
Feature Envy Factor
A Metric for Automatic Feature Envy Detection

Kwankamol Nongpong
Department of Computer Science

Assumption University
Bangkok, Thailand

Email: kwan@scitech.au.edu

Abstract—As a software system evolves, its design get
deteriorated and the system becomes difficult to maintain. In
order to improve such an internal quality, the system must be
restructured without affecting its external behavior. The process
involves detecting the design flaws (or code smells) and applying
appropriate refactorings that could help remove such flaws. One
of the design flaws in many object-oriented systems is placing
members in the wrong class. This code smell is called Feature
Envy and it is a sign of inappropriate coupling and cohesion. This
work proposes a metric to detect Feature Envy code smell that
can be removed by relocating the method. Our evaluation shows
promising results as the overall system’s complexity is reduced
after suggested Move Method refactorings are applied.

Keywords-feature envy; code smells; refactoring; design flaws;
software quality; software metric

I. INTRODUCTION
The evolution of a software system is a long and continuous

process. Software system usually goes through a series of small
and big changes over a period of time. When a software system
gets larger, new features are added to the system, its design
generally gets worsened. It gets more complicated and difficult
to understand. Furthermore, if the design is not regularly
revised, the system will become difficult to manage and
maintain.

To promote continuous design revision, the process of
locating and removing code smells should be transparent and
seamless to the software developer. The process includes
identifying code smells and fixing them using behavior-
preservation transformations or refactoring. Refactoring is
usually initiated by the developer. Most software developers
only refactor their code when it is really necessary because this
process requires in-depth knowledge of that particular module
of the software system. While many experienced developers
can recognize the pattern and know when to refactor, novice
programmers may find this process very challenging.

Fowler et al. [4] describe a set of code smells and how to
resolve them with corresponding refactorings. A number of
studies [16, 19] also confirm that code smells have a great
impact on software maintainability and proper use of
refactorings can actually help improve the software qualities of
the system.

II. FEATURE ENVY

One of the main design flaws in object-oriented systems is
misplacing the class members or making the class responsible
for things that should be handled by other classes. In object-
oriented systems, classes must be loosely coupled and highly
cohesive. The code smell that involves wrong placement of the
class members is called Feature Envy.

Feature Envy code smell is a sign of inappropriate coupling
between classes. It occurs when a class member is more
interested in some other classes than the class that it is
currently defined in. The higher the coupling between classes,
the higher the number of classes are affected when changes are
made to the system. A small premeditated change in a highly
coupled system could result in a long series of unanticipated
changes in a lot of classes. Hence, class interdependence
should be kept to the minimum if possible.

The rule of thumb for this code smell is that if the feature
does not really belong to the class it is defined in, it should then
be given a new home.

A. Coupling and Cohesion Measures
Since Feature Envy code smell concerns coupling and

cohesion, we look at some existing coupling and cohesion
measures. Chidamber and Kemerer [2] defined coupling as a
situation when methods declared in one class use methods or
instance variables defined by the other classes. They propose a
metric called Coupling Between Objects (CBO) counts the
number of other classes to which it is coupled.

There are several classes of cohesion measures: structural
metrics [2, 5], slice-based metrics [10, 13], and information
retrieval approach [8, 14]. Lack of Cohesion in Methods
(LCOM) and its variants are the most investigated structural
cohesion metrics.

It has been observed that the granularities of existing
structural coupling and cohesion metrics are at the package or
the class level but Feature Envy occurs inside the class, or
more specifically, at the method level. Hence, such metrics are
not applicable for use in Feature Envy detection.

978-1-4799-6049-1/15/$31.00 ©2015 IEEE

7

