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ABSTRACT 

Reinforcement learning addresses the problem of how autonomous agent 

gathers information and performs action in its environment to achieve its goal. Q 

learning is a kind of reinforcement learning that can acquire optimal control strategies 

form delayed reward. 

This thesis proposes a learning technique based on separating long-term goal 

to small subtasks, using function approximator to generalize the similar state and 

transferring knowledge between agents for reducing the exploration environment of Q 

learning. This technique will be simulated in soccer games. The environment in game 

is 3 dimensions, uncertainty environment and the agent will get only partial 

information from the sensor. 

As a result, by using the technique, the autonomous agent will reduce time to 

explore the environment. However, subtasks were divided and they may or may not 

be the optimal subtasks. 
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1.1 Introduction 

Chapter 1 

Introduction 

A goal of artificial intelligence is a creation teclmique for constructing 

autonomous agent that can perform good performance in the real world [ 1]. 

Reinforcement Learning is a kind of learning technique in artificial intelligence. It has 

been researched in many areas including game theory, control theory and robotics. 

Reinforcement learning is a way of programming agents by reward and punishment 

without need to specify how the task is to be achieved [ 6]. The characteristics of 

reinforcement learning is a learning behavior through trial-and-error interactions with 

a dynamic environment. In regard to reinforcement learning, many systems use the 

delayed rewards teclmique such as Q-learning, to achieve optimal control strategy [8]. 

Unfortunately, delayed rewards have a weak point that is "if the agent cannot reach 

the goal, it cannot learn anything". This thesis focuses on how to build the multi

agent system which works cooperatively and based on Q-learning, to reduce exploring 

steps in the large, dynamic and uncertainty state space by separating long-term goal to 

subtasks and using neural networks as a function approximator. 

1.2 Objective and Scope 

This thesis discusses m issue of multiple goals Q-learning to make the 

autonomous agent, learn from interacting with the environment. By using this 

teclmique, the autonomous agents can easily achieve their sub-goals, which result in 

decreasing steps in training. The proposed teclmique is demonstrated using a soccer 
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game, which is considered as one of difficult problems domain, since each of the 

player has to deal with dynamically changing and uncertain environment. 

The environment in this game will be represented in 3D workspace. With 3D 

workspace, the ball in this game can move in the air, however it cannot go out of the 

soccer field's boundaries. Once the ball hits the field's boundaries, it will bounce back 

into the field. All soccer robots have to learn from their environment and adapt 

themselves in order to achieve their goals. They have to understand all important 

areas in the soccer field. However, there are some constraints on this thesis: 

•!• This is an offline training. 

•!• Goalkeeper will not be trained. 

•!• All autonomous agents will not communicate will each other. 

•!• In regard to detecting of all agents, it can perceive only in partial information. 

•!• The environment is not certain (the same action in the same stage may lead to 

the different result and different reward). 
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Chapter 2 

Theoretical Background 

2.1 Reinforcement Learning 

Reinforcement Learning is the learning of mapping from situations to actions 

and to maximize a scalar reword or reinforcement signal. The learner does not need to 

be told directly to take which actions, but it must discover which actions yield the 

most reward by trying them. All reinforcement learning requires a particular 

combination of search and memory [13]. Search is required to find good actions, and 

memory is required to remember what actions worked well in which situations in the 

past. 

Reinforcement learning is different from supervised learning because the agent 

is not told which is the best action. Instead, after choosing an action, the agent is told 

how well it performed. 

2.2 Model of Reinforcement Learning 

State ... 
Action .. 
Reward 

Agent 
... 

Figure 2-1: The standard model of Reinforcement Learning 
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In the standard reinforcement-learning model, an agent is connected to its 

environment via perception and action, as shown in Figure 3-1. On each step of 

interaction, first the agent receives current state and then it selects action, finally it 

receives reward [ 6]. 

Formally, the model consists of 

•!• A discrete set of environment states S; 

•!• A discrete set of actions A; 

•!• A set of scalar reinforcement signals R; 

The following dialog is an example of relationship between environment and 

the agent. 

Environment: You are in state 10. You have 21 possible actions. 

Agent: I will perform action 4. 

Environment: You have received a reinforcement of 7 units. 

Environment: Now you are in state 50. You have 21 possible action 

Agent: I will perform action 16 

Environment: You have received a reinforcement of 5 units. 

Environment: You are in state 3 and so on. 

aq,Yq ) s 
I 

a1~'i ) ... 

Figure 2-2: Interaction between agent and environment 

The agent's job is to find out a policy 7t for mapping states to actions that 

maximize some long-run measure of reinforcement. The environment can be non-
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deterministic, which takes the same action in the same state and in different situations, 

may receive different result or reward. However, the dealing with the non-

deterministic environment, the agent applies a probabilistic to justify which policy 

should be selected. 

2.3 Q-learning 

The reward function may provide some scalar value for the states where the 

task has been achieved, so the agent must learn how to accomplish its task through the 

reward function. To accomplish the task, the agent gets the reward, called the Q-value 

of executing an action from a given state. The Q-value, Q(s, a) is defined as the 

expected discounted reward of executing action a, from state s, and the flowing the 

policy 7t. A policy is a function that determines which action to execute in any given 

state. 

Q-learning is designed to maximize expected future discounted reward. This 

quantity is called in return, and is defined as 

00 

r(t) =Ir' Rt+i 
i=O 

Rt+i is the. immediate reward received at time t+ 1 and y is a discount factor with 

magnitude between 0 and 1. The Q-learning attempts to learn a policy that gathers the 

highest reward. After learning process, the policy is defined to execute the action with 

the highest Q-value in the current state. 

5 



Initialize the table entry Q(s, a) to zero 

Repeat forever 

{ 

Observe the current state s 

Select action a and execute it 

IF goal is reached 

{ 

Receive immediate reward r 

Observe the new state s' 

Update sequences of episodes of table 

entry Q(s, a) by this formula 

Q(s,a) +-- r + ymaxQ(s' ,a') 
a' 

Figure 2-3: Explanation of Q-learning Algorithm 

According to algorithm shown in Figure 3, the Q table can be initially referred 

to random number or zero. The agent repeats observe current state and perform 

action until it reaches the goal. Then Q-value has to calculate in the current state and 

propagate back to the last sequence of states. In Figure 3 is Q-learning algorithm for 

deterministic environment. If the environment is non-deterministic, the training rule 

Q ( s , a ) +-- r + max Q ( s ' , a ' ) 
a' 

has to modify to [8] 
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1 
a n 

1 + visits n(s,a) 

When the agent has to select the action from its knowledge, it looks at the Q table and 

then chooses the action that has maximized the Q-value. 

In an infinite number of time steps, Q-learning can be shown to converge to an 

optimal policy [15]. Anyway, without exploration, the agent would stay with the first 

solution found; even though there are many ways to improve the way to reach the 

goal (optimal policy). The agent must search for an infinite number of time steps in 

order to provably find the optimal solution. Cleary this is not possible in practical 

applications. It is possible, in the agent that limits its exploration and learning does 

not find an optimal solution. In this case, the agent's sub-optimal solution can be used 

to achieve the goal, but it might lose efficiency. 

Q-leaming is an attractive algorithm, because it requires only little prior 

knowledge of the domain. However, as the agent's task and domain increases, the 

learning time also has a lot of increasing. 

2.4 Issue in reinforcement learning [8, 7] 

•!• Delayed rewards: In reinforcement learning the trainer will provide only a 

sequence of immediate reward values (not explicitly training information to 

the agent) as the agent executes its sequence of action. Therefore, the agent 

faces the problem of temporal credit assignment. Consequently, back 

propagating of the reward values can reduce efficiency of a system for a long

term goal. 

•!• Exploration: In reinforcement learning, after the agent performs a sequence 

of actions and a goal has been reached, it will get the training data only. As a 
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result, the agent faces a tradeoff in choosing whether to favor exploration of 

unknown states and actions (to gather new information), or exploitation of 

states and action that it has already learned in order to maximize its 

cumulative reward. 

•!• Partially observable states: In the real world problem, the agent can get only 

some part of the whole environment, and it has to perform action with partial 

information. It may be necessary for the agent to consider its previous 

observation in contrast with the current observation in order to choose an 

action. While this kind of problem can occur in any type of intelligent system, 

the problem also requires attention when using the reinforcement learning 

technique. 

2.SJAVA 

Java is a kind of programming language that is used to implement the 

proposed technique. Because the concept of platform is independent, it can run any 

I 

platform after finishing compilation only once. Java also supports both stand-alone 

computer (application) and small program that can transfer and run on browser via the 

network (applet). 

Java has all properties of object-oriented paradigm; encapsulation, 

polymorphism, dynamics binding and inheritance. This paradigm is easy for code 

reusable. If there is some addition to the system later, the additional parts can be 

added with very little effect to overall system. 

Java has an exception handling mechanism to deal with the abnormal 

situation. Java has an automatic garbage collector, which runs as a low priority thread. 
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The garbage collector will de-allocate memory automatically not like C++ that the 

programmer has to de-allocate memory by himself. 

2.6 Neural Network 

To train neural network will use standard back propagation to adjust the 

weights, which has the following sigmoid function [ 5] 

f(x)=-
1

-
l+e-x 

f' (x) = f (x)[l - f (x)] 

This sigmoid function has range of (0, 1 ). 

•!• Back propagation Algorithm 

o Create neural network 

o Select learning rate and error that we want to stop training 

o Random all weight in each node. 

Step 1: Feed forward 

n 

Z;n = Wa + LX;~ 
i=l 

Zin = input of sigmoid function 

Z = output of sigmoid function 

W=weight 

X =input 

Step 2: Back-propagation 

For each output node 
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t =target 

y = output from output node for each hidden node 

() = Portion of error correction weight adjustment 

m 

8in = L8kWk 
k=l 

Then for each node 

11Bias = a8 

!iW = a8 X; 

a = Leaming Rate 

Step3: Adjust weight and bias for each node 

Bia~new) = Bia~otd) +Mias 

Repeat Step 1 to Step 3 until stop condition [ 5]. 

Figure 2-4: Explanation ofBackpropagation Algorithm 

Neural networks will stop calculating the weight when absolute mean error is 

less than 0 .15. At this point, the neural network has been created and will be used as a 

thinking engine of the soccer player 

10 
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3814 fL-' 
Chapter 3 

Related Works 

The agent learns from trial and error and delay rewards. When the state space 

is large the agent has to trial many times until reach the goal-state, so if the agent 

cannot reach the goal-state, it will not learn anything or it may perform a lot of poor 

action before it reaches goal-state. 

3.1 Approaches to speed up the Q-learning: In general, there are four approaches to 

enhance Q-learning techniques in multi-agent system. 

Transfer Knowledge: Tan [14] showed some knowledge that has been 

transferred between agents, can reduce training step by providing three kinds 

of share knowledge, which are share sensation, share policies or episodes and 

passive share sensation. All techniques showed that they can reduce number of 

trials compared to no sharing information. 

Applying function approximator: Noda, Matsubara, Hiraki, Frank [9] 

proposed the way to deal with the large state space by using function 

approximator, for instance, neural network and decision tree (C4.5) to 

generate rule for mapping which situations belong to which actions. M. 

Wiering, R. Salustowicz, J. Schmidhuber [ 11, 16] propose Probabilistic 

Incremental Program Evolution (PIPE) by combining Q-learning with linear 

neural network, but they have a problem of good policies that do not stabilize 

but tend to get destroyed by subsequent "unlucky'' experience. 

11 



Decomposition of goal techniques: This technique helps RL to converge 

faster by dividing global goal to sub goal [3, 4, 10]. Dayan and Hinton [2] 

have proposed Feudal RL that divides single task up into subtasks at multiple 

level. Each level has a manager and local goal. The manager sets the goal of 

sub-manager then sub-manager applies Q-learning to find the best way to 

perform task. Kostiadis and Hu [7], introduced immediate goal that is dividing 

global goal (win the game) to local depending on the agent's role. So the agent 

only needs to achieve a local goal such as, a goalkeeper does not need to 

worry about how to score a goal. 

12 



CHAPTER4 

The Proposed Technique 

This thesis proposes the technique t11at combines between transfer knowledge, 

function approximator and decomposition of goals together to minimize lhe learning 

step of Q-learning. 

4.1 Environment 

Soccer game is a good test based for multi-agent system, cooperate and 

artificial intelligence ( 13). This thesis uses Soccer Manager game to simulate the 

proposed technique. The size of the soccer field is scaled from 11 Om x 75m. The 

e1wironment in Soccer Manager game is represented similar to the real world by 

applying physics' Law such as gravity, force, friction, momentum. and projectile 

movement. All soccer robots have to learn from their envfronment and adapt 

themselves. 

Figure 4-1: Soccer Field 
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According to Figure 2, the following numbers explain the soccer field's area 

Zone Number Description 
1, 3, 7, 9 Centering zone 

2,8 Penalty box zone 
2, 4, 8, 10 Long shot zone 
5, 15, 18 Attacking zone 
11, 17, 19 Defensive zone 

12 Left side zone 
13 Center zone 
14. Right side zone 

20,21 Goal zone 

Table 4-1: Soccer field area description 

Each soccer team contains 11 soccer players; each player in the simulator has 

different skills and roles. Each soccer player has individual 23 different skills as 

shown in Table 2: 

Skill Skill Name Description Attribute 
Number Value 

1 Accept Ball Accept ball ability 1-20 
2 Aggressive How hard he plays when he tries 1-20 

to win the ball 
3 Attacking How well he can perform when he 1-20 

plays attack 
4 Balance Body balancing 1-20 
5 Crossing Crossing ball accuracy 1-20 
6 Curve Free kick and shooting ability 1-20 
7 Defensive How well he can perform when he 1-20 

plays defense 
8 Dribble Dribble ability 1-20 
9 Heading Heading accuracy 1-20 
10 Long Shot Long shot Ability 1-20 
11 Marking Man to man defense ability 1-20 
12 Jumping How good he is in the air 1-20 
13 Pace Running speed 1-20 
14 Passing Passing accuracy 1-20 
15 Respond How quick he can react to the 1-20 

current situation (making decision) 
16 Shoot Accuracy Shooting accuracy 1-20 
17 Shoot Power Shooting power 1-20 

14 



18 Sliding Sliding ability 1-20 
19 Strength Body strength (Pushing ability) 1-20 
20 Tackle Tackle ability 1-20 
21 Technique Technique 1-20 
22 Flair Vision of the player 1-20 
23 Consistence Consistency of the player 1-20 

Table 4-2: Soccer player's skills 

The roles of each player depends on player position. The position can be 

classified into four types, which are: 

•!• Attacker 

•!• Midfielder 

•!• Defender 

•!• Goalkeeper 

The soccer player has to select the action to perform from five types of 

actions, which are passing, shooting, moving, intercepting and combination actions. 

Table 2 shows the list of player's action ID. 

Action ID Action Type Description With ball 
1 Defensive Move Turn to ball No 
2 Defensive Move Blocking shoot No 
3 Defensive Move Play zone defense No 
4 Defensive Move Play man to man defense No 
5 Defensive Move Marking opponent player No 
6 Defensive Move Play defense type 1 No 
7 Defensive Move Play defense type 2 No 
8 Defensive Move Play defense type 3 No 
9 Attacking Move Chase ball Yes/No 
10 Attacking Move Finding space (Overlap run) Yes/No 
11 Attacking Move Play attack type 1 Yes/No 
12 Attacking Move Play attack type 2 Yes/No 
13 Attacking Move Play attack type 3 Yes/No 
14 Attacking Move Dribble Yes 
15 Passing Long pass Yes 
16 Passing Short pass Yes 

15 



17 Passini! Throuah oass Yes 
18 Passini! Centerinl!. Yes 
19 Passini! Rea dine Yes/No 
20 Shootine Nom1al shoot Yes 
21 Shooting Lone shoot Yes 
22 Shoo tin!! Looo shoot Yes 
23 Shooting Vollev shoot Yes/No 
24 Shooting Headin11: Yes/No 
25 Shooting Over bead kick Yes/No 
26 Interception Tackle No 
27 Interceotion Slidin11: No 
28 Combination Tuminsz Yes/No 

Table 4-3: Soccer player's action ID 

Each soccer player has his own sensor to gather the picrure of the environment 

such as soccer field, teammates' position. opponents' position, ball ' s position, and 

this sensor can get only a partial of lbe enviromnenl. Soccer player has own thinking 

engine to make decision, then select the action from Table3 to reacr to the change of 

the enviroumenl. 

Figure 4-2: The screen shot of Soccer Manager game 

16 



4.2 Training Process 

In training process, first the agent in the same team must share the global goal, 

which wins the game. Then, decomposes global goal to local goal based on the role of 

each player. The example of the local goal is, the forward tries to score and the 

midfielder tries to pass the ball to the forward when their team has the ball and the 

defender tries to clear the ball. 

Next, let the soccer player play with another team for collecting the training 

data. The soccer player gets training data by using Q-leaming. A training data records 

the states and situation of soccer player at the moment when he gets reward. A 

training data composes of the following attributes: 

•!• Input Nodes: The attributes that describe the state and situation of the soccer 

player including positions, teammates, and opponent status. 

•!• Action ID: The ID of action that soccer player chooses to perform 

•!• Frequency: The number of duplicate training data ID. 

•!• Average Reward: The average score is used for justify that result of each 

action 

---Training Data ID~--•1-1Evaluatlon Values--

Input Nodes 
(35 Nodes) 

Action ID Frequency Average 
Reward 

Figure 4-3: A data collected from reinforcement learning 

After time out, the agents share their own knowledge with each other. The 

policy in shearing information the agent can share with the agent that has the same 

role. 

Finally, soccer player uses his knowledge to construct training set and trains 

neural networks. Before training neural network, soccer player has to build the 

17 



training set by filtering all the training data that was collected by using Q-learning. 

Table 4-4 shows the meaning of input node. 

Node Type Description of each soccer player's input data 
1 Team Teaml has ball? 
2 Team Team2 has ball? 
3 Player I have ball? 
4 Player Close to ball? 
5 Player Is ball around? 
6 Player Is there any obstruction? 
7 Ball Ball in sensor 1? 
8 Ball Ball in sensor 2? 
9 Ball Ball in sensor 3? 
10 Player Opponent in sensorl? 
11 Player Opponent in sensor2? 
12 Player Opponent in sensor3? 
13 Field I'm in teaml penalty area? 
14 Field I'm in team2 penalty area? 
15 Field I'm in teaml long-shoot area? 
16 Field I'm in team2 long-shoot area? 
17 Field I'm in left/right wing area? 
18 Field I'm in centering area? 
19 Field I'm In center area? 
20 Field I'm in defensive area? 
21 Field I'm in midfield area? 
22 Field I'm in attacking area? 
23 Ball Is ball in defensive area? 
24 Ball Is ball in midfield area? 
25 Ball Is ball in attacking area? 
26 Player Can pass? 
27 Player Through pass? 
28 Player Can shoot? 
29 Player Is in shooting range? 
30 Player Clear for shoot? 
31 Team My teammate in opponent area? 
32 Player I'm a goalkeeper? 
33 Player I'm a defender? 
34 Player I'm a midfield? 
35 Player I'm an attacker? 

Table 4-4: Input Node 

To construct the training set, the training data that has highest average reward 

will be selected. This is the filter process: 

1. Merge all training data for the player that has the same role. 

18 
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2. Sort all training data 

3. Search for all training data that have duplicate, then merge them 

4. Select all training data that have unique value in input nodes field. In the 

case where there are many training data that have the same value in input 

node field, then select the training data that has highest average reward. If 

there are still in the same values in input nodes, and average reward, then 

select the training data that has highest frequency 

35 Input Nodes 

35 Input Nodes 

35 Input Nodes 

• • • 

Action ID 

Action ID 

Action ID 

Figure 4-4: A training data 

5. Building the training set from all training data that have been selected in step3 

Start 

Filter Data In 
Knowledge Base 

Create Training 
Set 

Train Neural 
Network 

Store The 
Neural 

Networks's 
Weight 

End 

Figure 4-5: Training neural network process 
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After that soccer player use that training set as input to train neural networks, 

then calculate the neural networks' weights and use this weight to choose action. 

20 



CHAPTERS 

Experiment and Evaluation 

This thesis uses soccer game to evaluate the learning algorithm. In learning 

process, first the agent in team has no knowledge. They choose every action at 

random. After that, if the agent can reach the goal state, it will receive a reward and 

then collect the state, action and reward in memory as knowledge. 

5.1 Rewarding Mechanism 

This subsection explains how award is given to each action occurred in the 

game. The reward signal is ranged in 0 to 100. The reward is just a scalar number and 

it can change to other reward such as ranged in 0 to 1000 or -1000 to 100. The effect 

in changing range of reward is the response time of the learning system. For example, 

the agent performs bad action, it will get the punishment of -1000, this action may be 

a good action in normal situation. So that, next time when the agent wants to select 

action in this state, perhaps it chooses another action (which may not be the best 

action). The strong punishment reduces the average reward for this action. If the 

punishment is too strong, the agent has to explore the state more for choosing that 

action again. Because the environment is uncertainty, the reward is collected in 

average reward. Therefore, this thesis selects to use the range of reward from 0 to 100. 

The goal state is set by depending on the player's role. The following describes 

algorithm used for assigning rewards. 

If team wins, then the agent will receive a reward 

of 100 { 

If team has ball and the agent is a forward 

21 



} 

If 

midfielder { 

} 

If the agent scores ,then the agent will 

receive a reward of 100. 

If the agent can get the ball into the 

penalty area of opponent, then the agent 

will receive a reward of 90. 

If the agent passes the ball successfully, 

then the agent will 

80. 

receive a reward of 

If the agent scores own goal or lose the 

ball, then the agent will 

reward of 0. 

receive a 

team has ball and the agent is a 

If the agent scores ,then the agent will 

receive a reward of 100 

If the agent can get the ball into the 

penalty area of opponent, then the agent 

will receive a reward of 80 

If the agent passes the ball successfully, 

then the agent will 

90. 

receive a reward of 

If the agent scores own goal or lose the 

ball, then the agent will 

reward of 0. 

22 
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defender 

If team has ball and the agent is a 

If the agent scores ,then the agent will 

receive a reward of 90 

If the agent passes the ball successfully, 

then the agent will 

90. 

receive a reward of 

If the agent scores own goal or lose the 

ball, then the agent will 

reward of 0. 

receive a 

If team does not have ball and the agent is 

a forward { 

If the agent can get the ball , then the 

agent will receive a reward of 100. 

If the agent goes into the right zone, 

then the agent will receive a reward of 

90. 

If team does not have ball and the agent is 

a midfielder 

If the agent can get the bal 1, then the 

agent will receive a reward of 100. 

If the agent goes into the right zone, 

then the agent will receive a reward of 

90. 

23 



} 

If team does not have ball and the agenc is 

a de.fender { 

If the agent can get the ball, then the 

agent will receive a reward of 100 . 

If the agent goes into the r ight zone, 

then the agent will receive a reward of 

90. 

} 

Figure 5-1: Assignir.g rewards algorithm 

5.2 Trnnsferring Knowledge Mechanism 

TransfeJTing Knowledge means the using knowledge of the other agent 

experience. The transferring of this thesis is the transferring between the agents who 

have the same role. For example, the group of midfielder will transfer lmowledge 

among them which occurs after the game. 

----~T--ran.,....,..s.,,.fening each other after gam~e~~,,......,,..,,.........,,_ 

P---'\. Agent's 
~ experience 

q c:> ..... ~ 

Figure 5-2: Transfer knowledge between agent 
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5.3 Training a neural network 

This thesis uses the neural network as a tool for selecting action, it does not 

concern the way to optimize the neural network. 

The knowledge from reinforcement learning is the training set of neural 

network. The knowledge is filtered to the training data of neural network. Finally, the 

training data is used for training neural network. 

Each agent uses neural network as a thinking engine to map which situation 

belongs to which action. In training neural network, this thesis uses standard back-

propagation algorithm, which composes of 35 input nodes, 35 hidden nodes and 28 

output nodes. The meaning of input and output node is shown in figure 4-3 and 4-4. 

28 Output Nodes 
(Actionld) 

35 Hidden Nodes 

35 Input Nodes 
(Sensors) 

Figure 5-3: Training neural network process 

The training set of neural network is the data that is learnt from Reinforcement 

learning. Table 4-4 describes the definition of each input node. 

To estimate the performance of learning technique in this thesis, the proposed 

technique is used in the implementation to compare with: decomposition of goals 
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technique and transfer knowledge technique. The three approaches are compared with 

rule-based system. Note that, all rules are used by the rule-based team which are 

constructed using domain experts, and the system is not adaptable. 

50 

~ 30 
0.0 

gf 20 :s 
~ 10 

0 

11-20 21-30 31-40 41-50 

Number of training step (match) 

-+-Proposed 
Technique 

-II- Decomposition 
Technique 

Transfer knowledge 

Figure 5-4: Training neural network process 

From figure 5-1 the graph of proposed technique shows that the proposed 

technique can learn to win the rule-based system faster than other two systems. Each 

ten matches the agent are trained and the result are collected from playing 100 

matches. 

The next figure shows, the number of the training data, which the agent gets 

from apply Q-learning. The result shows that when the agent uses the proposed 

technique, it can reach more goals and know more states than the other 2 techniques. 
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Figure 5-5: The number of the knowledge which the agent derives from Q-learning 

When the agent has more knowledge, it means in the same period of time the 

agent can learn much more than other two approaches. 

Note that, after the neural network is trained by the set of input which is 

generated from reinforcement learning. After the weight was set, the agent will select 

action by feeding input to the neural network. Characteristics in making decision of 

neural network is a black box, you know what is the result of neural network's 

decision but no one knows why neural network made decision like that. The result of 

making decision of neural network is based on the training set but differs from C4.5 

which generates rules explicitly so everyone knows why it made decision like that. 
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CHAPTER6 

Drawback and Future Research 

There are some drawbacks in this proposed technique. 

•!• Normally, one special characteristics ofreinforcement learning is online 

training, that means the agent learns from interacting with the environment 

immediately. But when neural network was applied to the system, the agent 

cannot learn and perform action in real-time. 

•!• In decomposing process, the domain expert is required to set the sub-goal to 

reduce the sequence of blind search. This technique cannot guarantee sub-goal 

that was divided is the sub-optimal goal or not. 

•!• Time consumed in training neural network, if the system has more training 

data, the training time will also increase. 

•!• The system can react to the change of the environment slower than the pure 

reinforcement learning. The major adaptation of this framework is the training 

process of neural network. 
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The experiment in this thesis based on the situation of the agent, has to learn 

from large and uncertain state space. This thesis proposes in the framework to reduce 

the searching step. The proposed framework can be further researched on changing 

function approximator, applying other decomposition techniques or using other 

transfer knowledge techniques to yield the minimum searching steps. 
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CHAPTER 7 

Conclusion 

Reinforcement Learning is a kind of machine learning, which learns from 

interaction between agent and environment. When the agent reaches the goal state, the 

agent will get the reward back to each sequence of actions. Q-learning is a kind of 

reinforcement learning which can guarantee the optimal solution. Reinforcement 

learning can learn in real-time by using searching and memory management 

techniques. 

To cooperate between multi-agent systems, the agent in the same team must 

share global goal, which is win the game [12]. In the real-world problem, state space 

is very large and some problems need to be solved in real-time. This is the major 

problem in reinforcement learning. Suppose the agent has to search into large state 

space, 

The first problem, the agent must use a large memory to store the last 

sequence of action (which action is good or bad). Next problem, sometimes in the 

agent's lifetime, he has never reached the goal state, especially when the goal is a 

long-term goal, that means the agent cannot learn anything. Another problem is 

indexing problem, when the data is huge, they must use special data-structure or 

special technique, if the agent has to perform action in real time. 

This thesis proposes in a framework to deal with the problem above by 

combining three approaches which are transferring knowledge, applying function 

approximator and decomposition of goal techniques. The Transfer knowledge is used 

to reduce the repeat search. Neural network is used in another reason, which reduces 
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the searching time when the agent makes decision. Because, after the neural network 

was trained, the neutral' s weight is set. Then, when the agent feeds input to the neural 

network, the time that is consumed in processing is 0(1). Decomposition technique is 

used to split long-term goal into intermediate goal for helping the agent to reach the 

goal more frequently. 
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