

O\....J~.L

lmtHPTm'f UNWfRSIT'g [r:':"f"'"'.'

JEMPORAL KNOWLEDGE USING CONCEPTUAL GRAPH

A thesis presented to the department of Computer Science in partial fulfillment of

the requirement for the degree Master of Science in Computer Science

yanakarn Saithong

September, 1998

Master Thesis Title : Temporal Knowledge Using Conceptual Graph

By : Mr. Tanakarn Saithong

The Department of Computer Science, Faculty of Science and Technology,

Assumption University had this final report of the 12 credit course, SC 7000 : Master Thesis,

submitted in partial fulfillment of the requirement for the degree of Master of Science in

Computer Science.

~ano)
Thesis Advisor

(Dr.Thitipong Tanprasert)

Committee Member

(Asst. Prof. Dr. Pratit Santiprabhob)

Committee Member

(Asst. Prof. Dr. Somnuk Keretho)

Representative of Ministry of University

Affairs

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks and deep sense of gratitude to his

advisor Dr. Tang Van To for his constant guidance and moral support throughout the period of

this thesis work.

The author wishes to convey special thanks to his committee members Dr. Pratit

Santiprabhob and Dr. Thitipong Tanprasert for their constructive criticisms and useful

suggestions, and thanks to Dr. Somnuk Keretho, an external committee member from Ministry

of University Affairs, for his constructive suggestions.

Sincere thanks are also for all faculty members, staffs and secretaries of the

Department of Computer Science for their help and kindness.

Many thanks to friends in ABAC for their encouragement throughout the study at

ABAC.

Finally, no word can express the contribution of the author's family. Their continued

love and encouragement throughout the study was the backbone behind the success of the

author in study.

Ill

TABLE OF CONTENTS

CHAPTER

Acknowledgements

TITLE

2

Table of Contents

List of Figures

Abstract

INTRODUCTION

1 .1 Statement of the Problem

1.2 Objectives and Scope of the Study

CONCEPTUAL GRAPH AND TEMPORAL KNOWLEDGE

2.1 Conceptual Graph

2.1.1 Definition

2.1.2 Representation of Conceptual Graph

2.1.3 Atomic Conceptual Graph

2.1.4 Compound Graph

2.2 Mapping Sentence to Conceptual Graph

2.2.1 Types of References

2.2.2 Mapping Aspects

2.2.3 Hierarchical Links

2.2.4 Canonical Formations of Conceptual Graphs

· 2.2.5 Maximal Join

2.2.6 Type Hierarchy

2.3 Mapping Sentence to Conceptual Graph with the Help of Parsing

Techniques

2.4 Temporal Knowledge

2.4.1 Time Intervals

2.4.2 Temporal Object

2.4.3 Temporal Relation

2.4.4 Temporal Logic

iv

PAGE

iii

iv

vi

viii

2

3

3

3

.4

4

5

5

5

6

8

8

10

12

12

14

14

15

15

19

3 TECHNIQUE FOR MAPPING TEMPORAL KNOWLEDGE 21

3.1 Mapping Sentence to Conceptual Graph 21

3.2 Mapping Sentence with Temporal Knowledge to Conceptual Graph 23

3.3 Mapping Conceptual Graph to Tables of Relation Database 25

3.4 Mapping Tables of Relation Database to Predicates 28

3.5 Temporal Knowledge Inference Engine 29

3.5.1 Algorithm for Finding Time 29

3.5.2 Algorithm for Finding Before Relation 32

3.5.3 Algorithm for Finding During Relation 33

3.5.4 Algorithm for Finding Equal Relation 33

3.5.5 Algorithm for Finding Finish Relation 34

3.5.6 Algorithm for Finding Meet Relation 34

3.5.7 Algorithm for Finding Overlap Relation 34

3.5.8 Algorithm for Finding Start Relation 35

3.5.9 Algorithm for Finding the Topology Order 35

4 TEMPORAL KNOWLEDGE PROGRAM 36

4.1 Temporal Knowledge Process 36

4.2 How to Input the Knowledge 36

4.2.1 Input Obtained from theTemporal Knowledge Program 36

4.2.2 Input from Text File 40

4.3 How to Query the Temporal Knowledge 45

4.3.1 Query from Prolog Program 45

· 4.3.2 Query from Visual Basic Program 47

5 CONCLUSION AND RECOMMENDATION 49

5.1 Conclusion 49

5.2 Recommendation 50

REFERENCES 5'\

APPENDICES 53

Appendix A : Rule for Reasoning Time 53

Appendix 8 : Listing of Prolog Program 54

Appendix C : Listing of Visual Basic Program 68

LIST OF FIGURES

FIGURE TITLE

2.1 Graphical Form of Display

2.2 Linear Form of Display

2.3 An Atomic Conceptual Graph

2.4 A Ground ACG, All Concept Nodes Contain Individual References

2.5 A Compound Graph for "A person would go to ABAC, if he is a student

that studies at ABAC"

2.6

2.7

2.8

2.9

2.10

Two CGs "A student plays tennis" and 'The person John plays at ABAC"

The Graphs Obtained After Restriction

The Graph Obtained After Join

The Graphs Obtained After Simplification

A Parse Tree for "John plays tennis."

2.11 Temporal Objects for "John played tennis on December 10, 1997, from

9.00 to 9.30 after he had read a cartoon-book."

3.1 CG for "John plays tennis."

3.2 CG of "On July 15, 1998, John started sleeping at 4pm during the time

Mary watched TV from 3pm to 5pm, after that they had dinner together."

3.3 ROB for "On July 15, 1998, John started sleeping at 4pm during the time

Mary watched TV from 3pm to 5pm, after that they had dinner together."

3.4 ROB for "John played tennis on December 10, 1997, from 9.00 to 9.30

after he had read a cartoon-book."

4.1 Temporal Knowledge's Menu

4.2 Application Menu

4.3 Open Application Dialog Box

4.4 Edit Menu

4.5 Edit Conceptual Relation

4.6 Add New Relation Form

4.7 Temporal Relation Form

vi

PAGE

4

4

4

5

5

9

9

10

10

13

18

22

24

26

27

36

37

37

38

38

39

40

4.8

4.9

4.10

4.11

Prolog Program's Menu

Query Menu

Query Event Item

Show Topology Graph

vii

45

47

48

48

ABSTRACT

Temporal knowledge is the knowledge about time of the events and the temporal

relationships between events. The temporal knowledge engine allow us to infer the temporal

knowledge and temporal relationships.

In this study, a CG model for representing temporal knowledge is studied, a mapping

from CG to RDBMS tables also is derived. A simple program for input, edit, display and query

on the temporal knowledge is written in Visual Basic, and an inference engine in Prolog is also

developed. These two programs are interacted through text files. The engine allows us to

reason the possible time of event based on the temporal knowledge available in the

knowledge base, it also can deliver the topological order of events.

VIII

CHAPTERl

INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

For many years, one of the research topics of artificial intelligence has been

developed for knowledge representations. In order to make knowledge suitable for

processing by computers, many knowledge representation method have been

developed. Among them are production rules, frames, scripts, predicate transition

networks, and conceptual graphs.

Conceptual Graph (CG) proposed by SOWA (1984) is a knowledge

representation language base on linguistics and it attends to incorporate concepts in

natural and formal languages. This knowledge representation scheme which has

gained more attention recently is a general framework model for representing

knowledge, and it can be used as a main model of future integrated knowledge

systems [FARGUES et al.(1986)].

CG model generalizes many ideas contained in preceding works on natural

language semantics and knowledge representation [JACKMAN and PAVELIN

(1988)]. A system of logic for representing natural language semantics, the mapping

from natural language to CG is shorter, simpler, and more direct than the mapping to

calculus predicate [SOW A (1991)].

In many situations, it may be difficult to map data in precise form. In order to

represent the time of events, and attempt to mix the temporal knowledge and natural

language processing to CG. Temporal knowledge specifies the time of the event. It

allows us to infer the order of events that happened. Another feature is to formulate

CG programs to be usable as a programming language, as predicate logic does. It will

be very useful to a wide range of application fields if temporal knowledge can also be

used as a programming language.

Therefore, in this study I propose to study the CG, and. the possibility to apply

to temporal logic. The study emphasizes on the structure of CGs, operations on CGs,

how to map CG to RDBMS, how to map temporal knowledge to CGs and how to

inference about the temporal knowledge on CGs. And if it is possible how to make

the Q/A systems using CGs. My main research try to find a common approach. It can

be used to map from temporal knowledge to RDBMS tables, which is easy to query

and implement.

1.2 OBJECTIVES AND SCOPE OF THE STUDY

The main objectives of this study are :

1. Study the foundation of CG Graph and its application.

2. Study a temporal knowledge such as temporal logic and temporal relations.

3. Mapping the sentence with the temporal knowledge to conceptual graph.

4. Develop the temporal knowledge inference engine.

5. Finally, a program allows to infer about temporal relationship occurring

time of events is developed.

2

CHAPTER2

CONCEPTUAL GRAPH AND

TEMPORAL KNOWLEDGE

In this chapter, definition and representation of CG are reviewed in Section
2.1, the process of mapping sentences to CGs is discussed in Section 2.2 and Section
2.3. Time interval, temporal object, temporal relation and temporal logic of temporal
knowledge are discussed in Section 2.4.

2.1 CONCEPTUAL GRAPH

Conceptual Graphs (CG) are graph-based notations with a fundamental

formal basis that can be used for knowledge representation and computer based

reasoning. The formalism of CG reviewed here is based on SOWA (1984).

2.1.1 Definition

CG is formally defined as afinite, connected, bipartite graph. The two kinds

of nodes are concepts and conceptual relations (CR). Every CR has one or more arcs,

each of which must be linked to some concepts. A single concept by itself may form

a CG [SOWA (1984)].

It should be noted that the different between concept types and concept

instances as:

a) Concept types represent classes or types of entities, attributes, states and

events.

b) Concept instances (individual concept) or references is an instantiation of a

concept type.

3

b) Concept instances (individual concept) or references is an instantiation of a

concept type.

2.1.2 Representation of Conceptual Graph

There are two forms of display for CGs [SOW A (1984)] :

a) Graphical form : In this form a concept node is represented by a rectangle

and CR is represented by an oval.

~PLAY ---ii.-.6).,_-.. i.I TENNIS

Figure 2.1 : Graphical Form of Display.

b) Linear form In this form a concept node is represented by [] and

CR by().

[PERSON : John] ~ (Agnt) ~ [PLAY] ~ (Obj) ~ [TENNIS]

Figure 2.2 : Linear Form of Display.

As mentioned in 2.1.1 definition, a conceptual node itself may form a CG, in

this case a CG becomes a compound graph.

2.1.3 Atomic Conceptual Graph

Atomic Conceptual Graph (ACG) [ELLIS (1991)] is a CG that contains no

logical connective and no quantifier other than the implicit existential quantifiers

(Fig 2.3). An ACG containing only individual references in all the concept nodes is

termed as a ground ACG (Fig 2.4).

[PERSON] ~ (Agnt) ~ [SIT] ~ (Loe) ~ [PLACE]

Figure 2.3 : An Atomic Conceptual Graph.

4

[PERSON: Bill]+--- (Agnt) +---[SIT: #543] ~(Loe)~ [PLACE: Shop]

Figure 2.4 : A ground ACG, All Concept Nodes Contain Individual References.

2.1.4 Compound Graph

A CG is called a Compound graph [SOWA (1984)], if any or all of the

following conditions hold :

a) It contains contexts of depth higher than 0,

b) It contains atomic CG connected by coreference links. Coreference link is

used to connect identical concepts. It is shown using a dotted line in the

graphic form.

Example 2.1 A Compound graph for "A person would go to ABAC, if he is

a student of ABAC."

STUDENT 1.-
i

14 8· PERSON \4---tl GO 1---.... 9 - 1 ABAC I

Figure 2.5 : A Compound Graph for "A person would go to ABAC, if he is a

student of ABAC".

2.2 MAPPING SENTENCE TO CONCEPTUAL GRAPH

2.2.1 Types of References

There are extended references. They correspond to generalized determiners in

natural languages : existential, individual, named individual, unique existential,

definite reference, set, generic set, etc. The use of these references, which provides

more flexibility in natural language representation but without semantic

interpretation [SOWA (1993)]. The typically extended references is show in table 2.1

5

Type of reference Example English reading

Universal [CAT: 'v'] every cat

Singular [CAT:@ 1] exactly one cat

Generic set [CAT:{*}] Cats

Counted set [CAT: {*} @ 3] three cats

Set of individuals [CAT: {Yoyo, Meaw}] Yoyo and Meaw

List of individuals [CAT: <Yoyo, Meaw>] Y oyo and then Meaw

Question [CAT:?] which cat?

Plural question [CAT: {*} ?] which cats?

Measure [Interval: @ 5 sec] interval of 5 seconds

Table 2.1 : Types of References.

2.2.2 Mapping Aspects

We shall illustrate several aspects of the system. Each feature is accompanied

with several examples [Sait and Jame (1993)].

2.2.2.1 Subject-Verb Agreement : The translator obeys all basic English grammar

rules, including the subject and verb agreement rule.

a) John lives in Bangkok.

[PERSON : John] +- [LNE] ~ [CITY : Bangkok]

b) There exist John and Jane living in Bangkok.

[PERSON: ()P {John, Jane} @2] +- [LNE] ~[CITY: Bangkok]

2.2.2.2 Tenses : The default tense of the translator is Present (Progr~ssive) Tense.

However, the system is capable of handling other English language tenses as

well.

a) John was speaking.

(PAST PROGRESSIVE)~ { [PERSON: John]~ [SPEAK] }

6

b) Bob lived in the Bangkok.

(PAST PROGRESSIVE)~ { [PERSON:Bob] ~[LIVE]~ (CITY: Bangkok]}

c) John is speaking.

(PRESENT PROGRESSIVE) ~ { [PERSON: John] ~ [SPEAK] }

d) John is talking to Bob.

(PRESENT PROGRESSIVE)~ {[PERSON: John]~ [TALK]~ [PERSON:

Bob] }

2.2.2.3 Cardinality Information : The examples below show the importance of this

field in natural language translation :

a) There exists a person.

[PERSON: OP{*} @1]

b) There exist 1 to 5 persons.

[PERSON: OP{*} @1-5]

c) There exist at least 3 persons.

[PERSON: ()P {*} @3-oc]

d) There exist 2 to 3 persons among John, Jane, and Jill.

[PERSON: ()P {John, Jane, Jill} @2-3]

e) The year 1997 consists of exactly 365 days.

[YEAR: 1997] ~[CONSIST]~ [DAY: OD{*} @365]

2.2.2.4 Cardinality is not always needed : There are· some cases, however, where

cardinality information can be omitted, resulting in more natural translations.

For example: There exist persons John and JANE.

[PERSON: OP {John, Jane} @2]

7

2.2.2.5 Simple Disjunctions : The Conceptual Structure notation is capable of

handling disjunctions as well, again through the cardinality information.

For example : There exists persons John or Jane.

[PERSON: ()P {John, Jane} @I]

2.2.3 Hierarchical Links [Sait and Jame (1993)]

2.2.3.1 Link between individual concepts. There are two kind of links between

individuals.

a) Relation corresponding to individual role.

For example : There is a person who walks.

[PERSON:*X] ~ [AGT] ~ [WALK:*Y]

b) Cross-reference link between two individuals, to express the same object.

For example: There is a person named Mary, she is a teacher.

[PERSON: "Mary", *X] [TEACHER:*X]

2.2.3.2 Link from a prototype to an individual concept.

For example : Every elephant is grey.

[ELEPHANT:\i]---+ [COLOR]---+ [COLOR: gray]

2.2.4 Canonical Formations of Conceptual Graphs

Canonical graphs is a CG that specifies the constraints on the pattern of

concepts and relations that may be linked to a concept and relation type.

There are four canonical formation rules for deriving a CG w from CG u and

v (where u and v may be the same graph) [SOWA (1984)]. Assume that u and v are

two CGs in Fig 2.6.

8

u:

v:

STUDENT TENNIS

PERSON :John 1---... PLACE:ABAC

Figure 2.6 : Two CGs "A student plays tennis" and "The person John plays at

ABAC".

2.2.4.1 Copy(u, w) : The copy rule allows us to form a new graph, w, that is the

exact copy of u.

2.2.4.2 Restrict(u:c, w:c) : Let c be a concept of u that is not nested inside any

context and with a reference that is either a constant or an existential

quantifier. Then w is u with c restricted either by type or by reference :

restriction by type replaces the type label of c with some subtype; and

restriction by reference replaces an existential quantifier with a constant.

From Fig 2.6 we can replace PERSON with STUDENT, and represented in

Fig 2. 7, called restriction by type.

STUDENT:John ..,__.._.... PLACE:ABAC

Figure 2.7 : The Graphs Obtained After Restriction.

2.2.4.3 Join(u:c, v:d, w:c) : The join rule lets us combine two graphs into a single

graph. Let c be a concept of u and d a concept of v, where neither c nor d is

nested inside a context and both c and d have identical type and reference

fields. Then w is the graph obtained by deleting d and linking to c all arcs of

CRs that had been linked to d. From Fig 2.6 we can join CG u and CG in Fig

2.7 by delete concept STUDENT in u and represented in Fig 2.8.

9

STUDENT:John TENNIS

,_____..PLACE:ABAC

Figure 2.8 : The Graph Obtained After Join.

2.2.4.4 Simplify(u:r, u:s, w:r) : w is u where one of a pair of duplicate CRs in u has

been deleted. Two CRs r and s in the graph u are said to be duplicates if they

are of exactly the same type, and for each i, the i-th arc of r is attached to the

same concept as the i-th arc of s. Duplicate relations often occur as the result

of a join operation, as in Fig 2.8 we can delete relation

[STUDENT : "John"] +-- (Agnt) +-- [PLAY] and represented in Fig 2.9.

STUDENT:John TENNIS

Figure 2.9: The Graphs Obtained After Simplification.

2.2.5 Maximal .Join

Maximal join(G1:C1, G2:C2, G3) is an important and useful operation defined

on CG[JACKMAN and PAVELIN (1988)], which can be considered for the

composition of CGs. It has been defined as a join of two graphs followed by a

sequence of restrictions, joins and simplifications that explain in 2.2.4 Canonical

Formations of Conceptual Graphs, so that as much matching and merging of the

original graph as possible is performed.

JO

3123 ~-1

The algorithm for maximal joining the graph G1 and Gz is the following steps.

1) List all concepts contained in G1 and Gz.

2) Search for pairs of concept C1 and C2 which can be element of the

projection graph.

3) Generate lists of relation which are connect to C1 and C2 in the

corresponding graph.

4) Generate the resulting G3 which consists of the projection graph link to

subgraph that connect with C1 and C2 in G1 and Gz.

Example 2.2 Given G 1 and G2 are two CGs, as in below figures.

G1 : PERSON:John

Gz: CAT: Meaw ON

From the algorithm that described above, we have

Step 1 : G 1 has the concept [PERSON: John] and [CAT: Meaw]

G2 has the concept [CAT: Meaw] and [MAT]

Step 2 : Search the pairs of concept :

C1 =[CAT: Meaw]

C2 =[CAT: Meaw]

Step 3 : Generate the lists of relation.

Step 4: Generate the resulting graph G3 :

11

MAT

PERSON : John

CAT: Meaw G+-ON ...--.. MAT

2.2.6 Type Hierarchy

Type Hierarchy is a partial ordering on the set of types, indicated by the

symbol ~. If s and t are types and t ~ s, then t is said to be a subtype of s and s is said

to be a supertype oft [Sait and Jame (1993)]. A type may have more than one

supertype and more than one subtype.

If s, t, and u are types, with t ~ s and t ~ u, then t is said to be a common

subtype of s and u. Similarly, ifs ~ v and u ~ v then v is a common supertype of s

and u.

The universal type, indicated by T, is a supertype of all types. The absurd

type, indicated by ..L, is a subtype of all types.

2.3 MAPPING SENTENCE TO CONCEPTUAL GRAPH WITH

THE HELP OF PARSING TECHNIQUES

This requires a knowledge of the structure of the sentence, the roles of

individual words and how the words modify each other. The process of determining

the syntactical structure of a sentence is known as parsing.

12

Parsing is the process of analyzing a sentence by talcing it apart word-by-word

and determining its structure from its component parts and subparts. The structure of

a sentence can be represented with a syntactic tree. The parsing process is basically

the inverse of the sentence generation process since it involves finding a grammatical

sentence structure from an input string. When given an input string, the lexical parts

must first be identified by type, and then the role they play in a sentence must be

determined. These parts can then be combined successively into larger units until a

complete structure has been completed.

To determine the meaning of a word, a parser must have access to a lexicon.

When the parser selects a word from the input stream it locates the word in the

lexicon and obtains the word's possible function and other features, including

semantic information. This information is then used in building a parse tree.

Example 2.3 Parse tree for a sentence "John plays tennis." is given in Fig

2.10.

parse tree: sentence

noun phrase noun phrase

I I
noun verb noun

John plays tennis

Figure 2.10: A Parse Tree for "John plays tennis.".

Once a parse tree is obtained, we apply the rule that is given in 2.2 to map the

sentence into CG.

13

2.4 TEMPORAL KNOWLEDGE

An approach that can be used to model temporal information. CG can be

extended to include the notion of time coordinate systems in the form of agent

perspective and temporal localizations.

Any discourse contains sentences which result from speech acts performed by

the narrator (speaker or writer) and received by another agent (hearer or reader). A

conversation between agents is conducted in what we call a conversational context,

the place and time where agents interact, as well as the world knowledge that is used.

This approach distinguishes two levels for representing the information

contained in a discourse :

a) Conceptual level which describes the relationships (temporal relations)

associating temporal entities (objects, situations, localizations,

perspectives).

b) Linguistic level which contains the linguistic information needed for

uttering the discourse sentences.

2.4.1 Time Intervals

All temporal structures are associated with a time interval [Bernard (1993)].

An absolute time reference (TR, called "time axis") composed of a set of elements

called "time points". An elementary time interval is a continuous sub-set of TR.

The elementary time interval is specified by a list of parameters :

a) Begin Time (BT)

b) End Time (ET) (lower and upper bounds of the time interval on TR)

c) Time Scale (TS) (unit used to measure the begin-time and end-time on TR)

d) Duration Time (DT)

e) Duration Scale (DS)

14

A multiple time interval is composed of a set of elementary time intervals,

which may be contiguous or not.

2.4.2 Temporal Object

A temporal object is a concept that is characterized by a time interval such as

"day", "week", "month" or "year" [Bernard (1993)]. A temporal object can be

decomposed into other temporal object. For instance "day" can be decomposed into

"morning", "afternoon", "evening" and "noon".

We represent a temporal object with a rectangle. The rectangle represents the

corresponding time interval. On the top of the rectangle we indicate BT and ET.

2.4.3 Temporal Relation

Temporal relations is the relation between two temporal objects. A

fundamental set of thirteen temporal relations [Allen (1983)] are shown in the

following:

1) BEFORE (X, Y) - time interval Xis before Y, and they do not overlap.

- ET(X) < BT(Y).

It can be seen in the following diagram :

X:
1~

Y:

DS:

2) DURING (X,Y) - time interval X is fully contained within Y, although

they may coincide on their end points.

- BT(X) > BT(Y).

- ET(X) < ET(Y).

15

It can be seen in the following diagram :

X: ! .. .i
I

Y: i

I
DS: I I

3) OVERLAP (X,Y) - time interval X start before Y, and they overlap.

- BT(X) < BT(Y).

- ET(X) < ET(Y).

-ET(X) -BT(Y) = OVERLAP(X,Y).

It can be seen in the following diagram :

X:

Y:

OVERLAP(X,Y):

4) EQUAL (X,Y) - time interval Xis equal Y.

- BT(X) = BT(Y).

- ET(X) = ET(Y).

It can be seen in the following diagram :

X:

Y:

DS:

:111 •:
! .. .,
I !

1 ..
i •:

5) MEET (X, Y) - time interval X start before Y.

- ET(X) = BT(Y).

16

It can be seen in the following diagram :

x '4

y

DS !-
6) START (X,Y) - time interval X start at the same time of Y.

- BT(X) = BT(Y).

It can be seen in the following diagram :

X:

Y:

DS:

7) FINISH (X, Y) - time interval X finish at the same time of Y.

- ET(X) = ET(Y).

It can be seen in the following diagram :

X:

Y:

DS:

The remaining six temporal relations are inverse of FINISH, MEET,

DURING, BEFORE, OVERLAP and START.

8) FINISH-1 (Y,X) is the inverse of FINISH (X, Y).

9) MEET 1 (Y,X) is the inverse of MEET (X,Y).

10) DURIN0- 1 (Y,X) is the inverse of DURING (X,Y).

11) START1 (Y,X) is the inverse of START (X,Y).

12) OVERLAP- 1 (Y,X) is the inverse of OVERLAP (X,Y).

13) AFTER (Y,X) is the inverse of BEFORE (X,Y).

17

A temporal relation associating two temporal objects is represented by a circle

which is related to the two objects by arrow. The circle contains the temporal relation

type (such as BEFORE, AFTER, DURING). We consider eight primitive relations

called "AFTER", "BEFORE" , "DURING", "EQUAL", "FINISH", "OVERLAP",

"MEET" and "START" between two int~rvals.

Example 2.4 Temporal objects for a sentence "John played tennis on

December 10,1997 from 9:00 to 9:30 after he had read a cartoon-book" are given in

the Fig 2.11.

Temp_obj: El

Temp_obj: Playing [BT:Dec 10,1997 (9.00)] [ET:Dec 10,1997 (9.30)]

[PERSON:John] ~ (Agnt) ~[PLAY] 7 (Obj) 7 [SPORT:Tennis]

, ..

AFTE

Temp_obj: Reading

[PERSON:John] ~ (Agnt) ~[READ] 7 (Obj) 7 [BOOK:Cartoon]

Figure 2.11 : Temporal Objects for "John played tennis on December

10,1997 from 9:00 to 9:30 after he had read a cartoon-book".

18

2.4.4 Temporal Logic

All systems of temporal logic that we shall consider are extensions of

minimal temporal logic and are obtained by impose further constraints on relation of

temporal precedence [Turner (1984)]. The concept of "branching time" is obtained

by impose two constraints R:

RI : (Vt Vs Vr) ((R(t, s) & R(s, r)) ~ R(t, r))

R2 : (Vt Vs Vr) ((R(t, r) & R(s, r)) ~ R(t, s) v (t = s) v R(s, t))

Condition, R2, referred to as backwards linear.

R3 : (Vt Vs) ((R(s, t) vs)= (t v R(t, s)))

Obviously, R3 is equivalent to the conjunction of R2, and forwards linear given as

R4:

R4: (Vt Vs Vr) (R(r, t) & R(r, s)) ~ R(s, t) v (s = t) v R(t, s))

R5 : (Vs) (3t) (R(t, s))

R6 : (Vs) (3t) (R(s, t))

R5 guarantees that time has no beginning, and R6 that time has no end.

Each of temporal relations is represented by a predicate logic, and they are

governed by a set of axioms of which the following are representative :

1) Before(A,B), Before(B,C) ~ Before(A,C)

2) During(A,B), During(B,C) ~ During(A,C)

3) Equal(A,B), Equal(B,C) ~ Equal(A,C)

4) Finish(A,B), Finish(B,C) ~ Finish(A,C)

5) Start(A,B), Start(B,C) ~ Start(A,C)

6) After(A,B) ~ Before(B,A)

7) Equal(A,B) ~ Equal(B,A)

8) Finish(A,B) ~ Finish(B,A)

9) Start(A,B) ~ Start(B,A)

10) Before(A,C), During(B,C) ~ Before(A,B)

11) Before(C,A), During(B,C) ~ Before(B,A)

19

12) Before(A,B), Equal(B,C) --+ Before(A,C)

13) Before(A,B), Equal(A,C)--+ Before(C,B)

14) Before(A,B), Finish(A,C)--+ Before(C,B)

15) Before(B,C), Meet(A,B)--+ Before(A,C)

16) Before(C,A), Meet(A,B)--+ Before(C,B)

17) Before(A,B), Overlap(B,C)--+ Before(A,C)

18) Before(A,B), Overlap(C,A)--+ Before(C,B)

19) Before(A,B), Start(B,C)--+ Before(A,C)

20) During(A,B), Equal(A,C) --+ During(C,B)

21) During(A,B), Equal(B,C)--+ During(A,C)

22) During(C,B), Meet(A,B)--+ Before(A,C)

23) During(C,A), Meet(A,B)--+ Before(C,B)

24) Equal(A,B), Finish(B,C)--+ Finish(A,C)

25) Equal(A,C), Meet(A,B) --+ Meet(C,B)

26) Equal(B,C), Meet(A,B) --+ Meet(A,C)

27) Equal(A,B), Overlap(B,C) --+ Overlap(A,C)

28) Equal(A,C), Overlap(B,C)--+ Overlap(B,A)

29) Equal(A,B), Start(B,C) --+ Start(A,C)

30) Finish(A,C), Meet(A,B)--+ Meet(C,B)

31) Finish(A,B), Start(A,B)--+ Equal(A,B)

32) Meet(A,B), Start(B,C) --+ Meet(A,C)

33) Meet(A,B), Overlap(C,A)--+ Before(C,B)

34) Meet(A,B), Overlap(B,C)--+ Before(A,C)

20

CHAPTER3

IMPLEMENTATION ISSUES

This chapter presents the framework suggested by author. Mapping sentences

to CGs, mapping sentences with temporal knowledge to CGs, mapping CGs to tables

of relation database, mapping tables of relation database to predicates are discussed

in Section 3.1 to 3.4. The development of temporal knowledge inference engine is

given in Section 3.5.

3.1 MAPPING SENTENCE TO CONCEPTUAL GRAPH

The basic principle in mapping sentence to CG is that content words are map

to concept nodes, and function words like prepositions and conjunctions are map to

relation nodes. Following are some finer distinctions :

a) Ordinary nouns, verbs, adverbs, and adjectives are mapped to concept

node. For example [PERSON: John], [PLAY], and [TENNIS].

b) Proper names map to the reference field of a concept whose type field

specifies the type. For example [PERSON : John], [CITY: Bangkok], and

[PLACE : ABAC].

c) The symbol # with optional qualifiers is used in the reference field for

contextually defined references. For example [PERSON: #John], [CITY:

#Bangkok], and [PLACE : #ABAC].

d) Plural nouns are represented by the plural reference { *} followed by an

optional count.

21

e) CR between two concept nodes is connected to concept nodes by the

arrows.

Concept designs a type and a reference, which is either a specified individual

or an unspecified individual or generic of the type. For example [PERSON : "John"]

is specified individual, [BUS :*] or [BUS] is unspecified individual.

Example 3.1 Mapping the sentence "John plays tennis." to CG.

1. John is noun, and is a name of person, thus we the concept node PERSON

and specify by John. It is [PERSON: John].

2. Play is a verb, it is the concept node [PLAY].

3. Tennis is a noun, it is the concept node [TENNIS].

4. CR PLAY to PERSON with the relation agent, for abbreviate Agnt.

PERSON : John

5. CR PLAY to TENNIS with the relation object, for abbreviate Obj.

IPLAY ,-....... 8--a,

Combining 4 and 5 we get the complete CG for "John plays tennis.".

PERSON: John.,___, --.. TENNIS

Figure 3.1 : CG for "John plays tennis.".

22

3.2 MAPPING SENTENCE WITH TEMPORAL KNOWLEDGE

TO CONCEPTUAL GRAPH

The mapping a sentence with temporal knowledge to CG can be done through

following steps :

1) Decompose the sentence into subclauses.

2) Change each subclauses to CG and map to temporal object.

3) Relate each temporal objects with the temporal relation type (such as

BEFORE, AFTER, DURING).

In order to explain the mapping from temporal knowledge to CG, the example

are given below :

Example 3.2 The sentence "On July 15,1998, John started sleeping at 4pm

during the time Mary watched TV from 3pm to 5pm, after that they had dinner

together.".

Step 1 : The sentence can be decomposed into:

- Subclause 1 "John started sleeping.".

- Subclause 2 "Mary watched TV.".

- Subclause 3 "John and Mary had dinner.".

Step 2 : - Change "Subclause l" to CG and map to temporal object

"Sleeping",

- change "Subclause 2" to CG and map to temporal object

"Watching", and

- change "Subclause 3" to CG and map to temporal object

"Having_ dinner".

23

Step 3 : Relate temporal object "Sleeping" and "Watching" with temporal

relation DURING. Temporal object "Sleeping" represent BT by [BT :

July 15,1998 (16.00)]. Temporal object "Watching" represent BT by

[BT: July 15,1998 (15.00)] and ET by [ET: July 15,1998 (17.00)].

Step 4 : Relate temporal object "Watching" and "Having_dinner" with

temporal relation BEFORE.

Temp_obj : El

Temp_obj: Sleeping [BT: July 15,1998 (16.00)]

[PERSON:John] ~ (Agnt) ~ [SLEEP] -7 (Obj) -7 [THING:Bed]

•
DURING

!
Temp_obj : Watching [BT:July 15,1998 (15.00)] [ET:July 15,1998 (17.00)]

[PERSON:Mary] ~ (Agnt) ~[WATCH] -7 (Obj) -7 [THING:TV]

!
BEFORE

-

+
Temp_obj : Having_dinner

[PERSON: John, Mary] ~ (Agnt) ~ [HA VE_DINNER]

Figure 3.2: CG of "On July 15,1998, John started sleeping at 4pm during the

time Mary watched TV from 3pm to 5pm, after that they had dinner

together.".

24

3.3 MAPPING CONCEPTUAL GRAPH TO TABLES OF

RELATION DATABASE

All graph-storing tables in our system can be shown in the following :

1) The conceptual table, the domains common to all uses are :

- TYPE The concept from and to position

- INDIVIDUAL The reference of concept

2) The action table, the common domains are :

- FROM The reference of the concept in the from position

-ACTION

-TO

-EVENT

The concept refer to action name

The reference of the concept in the to position

The event name

3) The temporal relation table, the common domains are :

- TYPE The temporal relation : after, before, and during

-EVENT_

-EVENT_2

The event name

The event name

4) The time table, the common domains are :

-EVENT

-BT

-ET

-DT

The event name

Begin time of event

End time of event

Duration Time of event

When we mention the FROM and TO positions, these refer to the concepts

attached to a relation; the FROM position is occupied by a concept which points to

the relation, and the TO position is occupied by a concept which the relation points

to.

25

Example 3.3 Consider the CG given in Fig 3.2 that presented "On July

15,1998, John started sleeping at 4pm during the time Mary watched TV from 3pm

to 5pm, after that they had dinner together." can be mapped to RDB as Fig 3.3.

CONCEPTUAL TABLE:

TYPE INDIVIDUAL

Person John

Person Mary

Thing Bed

Thing TV

ACTION TABLE:

FROM ACTION TO EVENT

John Sleep Bed Sleeping

Mary Watch TV Watching

John, Mary . Have_dinner - Having_ dinner

TEMPORAL RELATION TABLE:

TYPE EVENT_l · EVENT_2

During Sleeping Watching

Before Watching Having_ dinner

TIME TABLE:

EVENT BT ET DT

Watching July 15,1998 (15.00) July 15,1998 (17.00) -
Sleeping July 15,1998 (16.00) - -

Figure 3.3 : RDB for "On July 15,1998, John started sleeping at 4pm during

the time Mary watched TV from 3pm to 5pm, after that they had dinner

together."

26

Example 3.4 Mapping the CG given in Fig 2.11 that represented "John

played tennis on December 10, 1997 from 9:00 to 9:30 after he had read a cartoon­

book" to RDB as Fig 3.4.

CONCEPTUAL TABLE:

TYPE INDIVIDUAL

Person John

Sport Tennis

Book Cartoon-Book

ACTION TABLE:

FROM ACTION TO EVENT

John Play Tennis Playing

John Read Cartoon-Book Reading

TEMPORAL RELATION TABLE:

TYPE EVENT_l EVENT_2

After Playing Reading

TIMETABLE:

EVENT BT ET DT

Playing Dec 10,1997 (9.00) Dec 10,1997 (9.30) -

Figure 3.4 : RDB for "John played tennis on December 10, 1997 from 9:00 to

9:30 after he had read a cartoon-book".

27

3.4 MAPPING TABLf:S OF RELATION DATABASE TO

PREDICATES

From tables of relation database that explain in 3.4 can map to following

predicates:

I) The conceptual table is mapping to the predicate form as

"concept(TYPE, INDIVIDUAL)"

2) The action table is mapping to the predicate form as

"action(FROM, ACTION, TO, EVENT)"

3) The temporal relation table is mapping to the predicate form as

"TYPE(EVENT _ 1,EVENT _2)"

4) The time table is mapping to the predicate form as

"event(EVENT, BT, ET, DT)"

Example 3.5 Mapping RDB given in Fig 3.3 to predicates as follow:

concept(person, john)

concept(person, mary)

concept(thing, bed)

concept(thing, tv)

action(john, sleep, bed, sleeping)

action(mary, watch, tv, watching)

action(john, have_dinner, -, having_dinner)

action(mary, have_dinner, -, having_dinner)

during(sleeping, watching)

before(watching, having_dinner)

event(watching,bt(l998,07,15,15,00), et(l998,07,15,17,00), DT)

event(sleeping,bt(l998,07,15,16,00), ET, DT)

28

Example 3.6 Mapping RDB given in Fig 3.4 to predicates as follow:

concept(person, john)

concept(sport, tennis)

concept(book, cartoon)

action(john, play, tennis, playing)

action(john, read, cartoon, reading)

after(playing, reading)

event(playing, bt(1997,12,10,09,00), et(1997,12,10,09,30), DT)

3.5 TEMPORAL KNOWLEDGE INFERENCE ENGINE

At a general level, the sequence of events take place when new information is

added to the application. This makes the temporal knowledge changing. The result of

an evaluation of either an adding or query is known or unknown. If any assertion

contains unknown information then this is request to add more necessary new

information.

When new information are added to the application, new temporal model that

follow from the new information are not generated until query time.

3.5.1 Algorithm for Finding Time

Prototype : time(Ev 1)

1) If we have the knowledge base as : "event(Evl, bt(Year, Month, Day, Hour,

Minute), et(Year,Month,Day,Hour,Minute), dt(Year,Month,Day,Hour,Minute))".

If we know only two arguments, a multi-way reasoning allows us to infer the

another. For example

a) BT and ET are known, DT can be computed as : DT =ET - BT.

It can be represented in the pseudocode rule as :

event(Evl, bt(...), et(...), D) ~Dis et(...) - bt(...)

b) BT and DT are known, ET can be computed as: ET= BT+ DT.

It can be represented in the pseudocode rule as :

29

event(Evl, bt(...), E, dt(...)) ~Eis bt(...) + dt(...)

It can be written in the following prolog program:-

time(Evl) :- event(Evl,bt(Yrl,Mol,Dal,Hrl,Mnl), et(Yr,Mo,Da,Hr,Mn),

dt(Y r2,Mo2,Da2,Hr2,Mn2)),

nonvar(Yrl), nonvar(Yr2), var(Yr),

Mn is Mnl + Mn2, Hr is Hrl + Hr2, Dais Dal+ Da2,

Mo is Mol + Mo2, Yr is Yrl + Yr2,

check(Yr,Mo,Da,Hr,Mn),

display("et(Yr,Mo,Da,Hr,Mn)").

Predicate "check" checks the legality of time, for example the value of

Hr should be in the range of 0 to 24.

c) ET and DT are known, BT can be computed as: BT= ET - DT.

It can be represented in the pseudocode rule as :

event(Evl, B, et(...), dt(...)) ~Bis et(...) - dt(...)

d) If all BT, ET, DT are known, it is necessary to check whether these values

are compatible, it means that ET = BT + DT should be satisfied.

e) For an event, the ending time should be larger than the begin time,

therefore event(Evl, bt(...), E, D) ~ E :2:: bt(...)

This rule can be used to infer the ET of an event when it BT is known.

f) For an event, the begin time should be smaller than the end time, therefore

event(Evl, B, et(...), D) ~ B:::;; et(...)

This rule can be used to infer the BT of an event when it ET is known.

All of these rules can be applied and resolved the conflicts to find a

best reasonable interval for a time variable. For example if we know that

ET> (1990,10,20,12,00)

ET> (1992,1,12,15,30)

30

ET> (1989,5,20,01,00)

ET< (1998,10,20,12,00) and

ET< (1998,5,10,12,00).

Then the suitable range for ET is from (1992,1,12,15,30) to

(1998,5, 10, 12,00).

Based on (a), (b), and (c), the time of event is known explicitly, if we

know any two variables of BT, ET or DT.

2) Temporal knowledge of an event can be derived from temporal knowledge of

other events and temporal relationships, as given in table 3.1. In this table a

marked data is a known data.

Relation Event 1 Event 2 Inference Rule

BT ET BT ET

1. BEFORE ,/ ,/ BTl < ETl < BT2

,/ ,/ BTl < ETl < BT2 < ET2

,/ BTl < ETl < BT2 < ET2

,/ ,/ ETl < BT2 < ET2

,/ ETl < BT2 < ET2

,/ BTl < ETl < BT2

,/ BTl < ETl < BT2 < ET2

2. DURING ,/ BT2 <BTl

,/ ETl <ET2

,/ BT2 <BTl

,/ ETl. <ET2

,/ ,/ BTl < ETl < ET2

,/ ,/ BT2 < BTl < ETl

Table 3.1 : Inference Rules. The underlined variables are derived variables.

(Continued on the next page.)

31

Relation Event 1 Event 2 Inference Rule

BT ET BT ET

3. EQUAL ./ BTl =BT2

./ BTl =BT2

./ ETl =ET2

./ ETl =ET2

4. FINISH ./ ETl =ET2

./ ETl =ET2

5.MEET ./ ETl =BT2

./ ETl =BT2

6. OVERLAP ./ BTl <BT2

./ BT2 < ETl < ET2

./ BTl < BT2 < ETl

./ ETI <ET2

./ ./ BTl < BT2 < ETl

./ ./ BT2 < ETl < ET2

7. START ./ BTl =BT2

./ BTl =BT2

Table 3.1 (Continued).

3.5.2 Algorithm for Finding Before Relation

Prototype : before(Evl,Ev2). This predicate is true if event 1 occurred before

event 2. Before predicate can be defined on the comparison between ET of one event

with the BT of other event as :

If ETl < BT2 ~ Before(Evl,Ev2)

The before relation is a transitive relation, therefore

Before(A,B), Before(B,C) ~ Before(A,C)

Other approaches, the relation before can be derive from other relations

After(A,B) ~ Before(B,A)

Before(A,C), During(B,C) ~ Before(A,B)

32

Before(C,A), During(B,C) ~ Before(B,A)

Before(A,B), Equal(B,C) ~ Before(A,C)

Before(A,B), Equal(A,C) ~ Before(C,B)

Before(A,B), Finish(A,C) ~ Before(C,B)

Before(B,C), Meet(A,B) ~ Before(A,C)

Before(C,A), Meet(A,B) ~ Before(C,B)

Before(A,B), Overlap(B,C) ~ Before(A,C)

Before(A,B), Overlap(C,A) ~ Before(C,B)

Before(A,B), Start(B,C) -~ Before(A,C)

During(C,B), Meet(A,B) ~ Before(A,C)

During(C,A), Meet(A,B) ~ Before(C,B)

Meet(A,B), Overlap(C,A) ~ Before(C,B)

Meet(A,B), Overlap(B,C) ~ Before(A,C)

3.5.3 Algorithm for Finding During Relation

Prototype : during(Evl,Ev2). This predicate is true if event 1 occurred during

the time of event 2. The during relation can be derived on the comparison of BT and

ET of two events, or form the transitive property of during as :

If BTl > BT2 and ETl < ET2 ~ During(Evl,Ev2)

During(A,B), During(B,C) ~ During(A,C)

During(A,B), Equal(A,C) ~ During(C,B)

During(A,B), Equal(B,C) ~ During(A,C)

3.5.4 Algorithm for Finding Equal Relation

Prototype : equal(Evl,Ev2). This predicate is true if event 1 occurred at the

same time of event 2. The equal relation can be derived on the comparison of BT and

ET of two events, or form the transitive property of equal, or backward property as :

If BTl = BT2 and ETl = ET2 ~ Equal(Evl,Ev2)

Equal(A,B), Equal(B,C) ~ Equal(A,C)

Equal(A,B) ~ Equal(B,A)

33

Finish(A,B), Start(A,B) ~ Equal(A,B)

3.5.5 Algorithm for Finding Finish Relation

Prototype : finish(Evl,Ev2). This predicate is true if event 1 finished at the

same time of event 2. The finish relation can be derived on the comparison of BT and

ET of two events, or form the transitive property of finish, or backward property as :

If ETI = ET2 ~ Finish(Evl,Ev2)

Finish(A,B), Finish(B,C) ~ Finish(A,C)

Finish(A,B) ~ Finish(B ,A)

Equal(A,B), Finish(B,C) ~ Finish(A,C)

3.5.6 Algorithm for Finding Meet Relation

Prototype: meet(Evl,Ev2). This predicate is true if ending time of event 1 and

beginning time of event 2 are equal. The meet relation can be derived on the

comparison of BT and ET of two events as :

If ET 1 = BT2 ~ Meet(Ev 1,Ev2)

Equal(A,C), Meet(A,B) ~ Meet(C,B)

Equal(B,C), Meet(A,B) ~ Meet(A,C)

Finish(A,C), Meet(A,B) ~ Meet(C,B)

Meet(A,B), Start(B,C) ~ Meet(A,C)

3.5. 7 Algorithm for Finding Overlap Relation

Prototype : overlap(Evl,Ev2). This predicate is true if event 1 occurred before

event 2 and they overlap. The overlap relation can be derived on the comparison of

BT and ET of two events as :

If BTI < BT2 and BT2 < ETI < ET2 ~ Overlap(Evl,Ev2)

Equal(A,B), Overlap(B,C) ~ Overlap(A,C)

Equal(A,C), Overlap(B,C) ~ Overlap(B,A)

34

3.5.8 Algorithm for Finding Start Relation

Prototype: start(Evl,Ev2). This predicate is true if event 1 started at the same

time of event 2. The start relation can be derived on the comparison of BT and ET of

two events, or form the transitive property of start, or backward property as :

If BTl = BT2 ~ Start(Evl,Ev2)

Start(A,B), Start(B,C) ~ Start(A,C)

Start(A,B) ~ Start(B,A)

Equal(A,B), Start(B,C) ~ Start(A,C)

3.5.9 Algorithm for Finding the Topology Order

Prototype : topology(Order). The topology order of events can be obtained

through the following step :

1) Find all before relations (before(Evl,Ev2)) and store them.

2) Count the member of incoming edges for each event. The number of

incoming edges is the number of events occurring before the specified

event.

3) Find event whose the number of incoming edge equal to 0 and put it to

order.

4) Put the first list to the result.

5) Find the relation before(X, Y) and put Y to the order of result.

6) Repeat step (5) until no relation that match before(X,Y).

7) Repeat (4) to (6) with the next list until empty list.

35

CHAPTER4

TEMPORAL KNOWLEDGE PROGRAM

This chapter presents the features of the temporal knowledge process program

that has been developed. The process how to input, how to infer and how to query the

temporal knowledge will be given in detail, through some examples.

4.1 TEMPORAL KNOWLEDGE PROCESS

Temporal knowledge process have the following steps :

1. Input knowledge into CG.

2. Find topological order, temporal relation and time by Prolog program.

3. Display temporal relation and CG by Visual Basic program.

4.2 HOW TO INPUT THE KNOWLEDGE

We can input the knowledge into the application 2 way~ :

4.2.1 Input Obtained from Temporal Knowledge Program (Written in Visual

Basic)

The menu of the CG program in Visual Basic program is given in Fig 4.1 .

Figure 4.1: Temporal Knowledge's Menu.

36

The functions of menu items are explained as follow :

a) Application Menu

Figure 4.2 : Application Menu.

- New : create new application.

- Open : open the existing application. The existing application will

be displayed as in Fig 4.3.

- Save As Text File : save application in text file format.

- Delete : delete the application.

- Exit : exit the program.

Open Application , Iii £i,

I~ lmdb

~2.mdb
~ 3.mdb
~5.mdb
~6.mdb
l!17.mdb

File name:

F~es of !Ype: j_Applicati~.r:iX~l~s (".mdb)

Figure 4.3 : Open Application Dialog Box.

37

.Qpen

Cancel

, :wrtD. U IVERSITl LIBRARY

b) Edit Menu

Figure 4.4 : Edit Menu.

- Edit Conceptual Relation

When you selected this command, it will show in Fig 4.5.

iii. Relation: C:\CG\ex2.mdb £!

Figure 4.5 : Edit Conceptual Relation.

Mouse is used to select relation. After that you select the following

command button.

38

4 Add New Button : for adding the new relation to the

application. After that, it will show the blank form for input

the event_name, concept_type_l, individual_name_l,

relation, concept_type_2, individual_name_2, begin_date,

begin_time, end_date, end_time; duration_date and

duration_time as shown in Fig 4.6.

4 Edit Button : for modify any attributes about concept such

as concept type, relation, and individual name. The old

information is displayed, and we can correct it.

4 Delete Button : for deleting the relation from application. It

will show detail about concept type, relation, and individual

name.

4 Exit Button : for leaving the relation submenu, and go back

to the main menu.

r····-· iii. Add New Relation . . EI

Cancel

Figure 4.6: Add New Relation Form.

39

- Temporal Relation

When this submenu is selected, it will show the temporal

relationship between Conceptual relations, for example as in Fig 4.7.

iii . Temporal Relation: C:\CG\ex2.mdb 13

-' Eq~al

G Finish

r Meet

0 Overlap

(Start

Figure 4.7: Temporal Relation Form.

You click mouse to data control for select temporal relation.

After that you select the following command button.

'+ Add New Button : append new temporal relation.

'+ Edit Button : edit temporal relation.

'+ Delete Button : delete temporal relation.

'+ Exit Button : stop doing the temporal relation command,

and go back to main menu.

4.2.2 Input from Text File

The temporal knowledge can be specified in the following forms.

a) event(Event_Name, bt(Year, Month, Day, Hour, Minute), et(Year, Month,

Day, Hour,Minute), dt(Year,Month,Day,Hour,Minute)).

40

The explicit value with specified explicitly. The unknown value will

be given as a variable. For example if we know BT and DT of

"have_lunch", it can be written as

"event(have_lunch, bt(1998,5,20,12,00), A, dt(0,0,0,1,30))'', where A

is a variable of ET, this means that ET is unknown.

b) after_of(Event_l, Event_2).: "Event_l" occurred after "Event_2".

c) before_of(Event_l, Event_2). : "Event_l" happened before "Event_2".

d) during_of(Event_l, Event_2). : "Event_l" happened during the time of

"Event_2".

e) equal_of(Event_l, Event_2). time of "Event_l" equal the time of

"Event_2".

f) finish_of(Event_l, Event_2). "Event_l'' finished at the same time of

"Event_2".

g) meet_of(Event_l, Event_2).: "Event_2" meet "Event_l".

h) overlap_of(Event_l, Event_2). : "Event_l" overlap with "Event_2".

i) start_of(Event_l, Event_2). : "Event_l" start at the same time of

"Event_2".

Example 4.1 Suppose that we have the following story :

"On March 14,1997, Mary went swimming in the early morning at YMCA

club and she finished swimming at 8.00. After that she had breakfast at the club.

While she were having breakfast, she met her friend, John. They had a talk about

business until 9.00. After that Mary went home. On the way to home, she filled gas at

the petrol station. She arrived home at 10.00.

It can be shown in the following diagram :

41

Swimming Talk business Went home

i,,'',,,',,··,,<)::.;': !0 .)!(>! !<Meet fnend)! I
i< ~ave breakfast>! jf!f ll g'i .

8.00 9.00 10.00

We can translate to table as :

CONCEPTUAL TABLE:

TYPE INDIVIDUAL

Person John

Person Mary

Place Petrol Station

Place YMCA

Place Home

.ACTION TABLE :

FROM ACTION TO EVENT

Mary Swim YMCA Swimming

Mary Have_breakfast YMCA. Breakfast

Mary Meet_friend John Meeting

Mary Talk_ business John Talking

Mary Go Home Going_home

Mary Fill_gas Petrol_station Filling

42

TEMPORAL RELATION TABLE:

TYPE EVENT_l EVENT_2

Meet Swimming Breakfast

Finish Breakfast Meeting

Finish Breakfast Talking

During Talking Breakfast

During Meeting Breakfast

Meet Breakfast Going_ home

During Filling Going_home

TIMETABLE:

EVENT BT ET DT

Swimming - Mar 14,1997 (08.00) -

Breakfast - Mar 14,1997 (09.00) -

Meeting - Mar 14, 1997 (09 .00) -

Talking - Mar 14,1997 (09.00) -

Going_ home - Mar 14,1997 (10.00) -

Finally, it can be converted to the following facts :

event(swimming, A, et(1997,03,14,08,00), C).

event(breakfast, A, et(1997,03,14,09,00), C).

event(meeting, A, et(1997,03,14,09,00), C).

event(talking, A, et(1997,03,14,09,00), C).

event(going_home, A, et(1997,03,14,10,00), C).

event(filling, A, B, C).

meet_of(swimming, breakfast).

finish_of(breakfast, meeting).

finish_of(breakfast, talking).

during_of(talking, breakfast).

during_of(meeting, breakfast).

meet_of(breakfast, going_home).

43

during_of(filling, going_home).

concept(person, mary).

concept(place, ymca).

concept(person, john).

concept(place, home).

concept(place, petrol_station).

action([mary],[swim],[ymca],swimming).

action([mary],[have_breakfast],[ymca],breakfast).

action([mary],[meet_friend],[john],meeting).

action([mary],[talk_business],[john],talking).

action([mary],[go],[home],going_home).

action([mary] ,[fill_gas] ,[petrol_station] ,filling).

44

4.3 HOW TO QUERY THE TEMPORAL KNOWLEDGE

4.3.1 Query from Prolog Program

Main Menu

A - Display All Events

B - Display All Concept Types

C - Display All Before Relation

D - Display All During Relation

E - Display All Equal Relation

F - Display All Finish Relation

G - Display All Meet Relation

H - Display All Overlap Relation

I - Display All Start Relation

J - Find Events After Given Event

K - Find Events Before Given Event

L - Find Time & Concept of an Event

M - Find Topological Order

0 - Exit

Input choice

Figure 4.8: Prolog Program's Menu.

For the temporal knowledge given in Example 4.1, we can have the following

queries:

A) Display all Events

Event = [filling, going.,-home, talking, meeting, breakfast, swimming]

B) Display all Concept Types.

Concept Type = [person, place]

place : [petrol_station, home, ymca]

person: Uohn, mary]

45

C) Display All Before Relations

[before(breakfast, going_home), before(swimming, breakfast),

before(swimming, going_home), before(meeting, going_ home),

before(talking, going_home), before(breakfast, filling),

before(swimming, filling), before(meeting, filling), before(talking, filling),

before(swimming, meeting), before(swimming, talking)]

D)Display All During Relations

[during(filling, going_home),

during(meeting, breakfast),

during(talking, breakfast)]

E) Display All Equal Relations

[]

F) Display All Finish Relations

[finish(talking, breakfast), finish(meeting, breakfast),

finish(breakfast, talking), finish(breakfast, meeting)]

G)Display All Meet Relations

[meet(talking, going_home), meet(meeting, going_home),

meet(breakfast, going_home), meet(swimming, breakfast)]

H) Display All Overlap Relations

[]

I) Display All Start Relations

[]

46

J) Find Events After a Given Event

Input event name : meeting.

Event after event "meeting" is [going_home, filling]

K) Find Events before a given Event

Input event name : meeting.

Event before meeting is [swimming]

L) Find Time & Concept of Event

Input event name : meeting.

[mary] [meet_friend] [john]

Begin time before==> 1997/3/14 9:0

after==> 1997/3/14 8:0

End time equal ==> 1997 /3114 9:0

M) Find Topological Orders

Topological= [[swimming,breakfast,going_home],

[swimming,breakfast,filling],

[swimming,meeting,going_home],

[swimming,meeting,filling],

[swimming,talking,going_home],

[swimming, talking,filling]]

4.3.2 Query.from Visual Basic Program

Figure 4.9 : Query Menu.

47

•

a) Event submenu

When you select this menu item, it will show the form as in Fig 4.10.
--------=========

Iii. Query: Concept of the event f3

Exit

Figure 4.10 : Query Event Item.

b) Temporal Relation

From topology graph, you can find the CG of events by clicking at

it's node.

iii. Topological Order Ei

Figure 4.11 : Topology Graph.

48

CHAPTERS

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

The following topics on temporal knowledge based on CG have been studied:

1. Mapping the sentence to CG: It composes of rules, type of references,

mapping aspects, hierarchical links, canonical formation, maximal join and

type hierarchy.

2. Temporal knowledge such as time intervals, temporal objects, temporal

relations, and temporal logic: Temporal relation is relation between two

temporal objects. Each temporal object can be associated with a time

interval.

After that the following topics have been proposed and developed:

1. Mapping the sentence with the temporal knowledge to CG: It shows how

to decompose the sentence into subclauses, change each subclause to CG

and map to temporal object, and make temporal relations between them.

2. Mapping CG to tables of relation database: This helps to input knowledge

to the system easily.

3. Mapping tables to calculus predicates.

4. Temporal knowledge inference engine: Allows us to infer time, temporal

relations between events, as well as topological order. This inference

engine is written in Prolog.

5. An interface program: A Visual Basic program for input, edit, delete and

display temporal knowledge for facilitating the interaction between user

and system. This program also displays temporal relations and CGs in

graphical mode.

49

A mapping from sentence to calculus predicate has been studied, the process

includes three steps, mapping a sentence to CG, then from CG to tables and finally to

predicates. Which the final form, it allows us to make the inference and easily to

check the consistency of the system as well as to guarantee constraints, which are set

by user.

5.2 RECOMMENDATION

In addition, the demonstration system of temporal knowledge has been

developed. It is useful for querying the temporal knowledge such as time of event,

temporal relation between events and the topological orders between events. The

approaches followed in this study could be adapted to construct a larger temporal

knowledge system. Future enhancement to the temporal knowledge system can be

developed and listed as follows :

1. It may be difficult to map data in precise form automatically. For example

mapping the sentence to CG form automatically can be done by using

parsing technique to analyze the structure of the sentence and then map

them to CG. The mapping form sentence to CG could be done

automatically if an extensive knowledge base is used.

2. In practice, the number of temporal relations can be reduced to three main

temporal relations with the following modifications:

2.1 BEFORE(X, Y) if ET(X) ~ BT(Y). In this case the meet relation can be

considered as a special case of before where ET(X) = BT(Y).

2:2 DURING(X,Y) if BT(Y) ~ BT(X) ~ ET(X) ~ ET(Y) then

EQUAL(X,Y) is a special case of during where

BT(Y) = BT(X) ~ ET(X) = ET(Y).

2.3 OVERLAP(X, Y) if BT(X) ~ BT(Y) :::; ET(X) ~ ET(Y) then

FINISH(X,Y) is a special case of overlap where ET(X) = ET(Y); and

START(X,Y) is also a special case of overlap where BT(X) = ET(Y).

Other six inverse relations can be represented by arranging the order of

parameters, for example, AFTER(X,Y) = BEFORE(X,Y). Such extension helps to

reduce the number of rules for inferring the temporal knowledge enumerously.

50

REFERENCES

Allen J. F. 1983, "Maintaining Knowledge about Temporal Intervals",

"Communications of the ACM", vol. 26 n.11.

Bernard Moulin., 1993, "The Representation of Linguistic Information in An

Approach Used for Modeling Temporal Knowledge in Discourses", "Lecture Notes

in Artificial Intelligence : Conceptual Graphs for Knowledge Representation", Vol.

699, ppl82-204, Germany: Springer-Verlag.

Ellis G., 1991, "Compiled Hierarchical Retrieval", "Proc. of the Sixth Annual

Workshop on Conceptual Structures", July, pp187-207.

Fargues, J., M. Landau, A. Duguord, and L. Catach, 1986, "Conceptual

Graphs for semantics and knowledge processing", IBM J. Res. Development, Vol.

30, No. 1.

Heike Petermann, 1996, "Natural Language Text Processing and the Maximal

Join Operator", "Lecture Notes in Artificial Intelligence : Conceptual Structures :

Knowledge Representation as Interlingua", Vol. 1115, ppl00-114, Germany :

Springer-Verlag.

Jackman, M. K., and C. Pavelin, 1988, "Conceptual Graphs in G. Ringland &

D. Duce, eds", "Approaches to knowledge representation", Wiley, New York.

51

Luger, George F., 1992, "Artificial Intelligence : Structures and Strategies for

Complex Problem Solving", 2nd edition. California : Benjamin/Cummings

publishing.

Rich, Elaine., 1991, "Artificial Intelligence", 2nd edition. Singapore

McGraw-HILL.

Sait Dogru, and James R. Slagle, 1993, "A System that Translates Conceptual

Structures into English", "Lecture Notes in Artificial Intelligence : Conceptual

Structures: Theory arid Implementation", Vol. 754, pp 283-292, Germany: Springer­

Verlag.

Schalkoff, and Robert J., 1990, "Artificial Intelligence An Engineering

Approach", New York: McGraw-HILL.

Sowa, J. F., 1984, "Conceptual Structures : Information Processing in Mind

and Machine", Addison Wesley Publishing Company, Inc., Massachusetts.

Sowa, J. F., 1991, "Conceptual Analysis as a Basis for Knowledge

Acquisition", "The cognition of experts : Psychological research and empirical AI",

Springer-Verlag, Berlin.

Sowa, J. F., 1993, "Relating Diagrams to Logic", "Lecture Notes in Artificial

Intelligence : Conceptual Graphs for Knowledge Representation", Vol. 699, ppl-35,

Germany: Springer-Verlag.

Turner, Raymond, 1984, "Logics for Artificial Intelligence", Ellis Horwood,

Chichester.

52

APPENDIX A

RULE FOR REASONING TIME

Time(X, Tl, T2, unknown)~ Time(X, Tl, T2, T2-Tl)

Time(X, Tl, unknown, T3) ~ Time(X, Tl, Tl+T3, T3)

Time(X, unknown, T2, T3) ~ Time(X, T2-T3, T2, T3)

% Before(Event_l, Event_2) %

Before(X, Y) ~ After(Y, X)

Before(X, Y) /\ Time(X, _, T2, _) /\ Time(Y, unknown,_,_)~ Time(Y, T2, _, _)

Before(X, Y) /\ Time(Y, T3, unknown,_)~ Time(Y, T3, T3, _)

Before(X, Y) /\ Time(X, _, T2, _) /\ Time(Y, unknown, unknown,_)~

Time(Y, T2, T2, _)

Before(X, Y) /\ Time(X, unknown, T2, _) ~ Time(X, T2, T2, _)

Before(X, Y) /\ Time(X, Tl, unknown,_)/\ Time(Y, unknown,_,_)~

Time(X, Tl, Tl,_)

Before(X, Y) /\ Time(X, _,unknown,_)/\ Time(Y, T2, _, _) ~ Time(X, _, T2, _)

% Overlap(Event_l, Event_2) %

Overlap(X, Y) /\ Time(X, _,unknown,_) A Time(Y, _, T2, _) ~ Time(X, _, T2, _)

Overlap(X, Y) /\ Time(X, unknown,_,_) A Time(Y, T2, _, _) ~ Time(X, T2, _, _)

Overlap(X, Y) /\ Time(X, T2, _, _) /\ Time(Y, unknown,_,_)~ Time(Y, T2, _, _)

Overlap(X, Y) /\ Time(X, _, T2, _) /\ Time(Y, _,unknown,_)~ Time(Y, _, T2, _)

% During(Event_l, Event_2) %

During(X, Y) /\ Time(X, T2, _, _) /\ Time(Y, unknown,_,_)~ Time(Y, T2, _, _)

During(X, Y) /\ Time(X, _, T2, _) /\ Time(Y, _,unknown,_)~ Time(Y, _, T2, _)

During(X, Y) /\ Time(X, _,unknown,_)/\ Time(Y, _, T2, _) ~ Time(X, _, T2, _)

During(X, Y) /\ Time(X, unknown,_,_)/\ Time(Y, T2, _, _) ~ Time(X, T2, _, _)

53

APPENDIXB

LISTING OF PROLOG PROGRAM

9b--

before(X,Y) :- after_of(Y,X).

before(X,Y) :- before_of(X,Y).

before(X,Y) :- before_of(X,Z), before(Z,Y).

before(A,B) :- during(B,C), before(A,C).

before(B,A) :- during(B,C), before(C,A).

before(A,C) :- equal(B,C), before_of(A,B).

before(C,B) :- equal(A,C), before_of(A,B).

before(C,B) :- finish(A,C), before_of(A,B).

before(A,C) :- start(B,C), before_of(A,B).

before(A,C) :- overlap(B,C), before(A,B).

before(C,B) :- overlap(C,A), before(A,B).

before(A,C) :- meet(A,B), meet_of(B,C).

before(A,C) :- meet(A,B), before_of(B,C).

before(C,B) :- meet(A,B), before_of(C,A).

before(A,C) :- during(C,B), meet(A,B).

before(C,B) :- during(C,A), meet(A,B).

before(A,C) :- meet(A,B), overlap(B,C).

before(C,B) :- meet(A,B), overlap(C,A).

before(X,Y) :- meet(X,Y).

during(X,Y) :- during_of(X,Y).

during(X,Y) :- during_of(X,Z), during(Z,Y).

during(C,B) :- equal(A,C), during_of(A,B).

during(A,C) :- equal(B,C), during_of(A,B).

54

equal(X,Y) :- equal_of(X,Y).

equal(Y,X) :- equal_of(X,Y).

equal(X,Y) :- equal_of(X,Z), equal(Z,Y), not(X=Y).

equal(X,Y) :- finish_of(X,Y), start_of(X,Y).

finish(A,B) :- finish_of(A,B).

finish(A,B) :- finish_of(B,A).

finish(A,B) :- finish_of(A,C), finish(C,B), not(A=B).

finish(A,B) :- equal_of(A,B).

meet(A,B) :- meet_of(A,B).

meet(C,B) :- equal(A,C), meet_of(A,B).

meet(A,C) :- equal(B,C), meet_of(A,B).

meet(C,B) :- finish(A,C), meet_of(A,B).

meet(A,C) :- start(B,C), meet_of(A,B).

overlap(A,B) :- overlap_of(A,B).

overlap(A,C) :- equal(A,B), overlap_of(B,C).

overlap(B,A) :- equal(A,C), overlap_of(B,C).

start(A,B) :- start_of(A,B).

start(B,A) :- start_of(A,B).

start(A,B) :- start_of(A,C), start(C,B), not(A=B).

start(A,B) :- equal_of(A,B).

check(A,B,Mn,R) :-A< B, Mn is A, R is 0.

check(A,B,Mn,R) :- A >= B, Mn is A - B, R is 1.

less(A,B,C,D,E, F,G,H,1,J) :- A < F, !.

less(A,B,C,D,E, F,G,H,l,J) :- A= F, B < G, !.

less(A,B,C,D,E, F,G,H,l,J) :- A= F, B = G, C < H, !.

_ less(A,B,C,D,E, F,G,H,l,J) :- A= F, B = G, C = H, D <I, !.

less(A,B,C,D,E, F,G,H,1,J) :- A= F, B = G, C = H, D =I, E < J, !.

more(A,B,C,D,E, F,G,H,I,J) :- A> F, !.

more(A,B,C,D,E, F,G,H,l,J) :- A= F, B > G, !.

more(A,B,C,D,E, F,G,H,l,J) :- A= F, B = G, C > H, !.

more(A,B,C,D,E, F,G,H,l,J) :- A= F, B = G, C = H, D >I, !.

55

more(A,B,C,D,E, F,G,H,I,J) :- A= F, B = G, C = H, D =I, E > J, !.

show(Relation,Yr,Mo,Da,Hr,Mn) :- Yr> -1, Yr< 9999, nonvar(Yr), write(Relation),

write('==>'), write(Yr), write('/'), write(Mo), write('/'), write(Da),

write(' '), write(Hr), write(':'), write(Mn), nl.

not(P) :- P, ! , fail.

not(_).

append([] ,L,L).

append([HIT1],L2,[HIT]) :- append(Tl,L2,T).

delete(X,[YIT],R) :- X = Y, delete(X,T,R).

delete(X,[YIT],[YIR]) :- not(X=Y), delete(X,T,R).

delete(X, [], []).

delete 1 (be(X,_), [be(X,_)IT] ,R) :- delete 1 (be(X,_), T ,R).

deletel(be(X,_),[be(A,B)IT],[be(A,B)IR]) :- not(X =A), deletel(be(X,_),T,R).

delete 1 (be(X, Y),[],[]).

cut_duplicate([XIY],L) :- member(X, Y), cut_duplicate(Y ,L).

cut_duplicate([XIY],[XIL]) :- not(member(X,Y)), cut_duplicate(Y,L).

cut_ duplicate([],[]).

subsetl([XIY],R) :- subset2(X,Y,Y,R).

subset I([],[]).

subset2(X,[YIZ],L,R) :- subset(X,Y), subsetl(L,R).

subset2(X, [YIZ] ,L,R) :- not(subset(X, Y)), subset2(X,Z,L,R).

subset2(X,[l,L,[XIR]) :- subsetl(L,R).

subset([],L).

subset([XIY],Z) :- member(X,Z), subset(Y,Z).

member(X,[Xl_J).

member(X,[YIZ]) :- member(X,Z).

setof(X,G,L) :- assert(ans([])), G, once(retract(ans(L))), assert(ans([XIL])), fail.

setof(_,_,L) :- retract(ans(L)).

once(P) :- P, !.

56

%---

% find best time for equal

best_time2([t(S2,Yr2,Mo2,Da2,Hr2,Mn2)1L]) :- S2 = 2,show(' equal'

,Yr2,Mo2,Da2,Hr2,Mn2), nl, best_time2([]).

best_time2([t(S2, Y r2,Mo2,Da2,Hr2,Mn2)1L]) :­

best_time2([]).

not(S2 = 2), best_time2(L).

% find best time for less than

best_timel([t(S2,Yr2,Mo2,Da2,Hr2,Mn2)1L],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 1,

less(Y r2,Mo2,Da2,Hr2,Mn2, Yr 1,Mo 1,Dal ,Hr 1,Mn 1),

best_time 1 (L,t(Y r2,Mo2,Da2,Hr2,Mn2)).

best_timel([t(S2,Yr2,Mo2,Da2,Hr2,Mn2)1L],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 1,

not(less(Y r2,Mo2,Da2,Hr2,Mn2, Yr 1,Mo 1,Da 1,Hr 1,Mn 1)),

best_timel(L,t(Yrl,Mol,Dal,Hrl,Mnl)).

best_timel([t(S2,_,_,_,_,_)IL],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 3,

best_time 1(L,t(Yr1,Mo 1,Da 1,Hr 1,Mn 1)).

best_timel([t(S2,_,_,_,_,_)IL],_) :- S2 = 2.

best_timel([],t(Yrl,Mol,Dal,Hrl,Mnl)) :- show(' before' ,Yrl,Mol,Dal,Hrl,Mnl),

nl.

% find best time for more than

best_time3([t(S2,Yr2,Mo2,Da2,Hr2,Mn2)1L],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 3,

more(Y r2,Mo2,Da2,Hr2,Mn2, Yr 1,Mo 1,Da 1,Hr 1,Mn 1),

best_time3(L,t(Y r2,Mo2,Da2,Hr2,Mn2)).

best_time3([t(S2,Yr2,Mo2,Da2,Hr2,Mn2)1L],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 3,

not(more(Y r2,Mo2,Da2,Hr2,Mn2, Yr 1,Mo 1,Da 1,Hr 1,Mn 1)),

best_time3(L,t(Yrl,Mol,Dal,Hrl,Mnl)).

best_time3([t(S2,_,_,_,_,_)IL],t(Yrl,Mol,Dal,Hrl,Mnl)) :- S2 = 1,

best_time3(L,t(Y r 1,Mo 1,Da 1,Hr 1,Mn 1)).

best_time3([t(S2,_,_,_,_,_)IL],_) :- S2 = 2:

best_time3([],t(Yrl,Mol,Dal,Hrl,Mnl)) :- show(' after' ,Yrl,Mol,Dal,Hrl,Mnl),

nl.

57

%---

% know begin time , end time , find duration time

time(X) :- event(X,bt(Y r l ,Mo l ,Dal ,Hr l ,Mn 1),et(Y r2,Mo2,Da2,Hr2,Mn2),dt

(Yr,Mo,Da,Hr,Mn)), nonvar(Yrl), nonvar(Yr2), var(Yr),

Yr3 is Yr2 - 1 - Yrl, Mo3 is Mo2 + 11 - Mol,

Da3 is Da2 + 29 - Dal,

Mn3 is Mn2 + 60-Mnl,

check(Hr3+R,24,Hr,S),

Hr3 is Hr2 + 23 - Hrl,

check(Mn3,60,Mn,R),

check(Da3+S,30,Da, T),

check(Mo3+T,12,Mo,U), Yr is Yr3 + U,

show('Begin time ',Yr l ,Mo l ,Dal ,Hr l ,Mn 1),

show('End time ',Yr2,Mo2,Da2,Hr2,Mn2),

show('Duration ',Yr,Mo,Da,Hr,Mn),!.

% know begin time , duration time , find end time

time(X) :- event(X,bt(Y r1,Mo1,Dal ,Hr l ,Mn 1),et(Y r,Mo,Da,Hr,Mn),dt

(Yr2,Mo2,Da2,Hr2,Mn2)), nonvar(Yrl), nonvar(Yr2), var(Yr),

Mn3 is Mnl + Mn2, check(Mn3,60,Mn,R),

Hr3 is Hrl + Hr2 + R, check(Hr3,24,Hr,S),

Da3 is Dal+ Da2 + S, check(Da3,30,Da,T),

Mo3 is Mol + Mo2 + T, check(Mo3, 12,Mo, U),

Yr is Yr 1 + Y r2 + U,

show('Begin time ',Yr 1,Mo 1,Dal ,Hrl ,Mn 1),

show('End time ',Yr,Mo,Da,Hr,Mn),

show('Duration ', Y r2,Mo2,Da2,Hr2,Mn2), ! .

% know end time , duration time , find begin time

time(X) :- event(X,bt(Y r ,Mo,Da,Hr,Mn),et(Y r2,Mo2,Da2,Hr2,Mn2),dt

(Yrl,Mol,Dal,Hrl,Mnl)), nonvar(Yrl), nonvar(Yr2), var(Yr),

Yr3 is Yr2 - 1 - Yrl, Mo3 is Mo2 + 11 - Mol,

Da3 is Da2 + 29 - Dal,

Mn3 is Mn2 + 60- Mnl,

check(Hr3+R,24,Hr,S),

check(Mo3+ T, 12,Mo, U),

Hr3 is Hr2 + 23 - Hrl,

check(Mn3,60,Mn,R),

check(Da3+S,30,Da,T),

Yr is Yr3 + U,

58

show('Begin time ',Yr,Mo,Da,Hr,Mn),

show('End time ',Yr2,Mo2,Da2,Hr2,Mn2),

show('Duration ',Yrl,Mol,Dal,Hrl,Mnl),!.

% know end time, find begin time

time(X) :- event(X,bt(Yrl ,Mol ,Dal,Hrl,Mnl),et(Yr2,Mo2,Da2,Hr2,Mn2),_),

var(Yrl), nonvar(Yr2), setof(t(S,Yr,Mo,Da,Hr,Mn),

timel(X,bt(S,Yr,Mo,Da,Hr,Mn)), L),

write(' Begin time '), best_time2(L),

best_time 1 (L,t(Y r2,Mo2,Da2,Hr2,Mn2)),

best_time3(L,t(O,O,O,O,O)),

write(' End time'), show(' equal ',Yr2,Mo2,Da2,Hr2,Mn2),nl,!.

% know begin time, find end time

time(X) :- event(X,bt(Y r 1,Mo l ,Dal ,Hr 1,Mn 1),et(Y r2,Mo2,Da2,Hr2,Mn2),_),

nonvar(Yrl), var(Yr2), setof(t(S,Yr,Mo,Da,Hr,Mn),

timel(X,et(S,Yr,Mo,Da,Hr,Mn)), L),

write(' Begin time'), show(' equal ',Yrl,Mol,Dal,Hrl,Mnl),nl,

write(' End time '), best_time2(L),

best_timel(L,t(9999,99,99,99,99)),

best_time3(L,t(Yrl,Mol,Dal,Hrl,Mnl)),!.

% find begin time, end time

time(X) :- event(X,bt(Y r I ,Mo 1,Dal ,Hrl ,Mn I),et(Yr2,Mo2,Da2,Hr2,Mn2),_),

var(Yrl), var(Yr2), setof(t(S,Yr,Mo,Da,Hr,Mn),

time 1 (X,bt(S, Y r,Mo,Da,Hr,Mn)), L),

setof(t(S,Yr,Mo,Da,Hr,Mn), timel(X,et(S,Yr,Mo,Da,Hr,Mn)), M),

write(' Begin time '), best_time2(L),

best_ time 1 (L,t(9999,99 ,99,99,99)),

best_time3(L,t(0,0,0,0,0)),

write(' End time '), best_time2(M),

best_timel(M,t(9999,99,99,99,99)),

best_time3(M,t(O,O,O,O,O)),!.

59

%--~--

% know end time find begin time

time 1 (X,bt(S 1, Yr I ,Mo 1,Da I ,Hr I ,Mn 1)) :- event(X, bt(Y r3 ,_,_,_,_),et

(Y r4,Mo4,Da4,Hr4,Mn4),_), nonvar(Y r4), var(Y r3),

SI is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% after

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- before(Y,X),

% after

event(Y ,bt(Y r3,Mo3 ,Da3,Hr3,Mn3),et(Y r4,_,_,_,_),_),

event(X,bt(Yr5,_,_,_,_),_,_), nonvar(Yr3), var(Yr4), var(Yr5),

SI is 3, Yrl is Yr3, Mol is Mo3, Dal is Da3, Hrl is Hr3, Mnl is Mn3.

time 1(X,bt(S1, Yr I ,Mo 1,Da 1,Hr I ,Mn 1)) :- before(Y ,X),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Yr5,_,_,_,_),_,_), nonvar(Yr4), var(Yr5),

SI is 3, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% before

timel(X,bt(S 1,Yrl,Mol,Dal,Hrl,Mnl)) :- before(X,Y),

event(Y,bt(Yr3,_,_,_,_),et(Yr4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Yr5,_,_,_,_),_,_), var(Yr3), nonvar(Yr4), var(Yr5),

Sl is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% before

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- before(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

S 1 is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% during

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- during(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Y r5 ,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

Sl is 3, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

60

% during

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- dming(X,Y),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

Sl is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% during inverse

time 1(X,bt(S1, Yr l ,Mo l ,Dal ,Hrl ,Mn 1)) :- during(Y ,X),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Yr5,_,_,_,_),_,_), nonvar(Yr4), var(Yr5),

Sl is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% during inverse

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :-during(Y,X),

event(Y ,bt(Y r3,_,_,_,_),et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Yr5,_,_,_,_),_,_), var(Yr3), nonvar(Yr4), var(Yr5),

Sl is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% equal

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- equal(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

Sl is 2, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% meet

timel(Y,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- meet(X,Y),

event(X,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(Y ,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

Sl is 2, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% overlap

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- overlap(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Yr5,_,_,_,_),_,_), nonvar(Yr4), var(Yr5),

Sl is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

61

% overlap

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- overlap(X,Y),

event(Y ,bt(Y r3,_,_,_,_),et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Yr5,_,_,_,_),_,_), var(Yr3), nonvar(Yr4), var(Yr5),

S 1 is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% overlap inverse

timel(X,bt(Sl,Yrl,Mol,Dal,Hrl,Mnl)) :- overlap(Y,X),

event(Y,bt(Yr4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

S 1 is 3, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% overlap inverse

time 1(X,bt(S1, Yr l ,Mo l ,Da I ,Hr I ,Mn 1)) :- overlap(Y ,X),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

S 1 is 1, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

% start

timel(X,bt(S 1,Yrl,Mol,Dal,Hrl,Mnl)) :- start(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,bt(Y r5,_,_,_,_),_,_), nonvar(Y r4), var(Y r5),

SI is 2, Yrl is Yr4, Mol is Mo4, Dal is Da4, Hrl is Hr4, Mnl is Mn4.

%---

% know begin time find end time

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :-

% after

event(X,bt(Y r4,Mo4,Da4,Hr4,Mn4),et(Y r6,_,_,_,_),_),

nonvar(Yr4), var(Yr6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :- before(Y,X),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

62

% after

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- before(Y ,X),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),et(Y r5,..:.,_,_,_),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r5), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% before

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- before(X, Y),

event(Y ,bt(Y r3,_,_,_,_),et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Yr6,_,_,_,_),_), var(Yr3), nonvar(Yr4), var(Yr6),

S2 is 1, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% before

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- before(X, Y),

event(Y,bt(Yr4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 1, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% during

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- during(X, Y),

event(Y,bt(Yr4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% during

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- during(X, Y),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 1, Y r2 is Y r4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% during inverse

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- during(Y ,X),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Y r6,_,_,_,_),_J, nonvar(Y r4), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

63

% during inverse

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- during(Y ,X),

event(Y ,bt(Y r4,Mo4 ,Da4,Hr4,Mn4),et(Y r5,_,_,_,_),_),

event(X,_,et(Y r6,_,_,_,_),_), var(Y r5), nonvar(Y r4), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% equal

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :- equal(X,Y),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 2, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% finish

time 1 (X,et(S2, Yr2,Mo2,Da2,Hr2,Mn2)) :- finish(X, Y),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

. event(X,_,et(Yr6,_,_,_,_),_), nonvar(Yr4), var(Yr6),

S2 is 2, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

%meet

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :- meet(X,Y),

event(Y,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,_,et(Yr6,_,_,_,_),_), nonvar(Yr4), var(Yr6),

S2 is 2, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% overlap

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :- overlap(X,Y),

event(Y ,bt(Y r4,Mo4,Da4,Hr4,Mn4),_,_),

event(X,_,et(Yr6,_,_,_,_),_), nonvar(Yr4), var(Yr6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% overlap

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- overlap(X, Y),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r6),

S2 is 1, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

64

% overlap inverse

time 1 (X,et(S2, Y r2,Mo2,Da2,Hr2,Mn2)) :- overlap(Y,X),

event(Y,bt(Yr4,Mo4,Da4,Hr4,Mn4),et(Yr5,_,_,_,_),_),

event(X,_,et(Y r6,_,_,_,_),_), nonvar(Y r4), var(Y r5), var(Y r6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% overlap inverse

timel(X,et(S2,Yr2,Mo2,Da2,Hr2,Mn2)) :- overlap(Y,X),

event(Y ,_,et(Y r4,Mo4,Da4,Hr4,Mn4),_),

event(X,_,et(Yr6,_,_,_,_),_), nonvar(Yr4), var(Yr6),

S2 is 3, Yr2 is Yr4, Mo2 is Mo4, Da2 is Da4, Hr2 is Hr4, Mn2 is Mn4.

% --

all_ before(Lis t) :- setof(be(X, Y),before(X, Y),L), cut_duplicate(L,List).

all_ vertex (Vertex) :- set of (X,event(X,_,_,_),N), cut_ duplicate(N, Vertex).

find(R) :- all_before(List), all_ vertex(Vertex), set(Vertex,Weigh), count_in

(Weigh,List,W _in),

seek(W _in,S_ vertex), order(S_ vertex,R2),

list(R2,R3), cut_duplicate(R3,R4), subsetl(R4,R).

set([AIB],[c(A,O)IR]) :- set(B,R).

set([],[]).

list([AIB],S) :- listl(A,B,S).

list([],[]).

listl([AIB],C,[AIS]) :- listl(B,C,S).

listl([],C,S) :- list(C,S).

list I([],[],[]).

cutl([AIB],S) :- cut2(A), cutl(B,S).

cutl([AIB],[AIS]) :- not(cut2(A)), cutl(B,S).

cutl([],[]).

cut2([AI[]]).

order([LIR],[MIT]) :- setof(S,(orderl(L,V), append([L],V,S)),M), order(R,T).

order([],[]).

orderl(X,[YIZ]) :- before(X,Y), orderl(Y,Z).

65

orderl(_,[]).

seek([c(A,O)IB],[AIR]) :- seek(B,R).

seek([c(A,Num)IB],R) :- not(Num = 0), seek(B,R).

seek([],[]).

count_in([c(A,Num)IB],List,[c(A,New)IT]) :- countl_in(c(A,Num),List,New),

count_in(B,List,T).

count_in([],_,[]).

countl_in(c(A,Num),[be(_,A)IL],V) :- countl_in(c(A,Num),L,S), Vis S + 1.

countl_in(c(A,Num),[be(_,D)IL],V) :- not(A = D), countl_in(c(A,Num),L,S), V = S.

count l_in(c(A,Num),[],O).

choose([XIList]) :- nl, write(X), write(' : '), setof(Y,concept(X,Y),L2),

cut_duplicate(L2,Listl), write(List 1), choose(List).

choose([]).

main :- write(' Input data file name "File name". : '), read(Name), reconsult(Name),

find(T), tell('c:\cg\order.out'), write(T), told, menu.

menu :- nl, nl, write(' Main Menu'), nl,

write(' a - Display all Events '), nl,

write(' b - Display all Concept Types '), nl,

write(' c - Display all before relation '), nl,

write(' d - Display all during relation '), nl,

write(' e - Display all equal relation '), nl,

write(' f - Display all finish relation '), nl,

write(' g - Display all meet relation '), nl,

write(' h - Display all overlap relation '), nl,

write(' i - Display all start relation '), nl,

write(' j - Find Events after given Event '), nl,

write(' k - Find Events before given Event '), nl,

write(' 1 - Find Time & Concept of an Event '), nl,

write(' m - Find Topological Order'), nl,

write(' 0 - Exit'), nl, nl,

write(' Input choice '), read(X), nl,

66

menu(X).

menu(a) :- all_ vertex(Event), write(' Event='), write(Event), nl, menu.

menu(b) :- setof(X,concept(X, Y),L 1), cut_duplicate(Ll ,List 1), write(List 1),choose

(Listl), menu.

menu(c) :- setof(before(X,Y),before(X,Y),L), cut_duplicate(L,R), write(R), menu.

menu(d) :- setof(during(X, Y),during(X, Y),L), cut_duplicate(L,R), write(R), menu.

menu(e) :- setof(equal(X,Y),equal(X,Y),L), cut_duplicate(L,R), write(R), menu.

menu(f) :- setof(finish(X,Y),finish(X,Y),L), cut_duplicate(L,R), write(R), menu.

menu(g) :- setof(meet(X,Y),meet(X,Y),L), cut_duplicate(L,R), write(R), menu.

menu(h) :- setof(overlap(X, Y),overlap(X, Y),L), cut_duplicate(L,R), write(R), menu.

menu(i) :- setof(start(X,Y),start(X,Y),L), cut_duplicate(L,R), write(R), menu.

menu(j) :- write(' Input event name : '), read(Q), nl, setof(T,before(Q,T),L),

cut_duplicate(L,List), write('Event after'), write(Q), write(' is '), write(List),

menu.

menu(k) :- write(' Input event name : '), read(Q), nl, setof(T,before(T,Q),L),

cut_duplicate(L,List), write('Event before'), write(Q), write(' is '), write(List),

menu.

menu(l) :- write(' Input event name : '), read(Q), nl, action(A,B,C,Q), write(A),

write(' '), write(B), write(' '), write(C), nl, time(Q), menu.

menu(m) :- find(R), write('Order = '), write(R), menu.

menu(O).

67

APPENDIXC

LISTING OF VISUAL BASIC PROGRAM

% --------------------------------------- Form Menu -- %

Dim ArrayNum As Integer

Private Sub Form_Load()

Dim Error_ans As Integer

ArrayNum= 0

End Sub

Private Sub UpdateMenu()

mnu_App_Array(O).Visible =True

ArrayNum = ArrayNum + 1

For ii= 1 To ArrayNum

Next ii

If mnu_App_Array(ii).Caption =Filename Then

ArrayNum = ArrayNum - 1

Exit Sub

End If

If ArrayNum >= 5 Then

For ii = 1 To ArrayNum

Next ii

mnu_App_Array(ii).Caption = mnu_App_Array(ii +

!).Caption

ArrayNum = ArrayNum - 1

End If

mnu_App_Array(ArrayNum).Caption =Filename

68

mnu_App_Array(ArrayNum).Visible =True

End Sub

Private Sub mnu_App_Array_Click(lndex As Integer)

If Index >= 0 Then

End If

End Sub

Filename = mnu_App_Array(lndex).Caption

FormRelation.Show I

Private Sub mnu_App_item_Click(lndex As Integer)

Dim DesFilename As String

Dim dbs As Database

Dim rst, rst2 As Recordset

On Error GoTo errhandler

Select Case Index

Case 0 ' New Application

CmDialog l .DialogTitle = "New Application"

CmDialogl.Filter ="All Files (*.*)l*.*IApplication Files

(* .mdb)I* .mdb"

CmDialog I .Filter Index = 2

CmDialog I .Action = I

Filename = CmDialog I .Filename

result = OpenFile(Filename, NEW _APPLICATION)

If result = NEW _DB Then

Filename

mnu_App_item(2).Enabled = True

mnu_Edit.Enabled = True

mnu_Query.Enabled =True

FormMenu.Caption = "Temporal Knowledge : " +

Call NewDatabase

69

End If

Call UpdateMenu

FormRelation.Show 1

Case 1 ' Open application

CmDialog l .DialogTitle = "Open Application"

CmDialogl.Filter ="All Files (*.*)l*.*IApplication Files

(*.mdb)l*.mdb"

CmDialog I .Filter Index = 2

CmDialog I .Action = I

Filename = CmDialog I .Filename

If FileLen(Filename) < 0 Then MsgBox ("File Not Found")

Call UpdateMenu

FormMenu.Caption = "Temporal Knowledge : " +Filename

Set dbs = OpenDatabase(Filename)

Set rst = dbs.OpenRecordset("TRelation")

If rst.RecordCount > 0 Then

Else

End If

mnu_App_item(2).Enabled = True

mnu_Edit.Enabled = True

mnu_Query.Enabled =True

rst.Close

dbs.Close

rst.Close

dbs.Close

FormRelation.Show I

Case 2 ' Save As Text File

CmDialogl.DialogTitle ="Save Application As Text File For Prolog

Program"

CmDialog I .Filter= "All Files (*.*)I*. *!Text Files (* .txt)I* .txt"

CmDialogl.Filterlndex = 2

70

CmDialog I .Action = 2

Dim FileNumber, bt, et, dt

Dim first_relation, second_ relation, name 1, name2

FileNumber = FreeFile

Open CmDialogl.Filename For Output As #FileNumber

Set dbs = OpenDatabase(Filename)

Set rst = dbs.OpenRecordset(11TRelation11
)

Set rst2 = dbs.OpenRecordset(11TTemporal")

rst.MoveFirst

Do While Not rst.EOF

Else

Else

If (rst.Fields(4) <> 11 11
) And (rst.Fields(5) <>" ")Then

bt = ",bt(" & Right(rst.Fields(4), 4) & 11
," & _

Mid(rst.Fields(4), 4, 2) & "," & Left(rst.Fields(4), 2) &

Left(rst.Fields(5), 2) & "," & Right(rst.Fields(5), 2)

Else

bt= ",A"

End If

If (rst.Fields(6) <>" ")And (rst.Fields(7) <>" ")Then

et= ",et(" & Right(rst.Fields(6), 4) & "," & _

Mid(rst.Fields(6), 4, 2) & "," & Left(rst.Fields(6), 2) &

Left(rst.Fields(7), 2) & 11
,

11 & Right(rst.Fields(7), 2)

et= ",B"

End If

If (rst.Fields(8) <> " ") And (rst.Fields(9) <> " ") Then

dt = 11 ,dt(" & Right(rst.Fields(8), 4) & 11
,

11 & _

Mid(rst.Fields(8), 4, 2) & "," & Left(rst.Fields(8), 2) &

Left(rst.Fields(9), 2) & "," & Right(rst.Fields(9), 2) &

dt= ",C"

End If

71

Loop

Print #1, "event("; rst.Fields(l l); bt; et; dt; ")."

rst.MoveNext

Do While Not rst2.EOF

rst.MoveFirst

second_relation; ")."

Loop

rst.MoveFirst

Do While Not rst.EOF

If rst2.Fields(O) = rst.Fields(11) Then

first_relation = rst.Fields(11)

Exit Do

Else

rst.MoveNext

End If

Loop

rst.MoveFirst

Do While Not rst.EOF

If rst2.Fields(1) = rst.Fields(11) Then

second_relation = rst.Fields(11)

Exit Do

Else

End If

Loop

rst.MoveNext

Print #l ,LCase(rst2.Fields(2)); "_of(" ;first_relation; ",";

rst2.MoveNext

Do While Not rst.EOF

namel = Trim(LCase(rst.Fields(l)))

If (rst.Fields(O) <> " ") Then

Do While InStr(namel, ",")

72

Loop

Loop

name2 = Trim(Left(namel, InStr(namel, ",")

namel = Mid(namel, InStr(namel, ",") + 1)

Do While InStr(name2, " ")

Mid(name2, InStr(name2, " "), 1) = "_"
Loop

Print #1,"concept("; rst.Fields(O); name2; ")."

namel = Trim(namel)

Do While InStr(name 1, " ")

Mid(namel, InStr(namel," "), 1) = "_"
Loop

Print #1, "concept("; rst.Fields(O); ","; (namel); ")."

End If

name 1 = Trim(LCase(rst.Fields(3)))

If (rst.Fields(2) <>" ")Then

Do While InStr(namel, ",")

Loop

name2 = (Left(namel, InStr(namel, ",") - 1))

namel = Mid(namel, InStr(namel, ",") + 1)

Do While InStr(name2, " ")

Mid(name2, InStr(name2, " "), 1) = "_"
Loop

Print #1, "concept("; rst.Fields(2); name2; ")."

name I= Trim(namel)

Do While InStr(namel," ")

Mid(namel, InStr(namel," "), 1) = "_"
Loop

Print #1, "concept("; rst.Fields(2); Trim(namel); ")."

End If

rst.MoveNext

73

rst.MoveFirst

Do While Not rst.EOF

Print #1, "action(["; LCase(rst.Fields(l)); "],["; LCase

(rst.Fields(lO)); "],["; LCase(rst.Fields(3)); "],"; LCase

(rst.Fields(l 1)); ")."

Loop

rst.Close

rst2.Close

<lbs.Close

rst.MoveNext

Close #FileNumber

Case 3 ' Delete

CmDialog I .DialogTitle = "Delete Application"

CmDialog I .Filter = "All Files (*.*)I*.* !Application Files

(*.mdb)l*.mdb"

CmDialogI.Filterlndex = 2

CmDialog I .Action = 1

Filename = CmDialog I .Filename

If FileLen(Filename) > 0 Then Kill Filename

Case 4 'Line

Case 5 'Exit

End

Case 6 'Line

End Select

FormMenu.Show

Exit Sub

errhandler:

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

74

Private Function OpenFile(NewFilename As String, Mode As Integer) As Integer

Dim NewFileNum, a As Integer

Dim Msg As String

If NewFilename Like"*[;-?[*]*" Or NewFilename Like"*]*" Then Error

Err_BadFileName

If Mode = NEW _APPLICATION Then

If Dir(NewFilename) <>""Then

Else

End If

End If

Msg ="Do you want to replace"+ NewFilename +"file?"

If MsgBox(Msg, 49, "Replace File?") = 2 Then

OpenFile = 0

Exit Function

Else 'Replace DB

End If

Kill NewFilename

OpenFile =NEW _DB

Exit Function

OpenFile = NEW _DB

Exit Function

If Mode = DELETE_APPLICA TION Then

NewFileNum = FreeFile

Open NewFilename For Random As NewFileNum

If LOF(NewFileNum) = 0 Then

Msg ="File"+ NewFilename +"does not exist."

a= MsgBox(Msg, 64, "File Not Found")

End If

Close NewFileNum

Kill NewFilename

OpenFile = 0

75

End If

End Function

Exit Function

Private Sub NewDatabase()

Dim wrkDefault As Workspace

Dim dbsNew As Database

Dim prpLoop As Property

Set wrkDefault = DBEngine.Workspaces(O)

Set dbsNew = wrkDefault.CreateDatabase(Filename, dbLangGeneral)

dbsNew.Execute "CREATE TABLE TRelation"

& "(Concept_Type_l Text (20), Indv_Name_l Text (20), Concept_Type_2

Text (20),"_ & "Indv _Name_2 Text (20), Begin_Date Text (10) ,

Begin_ Time Text (5), "_

& "End_Date Text (10), End_ Time Text (5), Duration_Date Text (10), "_

& "Duration_Time Text (5), Relation Text (20) Not Null, Event_Name Text

(20) II_

& "CONSTRAINT Event_Jnd Primary Key);"

dbsNew .Execute "CREATE TABLE TTemporal " _

& "(Relation_! Text (20), Relation_2 Text (20), Temporal_Relation Text

(10), " -

& "Temporal_Id Integer CONSTRAINT Temporal_Ind PRIMARY KEY);"

dbsNew.Close

End Sub

Private Sub mnu_Edit_item_Click(Index As Integer)

On Error GoTo err_handler

Select Case Index

Case 0 ' Edit relation

FormMenu.Caption = "Temporal Knowledge : " +

Filename

76

FormRelation.Show 1

Case 1 ' Edit temporal

Filename

End Select

Exit Sub

err_handler:

FormMenu.Caption = "Temporal Knowledge : " +

FormTemporal.Show 1

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

Private Sub mnu_Query_item_Click(Index As Integer)

On Error GoTo err_handler

Select Case Index

Case 0 ' Event

FormEvent.Show 1

Case 1 ' Temporal Relation

End Select

Exit Sub

err_handler:

Form Topological.Show

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

% ---------------------------- Form Add Temporal ------~------------------------------- %

Private AddMode As Integer

Private Error_ans As Integer

Private MaxNum As Integer

77

Private Sub CancelButton_Click()

Unload FormAddTemporal

If Data3.Recordset.RecordCount = 0 Then

FormTemporal. Visible = False

FormMenu. Visible = True

Else

Form Temporal. Visible = True

End If

End Sub

Private Sub Datal_Reposition()

Frame_Event_l.Caption = "Event : " + Datal.Recordset("Event_Name")

End Sub

Private Sub Data2_Reposition()

Frame_Event_2.Caption ="Event:"+ Data2.Recordset("Event_Name")

End Sub

Private Sub Form_Load()

Datal.DatabaseName =Filename

Data2.DatabaseName =Filename

Data3.DatabaseName =Filename

If Modify _Rec = -1 Then

FormAddTemporal.Caption ="Add New Temporal"

Data I .Refresh

Data2.Refresh

Data3 .Refresh

If Data3.Recordset.RecordCount = 0 Then

MaxNum=O

Else

Data3 .Recordset.MoveLast

MaxNum = Data3.Recordset("Temporal_Id")

78

Else

End If

End Sub

End If

Data3 .Recordset.AddNew

Opt_After. Value = True

FormAddTemporal.Caption ="Edit Temporal"

Data3.Refresh

Data3.Recordset.Index = "Temporal_Ind"

Data3 .Recordset.Seek "=", Modify _Rec

Select Case Data3 .Recordset.Fields("Temporal_Relation ")

Case "After" Opt_After.Value =True

Case "Before" Opt_Before.Value =True

Case "During" Opt_During. Value = True

Case "Equal" Opt_Equal.Value =True

Case "Finish" Opt_Finish.Value =True

Case "Meet" Opt_Meet. Value = True

Case "Overlap" Opt_ Overlap. Value= True

End Select

Data I .Refresh

Case "Start" Opt_Start.Value =True

Datal.Recordset.Index = "Event_Ind"

Datal.Recordset.Seek "=", Data3.Recordset("Relation_l ")

Data2.Refresh

Data2.Recordset.lndex = "Event_lnd"

Data2.Recordset.Seek "=", Data3 .Recordset("Relation_2 ")

Data3.Recordset.Edit

Private Sub OKButton_Click()

Dim F _YR, F _MO, F _DA, F _HH, F _MM, S_ YR, S_MO, S_DA, S_HH,

S_MM

79

Dim Error_Msg

On Error GoTo NoUpdate

If Modify _Rec = -1 Then Data3.Recordset("Temporal_Id") = MaxNum + 1

Data3.Recordset("Relation_l ") = Event_l.Text

Data3.Recordset("Relation_2") = Event_2.Text

If (Begin_Date_l.Text = "") And (End_Date_l.Text = "")Then GoTo

Update_Line

If (Begin_Date_2.Text = "")And (End_Date_2.Text = "")Then GoTo

Update_Line

If Begin_Date_l.Text <>""Then

End If

F _YR= Val(Right(Begin_Date_l.Text, 4))

F _MO= Val(Mid(Begin_Date_l.Text, 4, 2))

F _DA= Val(Left(Begin_Date_l.Text, 2))

F _HH = Val(Left(Begin_Time_l.Text, 2))

F _MM= Val(Mid(Begin_Time_l.Text, 4, 2))

If End_Date_l.Text <> "" Then

End If

F _YR= Val(Right(End_Date_l.Text, 4))

F _MO= Val(Mid(End_Date_l.Text, 4, 2))

F _DA= Val(Left(End_Date_l.Text, 2))

F _HH = Val(Left(End_Time_l.Text, 2))

F _MM= Val(Mid(End_Time_l.Text, 4, 2))

If End_Date_2.Text <> "" Then

End If

S_ YR= Val(Right(End_Date_2.Text, 4))

S_MO = Val(Mid(End_Date_2.Text, 4, 2))

S_DA = Val(Left(End_Date_2.Text, 2))

S_HH = Val(Left(End_Time_2.Text, 2))

S_MM = Val(Mid(End_Time_2.Text, 4, 2))

If Begin_Date_2.Text <> "" Then

80

End If

S_ YR= Val(Right(Begin_Date_2.Text, 4))

S_MO = Val(Mid(Begin_Date_2.Text, 4, 2))

S_DA = Val(Left(Begin_Date_2.Text, 2))

S_HH = Val(Left(Begin_Time_2.Text, 2))

S_MM = Val(Mid(Begin_Time_2.Text, 4, 2))

If Opt_After. Value = True Then

End If

If F _YR< S_ YR Then GoTo Error_Line

If F _YR> S_ YR Then GoTo Update_Line

If F _MO< S_MO Then Go To Error_Line

If F _MO> S_MO Then GoTo Update_Line

If F _DA< S_DA Then Go To Error_Line

If F _DA> S_DA Then Go To Update_Line

If F _HH < S_HH Then Go To Error_Line

If F _HH > S_HH Then Go To Update_Line

If F _MM< S_MM Then Go To Error_Line

If F _MM> S_MM Then GoTo Update_Line

If Opt_Before. Value = True Then

End If

If F _YR> S_ YR Then Go To Error_Line

If F _YR < S_ YR Then GoTo Update_Line

If F _MO > S_MO Then GoTo Error_Line

If F _MO< S_MO Then Go To Update_Line

If F _DA> S_DA Then Go To Error_Line

If F _DA< S_DA Then GoTo Update_Line

If F _HH > S_HH Then GoTo Error_Line

If F _HH < S_HH Then Go To Update_Line

If F _MM> S_MM Then Go To Error_Line

If F _MM< S_MM Then Go To Update_Line

If Opt_During.Value =True Then GoTo Update_Line

81

If Opt_Equal.Value =True Then GoTo Update_Line

If Opt_Finish.Value =True Then GoTo Update_Line

If Opt_Meet.Value =True Then GoTo Update_Line

If Opt_ Overlap. Value= True Then GoTo Update_Line

If Opt_Start.Value =True Then GoTo Update_Line

Update_Line:

If Opt_After.Value =True Then Data3.Recordset("Temporal_Relation") =

"After"

If Opt_Before.Value =True Then Data3.Recordset("Temporal_Relation") =

"Before"

If Opt_During.Value =True Then Data3.Recordset("Temporal_Relation") =

"During"

If Opt_Equal.Value =True Then Data3.Recordset("Temporal_Relation") =

"Equal"

If Opt_Finish.Value =True Then Data3.Recordset("Temporal_Relation") =

"Finish"

If Opt_Meet.Value =True Then Data3.Recordset("Temporal_Relation") =

"Meet"

If Opt_ Overlap.Value= True Then Data3.Recordset("Temporal_Relation") =

"Overlap"

"Start"

If Opt_Start.Value =True Then Data3.Recordset("Temporal_Relation") =

Data3 .Recordset. Update

Unload FormAddTemporal

Form Temporal.Show

Exit Sub

Error_Line:

Error_Msg ="Time of "+ Relation_l.Text +"should not come"+

Data3.Recordset("Temporal_Relation") +"time of "+ Relation_2.Text

MsgBox (Error_Msg)

Unload FormAddTemporal

82

FormTemporal.Show

Exit Sub

No Update:

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

o/o ----------------------------------- Form Event -- %

Private Sub ExitButton_Click()

Unload FormEvent

FormMenu.Visible =True

End Sub

Private Sub combol_Click()

Dim dbs As Database

Dim rst As Recordset

Set dbs = OpenDatabase(Filename)

Set rst = dbs.OpenRecordset("TRelation")

rst.MoveFirst

Do While Not rst.EOF

If StrComp(Combol.Text, rst.Fields(l 1)) = 0 Then

End If

rst.MoveNext

Loop

rst.Close

<lbs.Close

End Sub

Private Sub Form_Load()

Objectl.Text = rst.Fields(O) & " : " & rst.Fields(l)

Object2.Text = rst.Fields(lO)

Object3.Text = rst.Fields(2) & " : " & rst.Fields(3)

83

Dim dbs As Database

Dim rst As Recordset

Set dbs = OpenDatabase(Filename)

Set rst = dbs.OpenRecordset("TRelation")

rst.MoveFirst

Do While Not rst.EOF

Combo l .Addltem rst.Fields(11)

rst.MoveNext

Loop

rst.Close

dbs.Close

End Sub

% ------------------------------------ Form Relation -- %

Private Sub DisableText()

Concept_Type_l.Enabled =False

Concept_Type_2.Enabled =False

Indv_Name_l.Enabled =False

lndv _Name_2.Enabled = False

Relation.Enabled = False

Event_Name.Enabled =False

Begin_Date.Enabled = False

Begin_ Time.Enabled= False

End_Date.Enabled = False

End_ Time.Enabled = False

Duration_Date.Enabled = False

Duration_ Time.Enabled = False

End Sub

Private Sub AddButton_Click()

Call EnableText

84

Call HideButton

FormRelation.Caption ="Add New Relation"

Datal.Visible =False

Data! .Refresh

Data l .Recordset.AddNew

End Sub

Private Sub EnableText()

Concept_Type_l.Enabled =True

Concept_Type_2.Enabled =True

lndv_Name_l.Enabled =True

Indv _Name_2.Enabled = True

Relation.Enabled = True

Event_Name.Enabled = True

Begin_Date.Enabled = True

Begin_ Time.Enabled = True

End_Date.Enabled = True

End_ Time.Enabled = True

Duration_Date.Enabled = True

Duration_ Time.Enabled = True

End Sub

Private Sub HideButton()

AddButton.Visible =False

EditButton.Visible =False

DeleteButton.Visible =False

ExitButton.Visible =False

OKButton.Visible =True

CancelButton.Visible =True

End Sub

85

Private Sub ShowButton()

AddButton.Visible =True

EditButton. Visible = True

DeleteButton. Visible = True

ExitButton. Visible = True

OKButton.Visible =False

CancelButton.Visible =False

End Sub

Private Sub Begin_Date_Change()

If Len(Begin __ Date) = 10 Then

Else

End If

If (Val(Left(Begin_Date, 2)) > 31 Or Val(Left(Begin_Date, 2)) < 1 Or

Mid(Begin_Date, 4, 2) > 12 Or Mid(Begin_Date, 4, 2) < 1 Or

Val(Right(Begin_Date, 4)) > 9999 Or Val(Right(Begin_Date,

4)) < 0 Or Mid(Begin_Date, 3, 1) <>"/"Or Mid(Begin_Date,

6, 1) <>"/")Then

Error_ans = MsgBox("Invalid Begin Date", 48, "Error!")

Else

OKButton.Enabled =True

End If

OKButton.Enabled = False

If Begin_Date =""Then OKButton.Enabled =True

End Sub

Private Sub Begin_ Time_ Change()

If Len(Begin_ Time) = 5 Then

If (Val(Left(Begin_Time, 2)) > 24 Or Val(Left(Begin_Time, -2)) < 0

Or Val(Right(Begin_Time, 2)) > 59 Or Val(Right(Begin_Time, 2)) <

0 Or Mid(Begin_Time, 3, 1) <>".")Then

Error_ans = MsgBox("Invalid Begin Time", 48, "Error!")

86

Else

OKButton.Enabled =True

End If

Else

OKButton.Enabled = False

End If

If Begin_ Time= "" And Begin_ Date= '"' Then OKButton.Enabled =True

End Sub

Private Sub CancelButton_Click()

Datal.Visible =True

Call ShowButton

Call DisableText

FormRelation.Caption = "Relation : " + Filename

If Datal .Recordset.RecordCount = 0 Then

Else

End If

End Sub

EditButton.Enabled = False

DeleteButton.Enabled = False

EditButton.Enabled = True

DeleteButton.Enabled = True

Private Sub DeleteButton_Click()

FormRelation.Caption ="Delete Relation"

If (MsgBox("Are you sure to delete this relation?", 36, "Delete relation?")=

6) Then

End If

Data l .Recordset.Delete

Datal .Refresh

Datal.Visible =True

87

If Datal .Recordset.RecordCount = 0 Then

EditButton.Enabled = False

DeleteButton.Enabled = False

Else

End If

EditButton.Enabled = True

DeleteButton.Enabled = True

FormRelation.Caption = "Relation : " +Filename

End Sub

Private Sub Duration_Date_Change()

If Len(Duration_Date) = 10 Then

Else

End If

If (Val(Left(Duration_Date, 2)) > 31 Or Val(Left(Duration_Date, 2))

< 0 Or Mid(Duration_Date, 4, 2) > 12 Or Mid(Duration_Date, 4, 2) <

0 Or Val(Right(Duration_Date, 4)) > 9999 Or Val(Right

(Duration_Date, 4)) < 0 Or Mid(Duration_Date, 3, 1) <>"/"Or Mid

(Duration_Date, 6, 1) <> "/") Then

Error_ans = MsgBox("Invalid Duration pate", 48, "Error!")

Else

OKButton.Enabled = True

End If

OKButton.Enabled =False

If Duration_Date = "" Then OKButton.Enabled =True

End Sub

Private Sub Duration_Time_Change()

If Len(Duration_ Time) = 5 Then

88

Else

End If

If (Val(Left(Duration_Time, 2)) > 24 Or Val(Left(Duration_Time, 2))

< 0 Or Val(Right(Duration_Time, 2)) > 59 Or Val(Right

(Duration_ Time, 2)) < 0 Or Mid(Duration_Time, 3, 1) <>".")Then

Error_ans = MsgBox("lnvalid Duration Time", 48, "Error!")

Else

OKButton.Enabled =True

End If

OKButton.Enabled = False

If Duration_ Time="" And Duration_Date ='"'Then OKButton.Enabled =

True

End Sub

Private Sub EditButton_Click()

Call EnableText

Call HideButton

Event_Name.Enabled = False

FormRelation.Caption ="Edit Relation"

Datal. Visible= False

Datal.Recordset.LockEdits =True

Data l .Recordset.Edit

End Sub

Private Sub End_Date_Change()

If Len(End_Date) = 10 Then

If (Val(Left(End_Date, 2)) > 31 Or Val(Left(End_Date, 2)) < 1 Or_

Mid(End_Date, 4, 2) > 12 Or Mid(End_Date, 4, 2) < 1 Or_

Val(Right(End_Date, 4)) > 9999 Or Val(Right(End_Date, 4)) < 0 Or_

Mid(End_Date, 3, 1) <>"/"Or Mid(End_Date, 6, 1) <>"/")Then

Error_ans = MsgBox("lnvalid End Date", 48, "Error!")

89

Else

OKButton.Enabled =True

End If

Else

OKButton.Enabled =False

End If

If End_Date = '"' Then OKButton.Enabled = True

End Sub

Private Sub End_Time_Change()

If Len(End_ Time) = 5 Then

Else

End If

If (Val(Left(End_Time, 2)) > 24 Or Val(Left(End_Time, 2)) < 0 Or_

Val(Right(End_Time, 2)) > 59 Or Val(Right(End_Time, 2)) < 0 Or_

Mid(End_Time, 3, 1) <>".")Then

Error_ans = MsgBox("Invalid End Time", 48, "Error!")

Else

OKButton.Enabled = True

End If

OKButton.Enabled =False

If End_Time =""And Begin_Time =""Then OKButton.Enabled =True

End Sub

Private Sub ExitButton_Click()

Datal .Refresh

If Datal.Recordset.RecordConnt <= 0 Then

Else

FormMenu !mnu_Edit_item(1).Enabled = False

FormMenu!mnu_Query.Enabled =False

FormMenu!mnu_App_item(2).Enabled =False

90

FormMenu!mnu_Edit_item(O).Enabled =True

FormMenu !mnu_Edit_item(1).Enabled = True

FormMenu!mnu_Query.Enabled =True

FormMenu!mnu_App_item(2).Enabled =True

End If

Unload FormRelation

FormMenu. Visible = True

End Sub

Private Sub Form_Load()

Dim Error_ans As Integer

AddMode = False

Call ShowButton

Call DisableText

Data l .DatabaseN ame = Filename

FormRelation.Caption = "Relation : " + Filename

Datal.Visible =True

Datal .Refresh

If Data 1.Recordset.RecordCount <= 0 Then AddButton_ Click

End Sub

Private Sub OK.Button_Click()

Dim BT_YR, BT_MO, BT_DA, BT_HH, BT_MM

Dim ET_ YR, ET _MO, ET_DA, ET_HH, ET _MM

On Error GoTo NoUpdate

If (Begin_Date.Text = "") Or (End_Date.Text = "")Then GoTo Update_Line

If (Begin_Date.Text <> '"') And (End_Date.Text <> "")Then

BT_YR = Val(Right(Begin_Date.Text, 4))

BT_MO = Val(Mid(Begin_Date.Text, 4, 2))

BT_DA = Val(Left(Begin_Date.Text, 2))

BT_HH = Val(Left(Begin_Time.Text, 2))

91

End If

lSSUllPTIOll UNIVERSITY UBRlR\

BT_MM = Val(Mid(Begin_Time.Text, 4, 2))

ET_YR = Val(Right(End_Date.Text, 4))

ET_MO = Val(Mid(End_Date.Text, 4, 2))

ET_DA = Val(Left(End_Date.Text, 2))

ET_HH = Val(Left(End_Time.Text, 2))

ET_MM = Val(Mid(End_Time.Text, 4, 2))

If BT_YR > ET_YR Then GoTo Error_Line

If BT_ YR < ET_ YR Then Go To Update_Line

If BT _MO > ET _MO Then Go To Error_Line

lfBT_MO < ET_MO Then GoTo Update_Line

If BT _DA > ET _DA Then GoTo Error_Line

If BT _DA < ET _DA Then Go To Update_Line

If BT _HH >ET _HH Then GoTo Error_Line

If BT_HH < ET_HH Then GoTo Update_Line

If BT _MM >ET _MM Then GoTo Error_Line

lfBT_MM < ET_MM Then GoTo Update_Line

GoTo Update_Line

Error_ Line:

Error_Msg ="Begin time should before end time"

MsgBox (Error_Msg)

Datal .Recordset.CancelUpdate

GoTo Continue

Update_Line:

Data I .Recordset. Update

GoTo Continue

Continue:

Datal.Visible =True

Datal .Refresh

Call DisableText

Call ShowButton

92

FormRelation.Caption = "Relation : " +Filename

If Datal.Recordset.RecordCount = 0 Then

EditButton.Enabled = False

DeleteButton.Enabled = False

Else

EditButton.Enabled = True

DeleteButton.Enabled =True

End If

Exit Sub

No Update:

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

Private Sub Relation_Change()

If Relation="" Then

OKButton.Enabled = False

Else

OKButton.Enabled =True

End If

End Sub

% --------:------------------------------- Form Temporal ------------------------------------- %

Private Error_ans As Integer

Private MaxNum As Integer

Private Sub AddButton_Click()

Modify _Rec = -1

Unload FormTemporal

FormAddTemporal.Show 1

End Sub

93

Private Sub Data3_Reposition()

On Error GoTo No_ Update

If Data3.Recordset.RecordCount = 0 Then Exit Sub

Datal.RecordSource ="SELECT* FROM TRelation WHERE

Event_Name="' + Data3.Recordset("Relation_l ") + "'"

Data I.Refresh

Data2.RecordSource = "SELECT * FROM TRelation WHERE

Event_Name="' + Data3.Recordset("Relation_2") + "'"

Data2.Refresh

Frame_Event_l.Caption = "Event : " + Event_l.Text

Frame_Event_2.Caption ="Event:"+ Event_2.Text

Modify_Rec = Data3.Recordset("Temporal_Id")

Select Case Data3.Recordset("Temporal_Relation")

End Select

Exit Sub

No_ Update:

Case "After" Opt_After. Value = True

Case "Before" Opt_Before.Value =True

Case "During" Opt_During. Value = True

Case "Equal" Opt_Equal. Value = True

Case "Finish" Opt_Finish.Value =True

Case "Meet" Opt_Meet.Value =True

Case "Overlap" Opt_ Overlap. Value= True

Case "Start" Opt_Start.Value =True

Error_ans = MsgBox(Error, 48, "Error!")

Exit Sub

End Sub

Private Sub DeleteButton_Click()

FormTemporal.Caption ="Delete Temporal Relation"

94

If (MsgBox("Are you sure to delete this temporal relation?", 36, "Delete

relation?")= 6) Then Data3.Recordset.Delete

Data3 .Refresh

If Data3.Recordset.RecordCount = 0 Then

EditButton.Enabled = False

DeleteButton.Enabled =False

Data3.Visible =False

Else

EditButton.Enabled = True

DeleteButton.Enabled =True

End If

FormTemporal.Caption = "Temporal Relation : " + Filename

End Sub

Private Sub EditButton_Click()

Modify _Rec = 1

Unload FormTemporal

FormAddTemporal.Show

End Sub

Private Sub ExitButton_Click()

Unload FormTemporal

Unload FormAddTemporal

FormMenu. Visible = True

End Sub

Private Sub Form_Load()

Data3.DatabaseName =Filename

FormTemporal.Caption = "Temporal Relation : " + Filename

Data3.Refresh

If Data3.Recordset.RecordCount = 0 Then

95

Else

End If

End Sub

DeleteButton.Enabled = False

EditButton.Enabled = False

Data3.Visible =False

Datal.DatabaseName =Filename

Data2.DatabaseName =Filename

DeleteButton.Enabled = True

EditButton.Enabled = True

Data3.Visible =True

% -------------------------------------- Form Topological ----------------------------------- %

Dim Check_ Click, MaxCol, MaxList, MaxRow, MaxLabel, MaxLine

Dim Relation(50), LineX(50), LineY(50), pX(50), pY(50)

Private Sub Form_Load()

Dim FileNumber, Tmp_Relation(50)

Dim I, J, K

Check_ Click= False

FileNumber = FreeFile

I = 0, K = 0, MaxCol = 0

Open "C:\CG\ORDER.OUT" For Input As #FileNumber

Do While Not EOF(FileNumber)

Loop

Input #FileNumber, Tmp_Relation(I)

I= I+ 1

Close #FileNumber

I= I - 1

Tmp_Relation(O) = Mid(Tmp_Relation(O), 2)

Tmp_Relation(I) = Left(Tmp_Relation(I), Len(Tmp_Relation(I)) - 1)

For J = 0 To I

Relation(K) = Tmp_Relation(J)

96

NextJ

K=K+ 1

If Lcft(Tmp_Relation(J), 1) ="["Then Relation(K - 1) =Mid

(Tmp_Relation(J), 2)

If Right(Tmp_Relation(J), 1) ="]"Then

Relation(K - 1) = Left(Tmp_Relation(J), Len(Tmp_Relation(J)) - 1)

Relation(K) = "NextOrder"

K=K+ 1

End If

MaxList = K - 1

BackColor = QBColor(7)

ScaleMode = 3 ' Set ScaleMode to pixels.

Left= 0

Width= Screen.Width

Height = 5000

Top = (Screen.Height - Height) I 2

ScaleMode = 3

VScrolll.Top = 0

VScroll 1.Height = ScaleHeight - 20

VScroll l.Left = Scale Width - 17

HScroll 1.Left = 0

HScrolll.Top = ScaleHeight - 17

HScrolll.Width = ScaleWidth - 17

K = 0, J = 0, X = 0, Y = 0

For I= 0 To MaxList

If Relation(!) <> "NextOrder" Then

If K> 0 Then

Load Label 1 (K)

Load Shapel(K)

End If

If Len(Relation(I)) > 15 Then

97

Else

End If

Next I

Label 1 (K).Alignment = 0

Else

Label 1 (K).Alignment = 2

End If

Labell(K).Visible =True

Label 1 (K).Caption = Relation(!)

pX(K) = 15 + (100 * X)

pY(K) = 140 + Y

Labell(K).Move pX(K), pY(K)

Shapel(K).Visible =True

Shapel(K).Move pX(K) - 5, pY(K) - 10

If J > 0 And Relation(!+ 1) <> "NextOrder" Then

Load Line15(J)

If Relation(!+ 1) <> "N~xtOrder" Then

Linel5(J).Visible =True

LineX(J) = pX(K) + 75

LineY(J) = pY(K) + 10

Line15(J).Xl = LineX(J)

Line15(J).Yl = LineY(J)

Line15(J).X2 = LineX(J) + 20

Linel5(J).Y2 = LineY(J)

J=J+l

End If

K=K+ 1

X=X+ 1

If Max Col < X Then Max Col = X

X=O

Y= Y +50

98

MaxLabel = K - 1

MaxLine = J - 1

MaxRow = (Y - 130) I 50

FormTopological.Visible =True

VScroll 1.Max = MaxRow * 3

VScrolll.Min = -MaxRow * 3

VScroll 1.LargeChange = 10

VScroll 1.SmallChange = 1

HScroll 1.Max = 80 + MaxCol

HScrolll.Min = -15 * MaxCol

HScroll 1.LargeChange = MaxCol * 5

HScroll 1.SmallChange = MaxCol - 1

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, X As Single, Y

As Single)

Framel.Visible =False

If Check_ Click = True Then

Dim I

FormTopological.Cls

For I = 0 To MaxLabel

End If

Next I

Labell(l).Move pX(I), pY(I)

Shapel(l).Move pX(I) - 5, pY(I) - 10

For I = 0 To MaxLine

Next I

Line 15(1).X 1 = LineX(I)

Line15(1).Yl = LineY(I)

Line15(1).X2 = LineX.(I) + 20

Line15(1).Y2 = LineY(I)

99

Check_ Click= False

End Sub

Private Sub HScrolll_Change()

Dim I

FormTopological.Cls

For I= 0 To MaxLabel

pX(I) = pX(I) + (HScrolll.Value / 100 * ScaleWidth)

Labell(l).Move pX(I), pY(I)

Shapel(l).Move pX(I) - 5, pY(I) - 10

Next I

For I= 0 To MaxLine

Next I

End Sub

LineX(I) = LineX(I) + (HScrolll.Value / 100 * ScaleWidth)

Line15(1).Xl :::: LineX(I)

Line15(1).Yl = LineY(I)

Line15(1).X2 = LineX(I) + 20

Line15(1).Y2 = LineY(I)

Private Sub Labell_Click(lndex As Integer)

Dim dbs As Database

Dim rst As Recordset

Check_ Click = True

Set dbs = OpenDatabase(Filename)

Set rst = dbs.OpenRecordset("TRelation")

rst.MoveFirst

Do While Not rst.EOF

If StrComp(Labell(lndex).Caption, rst.Fields(l 1)) = 0 Then

Textl.Text = rst.Fields(O) & " : " & rst.Fields(l)

Text2.Text = rst.Fields(lO)

100

Text3.Text = rst.Fields(2) & " : " & rst.Fields(3)

Loop

End If

rst.MoveNext

rst.Close

<lbs.Close

Framel.Visible =True

End Sub

Private Sub VScrolll_Change()

Dim I

FormTopological.Cls

For I= 0 To MaxLabel

pY(l) = pY(I) + (VScrolll.Value I 100 *Scale Width)

Labell(l).Move pX(l), pY(I)

Shapel(I).Move pX(l) - 5, pY(I) - 10

Next I

For I = 0 To MaxLine

Next I

LineY(I) = LineY(I) + (VScrolll.Value I 100 * ScaleWidth)

Line15(I).Xl = LineX(l)

Line15(1).Yl = LineY(I)

Line15(I).X2 = LineX(l) + 20

Line15(1).Y2 = LineY(I)

End Sub

101

	Cover and Title Page
	Acknowledgements
	Table of Contents
	List of Figures
	Abstract
	Chapter 1 : Introduction
	Chapter 2 : Conceptual Graph and Temporal Knowledge
	Chapter 3 : Implementation Issues
	Chapter 4 : Temporal Knowledge Program
	Chapter 5 : Conclusion and Recommendation
	References
	Appendix : A
	Appendix : B
	Appendix : C

