marks that are
issued, posted?
Unanswered questions - Jia
concerning calendars: Pending

¢ How will a master calendar
influence other calendars
residing in the same node?

e What are publicly-accessible
calendars?

e What are privately-accessible
calendars?

96

V. MODELS COMPARISON

This section compares S3M, UML models, and software prototypes in Table 5.1.
The table has six columns: Name, Short Description, Modeling Category, Prerequisite,
Narrative Aspect, and Visval Aspect. Name and Short Description are straightforward,
but remaining columns require more discussions.

The Modeling Category column asks the question: which modeling category
does the model fall into? Receiving multiple categories reflect the model’s
comprehensive capabilities. Eight modeling categories and their corresponding models
are based on Ambler’s Iterative Modeling figure (Figure 5.1). The Usage Modeling
category identifies how people work with the system, and questions to ask are: what
will users do with the system, and how will the system support that usage? Similar to
Usage Modeiing, Process Modeling also identifies how people work with the system,
but takes into account the flow of activities being performed. User Interface (UI)
Modeling identifies Ul requirements and addresses system usability issues. The
Supplementary Requirements Modeling category recognizes details that usage or Ul
modeling activities may not be able to identify effectively. The Conceptual Domain
Modeling, also called conceptual modeling or domain modeling, identifies the entities,
their responsibilities, and their relationships within the problem domain. Architectural
Modeling identifies the high-level design or “general landscape” of a system. Dynamic
Object Modeling identifies the behavioral aspects of an object system, and finally,
Ambler (2007) did not define the Detailed Structural Modeling category but provides

only the modeling activities in this category.

97

\ tser Interface Dovelopment

RE .
- LRE. Use Case Daghia l

Supplementory Retuirements
Detailed Struciural Motloting Modahing

- £ttt Infertacs: 1 Specteapn
Dt Rodded (PO

(1am

343

-8,
3. 336

~ Yeamat Spcalsenerl;

Dynamic Objoct Modeling Concopiual Bomain Modoling

Architectural Modeling Process Modeting

~ Bu Frew tiagron (OF
« Flows €

vy REtgram
waun Mg

- RO Qs Copraigpit TRBRATG S
¥ yktse

- URR, Pstiagy Shagtss

Figure 5.1. Iterative Modeling (Ambler, 2007).

The Prerequisite column asks what the user needs to master before he/she can
build the model. A prerequisite is not part of the method, but something external. It is
also not part of the software system being studied. Having prerequisites reflect the
technicality or difficulty of the model. Technical prerequisites, especially, hinder users
from building the model effectively. The Prerequisite column allows two possible
answers: a listing of outstanding prerequisites, or None.

The Narrative Aspect column asks whether the model includes narrations or not,
and the Visual Aspect column asks whether the model includes illustrations, graphics,
or not. The response to these columns is a simple Yes or No. However, it is most
beneficial for the model to possess both structured narrations and illustrations. This is
heavilvy influenced by best practices from filmmaking. Narrative aspect complements

the visual aspect by clarifying illustrations, as visual aspect complements the narrative

98

aspect by representing each set of narrations with a single visual interpretation to

minimize ambiguity. In this way, precision is achieved.

Table 5.1. Comparison of S3M, UML Models, and Software Prototypes.

Name Short Modeling | Prerequisite | Narrative | Visual

Description Category Aspect Aspect
Activity Demonstrates the | Process Object- No Yes
Diagram | progression of Modeling | oriented

events in a concepts

system.
Canon- Bridges User None No Yes
ical abstraction and Interface
abstract realization in user | Modeling
prototype | interface design

by using specially

designed sets of

symbols.
Class Shows classes Detailed Object- No Yes
Diagram | and their Structural | oriented

relationships Modeling | concepts

within a system.
Commun- | Focus on object Dynamic | Object- No Yes
ication relationships via | Object oriented
Diagram | sequenced Modeling | concepts

messages coupled

by arrows

pointing in the

direction of the

message flow.
Compo- Depicts Architec- | Object- No Yes
nent components such | tural oriented
Diagram | as files, headers, | Modeling | concepts

link libraries,

modules,

executables, and

packages, and

their

dependencies or

semantic

relationships in a

system.
Compo- Reveals the Dynamic | Object- No Yes
site internal structure | Object oriented
Structure | of a class, Modeling | concepts
Diagram | including

99

structured
classifiers, parts,
ports, connectors,
and
collaborations.

Deploy-
ment
Diagram

Captures the
configuration of
run-time
hardware nodes
and
corresponding
software
components that
run on those
nodes.

Architec-
tural
Modeling

Object-
oriented
concepts

No

Yes

Essential
User
Interface
Prototype

Represents the
general ideas
behind the user
interface in a
technology-
independent
manner by using
whiteboards, flip-
chart paper, and
sticky notes.

User
Interface
Modeling

None

No

Yes

Interac-
tion
Overview
Diagram

Closely related to
the activity
diagram, but
introduces two
new elements:
interaction
occurrences and
interaction
elements.

Dynamic
Object
Modeling

Object-
oriented
concepts

No

Yes

Object .
Diagram

Provides a
snapshot of an
entire or partial
view of a system
at a point in time.

Detailed
Structural
Modeling

Object-
oriented
concepts

No

Yes

Package
Diagram

Models logical
containers or
packages and
their relationships
at a high-level
overview,

Architec-
tural
Modeling

Object-
oriented
concepts

No

Yes

PICTIVE

A participatory
system design
technique that
makes video and

User
Interface
Modeling

None

Yes

Yes

100

voice recordings
of users
modifying
PICTIVE mock-
ups of a system.

Sequence | Models Dynamic | Object- No Yes
Diagram | communications | Object oriented

between objects Modeling | concepts

and the messages

| that trigger those

communications.
Sketches | Are quick User None No Yes

drawings of Interface

software user Modeling

interfaces.
Software | Creates non- Usage None Yes Yes
Screen- technical software | Modeling,
play models that User
Story- combine Interface
board structured Modeling
Method narrations with
(S3M) illustrations to

define and

demonstrate

functional

requirements.
State Dlustrates how an | Dynamic | Object- No Yes
Machine | object responds to | Object oriented
Diagram | various events Modeling | concepts

depending on its

current state.
Story- Provides User None Yes Yes
board snapshots, with Interface

corresponding Modeling

annotations, of

the user interface

at different points

in an interaction.
Timing Shows the change | Dynamic | Object- No Yes
Diagram in state or value Object oriented

of one or more Modeling | concepts

objects

throughout a

given period of

time.
Use Case | Used to identify | Usage Object- No Yes
Diagram | the roles and Modeling | oriented

discrete concepts

functionalities in

101

a system.

User Models high-level | User None No Yes
Interface | relationships and | Interface
Flow interactions Modeling

Diagram | between major
user interface
elements of a
system.

102

VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The suitability of software models depends on users’ need. If the case is the need
for a non-technical, yet comprehensive and precise software model, UML models and
software prototypes may not entirely satisfy users. Hence, S3M is designed to fill in this
missing link and bridge the communication gap between software buyers and
developers. It is not intended to replace other software models, which may be optionally
employed to reflect other aspects, technicalities, or views of a system.

S3M is built with some of the strengths of UML and software prototypes, and
avoids some of the weaknesses of the two. Some of the strengths of UML that S3M
retains are the ability to describe almost any type of software, ability to be hardware,
operating syétem, programming language, middleware, methodology and network-
independent, and the ability to allow introductions of concepts that are unavailable.
Some of the strengths of software prototypes that S3M retains are the ability to allow
users to provide feedback for early ideas of the completed software program or portions
of it, ability to be cheap and quickly developed, and the ability to focus on users and
their usage of the system. However, S3M avoids the use of graphical notations,
dependency of external concepts, enormity, ongoing changes, complexity, and the close
relation to source code that can be found in either UML or software prototypes.

S3M discards the huge investments that buyers require to learn UML before
they can communicate with developers, and produces structured narrations and
illustrations that software prototypes lack. Although some models can be vigorously
used, exceeding its original intention to portray in-depth details of a software system,

S3M is designed from the start to be a comprehensive solution by serving at least two

103

modeling categories. For instance, S3M function reports are very similar to Usage
Scenario models of the Usage Modeling category. They both delineate events and
accompanying steps users take to achieve those events. Moreover, S3M screen and
popup reports allow S3M to be clearly categorized under the User Interface Modeling

category.

6.2 Recommendations

The non-technical nature of S3M discloses many possibilities. S3M users,
including software buyers and developers, can now focus on functional requirements
and technical requirements ‘separately. Background in software development may be
helpful to S3M users, but is no longer a necessity. Buyers are now empowered to be
able to create their own S3M blueprints, or check and edit developers’ blueprints. As a
consequence, buyers need to understand their increased share of responsibilities in
verifying the blueprints’ accuracy that arrives with the empowerment.

S3M also allows software buyers and developers to evaluate and select one
another. If a developer’s S3M blueprint does not meet buyer standards or the developer
is incapable of implementing a buyer’s S3M blueprint, the buyer may approach other
developers without losing the know-how since S3M is technology-independent and
does not generate source coaes. On the other hand, a buyer’s S3M blueprint allows
developers the opportunity to assess their capabilities against the software project.
Developers may then choose to reject, accept, or accept and outsource the project.
Developers may also want to reject buyers who are highly uncertain about their
requirements to avoid the risks of excessive or ongoing requirements change. All in all,
buyers can now save costs by avoiding incompetent developers, as developers save

costs by avoiding overdue fines.

104

The comprehensiveness and precision of S3M blueprints may allow them to be
included in contracts. Although S3M blueprints are good representations of the final
product, they may be further enhanced by studying remaining software models, and
introduce their strengths into S3M as well as avoid their fauits. The end product may

then be tested with a complete software system, or customized for various industries.

105

BIBLIOGRAPHY

References

1.

10.

11.

Aaby, Anthony. 2000. Requirements Engineering. Walla Walla College.
http://cs.wwc.edu/~aabyan/435/Requirements.html (accessed January 12, 2007).

Alice. 2001. Screenplay. Film Education.
http://www .filmeducation.org/secondary/StudyGuides/screenplay.pdf (accessed
July 28, 2006)

Alice. 2001. The Storyboard. Film Education.
http://www.filmeducation.org/secondary/StudyGuides/storyboard.pdf (accessed
July 28, 2006)

Ambler, Scott W. 2007. Development Phases Examined: Why Requirements,
Analysis, and Design No Longer Make Sense. Ambysoft Inc.
http://www.agilemodeling.com/essays/phasesExamined.htm (accessed March 9,
2007).

Ambler, Scott W. 2006. Essential (Low Fidelity) User Interface Prototypes.
Ambysoft Inc. http://www.agilemodeling.com/artifacts/essential UL htm (accessed
September 27, 2006).

Ambler, Scott W, 2006. Technical ("Non-Functional") Requirements. Ambysoft
Inc. http://www.agilemodeling.com/artifacts/technicalRequirement.htm (accessed
December 25, 2006).

Ambler, Scott W. 2006. UML 2 Activity Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/activityDiagram.htm (accessed August
30, 2006).

Ambler, Scott W. 2006. UML 2 Composite Structure Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/compositeStructureDiagram.htm
(accessed March 14, 2007).

Ambler, Scott W. 2006. UML 2 Deployment Diagramming Guidelines. Ambysoft
Inc. http://www.agilemodeling.com/style/deploymentDiagram.htm (accessed
August 30, 20006).

Ambler, Scott W, 2006. UML 2 Interaction Overview Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm
(accessed September 6, 2006).

Ambler, Scott W, 2006. UML 2 Package Diagramming Guidelines. Ambysoft Inc.
http://www.agilemodeling.com/style/packageDiagram.htm (accessed August 30,
2006).

106

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ambler, Scott W. 2006. UML 2 State Machine Diagramming Guidelines.
Ambysoft Inc. http://www.agilemodeling.com/style/stateChartDiagram.htm
(accessed September 1, 2006).

Ambler, Scott W. 2006. UML 2 State Machine Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm (accessed
September 1, 2006).

Ambler, Scott W. 2006. UML 2 Timing Diagrams. Ambysoft Inc.
http://www.agilemodeling.com/artifacts/timingDiagram.htm (accessed September
5, 2006).

Ambiler, Scott W. 2006. User Interface Flow Diagrams (Storyboards). Ambysoft
Inc. http://www.agilemodeling.com/artifacts/uiFlowDiagram.htm (accessed
September 27, 2006).

Booch, Grady. 2004. The Fever is Real. Association for Computing Machinery,
Inc.
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=131
&page=1 (accessed September 12, 2006).

Borland. 2006. Borland Addresses the Leading Cause of Software Project Failure
with New Requirements Definition and Management Solution. Borland Software

Corporation.

http://www .borland.com/us/company/news/press_releases/2006/04_17_06_borlan
d_addresses_the_leading_cause.html (accessed December 22, 2006).

Borland. 2006. Borland QA Professionals Survey Reiterates the Impact of
Requirements on Software Quality. Borland Software Corporation.
http://www.borland.com/us/company/news/press_releases/2006/10_31_06_borlan
d_ga_professionals_survey.html (accessed December 22, 2006).

Borland. 2006. Software Requirements Management Processes. Borland Software
Corporation.
http://www.borland.com/us/company/newsletter/issue3/strategies_more_effective
_requirements.html (accessed December 22, 2006).

Botting, Richard J. 2006. Changes in the Unified Modeling Language. California
State University. http://www.csci.csusb.edu/dick/papers/200505020utline.html
(accessed August 30, 2006).

Botting, Richard J. 2006. Directory. California State University.
http://www.csci.csusb.edu/dick/papers/ (accessed September 12, 2006).

Carr, Mahil and June Verner. 1997. Prototyping and Software Development
Approaches. City University of Hong Kong.
http://www.is.cityu.edu.hk/Research/WorkingPapers/paper/9704.pdf (accessed
October 20, 20006).

107

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Chitnis, Mandar, Pravin Tiwari, and Lakshmi Ananthamurthy. 2006. Creating Use
Case Diagrams. Jupitermedia Corporation.
http://www.developer.com/design/article.php/2109801 (accessed August 30,
2006).

Chitnis, Mandar, Pravin Tiwari, and Lakshmi Ananthamurthy. 2006. Deployment
Diagram in UML. Jupitermedia Corporation.
http://www.developer.com/design/article.php/3291941 (accessed August 30,
2006).

Constantine, Larry L. 2003. Canonical Abstract Prototypes for Abstract Visual
and Interaction Design. Constantine & Lockwood, Ltd.
http://foruse.com/articles/abstract.pdf (accessed September 27, 2006).

Craig, Bill. 2005. Slug Lines (Master Scene Lines). Screenwriting Help.
http://www.screenwritinghelp.com/z-sluglines.html (accessed July 28, 2006).

Craig, Bill. 2005. The Dreaded Screenplay Format. Screenwriting Help.
http://www.screenwritinghelp.com/z-dreadedformat.html (accessed July 28,
2006).

Dalbey, John. 2002. User Interface Prototype Document Format. California
Polytechnic State University.

http://www .csc.calpoly.edu/~jdalbey/205/Deliver/prototype.html (accessed
September 27, 2006).

Hoffer, Jeffrey A., Joey F. George, and Joseph S. Valacich. 2002. Modern Systems
Analysis & Design. 3" ed. New Jersey: Prentice-Hall International, Inc.

Lu, Guang. 1998. Prototyping for Design and Evaluation. University of Calgary.
http://pages.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey.html (accessed
October 12, 2006).

Object Management Group. 2005. Unified Modeling Language: Superstructure.
Object Management Group, Inc. hitp://www.omg.org/docs/formal/05-07-04.pdf
(accessed August 3, 2006).

Object Management Group. 2006. Catalog of OMG Modeling and Metadata
Specifications. Object Management Group, Inc.
http://www.omg.org/technology/documents/modeling_spec_catalog.htm (accessed
September 7, 2006).

Object Management Group. 2006. Introduction to OMG’s Unified Modeling
Language™ (UML®). Object Management Group, Inc.
http://www.omg.org/gettingstarted/what_is_uml.htm (accessed July 31, 2006).

Object Management Group. 2006. UML® Resource Page. Object Management
Group, Inc. http://www.uml.org/#UML2.0 (accessed September 7, 2006).

108

35.
36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 1999. The Unified Modeling
Language Reference Manual. Massachusetts: Addison Wesley Longman.

Siegel, Jon. 2005. Getting Specifications and Products. Object Management
Group, Inc. http://www.omg.org/gettingstarted/specsandprods.htm#HardToRead
(accessed September 7, 2006)

Sparx Systems. 2006. UML 2.0 Tutorial. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/ (accessed August 30, 2006).

Sparx Systems. 2006. UML 2 Activity Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_activitydiagram.html]
(accessed August 30, 2006).

Sparx Systems. 2006. UML 2 Communication Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_communicationdiagram
.html (accessed September 5, 2006).

Sparx Systems. 2006. UML 2 Interaction Overview Diagram. Sparx Systems Pty
Ltd.

http://sparxsystems.com.au/resources/uml2 _tutorial/uml2_interactionoverviewdia
gram.html (accessed September 6, 2006).

Sparx Systems. 2006. UML 2 Package Diagram. Sparx Systems Pty Ltd.
http://www .sparxsystems.com.av/resources/uml2_tutorial/uml2_packagediagram.
html (accessed August 30, 2006).

Sparx Systems. 2006. UML 2 Sequence Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_sequencediagram.html
(accessed September 5, 2006).

Sparx Systems. 2006. UML 2 State Machine Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_statediagram.html
(accessed September 1, 2006).

Sparx Systems. 2006. UML 2 Timing Diagram. Sparx Systems Pty Ltd.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_timingdiagram.htm!
(accessed September 5, 2006).

The Associated Press. 2004. Newest Electronics Short on Simplicity. Cable News
Network LP, LLLP.
http://edition.cnn.com/2004/TECH/ptech/01/30/unfriendlier.electronics.ap/
(accessed September 15, 2006).

Image References

109

10.

11.

12.

Alice. ‘P’ is for Psycho, 2001. Film Education, London.
http://www filmeducation.org/secondary/StudyGuides/storyboard.pdf (accessed
July 28, 2006) :

Ambler, Scott W. componentDiagramUMLI .jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/componentDiagram.htm (accessed
August 25, 2006).

Ambler, Scott W. componentDiagramUML2.jpg, 2006. Ambysoft Inc., Ontario.

http://www.agilemodeling.conv/artifacts/componentDiagram.htm (accessed
August 25, 2000).

Ambler, Scott W. deploymentDiagram.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/deploymentDiagram.htm (accessed
August 30, 2006).

Ambler, Scott W. modeling Overview.jpg, 2005. Ambysoft Inc., Ontario.
http://www .agilemodeling.com/essays/phasesExamined.htm (accessed March 9,
2007).

Ambler, Scott W. uiEssential.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/essentialULhtm (accessed September 27,
2006).

Ambler, Scott W. uiFlow.jpg, 2006. Ambysoft Inc., Ontario.
http://www .agilemodeling.com/artifacts/uiFlowDiagram.htm (accessed October
11, 2006).

Ambler, Scott W. uiSketches.jpg, 2006. Ambysoft Inc., Ontario.
http://www.agilemodeling.com/artifacts/uiPrototype.htm (accessed September 27,
2006).

Bjork, Russell C. Packages.gif , 2001. Gordon College, Massachusetts.
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Package.html
(accessed August 29, 2006).

Constantine, Larry L. Example of a Canonical Abstract Prototype show examples
of key notational elements, 2003. Rowley, Massachusetts.
http://foruse.com/articles/abstract.pdf (accessed September 27, 2006).

Froese, Thomas, Martin Fischer, Francois Grobler, John Ritzenthaler, Kevin Yu,
Stuart Sutherland, Sheryl Staub, Burcu Akinci, Ragip Akbas, Bonsang Koo, Alex
Barron, and John Kunz. paper03.gif, 1999. Kruisplein, Rotterdam.
http://www.itcon.org/1999/2/paper.htm (accessed August 25, 2006).

Garcia, Jos€ Daniel, Jesiis Carretero, José Maria Pérez, Félix Garcia, and Rosa

Filguetra. figure3.gif, 2005. Journal of Object Technology (JOT), Zurich.
http://'www jot.fm/issues/issue_2005_11/article5 (accessed September 6, 2006).

110

13.

14.

15.

16. .

17.

18.

19.

20.

21.

22.

23.

24.

Hoffmann, Hans-Peter. 0511Hoffman_fig6.jpg, 2005. Ogden Air Logistics Center,
Hill AFB. http://www.stsc.hill.af.mil/crosstalk/2005/11/051 1Hoffman.html
(accessed August 30, 2006).

Lu, Guang. low.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey.htmi (accessed
October 12, 2006).

Lu, Guang. pictivel.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey.html (accessed
October 12, 2006).

Lu, Guang. pictive2.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey. html (accessed
October 12, 2006).

Lu, Guang. story.jpg, 1998. University of Calgary, Alberta.
http://pages.cpsc.ucalgary.ca/~saul/681/1998/prototyping/survey.html (accessed
October 12, 2006).

Object Management Group. The taxonomy of structure and behavior diagram,
2005. Needham, Massachusetts. http://www.omg.org/docs/formal/05-07-04.pdf
(accessed August 3, 2006).

Penchikala, Srini. ClassDiagram.gif, 2003. North Sebastopol, California.
http://www.onjava.com/onjava/2003/12/23/graphics/ClassDiagram.gif (accessed
August 25, 2006).

Rherrera. SMT_USE_CASE.png, 2005. International Crop Information System
(ICIS). http://cropwiki.irri.org/icis/images/7/73/SMT_USE_CASE.PNG (accessed
August 30, 2006).

Sparx Systems. com01.gif, 2006. Sparx Systems, Victoria.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_communicationdiagram

. .html (accessed September 5, 2006).

Sparx Systems. com02.gif, 2006. Sparx Systems, Victoria.
http://sparxsystems.com.au/resources/uml2_tutorial/uml2_communicationdiagram
.html (accessed September 5, 2006).

Sparx Systems. td03.gif, 2006. Sparx Systems, Victoria.
http://sparxsystems.com.au/resources/umli2_tutorial/uml2_timingdiagram.html
(accessed September 5, 2006).

SysML Partners. vpict-28.jpg, 2004. Consultative Committee for Space Data
Systems (CCSDS). http://www.ccsds.org/docu/dscgi/ds.py/GetRepr/File-
1514/html/vpict-28.jpg (accessed August 29, 2006).

111

25.

26.

27.

Turner, Demian. seagull_uml_sequence_diagram.png, 2006. Seagullproject.org.
http://seagullfiles.phpkitchen.com/images/seagull_uml_sequence_diagram.png
(accessed September 5, 2006).

Williams, Paul. vt500_parser.png, 2005. West Sussex, England.
http://vt100.net/emu/vt500_parser.png (accessed September 1, 2006).

Wright, Nikki. collaboration.png, 2005. University of Illinois at Urbana-

Champaign.
http://ilabs.inquiry.uiuc.edu/ilab/wqdl/documents/889/home/uml+design (accessed

September 5, 2006).

THE ASSUMPTION UNIVERSITY LIBRARY

112

	Cover and Title page
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Chapter I Introduction
	Chapter II Literature Review
	Chapter III Software Screenplay Storyboard Model (S3M)
	Chapter IV Testing S3M
	Chapter V Models Comparison
	Chapter VI Conclusions and Recommendations
	Bibliography

