


£Gabriel's Library, Au 

~!raightf orward Method for 
Co~mputer System with Variable 

Concurrent Programs 

by 

Mr. Pipat Liutanakul 
/ 

Submitted in Partial Fulfillment of the 
Requirements for Degree of 

Master of Science 
in Telecommunication Science 

Assumption University 

May,2003 



The Faculty of Science and Technology 

Master Thesis Approval 

Thesis Title Straightforward Method for Computer System with Variable 
Concurrent Programs 

By Mr. Pipat Liutanak:ul 
Thesis Advisor 
Academic Year 

Asst. Prof. Dr. Chanintom Jittawiriyanukoon 
3/2002 

The Department of Telecommunications Science, Faculty of Science and Technology of 
Assumption University has approved this final report of the twelve credits course. 
TS7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree 
of Master of Science in Telecommunications Science. 

Approval Committee: 

(Asst.Prof.Dr. Chanintom J. Nukoon) 
Advisor 

irapun Daengdej) 
Committee Member 

Faculty Approval: 

(Asst.Prof.Dr obri Batovski ) 
Pro am Director 

( Asst.Pro~bri Batovski) 
Committee Member 

(Asst.Prof.Dr. Surapong Auwatanamongkol) 
Representative of Ministry of 

University Affairs 

May I 2003 

Supavadee Nontakao) 
Dean 



ACKNOWLEDGEMENTS 

I would like express my most sincere appreciation and thanks to Asst.Prof.Dr. 

Chanintom J. Nukoon, my master thesis advisor, for the valuable comments, 

encouragements, and suggestions during the development and writing of this thesis. 

I would like to extend my gratitude to Asst.Prof.Dr. Pratit Santiprabhob who had 

given me a big chance to study for a Master's Degree in this field, MSTS. I also thank 

Dr. Jirapun Daengdej and Asst.Prof.Dr. Thotsapon Sortrakul who recommended 

solutions to any problems and cheer me up. 

I am also grateful to Ms. Phikul Laemsuwanchuen, and Mr. Keattisak Chatusen for 

the support and help. Another person is, Ms. Pattra Sarai who has supported me in 

every way that she can. 

Furthermore, I would like to give many thanks to Ms. Aschara Sukitjanont and Ms. 

Noppacha Tuansa-ard for spending their time to check, reorganize, and correct my 

thesis report and presentation. I am also grateful to Mr. Prateep Kurasakulwong, Ms. 

Sudapom Ouppapansettee, Ms. Kuntalin Khositseth who gave me a lot of suggestions. 

Their cheerful and friendly nature encouraged me a lot. 

There are many other friends, in my working office, who gave me valuable help 

especially, Mr. Teerawat Chaiyakijpichet, who gave me many suggestions and helped 

me to quickly understand the fundamentals and complexities of programming in C 

language. 



Most specially, I would like to thank my family for their encouragement, for giving 

me support in doing everything during my MSTS study period. 

11 

Mr. Pipat Liutanakul 

21May2003 



ABSTRACT 

Several methods have been proposed for evaluating the performance of parallel 

processing system with a set of concurrent programs such as the decomposition 

approximation method, which is applicable only to fixed concurrent programs. 

Another method, the average concurrency method, determines the average of the 

overall concurrency. The average concurrency method can be executed on a system 

with a small memory capacity, and can be executed higher speed. The average 

concurrency method does not suit the different of contents each vector. It is suitable 

for a case where is the variance of concurrent levels does not deviate much from the 

average concurrent level. 

This thesis emphasizes on solving some problems in Multiple Level Concurrent 

Program (MLCP). There is a main contribution resultant from this thesis: 

• Proposing an effective method for calculating MLCP 

The proposed method allows the result of calculation to be close to the simulation 

result. 

The proposed method has two main advantages. First is to provide more accurate 

result when compiling the calculation with MLCP. Second is this method can be 

applied to all concurrent programs. However, it should be noted that the main 

disadvantages of this method are it takes more time to calculate, and it needs more 

CPU power. 

iii 



SLGabriel's Library, An 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

LIST OF FIGURES 

LIST OF TABLES 

LIST OF EQUATIONS 

CHAPTER 

CHAPTER 1 INTRODUCTION 

1.1 Research Issues Related to Parallel Processing System 

1.2 Objective of the Thesis 

1.3 Scope of Work 

1.4 Solution to the Problems 

1.5 Principal Contribution 

1.6 Abbreviations 

CHAPTER2 Existing Performance Analysis Method 

2.1 Introduction 

2.2 Analytic Model for Parallel Processing 

2.3 Concurrent Programs 

2.3.l Different Concurrent Programs 

2.3.2 Cycle-dependent Concurrent Programs 

2.3.3 Variable Concurrent Programs 

2.4 Existing Performance Evaluation Method 

2.4.1 Decomposition Approximation Method 

2.4.2 Average Concurrency Method 

lV 

Ill 

- Vl 

Vll 

Vlll 

2 

3 

3 

5 

6 

6 

6 

8 

8 

9 

11 

12 

12 

12 



2.4.2.1 Average Concurrent Level 13 

2.4.2.2 Decomposition Approximation 14 

2.4.2.3 Characteristic Parameters Calculation 14 

2.4.3 Simulation Method 17 

2.5 Restriction of Existing Method 18 

CHAPTER 3 Proposed Method for Multiple Level Concurrent Programs 19 

(MLCP) 

3 .1 Introduction 

3 .2 Proposed Method (Straightforward Method) 

3.3 Analytical Model for Evaluation 

3.4 Proposed Method's Algorithm 

CHAPTER 4 Evaluation and Validation of the Proposed Method 

4.1 Introduction 

4.2 Input Parameters 

4.3 Reference Method for Comparison 

4.4 Consideration for Evaluation Results 

CHAPTER 5 Conclusion 

5.1 Introduction 

5.2 Future Research 

BIBLIOGRAPHY 

APPENDIX A Source Code 

APPENDIX B Result File 

Part I 

Part II 

v 

19 

19 

21 

23 

26 

26 

26 

27 

34 

36 

36 

38 

39 

42 

86 

86 

91 



LIST OF FIGURES 

FIGURE 2-1 Analytic Model for Parallel Processing 7 

FIGURE 2-2 State of Executing DCP 9 

FIGURE 2-3 State of Executing CCP 10 

FIGURE 2-4 State of Executing VCP 11 

FIGURE 2-5 Algorithm of Average Concurrency Method 17 

FIGURE 3-1 Closed Queuing Network 21 

FIGURE 3-2 · Algorithm of Straightforward Method 24 

Vl 



LIST OF TABLES 

TABLE3-l Branching Probability 22 

TABLE 4-1 Comparison of Results Against Simulation (CCP CASE 1) 27 

TABLE 4-2 Comparison of Results Against Simulation (CCP CASE 2) 28 

TABLE 4-3 Comparison of Results Against Simulation (VCP CASE 1) 29 

TABLE4-4 Comparison of Results Against Simulation (VCP CASE 2) 30 

TABLE 4-5 Average Concurrency Method versus Proposed Method 31 

(Case 1) 

TABLE 4-6 Average Concurrency Method versus Proposed Method 33 

(Case 2) 

TABLE 4-7 Comparison of State Number and Computation Cost 34 

Bound Against Average Concurrency Method 

TABLE 4-8 Comparison of Exact State Number Against Average 35 

Concurrency Method 

Vil 



LIST OF EQUATIONS 

EQUATION 2-1 Concurrency Vector 8 

EQUATION 2-2 Average Concurrent Level 14 

EQUATION 2-3 Decomposition Approximation 14 

EQUATION 2-4 Calculation of Characteristic Parameters for C 15 

EQUATION 2-5 Algorithm of Average Concurrency Method 17 

EQUATION 3-1 All Combinations (Z) of DCP 20 

Vlll 



CHAPTER! 

Introduction 

The hardware and software are the components which can characterize many 

important aspects of computer systems. The computer systems trend focuses more and 

more on computational speed so the most satisfying alternative is parallel processing. 

Many programs complete for a limited number of computer resources. A group of 

programs will compete for and access ~he hardware resources (such as CPU, RAM, 

Buses, 1/0). Therefore, computer hardware resources could not be shared sufficiently 

when many programs are running simultaneously. So, the notion of parallel and 

distributed processing is gaining increased importance. The parallel and distributed 

processing system is one of the latest in advanced computer technology. 

1.1 Research Issues Related to Parallel Processing System 

In the present computer technology, the program or software size is very large and 

consumes a lot of computer hardware resources such as CPU power, 1/0 access time, 

main memory, buses, and so on. To solve this problem, queuing network method is 

used. Although the queuing method is used, it will be inevitable to diminish this 

status. Delay in the queuing system resources service still occurs in the case of 

predicting the real system's characteristics, such as resource utilizations, queue 

lengths and throughputs, a representative model was proposed to show the network of 

interconnected queues. 

1.2 Objective of the Thesis 

An important factor that must be emphasized in design, development, 

implementation, and tuning system, is performance measurement. During the entire 



life cycle of a computer system [2], quantitative evaluation of computer performance 

is required. The queuing network model is an analytical model so the characteristics 

(utilizations, queue lengths, throughputs) may be found mathematically. The most 

suitable cost-effective tool for examining the computational speed of computer 

systems is the queuing network. This is an important methodology in computer 

performance modeling. The direction on queuing theory is influenced and driven by 

this application [10], [20], [21]. To investigate this technique compile to parallelism, 

the program needs to be partitioned into small independent programs, so a piece of the 

program will be executed on one or more CPUs. 

1.3 Scope of Work 

This document will concentrate both on the result of applying the method and the 

method itself as well. The scope of this document involves many terms of parallel 

processing with concurrent programs. Many publication papers that focus on this 

topic have released [1], [6], [7], 8], [9]. These publication papers [1], [10], [11], [12] 

introduced an approximation technique for multiprogramming computer system. 

Many techniques will show and evaluate the characteristics of network. For instance, 

decomposition approximation technique [13] proposed, could evaluate the 

characteristics of a network based upon the mean value analysis (MV A) algorithm 

[14]. This method is widely used but there is a limitation to the method. It can only 

evaluate the unchangeable concurrent level. Another technique, the average 

concurrency technique was proposed to solve the limitation of decomposition 

approximation technique but it still has a disadvantage that is the higher percentage of 

errors. 

2 



This document will also explain and show the main three types of concurrent 

program: Different Concurrent Programs (DCP), Cycle-dependent Concurrent 

Programs (CCP), and Variable Concurrent Programs (VCP). In the next chapter, it 

will discuss the existing methods and the restriction of the methods. 

1.4 Solution to the Problems 

Chapter 3 provides another solution for evaluation computer performance, the 

straightforward method. It also discusses the advantage and disadvantage of the 

straightforw_ard method. The advantage is that if this thesis topic is proved, the result 

should be much more precise as it is the direct method to calculate computer 

performance with VCP concurrent level. It should also support evaluation computer 

performance with DCP and CCP concurrent level. The disadvantage will be the 

calculation time. It may be a little bit slower compared to the average concurrency 

method. This is due to state space number incretion and number of iteration. The 

computation is much longer, extending the method with changeable concurrent 

programs. C programming language is chosen for the implementation of the algorithm 

and computation of the characteristics of network (Mean Queue Length [MQL], 

Utilization, and Throughput) for the proposed method. 

1.5 Principal Contribution 

The contribution of this document is: 

• To present program types which have nonproductive-form solution [2]. 

• To propose a more precise computational algorithm for evaluating the 

characteristics of the network with changeable concurrent programs. 

3 



• To obtain the performance measurement of a multiprocessing system with 

changeable concurrent programs by exposing the proposed method as an 

application tool. 

In Chapter 4 this document will prove and validate the proposed method 

(straightforward method) by comparing the results obtained by the proposed method 

with the results both obtained by the average concurrency method and the simulation 

method. Comparing the number of accurate percentages to the methods will show the 

advantage of the proposed method. Conclusion will be presented in Chapter 5. 

4 



1.6 Abbreviations 

CPU 

110 

FCP 

DCP 

CCP 

VCP 

MLCP 

Central Processing Unit 

Input/Output 

Fixed Concurrent Programs 

Different Concurrent Programs 

Cycle-Dependent Concurrent Programs 

Variable Concurrent Programs 

Multiple Level Concurrent Programs 

5 



CHAPTER2 

Existing Performance Analysis Method 

2.1 Introduction 

The tools for performance prediction that are needed to support parallel and 

distributed processing system are cost-effective tools. For instance, one of the cost­

effective tools for performance analysis of computer systems is an analytic queuing 

network model. At present, there are m_any analytic queuing network models, which 

can predict the performance of different computer components such as CPU power, 

I/O, Buses and so on. Before measuring the parallelism and minimizing the overhead 

of synchronization among the tasks, each task needs to be divided into a limited large 

number of independent tasks [ 1]. In order to get the number, first, assume each task 

requires multiple accesses to many different computer components before it 

communicates with the others. The performance measurement of parallel processing 

systems for concurrent program has been studied more and more in recent years. 

Heidelberger et al [14] proposed a method for evaluation parallel processing system 

for a fixed concurrent program, the decomposition approximation, which is based on 

the mean value analysis algorithm [13]. Comparing the results to simulation results 

proves the approximation to be accurate. However, this method is applicable only to 

fixed concurrent programs. 

2.2. Analytic Model/or Parallel Processing 

This section will provide an overview model as well as some assumptions for 

analysis. First, assume that the program group is composed of N completely 

independent programs. Each is called primary task. The analytic system model is 

shown in Figure 2-1 [2]. 

6 



Figure 2-1-Analytic Model/or Parallel Processing 

According to Figure 2-1, .the model is composed of several servers (such as CPU and 

I/O devices) and pseudo-server. The primary task enters into the pseudo-server 

regardless of the service time. Then the primary task is divided into several secondary 

tasks, called "sibling". In the network, those divided secondary tasks will be executed. 

Assume that there is independent data among the tasks, except for the effect of the 

queue before entering into the server. Assume the server is visited by several tasks 

forming Markov Chain. When the task is completely executed by the server, it will be 

sent to the buffer, which is located in front of the pseudo-server. If another secondary 

task is not completely executed, the other tasks will wait in the buffer until the end of 

execution is reached. All tasks are ready in the buffer after all the secondary tasks are 

completely executed. Then they are combined into a primary task, and flow into the 

pseudo-server again. The synchronization of the secondary tasks are achieved by the 

above process, and the process will be repeated in the proposed system. The counting 

of the cycle of the process starts from the time when a primary task enters a pseudo­

server to the time when it returns to the pseudo-server. When a program (with 

identifier i) is divided in a pseudo-server into X; tasks, it is defined that the tasks have 

7 



concurrency X;. In general, X; changes with each cycle. The concurrency vector for 

each cycle will be shown as Equation 2-1 [ 1]. 

Equation 2-1- Concurrency Vector 

2.3 Concurrent Programs 

The features of the programs with varying concurrency (DCP, CCP and VCP) will be 

described in this section. 

Programs in which the concurrency level in each program differs (DCP) 

Programs in which the concurrency level changes cyclically (CCP) 

Programs with both characteristics ofDCP and CCP (VCP) 

The decomposition approximation method can only analyze DCP concurrency level. 

However, this method is not suitable for computation when the number of state spaces 

increases rapidly with the increasing number of programs. In addition, this traditional 

method cannot handle the CCP and VCP concurrency level. 

The method, which can handle CCP and VCP is "average concurrency methocf'. This 

method will reduce the time for computation, number of state spaces, and computer 

resources usage. However, it will present a higher percentage of errors. 

First, consider all three types of concurrent programs and the states of execution. 

2.3.1 Different Concurrent Programs rDCPJ 

The actual realistic system programs are executed in parallel. The concurrency level is 

fixed independently of the program, is not always true. Consider the case where the 

concurrency vector is different for each program and does not change with the cycle. 

The example of DCP is illustrated in Figure 2-2. Three programs are given. The 

8 



concurrency tasks 2, 3, and 4 for the first, the second and the third program 

respectively, are executed. According to Figure 2-2, I EXE I is the state of secondary 

tasks existing in the network, where it is either executed by the server or waiting in 

front of the server, and M@nM is the state of secondary tasks waiting in the buffer 

of the pseudo-server for the execution of a sibling [2]". 

Program 1 Program 2 

EXE EXE 

M@nM Waiting State 

I EXE I Executing State 

Figure 2-2 - State of Executing DCP 

2.3.2 Cycle-dependent Concurrent Programs (CCPJ 

Program 3 

In this case, the concurrency vector changes with time. For instance, the concurrency 

vector { 1,2,3} changes at the beginning of each cycle. The program shows that the 

concurrency vector changes as 1 7 2 7 3 7 17 2 7 3. 

9 



A program in which the concurrency vector will change cyclically is called CCP, but 

the concurrency vector of each program still remains the same. For instance, in Figure 

2-3, the CCP's concurrency vector { 4,2,3} is executed. 

MfW.hM Waiting State 

EXE I Executing State 

Figure 2-3 -- State of Executing CCP 

10 



£Ga1iriel's Library, Au 
? t'"' .r: di · 1 .. I) .J I:" 

2.3.3 Variable Concurrent Programs rVCPJ 

The most general case that is close to the realistic system is VCP, which is a hybrid of 

DCP and CCP. The concurrency vector changes with the cycle and the program. In 

Figure 2-4, for instance, the execution ofVCP's concurrency vector {1,2,3}, {3,2,4}, 

and {7, 1,3} for program 1, 2, and 3 respectively, is shown below. 

Program 1 Program 2 Program 3 

EXE 

EXE EXE 

c1 = {1,2,3} c2 = {3,2,4} f:3 = {7,1,3} 

MW.1iM Waiting State 

EXE I Executing State 

Figure 2-4 -- State of Executing VCP 

11 



2.4 Existing Performance Evaluation Method 

Many recent research topics are related to the measurement of the performance of 

parallel processing systems for concurrent programs. 

2.4.1 Decomposition Approximation Method 

Decomposition approximation is based upon the mean value analysis (MV A) 

algorithm for fixed concurrent programs [13]. It was proposed by Heidelberger et al. 

[14]. This method is applicable only to the programs in which the concurrency is the 

same for any program and is invariant in regard to time (FCP, fixed concurrent 

programs). The study compared the accurate percentage of the approximation result 

with the simulation results. 

According to the traditional decomposition approximation method, it could not handle 

the CCP and VCP concurrent level (program group). It can only support DCP 

concurrent level. But the high accuracy of the method is demonstrated. This method is 

true only for the system which is shared by a large number of users [ 1]. 

2.4.2 Average Concurrency Method 

Another method, average concurrency, which was introduced in [7], will be 

introduced in this section for a theoretical approximate analysis. This method is an 

improved technique for evaluating the characteristic parameters of the systems with 

Multiple Level Concurrent Programs and it focuses on the evaluation of the system 

performance when DCP, CCP, or VCP is executed in parallel. 

This assumption allows deriving a two-step simpler calculation by decomposing the 

average concurrency into upper and lower bounds [ 1]. The lower and the upper bound 

sets of interesting characteristic parameters (utilization, mean queue length, and 

12 



throughput) can be obtained separately in two sets. Then averaging the two sets with 

weight will get the final solution for the observed system. 

To obtain the average concurrency of the overall programs, calculate the average 

concurrent level of program group c by using the integers c\ and C2 (i\ = c\ +I) 

bounding C . Also, use decomposition approximation twice on two levels (lower level 

and upper level) bounding the average concurrent level, and the characteristic 

parameters (such as throughput, mean queue length, utilization rate). Then by the 

proportional assignment of c based on the deviation from cl ' the characteristic 

parameters for C are computed [2]. The method is divided into 3 steps. 

I. Average concurrent level calculation 

2. Decomposition approximation 

3. Characteristic parameters calculation 

This approximate method is outlined in the following. 

2.4.2.1 Average Concurrent Level 

First, calculate average concurrent level ( C) as follows for DCP, CCP, and VCP. 

DCP 

Ci ={Xii} for i = 1,2,3, .. . ,N 

- I N 

c =-Ixil 
N i=I 

CCP 

VCP 

13 



C= 1=1 .1=1 

N 

IM1 
i=I 

Equation 2-2 -Average Concurrent Level 

2.4.2.2 Decomposition Approximation 

The concurrent programs deal with the approximation methods. Decomposition 

approximation is an approximation method. This method will be described in this 

section. C is in general a non-integer. There are two parts of C ; the first part is 

integer part I and the second part is fractional part Fas shown in [I]. The concurrent 

level for each primary task is fixed and uses the alphabet K for representation. K 

secondary tasks are produced for each primary task. 

C =I+ F =(I - F)I + F(J +I) 

Equation 2-3 - Decomposition Approximation 

cl represents the lower level of average concurrent level c 

C2 represents the upper level of average concurrent level C 

2.4.2.3 Characteristic Parameters Calculation 

The characteristic parameters is computed by using cl and C2 (substituted by Kin the 

above section). These are the characteristic parameters, Pn(C1), Pn(C2 ), 

14 



St. Gabriel's l,ihrarv. An 

the Pn(C), Ln(C), A0 (C) for C as shown below, [1]. 

Equation 2-4 - Calculation of Characteristic Parameters for C 

To get the idea of average concurrency method, consider the algorithm as shown 

below. 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * ALGORITHM * * * * * * * * * * * * * * * * * * * *******I 

BEGIN/** Computation for average concurrent level C **/ 

INPUT 

Parameters : C, (concurrency vector of the I-th program) 

: N (number of programs) 

: M; (number of elements in C,) 

IFDCP 

THEN 
- 1 N 

C=-IXil 
N i=I 

ELSE IF CCP 

THEN 

ELSE IF VCP 

15 



THEN 

END IF 

N M, 

I Ix,, c = i=l j=l 

N 

IM1 
1=1 

END IF 

END/*** C is solved by these equations***/ 

BEGIN/*** Initialize C and C ***/ I u 

/***I is integral part of C ***/ 

I*** F is fractiOnal part of C ***I 

INITIALIZE 

END 

BEGIN /*** Use MVA to compute the performance for all states when concurrent 

level is C, and Cu***/ 

FORK= C1 TO Cu DO 

Compute all states (S) for concurrent level K 

FOR f=l to S DO 

Compute state transition matrix Q( A 1 ) 

Compute state probability matrix p(Al) 

UseMVAforcomputing Pn(Al), L
11
(A 1 ), A-0 (Al) 

END FOR 

END FOR 

16 



END 

BEGIN/*** Final computation***/ 

END 

p,, (C) = (1- F)p,, (C,) + (F)p,, (Cu) 

L,, (C) = (1- F)L,, (C,) + (F)L,, (Cu) 

A.,, (C) = (1- F)A.,, (C1) + (F)A.,, (Cu) 

/***********************END OF ALGORITHM*********************/ 

Figure 2-5 Algorithm of Average Concurrency Method 

2.4.3 Simulation Method 

The simulation is any representation or imitation of reality. It is an instructional 

strategy used to teach problem solving, procedures, or operations by immersing cases 

in situations resembling reality. The case actions can be analyzed, feedback about 

specific errors will provided, and performance can be scored. They provide safe 

environments for users to practice real-world skills. They can be especially important 

in situations where real errors would be too dangerous or too expensive. It is a 

research or teaching technique that reproduces actual events and processes under test 

conditions. It is an application that simulates real-world activities using mathematics 

or models. Real-world objects are turned into mathematical models and executing the 

formulas simulates their actions. EZ simulation, for instance, is a simulation tool that 

is used to evaluate parallel processing system performance in the computer. The other 

two simulations are PANACEA [18] or QNAP [19]. These simulation tools are used 

for analyzing the queuing network model. These simulation tools do not support 

analysis of the system with concurrent programs. Virtually, any objects with known 

characteristics can be modeled and simulated. 

17 



Simulations use enormous calculations and often require high-speed computers speed. 

As personal computers become more powerful, more laboratory experiments will be 

converted into computer models that can be interactively examined by researchers 

without the risk and cost of the actual experiments. The results had also been widely 

acceptable for high accuracy. 

2.5 Restriction of Existing Method 

The restriction of the existing method, decomposition approximation, is only 

applicable to programs which have the unchangeable set of concurrent programs. It is 

true only for a system which is shared by a large number of users. It provides a highly 

accurate method. But the other method, average concurrency method, provides higher 

percentage of errors compared with the results of decomposition approximation and 

the results of simulation method. This method can be applied to various types of 

changeable concurrent programs. The average concurrency method is not suitable for 

the contents of each vector which are different from each other (such as c\ = {2,3,4}, 

C 2 = { 5,15,150} ). It is suitable for the case where the variance of concurrent levels 

does not deviate much from the average concurrent level (such as cl = {2,3,4}' 

c2 = {I,2,4} ). 

18 



~L liaonel's Library. Au 

CHAPTER3 

Proposed Method for Multiple Level Concurrent Programs 

<MLCP> 

3.1 Introduction 

In recent years, there have been many published papers study about the parallel and 

distributed processing system. These published papers present partitioning program 

into a number of tasks and then execute them. Queuing network models that are 

introduced in [15], [16], [17] are-applied to use with concurrent programs. A model 

for programs with concurrency, which is executed on a hierarchically structured 

multiprocessor, has been formulated by Herzog et al. [7]. In the model, any queuing 

delays are insignificant. 

The application of queuing theory and simulation technique by computer, for the 

approximate analysis, is used for investigating the bottleneck and efficiency 

improvement of those systems. The result of simulation is close to the realistic system 

but computation takes time, needs powerful CPU, and it is expensive. For these 

reasons, the approximate analysis is intended for study. Also PAN ACEA [ 18] or 

QNAP [19], for instance, are software tools used for analyzing the queuing network 

model but they do not support analyzing the system with concurrent programs. 

3.2 Proposed Method (Straightforward Method) 

However, the proposed method (straightforward method) will extend the range of the 

traditional decomposition approximation method that is restricted to FCP. So the 

straightforward method is applicable to the programs where the concurrency of a 

program differs or even changes with time. 

19 



The algorithm of proposed method will be discussed. It will be used to analyze the 

VCP concurrent level directly by separating each VCP program group into several 

small parts (as combination of DCP concurrent level). Then the characteristic 

parameters of each separated part will be calculated. After the results are obtained, the 

probability of each case (after extracting the VCP concurrent level to be the 

combinations of DCP concurrent level) will be multiplied with those results. And then 

they are all summarized to be the final result. 

For the straightforward method, VCP will be substituted with the combinations of 

DCP. This method is a direct solution for solving VCP case. In N programs the 

concurrency vector of program i has Mi elements [3]. Then all the combinations (Z) of 

DCP can be computed through the equation below. 

Equation 3-1-All Combinations (Z) of DCP 

That means the computation needed for Z times. Let pr.[D = r,y E Z] be the 

probability that the network contains r tasks when the y1
h combination is considered. 

In this document, the proposed method will provide more flexibility for the 

concurrency program that is different from any programs. This method can evaluate 

the system, which cannot be handled by the traditional decomposition approximation. 

Finally, the results of several models obtained by the proposed method would be 

compared with the results of the simulation method. This could be indicated for 

realizing a sufficient accuracy. 

20 



~t.. GaiJnefs Liorary. Au 

3.3 Analytical Model for Evaluation 

According to Figure 3-1, the model has a central server that is composed of six 

components with First-Come First-Served (FCFS) service (except component number 

0). All the components are labeled from number 0-5. The component number 0 is 

computer or server regardless of service time. Components number 1-5 are 

interconnected in the network. Component number 1 is represented as the main router 

or gateway to the system. The service time distribution of the main router or gateway 

is exponential distribution with mean service time of 0.01. The components number 2-

5 represent the four other routers_ in the network, connected with the component 

number 1, are shared equally by all tasks. The service time distributions of 

components number 2-5 are exponential distribution with mean service time of 0.04 

seconds. The branching probability among these components is shown in Table 3-1. 

Buffer 
Computer 
or Server or 

Gateways 

Figure 3-1 - Closed Queuing Network 

21 

Network 

0.9 

Next Routers 

0.1 



In the model, primary tasks or files that need to be sent to another computer will be 

entered into the computer or server and is spawned to be several independent small 

tasks or packets, called siblings. Then the tasks are passed in queue to component 

number 1, main router or gateway, for execution. After that, the executed task is 

passed to component number 2-5 (next routers of hopping) by equal probability 

sharing. The model is controlled as a closed network by assigning the probability of 

the complete execution task at only 0.1. And the probability of the incomplete 

execution task is 0.9 to reenter into component number 1 (main router or gateway). 

This could make the system more stable. The higher probability of the incomplete 

execution tasks, the more likely this model becomes closed queuing network. 

Server Server 

0 1 2 3 4 5 

0 0 1 0 0 0 0 

1 0 0 0.25 0.25 0.25 0.25 

2 0.1 0.9 0 0 0 0 

3 0.1 0.9 0 0 0 0 

4 0.1 0.9 0 0 0 0 

5 0.1 0.9 0 0 0 0 

Table 3-1 Branching Probability 

Through the proposed method, the decomposition approximation's limitation will be 

solved. This method also produces a weak point. It requires more time for execution, 

and more CPU power for calculation. But at present, CPU power is not a big deal. 

There are many CPU models in the market that could calculate this method. So the 

22 



SL l:iabrief s Library, Au 

time of execution would be reduced. After the results are obtained from the 

calculation, they will be entered into the table for comparison with the average 

concurrency method, and the simulation method. 

3.4 Proposed Method's Algorithm 

To get the idea of the proposed method (straightforward method), consider the 

algorithm as shown below. 

/* * * * * * * * * * * * * * * * * * * * * * * * * ALGORITHM * * * * * * * * * * * * * * * * * * * * * *******I 

BEGIN/** Compute for straightforward concurrent level C **/ 

INPUT 

Parameters : C, (concurrency vector of the i-th program) 

N (number of programs) 

Mi (number of elements in C;) 

Separate the combination to be several DCP concurrent vectors 

Find the probability of each DCP vector 

END FOR 

END/** C is solved by these equations**/ 

/**Calculate the parameters of each DCP vector iteratively**/ 

BEGIN/*** Use MVA to compute the performance for all states***/ 

Compute all states (S) for concurrent level K 

FOR f=l to S DO 

Compute state transition matrix Q(Ar) 

23 



Compute state probability matrix p(Ar) 

- - -
Use MV A for computing Pn (A.r), Ln (Ar), A0 (Ar) 

. . 

END FOR 

END FOR 

END 

BEGIN/*** Final computation***/ 

END 

/***********************END OF ALGORITHM*********************/ 

Figure 3-2 Algorithm of Straightforward Method 

First step of the algorithm is separating VCP vector into combinations of DCP vector. 

For instance, if the input of VCP vector is: 

N=4, c\ = {1,2,3,4},c\ = {1,2,3},c3 = {1,1,2},c4 = {1,2,4} 

Then all the combinations of DCP vector will be shown in Appendix B (part 1 ). After 

getting all the combinations of DCP vector, the next step is finding the probability of 

summary of each DCP as will be shown in Appendix B (part 2). 

24 



The probability of content summary of each DCP, in the above, could be explained. 

For the probability of case, in which each DCP vector has at least one task or the 

content summary of each DCP vector is equal to 4. It is 2 froml 08 or 2/108. The 

probability of case, in which the content summary of each DCP vector is equal to 5, is 

7 from 108 or 7/108. Another instance, the probability of the last case, in which the 

content summary of each DCP vector is equal to 13, is 1 from 108 or 11108. 

After getting the probability of content summary of each DCP, next step is calculating 

the characteristic parameters of each probability iteratively. In this case, the loop 

needs to start from 1 to 13. Each probability is multiplied by the results of each loop 

and all of the results are summarized, after multiplication, as the final result. 

25 



CHAPTER4 

Evaluation and Validation of the Proposed Method 

4.1 Introduction 

The validation of the proposed method (straightforward method) will be presented in 

this chapter. Assume the MLCP (DCP, CCP, and VCP) are executed through the 

analytical model for evaluation, which is introduced in Chapter 3, and is composed of 

CPU and several slower I/O devices .. Then the characteristic parameters will be 

determined. First, the input parameters will be described. The results are obtained 

through the proposed method. The results will be compared to the results obtained 

through the simulation method, and the average concurrency method. The 

approximation accuracy of the proposed method will be evaluated. This chapter will 

also describe the advantage of the proposed method over the decomposition 

approximation in terms of applicability to all types of concurrent programs and also 

will point out the disadvantage of the proposed method. 

4.2 Input Parameters 

The proposed method will be investigated for validation by using two examples of 

each of CCP, and VCP. 

The two examples for CCP is investigated as follows: 

Case 1: N=4, cl = c2 = C3 = C4 = {2,3,3,3} 

Case 2: N=5, cl = c2 = C3 = C4 = C5 = {2,2,2,3,3} 

For VCP as follows: 

Case 1: N=4, cl = {l,2,3,4},C2 = {1,2,3},C3 = {1,l,2},C4 = {1,2,4} 

Case 2: N=5, cl = {1,1,2},C2 = {l,l,3},C3 = {l,2,3},C4 = {2,2,3},Cs = {1,3,3} 

26 



~t. Gabriel's Lihrary. Au 

The mean queue length at a server, server utilization and throughput at the pseudo-

server will be calculated for evaluation by using the algorithm in Figure 3-2. 

4.3 Reference Method/or Comparison 

To validate the results of the proposed method, comparison will be made between the 

results obtained by the proposed method with the results obtained by simulation 

method and average concurrency method. The result will be shown in the table for 

comparison as follows. 

CCP 

Server CASE 1 

STRAIGHT AVERAGE SIMULATION 

Mean Queue 1 1. 70999 1.71 1.79 

/Length 2 1.70999 1. 71 1.69 

3 1. 70999 1.71 1. 71 

4 1.70999 1.71 1.65 

5 1.70999 1. 71 1.73 

Utilization 1 0.61999 0.62 0.61 

2 0.61999 0.62 0.61 

3 0.61999 0.62 0.62 

4 0.61999 0.62 0.60 

5 0.61999 0.62 0.62 

Throughput 0 0.96999 0.97 1.02 

Table 4-1 -- Comparison of Results Against Simulation (CCP CASE 1) 

27 



CCP 

Server CASE2 

STRAIGHT AVERAGE SIMULATION 

Mean Queue 1 1.86 1.86 1.91 

Length 2 1.86 1.86 1.81 

3 1.86 1.86 1.87 

4 ·1.86 1.86 1.91 

5 1.86 1.86 1.86 

Utilization 1 0.6 ... 999 0.65 0.65 

2 0.6 ... 999 0.65 0.64 

3 0.64999 0.65 0.65 

4 0.64999 0.65 0.65 

5 0.6 ... 999 0.65 0.65 

Throughput 0 0.85999 0.86 0.91 

Table 4-2 -- Comparison of Results Against Simulation (CCP CASE 2) 

28 



VCP 

Server CASE 1 

STRAIGHT AVERAGE SIMULATION 

Mean Queue 1 1.50136 1.54 1.66 

Length 2 1.50136 1.54 1.50 

3 l.50136 1.54 1.60 

4 1.50136 1.54 1.60 

5 1.50136 L.54 1.62 

Utilization I 0.565-U 0.58 0.58 

2 0.5654-t 0.58 0.56 

3 0.56544 0.58 0.59 

4 0.565-t4 0.58 0.58 

I 5 0.565-t-t 0.58 0.59 

Throughput 0 1.02362 1.05 1.07 

Table 4-3 -- Comparison of Results Against Simulation (VCP CASE 1) 

29 



VCP 

Server CASE 1 

STRAIGHT AVERAGE SIMULATION 

Mean Queue 1 1.70683-t 1.72 1.82 

Length 2 1.70683-t 1.72 1.75 

3 1.706834 1.72 1.76 

4 1.706834 1.72 1.75 

5 1.70683-t 1.72 1.75 

Utilization 1 0.615255 0.62 0.63 

2 0.615255 0.62 0.63 

3 0.615255 0.62 0.63 

4 0.615255 0.62 0.63 

5 0.615255 0.62 0.63 

Throughput 0 0.932803 0.94 0.90 

Table 4-4 -- Comparison of Results Against Simulation (VCP CASE 2) 

30 



To investigate all combinations of DCP, the state numbers and probabilities [D=r, 

yEZ] of straightforward method versus the average concurrency method are listed in 

the following example. 

Case 1 : N=2, c1 = {2,2,3},C2 = {1,2,3} 

Straightfonvard Method 

Combinations State No. Probabilities [D=r, yEZ] 

Z=9 r=2 r=3 r=4 r=S r=6 

c, = {2} 3 .107 .143 - - -

c 2 = {1} 

c, = {1} 
,., 

.107 .143 --' - -

c 2 = {2} 

c, = {3} 7 .1 .05 .1 - -

c, = {1} 

c, = {2} 6 .1 .1 .05 - -

c, = {2} 

c, = {2} 6 .1 .I .05 - -

c, = {2} 

c, = {3} 14 .068 .054 .068 .059 -

c 2 = {2} 

c, = {2} 14 .068 .054 .068 .059 -

c 2 = {3} 

c1 = {2} 14 .068 .054 .068 .059 -

31 



St. GabrieJ's Lihrary4 Au 

{;2 = {3} 

c, = {3} 23 .032 .019 .027 .017 .013 

c 2 = {3} 

Total 90 .352 .330 .207 .096 .013 

Average Concurrency Method 

Combinations State No. Probabilities [D=r, y=l) 

Z=2 r=2 r=3 r=4 r=S r=6 

c, = {2} 6 .333 .333 .166 - -

c 2 = {2} 

cl = {3} 23 .049 .029 .041 .026 .020 

I 
c2 = {3} 

Total 29 .382 .362 .208 .026 .020 

Table 4-5 -Average Concurrency Method versus Proposed Method (Case 1) 

32 



- -
Case 2: N=2, C, = {l,2},C2 = {2,3} 

Straightforward Method 

Combinations State No. Probabilities [D=r, yEZ] 

Z=4 r=2 r=3 r=4 r=S r=6 

c, = {2} 6 .1 .1 .05 - -

c2 = {2} 

C1 ={I} 3 .107 .143 - - -

c2 = {2} 

C, ={I} 7 .1 .05 .1 - -

c 2 = {3} 

c\ = {2} 14 .068 .054 .068 .059 -

c2 = {3} 

--- -- -- --
Total 30 .375 .3-t7 .218 .059 -

Average Concurrency Method 

Combinations State No. Probabilities [D=r, y=l] 

Z=2 r=2 r=3 r=4 r=S r=6 

c, = {2} 6 .4 .4 .2 - -

c 2 = {2} 

Total 6 .4 .4 .2 - -

Table 4-6 --Average Concurrency Method versus Proposed Method (Case 2) 

33 



4.4 Consideration/or Evaluation Results 

It is clear that the relative result error of mean queue lengths, server utilization and 

throughput are little. Using the proposed method, the maximum number of state (Ss) 

is increased dramatically. But using the average concurrency method, the maximum 

state number (SA) decreases and explosion of the state number can be avoided. The 

following table will be shown for comparison of the state number and computation 

cost of proposed method bound against average concurrency method. 

The computational cost for solving the balance equation is approximately equal to 

O(s3). The computational cost is definitely more expensive than that of the average 

concurrency method. 

DCP Straightforward Method Average Concurrency 

Method 

Maximum State N if C is integer 
Z=IJM, 

/;] 

SA=(N+lf Number 

Ss=Z if C is real 

SA=(N+2)*(N+ l)c, 

Maximum Cost O(S/) O(S/) 

Table 4-7 Comparison of State Number and Computation Cost Bound Against 

Average Concurrency Method 

34 



DCP Number of all states 

Average Concurrency Method Straightforward Method 

C\ ={I} 10 34 

c2 = {2} 

C3 = {3} 

c1 = {2} 54 103 

C2 = {3} 

C 3 = {4} 

c1 = {2} 105 8-t5 

c2 = {2} 

C3 = {4} 

C4 = {4} 

cl = {2} 695 1563 

c2 = {4} 

C3 = {4} 

C 4 = {4} 

Table 4-8 Comparison of Exact State Number Against Average Concurrency 

Method 

35 



CHAPTERS 

Conclusion 

5.1111troductio11 

Firstly, a closed queuing network model of fixed concurrent programs was 

introduced. The decomposition approximation, proposed by [14], allows a primary 

program to separate into two or three concurrent tasks. All tasks possibly sharing with 

various system resources are execute~ in parallel. It consists of a hierarchical 

decomposition, which can only be applicable to a system with fixed concurrent 

program. 

In Chapter 2, three types of Multiple Level Concurrent Programs (MLCP) were 

introduced. It has changeable concurrent level, including DCP, CCP, and VCP. 

Traditional decomposition approximation can analyze DCP type of concurrent level. 

However, it cannot handle the CCP and VCP type of concurrent level. 

So another method, average concurrency method, was introduced to solve the 

limitation of decomposition approximation. The first step is to calculate the average 

concurrent level. The next step is to employ the decomposition approximation twice 

to two levels bounding the average concurrent level. Then calculate the characteristic 

parameters. After that estimate weight to the obtained two sets of parameters. This 

method can evaluate the performance of computer systems with MLCP, which cannot 

be handled by traditional decomposition approximation. The average concurrency 

method can be executed on a system with a small memory capacity, and can be 

executed with higher speed. 

36 



~L Gabriel's Library. An 

In the chapter 3, the proposed method is employed for the central server model with 

MLCP. The proposed method's accuracy result is found by checking results against 

the results obtained by the more exact simulation method. Table 4-1 ~ 4-4 show 

clearly that in estimating the server utilization, throughput, and mean queue length, 

nearly all the results are obtained through the simulation method. The values obtained 

by the proposed method agree very favorably with the values obtained by the 

simulation method. It can be concluded that the proposed method validates for MLCP. 

Considering the maximum number of states to be calculated in DCP, the proposed 

method is compared with the average concurrency. The number of states in the 

average concurrency level increases in proportion. On the other hand, the required 

number of states in the proposed method increases dramatically. Since the 

computational cost is proportional to the cube of the number of states, there is a 

greater difference concerning the computational cost [2]. The proposed algorithm 

needs to be executed on a system with high power CPU, more memory capacity, and 

consumes a calculation time when compared with the average concurrency method. 

In the case of comparison between proposed method and average concurrency 

method, the average concurrency method is not suitable for the contents in each 

vector which differ (such as c\ = {2,3,4}, c2 = {5,15,150} ). 1t is suitable for a case 

where variance of concurrent levels does not deviate from the average concurrent 

level much (such as CJ = {2,3,4}' c2 = {1,2,4} ). The proposed method can solve this 

weak point of the average concurrency method. 

37 



5.2 Future Research 

In the parallel processing system, the granularity of a program is critical for speeding 

up the overall system performance. So the next step of work for future research is the 

program partitioning. Also another one that remains for future research is the dynamic 

task-scheduling problem. This could appear that it is a difficult problem. The only 

feasibility study approach is the seeking of optimal solutions through effective 

heuristic algorithms. The next challenging topic is the designing and analysis of the 

dynamic scheduling algorithm. Also the·program partitioning could be the next future 

research. For instance, if the topic is trying to partition the incoming tasks at 

component number 2 and send to the next components (routers), this could be the next 

research topic for performance evaluation of parallel processing system. 

38 



BIBLIOGRAPHY 

[ 1] C. Jittawiriyanukoon, "Approximate Performance Evaluation of Parallel 

Processing Systems Based on Reducible State Spaces Computation," Proceedings of 

the Twentieth IASTED International Conference on Applied Informatics (AI 2001), 

Innsbruck, Austria, 19-22, February, 2001. 

[2] C. Jittawiriyanukoon, A Performance Evaluation Method for Parallel Processing 

Systems. PhD thesis, Dept. Comm. Eng., Osaka Univ., Osaka, December, 1989. 

[3] C. Jittawiriyanukoon and et al, "Performance evaluation of systems processing 

concurrent programs," Systems and Computers in Japan, pp. 21-31, 20, 11, 1990. 

[4] C. Jittawiriyanukoon, T. Watanabe, H. Nakanishi, and Y. Tezuda, "Approximate 

Analytic Method for Computer System with Multiple Level Concurrent Programs," in 

Proceedings of IEEE INFOCOM 89, J. W. Mark, ed., Ottawa, Canada, pp. 82-90, 

April, 1989. 

[5] C. Jittawiriyanukoon, T. Watanabe, H. Nakanishi, Sanada, and Y. Tezuka. 

"Approximate Performance Evaluation of Parallel Processing Systems Using Average 

Concurrency," EIC Trans Japan, vol. 171-D, no. 9, pp. 1623-1632, 1988. 

[6] D. Towsley, K. M. Chandy, and J. C. Browne, "Models for parallel processing 

within programs: Applications to CPU:I/O and 1/0:1/0 overlap," ACM, vol. 21, pp. 

821-831, 1978. 

[7] U. Herzog, W. Hoffmann, and W. Kleinoder, "Performance modeling and 

evaluation for hierarchically organized multiprocessor computer systems," in Int. 

Conference on Parallel Processing, pp. 103-114, 1979. 

[8] C. H. Sauer, "Approximate solution of queueing networks with simultaneous 

resource possession," IBM J Res. & Dev., vol. 25, pp. 894-903, 1981. 

39 



[9] P. A. Jacobson and E. D. Lazowska, "Analyzing queueing networks with 

simultaneous resource possession," CACM, vol. 25, pp. I 42-I 5 I, I 981. 

[IO] J. P. Buzen, Queueing network models of multiprogramming. PhD thesis, Div. 

Eng. Appl. Sci., Harvard Univ., Cambridge, MA, I971. 

[I I] J. C. Browne, K. M. Chandy, J. Hogarth, and C. C. A. Lee, "The effect on 

throughput of multiprocessing in a multiprogramming environment," IEEE Trans. 

Comput., vol. C-22, pp. 728-735, I 973. 

[I2] B. Avi-ltzhak and D. P. Heyman, "Approximate queueing models for 

multiprogramming computer systems," Oper. Res., vol. 2I, pp. I2I2-I230, I973. 

[13] M. Reiser and S. S. Lavenberg, "Mean-value analysis of closed multi-chain 

queueing networks," ACM, vol. 27, no. 2, pp. 3 I3-322, I 980. 

[I4] P. Heidelberger and K. S. Trivedi, "Analytic queueing models for programs with 

internal concurrency," IEEE Trans. Coput., vol. C-32, pp. 73-82, 1983. 

[I 5] C. H. Sauer and K. M. Chandy, "The impact of distributions and disciplines on 

multiple processor systems," CACM, vol. 22, pp. 25-34, 1979. 

[16] P. Heidelberger and K. S. Trivedi, "Queueing network models for parallel 

processing with asynchronous tasks," IEEE Trans. Comput., vol. C31, pp. 1099-I 109, 

I982. 

[17] G. S. Graham, "Queueing network models of computer system performance," 

ACM Computing Surveys, vol. 10, no. 3, pp. 219-224, I978. 

[I 8] K. G. Ramakrishnan and D. Mitra, "An overview of panacea: A software 

package for analyzing Markovian queueing networks," The Bell Syst. Tech. Journal, 

vol. 6 I, no. I 0, pp. 2849-2872, I 982. 

40 



[19] K. M. Chandy and C. H. Sauer, "Approximate methods for analyzing queueing 

network models of computer systems," ACM Computing Surveys, vol. l 0, no. 3, pp. 

218-317, 1978. 

[20] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative 

System Performance: Computer System Analysis Using Queuing Network Models. 

Englewood Cliffs, NJ: Prentice-Hall, 1984. 

[21] P. Heidelberger and S. Lavenberg, "Computer performance evaluation 

methodology," IEEE Trans, Comput., vol. c-33, pp. 1195-1220, 1984. 

41 



APPENDIX A : SOURCE CODE 

#include<conio.h> 

#include<ctype.h> 

#include<stdlib.h> 

#incl ude<string.h> 

#include<stdio.h> 

#incl ude<sys\stat.h> 

#include<fcntl.h> 

#include<io.h> 

#incl ude<dir.h> 

struct data record 

{ unsigned char record[lO]; 

unsigned char amount; 

} all __ data[ 1 O]; 

long progress = O; 

long all_ happen= 1; 

long all_dcp_happen=O; 

long dcp _order = 1; 

long vcp _order = 1; 

long c _order = O; 

char dir_name[255]; 

char path _name[255],tpath _ name[255]; 

float wl,w2,n; 

42 



float prob[500]; 

int numberOfprob = O; 

float MQLArray[200]; 

float Uti1Array[200]; 

float ThruArray[200]; 

int rCount = O; 

unsigned char amount_ all_ data; 

I* Progressing process notification *I 

void processNotify() 

{ 

printf("#"); 

} 

/* Finding summary values *I 

long findSumValue(char* content) 

{ 

int size,j,i; 

long value= O; 

char strlnt[255]; 

size = strlen( content); 

j = -1; 

for(i=O; i<size; i++) 

{ 

switch(content[i]) 

43 



{ 

} 

} 

case'=': j = O; 

case ',' : 

break; 

strlnt[j] = '\O'; 

value+=atoi(strlnt); 

j = -1; 

break; 

default : if( j >=O ) strlnt[j++] = content[i]; 

strlnt[j] = '\O'; 

value+=atoi(strlnt); 

return value; 

int compareDCPValue( char* compare 1, char* compare2) 

{ 

return (findSumValue(comparel) == findSumValue(compare2)? 1 : O); 

} 

int compareVCPValue(char* comparel, char* compare2) 

{ 

return (findSumValue(comparel) == findSumValue(compare2)? 1 : O); 

} 

44 



SL Ga.briefs Library. Au 

/* Convert characters to integer *I 

int charTolnt(char d) 

} 

char tmp_str[2]; 

tmp _ str[O]=d; 

tmp _ str[ 1 ]='\O'; 

return atoi(tmp_str); 

/* Write all the DCP cases into file *I 

void printDCPSampleSpace(FILE *dcp, FILE *rawdcp,int order,int index,int data[]) 

{ 

char buffer[255]; 

char rawbuffer[255]; 

int checkValue = O; 

switch(index) 

{ 

case 1 : 

if( data[O] >= amount_all_ data) 

{ 

checkValue = 1; 

} 

break; 

case 2: 

if( (data[O]+data[l]) >= amount_all_data) 

45 



{ 

checkValue = 1; 

} 

break; 

case 3 : 

case 4: 

case 5 : 

amount all data) 

if( (data[O]+data[l]+data[2]) >= amount_all_data) 

{ 

checkValue = 1; 

} 

break; 

if((data[O]+data[l ]+data[2]+data[3]) >=amount_ all_ data) 

{ 

checkValue = 1; 

} 

break; 

if( ( data[O]+data[ 1 ]+data[2]+data[3 ]+data[ 4]) >= 

{ 

checkValue = 1; 

break; 

case 6: 

46 



if((data(O]+data[l ]+data[2]+data[3]+data[ 4]+data[5]) >= 

amount all data) 

{ 

check Value = I; 

} 

break; 

case 7: 

if( ( data(O]+data[ 1]+data[2]+data[3]+data[4 ]+data[ 5]+data[ 6]) 

>=amount_ all_ data) 

{ 

check Value= I; 

} 

break; 

case 8 : 

if( ( data[O]+data[ I ]+data[2]+data[3]+data[ 4 ]+data[ 5]+data[ 6]+data[7]) >= 

amount_all_data) 

checkValue =I; 

} 

break; 

case 9: 

if(( data[O]+data[ I ]+data[2]+data[3]+data[ 4]+data[ 5]+data[ 6]+data[7]+data[8]) 

>= amount_all_data) 

{ 

check Value= I; 

47 



} 

break; 

case IO: 

if(( data[O]+data[ 1 ]+data[2]+data[3 ]+data[ 4]+data[ 5]+data[ 6]+data[7]+data[8] 

+data[9]) >=amount_ all_ data) 

{ 

checkValue = 1; 

} 

break; 

} 

if(checkValue == 1) 

{ 

switch( index) 

{ 

case 1 : 

sprintf(buffer, 11 %ld. Cl_%d=%d 11
, 

dcp _order++, 

order,data[O] 

); 

sprintf( rawbuff er, 11 C1_%d=%d 11
, 

order ,data[ 0] 

); 

break; 

case 2 : sprintf(buffer, 11 %ld. C1_%d=%d,C2_%d=%d 11
, 

dcp _order++, 

48 



order,data[O], 

order ,data[ 1] 

); 

sprintf(rawbuffer,"C1_%d=%d,C2_%d=%d", 

order,data[O], 

order,data[ I] 

); 

break; 

case 3 : sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d", 

dcp _order++, 

order,data[O], 

order,data[l ], 

order,data[2] 

); 

sprintf(rawbuffer,"C1_%d=%d,C2_%d=%d,C3_%d=%d", 

order,data[O], 

order,data[l ], 

order,data[2] 

); 

break; 

case 4 : sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d", 

dcp _order++, 

order,data[O], 

49 



order ,data[ I], 

order,data[2], 

order,data[3] 

); 

sprintf(rawbuffer,"C l _%d=%d,C2 _%d=%d,C3 _%d=%d,C4 _%d=%d", 

order,data[O], 

order,data[l ], 

order,data[2], 

order,data[3] 

); 

break; 

case 5 : sprintf(buffer,"%ld. 

Cl_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d", 

dcp _order++, 

order,data[O], 

order,data[l ], 

order,data[2], 

order,data[3], 

order,data[ 4] 

); 

sprintf(rawbuffer,"Cl_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d", 

order,data[O], 

order,data[l], 

order,data[2], 

order,data[3], 

50 



order,data[ 4] 

); 

break; 

case 6 : sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6_%d=%d", 

dcp _order++, 

order,data[O], 

order,data{l], 

order,data[2], 

order,data[3], 

order,data[4], 

order,data[ 5] 

); 

sprintf(rawbuffer,"C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6 

_%d=%d", 

order,data[O], 

order,data[l ], 

order,data[2], 

order,data[3], 

order,data[4], 

order,data[ 5] 

); 

break; 

51 



case 7 : sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6_%d=%d,C7_%d= 

o/od", 

dcp _order++, 

order,data[O], 

order,data[l], 

order,data[2], 

order,datcr[3 ], 

order ,data[ 4], 

order,data[5], 

order,data[ 6] 

); 

sprintf(rawbuffer,"Cl_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6 

__ %d=%d,C7 _%d=%d", 

order,data[O], 

order,data[l ], 

order ,data[2], 

order,data[3], 

order,data[ 4], 

order,data[5], 

order,data[ 6] 

); 

break; 

52 



case 8: sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6_%d=%d,C7_%d= 

%d,C8_%d=%d", 

dcp _order++, 

order ,data[ 0], 

order,data[l], 

order,data[2], 

order,data{3], 

order,data[ 4 ], 

order,data[ 5], 

order,data[6], 

order,data[7] 

); 

sprintf(rawbuffer,"Cl_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6 

_%d=%d,C7 _%d=%d,C8_%d=%d", 

order,data[O], 

order,data[l], 

order,data[2], 

order,data[3], 

order,data[4], 

order ,data[ 5], 

order,data[6], 

order,data[7] 

); 

break; 

53 



St. GabrieJ's Lihrarv~ Au 

case 9: sprintf(buffer,"%ld. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6_%d=%d,C7_%d= 

%d,C8_%d=%d,C9 _%d=%d", 

dcp _order++, 

order,data[O], 

order,data[l], 

order,data[2], 

order,data{3], 

order ,data[ 4], 

order,data[5], 

order,data[6], 

order,data[7], 

order,data[8] 

); 

sprintf(rawbuffer,"C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6 

_%d=%d,C7 _%d=%d,C8_%d=%d,C9 _%d=%d", 

order ,data[ 0], 

order,data[l], 

order,data[2], 

order,data[3], 

order,data[4], 

order,data[5], 

order,data[6], 

order,data[7], 

order ,data[8] 

54 



); 

break; 

case 10: sprintf(buffer, "%Id. 

C1_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6_%d=%d,C7_%d= 

%d,C8_%d=%d,C9_%d=%d,C10_%d=%d", 

dcp _order++, 

order ,data[ 0], 

order ,data[ 1], 

order,data[2], 

order,data[3 ], 

order,data[4], 

order,data[5], 

order ,data[ 6], 

order,data[7], 

order,data[8], 

order,data[9] 

); 

sprintf(rawbuffer,"Cl_%d=%d,C2_%d=%d,C3_%d=%d,C4_%d=%d,C5_%d=%d,C6 

_%d=%d,C7_%d=%d,C8_%d=%d,C9_%d=%d,CIO_%d=%d", 

order,data[O], 

order,data[ 1], 

order,data[2], 

order,data[3], 

order,data[ 4], 

order,data[ 5], 

55 



} 

} 

default: 

order,data[ 6], 

order,data[7], 

order,data[8], 

order,data[9] 

); 

break; 

printf("This function does not support this index"); 

fprintf( dcp, "%s\n" ,buffer); 

fprintf(rawdcp,"%s\n",rawbuffer); 

all_ dcp _happen++; 

void putAndCount(FILE *out,FILE *chk, char *odata) 

{ 

} 

fprintf( out, "\n%d. ",vcp _order++); 

fprintf( out,odata); 

fprintf( chk, "\n"); 

fprintf( chk,odata); 

/* Print the result of DCP into file name DCP.TXT*/ 

void printDCP(int amount, int data[]) 

{ 

56 



int i,order=l,loop[IO]; 

char fileName[12]; 

FILE *dcpraw, *dcp; 

sprintf(fileName,"o/os//DCP.TXT",dir_name); 

if((dcp = fopen(fileName,"a+"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

sprintf(fileName, "%s//DCPTEMP. TXT" ,dir _name); 

if((dcpraw = fopen(fileName,"a+"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

for(loop[O] = O; loop[O] <= data[O]; loop[O]++) 

{ if(amount ==I) printDCPSampleSpace(dcp,dcpraw,order++,amount,loop); 

for(loop[l] = O; loop[l] <= data[l]; loop[l]++) 

{ 

if(amount == 2) printDCPSampleSpace( dcp,dcpraw,order++ ,amount,loop ); 

for(loop[2] = O; loop[2] <= data[2]; loop[2]++) 

{ 

if(amount == 3) 

printDCPSampleSpace( dcp,dcpraw,order++ ,amount, loop); 

for(loop[3] = O; loop[3] <= data[3]; loop[3]++) 

{ 

57 



if(amount == 4) 

printDCPSampleSpace( dcp,dcpraw,order++,amount,loop ); 

for(loop[4] = O; loop[4] <= data[4]; loop[4]++) 

{ 

if( amount == 5) 

printDCPSampleSpace( dcp,dcpraw,order++,amount,loop ); 

for(loop[5] = O; loop[5] <= data[5]; loop[5]++) 

{ 

if(amount == 6) 

printDCPSampleSpace( dcp,dcpraw ,order++ ,amount,loop ); 

for(loop[6] = O; loop[6] <= data[6]; loop[6]++) 

{ 

if(amount == 7) 

printDCPSampleSpace( dcp,dcpraw,order++,amount,loop ); 

for(loop[7] = O; loop[7] <= data[7]; loop[7]++) 

{ 

if( amount == 8) 

printDCPSampleSpace( dcp,dcpraw,order++,amount,loop ); 

for(loop[8] = O; loop[8] <= data[8]; loop[8]++) 

if( amount == 9) 

printDCPSampleSpace( dcp,dcpraw ,order++ ,amount,loop ); 

for(loop[9] = O; loop[9] <= data[9]; loop[9]++) 

{ 

58 



if( amount== 10) 

printDCPSampleSpace( dcp,dcpraw,order++ ,amount,loop ); 

} 

} 

} 

} 

} 

} 

} 

fprintf( dcp, "\n "); 

fclose( dcp ); 

} 

} 

fprintf( dcpraw, "\n "); 

fclose( dcpraw); 

} 

} 

void separateDCPDataAndPrint( char* compdata) 

{ 

int size,k,j,i; 

int data[lO]; 

char strlnt[255]; 

if(strstr(compdata,"END") !=NULL) return; 

size= strlen(compdata); 

59 



~L GabneJ s Library. Au 

k = O; 

j = -1; 

for(i=O; i < 10 ; i++) 

{ 

data[i]=O; 

} 

for(i=O; i<size; i++) 

{ 

switch( compdata[i]) 

{ 

case'=' :j = O; 

break; 

case ',' : 

strlnt[j] = '\O'; 

data[k++] = atoi(strlnt); 

j = -1; 

break; 

default : if( j >=O ) strlntu++] = compdata[i]; 

} 

strlnt[j] = '\O'; 

data[k++] = atoi(strlnt); 

printDCP(k,data); 

} 

60 



/*Count the number ofVCP after separate to be each DCP */ 

long countVCPList(FILE *cal) 

{ 

char cdata[255],compdata[255]; 

FILE *tmp, *chk, *equallist; 

long c = 1; 

int handle,percent; 

double sample; 

sprintf(path _name, "%s%s" ,dir _name, "//CHK. TXT"); 

if((chk = fopen(path_name,"rt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

sprintf(path _name, "%s%s" ,dir _name, "//TMP. TXT"); 

if((tmp = fopen(path_name,"wt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

if((equallist = fopen(path_name,"wt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

if(!feof(chk)) fscanf(chk, "%s",compdata); 

if(all_happen == 1) 

61 



fprintf(cal,"%d. %s \n",l,compdata); 

if( all_ happen == 1 II strstr(compdata,"END") !=NULL) 

{ 

c_order++; 

separateDCPDataAndPrint( compdata); 

fclose( chk); 

fclose(tmp ); 

processN otify(); 

return O; 

} 

fprintf(equallist,"%s",compdata); 

separateDCPDataAndPrint( compdata); 

while(!feof( chk)) 

{ 

fscantl(chk "%s" cdata)· 
' ' ' 

if(strstr(cdata,"END") !=NULL) 

{ 

fprintf(tmp,"\nEND"); 

break; 

} 

else 

if(compareVCPValue(compdata,cdata)) 

{ 

c++; 

62 



else 

{ 

} 

} 

separateDCPDataAndPrint( cdata); 

if( strstr( compdata,cdata) == NULL) 

{ 

fprintf( equallist, "\n %s" ,cdata); 

} 

fprintf(tmp,"\n%s",cdata); 

fclose( equallist ); 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

if((equallist = fopen(path_name,"rt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

while(! feof( equallist)) 

{ 

} 

fscanf(equallist, "%s",cdata); 

c_order++; 

fprintf(cal,"%ld. %s\n",c_order,cdata); 

fprintf( cal,"Probability = %ld/%ld\n" ,c,all_ happen); 

fclose( equallist); 

63 



} 

fclose(tmp); 

fclose( chk); 

processNotify(); 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name, "//CHK. TXT"); 

remove(path _name); 

sprintf(path_name,"%s%s",dir_name,"//TMP.TXT"); 

sprintf(tpath_name,"%s%s",dir_name,"//CHK.TXT"); 

rename(path _ name,tpath _name); 

sprintf(path_name,"%s%s",dir_name,"//CHK.TXT"); 

handle= open(path_name,S_IREAD); 

c = filelength(handle ); 

close(handle ); 

return c; 

I* Count all the number of DCP cases*/ 

long countDCPList(FILE *cal) 

{ 

char cdata[255],compdata[255]; 

FILE *tmp, *chk, *equallist; 

long c = 1; 

int handle,percent; 

64 



double sample; 

sprintf(path _name, "%s%s" ,dir _name, "//DCPTEMP. TXT"); 

if((chk = fopen(path_name,"rt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

sprintf(path _name, "%s%s" ,dir _name, "//TMP. TXT"); 

if((tmp = fopen(path_name,"wt"))== NULL) 

{ 

printf("Cannot open output file\\n"); 

} 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

if((equallist = fopen(path_name,"wt"))== NULL) 

printf("Cannot open output file\\n"); 

} 

if(!feof(chk)) fscanf(chk, "o/os",compdata); 

if(strstr(compdata,"END") !=NULL) 

{ 

} 

fclose(chk); 

fclose(tmp); 

fclose( equallist); 

return O; 

fprintf( equallist, "o/os" ,compdata); 

65 



while(! feof( chk)) 

{ 

fscanf(chk, "%s",cdata); 

if(strstr(cdata,"END") !=NULL) 

{ 

fprintf(tmp,"\nEND"); 

break; 

} 

else 

if( compareDCPValue( compdata,cdata)) 

{ 

} 

else 

} 

c++; 

if( strstr( compdata,cdata) == NULL) 

{ 

fprintf( equallist, "\n%s" ,cdata); 

fprintf(tmp,"\n%s",cdata); 

fclose( equallist); 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

if((equallist = fopen(path_name,"rt"))== NULL) 

66 



{ 

printf("Cannot open output file\\n"); 

} 

while(! feof( equallist)) 

{ 

} 

fscanf( equallist, "%s" ,cdata); 

fprintf(cal,"%s\n",cdata); 

fprintf(cal,"Probability = %ld/%ld\n",c,all_dcp_happen ); 

fclose( equallist); 

fclose( tmp ); 

f close( chk); 

processNotify(); 

sprintf(path_name,"%s%s",dir_name,"//TMPCOUNT.TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name, "//DCPTEMP. TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name,"/ /TMP. TXT"); 

sprintf( tpath _name, "%s%s" ,dir _name, "//DCPTEMP. TXT"); 

rename(path _ name,tpath _name); 

sprintf(path _name, "%s%s" ,dir _name,"/ /DCPTEMP. TXT"); 

handle= open(path_name,S_IREAD); 

c = filelength(handle ); 

67 



st. Gahnel's Library_ Au 

close(handle ); 

return c; 

} 

/* Print all the number of the combinations of DCP *I 

void printSampleSpace(unsigned char index,struct data_record data[],unsigned char 

loop[], FILE *out,FILE *chk) 

{ 

char buffer[255]; 

int percent; 

switch( index) 

case 1 : sprintf(buff er, ti C 1 =%d ti, 

data[O] .record[loop[O]]); 

break; 

case 2 : sprintf(buffer,"Cl =%d,C2=%dtl, 

data[O].record[loop[O]], 

data[ 1].record[loop[1 ]]); 

break; 

case 3 : sprintf(buffer,tlCl =%d,C2=%d,C3=%d", 

data[O].record[loop[O]], 

data[ 1 ].record[loop[l ]], 

data[2].record[loop[2]]); 

68 



break; 

case 4: sprintf(buffer,"C1=%d,C2=%d,C3=%d,C4=%d", 

data[O].record[loop[O]], 

data[ 1] .record[loop[ 1 ]], 

data[2].record[loop[2]], 

data[3] .record[loop[3 ]]); 

break; 

case 5: sprintf(buffer,"C1=%d,C2=%d,C3=%d,C4=%d,C5=%d", 

data[O].record[loop[O]], 

data[ 1] .record[loop[ 1 ]], 

data[2].record[loop[2]], 

data[3] .record[loop[3]], 

data[ 4].record[loop[ 4]]); 

break; 

case 6: 

sprintf(buffer,"C1=%d,C2=%d,C3=%d,C4=%d,C5=%d,C6=%d", 

data[O].record[loop[O]], 

case 7: 

data[ I ].record[loop[l ]], 

data[2] .record[loop[2]], 

data[3].record[loop[3]], 

data[ 4].record[loop[ 4]], 

data[5].record[loop[5]]); 

break; 

sprintf(buffer, "C 1 =%d,C2=%d,C3=%d,C4=%d,C5=%d,C6=%d,C7=%d", 

69 



case 8: 

data[O].record[loop[O]], 

data[ 1 ].record[loop[l ]], 

data[2].record[loop[2]], 

data[3].record[loop[3]], 

data[ 4] .record[loop[ 4 ]], 

data[ 5] .record[loop[ 5]], 

data[6].record[loop[6]]); 

break; 

sprintf(buffer, "C 1 =%d,C2=%d, C3=%d,C4=%d,C5=%d,C6=%d,C7=%d,C8=%d ", 

data[O].record[loop[O]], 

data[ I ].record[loop[l ]], 

data[2] .record[loop[2]], 

data[3].record[loop[3]], 

data[ 4].record[loop[ 4]], 

data[ 5] .record[loop[5]], 

data[ 6] .record[loop[ 6]], 

data[7] .record[loop[7]]); 

break; 

case 9: 

sprintf(buffer, "C 1 =%d,C2=%d,C3=%d,C4=%d,C5=%d,C6=%d,C7=%d,C8=%d,C9= 

%d", 

data[O].record[loop[O]], 

data[ 1] .record[loop[ 1 ]], 

data[2] .record[loop[2]], 

70 



case 10: 

data[3] .record[loop[3]], 

data[ 4].record[loop[ 4]], 

data[ 5] .record[loop[ 5]], 

data[6].record[loop[6]], 

data[7] .record[loop[7]], 

data[8] .record[loop[8]]); 

break; 

sprintf(buffer, "C 1 =%d,C2=%d, C3=%d,C4=%d,C5=%d, C6=%d,C7=%d,C8=%d,C9= 

%d,Cl0=%d", 

default: 

data[O] .record[loop[O]], 

data[ I ].record[loop[l ]], 

data[2].record[loop[2]], 

data[3 ].record[loop[3 ]], 

data[ 4 ].record[loop[ 4]], 

data[ 5] .record[loop[5]], 

data[ 6].record[loop[ 6]], 

data[7] .record[loop[7]], 

data[8].record[loop[8]], 

data[9].record[loop[9]]); 

break; 

printf("This function does not support this index"); 

if(!(!strcmp(buffer,""))) putAndCount(out,chk,buffer); 

71 



processNotify(); 

} 

void strToDataRecord(char *c,struct data_record *d) 

{ int len,i; 

} 

char *tmp _data = c; 

len = strlen( c ); 

d->amount = O; 

for(i=O; i < len; i++) 

{ 

} 

if(!(*tmp_data == ',')) 

{ 

} 

d->record[ d->amount] = charTolnt(*tmp _data); 

rCount++; 

d->amount++; 

tmp_data++; 

/* Print out and count all the number of possible cases of DCP into file name 

DCPSummary.TXT*/ 

void makeDCPSummary() 

{ 

FILE *dcpSum; 

long file_ size; 

72 



sprintf(path_name,"%s%s",dir_name,"//DCPSummary.TXT"); 

if ((dcpSum = fopen(path_name, "wt"))== NULL) 

{ 

printf("Cannot open output file/n"); 

exit(O); 

} 

do{ 

file_size = countDCPList(dcpSum); 

}while(file_size > O); 

fclose(dcpSum); 

/*Print out and count all the number of possible cases of VCP into file name 

VCPSummary.TXT*/ 

void make VCPSummary() 

FILE *cal; 

long file_ size; 

sprintf(path_name,"%s%s",dir_name,"//CAL.TXT"); 

if(( cal= fopen(path_name,"w+t"))== NULL) 

{ 

} 

printf("Cannot open output file/n"); 

exit(O); 

73 



do{ 

file_size = countVCPList(cal); 

}while(file_size > 0 && c_order !=all_ happen); 

fclose( cal); 

sprintf(path_ name, "o/os//DCPTEMP. TXT" ,dir _name); 

if(( cal= fopen(path_name,"a+"))== NULL) 

{ 

} 

printf("Cannot open output file/n"); 

exit(O); 

fprintf( cal, "END"); 

fclose( cal); 

I* Function that will try to remove the unused files after calculation *I 

void manageTemporaryFile() 

{ 

sprintf(path _ name,"%s%s" ,dir _name, "//CHK. TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name,"/ /TMP. TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name,"/ NCP. TXT"); 

remove(path _name); 

sprintf(path_name,"%s%s",dir_name,"//OUT.TXT"); 

sprintf(tpath_name,"%s%s",dir_name,"/NCP.TXT"); 

74 



} 

rename(path _name, tpath _name); 

sprintf(path_name,"%s%s",dir_name,"/NCPSUM.TXT"); 

remove(path _name); 

sprintf(path_name,"%s%s",dir_name,"//CAL.TXT"); 

sprintf(tpath_name,"%s%s",dir_name,"/NCPSUM.TXT"); 

rename(path _name,tpath _name); 

sprintf(path _name, "%s%s" ,dir _name, "//TMPCOUNT. TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir--,-name," //DCPTEMP. TXT"); 

remove(path _name); 

float findW(float t,float p_array[],int numberOfArray) 

{ 

float value = O; 

inti; 

if(numberOfArray > 3) 

{ 

for(i = O; i < 3; i++) 

{ 

} 

value+=p _ array[i]; 

//printf(" 1,%f',p_array[i]); 

for(i = 3; i < numberOfArray; i++) 

{ 

value+=(float)(i-1 )*p _ array[i]; 

75 



} 

else 

{ 

} 

//printf(" 1,%f'' ,p _array[i]); 

} 

for(i = O; i < 3; i++) 

{ 

} 

value+=p _ array[iJ; 

//printf("2, %f'' ,p _ array[i]); 

return t*value; 

/*Read the probability of each DCP case from file VCPSUM.TXT*/ 

void readDCPProbability(void) 

{ 

FILE *dcpSum; 

long file_ size; 

char cdata[255]; 

char *ptr _ cdata; 

int pos _slash; 

numberOfprob = O; 

sprintf(path_name,"%s%s",dir_name,"/NCPSUM.TXT"); 

if ((dcpSum = fopen(path_name, "r"))== NULL) 

76 



{ 

printf("Cannot open output file/n"); 

exit(O); 

do 

{ 

fscanf(dcpSum, "%s",cdata); 

if((ptr_cdata=strstr(cdata;"/")) !=NULL) 

{ 

pos _slash = ptr _ cdata-cdata; 

cdata[pos_slash] = '\O'; 

prob[numberOfprob] = 

((float)atoi( cdata)/(float)atoi(ptr _ cdata+ 1 )); 

numberOfprob++; 

} 

} 

} 

while(!feof(dcpSum)); 

fclose( dcpSum); 

I* Calculate Wl, W2, MQT, MQL, Util, lam (A.), Thru, n */ 

void calculateVcpValue(FILE *out, int r, float Wl, float W2) 

{ 

float MQT, MQL, Util, lam, thru; 

MQT = Wl - 0.01; 

77 



MQL = MQT*l/O.OI; 

MQLArray[r-I] = MQL; 

Util =WI * r/ 20 * IOO; 

UtilArray[r-I] = Util; 

lam= I/(WI +W2); 

thru =lam* 0.1; 

ThruArray[ r- I] = thru; 

.SL Gabriel's Library. Au 

n =I +(20 * 0.9 *(WI + W2)); 

fprintf( out, 

"R=%d, WI =%.2f, W2=%.2f, MQT=%.2f, MQL=%.2f, Util=.%.2f, 

Lamda=%.2f, Thru=%.2f, n=%.2f\n" 

,r,WI,W2,MQT,MQL,Util,lam,thru,n); 

} 

I* End Calculate WI, W2, MQT, MQL, Util, lam (A.), Thru, n */ 

I* The steps for making result summary *I 

void makeResultSummary(void) 

{ 

FILE *cal; 

inti; 

n =I; 

sprintf(path _name, "%s%s" ,dir _name, "//CalResult. TXT"); 

if((cal = fopen(path_name,"w+t"))== NULL) 

{ 

printf("Cannot open output file/n"); 

78 



exit(O); 

for(i = I; i <= rCount; i++) 

{ 

calculateVcpValue(cal,i,wl *n,w2*n); 

} 

fclose( cal); 

} 

/* End the steps for making result summary *I 

/* Calculate MQT and Util and Thru and write them into file name 

MeanSummary.TXT */ 

void makeResultMQTAndUtilAndThru() 

{ 

FILE *cal; 

inti; 

sprintf(path_name,"o/oso/os",dir_name,"//MeanSummary.TXT"); 

if((cal = fopen(path_name,"w+t"))== NULL) 

{ 

} 

printf("Cannot open output file/n"); 

exit(O); 

float MQLResult=O,UtilResult=O,ThruResult=O; 

for(i = O; i < rCount; i++) 

{ 

79 



} 

MQLResult += MQLArray[i]*prob[i]; 

} 

for(i = O; i < rCount; i++) 

UtilResult += UtilArray[i]*prob[i]; 

for(i = O; i < rCount; i++) 

{ 

ThruResult += ThruArray[i]*prob[i]; 

} 

fprintf(cal,"MQL = %.2f\n",MQLResult); 

fprintf( cal, "Utilization = %.2f\n", UtilResult ); 

fprintf(cal,"Throughput = %.2f',ThruResult); 

fclose(cal); 

I* End Calculate MQT and Util and Thru and write them into file name 

MeanSummary.TXT */ 

int main(void) 

unsigned char i,j,loop[lO]; 

char tmp _char; 

char tmp_data[255]; 

long file_ size; 

FILE *out, *chk; 

80 



clrscr(); 

printf("Enter Directory Name : "); 

scanf("%s",dir_name); 

mkdir( dir _name); 

sprintf(path _name, "%s%s" ,dir _name, "//OUT. TXT"); 

if ((out= fopen(path_name, "wt")) 

==NULL) 

{ 

} 

printf("Cannot open output file/n"); 

return I; 

sprintf(path _ name,"%s%s" ,dir _name, "//CHK. TXT"); 

if((chk = fopen(path_name,"wt"))== NULL) 

} 

printf("Cannot open output file/n"); 

return 1; 

sprintf(path _name, "%s%s" ,dir _name, "//DCPTEMP. TXT"); 

remove(path _name); 

sprintf(path _name, "%s%s" ,dir _name, "//DCP. TXT"); 

remove(path _name); 

fprintf( out, "<-----BeginOfResult---->"); 

do 

printf("Please insert the number of program(s): "); 

81 



tmp _char = getche(); 

printf("\n"); 

if(!isdigit(tmp _char)) printf("\nPlease enter only 1-1 O\n"); 

} while(!isdigit(tmp _char)); 

amount all data=charTolnt(tmp char); - - -

printf("Enter the data and seperate each number by comma (,). Do not type the 

space!! !\n"); 

for(i=O; i <amount_all_data; i++) 

{ 

printf("The number of concurrent vector #%d = ",i+ 1 ); 

scanf("%s",tmp_data); 

strToDataRecord(tmp _ data,&all_ data[i]); 

} 

printf("Enter Wl = "); 

tmp _ data[O]='\O'; 

scanf("%s" ,tmp _data); 

wl = atof(tmp_data); 

printf("Enter W2 = "); 

tmp _ data[O]='\O'; 

scanf("%s",tmp_data); 

w2 = atof(tmp_data); 

for(i=O; i <amount_all_data; i++) 

{ 

fprintf(out,"\nThe concurrent %d = ",i); 

82 



forG=O; j<all_data[i].amount; j++) 

{ 

fprintf( out,"%d ",all_ data[i].record[j]); 

all_ happen*= all_ data[i].amount; 

} 

fprintf( out, "\n"); 

for(loop[O] = O; loop[O] < all_data[O].amount; loop[O]++) 

{ 

if( amount_ all_ data== 1) printSampleSpace(l ,all_ data,loop,out,chk); 

for(loop[l] = O; loop[l] < all_data[l].amount; loop[l]++) 

{ 

if( amount_ all_ data == 2) printSampleSpace(2,all _ data,loop,out,chk ); 

for(loop[2] = O; loop[2] < all_data[2].amount; loop[2]++) 

if(amount_all_data == 3) printSampleSpace(3,all_data,loop,out,chk); 

for(loop[3] = O; loop[3] < all_data[3].amount; loop[3]++) 

if( amount_ all_ data == 4) printSampleSpace( 4,all_ data,loop,out,chk); 

for(loop[4] = O; loop[4] < all_data[4].amount; loop[4]++) 

if(amount_all_data == 5) printSampleSpace(5,all_data,loop,out,chk); 

for(loop[5] = O; loop[5] < all_data[5].amount; loop[5]++) 

83 



if(amount_all_data == 6) 

printSampleSpace( 6,all _ data,loop,out,chk); 

for(loop[6] = O; loop[6] < all_data[6].amount; loop[6]++) 

{ 

if(amount_all_data == 7) 

printSampleSpace(7 ,all_ data,loop,out,chk); 

for(loop[7] = O; loop[7] < all_data[7].amount; loop[7]++) 

{ 

if(amount_all_data == 8) 

printSampleS pace(8 ,all_ data,loop,out,chk ); 

for(loop[8] = O; loop[8] < all_data[8].amount; loop[8]++) 

{ 

if(amount_all_data == 9) 

printSampleSpace(9 ,all_ data,loop,out,chk); 

for(loop[9] = O; loop[9] < all_data[9].amount; loop[9]++) 

{ 

if( amount_ all_ data == 10) 

printSampleSpace(l O,all_ data,loop,out,chk); 

} 

} 

} 

} 

} 

} 

} 

84 



} 

} 

fprintf( out, "\n <-----End OfResul t---->"); 

fprintf( chk, "\nEND "); 

fclose( out); 

fclose(chk); 

make VCPSummary(); 

makeDCPSummary();. 

manageTemporaryFile(); 

readDCPProbability(); 

makeResultSummary(); 

makeResultMQT AndUtilAndThru(); 

printf("\nCompleted. "); 

printf("\nPress enter to continue ... "); 

getch(); 

return O; 

85 



St. Gabriel's Library, Au 

APPENDIX B : RESULT FILE 

Part I 

The concurrent vector after user enters the value follows VCP case I as shown in 

Page 26. The result would be as below. 

I The concurrent vector I (C 1) = {I, 2, 3, 4} 

2 The concurrent vector 2 (C2) = {I, 2, 3} 

3 The concurrent vector 3 (C3) ={I, I, 2} 

4 The concurrent vector 4 (C4) = {I, 2, 4} 

All cases (I 08 cases) after the combination of each concurrent vectors 1-4 are listed: 

I. C1=I, C2=I, C3=I, C4=I 

2. C1=I, C2=I, C3=I, C4=2 

3. C1=I, C2=I, C3=I, C4=4 

4. C1=I, C2=I, C3=I, C4=l 

5. C1=l, C2=I, C3=I, C4=2 

6. C1=I, C2=I, C3=I, C4=4 

7. C1=I, C2=I, C3=2, C4=I 

8. C1=I, C2=l, C3=2, C4=2 

9. C1=l, C2=I, C3=2, C4=4 

IO.C1=I,C2=2,C3=l,C4=l 

11. C1=l, C2=2, C3=l, C4=2 

12. C1=l, C2=2, C3=l, C4=4 

13. C1=l, C2=2, C3=l, C4=l 

14. C1=l, C2=2, C3=l, C4=2 

86 



15. C1=l, C2=2, C3=l, C4=4 

16. C1=l, C2=2, C3=2, C4=l 

17.C1=l,C2=2,C3=2,C4=2 

18. C1=l, C2=2, C3=2, C4=4 

19. C1=l, C2=3, C3=l, C4=l 

20. C1=l, C2=3, C3=l, C4=2 

21. C1=l, C2=3, C3=l, C4=4 

22.C1=l,C2=3,C3=l,C4=l 

23.C1=l,C2=3,C3=l,C4=2 

24. C1=l, C2=3, C3=l, C4=4 

25.C1=l,C2=3,C3=2,C4=l 

26.C1=l,C2=3,C3=2,C4=2 

27.C1=l,C2=3,C3=2,C4=4 

28.C1=2,C2=l,C3=l,C4=l 

29. C1=2, C2=l, C3=l, C4=2 

30. C1=2, C2=l, C3=l, C4=4 

31. C1=2, C2=l, C3=l, C4=l 

32. C1=2, C2=l, C3=l, C4=2 

33. C1=2, C2=l, C3=l, C4=4 

34. C1=2, C2=l, C3=2, C4=l 

35. C1=2, C2=l, C3=2, C4=2 

36.C1=2,C2=l,C3=2,C4=4 

37. C1=2, C2=2, C3=l, C4=l 

38. C1=2, C2=2, C3=l, C4=2 

39. C1=2,C2=2,C3=l,C4=4 

87 



40.C1=2,C2=2,C3=l,C4=l 

41.C1=2,C2=2,C3=l,C4=2 

42.C1=2,C2=2,C3=l,C4=4 

43.C1=2,C2=2,C3=2,C4=l 

44.C1=2,C2=2,C3=2,C4=2 

45.C1=2,C2=2,C3=2,C4=4 

46.C1=2,C2=3,C3=l,C4=l 

47.C1=2,C2=3,C3=l,C4=2 

48.C1=2,C2=3,C3=l,C4=4 

49.C1=2,C2=3,C3=l,C4=l 

50.C1=2,C2=3,C3=l,C4=2 

51.C1=2,C2=3,C3=l,C4=4 

52.C1=2,C2=3,C3=2,C4=l 

53.C1=2,C2=3,C3=2,C4=2 

54.C1=2,C2=3,C3=2,C4=4 

55.C1=3,C2=l,C3=l,C4=l 

56.C1=3,C2=l,C3=l,C4=2 

57.C1=3,C2=l,C3=l,C4=4 

58.C1=3,C2=l,C3=l,C4=l 

59.C1=3,C2=l,C3=l,C4=2 

60.C1=3,C2=l,C3=l,C4=4 

61.C1=3,C2=1,C3=2,C4=l 

62.C1=3,C2=l,C3=2,C4=2 

63.C1=3,C2=l,C3=2,C4=4 

64.C1=3,C2=2,C3=l,C4=l 

88 



65.C1=3,C2=2,C3=l,C4=2 

66.C1=3,C2=2,C3=l,C4=4 

67.C1=3,C2=2,C3=l,C4=l 

68.C1=3,C2=2,C3=l,C4=2 

69.C1=3,C2=2,C3=l,C4=4 

70.C1=3,C2=2,C3=2,C4=l 

71.C1=3,C2=2,C3=2,C4=2 

72.C1=3,C2=2,C3=2,C4=4 

73.C1=3,C2=3,C3=l,C4=l 

74.C1=3,C2=3,C3=l,C4=2 

75.C1=3,C2=3,C3=l,C4=4 

76.C1=3,C2=3,C3=l,C4=l 

77.C1=3,C2=3,C3=l,C4=2 

78.C1=3,C2=3,C3=l,C4=4 

79.C1=3,C2=3,C3=2,C4=l 

80.C1=3,C2=3,C3=2,C4=2 

8l.C1=3,C2=3,C3=2,C4=4 

82.C1=4,C2=l,C3=l,C4=l 

83.C1=4,C2=l,C3=l,C4=2 

84.C1=4,C2=l,C3=l,C4=4 

85.C1=4,C2=l,C3=l,C4=l 

86.C1=4,C2=l,C3=l,C4=2 

87.C1=4,C2=l,C3=l,C4=4 

88.C1=4,C2=l,C3=2,C4=l 

89. C1=4,C2=l,C3=2,C4=2 

89 



90.C1=4,C2=l,C3=2,C4=4 

91.C1=4,C2=2,C3=l,C4=l 

92.C1=4,C2=2,C3=l,C4=2 

93.C1=4,C2=2,C3=l,C4=4 

94.C1=4,C2=2,C3=l,C4=l 

95.C1=4,C2=2,C3=l,C4=2 

96.C1=4,C2=2,C3=l,C4=4 

97.C1=4,C2=2,C3=2,C4=l 

98.C1=4,C2=2,C3=2,C4=2 

99.C1=4,C2=2,C3=2,C4=4 

lOO.C1=4,C2=3,C3=l,C4=l 

lOl.C1=4,C2=3,C3=l,C4=2 

102.C1=4,C2=3,C3=l,C4=4 

103. C1=4,C2=3,C3=l,C4=1 

104. C1=4,C2=3,C3=l,C4=2 

105.C1=4,C2=3,C3=l,C4=4 

106.C1=4,C2=3,C3=2,C4=l 

107.C1=4,C2=3,C3=2,C4=2 

I08.C1=4,C2=3,C3=2,C4=4 

90 



Part II 

N 

The probability of the case that the summarizes of all C(l-4) [LC; ] is equal to 4 
1=1 

Probability= 21108 = 0.0185185 

N 

The probability of the case that the summarizes of all C(l-4) [LC, ] is equal to 5 
i=I 

Probability= 71108 = 0.0648148 

N 

The probability of the case that the summarizes of all C(l-4) [IC; ] is equal to 6 
l=l 

91 



Probability= 13/108 = 0.1203704 

N 

The probability of the case that the summarizes of all Cc 1-4) [IC, ] is equal to 7 
i=I 

92 



Probability = 19/l 08 = 0.17 59259 

N 

The probability of the case that the summarizes of all C(l-4) [_LC,] is equal to 8 
1=1 

93 



Probability= 211108 = 0.1944444 

N 

The probability of the case that the summarizes of all C(l-4) [IC, ] is equal to 9 
i=l 

Probability= 191108 = 0.1759259 

94 



N 

The probability of the case that the summarizes of all C(l-4) CL: C; ] is equal to 10 
i=I 

Probability= 14/108 = 0.1296296 

N 

The probability of the case that the summarizes of all C(l-4) [IC, ] is equal to 11 
i=I 

95 



Probability= 81108 = 0.0740741 

N 

The probability of the case that the summarizes of all C0 _4l Cl: C;] is equal to 12 
i=I 

Probability= 4/108 = 0.0370370 

N 

The probability of the case that the summarizes of all C0 _4l (.'~= C; ] is equal to 13 

Probability = 11108 = 0.0092593 

96 

SC-Gabriel's Library, Au 

1=! 




	Cover and Title Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Equations
	Chapter 1 :  Introduction
	Chapter 2 :  Existion Performance Analysis Method
	Chapter 3 :  Proposed Method for Multiple Level Concurrent Programs (MLCP) 
	Chapter 4 :  Evaluation and Validation of the Proposed Method
	Chapter 5 :  Conclusion
	Bobliography
	Appendix : A
	Appendix : B

