

The Performance of Concatenated Codes in Optical CDMA LANs

By

Ms. Nuanpan Lertphaiboon

Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Science
in Telecommunications Science Assumption University

October, 2003

The Performance of Concatenated Codes in Optical CDMA LANs

ByRS/Ty

Ms. Nuanpan Lertphaiboon

Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Telecommunication Science Assumption University

The Faculty of Science and Technology

Master Thesis Approval

Thesis Title The Performance of Concatenated Codes in Optical CDMA LANs

By
Thesis Advisor
Academic Year
Ms. Nuarpan Lertphaiboon
Asst. Prof. Dr. Chanintorn J. Nukoon 1/2003

The Department of Telecommunications Science, Faculty of Science and Technology of Assumption University has approved this final report of the twelve credits course.
TS7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree of Master of Science in Telecommunications Science.

Faculty Approval:

September / 2003

ACKNOWLEDGEMENTS

I would like to express my gratitude to Asst. Prof. Dr. Chanintorn Jittawiriyanukoon and Dr. Pham Mahn Lam for their valuable advice, excellent suggestions, and constant encouragement throughout my thesis. Due to their support and help, this thesis was completed successfilly.

I also thank our committee members, Asst. Prof. Dobri Atanassov Batovski, PhD. and Dr. Chirapan Daengdej for their kind consideration and suggestions.

Finally, I would like to take this opportunity to express my sincere thanks to my family and my friends for their encouragement.

St. Gabriel's Library, Au

TABLE OF CONTENTS
ACKNOWLEDGMENTS i
LIST OF FIGURES ii
LIST OF TABLES iii
ABSTRACT iv
CHAPTER I INTRODUCTION 1
1.1 Optical CDMA LANs 3
1.2 Motivation 5
CHAPTER II BACKGROUND AND SURVEY OF RELATED WORKS 6
2.1 Background 6
2.2 Code Sequence 6
2.3 Multi-access in Optical Fibers 9
2.4 Optical CDMA LANs10
2.5 Non-coherent Optical CDMA Systems 14
2.6 Non-coherent All-optical CDMA system for High-Weight codes 17
2.7 Non-coherent Optical CDMA Systems for Cancatenated codes 19
2.7.1 Linear Feedback Shift-Register (LFSR) 20
2.7.2 Maximal-length sequence (m-sequence) 22
2.7.3 Gold Sequence 27
CHAPTER III KRONECKER CODES FOR OPTICAL FIBER CDMA
NETWORKS
3.1 Program for generating Kronecker sequence 34
3.1.1 Module for generating balanced m-sequence 35 (balanced_m_seq.m)
3.1.2 Module for generating balanced gold sequence (balance_gold_seq.m) 37
3.1.3 Module for calculating aperiodic auto correlation of balanced m -sequences and balanced gold sequences
(ape_auto.m) 41
3.1.4 Module for calculating aperiodic auto correlation of kronecker sequences (ape_kronecker.m) 41
Chapter IV The Performance of Concatenated Codes in Optical CDMA
4.1 BER Performance of Optical Fiber CDMA LANs Using
Kronecker Codes 42
4.2 The Mean Power of Multiple-Access Interference 42
4.3 Aperiodic cross-correlation of balanced kronecker sequences. 43
4.4 Programme for calculating BER 444.4.1 Module for calculating The Mean Power of Multiple-AccessInterference and Numerical result45
4.4.2 Numerical result of BER 544.5 Comparison performance between combination of Kroneckersequences61
Chapter IV Conclusion 63
REFERENCES 65
Appendix A The generating codes for Kronecker sequences 67
Appendix B The List Name of Files that are generated 80
Appendix C Programme to generate balanced m-sequence 89
Appendix D Programme to generate balanced gold sequence 92
Appendix E Programme to calculate aperiodic of balanced gold
sequence and balanced m-sequence 95
Appendix F Programme to calculate aperiodic of kronecker
Sequences 98
Appendix G Programme to calculate aperiodic cross correlation of kronecker sequences 100
Appendix H Programme to calculate BER and show graph for output in BER values $/ E R S / T$

LIST OF FIGURES

Figure 1 A fiber optic CDMA network using passive $\mathrm{N} \times \mathrm{N}$ star coupler
When the stage of $\operatorname{LFSR}(\mathrm{r})=3$
Figure 2 Optical fiber tapped delay-line encoder. 14
Figure 3 Transmitter of Optical CDMA. 15
Figure 4 OOK Modulation technique 16
Figure 5 SIK Modulation technique. 17
Figure 6 Optical transmitter for high-weight codes 18
Figure 7 Linear Feedback Shift Register (LFSR) 20
Figure 8 Diagram of a LFSR NERSNTV 21
Figure 9 LFSR for polynomial $f(x)=x^{4}+x+1$
Figure 10 LFSR for $f_{1}(x)=x^{5}+x^{2}+1 \quad 24$
Figure 11 LFSR for $f_{2}(x)=x^{5}+x^{4}+x^{3}+x^{2}+1$
Figure 12 Flowchart of Calculating Aperiodic Auto Correlation
for Kronecker sequences
Figure 13 The Flowchart for calculating BER 44
Figure 14 BER of Kronecker Sequences ($\mathrm{r}=3$)
(Balanced gold sequence as inner and balanced m-sequence as outer) 55
Figure 15 BER of Kronecker Sequences $(\mathrm{r}=3)$
(Balanced m-sequence as inner and balanced gold sequence as outer)
Figure 16 BER of Kronecker Sequences $(\mathrm{r}=4)$
(Balanced gold sequence as inner and balanced m-sequence as outer) 57
Figure 17 BER of Kronecker Sequences (r=4)
(Balanced m-sequence as inner and balanced gold sequence as outer) 58
Figure 18 BER of Kronecker Sequences ($\mathrm{r}=5$)
(Balanced gold sequence as inner and balanced m-sequence as outer) 59
Figure 19 BER of Kronecker Sequences ($\mathrm{r}=5$)
(Balanced m -sequence as inner and balanced gold sequence as outer) 60
Figure 20 Comparison BER of Kronecker Sequences (r=3) 61

Figure 21 Comparison BER of Kronecker Sequences (r=4) 61
Figure 22 Comparison BER of Kronecker Sequences $(r=5) 62$
Figure 23 Comparison BER of Kronecker Sequences $(r=3,4,5) 62$

LIST OF TABLES

Table 1 Sum of Aperiodic Cross Correlation of Kronecker Sequences (balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when $r=3$ 46

Table 2 Sum of Aperiodic Cross Correlation of Kronecker Sequences (balanced m -sequence as inner and Balanced gold sequence as outer) to find the Mean Power of Multiple Access when $r=3$ 48

Table 3 Sum of Aperiodic Cross Correlation of Kronecker Sequences (Balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when $r=4$ 49

Table 4 Sum of Aperiodic Cross Correlation of Kronecker Sequences
(Balanced m-sequence as inner and Balanced gold sequence as outer) to find the Mean Power of Multiple Access when $r=4$51

Table 5 Sum of Aperiodic Cross Correlation of Kronecker Sequences (Balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when r $=5 \quad 52$

Table 6 Sum of Aperiodic Cross Correlation of Kronecker Sequences
(Balanced m-sequence as inner and Balanced gold sequence as outer)
to find the Mean Power of Multiple Access when $r=5$
Table 7 BER of Kronecker Sequences ($r=3$) (Balanced gold sequence as inner and Balanced m-sequence as outer)55

Table 8 BER of Kronecker Sequences ($\mathrm{r}=3$)
(Balanced m-sequence as inner and
balanced gold sequence as outer)56

Table 9 BER of Kronecker Sequences ($\mathrm{r}=4$)
(Balanced gold sequence as inner and balanced m-sequence as outer) 57

Table 10 BER of Kronecker Sequences ($\mathrm{r}=4$)
(Balanced m-sequence as inner and balanced gold sequence as outer) 58

Table 11 BER of Kronecker Sequences ($\mathrm{r}=5$)
(Balanced gold sequence as inner and 59 balanced m-sequence as outer)

Table 12 BER of Kronecker Sequences ($\mathrm{r}=5$)
(Balanced m-sequence as inner and 60 balanced gold sequence as outer)

Table 13 Filename of Balanced Gold sequences when the stage of $\operatorname{LFSR}(r)=3$

Table 14 Filename of Balanced Gold sequences when the stage of LFSR $(r)=4$

Table 15 Filename of Balanced Gold sequences when the stage of LFSR $(r)=5$ 82

Table 16 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(r)=3$ 82

Table 17 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(r)=4$ 83

Table 18 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(\mathrm{r})=5$ 84

Table 19 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(r)=3$

Table 20 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced m-sequence as inner and balanced gold sequenced as outter) when the stage of $\operatorname{LFSR}(r)=3$

Table 21 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(r)=4$

Table 22 Filename of Aperiodic Auto Correlation of Kronecker sequences
(balanced m-sequence as inner and balanced gold sequenced as outter) when the stage of LFSR $(r)=4$

Table 23 Filename of Aperiodic Auto Correlation of Kronecker sequences
(balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(r)=5$

Table 24 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced m-sequence as inner and balanced gold sequenced as outter) when the stage of LFSR $(r)=5$

Abstract

This work investigated the use of Concatenated sequences (Kronecker sequences) in optical fiber CDMA network. These sequences can overcome the loss and short of available sequences. I proposed another form of Kronecker sequences that are generated by balanced m -sequences and balanced gold sequences. In recent years, available kronecker sequences are constructed by Lampel codes and Gold codes. In this thesis, the programmable BER is measure of performance of kronecker sequences. The value of BER are compared between the generating balanced msequences as inner and balanced gold sequences as outer and the generating balanced gold sequenced as inner and balanced m-sequences as outer. MATLAB program is used for generating balanced m-sequences and balanced gold sequences. The calculation for auto-correlation and cross correlation of Kronecker sequences is designed to find the numerical result of BER values. The performance of Kronecker codes is evaluated to find the best combination.

Chapter I : Introduction

In a multiple access application, there are many users wishing to use the same channel. In a frequency-division multiple access (FDMA) system, each active user is allocated an individual frequency band for transmission, thus avoiding interference by way of using different frequencies. In a time-division multiple access (TDMA) system, each active user is allocated an individual time slot in each frame to transmit data. Therefore, interference is avoided. The FDMA and TDMA systems are used in conventional analog cellular phone system such as the AMPS (Advanced mobile phone sytem), while the TDMA is used in digital cellular phone systems such as GSM (General system mobile) systems. There is an inherent inefficiency in FDMA and TDMA systems that each user occupies a frequency band or a time slot for the whole duration of the calling. Normally, each party in a conversation speaks less than half of one time (there are periods of silence). Therefore, suring the silent periods, the frequency band or the time slot transmit no data, hence it is wasted. Schemes have been developed to make the silent periods available to other users, but the control of such schemes become complicated.

In a code-division multiple access system, which is also called spead spectrum multiple access (SSMA) system, all the active users share the same frequency band and transmit at the same time.Code Division Multiple Access provides concurrency with appropriate election of user codes. In CDMA users are not in frequency or time synchronism. They are assigned distinct codes with appropriate orthogonality properties and they use the entire frequency band at all times. CDMA techniques fall into four board categories: direct sequence (DS), frequency encoded (FE), time
hopping (TH), and frequency hopping (FH). Direct sequence code division multipleaccess (DS-CDMA) is the main multiple-access candidate for the third generation personal communication systems. The most important reason for this is the flexibility in supporting different services with different data rates and quality. In this technique, the receiver on the network is assigned a unique "address" sequence that is approximately orthogonal to the sequences assigned to all other receivers. Before the transmitter sent data bits to the target, data bits are replaced by the assigned sequence of the target receiver. To detect incoming data, the targeted receiver correlates with its own "address" sequence.

alVERSITr

Recently, optical code-division multiple-access schemes attract much attention particularly in the field of fiber-optic networks, because it allows multiple users to access the network asynchronously and simultaneously. Fully asynchronous operation while providing a large number of address, able to support variable bit rate services as well as burst traffic and offering a natural increase in the security of transmission are a combination of advantages that are attractive from a network perspective. Optical CDMA is also attractive in other points-channel assignment is much easier with CDMA. Thus, optical CDMA is expected in ultra-high-speed LAN's, such as future ultra-high speed and real time computer combination.

1.1 Optical CDMA LANs

There has been considerable interest in applying CDMA techniques developed in the radio domain to optical fiber Local Area Networks (LANs). It can provide a flexible interconnection between a high number of active users in a high bit rate LAN. Practically, a LAN must support a large pool of subscribers, not all of who require access to the network at the same time.

The optical CDMA LANs are based on NxN passive star topology. The passive star topology allows the optical signals from simultaneous users that are transmitted signals on the same carrier frequency. The recived signals from transmitter are sent throgh N input ports to star topology and then they are transmitted to the receiver through N output ports.

Currently, there are many investigations about coherent (field modulated) and non-coherent (intensity modulated) schemes. Coherent optical CDMA systems offer better bit-error rate (BER) performance than their non-coherent optical CDMA counterpart and can accommodate a large number of network users. However, there are many serious problems that make it difficult to implement a coherent optical system. Moreover, the cost for this system is very expensive. Consequently, the noncoherent optical CDMA is more interesting than coherent counterparts.

The non-coherent of optical CDMA systems are based on intensity modulation at the transmitter direct (intensity) detection at the receiver. In direct detection, the photodetector gives the output current which is proportional to the average power of the received optical (modulated) signal. Because only the power level is detected the
laser or LED transmitter is intensity modulated (IM). Amplitude shift keying (ASK) is performed on all the optical carrier frequencies at the same time by changing the drive current of the transmitter.

In general, the proposed non-coherent optical CDMA schemes can be separated in two groups. System uses low-weight sequences and high-weight sequences. The low-weight sequence group is based on unipolar-unipolar correlation. The technique for modulation is On-Off Keying (OOK) that is a sequence is transmitted for " 1 " bit and no signals for " 0 " bit. The low-weight or sparse codes can group into two groups: non-symmetric codes and symmetric codes. The encoder and decoder based on optical fiber delay lines are used for encoding and decoding signal in this system. The low-weight code system has the advantages of reduction of recombination loss and reducing the complexity of decoder. However, the disadvantage is the limitation of the number of available sequence with good correlation properties.

The other group of high-weight sequences use sequence-inversion keying (SIK) of intensity-modulated sequences. It relies on the unipolar-bipolar correlation at the receiver. The main problem of those systems are high loss a requiring optical switches at very high speed.

1.2 Motivation

It has been show in [11] that the use of concatenated codes (or Kronecker codes) for optical CDMA system can overcome the problem of high loss and the short of available sequences in optical CDMA using low-weight codes [6][7]. The use of Kronecker codes also helps to overcome problems of SIK systems described in [2]: High loss and that described in [3]: Requirement of very high-speed switches and synchronisation. However, in [11] only Lampel codes and Gold codes are used for constructing Kronecker codes.

In this work, I proposed to investigate the use of balanced m-sequence code and balanced Gold code for constructing Kronecker codes and uses the obtained Kronecker codes for optical CDMA network. I will design program (based on MATLAB) for generating the codes and programs for evaluating the Mean Power of Interference as well as program for calculating BER performance. I will find the best combination of inner and outer codes based on BER performance of the obtained codes.

Chapter II: Background and Survey of related work

2.1 Background

CDMA is a form of spread-spectrum, a family of digital communication techniques that have been used in military applications for many years. Spread spectrum is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send the information [4] ; the band spread is accomplished by means of a code which is independent of the data, and a synchronized reception with the code at the receiver is used for despreading and subsequent data recovery. Some of these techniques are direct-sequence spread spectrum, frequency hopping, and time hopping. As a multiple access method, most interest has been given to direct sequence code division multiple access (DSCDMA), where spreading is achieved by multiplication of the signal by a psueudorandom spreading sequence.

In direct-sequence spread spectrum, each bit of data is represented by a sequence of coded bits called chip. If code sequence has length L, then each data bit will be represented by L chips. Each sequence of L chips is transmitted in the same time duration as an original data bits; thus the effective transmission rate is increased by a factor of L . The increase in transmission rate has the effect of spreading the signal over a larger frequency band.

2.2 Code Sequences

The code sequences used in CDMA sytems are pseudo-noise (PN) or pseudorandom sequences, viz., sequences of zeroes and ones which resemble a random data pattern. They are generated in a deterministic way and have specific properties.

- Auto-correlation property: Auto-correlation is the measure of similarity between a signal and the time shifted version of itself. The auto-correlation of a code sequence can be obtained by looking at the number of agreements and disagreements. Auto-correlation between the sequence and a shifted version of the sequence is always -1 . This property allows ease of synchronization.

Example

If a code sequence $\mathrm{C}_{1}=\left\{\mathrm{C}_{1}(\mathrm{i})\right\}=1010110=\mathrm{C}_{1}(6)$ of length N
$\mathrm{i}=0,1,2$,

The Auto-correlation of C_{1} is $\mathrm{A}_{1}(\mathrm{~s})=\sum_{\mathrm{i}=0}^{\mathrm{N}-1} \mathrm{C}_{1}(\mathrm{i}) * \mathrm{C}_{1}(\mathrm{i} \oplus \mathrm{s})$
*
\oplus
Chip-by-chip Multiplication

Modulo N addition
$\mathrm{s} \quad$: Time-shift can be $0,1,2, \ldots \ldots \ldots, \mathrm{~N}-1$
$A_{1}(0), A_{1}(1), A_{1}(2) \ldots \ldots . ., A_{1}(s)$
$\mathrm{A}_{1}(\mathrm{~s})$ is auto-correlation of C_{1} at time-shift s
If $\mathrm{s}=0$;

$$
\begin{aligned}
& A_{1}(0)=\sum_{i=0} C_{1}(i) * C_{1}(i \oplus 0)=\sum_{i=0}^{6} C_{1}(i) * C_{1}(i) \\
&= C_{1}(0) * C_{1}(0)+C_{1}(1) * C_{1}(1)+\ldots \ldots+C_{1}(6) * C_{1}(6) \\
& C_{1}: 1010110 \\
& C_{1}: 1010110 \\
& A_{1}(0)=1010110
\end{aligned}=4
$$

If $\mathrm{s}=1$;

$$
\begin{aligned}
& \mathrm{A}_{1}(1)=\sum_{\mathrm{i}=0}^{7-1} \mathrm{C}_{1}(\mathrm{i}) * \mathrm{C}_{1}(\mathrm{i} \oplus 1) \\
& =\mathrm{C}_{1}(0) * \mathrm{C}_{1}(1)+\mathrm{C}_{1}(1) * \mathrm{C}_{1}(2)+\ldots \ldots+\mathrm{C}_{1}(6) * \mathrm{C}_{1}(1) \\
& \mathrm{C}_{1} \quad: 1010110 \\
& \\
& \frac{\mathrm{C}_{1} \quad: 1010110}{\mathrm{~A}_{1}(0)=0000100}=1
\end{aligned}
$$

For 1 code sequence, the values of auto-correlation are varied by timeshift.The value of auto-correlation at time shift $(s)=0$ is called in-phase or peak auto-correlation. If time shift is inequality 0 , the auto-correlation values are called out-of-phase or side lobe of auto-correlation.

The set of code is composed of unipolar (1,0) and bipolar($1,-1$). Comparing between peak auto-correlation, an example is shown below.

For unipolar

For bipolar ;

C_{1}
C_{1}
:---

From outputs of two codes, the peak auto-correlation of unipolar codes equalizes the weight of codes. Unlike the peak of auto-correlation of bipolar codes, it equalizes the length of the codes.

- Cross-correlation property: Cross-correlation is the measure of similarity between two code words.

Example

$$
\begin{aligned}
& \text { If } \mathrm{C}_{1}=\left\{\mathrm{C}_{1}(\mathrm{i})\right\}=1010110 ; \quad \mathrm{C}_{2}=\left\{\mathrm{C}_{2}(\mathrm{i})\right\}=0101110 \\
& \text { are code sequence of length } \mathrm{N} ; \mathrm{i}=0,1,2, \ldots \ldots \ldots . \mathrm{N}-1
\end{aligned}
$$

$$
\text { For } s=0,1,2, \ldots \ldots \ldots, N-1
$$

2.3 Multi-access in Optical Fibers

In optical fibers, alternative techniques to access the huge bandwidth are being explored for high-speed networking applications. There are three multiple access approaches which are often considered to make the system bandwidth available to the individual user [5]: time-division multiple access (TDMA), wavelength-division multiple access (WDMA), and code-division multiple access (CDMA).

TDMA accommodates a large number of active users by interleaving bits from different sources into a period equal to that of the uncompressed bit. However, the
performance of TDMA systems is ultimately limited by the time-serial nature of the technology. The time is divided into slots, and users take turns accessing the channel. In the WDMA approach, the available optical bandwidth is divided into distinct wavelength channels that are used concurrently by different users to achieve multiple access. The problem with using WDMA in LANs is that a significant amount of dynamic coordination between nodes is required. Furthermore, in order to utilize the fiber bandwidth most efficiently by WDMA, one needs to employ coherent optical transmission techniques along with heterodyne optical receivers, which are costlier than their non-coherent counterpart. Optical CDMA offers an interesting alternative for LANs because neither time management nor frequency management of all nodes is necessary. Optical CDMA operate without waiting-time delays, and does not suffer packet collisions. In CDMA, all users are allowed to access the entire bandwidth of the channel simultaneously. In order to distinguish individual transmissions in a CDMA system, each user is assigned a unique code, which is able to selectively receive the desired transmission. Only receiver, which is the correct code, may receive a given message.

2.4 Optical CDMA LANs

CDMA was originally investigated in the context of radio frequency (RF). In mid-1980's, researchers started to apply CDMA in optical domain [6-8]. In optical networks, the chips will be unipolar, consisting of +1 s and 0 s , not bipolar, having +1 s and -1 s .

Optical CDMA has several advantages over optical TDMA, e.g., complete utilization of the entire time-frequency domain by each subscriber, flexibility in network design, and security against interception. Synchronous CDMA has an
additional advantage over asynchronous CDMA, where the number of available code sequences is much higher in the former under a given throughput constraint. However, in a LAN environment where the traffic is usually burst, an efficient multiple-access protocol that allows users to access the network asynchronously at all times is important. Synchronous CDMA is suitable for very high-speed networks with real time requirements.

A typical fiber optic CDMA system is a passive $\mathrm{N} \times \mathrm{N}$ star coupler that is shown in figure 1. The encoded signal is sent to the $\mathrm{N} \times \mathrm{N}$ star coupler and broadcast to all nodes. In transmission signal, both input and output ports are equal. When transmitted port send signal N ports, the received port send N ports, too.

Figure 1 A fiber optic CDMA network using passive $\mathrm{N} \times \mathrm{N}$ star coupler

As usual, all nodes are connected together using a star coupler. In synchronous optical CDMA system must have 1 clock for all network. It is called Master Clock to distribute clock signal to all users of the network. Before optical transmitter sends data, the clock sent λ_{1} to laser. Laser that is controlled by code sequences emits light to opto-electrical switch by λ_{2}. The switch at the transmitter
sends encoded sequences to $1 \times \mathrm{N}$ optical power splitter. The pulse streams are splitted into N pulse through parallel optical delay lines and gate for detecting codes. After that codes are combined by N x 1 power combiner and sent to passive star coupler. At the receiver, There is wavelength division multiplexing (WDM) filter to generate wavelength of each source. Similar to the transmitter, N optical fiber delay lines are connected in parallel using a $1 \times \mathrm{N}$ optical power splitter and a $\mathrm{N} \times 1$ optical power combiner. The received signal is correlated to the destination address sequence. Sampling at the last time slot takes a sample and compares to the threshold. The sampling time is determined by the received clock signal. The resulting signal is converted into an electrical current and after amplification it is threshold detected.

Example

If threshold determines $\theta=4$, the sample has to compare this value below.

Sample $\geq \theta$ then receive bit " 1 "

Sample $<\theta$ then receive bit " 0 "

For synchronous network, all transmission (T_{x}) can only be sent signal at the starting of a bit times $T_{\mathrm{b}}, 2 T_{\mathrm{b}}, 3 T_{\mathrm{b}}, \ldots \ldots$ etc.

The time of 1 data bit $\left(\mathrm{T}_{\mathrm{b}}\right)=\frac{1}{\text { data bit rate(D) }} \mathrm{sec}$.

Example

Generating code sequence C1:01101010, code length is number of chips in code sequence $(N)=8$. If data bit rate $(D)=1 \mathrm{Mbit} / \mathrm{sec}$

$$
\begin{aligned}
\text { Bit time }\left(\mathrm{T}_{\mathrm{b}}\right) & =1 / \mathrm{D} \\
& =1 / 1024^{2} \\
& =9.5 \times(10)^{-7} \text { second }
\end{aligned}
$$

Chip rate $\left(\mathrm{D}_{\mathrm{c}}\right)=\mathrm{Nx} \mathrm{D}$
$=8 \times 1 \mathrm{Mbit} / \mathrm{s}$

$$
=8 \mathrm{Mchip} / \mathrm{s}
$$

Chip time $\left(T_{c}\right)=1 / D_{c}=1 / 8(1024)^{2} S / / /$

$$
=1.9 \times(10)^{-7} \text { second }
$$

Optical CDMA can be implemented using either non-coherent or coherent detection techniques. In non-coherent detection, the receiver looks only at the amplitude of the received signal, not the phase. Example is direct detection. In coherent detection, the receiver looks at both amplitude and phase of the signal.

However, there are many serious problems that make it difficult to implement a coherent optical system [9][10]. Modulation in this system require special lasers with separate sections for the continuous wave (CW) generation and modulation or using an external optical modulator after the laser transmitter. In fiber optic systems the fiber changes the polarization of the signal making it difficult to adjust the phase of local oscillator signal to have the same phase as the incoming optical carrier.

In this proposal, we concentrate in non-coherent optical CDMA system. This system can be separated into two groups. There are systems that rely on high-weight sequences and low-weight sequences. Both systems use parallel fiber delay-line type or tapped delay-line type. That is shown in figure 2.

Figure 2 Optical fiber tapped delay-line encoder.

Parallel optical-delay line encoder is used in optical CDMA network because it can be encoded in high chip rate and generated any code sequence. However, If we increase chips, the number of delay line and size of coupler also increases. It causes addition of recombination loss. So, the signal will be reduced.

2.5 Non-coherent Optical CDMA Systems

Several architectures have been considered for the use of CDMA within an optical fiber, the most common being systems that use direct detection with $0 / 1$.The data is modulated on the spreading sequence by OOK for non-coherent optical CDMA system for low-weight codes or Sequence Inversion Keying (SIK) for non-
coherent optical CDMA system for high-weight codes. The figure 3 shows the principal transmitter of this system.

Transmitter

Figure 3 Transmitter of Optical CDMA.
Example of OOK for low-weight codes

CDMA is the process of letting all the users transmit on the same frequency at the same time but distinguishing between them by the code used. Each user is assigned 1 sequence used as its address

User 1 (C1) 011101
User 2 (C2) 101011
User 3 (C3) 001111

The data bits are transmitted using a special form of on-off modulation. For a " 0 " bit, no signal is sent, while for a " 1 " bit an optical signal corresponding to the transmitter's code word is transmitted.

If user 1 wants to transmit data to user 2, user1 has to encode each data bit " 1 " by the address sequence of user 2 . In figure 4 , it illustrates encoding code sequence of transmission data from user 1 to user 2.

Bit "1" encoded by 101011
Bit " 0 " encoded by 000000

Figure 4 OOK Modulation technique.
For SIK modulation, the sequence is employed to transmit bit " 1 " while its complement is transmitted for bit " 0 "

Example of SIK for high-weight codes
If user 1 wants to transmit data to user 2, bit " 1 " encoded by address of user 2 and bit " 0 " encoded by complement of address of User 2 . This modulation is shown in figure 5.

Bit " 1 " encoded by 101011
Bit " 0 " encoded by 010100

Figure 5 SIK Modulation technique.

2.6 Non-coherent All-optical CDMA Systems for High-Weight codes

Using high-weight sequences for non-coherent optical CDMA schemes, [6] relies on the unipolar-bipolar correlation at the receiver. Theses systems are based on a direct (DS) code-division multiple access (CDMA) technique using sequence inversion keying (SIK) of sequences. Figure 6 shows optical transmitter for optical CDMA systems using high-weight codes. The difference between encoder of SIK and encoder of OOK is that SIK has two encoder for code sequence data bit " 1 " and the complement of data bit " 1 ". At the output of transmitter, there are two kinds of outputs that are output of " 1 " sequence and its complement sequence.

Figure 6 Optical transmitter for high-weight codes

2.7 Non-coherent Optical CDMA Systems for Concatenated codes

Optical CDMA systems for Kronecker codes, also called concatenated codes, which are product of two sequences of relatively large weight has been proposed in [11]. It is based on the principle of sequence-inversion keying (SIK) of component codes having different clock rates. This method is used for avoiding bottleneck of processing speed through all-optical encoding and decoding while simultaneously avoiding the problem of optical recombination loss by using a short inner sequence. The receiver consists of optical inner sequence and electronic outer sequence correlators. The first correlator corresponds to the inner sequence and is concatenated to a second correlator for the outer sequence. Both outer sequence and inner sequence are kept short enough to allow effective all-optical encoding and decoding.

It has been shown in [11] that Kronecker codes which have component sequeneces (inner and outer sequences) are balanced sequences that can be used in non-coherent optical CDMA systems. In [11] Kronecker sequences using Lampel sequences and Gold sequences were investigated. In this work, we will investigate optical CDMA systems using kronecker codes that are constructed using balanced msequence and balanced Gold sequences as components.

2.7.1 Linear Feedback Shift-Register (LFSR)

Maximal-length sequences (m-sequences) are, by definition, the largest codes that can be generated by a given shift register or a delay element of a given length. At each clock time the register shifts all contents to the right.

Figure 7 Linear Feedback Shift Register (LFSR)

The LFSR correspond to a characteristic polynomial which is shown by this equation (1)

Primitive Polynomial : $\quad f(x)=C_{r} x^{r}+C_{r-1} x^{r-1}+\ldots \ldots+C_{I} x+1$
The number of stages of LFSR is equal to the maximum degree of primitive polynomial $f(x)$ that is illustrated by r. From this equation, the value of C_{r} is always 1 and the others $C_{1}, C_{2}, \ldots ., C_{r-1}$ can be either 0 or 1 . For each primitive polynomial $f(x)$, it exists a reciprocal polynomial $f_{R}(x)$ which is represented by equation (2). The sequence generated by $f_{R}(x)$ is also an m - sequence of period $N=2^{r}-1$.

Reciprocal Polynomial: $\quad f_{R}(x)=x^{r} f\left(\frac{1}{x}\right)$

Example

The Primitive polynomial $\quad f(x)=x^{6}+x^{4}+x^{2}+1$

$$
f(x)=1 x^{6}+0 x^{5}+1 x^{4}+0 x^{3}+1 x^{2}+0 x+1
$$

From this equation, the LFSR has 4 stages to generate m-sequence. The coefficient of equation are $C_{6}=1, C_{5}=0, C_{4}=1, C_{3}=0, C_{2}=1$ and $C_{1}=0$.

Equation of reciprocal polynomial is

$$
\begin{aligned}
f(x) & =x^{6}+x^{4}+x^{2}+1 \\
x^{6} f(1) & =x^{6}\left[\left(\frac{1}{x}\right)^{6}+\left(\frac{1}{x}\right)^{4}+\left(\frac{1}{x}\right)^{2}+1\right] \\
f_{R}(x) & =1+x^{2}+x^{4}+x^{6}
\end{aligned}
$$

The Reciprocal Polynomial is $1+x^{2}+x^{4}+x^{6}$. We can use this equation to generate new m-sequence by LFSR. The structure of LFSR is illustrated as below. The initial loading of primitive polynomial is 101010 .

2.7.2 Maximal-length sequence (m-sequence)

The process of generating m -sequence is represented in the following example.

Example

The degree of $f(x)=$ number of stage of LFSR
The degree of $f(x)$ is 4 . So, The number of stage is 4 stages.

Initial loading should not be equal 0 .

At output of LFSR, we have sequence $\quad \underset{\square}{0} 0011110101100 \frac{1}{I}$ Last chip

First chip
This sequence is called m-sequence. The number of chip is $2^{4}-1=15$.
m-sequence length

N	Degree of Polynomial	$\mathrm{N}^{6}=$
7	3	$2^{3}-1$
15	4	$2^{4}-1$
31	5	$2^{5}-1$
63	6	$2^{6}-1$
127	7	$2^{7}-1$
255	8	$2^{8}-1$
Etc.		

Reciprocal Polynomial can use to generate a new m-sequence
Replace x in $x^{r} f(x)$ by $\frac{1}{x}$

Example

$$
\begin{aligned}
f(x) & =x^{4}+x+1 \\
x^{4} f\left(\frac{1}{x}\right) & =x^{4}\left[\left(\frac{1}{x}\right)^{4}+\frac{1}{x}+1\right] \\
& =1+x^{3}+x^{4}
\end{aligned}
$$

The Reciprocal polynomial is $f_{r}(x)=x^{4}+x^{3}+1$
This can be used for generating for a new m-sequence.

Example

Find m-sequence generated by $\quad f_{l}(x)=x^{5}+x^{2}+1$

$$
\text { and by } \quad f_{2}(x)=x^{5}+x^{4}+x^{3}+x^{2}+1
$$

1) $f_{l}(x)=x^{5}+x^{2}+1$

Generating m-sequence by LFSR

1	0	0	1	0	
0	1	0	0	1	0
1	0	1	0	0	1
1	1	0	1	0	0
0	1	1	0	1	0
0	0	1	1	0	1
1	0	0	1	1	0
1	1	0	0	1	1
1	1	1	0	0	1
1	1	1	1	0	0
1	1	1	1	1	0
0	1	1	1	1	1
0	0	1	1	1	1
0	0	0	1	1	1
1	0	0	0	1	1
1	1	0	0	0	1
- 0	1	1	0	0	0
-1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	0	1	1
0	1	1	1	0	1
1	0	1	1	1	0
0	1	0	1	1	1
1	0	1	0	1	1
0	12	0	S 1	E0	1
0	0	19	0	-1.	0
0	0	0	1	0	1
0	0	0	0	1	0
1	0	0	0	0	1.
0	1	0	0	0	0
0	0	1	0	0	0
1	0	0	1	0	0

m_{1}-sequence is 0001010111011000111110011010010

Figure 11 LFSR for $f_{2}(x)=x^{5}+x^{4}+x^{3}+x^{2}+1$

m_{2}-sequence is 0100110000101101010001110111110

2.7.3 Gold Sequence

Gold sequences can be generated by 2 m -sequences of same length. The number of Gold sequence lenghts $\mathrm{N}=2^{\mathrm{r}}+1$. Those sequences include :

- m-sequence generated by $f_{l}(x)$ [Seq(a)]
- m-sequence generated by $\mathrm{f}_{2}(\mathrm{x})[\operatorname{Seq}(\mathrm{b})]$

The other $2^{\text {r }}-1$ Gold Sequences are given by

$$
\mathrm{g}_{\mathrm{j}}(\mathrm{i})=\mathrm{a}(\mathrm{i}) \oplus \mathrm{T}_{\mathrm{b}}^{\mathrm{j}}(\mathrm{i}) ; \text { for } 0 \leq \mathrm{i} \leq \mathrm{N}-1
$$

Where $\mathrm{T}^{\mathrm{j}} \mathrm{b}(\mathrm{i})=$ the $\mathrm{i}^{\text {th }}$ element of the $\mathrm{j}^{\text {th }}$ cyclic shift of m - sequence $\{b\}$.
For example ; Generating gold sequence using 2 m -sequences $\mathrm{m}_{1}, \mathrm{~m}_{2}$.

$$
\begin{aligned}
& \mathrm{g}_{1}=\mathrm{m}_{1} \quad=0001010111011000111110011010010 \\
& \mathrm{~g}_{2}=\mathrm{m}_{2} \quad=0100110000101101010001110111110 \\
& \mathrm{~g}_{\mathrm{j}}(\mathrm{i})=\mathrm{a}(\mathrm{i}) \oplus \mathrm{T}_{\mathrm{b}}^{\mathrm{j}}(\mathrm{i}) ; \text { for } 0 \leq \mathrm{i} \leq \mathrm{N}-1 \\
& \mathrm{~m}_{1} \text {; } 0001010111011000111110011010010 \\
& \mathrm{~m}^{0}{ }_{2} \quad ; 0100110000101101010001110111110 \\
& g_{3}=m_{1}+\mathrm{m}^{0}{ }_{2} \quad=0101100111110101101111101101100 \\
& \mathrm{~m}_{1} \quad ; 0001010111011000111110011010010 \\
& \mathrm{~m}^{1}{ }_{2} \quad ; 1001100001011010100011101111100 \\
& g_{4}=\mathrm{m}_{1}+\mathrm{m}^{1}{ }_{2}=1000110110000010011101110101110 \\
& \mathrm{~m}_{1} \quad ; 0001010111011000111110011010010 \\
& \mathrm{~m}^{2}{ }_{2} \quad ; 0011000010110101000111011111001 \\
& \mathrm{~g}_{5}=\mathrm{m}_{1}+\mathrm{m}_{2}{ }_{2} \quad=0010010101101101110001000101011
\end{aligned}
$$

m_{1}	; 0001010111011000111110011010010
$\mathrm{m}^{3} 2$; 0110000101101010001110111110010
$\mathrm{g}_{6}=\mathrm{m}_{1}+\mathrm{m}^{3} 2$	$=0111010010110010110000100100000$
m_{1}	; 0001010111011000111110011010010
m^{4}	; 1100001011010100011101111100100
$\mathrm{g}_{7}=\mathrm{m}_{1}+\mathrm{m}^{4}$	$=1101011100001100100011100110110$
m_{1}	; 0001010111011000111110011010010
$\mathrm{m}^{5} 2$; 1000010110101000111011111001001
$\mathrm{g}_{8}=\mathrm{m}_{1}+\mathrm{m}^{5} 2$	$=1001000001110000000101100011011$

$\mathrm{m}_{1} \quad ; \quad ; 001010111011000111110011010010$
$\mathrm{m}^{6}{ }_{2} \quad ; 0000101101010001110111110010011$

$\mathrm{m}^{7}{ }_{2} \quad ; 0001011010100011101111100100110$ $\mathrm{g}_{10}=\mathrm{m}_{1}+\mathrm{m}_{2}^{7}=000000110111+011010001111110100$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{8}{ }_{2} \quad ; 0010110101000111011111001001100$
$g_{11}=m_{1}+\mathrm{m}_{2}^{8} \quad=0011100010011100100001010011110$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{9}{ }_{2} \quad ; 0101101010001110111110010011000$
$\mathrm{g}_{12}=\mathrm{m}_{1}+\mathrm{m}^{9} \quad=0100111101010110000000001001010$

m_{1}	$; 0001010111011000111110011010010$
$\mathrm{~m}^{10}{ }_{2}$	$; 1011010100011101111100100110000$
$\mathrm{~g}_{13}=\mathrm{m}_{1}+\mathrm{m}^{10}{ }_{2}$	$=1010000011000101000010111100010$
$\mathrm{~m}_{1}$	$; 0001010111011000111110011010010$
$\mathrm{~m}^{11}{ }_{2}$	$; 0110101000111011111001001100001$
$\mathrm{~g}_{14}=\mathrm{m}_{1}+\mathrm{m}^{11}{ }_{2}$	$=0111111111100011000111010110011$

$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{12}{ }_{2} \quad ; 1101010001110111110010011000010$
$\mathrm{g}_{15}=\mathrm{m}_{1}+\mathrm{m}^{12} \quad=1100000110101111001100000010000$
m_{1}
$\mathrm{m}^{13} 2$
; 0001010111011000111110011010010 1010100011101111100100110000101 $g_{16}=m_{1}+m^{13} \quad \Omega=1011110100110111011010101010111$
m_{1} ; 0001010111011000111110011010010 $\mathrm{m}^{14}{ }_{2} \quad ; 01010001 \mathrm{P} 1011411001001100001011$ $g_{17}=m_{1}+m^{14} \quad=0100010000000111110111111011001$

m_{1}	$; 0001010111011000111110011010010$
$\mathrm{~m}^{15}{ }_{2}$	$; 1010001110111110010011000010110$
$\mathrm{~m}_{1}+\mathrm{m}^{15}{ }_{2}$	$=1011011001100110101101011000100$

m_{1}	$; 0001010111011000111110011010010$
$\mathrm{~m}^{16}$	$; 0100011101111100100110000101101$

$\mathrm{g}_{19}=\mathrm{m}_{1}+\mathrm{m}^{16}{ }_{2}=0101001010100100011000011111111$

$$
\begin{array}{cl}
\mathrm{m}_{1} & ; 0001010111011000111110011010010 \\
\mathrm{~m}^{17}{ }_{2} & ; 1000111011111001001100001011010 \\
\mathrm{~g}_{20}=\mathrm{m}_{1}+\mathrm{m}^{17}{ }_{2} & =1001101100100001110010010001000
\end{array}
$$

$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$ $\mathrm{m}^{18}{ }_{2} \quad ; 0001110111110010011000010110101$ $\mathrm{g}_{21}=\mathrm{m}_{1}+\mathrm{m}^{18}{ }_{2}=0000100000101010100110001100111$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$ $\mathrm{m}^{19}{ }_{2} \quad ; 0011101111100100110000101101010$ $g_{22}=m_{1}+\mathrm{m}^{19}{ }_{2} \quad=0010111000111100001110110111000$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{20}{ }_{2} \quad 0111011111001001100001011010100$ $g_{23}=m_{1}+\mathrm{m}^{20}{ }_{2} \quad \int=0110001000010001011111000000110$
$\begin{array}{cl}\mathrm{m}_{1} & ; 0001010111011000111110011010010 \\ \mathrm{~m}^{21}{ }_{2} & ; 11101111110010011000010110101000 \\ \mathrm{~g}_{24}=\mathrm{m}_{1}+\mathrm{m}^{21}{ }_{2} & =1111101001001011111100101111010\end{array}$

m_{1}
$\mathrm{~m}^{22}{ }_{2}$
$\mathrm{~g}_{25}=\mathrm{m}_{1}+\mathrm{m}^{22}{ }_{2}$

m_{1}	$; 0001010111011000111110011010010$
$\mathrm{~m}^{23}{ }_{2}$	$; 1011111001001100001011010100011$
$\mathrm{~g}_{26}=\mathrm{m}_{1}+\mathrm{m}^{23}{ }_{2}$	$=1010101110010100110101001110001$

$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$ $\mathrm{m}^{24}{ }_{2} \quad ; 0111110010011000010110101000111$ $\mathrm{g}_{27}=\mathrm{m}_{1}+\mathrm{m}^{24}{ }_{2}=0110100101000000101000110010101$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{25}{ }_{2} \quad ; 1111100100110000101101010001110$ $\mathrm{g}_{28}=\mathrm{m}_{1}+\mathrm{m}^{25}{ }_{2} \quad=1110110011101000010011001011100$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{26}{ }_{2}$
$\mathrm{g}_{29}=\mathrm{m}_{1}+\mathrm{m}^{26}{ }_{2}$
m_{1}
$\mathrm{m}^{27}{ }_{2} \quad ; 1110010011000010110101000111011$ $g_{30}=m_{1}+\mathrm{m}^{27}{ }_{2} \quad=11111000100011010001011011101001$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{28}{ }_{2} \quad ; 1100100110000101101010001110111$
$g_{31}=m_{1}+\mathrm{m}^{28}{ }_{2} \quad=1101110001011101010100010100101$
$\mathrm{m}_{1} \quad ; 0001010111011000111110011010010$
$\mathrm{m}^{29}{ }_{2} \quad ; 1001001100001011010100011101111$
$g_{32}=m_{1}+\mathrm{m}^{29}{ }_{2}=1000011011010011101010000111001$

$$
\begin{gathered}
\mathrm{m}_{1} \\
\mathrm{~m}^{30}{ }_{2} \\
;+0001010111011000111110011010010 \\
\mathrm{~g}_{33}=\mathrm{m}_{1}+\mathrm{m}^{30}{ }_{2} \\
; 0010011000010110101000111011111
\end{gathered}
$$

Both m-sequence and gold-sequence can be generated by LFSR. Those code sequences are unipolar (0,1). We can change unipolar to bipolar by replacing 1 for 0 and replacing -1 for 1.Balanced m-sequence can be obtained by replacing chip " 1 " of m-sequence by " $1,-1$ " for chip " 1 " and " 0 " by " $-1,1$ ".

For balance gold sequence, firstly, we must generate gold sequence from 2 m sequence. Like m-sequence, gold sequence is changed to bipolar gold sequences. After that those bipolar gold sequence is changed to balance gold sequence. When we have balance m-sequence and balance gold sequence, we can generate kronecker sequence.

Chapter III Kronecker Codes for Optical Fiber CDMA Networks

Let $\left\{C_{i}(l)\right\}$ denoted aperiodic bipolar sequence of length N_{l} such that for all integer 1 the sequence elements $\left\{C_{i}(l)\right\} \in\{-1,1\}$ and $\left\{D_{i}(j)\right\}$ denoted a periodic bipolar sequences of period N_{2} whose sequence elements are also $\{-1, I\}$. Defined the periodic sequence $\left\{A_{i}(m)\right\}$ is kronecker sequence or concatenated sequence. The sequence $\left\{A_{i}(m)\right\}$ of length $N=N_{I} N_{2}$ is concatenated sequence that composed of the inner sequence $\left\{C_{i}(l)\right\}$ and the outer sequence $\left\{D_{i}(j)\right\}$. Each outer chip multiplies each sequence of inner sequence. The number of sequence is equal the number of all balanced Gold sequence. An example of generating kronecker sequences using balanced m-sequences and balanced Gold sequences is shown in appendix A.

3.1 Programme for generating Kronecker sequence

Figure 12 Flowchart of Calculating Aperiodic Auto Correlation for Kronecker sequences

3.1.1 Module for generating balanced m-sequence (balanced_m_seq.m)

To generate balanced m-sequence, the stages (r) of LFSR and coefficient of primitive polynomial are required to input in the program. The lenght of sequence
$N=\left(2^{r}-1\right) \times 2$
Where: $\mathrm{r}=3$

- Input Stage of LFSR for primitive polynomial $\mathrm{r}=3$
- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of $\mathrm{LFSR}=1 \mathrm{~L}=\mathrm{RS} /$
Coefficient of LFSR $=0$

- Input value of coefficient

> Initial loading of LFSR $=1$
> Initial loading of LFSR $=1$
> Initial loading of LFSR $=0$

The ouput is kept in "Bm" file
The lenght of sequences $=\left(2^{3}-1\right) \times 2=14$
Where: $r=4$

- Input Stage of LFSR for primitive polynomial $r=4$
- Input value of coefficient

Coefficient of LFSR $=1$

Coefficient of LFSR $=1$

Coefficient of LFSR $=1$
Coefficient of LFSR $=0$

- Input value of coefficient

$$
\begin{aligned}
& \text { Initial loading of LFSR }=1 \\
& \text { Initial loading of LFSR }=1 \\
& \text { Initial loading of LFSR }=1 \\
& \text { Initial loading of LFSR }=0
\end{aligned}
$$

The ouput is kept in "Bm4" file
The lenght of sequences $=\left(2^{4}-1\right) \times 2=30$
Where : $r=5$

- Input Stage of LFSR for primitive polynomial $\mathrm{r}=5$
- Input value of coefficient $E R S / / /$

Coefficient of LFSR $=1$
Coefficient of LFSR =1
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$

- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of $\mathrm{LFSR}=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$
The ouput is kept in "Bm5" file
The lenght of sequences $=\left(2^{5}-1\right) \times 2=62$

3.1.2 Module for generating balanced gold sequence (balance_gold_seq.m)

The balanced gold sequences are generated by base on pair of msequences. The m-sequences are generated by primitive polynomial and reciprocal polynomial. The difference of gold sequence $=2^{r}+1$ sequences. The lenght of balanced gold sequence $=\left(2^{r}-1\right) \times 2$

Where : $\mathrm{r}=3$

- Input Stage of LFSR for primitive polynomial r $=3$
- Input value of coefficient

Coefficient of LFSR $=1 \| \square R S$
Coefficient of LESR $=1$
Coefficient of LESR $=1$
Coefficient of LFSR $=0$

- Input value of coefficient

Initial loading of LFSR $=1$
Initial loading of LFSR $=1$
Initial loading of LFSR $=0$

- Input Stage of LFSR for reciprocal of polynomial r=3
- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$

- Input value of coefficient

Initial loading of LFSR $=1$
Initial loading of LFSR $=0$
Initial loading of LFSR $=1$

The different of gold sequence $=2^{3}+1=9$ sequences
The lenght of each sequence $=\left(2^{3}-1\right) \times 2=14$
The ouput is file name of balanced gold sequencec that are kept in files as below:

When $r=4$

- Input Stage of LFSR for primitive polynomial $\mathrm{r}=4$
- Input value of coefficient

Coefficient of LFSR = 1
Coefficient of LFSR $=1$
Coefficient of $\operatorname{LFSR}=1 \mathrm{RS} / \mathrm{R}$
Coefficient of LFSR $=0$

- Input value of coefficient

Initial loading of LFSR $=1$
Initial loading of LFSR $=1$
Initial loading of LFSR $=1$
Initial loading of LFSR $=0$

- Input Stage of LFSR for reciprocal of polynomial $r=4$
- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$

- Input value of coefficient

Initial loading of LFSR $=1$
Initial loading of LFSR $=0$

$$
\begin{aligned}
& \text { Initial loading of LFSR }=1 \\
& \text { Initial loading of LFSR }=1
\end{aligned}
$$

The difference of gold sequence $=2^{4}+1=17$ sequences
The lenght of each sequences $=\left(2^{4}-1\right) \times 2=30$
The ouput is file name of balanced gold sequencec that are kept in files. The lists name is shown in index.

When $r=5$

- Input Stage of LFSR for primitive polynomial

$$
r=5
$$

- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$

- Input value of coefficient

Coefficient of $\mathrm{LFSR}=1$
Coefficient of LFSR $=1$

Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$

- Input Stage of LFSR for reciprocal polynomial

$$
r=5
$$

- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$
Coefficient of LFSR $=1$

- Input value of coefficient

Coefficient of LFSR $=1$
Coefficient of LFSR $=1$
Coefficient of LFSR $=0$
Coefficient of LFSR $=1$ ERS/T/
Coefficient of LFSR $=1$
The different of gold sequence $=2^{5}+1=33$ sequences
The lenght of each sequences $=\left(2^{5}-1\right) \times 2=62$
The ouput is file name of belanced gold sequencec that are kept in files in Appendix B.

3.1.3 Module for calculating aperiodic auto correlation of balanced msequences and balanced gold sequences (ape_auto.m)

After generating all of balanced m-sequence and balanced gold sequences, each sequence has to calculate in aperiodic auto correlation forms. The output of them is used to calculate further in aperiodic auto correlation of kronecker sequences. All of files for aperiodic auto correlation display as follows.
a. Filename for Aperiodic Auto Correlation of balanced m-sequence

$r=5: A b m 5$
b. Aperiodic Auto Correlation of balanced gold sequence

3.1.4 Module for calculating aperiodic auto correlation of kronecker sequences (ape_kronecker.m)

The aperiodic auto correlation of kronecker sequence applies aperiodic auto correlation of balanced m -sequences and balanced gold sequence to calculate the value. Due to many of the balanced gold sequences, we select 9 different balanced gold sequence as outer and inner.

Chapter IV The Performance of Concatenated Codes in Optical CDMA LANs

4.1 BER Performance of Optical Fiber CDMA LANs Using Kronecker Codes

The calculation of the BER performance is based on the method that is shown in equation (3).

$$
\begin{equation*}
\mathrm{BER}=\frac{1}{2} \operatorname{erfc}\left(\frac{\Delta}{\sqrt{2}}\right) \tag{3}
\end{equation*}
$$

where Δ is given by

$$
\begin{equation*}
\Delta=\frac{N}{\sqrt{k}} \frac{N}{\sqrt{\sum_{k=2} \sigma_{k}^{2}}} \frac{N}{\sqrt{(K-1) \sigma_{k}^{2}}} \tag{4}
\end{equation*}
$$

Where
$\mathrm{N}=$ the kronecker code length
$\mathrm{K}=$ the number simultaneous users
$\sigma^{2}{ }_{k}=P_{\text {MAI }}$ the mean power of the multiple-access interference (MAI)

4.2 The Mean Power of Multiple-Access Interference

For a given correlator receiver configuration, the power of MAI caused by the k -th user at the receiver of the i -th user is a function of the cross-correlation parameters of the pair of sequences $\left\{A_{i}(m)\right\}$ and $\left\{A_{k}(m)\right\}$. Those cross-correlation parameters depend on each interference condition.

Let $\mathrm{P}_{\mathrm{MAI}}$ denote the mean value of interference power. $\mathrm{P}_{\text {MAI }}$ is definded by :

$$
\begin{equation*}
P_{\text {MAI }}=\frac{1}{N_{s}} \sum_{1}^{N_{s}} \frac{1}{N} \sum_{m_{k}=1-N}^{N-1} C^{2} a_{k}, a_{i}\left(m_{k}\right) \tag{5}
\end{equation*}
$$

Where
$\mathrm{N}_{s}=$ the number of all pairs of sequence $\left\{A_{i}(m)\right\}$ and $\left\{A_{k}(m)\right\}$ of the set of Kronecker sequences
$\mathrm{C} \mathrm{a}_{\mathrm{k},} \mathrm{a}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{k}}\right)=$ the aperiodic cross-correlation of Kronecker sequence $\left\{A_{i}(m)\right\}$ and $\left\{A_{k}(m)\right\}$ at the time shift m_{k}

The number of all pairs of sequence N_{s} is given by

$$
\begin{equation*}
\mathrm{N}_{\mathrm{s}}=\frac{\mathrm{S}!}{(\mathrm{S}-2)!2!}=\frac{\mathrm{S}(\mathrm{~S}-1)}{2} \tag{6}
\end{equation*}
$$

Where S is the number of Kronecker sequence in the set.

4.3 Aperiodic cross-correlation of balanced kronecker sequences.

Let $\left\{A_{i}(m)\right\}$ and $\left\{A_{k}(m)\right\}$ denote two periodic bipolar Kronecker sequences of period N from the set of S sequences $\left\{A_{k}: 1 \leq k \leq S\right\}$. The aperiodic crosscorrelation function between $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\}$ and $\left\{\mathrm{A}_{\mathrm{k}}(\mathrm{m})\right\}$ is definded by equation (7) where τ is the time shift which is an integer.

It has been shown in [11] that for a noncoherent optical fiber DS-CDMA LANs using balanced Kronecker sequences of period N , the variance of the interference caused by the k-th user at the receiver of the i-th user depends on the aperiodic cross correlation of two Kronecker sequences $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\}$ and $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\}$.

We can find the sum of squares of aperiodic cross-correlation at all time shifts
$m_{k}\left(1-N \leq m_{k} \leq N-1\right)$ for each pair of Kronecker sequence $\left\{A_{i}(m)\right\}$ and $\left\{A_{i}(m)\right\}$ by

$$
\begin{equation*}
\sum_{m_{k}=1-N}^{N-1} C^{2} a_{k} a_{i}\left(m_{k}\right)=\sum_{m_{k}=1-N}^{N-1} C a_{k}\left(m_{k}\right) C a_{i}\left(m_{k}\right) \tag{8}
\end{equation*}
$$

where $\mathrm{Ca}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{k}}\right)$ and $\mathrm{Ca}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{k}}\right)$ are the aperiodic auto-correlation of kronecker sequences $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\}$ and $\left\{\mathrm{A}_{\mathrm{i}}(\mathrm{m})\right\}$ at the time shift m_{k}.

$$
\begin{equation*}
P_{\text {MAI }}=\frac{1}{N_{s}} \sum_{1}^{N_{s}} \frac{1}{N} \sum_{m_{k}=1-N}^{N-1} C_{a_{k}}\left(m_{k}\right) C a_{i}\left(m_{k}\right) \tag{9}
\end{equation*}
$$

4.4 Programme for calculating BER

Flowchart of Calculating BER by Programme MATLAB

Figure 13 The Flowchart for calculating BER

4.4.1 Module for calculating The Mean Power of Multiple-Access Interference and Numerical result

To find the value of $\mathrm{P}_{\mathrm{MAI}}$, program is designed to calculate aperiodic cross correlation of Kronecker sequences.

The pairs of different sequences of Kronecker sequences have 36
sequences

$$
\mathrm{N}_{\mathrm{s}}=\frac{\mathrm{S}!}{(\mathrm{S}-2)!2!}=\frac{\mathrm{S}(\mathrm{~S}-1)}{2}=\frac{9(8)}{2}=36
$$

$r=3 \quad$ Balanced gold sequence is inner
Balanced m-sequence is outer

Pairs of Sequence	Cak	Cai	Sum $C_{\text {ak,ai }}^{2}$	Sum $C_{\text {ak,ai }}^{2} / \mathrm{N}$
1	Kgm3 1	Kgm3 2	339388	1731.571
2	Kgm3 1	Kgm3 3	122332	624.143
3	Kgm3 1	Kgm3 4	88060	449.286
4	Kgm3 1	Kgm3 5	183260	935.000
5	Kgm3 1.	Kgm3 6	110908	565.857
6	Kgm3 1	Kgm3 7	126140	2,643.571
7	Kgm3 1	Kgm3 8	-339388	gr 1731.571
8	Kgm3_1	Kgm3 9	228956	1168.143

9	Kgm3_2	Kgm3_3	198492	1012.714
10	Kgm3_2	Kgm3_4	187068	954.429
11	Kgm3_2	Kgm3_5	160412	818.429
12	Kgm3_2	Kgm3_6	251804	1284.714
13	Kgm3_2	Kgm3_7	84252	429.857
14	Kgm3_2	Kgm3_8	301308	1537.286
15	Kgm3_2	Kgm3_9	209916	1071.000
16	Kgm3_3	Kgm3_4	202300	1032.143

17	Kgm3_3	Kgm3 5	190876	973.857
18	Kgm3 3	Kgm3 6	168028	857.286
19	Kgm3_3	Kgm3_7	118524	604.714
20	Kgm3_3	Kgm3_8	198492	1012.714
21	Kgm3_3	Kgm3_9	156604	799.000

22	Kgm3_4	Kgm3 5	122332	624.143
23	Kgm3_4	Kgm3_6	426972	2178.429
24	Kgm344	Kgm3_7	179452	915.571
25	Kgm3 4	Kgm3_8	187068	954.429
26	Kgm3_4	Kgm3 9	236572	1207.000

27	Kgm3 5	Kgm3_6	69020	352.143
28	Kgm3_5	Kgm3_7	251804	1284.714
29	Kgm3 5	Kgm3_8	160412	818.429
30	Kgm3_5	Kgm3_9	168028	857.286

31	Kgm366	Kgm3 7	103292	527.000
32	Kgm3_6	Kgm3_8	251804	1284.714
33	Kgm3_6	Kgm3 9	270844	1381.857

34	Kgm3 7	Kgm3 8	84252	429.857
35	Kgm3 7	Kgm3_9	213724	1090.429

36	Kgm3 8	${ }_{0} \mathrm{Kgm3} 9$	OMN 209916	1071.000
Total 2 SINCE6692084$\mathbf{P}_{\text {MAI }}=$ Total/Ns				34143.29
				948.42

Table 1 Sum of Aperiodic Cross Correlation of Kronecker Sequences
(Balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when $r=3$
$r=3 \quad$ Balanced m-sequence is inner
Balanced gold sequence is outer

Pairs of Sequence	Cak	Cai	Sum $\mathrm{C}_{\text {ak,ai }}$	$\operatorname{Sum} \mathrm{C}_{\text {ak,ai }}^{2} / \mathrm{N}$
1	Kmg3 1	Kmg3 2	306940	1566.020
2	Kmg3 1	Kmg3 3	103132	526.184
3	Kmg3_1	Kmg 34	139004	709.204
4	Kmg3_1	Kmg3 5	150428	767.490
5	Kmg3 1	Kmg3 6	116156	592.633
6	Kmg3_1	Kmg3 7	209148	1067.082
7	Kmg3 1	Kmg3 8	306940	1566.020
8	Kmg3 1	Kmg 3	199324	1016.959

9	Kmg322	Kmg3_3	196124	1000.633
10	Kmg3 2	Kmg3_4	212348	1083.408
11	Kmg3 2	Kmg3 5	171676	875.898
12	Kmg3 2	Kmg3 6	274268	1399.327
13	Kmg3 2	Kmg3 7	125980	642.755
14	Kmg3 2	Kmg3 8	282492	1441.286
15	Kmg3 2	Kmg3 9	187900	958.673

16	Kmg3 3	Kmg3 4	210748	1075.245
17	Kmg3 3	Kmg3 5	215772	1100.878
18	Kmg3 3	Kmg3 6	200924	1025.122
19	Kmg3 3	Kmg3 7	1937404	701.041
20	Kmg3 3	Kmg3 8	196124	1000.633
21	Kmg3 3	Kmg3 9	212348	1083.408

22	Kmg3_4	Kmg3_5	101532	518.020
23	Kmg3_4	Kmg3_6	445404	2272.469
24	Kmg3_4	Kmg3_7	186300	950.510
25	Kmg344	Kmg3_8	212348	1083.408
26	Kmg344	Kmg3 9	274268	1399.327

27	Kmg3 5	Kmg3 6	78684	401.449
28	Kmg3_5	Kmg3_7	217372	1109.041

29	Kmg3 5	Kmg3 8	171676	875.898
30	Kmg3_5	Kmg3 9	148828	759.327

31	Kmg3_6	Kmg3_7	91708	467.898
32	Kmg3_6	Kmg3_8	274268	1399.327
33	Kmg366	Kmg3 9	238396	1216.306

34	Kmg3_7	Kmg3 8	125980	642.755
35	Kmg3 7	Kmg3 9	246620	1258.265

Table 2 Sum of Aperiodic Cross Correlation of Kronecker Sequences (Balanced m-sequence as inner and Balanced gold sequence as outer) to find the Mean Power of Multiple Access when $r=3$

$$
r=4 \quad \text { Balanced gold sequence is inner }
$$

Balanced m-sequence is outer

Pairs of Sequence	Cak U)	Cai	$\text { Sum } C^{2}{ }_{a k, a i}$	Sum $\mathrm{C}_{\text {ak,ai }}^{2} / \mathrm{N}$
1	Kgm4_1	Kgm4 2	4345660	${ }^{\mathrm{VCr}_{4828.51}}$
2	Kgm4_1	Kgm4 3	4879950	5422.17
3	Kgm4_1	Kgm4 4	3493980	3882.20
4	Kgm4_1	Kgm4_5	3679580	4088.42
5	Kgm4 1	Kgm4 6	4879950	5422.17
6	Kgm4 1	Kgm4 7	3493980	3882.20
7	Kgm4 1	Kgm4 8	3679580	4088.42
8	Kgm4 1	Kgm4 9	4879950	5422.17

9	Kgm4_2	Kgm4_3	5678940	6309.93
10	Kgm4_2	Kgm4_4	4553340	5059.27
11	Kgm4_2	Kgm4_5	5721500	6357.22
12	Kgm4_2	Kgm4_6	5678940	6309.93

13	Kgm4 2	Kgm4_7	4553340	5059.27
14	Kgm4_2	Kgm4_8	5721500	6357.22
15	Kgm4_2	Kgm4 9	4876520	5418.36

16	Kgm4 3	Kgm4 4	3457890	3842.10
17	Kgm43 3	Kgm4 5	4578120	5086.80
18	Kgm4_3	Kgm4_6	4876520	5418.36
19	Kgm4_3	Kgm4 7	3457890	3842.10
20	Kgm433	Kgm4_8	4578120	5086.80
21	Kgm4_3	Kgm4_9	4876520	5418.36

22	Kgm4_4	Kgm4_5	3126780	3474.20
23	Kgm4_4	Kgm4_6	3457890	3842.10
24	Kgm444	Kgm4_7	5899780	6555.31
25	Kgm4_4	Kgm4_8	3126780	3474.20
26	Kgm4_4	Kgm4 9	4578120	5086.80

27	Kgm4_5	Kgm4_6	4578120	5086.80
28	Kgm4 5	Kgm4_7	3126780	3474.20
29	Kgm4_5	Kgm4 8	6097890	6775.43
30	Kgm4_5	Kgm4_9	4578120	5086.80

31	Kgm4_6	Kgm4_7	3457890	3842.10
32	Kgm4_6	Kgm4_8	4578120	5086.80
33	Kgm4_6	Kgm4_9	5881130	6534.59

34	Kgm4 7	Kgm4 8 8	3126780	3474.20
35	Kgm4 7	Kgm4_9	3457890	3842.10

Table 3 Sum of Aperiodic Cross Correlation of Kronecker Sequences
(Balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when $r=4$
$r=4 \quad$ Balanced m-sequence is inner
Balanced gold sequence is outer

Pairs of				
Sequence	Cak	Cai	Sum C $_{\text {ak,ai }}^{2}$	Sum C $_{\text {ak,ai }}^{2} / \mathrm{N}$
1	Kmg4_1	Kmg4_2	3054460	3393.84
2	Kmg4_1	Kmg4_3	3286300	3651.44
3	Kmg4_1	Kmg4_4	2492380	2769.31
4	Kmg4_1	Kmg4_5	2660060	2955.62
5	Kmg4_1	Kmg4_6	3286300	3651.44
6	Kmg4_1	Kmg4_7	2492380	2769.31
7	Kmg4_1	Kmg4 8 8	2660060	2955.62
8	Kmg4_1	Kmg4_9	3286300	3651.44

9	Kmg4_2	Kmg4_3	6538780	7265.31
10	Kmg4_2	Kmg4_4	7560220	8400.24
11	Kmg4_2	Kmg4_5	6543900	7271.00
12	Kmg4_2	Kmg4_6	6538780	7265.31
13	Kmg4_2	Kmg4_7	7560220	8400.24
14	Kmg4_2	Kmg4_8	6543900	7271.00
15	Kmg4_2	Kmg4_9	5546460	6162.73

16	Kmg4_3	Kmg444	4554940	5061.04
17	Kmg4 3	Kmg4_5	5196540	5773.93
18	Kmg4_3	Kmg4_6	5546460	6162.73
19	Kmg4_3	Kmg4_7	4554940	5061.04
20	Kmg4_3	Kmg4_8	5196540	5773.93
21	Kmg4_3	Kmg4_9	5546460	6162.73

22	Kmg4_4	Kmg4_5	4007420	4452.69
23	Kmg4_4	Kmg4_6	4554940	5061.04
24	Kmg4_4	Kmg4_7	7313020	8125.58
25	Kmg444	Kmg4_8	4007420	4452.69
26	Kmg4_4	Kmg4 9	5196540	5773.93

27	Kmg4_5	Kmg4 6	5196540	5773.93
28	Kmg4_5	Kmg4_7	4007420	4452.69

29	Kmg4 5	Kmg4 8	6306940	7007.71
30	Kmg4_5	Kmg4 9	5196540	5773.93

31	Kmg4_6	Kmg4_7	4554940	5061.04
32	Kmg4_6	Kmg4_8	5196540	5773.93
33	Kmg4_6	Kmg4_9	5546460	6162.73

34	Kmg4_7	Kmg4_8	4007420	4452.69
35	Kmg4_7	Kmg4 9	4554940	5061.04

36	Kmg4 8	Kmg4 9	5196540	5773.93
		Total	170293460	194988.89
		${ }_{\text {AI }}=$ Total		5416.36

Table 4 Sum of Aperiodic Cross Correlation of Kronecker Sequences (Balanced m-sequence as inner and Balanced gold sequence as outer) to find the Mean Power of Multiple Access when r = 4
$r=5 \quad$ Balanced gold sequence is inner
Balanced m-sequence is outer

Pairs of	Cak	Cai	Sum C ${ }_{\text {ak,ai }}^{2}$	Sum C ${ }_{\text {ak,ai }}^{2} / \mathrm{N}$
Sequence				
1	Kgm5_1	Kgm5 2	40232220	10466.238
2	Kgm5_1	Kgm5_3	35617500	9265.739
3	Kgm5_1	Kgm5_4	43442908	11301.485
4	Kgm5_1	Kgm5 5	43442908	11301.485
5	Kgm5_1	Kgm5_6	46944540	12212.419
6	Kgm5_1	Kgm5_7	38171356	9930.113
7	Kgm5_1	Kgm5_8	53237340	13849.464
8	Kgm5_1	Kgm5_9	47564636	12373.735

9	Kgm52	Kgm5 3	63515580	16523.304
10	Kgm522	Kgm54	34842748	9064.190
11	Kgm522	Kgm5 5	34842748	9064.190
12	Kgm5 2	Kgm5 6	45685980	11885.010
13	Kgm5 2	Kgm5 7	42366556	11021.477
14	Kgm5 2	Kgm5 8 8	33729660	8774.625

st. Gabriel's Library, Au
The Performance of Concatenated Codes in Optical CDMA LANs

15	Kgm5 2	Kgm5 9	53647676	13956.211

16	Kgm5_3	Kgm5_4	37606364	9783.133
17	Kgm5_3	Kgm5_5	37606364	9783.133
18	Kgm5 3	Kgm5_6	45019964	11711.749
19	Kgm5_3	Kgm5_7	39402364	10250.355
20	Kgm5_3	Kgm5_8	22886428	5953.805
21	Kgm5_3	Kgm5 9	49927100	12988.319
22	Kgm5_4	Kgm5_5	68493244	17818.222
23	Kgm5_4	Kgm5_6	56492476	14696.274
24	Kgm5_4	Kgm5_7	46653596	12136.732
25	Kgm5_4	Kgm5_8	40916604	10644.278
26	Kgm5_4	Kgm5_9	45457852	11825.664

27	Kgm5 5	Kgm5 6	56492476	14696.274
28	Kgm5 5	Kgm5 7	46653596	12136.732
29	Kgm555	Kgm5_8	40916604	10644.278
30	Kgm5 5	Kgm5 9	45457852	11825.664

31	Kgm566	Kgm5_7	41536700	10805.593
32	Kgm5_6	Kgm5_8	42959100	11175.624
33	Kgm5_6	Kgm5 9	36046204	9377.264

34	Kgm5_7	Kgm5_8	27419964	7133.185
35	Kgm5_7	Kgm5 9	43233148	11246.917

Table 5 Sum of Aperiodic Cross Correlation of Kronecker Sequences
(Balanced gold sequence as inner and Balanced m-sequence as outer) to find the Mean Power of Multiple Access when $r=5$
$r=5 \quad$ Balanced m-sequence is inner
Balanced gold sequence is outer

Pairs of Sequence	Cak	Cai	Sum $\mathrm{C}_{\text {akk,ai }}$	Sum $\mathrm{C}_{\text {ak,ai }}^{2} / \mathrm{N}$
1	Kmg5_1	Kmg5 2	50547740	13149.776
2	Kmg5 1	Kmg5 3	46971350	12219.394
3	Kmg5_1	Kmg5 4	47472220	12349.693
4	Kmg5_1	Kmg5 5	47472220	12349.693
5	Kmg5_1	Kmg5 6	54490972	14175.591
6	Kmg5 1	Kmg 57	45823452	11920.773
7	Kmg5_1	Kmg5 8	60541852	15749.701
8	Kmg5 1	Kmg5 9	67494748	17558.467
9	Kmg5_2	Kmg5 3	68057404	17704.840
10	Kmg5 2	Kmg5 4	42359420	11019.620
11	Kmg5 2	Kmg 5	42359420	11019.620
12	Kmg5 2	$\text { Kmg5 } 6$	54715676	14234.047
13	Kmg5 2	Kmg 57	48422492	12596.902
14	Kmg5_2	Kmg5_8	46088764	11989.793
15	Kmg5_2	Kmg5 9	62769980	16329.339

16	Kmg533	Kmg5_4	42848092	11146.746
17	Kmg5_3	Kmg5_5	42848092	11146.746
18	Kmg5_3	Kmg5 6	55670012	14482.313
19	Kmg533	Kmg5 7	247414012	12334.550
20	Kmg5 3	Kmg5 8	34808668	9055.325
21	Kmg5 3	Kmg5 9	56943804	14813.685

22	Kmg5_4	Kmg5_5	81751100	21267.196
23	Kmg5_4	Kmg5_6	65689852	17088.931
24	Kmg5_4	Kmg5_7	46549020	12109.527
25	Kmg5_4	Kmg5_8	47163580	12269.402
26	Kmg5_4	Kmg5_9	55652412	14477.735

27	Kmg55	Kmg5_6	65689852	17088.931
28	Kmg5_5	Kmg5_7	46549020	12109.527

29	Kmg5 5	Kmg5 8	47163580	12269.402
30	Kmg55	Kmg5_9	55652412	14477.735

31	Kmg56	Kmg5 7	47082364	12248.274
32	Kmg5_6	Kmg5_8	53026300	13794.563
33	Kmg5_6	Kmg5_9	47558844	12372.228

34	Kmg5_7	Kmg5_8	30286076	7878.792
35	Kmg5_7	Kmg5 9	49853308	12969.123

36	Kmg5_8	Kmg5_9	75712380	19696.249
		Total	1881500490	469767.98
		$\mathrm{MaI}^{\text {a }}$ = Tota		13049.11

Table 6 Sum of Aperiodic Cross Correlation of Kronecker Sequences (Balanced m-sequence as inner and Balanced gold sequence as outer) to find the Mean Power of Multiple Access when r=5

4.4.2 Numerical result of BER

where Δ is given by

$$
\mathrm{BER}=\frac{1}{2} \operatorname{erfc}\left(\frac{\Delta}{\sqrt{2}}\right)
$$

$$
\Delta=\frac{N}{\sqrt{\sum_{k=2}^{k} \sigma^{2} k}}=\frac{N^{I T}}{\sqrt{(K-1) \sigma_{k}^{2}}}
$$

The BER of Kronecker sequences are based on balanced gold sequence as inner and balanced m-sequence as outer. We use nine kronecker sequences to calculate the result shown as below.

The lenght of sequence $(\mathrm{N})=196$
The stage of LFSR $(r)=3$
$\mathrm{P}_{\mathrm{MAI}}=948.42$
$\mathrm{K}=$ number of simultaneous users

Table 7 BER of Kronecker Sequences $(r=3)$
(Balanced gold sequence as inner and Balanced m-sequence as outer)

Figure 14 BER of Kronecker Sequences ($r=3$)
(Balanced gold sequence as inner and balanced m-sequence as outer)

The lenght of sequence $(\mathrm{N})=196$
The stage of LFSR $(r)=3$
$\mathrm{P}_{\mathrm{MAI}}=987.16$
$\mathrm{K}=$ number of simultaneous users

\mathbf{K}	BER
2	2.22×10^{-10}
3	5.14×10^{-6}
4	1.58×10^{-4}
5	9.07×10^{-4}
6	2.60×10^{-3}
7	5.40×10^{-3}
8	9.20×10^{-3}
9	1.37×10^{-2}
10	1.80×10^{-2}
11	2.40×10^{-2}
12	3.00×10^{-2}
13	3.59×10^{-2}
14	4.18×10^{-2}
15	4.77×10^{-2}
16	5.36×10^{-2}
17	5.94×10^{-2}
18	6.51×10^{-2}
19	7.07×10^{-2}
20	7.62×10^{-2}

Table 8 BER of Kronecker Sequences ($r=3$)
(Balanced m -sequence as inner and balanced gold sequence as outer)

Figure 15 BER of Kronecker Sequences ($r=3$)
(Balanced m-sequence as inner and balanced gold sequence as outer)

The lenght of sequence $(\mathrm{N})=900$
The stage of LFSR $(r)=4$
$\mathrm{P}_{\mathrm{MAI}}=4961.6$
$\mathrm{K}=$ number of simultaneous users

\mathbf{K}	BER
2	1.1×10^{-37}
3	8.22×10^{-20}
4	8.10×10^{-14}
5	8.37×10^{-11}
6	5.51×10^{-9}
7	9.13×10^{-8}
8	6.85×10^{-7}
9	3.13×10^{-6}
10	1.03×10^{-5}
11	2.67×10^{-5}
12	5.85×10^{-5}
13	1.13×10^{-4}
14	1.97×10^{-4}
15	3.19×10^{-4}
16	4.85×10^{-4}
17	7.01×10^{-4}
18	9.71×10^{-4}
19	1.30×10^{-3}
20	1.70×10^{-3}

Table 9 BER of Kronecker Sequences ($\mathrm{r}=4$)
(Balanced gold sequence as inner and balanced m-sequence as outer)

Figure 16 BER of Kronecker Sequences ($r=4$)
(Balanced gold sequence as inner and balanced m-sequence as outer)

The lenght of sequence $(\mathrm{N})=900$
The stage of $\operatorname{LFSR}(r)=4$
$\mathrm{P}_{\mathrm{MAI}}=5416.36$
$\mathrm{K}=$ number of simultaneous users

\mathbf{K}	$\mathbf{B E R}$
2	1.01×10^{-34}
3	2.64×10^{-18}
4	8.30×10^{-13}
5	4.84×10^{-10}
6	2.26×10^{-8}
7	2.98×10^{-7}
8	1.89×10^{-6}
9	7.68×10^{-6}
10	2.29×10^{-5}
11	5.51×10^{-5}
12	1.13×10^{-4}
13	2.08×10^{-4}
14	3.47×10^{-4}
15	5.41×10^{-4}
16	7.96×10^{-4}
17	1.10×10^{-3}
18	1.50×10^{-3}
19	2.00×10^{-3}
20	2.50×10^{-3}

Table 10 BER of Kronecker Sequences ($\mathrm{r}=4$)
(Balanced m-sequence as inner and balanced gold sequence as outer)

Figure 17 BER of Kronecker Sequences ($\mathrm{r}=4$)
(Balanced m-sequence as inner and balanced gold sequence as outer)

The lenght of sequence $(\mathrm{N})=3844$
The stage of LFSR $(r)=5$
$\mathrm{P}_{\mathrm{MAI}}=11045.08$
$\mathrm{K}=$ number of simultaneous users

K	BER
2	3.41×10^{-293}
3	6.62×10^{-148}
4	2.76×10^{-97}
5	5.15×10^{-75}
6	1.93×10^{-60}
7	1.02×10^{-50}
8	9.07×10^{-44}
9	1.49×10^{-38}
10	1.71×10^{-34}
11	3.05×10^{-31}
12	1.39×10^{-28}
13	2.32×10^{-26}
14	1.75×10^{-24}
15	7.18×10^{-23}
16	1.79×10^{-21}
17	3.01×10^{-20}
18	3.62×10^{-19}
19	3.32×10^{-18}
20	2.41×10^{-17}

Table 11 BER of Kronecker Sequences ($r=5$)
(Balanced gold sequence as inner and balanced m-sequence as outer)

Figure 18 BER of Kronecker Sequences ($r=5$)
(Balanced gold sequence as inner and balanced m-sequence as outer)

The lenght of sequence $(\mathrm{N})=3844$
The stage of LFSR (r) $=5$
$\mathrm{P}_{\mathrm{MAI}}=13049.11$
$\mathrm{K}=$ number of simultaneous users

\mathbf{K}	$\mathbf{B E R}$
2	1.53×10^{-248}
3	1.90×10^{-125}
4	2.23×10^{-84}
5	7.96×10^{-64}
6	1.75×10^{-51}
7	3.01×10^{-43}
8	2.33×10^{-37}
9	6.11×10^{-33}
10	1.69×10^{-29}
11	9.58×10^{-27}
12	1.73×10^{-24}
13	1.31×10^{-22}
14	5.15×10^{-21}
15	1.19×10^{-19}
16	1.83×10^{-18}
17	2.00×10^{-17}
18	1.66×10^{-16}
19	1.08×10^{-15}
20	5.82×10^{-15}

Table 12 BER of Kronecker Sequences ($r=5$)
(Balanced m-sequence as inner and balanced gold sequence as outer)

Figure 19 BER of Kronecker Sequences ($r=5$)
(Balanced m-sequence as inner and balanced gold sequence as outer)

4.5 Comparison performance between combination of Kronecker sequences

- The Kronecker sequences are constructed by
a. balanced gold sequences as inner and balanced m-sequences as outer (--)
b. balanced m-sequences as inner and balanced gold sequences as outer (-)

Figure 20 Comparison BER of Kronecker Sequences ($r=3$)

Figure 21 Comparison BER of Kronecker Sequences ($r=4$)

Figure 22 Comparison BER of Kronecker Sequences $(r=5$)

Figure 23 Comparison BER of Kronecker Sequences ($\mathrm{r}=3,4,5$)

Chapter IV Conclusion

There are many CDMA techniques that are investigated for optical LANs. In order to accommodate a large number of users on CDMA networks, long sequence requiring large transmission bandwidths are needed. For this reason, incoherent optical CDMA over single mode optical fibers hold out the promise of very long sequences.

The first scheme for low-weight sequences use OOK to modulate sequence. But it has the limitation of number of available sequences with good correlation properties. After researching for new techniques, the SIK can solve this problem. However, it still have a problem about high loss requiring optical switches at very high speed.

The concatenated codes (Kronecker codes) can help this problem about high loss and short available sequence in very high-speed switch and synchronization. Recently, the kronecker codes have only been constructed from Lampel codes and Gold codes. The generating kronecker sequences are complicated.

Consequently, we proposed another method for generating kronecker sequences by using balanced m-sequence and balanced gold sequences. The performance is based on MATLAB program to evaluate. To find the best combination, this work investigated to compare the combination of kronecker sequences that are generated by balanced gold sequence as inner and balanced m-sequences as outer. Another combination is balanced m -sequence as inner and balanced gold sequences as outer.

From the numerical result, the outputs are generated from the 9 kroneckers sequences. Due to the limitation of computer unit processing, the computer is Pentium II 450 that
can generate the sequences codes in maximum for $\mathrm{r}=3,4,5$. To calculate the mean power multiple access, the pairs of difference in kronecker sequences are 36 sequences. The stage of LFSR is assigned for 3, 4 and 5 to generate kronecker sequences. The comparing of each stage for combination shows the BER values to evaluate the best combination. The result of BER for kronecker sequences that are constructed from balanced m -sequences as inner and balanced gold sequence as outer is higher than the combination of balanced gold sequence as inner and balanced msequences as outer. When the kronecker sequences have more stages, the BER graph will show the increased gap between the BER values of two combination sequences. The simultaneous users can gain more access to the system when the length of sequence is increased.

Therefore, the kroneckers that are combined from balanced gold sequence as inner and balanced m-sequences as outer should be used for generating the inner and outer sequences.

References

[1] PARHAM M.J. et al.(1992) "Code division multiple-access techniques for use in optical-ffibre local-area networks", Electron \& Commun Engineering Journal, August 1992, pp. 203-212.
[2] O'FARRELL T. and LOCHMANN S. (1994) "Performance analysis of an optical correlator receiver for SIK DS-CDMA communication systems",Elect Lett,1994, Vol. 30, No.1, pp.63-65.
[3] O'FARRELL T. and LOCHMANN S.I (1995) "Switch correlator receiver architecture for optical CDMA networks with bipolar capacity", Elect Lett,1994, Vol.30, No.1, pp.63-65.
[4] Raymond L. Pickhol, Donald L. Schilling and Laurence B. Milstein, "Theory of Spread-Spectrum Communications- A tutorial", IEEE Trans. Commun., Vol. Com30, No.5May 1982.
[5] Andrew Stok and Edward H. Sargent,"lighting the Local Area : Optical Code Division Multiple Access and Quality of Service Provisioning", IEEE Network November/December 2000 pp.42-46.
[6] P.R. Prucnal, M.A. Santoro, and T.R. Fan, "Spread spectrum Fiber-Optic Local Area Network Using Optical Processing", IEEEJ. Lightwave Tech., Vol. LT-4,No. 5, May 1986, pp.547-54.
[7] J.A. Salehi, "Code division Multiple-Access Techniques in Optical Fiber Networks - Part I: Fundamental Principles",IEEE Trans.Commun.,Vol 37, No.8, Aug. 1989, pp.824-33
[8] J.A. Salehi and C.A. Brackkett, "Code division Multiple-Access Techniques in Optical Fiber Networks - Part II: Systems Performance Analysis",IEEE Trans. Commun., Vol 37, No.8, Aug. 1989, pp.834-42.
[9] Leslie A. Rusch and H. Vincent Poor "Effect of Laser Phase Drifte on Coherent Optical CDMA" IEEE J. on Selected Area in Communications, special issue on High Speed Point-to-Point Optical Communications Systems.
[10] Joseph E. Geusic, William B. Bridges "Coherent Optical Sources for Communications" IEEE J. Vol. 58,No.10, October 1970, pp.1419-1439.
[11] Pham Manh Lam, "Study of a Novel Hybrid Optical-Electronic Code Division Multiple Access Local Area Network Based on Kronecker Sequences", Ph.D. Dissertation, Telecommunication Program, Asian Institute of Technology, Thailand, 1998.

Appendix A The generating codes for Kronecker sequences

Example

$\left\{C_{i}(l)\right\}$; balanced m-sequence $\left\{\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right\}$ as inner sequences
$\left\{D_{i}(j)\right\}$; balanced m-sequence $\left\{\begin{array}{llllll}1-1-1 & 1 & -1 & 1 & 1\end{array}\right\}$ as outer sequences
$\left\{A_{i}(m)\right\} ;$ kronecker sequence $=\{$ inner codes * 1, inner codes *-1, inner codes * -1,

```
            inner codes * 1, inner codes * -1, inner codes * 1,
                    inner codes * 1}
```

 \(=\left\{\begin{array}{lllllll}(-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right)^{*} 1,\left(\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right)^{*}-1\),
 \(\left(\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right)^{*}-1,\left(\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right)^{*} 1\),

$\left.\left(\begin{array}{lllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1\end{array}\right) * 1\right\}$
$=\left\{\begin{array}{llllllllllllllllllll}-1 & 1 & -1 & 1 & 1 & 1 & -1,1 & -1 & 1 & -1 & -1 & -1 & 1,1 & -1 & 1 & -1 & -1 & -1 & 1\end{array}\right.$,

$\left.-1 \begin{array}{lllll}1 & -1 & 1 & 1 & -1\end{array}\right\}$

Example of generating kronecker sequence from polynomial
Find m-sequence generated by; Primitive Polynomial $\quad f_{1}(x)=x^{3}+x^{2}+1$
Another polynomial is Reciprocal Polynomial for new m-sequence

$$
\begin{aligned}
f(x) & =x^{3}+x^{2}+1 \\
x^{3} f\left(\frac{1}{\mathrm{x}}\right) & =x^{3}\left[\left(\frac{1}{\mathrm{x}}\right)^{3}+\left(\frac{1}{\mathrm{x}}\right)^{2}+1\right] \\
& =1+x+x^{3}
\end{aligned}
$$

The Reciprocal polynomial is $f_{2}(x)=x^{3}+x+1$

1) Using LFSR to generate $f_{1}(x)=x^{3}+x^{2}+1$ for m_{1}-sequence

m_{1}-sequence is
0101110
2) Using LFSR to generate $f_{2}(x)=x^{3}+x+1$ for m_{2}-sequence

m_{2}-sequence is $\quad 0011101$

Gold Sequence:

We can using two m-sequence m_{1} and m_{2}, we generate gold sequences.

m_{1}	$; 0101110$
$\mathrm{~m}_{2}^{5}$	$; 1001110$
$\mathrm{~g}_{7}=\mathrm{m}_{1}+\mathrm{m}^{5}{ }_{2}$	$=1100000$
$\mathrm{~g}_{8}=\mathrm{m}_{1}$	$=0101110$
$\mathrm{~g}_{9}=\mathrm{m}_{2}$	$=0011101$

Bipolar m-sequence and bipolar Gold sequence

After we finished to generate m-sequence and gold sequence, these codes are unipolar $(0,1)$. For changing to bipolar sequences, we can replace 0 by 1 and 1 by -1 . Firstly, we change 7 chips of m-sequence to bipolar. There is m_{1}-sequence (01011 10) that is changed to bipolar m-sequence $1-11-1-1-11$. Then we change all of gold sequences to bipolar gold sequence.

$$
\begin{aligned}
& \mathrm{g}_{1}=0110011 \longrightarrow 1-1-111-1-1 \\
& \mathrm{~g}_{2}=0010100 \longrightarrow 11-11-111 \\
& \mathrm{~g}_{3}=1011010 \longrightarrow-11-1-11-11 \\
& \mathrm{~g}_{4}=1000111 \longrightarrow-11111-1-1-1 \\
& \mathrm{~g}_{5}=1111101 \xrightarrow[g_{0}]{\mathrm{Q}_{2}}-1-1-1-1-11-1 \\
& \mathrm{~g}_{6}=0001001 \longrightarrow 111-111-1 \\
& \mathrm{~g}_{6}=0001001 \longrightarrow 111-111-1 \\
& \mathrm{~g}_{7}=1100000 \longrightarrow-1-111111 \\
& \mathrm{~g}_{8}=0101110 \longrightarrow 1-11-1-1-11 \\
& \mathrm{~g}_{9}=0011101 \longrightarrow 11-1-1-11-1
\end{aligned}
$$

From a bipolar m-sequence and bipolar gold sequences, we can get balanced m -sequence and balanced gold sequence form replacing " 1 " by $[1,-1]$ and "-1" by $[-1,1]$ such that bipolar m-sequence is $1-11-1-1-1 \quad 1$ is changed to balanced m sequence $\begin{array}{lllllllllllll}-1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 .\end{array}$

Bipolar gold sequence	Balanced gold sequence
$\mathrm{g}_{1}=1-1-111-1-1$	
$\mathrm{g}_{2}=11-11-111$	1 1-1 -1 1 1-1-1 1 1-1 1-1
$\mathrm{g}_{4}=-11111-1-1-1$	
$\left.\mathrm{g}_{5}=-1-1-1-1-11-1\right]$	
$\mathrm{g}_{9}=111-1-1-11-1$	

Kronecker sequence

Inner Sequence $=$ balanced m -sequence
Outer sequence $=$ balanced gold sequence

Balanced gold sequence $\mathrm{g}_{1}=1 \begin{array}{llllllllllllll} & -1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1\end{array}$

$$
\begin{aligned}
& (1-1
\end{aligned}-1
$$

$\left.\left(\begin{array}{llllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \mathrm{x} \quad 1\right]$

```
k
    -1 1 1 - -1-1 1 1 - 1 1 - - 1 1-1 -1 1 1 1-1-1 1 1 1-1-1 1-1 1-1 1 1-1
    -1 1 1 1-1-1 1 1 1-1 1 1-1 1 1-1-1 1 1 1-1-1-1 1 1 1-1 -1 1-1 1 - 1 1 1 1-1
```



```
    -1 1 1 1-1-1 1 1 1-1p1_-1 1 -1-1 1 1 1-1-1 1 1 P-1 -1 1 -1 1 -1 1 1 -1
    -1. 1 1 1-1 -1 1 1 -1 1 -1 1 1-1-1 1 1 1-1 -1 1 1 1 -1 -1 1 1 - 1 1 -1 1 1 1 -1
```

Kronecker Sequence $\mathrm{k}_{2} \quad=\left[\begin{array}{llllllllllllll}(1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$
($\left.\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
($\left.\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times \begin{aligned} & 1\end{aligned}$

$$
\begin{aligned}
& \left(\begin{array}{lllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1
\end{array}-1\right) ~ x-1 \\
& \left.\left(\begin{array}{llllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \quad \mathrm{x} \quad 1\right] \\
& \mathrm{k}_{4} \quad=-1 \begin{array}{lllllllllllllllllllllllll}
& 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1
\end{array} \\
& \begin{array}{cccccccccccccccccccccccccc}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1
\end{array}-1 \begin{array}{l}
1
\end{array} \\
& \begin{array}{lllllllllllllllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1
\end{array} \\
& \begin{array}{llllllllllllllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1
\end{array} \\
& \text {-1 } 1 \\
& \begin{array}{lllllllllllllllllllllllllll}
-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1
\end{array}-1 \\
& -111 \begin{array}{llllllllllllllllllllllll}
-1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kronecker Sequence } \mathrm{k}_{5}=\left[\begin{array}{llllllllllllll}
\left(\begin{array}{lllllll}
1 & -1 & 1 & 1 & -1 & -1 & 1
\end{array}-1\right. & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times-1 \\
& \left(\begin{array}{lllllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times \begin{array}{l}
1
\end{array} \\
& \left(\begin{array}{llllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \mathrm{x}-1 \\
& \left(\begin{array}{lllllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times \mathrm{x} \quad 1 \\
& \left(\begin{array}{llllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times-1 \\
& \left(\begin{array}{lllllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \mathrm{x} \quad 1 \\
& \left(\begin{array}{llllllllll}
(1-P & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1
\end{array}\right) \quad x-1 \\
& \text { (} \left.\begin{array}{lllllllllllllll}
& -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times 1 \\
& \left(\begin{array}{lllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1
\end{array}-1\right) ~ x-1 \\
& \text { (} \left.\begin{array}{llllllllllllllll}
& -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times \begin{array}{ll}
1
\end{array} \\
& \left(\begin{array}{llllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) x \quad 1 \\
& \text { (} \left.\begin{array}{llllllllllllll}
& -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) x-1 \\
& \text { (} \left.\begin{array}{llllllllllllll}
& -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \quad \mathrm{x}-1 \\
& \left.\left(\begin{array}{llllllllllllllll}
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) \times \begin{array}{l}
1
\end{array}\right]
\end{aligned}
$$

```
k
    -1 1 1 1-1 -1 1 1 1-1 1 1-1 1 -1 -1 1 1 1 -1 -1 1 1 1-1-1 1 1-1 1 1-1 1 1 1-1
    -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1-1 -1 1 1 1-1 -1 1 -1 1 -1 1 1 -1
    -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 1-1 -1 1 -1 1 -1 1 1 -1
    -1 1 1 1 -1 -1 1 1 1-1 1 1-1 1 -1 -1 1 1 1-1 -1 1 1 1-1 -1 1 1-1 1 - 1 1 1 1-1
    1-1 -1 1 1 -1 -1 1 -1 1 -1 1 1 1-1 -1 1 1 1-1 -1 1 1 1-1 1 1-1 1 -1 -1 1
    -1 1 1 1-1 -1 1 1 1-1 1 1-1 1 -1 -1 1 1 1-1 -1 1 1 1-1 -1 1 1-1 1 1 - 1 1 1 1-1
```

Kronecker Sequence $\mathrm{k}_{6} \quad=\left[\begin{array}{llllllllllllllll}(1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \mathrm{x} \quad 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times \quad 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1\end{array} \quad 1-1\right) x-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$

($\left.\begin{array}{lllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) \times 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times(1$
($\left.\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left.\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times \begin{array}{l}1\end{array}\right]$

$\left.\begin{array}{lllllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1\end{array} \right\rvert\,$

```
1-1-1 1 1 -1 -1 1 -1 1 -1 1 1 1-1 -1 1 1 1 -1 -1 1 1 1 -1 1 1 -1 1 -1 -1 1
-1 1 1 1 - - -1 1 1 1 -1 1 1-1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 1 -1 1 1 1-1
1-1 -1 1 1 -1 -1 1 -1 1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1-1 1 1-1 1 -1 -1 1
1-1 -1 1 1 -1 -1 1 -1 1 1-1 1 1 1-1 -1 1 1 1-1 -1 1 1 1-1 1 1-1 1 - - -1 1
```


$\begin{array}{lllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1\end{array}-1 \begin{array}{ll}1 & 1\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1\end{array}-111$
 $\begin{array}{llllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1\end{array}-111$ Kronecker Sequence $\mathrm{k}_{8} \quad=\left[\begin{array}{llllllllllllll}(1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$ $\left(\begin{array}{lllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) x-1$ ($\left.\left.\begin{array}{lllllllllllll} & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array} \right\rvert\,-1\right) x-1$ $\left(\begin{array}{lllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) x \quad 1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times \quad 1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$ $\left(\begin{array}{lllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \mathrm{x} \quad 1$ $\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x-1$ $\left(\begin{array}{lllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) \times 1$ $\left(\begin{array}{lllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x \quad 1$ $\left.\left(1-1-11 \frac{1}{1}-1-1 \quad 1-1 \quad 1-1 \quad 1 \quad 1-1\right) x-1\right]$ $\mathrm{k}_{8} \quad=1 \begin{array}{llllllllllllllllllllllllll} & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1\end{array}-111$ $\begin{array}{llllllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}$ $\begin{array}{llllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1\end{array}-1 \begin{aligned} & 1\end{aligned}$ -1 $1 \begin{array}{llllllllllllllllllllllllll} & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1$ $\begin{array}{lllllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1$ $\begin{array}{lllllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1$ $\left.\begin{array}{lllllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1\end{array} \right\rvert\,$

Kronecker Sequence $\mathrm{k}_{9} \quad=\left[\begin{array}{llllllllllllll}(1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \mathrm{x} \quad 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times\left(\begin{array}{l}1\end{array}\right.$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x \quad 1$
($\left.\begin{array}{lllllllllllll} & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) ~ x-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \mathrm{x}-1$
($\left.\begin{array}{llllllllllllll}-1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x-1$
$\left(\begin{array}{lllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1\right) \times 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times \quad 1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times 1$
($\left.\begin{array}{lllllllllllll}-1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left(\begin{array}{llllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) \times-1$
$\left.\left(\begin{array}{llllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}\right) x \quad 1\right]$
$\mathrm{k}_{9} \quad=1-1-1 \begin{array}{llllllllllllllllllllllll} & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1\end{array} 1$ $\begin{array}{llllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1\end{array}-11$ $\begin{array}{llllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 & -1\end{array}$ -1. $1 \begin{array}{lllllllllllllllllllllllll} & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1\end{array}-1$ $\begin{array}{lllllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1\end{array}$ $\left.\begin{array}{lllllllllllllllllllllllllll}1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1\end{array} \right\rvert\,$ $\begin{array}{llllllllllllllllllllllllllll}-1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1\end{array}$

Appendix B The List Name of files that are generated

No.	Balanced gold sequence
1	Bg3 1
2	Bg3 2
3	Bg3 3
4	Bg3 4
5	Bg3 5
6	Bg3_6
7	Bg3 7
8	Bg3 8
9	Bg3 9

Table 13 Filename of Balanced Gold sequences when the stage of LFSR $(r)=3$

14	$\operatorname{Bg} 4 _14$
15	$\operatorname{Bg} 4 _15$
16	$\operatorname{Bg} 4 _16$
17	$\operatorname{Bg} 4 _17$

Table 14 Filename of Balanced Gold sequences when the stage of LFSR $(r)=4$

No.	Balanced gold sequence
1	Bg5 1
2	Bg5 2
3	Bg5 3
4	Bg5 4
5	Bg5 5
6	Bg5 6
7	Bg5 7
8	BROTH ${ }^{\text {Bg5 }} 8$
9	Bg5 9
10	$\text { Bg5 } 10$
11	Bg5 11 CE 196
12	$\operatorname{Bg5} 12 \mathrm{~L}$
13	Bg5 13
14	Bg5 14
15	Bg5 15
16	Bg5_16
17	Bg5 17
18	Bg5_18
19	Bg5 19
20	Bg5 20

21	$\operatorname{Bg} 521$
22	$\operatorname{Bg} 522$
23	$\operatorname{Bg} 523$
24	$\operatorname{Bg} 524$
25	$\operatorname{Bg} 525$
26	$\operatorname{Bg} 526$
27	$\operatorname{Bg} 527$
28	$\operatorname{Bg} 529$
29	$\operatorname{Bg} 530$
30	$\operatorname{Bg5} 31$
31	$\operatorname{Bg5} 32$
32	$\operatorname{Bg} 533$
33	

Table 15 Filename of Balanced Gold sequences when the stage of LFSR $(r)=5$

No.	Aperiodic Auto Correlation Balanced gold sequence
1	${ }^{\text {bROTHE }}$ ABg3_1
2	ABg3 2
3	ABg3-3
4	$2 / 2, \mathrm{ABg}^{2} 4 \mathrm{E} 196$
5	ABg3 5
6	ABg3 6
7	$\mathrm{ABg} 3^{7}$
8	ABg3 8
9	ABg3 9

Table 16 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(r)=3$

Table 17 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(r)=4$

No.	Balanced gold sequence
1	ABg5 1
2	$\mathrm{ABg} 5_{2}$
3	ABg5 3
4	ABg5_4
5	ABg5 5
6	ABg5 6
7	$\mathrm{ABg} 5^{7}$

Table 18 Filename of Aperiodic Auto Correlation of Balanced Gold sequences when the stage of LFSR $(r)=5$

Kronecker sequence $\mathrm{r}=3$			
Balanced gold sequences as inner			
Balanced m-sequences as outer			
No.	Inner	Outer	Kronecker
1	ABg3_1	ABm3	Kgm3 1
2	ABg3 2	ABm3	Kgm3 2
3	ABg3 3	ABm3	Kgm3_3
4	ABg3 4	ABm3	Kgm3 4
5	ABg3 5	ABm3	Kgm3 5
6	ABg3 6	ABm3	Kgm3_6
7	ABg3 7	ABm3	Kgm3 7
8	ABg3 8	ABm3	Kgm3 8
9	ABg3 9	ABm 3	Kgm3 9

Table 19 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(r)=3$

Table 20 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced m-sequence as inner and balanced gold sequenced as outter) when the stage of LFSR $(r)=3$

Kronecker sequence $\mathrm{r}=4$			
Balanced gold sequences as inner			
Balanced m-sequences as outer			
No.	Inner	Outer	Kronecker
1	ABg4_1	ABm4	Kgm4_1
2	ABg4_2	ABm4	Kgm4_2
3	ABg 43	ABm4	Kgm4 3
4	ABg4 4	ABm4	Kgm4 4
5	ABg4 5	ABm4	Kgm4 5.
6	ABg4_6	ABm4	Kgm4 6
7	ABg4 7	ABm4	Kgm4 7
8	$\mathrm{ABg} 4.8^{8}$	ABm4	Kgm4 8
9	$\mathrm{ABg} 4^{9}$	ABm4	Kgm4 9

Table 21 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(\mathrm{r})=4$

Table 22 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced m-sequence as inner and balanced gold sequenced as outter) when the stage of LFSR $(r)=4$

The lenght of kronecker sequence
$=$ The lenght of balanced gold sequences $\left(\mathrm{N}_{1}\right) \mathrm{x}$
The lenght of balanced m-sequences $\left(\mathrm{N}_{2}\right)$

$$
=\left(\mathrm{N}_{1}\right) \times\left(\mathrm{N}_{2}\right)=30 \times 30=900
$$

Table 23 Filename of Aperiodic Auto Correlation of Kronecker sequences
(balanced gold sequence as inner and balanced m-sequenced as outter) when the stage of LFSR $(\mathrm{r})=5$

Kronecker sequence $\mathrm{r}=5$			
Balanced m-sequences as inner			
Balanced gold sequences as outer			
No.	Inner	Outer	Kronecker
1	Abm5	ABg5 1	Kmg5_1
2	Abm5	$\mathrm{ABg} 5^{2}$	Kmg5 2
3	Abm5	ABg5 3	Kmg5_3
4	Abm5	ABg5 4	Kmg5 4
5	Abm5	ABg5 5	Kmg5 5
6	Abm 5	ABg5 6	Kmg5_6
7	Abm5	$\mathrm{ABg} 5^{7}$	Kmg5 7
8	Abm5	ABg5 8	Kmg5 8
9	Abm 5	ABg5 9	Kmg5 9

Table 24 Filename of Aperiodic Auto Correlation of Kronecker sequences (balanced m -sequence as inner and balanced gold sequenced as outter)
when the stage of LFSR $(r)=5$

The lenght of kronecker sequence
$=$ The lenght of balanced gold sequences $\left(\mathrm{N}_{1}\right) \mathrm{x}$
The lenght of balanced m-sequences $\left(N_{2}\right)$

$$
*=\left(N_{1}\right) \times\left(N_{2}\right)=62 \times 62=3,844
$$

SINCE 1969

Appendix C Programme to generate balanced m-sequence

```
%File name = balanced_m_sequence.m
%Generate balanced bipolar m-sequences of length N=2^r - 1,
%For primitive polynomial
```

\%Save the sequences into a file
clear;
pack;
$r=$ input ('Value of r for primitive polynomial : ');\%input the stage to generate msequence
$\mathrm{N}=2^{\wedge} \mathrm{r}-1 ; \%$ lenght of m -sequence

disp ('Sequence length=');

disp (N);\%display value of lenght for m -sequence

\%Generator primitive polynomial

$\mathrm{C}=[] ; \%$ define array to keep coefficient or primitive polynomial
disp ('Input coefficient of primitive polynomial, $\mathrm{C}(1) \mathrm{TO} \mathrm{C}(\mathrm{r})$ ')
for $I=1: r$ \%input the coefficient until r stages
cr=input ('Coefficient $\mathrm{C}(\mathrm{r})={ }^{\prime}$);\%keep value in each coefficient
$\mathrm{C}=[\mathrm{C} \mathrm{cr}] ; \% \mathrm{C}=$ matrix of coefficients $\mathrm{C}(\mathrm{r})$
end
disp (C);\%display the value of coefficient
\%Initial loading of LFSR
disp ('Initial loading of LFSR')
$\mathrm{A}=[] ; \%$ define array for initial loading to LFSR
for $I=1: r \%$ input the initial value until r stages
i1=input ('Initial= ');
$\mathrm{A}=[\mathrm{A} \mathrm{i1}] ; \% \mathrm{~A}=$ matrix of initial state of LFSR
end
disp (A):\%display the initial loading value to LFSR

\%M-SEQ GENERATION

$\mathrm{u}=[] ; \%$ array for unipolar sequences
for $\mathrm{J}=1: \mathrm{N} \%$ the process will finish until N loop or equal lenght of sequence
$\mathrm{Fb}=0$;
out=A(r); \%Output chip
$\mathrm{u}=[\mathrm{u}$ out $] ; \%$ Store the output chip in unipolar sequence
\%Calculate the Linear Feedback Shift Register
for $\mathrm{I}=1: \mathrm{r}-1 \%$ Calculate the value for the first shift on the left in the sequence
$\mathrm{Fb}=\mathrm{Fb}+\mathrm{A}(\mathrm{I}) * \mathrm{C}(\mathrm{r}-\mathrm{I}) ;$
end
$\mathrm{Fb}=\mathrm{Fb}+$ out; \%combine value of each chip in sequence
$\mathrm{Fb}=\bmod (\mathrm{Fb}, 2) ; \quad \%$ Take modulo 2 of Fb to have feedback value
\%Right Shift the content of LFSR 1 position = Right shift matrix A 1 position
for $I=r:-1: 2 \%$ changing position of array from r to 2 loop by 1 step $\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{I}-1)$;
end
$\mathrm{A}(1)=\mathrm{Fb} ; \%$ define first array is equal the output after taking modulo 2 end
disp('Unipolar m-sequence for primitive polynomial'); disp(u);\%display the unipolar m-sequence
\%Change the unipolar to bipolar
$b=[] ; \%$ array for bipolar of m-sequence
for $\mathrm{J}=1: \mathrm{N} \%$ change the value until the lenght of m -sequence $\operatorname{chip}(\mathrm{J})=\mathrm{u}(\mathrm{J})$;
$\%$ chip $=0$ replaced by 1
$\%$ chip $=1$ replaced by -1
if $\operatorname{chip}(J)==0$
$b=\left[\begin{array}{ll}\mathrm{b} & 1] \text {; }\end{array}\right.$
else
$b=[b-1] ;$
end
end
disp ('Display array bipolar m-sequence');
disp (b); \% display bipolar m-sequence
$\%$ change bipolar m-sequence to balanced m-sequence
bal=[];
for $\mathrm{J}=1: \mathrm{N} \%$ replace value until all of chip in the m-sequence

```
\(\operatorname{chip}(\mathrm{J})=\mathrm{b}(\mathrm{J})\);
\(\%\) if chip \(=1\) replaced by \([1,-1]\)
\(\%\) if chip \(=-1\) replaced by \([-1,1]\)
if \(\operatorname{chip}(J)==1\)
    bal=[bal 1-1];
else
    bal=[bal -1 1];
end
```

end
disp ('Display array balance m-sequence');
disp (bal); \% display balanced m-sequence
$\%$ save balance m-sequence into file
fnw=input ('Input the file name for copying the balance m-sequence: ', 's');
fid=fopen(fnw,'wb');
fwrite (fid, bal,'integer*2');
$\%$ read file of balance m-sequence to check value
fnr1=input ('Input the file name for reading the balance m-sequence: ', 's');
fid1=fopen(fnrl);
balance_m=fread (fid1,[1,inf],'integer* ${ }^{2}$);
disp (balance m);\%display balanced m-sequence that is saved into file
$\mathrm{st}=\mathrm{fclose}($ ('all');

Appendix D Programme to generate balanced gold sequence

$\%$ File name $=$ balanced_m_sequence.m
$\%$ Generate balanced bipolar m -sequences of length $\mathrm{N}=2 \wedge \mathrm{r}-1$,
\%For primitive polynomial
\%Save the sequences into a file
clear;
pack;
$r=$ input ('Value of r for primitive polynomial : ');\%input the stage to generate msequence
$\mathrm{N}=2^{\wedge} \mathrm{r}-1 ; \%$ lenght of m -sequence
disp ('Sequence length=');
disp (N);\%display value of lenght for m-sequence
\%Generator primitive polynomial
$\mathrm{C}=[] ; \%$ define array to keep coefficient or primitive polynomial
disp ('Input coefficient of primitive polynomial, $\left.\mathrm{C}(1) \mathrm{TO} \mathrm{C}(\mathrm{r})^{\prime}\right)$
for $\mathrm{I}=1$: r \%input the coefficient until r stages
cr=input ('Coefficient $C(r)={ }^{\prime}$);\%keep value in each coefficient
$\mathrm{C}=[\mathrm{C} \mathrm{cr}] ; \% \mathrm{C}=$ matrix of coefficients $\mathrm{C}(\mathrm{r})$
end
disp (C);\%display the value of coefficient
\%Initial loading of LFSR
disp ('Initial loading of LFSR')
$\mathrm{A}=[] ; \%$ define array for initial loading to LFSR
for $\mathrm{I}=1: \mathrm{r} \%$ input the initial value until r stages
il=input ('Initial= ');
$\mathrm{A}=[\mathrm{A} \mathrm{i1}] ; \% \mathrm{~A}=$ matrix of initial state of LFSR
end
disp (A);\%display the initial loading value to LFSR

\%M-SEQ GENERATION

$u=[] ; \%$ array for unipolar sequences
for $\mathrm{J}=1: \mathrm{N} \%$ the process will finish until N loop or equal lenght of sequence
$\mathrm{Fb}=0$;
out=A(r); \%Output chip
$u=[u$ out $] ; \%$ Store the output chip in unipolar sequence
\%Calculate the Linear Feedback Shift Register
for $\mathrm{I}=1: \mathrm{r}-1 \%$ Calculate the value for the first shift on the left in the sequence $\mathrm{Fb}=\mathrm{Fb}+\mathrm{A}(\mathrm{I}) * \mathrm{C}(\mathrm{r}-\mathrm{I}) ;$
end
$\mathrm{Fb}=\mathrm{Fb}+$ out;\%combine value of each chip in sequence
$\mathrm{Fb}=\bmod (\mathrm{Fb}, 2) ; \quad \%$ Take modulo 2 of Fb to have feedback value
\%Right Shift the content of LFSR 1 position = Right shift matrix A 1 position
for $I=r:-1: 2 \%$ changing position of array from r to 2 loop by 1 step $\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{I}-1)$;
end
$\mathrm{A}(1)=\mathrm{Fb}$; \%define first array is equal the output after taking modulo 2 end
disp('Unipolar m-sequence for primitive polynomial');
$\operatorname{disp}(\mathrm{u}) ; \%$ display the unipolar m -sequence
\%Change the unipolar to bipolar
$b=[] ; \%$ array for bipolar of m-sequence
for $\mathrm{J}=1: \mathrm{N} \%$ change the value until the lenght of m -sequence $\operatorname{chip}(\mathrm{J})=u(\mathrm{~J})$;
$\%$ chip $=0$ replaced by 1
$\%$ chip $=1$ replaced by -1
if $\operatorname{chip}(\mathrm{J})==0$
$\mathrm{b}=[\mathrm{b} 1]$;
else
$\mathrm{b}=[\mathrm{b}-1]$;
end
end
disp ('Display array bipolar m-sequence');
disp (b); \% display bipolar m-sequence
$\%$ change bipolar m-sequence to balanced m-sequence
bal=[];
for $\mathrm{J}=1: \mathrm{N} \%$ replace value until all of chip in the m -sequence

```
\(\operatorname{chip}(\mathrm{J})=\mathrm{b}(\mathrm{J})\);
\%if chip \(=1\) replaced by \([1,-1]\)
\(\%\) if chip \(=-1\) replaced by \([-1,1]\)
if \(\operatorname{chip}(J)==1\)
    bal=[bal 1-1];
else
        bal=[bal -1 1 1 ;
end
```

end
disp ('Display array balance m-sequence'); disp (bal); \% display balanced m-sequence
$\%$ save balance m-sequence into file
fnw=input ('Input the file name for copying the balance m-sequence : ', 's');
fid=fopen(fnw,'wb');
fwrite (fid,bal,'integer*2');
\% read file of balance m-sequence to check value
fnr 1 = input ('Input the file name for reading the balance m-sequence: ', 's');
fidl=fopen(fnr1);
balance_m=fread (fid1,[1,inf], integer*2'); RS/V
disp (balance_m); \%display balanced m-sequence that is saved into file
st=fclose('all');

Appendix E Programme to calculate aperiodic of balanced gold sequence and balanced m-sequence

$\%$ File name $=$ balanced_m_sequence.m
$\%$ Generate balanced bipolar m -sequences of length $\mathrm{N}=2 \wedge \mathrm{r}-1$, $\%$ For primitive polynomial
$\%$ Save the sequences into a file
clear;
pack;
$r=$ input ('Value of r for primitive polynomial : ');\%input the stage to generate msequence
$\mathrm{N}=2^{\wedge} \mathrm{r}-1 ; \%$ lenght of m -sequence
disp ('Sequence length=');
disp (N);\%display value of lenght for m-sequence
\%Generator primitive polynomial
$\mathrm{C}=[] ; \%$ define array to keep coefficient or primitive polynomial
disp ('Input coefficient of primitive polynomial, $\left.\mathrm{C}(1) \mathrm{TO} \mathrm{C}(\mathrm{r})^{\prime}\right)$
for $\mathrm{I}=1$:r \%input the coefficient until r stages
cr=input ('Coefficient $\mathrm{C}(\mathrm{r})=$ ' $) ; \%$ keep value in each coefficient $\mathrm{C}=[\mathrm{C} \mathrm{cr}] ; \% \mathrm{C}=$ matrix of coefficients $\mathrm{C}(\mathrm{r})$
end
disp (C);\%display the value of coefficient
\%Initial loading of LFSR
disp ('Initial loading of LFSR')
$\mathrm{A}=[1 ; \%$ define array for initial loading to LESR
for $I=1: r \%$ input the initial value until r stages
i1 =input ('Initial= ');
$\mathrm{A}=[\mathrm{A} \mathrm{i1}] ; \% \mathrm{~A}=$ matrix of initial state of LFSR
end
disp (A);\%display the initial loading value to LFSR

\%M-SEQ GENERATION

$\mathrm{u}=[] ; \quad \%$ array for unipolar sequences
for $\mathrm{J}=1: \mathrm{N} \%$ the process will finish until N loop or equal lenght of sequence
$\mathrm{Fb}=0$;
out=A(r); \%Output chip
$u=[\mathrm{u}$ out]; \%Store the output chip in unipolar sequence
\%Calculate the Linear Feedback Shift Register
for $\mathrm{l}=1: \mathrm{r}-1 \%$ Calculate the value for the first shift on the left in the sequence
$\mathrm{Fb}=\mathrm{Fb}+\mathrm{A}(\mathrm{I}) * \mathrm{C}(\mathrm{r}-\mathrm{I}) ;$
end
$\mathrm{Fb}=\mathrm{Fb}+$ out;\%combine value of each chip in sequence
$\mathrm{Fb}=\bmod (\mathrm{Fb}, 2) ; \quad \%$ Take modulo 2 of Fb to have feedback value
\%Right Shift the content of LFSR 1 position = Right shift matrix A 1 position
for $I=r:-1: 2 \%$ changing position of array from r to 2 loop by 1 step $\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{I}-1)$;
end
$\mathrm{A}(1)=\mathrm{Fb} ; \%$ define first array is equal the output after taking modulo 2
end
disp('Unipolar m-sequence for primitive polynomial');
disp(u);\%display the unipolar m-sequence
\%Change the unipolar to bipolar

$b=[] ; \%$ array for bipolar of m-sequence
for $\mathrm{J}=1: \mathrm{N} \%$ change the value until the lenght of m -sequence chip $(\mathrm{J})=\mathrm{u}(\mathrm{J})$;
$\%$ chip $=0$ replaced by 1
$\%$ chip $=1$ replaced by -1
if $\operatorname{chip}(\mathrm{J})=0$
$b=\left[\begin{array}{ll}\text { b } & 1] \text {; }\end{array}\right.$
else $b=[b-1]$;
end
end
disp ('Display array bipolar m-sequence');
disp (b); \% display bipolar m-sequence
$\%$ change bipolar m-sequence to balanced m-sequence
bal=[];
for $\mathrm{J}=1: \mathrm{N} \%$ replace value until all of chip in the m -sequence

```
chip(J)=b(J);
%if chip = 1 replaced by [1,-1]
%if chip =-1 replaced by [-1,1]
if chip(J) == 1
        bal=[bal 1-1];
else
        bal=[bal -1 1];
end
```

end
disp ('Display array balance m-sequence');
disp (bal); \% display balanced m-sequence
$\%$ save balance m-sequence into file
fnw=input ('Input the file name for copying the balance m-sequence : ', 's');
fid=fopen(fnw,'wb');
fwrite (fid, bal,'integer*2');
$\%$ read file of balance m-sequence to check value
fnrl=input ('Input the file name for reading the balance m-sequence: ', 's');
fidl $=$ fopen(fnr1);
balance_m=fread (fid1,[1,inf],'integer*2');
disp (balance_m);\%display balanced m-sequence that is saved into file st=fclose('all');

Appendix F Programme to calculate aperiodic of kronecker Sequences

```
% Generate Aperiodic Auto-Correlation for Kronecker sequence
% get length of outter sequence N2
fnrl=input ('File name of Aperiodic Auto-correlation for OUTER balance bipolar m-
sequence : ', 's');
fidl=fopen(fnr1);
outer=fread (fid1,[1,inf],'integer*2');
disp (outer);%diplay aperiodic of balanced sequence that is chose for outer
N2= size (outer,2); %determine number of chips of balance m-sequences
disp('Length of outter sequence (d) N2');
disp (N2);% display lenght of sequence for outer sequence
```

\% get length of inner sequence N 1
fnr2=input ('File name of Aperiodic Auto-correlation for INNER balance bipolar m-
sequence : ', 's');
fid2=fopen(fnr2);
inner=fread (fid2,[1,inf],'integer*2');
disp (inner);
$\mathrm{N} 1=$ size (inner,2); \%determine number of chips of balance m-sequences
disp ('Length of inner sequence (c) N1 =');
disp(N1);\%display lenght of sequence for inner sequence
\% calculate length of $\mathrm{N}($ time shift $)$ Aperiodic auto correlation of Kronecker seq
$\mathrm{N}=\mathrm{N} 1 * \mathrm{~N} 2 ; \%$ fomular to calculate lenght of Kronecker sequence
disp(' Length of all time shift for Kronecker sequence $=$ ');
disp (N);\%dispaly lenght of Kronecker sequence
\% Calculate Aperiodic Auto-correlation for Kronecker seq
\% Example : $\mathrm{t}=11, \mathrm{~N} 1=4$;
$\% \quad$ Take $\mathrm{T} 1=\bmod (\mathrm{t}, \mathrm{N} 1)+1=\bmod (11,4)+1=3+1=4$
$\% \quad$ Take $\mathrm{Tj}=$ floor $(\mathrm{t} / \mathrm{N} 1)+1=$ floor $(11 / 4)+1=2+1=3$
ape_kro=[]; \% keep Aperiodic Auto of Kronecker seq
for $\mathrm{t}=0: \mathrm{N}-1 \%$ Calculate aperiodic auto correlation at each time chip
$\mathrm{Tl}=\bmod (\mathrm{t}, \mathrm{N} 1)+1 ; \%$ modulo N 1
$\mathrm{x} 1=\mathrm{inner}(\mathrm{Tl}) ; \%$ Receive the array for inner
$\mathrm{Tj}=$ floor $(\mathrm{t} / \mathrm{N} 1)+1 ; \%$ result for round toward minus infinity
$\mathrm{x} 2=$ outer $(\mathrm{Tj}) ; \%$ Receive the array for outer

```
    Cd}=\textrm{Tj}+1;%\mathrm{ Define value for camparing each chip
    %Compare the value
    if Cd>N2 %if Cd is longer than the lenght of outer sequence
        x3=0;
    else
        x3=outer(Cd);
    end
```

 \(\mathrm{Cc}=\mathrm{N} 1-\mathrm{Tl}+2 ; \%\) Find the output for comparing with the lenght of inner sequence
 if \(\mathrm{Cc}>\mathrm{N} 1\)
 \(x 4=0\);
 else
 \(x 4=\) inner(Cc);
 end
 \(\mathrm{Ca}=\mathrm{x} 1 * \mathrm{x} 2+\mathrm{x} 3 * \mathrm{x} 4 ; \%\) formular to calculate Aperiodic Auto of Kronecker seq
 ape_kro \(=[\) ape_kro Ca]; \% Keep the value for array of aperiodic kronecker
 sequence
end
disp('Aperiodic Auto-Correlation of kronecker sequence');
disp(ape_kro);\%display value for aperiodic kronecker sequence
$\%$ save the result into file
fnw=input ('Input the file name for copying the Aperiodic Autocorrelation of Kronecker seq: ', 's');
fid=fopen(fnw,'wb');
fwrite (fid,ape_kro,'integer*2');
st=fclose('all');
\% read file to check the value after saving file in the storage
fnrl=input ('Input the file name for reading the Aperiodic Autocorrelation of Kronecker seq: ', 's');
fidl $=$ fopen(fnrl);
aperiodic=fread (fid1,[1,inf],'integer*2');
disp (aperiodic);

Appendix G Programme to calculate aperiodic cross correlation of kronecker sequences

\%File name = cross_sqaure.m
\%Sum of squares of aperiodic cross-correlation of one pair of sequence
\%sum squares Cak,ai at the time shift $\mathrm{mk}=\mathrm{Cak}(\mathrm{mk}) * \mathrm{Cai}(\mathrm{mk})$
$\mathrm{Cak}=[] ; \%$ Array for the aperiodic auto-correlation of kronecker sequences ak at the time shift mk

Cai $=[] ; \%$ Array for the aperiodic auto-correlation of kronecker sequences ai at the time shift mk
\%Read file file from the storage for Cak
fnr1=input ('Input the file name for Cak: ', 's');
fid1=fopen(fnrl);
Cak=fread (fid1,[1,inf],'integer*2');
\%disp (Cak);
\%Read file file from the storage for Cai
fnr2=input ('Input the file name for Cai: ', 's'); fid2 $=$ fopen(fnr2);
Cai=fread (fid2,[1,inf],'integer*2');
\%disp (Cai);
$\% \mathrm{Sq}=[7 ;$
$\mathrm{N}=$ size (Cai,2);\%Define size for Cai
$b=0 ; \%$ set $b=0$ in order to used in summation
$\mathrm{a}=\mathrm{Cak}(1) * \operatorname{Cai}(1)$
\%Calculate square of aperiodic cross-correlation
for $\mathrm{x}=2: \mathrm{N} \%$ summation loop
$\mathrm{c}=\operatorname{Cak}(\mathrm{x})^{*} \operatorname{Cai}(\mathrm{x})$;
$\mathrm{b}=\mathrm{b}+\mathrm{c}$; *
end
sum $=b^{*} 2 \%$ result
\%disp (sum);

$\mathrm{d}=$ sum $+\mathrm{a} \%$ combination value after multiply each chip fprintf('ln');
disp('Square of Cross-Correlation : ');
disp(d);
$\% \mathrm{Sq}=[\mathrm{Sq} \mathrm{d}] ;$
\%disp(Sq);

Appendix H Programme to calculate BER and show graph for output in BER values

\%File Name $=$ ber_m_g_seq.m
$\%=========$ Calculating BER $================\%$
\%Comparing BER of balanced m-sequence and balanced gold sequence
\%There are two line in the graph that show output of BER
\%balanced gold sequence as inner and balanced m-sequence as outer
\%balanced m-sequence as inner and balanced gold sequence as outer
\%This value is shown for stage of LFSR (r) = 3
\%The output for mean power of Multiple Access Interference of kronecker sequence ;
\%Balanced gold sequence as inner
\%Balanced m-sequence as outer
$\mathrm{Nl}=196$; \%sequence lenght = lenght of balanced m -sequence*lenght of balanced gold-sequence

Sum_PMAI1 $=948.425 \%$ Value of sigma square
BER1=[]; \% define Bit Error Rate is array
\%The output for mean power of Multiple Access Interference of kronecker sequence ;
\%Balanced m-sequence as inner
\%Balanced gold sequence as outer
$\mathrm{N} 2=196$; \%sequence lenght $=$ lenght of balanced m -sequence*lenght of balanced gold-sequence

Sum_PMAI2 $=987.608 ; \%$ Vilue of sigma square
BER2=[]; \% define Bit Error Rate is array
for $\mathrm{K}=2: 20$ \%value of simultanous users : $2-20$ users
\% Calculating BER: balanced gold sequence as inner and balanced msequence as outer

Valuel $=(\mathrm{K}-1)^{*}$ Sum_PMAII;
delta1 $=\mathrm{N} 1 /$ sqrt(Value1);
disp (' $\mathrm{K}=$ ')
disp (K)
$\mathrm{B} 1=0.5 * \operatorname{erfc}(\mathrm{delta} 1 / \mathrm{sqrt}(2))$ \%Equation for calculating BER
BER1 $=[$ BER1 B1];
\% Calculating BER : balanced m-sequence as inner and balanced gold sequence as outer

Value2 $=(\mathrm{K}-1)^{*}$ Sum_PMAI2;
delta2 = N2/sqrt(Value2);
disp (' $\mathrm{K}=$ ')
disp (K)
$\mathrm{B} 2=0.5 * \operatorname{erfc}(\mathrm{delta} 2 / \mathrm{sqrt}(2))$ \%Equation for calculating BER

$$
\mathrm{BER} 2=[\mathrm{BER} 2 \mathrm{~B} 2] ;
$$

end
disp('The values of BER : balanced gold sequence is inner,balanced msequence is outer');
\%display the value of BER from
\%balanced gold sequence is inner sequence, balanced m-sequence is outer sequence
disp(BER1);
disp('The values of BER : balanced m-sequence is inner,balanced gold sequence is outer');
\%display the value of BER from
$\%$ balanced m -sequence is inner sequence, balanced gold sequence is outer sequence
disp(BER2);
$\mathrm{K}=2: 1: 20 ; \%$ define $\mathrm{K}=2$ until 20 : increase by 1 for value
\%Graph for BER balanced gold sequence is inner sequence, balanced msequence is outer sequence
\%This graph is red line
semilogy(K,BER1,'r-') \% Plot with y-axis scaled logarithmically (basic)
hold on;
\%Graph for BER balanced gold sequence is inner sequence, balanced msequence is outer sequence
\%This graph is blue line
semilogy(K,BER2,'b-') \% Plot with y-axis scaled logarithmically (basic)
$\operatorname{axis}\left(\left[\begin{array}{llll}2 & 2 & 0 & 1\end{array}\right]\right) ; \% \operatorname{axis}([x \min x \max y m i n ~ y m a x]) ~$
xlabel('Number of simultaneous'), ylabel('BER'); \% define label for x-axis and y-axis
title('Performance of Kronecker codes'); \% define title for graph

