


~abrlel's Library, Au 

A Study of The Permutation Capability of A 
Modified Omega Network 

A Thesis 
Submitted to the Faculty of Engineering 

By 

Phanthip Thaiyoo 

In partial fulfillment of the requirements 
for the degree of 

Master of Engineering in Broadband Telecommunications 

Advisor: Dr. Gennady Veselovsky 

Assumption University 
Bangkok, Thailand 

June 2003 



"A Study of The Permutation Capability of A Modified Omega Network" 

by 

Ms.Phanthip Thaiyoo 

A Thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Engineering 
Majoring in Broadband Telecommunications 

Examination Committee: 

1. Dr. Gennady Veselovsky (Advisor) 

2. Dr. Thiraphong Charoenkhunwiwat (Member) 

3. Asst.Prof.Dr.Putchong Uthayopas (Member) 

4. Asst.Prof.Dr.Tubtim Angkaew (MUA Representative) 

Examined on: May 20, 2003 

A d r: G d . . June 9, 2003 pprove 1or ra uat1on on ................................. .. 

Faculty of Engineering, Assumption University 
Bangkok, Thailand 



A Study of the Permutation Admissibility of A Modified Omega Network 

By 

Phanthip Thaiyoo 

Abstract 

The class of fault-tolerant redundant path (R-path) multistage networks 

was derived from Omega networks by Padmanabhan and Lawrie who proved that 

the new network class retained all the connection properties of the parent 

networks in the absence of faults. In the thesis a simple window method that 

allows determining the admissibility of any BPC (Bit Permutation Complement) 

permutation to an R-path Omega network is introduced. A study of the 

permutation admissibility of an R-path Omega network is based on a 

computational exploration with C language program and deals with the variable 

sizes of a network and switching element. It is shown that the permutation 

capability of R-path Omega networks is much better than that of the parent 

networks. For example such powerful and frequently used m parallel 

programmmg permutation as perfect shuffie is admissible to all possible 

configurations of R-path Omega networks being non-admissible to I-path Omega 

networks. 



Acknowledgements 

I would like to thank my advisor, Dr. Gennady Veselovsky, for all of his 

advises and motivation throughout the completion of this thesis. Also, I would like to 

thank Asst. Prof Dr. Kittiphan Techakittiroj for his suggestion and guidance. 

Furthermore, I would like to thank Dr. Sudhiporn Patumtaewapibal, Dean of Faculty 

of Engineering, and all other faculty members of Broadband Telecommunications 

department and laboratory for their support. 

Also, I would like to thank all of my classmates for their support and 

encouragement. Finally, I would like to thank my family for their support, 

encouragement, and understanding. 

II 



-St. Gabriel's Library, Au· 

Table of Contents 

PAGE 

Chapter 1 Introduction 

1. 1 Introduction 

1.2 Goal of thesis 

1. 3 Relevant literature 

1. 4 Thesis overview 

1 

4 

4 

4 

Chapter 2 Fundamental Theory and Basic Concept 

2.1 Interconnection networks 6 

2.1.1 Static networks 6 

2.1.2 Dynamic networks 8 

2.2 Multistage interconnection networks (MINs) 12 

2.2.1 MINs connection capability 12 

2.2.2 Main properties of MINs 13 

2.2.3 MINs applications 14 

2.2.3.1 ATM switches in B-ISDN environment 14 

2.2.3 .2 Interconnection facilities in parallel computers 16 

Chapter 3 Omega Network and BPC Permutation 

3. 1 The I-path Omega network 18 

3. 1. 1 Network structure 19 

3 .1.2 Routing tag control 20 

3.1.3 Information blocking 21 

3.2 The R-path Omega network 22 

3.2.1 Network structure 23 

iii 



3.2.2 Establishing a path 

3.2.3 Permutation capability 

3 .3 BPC permutation 

24 

26 

30 

Chapter 4 Exploring ofBPC Permutation Admissibility to R-Path Omega Network 

4.1 BPC permutation admissibility 

4.2 Admissibility algorithm 

4.3 Frame format of program design 

4.4 Summary of permutation capability results 

Chapter 5 Conclusion 

5 .1 Thesis summary 

5.2 Recommendation for future work 

Appendix A: Source code 

Appendix B: Results of computational experiments 

References 

IV 

32 

37 

41 

47 

49 

50 

51 

79 

108 



List of Figures 

PAGE 

Figure 1.1 Path for (000,000), (I00,010) in a I-path 8 x 8 Omega network 2 

Figure 1.2 A 2-path Omega network of 32 inputs and 32 outputs 3 

Figure 2.1 Static interconnection network topologies 7 

Figure 2.2 Classification of dynamic networks 8 

Figure 2.3 Dynamic networks: (a) crossbar switch, (b) single-stage, 

( c) multistage 9 

Figure2.4 A two-by-two switching box and its four interconnection states I I 

Figure 2.5 Path conflict in the simplest MIN 13 

Figure 2.6 Rudimentary ATM network I5 

Figure 2.7 ATM switch I5 

Figure 2.8 Architectural configurations of SIMD computers I7 

Figure 3.1 The perfect shuffle interconnection I9 

Figure 3.2 A I-path Omega network with N = 8 20 

Figure 3.3 Path for (OOI,000), (lOl,OI I) in a I-Path 8 x 8 Omega network 22 

Figure 3.4 Path for (OIO,OI l) in a 2-Path 8 x 8 Omega network 23 

Figure 3.5 A 2-path 16 x 16 Omega network with switches set up to 

realize the identify permutation 28 

Figure 4.1 A I-path 32 x 32 Omega network when realize perfect shuffle 

permutation 35 

Figure 4.2 A 2-path 32 x 32 Omega network when realize perfect shuffle 

permutation 36 

v 



List of Tables 

PAGE 

Table. I The terminals at different stages of path (01000, 00110) 

when extra bits is 0 25 

Table. II The terminals at different stages of path (01000, 00110) 

when extra bits is l 25 

Table III Possible values of redundancy in uniform networks 26 

Table IV The terminals at different stages of path of perfect shuffle 

permutation for l path omega network with N = 32 and N = 2 33 

Table V terminals at different stages of path of perfect shuffle 

permutation for 2 path omega network with N = 32 and B = 4 34 

Table VI Summary of permutation capability results 47 

VI 



1.1 Introduction 

Chapter 1 

Introduction 

1 

The Omega network or 1-path Omega network was originally proposed by 

Duncan H. Lawrie [I] as an alignment network between processors and memories 

in the array processor systems. In general, an N x N I-path Omega network as 

shown in Figure I . I can connect N processors to N memories by using a small 

number of stages, and each stage composed of fewer than N switches. The I-path 

Omega networks are attractive for scalable shared-memory architectures like single 

instruction stream multiple data stream (SIMD) computers because their use of 

multiple simple switches are able to ensure feasibility of system and their use of a 

few stages with many switching modules precludes needing a long, inefficient 

interconnection network pathway. 

A I-path Omega network has a self-routing algorithm for establishing the 

path of any given source and destination. This algorithm always chooses one and 

only one path through the network between any source-destination pair, as the 

result, the ability of fault-tolerance of I-path Omega network is limited; the whole 

system will be destroyed if there is any failure in a link or in a particular switch. 

Additionally, I-path Omega network is a blocking network, i.e., some permutations 

cannot be established by the network for one pass. Figure 1.1 shows the paths 

established for the mapping 000~000, 100~010. These paths share a common 

connection at the output of the first stage, and a conflict occurs. 



-----i-..~----~-----+------"""l'--000 

001\ I 
010----/ ~ -r-h 1~ /~ 
011~1 ri _ _J-\ !~\I 1~ 

10 

-001 

torn 
011 

-JOO 

-101 

2 

110~ 

111--­
Stage 0 ~--~1 

Stage 1 Stage 2 

i-110 

-111 
~--~ Stage3 

Figure 1.1 Path for (000,000), (100,010) in a 1-path 8 x 8 Omega network 

To overcome the fault-tolerance limitation of the Omega network, K. 

Padmanabhan and D. Lawrie proposed its modification which is called Modified 

Omega Network or R-path Omega network [2]. The close relation to the I-path 

Omega topology sustains R-path Omega network maintainable all connection 

properties of the standard I-path Omega network. 

The R-path Omega network achieves the fault-tolerance in the form of 

providing multiple disjoint paths between every source and every destination. For 

example, Figure 1.2 shows two different paths from source S = 01000 to destination 

D = 01100 in 32 x 32 2-path Omega network. Since the only one of R set is needed 

to provide connectivity between any source-destination pair, the network can 

tolerate the breakdown of any link or a partial failure of an intermediate switch. As 

an example in Figure 1.2, the failure in one of these two sets of intermediate 



3 

switches or links will not p:event source S = 01000 from accessing destination D = 

01100, because the leftover set that does not break down can be used instead. 

Refer to [2], the authors of R-path Omega network proved that "the 

multipath network would pass any permutation (n) that 1-path network 

passes", i.e., no conflict could occur in the multipath network if none occurred in 

the 1-path network. 

00000 ---------; 

00001 -

1)(101 0 "" 

11001 I """'""' 

00100 

00101 

110110 

Oil\ I I -

01000 

01010 --

111100 

OJ\ \IJ _ 

01111 

10000 

\0001 

I 01110 

I 11011 

I 0 I 00 

10\0\ 

10110 

\U\11 

110110 

11001 

11010 

11011 

1111111 

111111 

11110 

\\111 

1 .. / --

- / 

Stage 0 

~" 

-~"" 

Stage 1 Stage 2 

00000 

00001 

00010 

00011 

00100 

00101 

00110 

00111 

01000 

01001 

01010 

01011 

01100 

10000 

10001 

10010 

10011 

10100 

1-- 10101 

f----10110 

1-- 10111 

11000 
' f-- 11001 

1-- 1101(1 

f-- 11011 

L----

11100 

f--- 11101 

f-- 11110 

~11111 
~--- Stage 3 

Figure 1.2 A 2-path Omega network of 32 inputs and 32 outputs. The solid and dashed edges 
indicate the two sets of disjoint paths 



4 

1.2 Goal of Thesis 

The main objective of this thesis is to explore how the presence of multiple 

paths in R-path Omega network improves its permutation capability in comparison 

with that of a I-path Omega network. The thesis seeks technique for testing 

admissibility ofBPC permutations to R-path Omega network. 

1.3 Relevant Literature 

Before proceeding further, it will be recalled that a permutation is called a 

BPC permutation if the destination address can be obtained of the source address by 

permuting its bits ( s0s1 s2 · · · sn_2sn-I) and/or complementing some or all of its bit 

positions. The BPC permutation admissibility problem, which is being solved in 

this thesis, is most closely to the problem of admissibility solved by Xiaojun Shen 

[12]. However Shen's investigations are in concern with another class of 

interconnection network, namely k-Extra Stage Multistage Cube-Type Networks 

(k-EMCTN), where redundant disjoint paths between any pair of source and 

destination are provided by adding k more stages in front of a multistage cube-type 

network. In addition, our approach to solving the problem of admissibility is 

different. Therefore, it can be said that we are the first who explore admissibility of 

the most frequently used Bit Permutation Complement (BPC) permutations to R­

path Omega network with the routing algorithm developed by US. 

l.4 Thesis Overview 

Section 2.1 considers on the general concept of interconnection network: 

static network, and dynamic network. Section 2.2 emphasizes on Multistage 

Interconnection Networks (MINs). The connection capability and main properties 



5 

of MINs are described in section 2.2.1 and 2.2.2 respectively. While section 2.2.3 

depicts MINs application in both B-ISDN and parallel computers environments. 

Chapter 3 considers I-path and R-path Omega networks. The detail of their 

structures and main properties are discussed. The examples of BPC permutations 

that we used to explore are given in section 3. 3. Chapter 4 is the exploration part, 

our admissibility algorithm concept and its pseudo code and flowchart are shown in 

section 4.1, and section 4.2 respectively. The frame format of C language program 

for simulating the exploration is shown in Section 4.3 with pseudo code and 

flowchart form as well. Section 4.4 shows the summary of permutation capability 

results. The last, chapter 5 concludes the overall of thesis, and the recommendation 

of future work. 



6 

Chapter 2 

Fundamental Theory and Basic Concept 

2.1 Interconnection Networks 

Formally, Interconnection Network (IN) topology refers to the layouts of links 

and switch boxes that establish interconnections. The links are essentially physical 

wires (or channels); the switch boxes are devices that connect a set of input links to a 

set of output links. For high performance system, the interconnection network 

topologies tend to be regular and can be grouped into two categories: static and 

dynamic. 

2.1.1 Static Networks 

The static networks provide the means of fixed connections between N 

processors and N memory modules; the links between nodes are unchangeable and 

cannot be easily reconfigured [ 4]. There are various types of static networks, all of 

which can be classified according to the dimensions required for layout. Figure 2.1 

shows one-dimensional, two-dimensional, and three-dimensional topologies. One­

dimensional topology, Figure 2. l(a), is the linear array. It is used for some pipeline 

architectures. Two-dimensional topologies, Figures 2.1 (b) through 2.1 (f), include the 

ring, star, tree, mesh, and systolic array. Three-dimensional topologies, Figure 2.1 (g) 

through 2. lG), include the completely connected, chordal ring, 3 cube, and 3-cube­

connected-cycle networks. 



(a) Linear array (b) Ring 

(d) Tree (e) Near-neighbor mesh 

(g) Completely connected (h) Chordal ring 

(j) 3-cube-connected cycle 

a9o 
~Lr--0 

/ l ' 
0/60 

(c) Star 

(f) Systolic array 

(i) 3 cube 

Figure 2.1 Static interconnection network topologies 

7 



8 

Crossbar Single stage 

Figure 2.2 Classification of dynamic networks 

2.1.2 Dynamic Networks 

ln contrast to the static network, links between nodes in dynamic topologies 

provide reconfigured connections [ 4]. The classification of dynamic networks is 

presented in Figure 2.2. First level of the hierarchy lists three forms of dynamic 

interconnection networks: (1) crossbar, (2) single-stage, and (3) multistage. 

Firstly, the crossbar network is the oldest type and has served as the basic 

switching structure or fabric for many years. In a crossbar, the inputs and outputs are 

connected to set of switching points called crosspoints. Since each input-output 

combination has an individual crosspoint, any input can be connected to any output at 

any time with no possibility of blocking connection. For example, Figure 2. 3 (a) shows 

input 001 is connected to output 011, and at the same time input 010 is connected to 

output 001. Although the connection of crossbar is made on fly, any source can 

connect to any desired destination, the crossbar is impractical for large network 

because the cost of crossbar network is driven largely by the crosspoint count. For 

example, the cost of a crossbar then is NM for a N xM network or N 2 for a square 

network. 



inputs 

too 

001-i 
. : \ r~--~F--~~ 
I Cf0&5!XJll11 \ I 

010 

Oil 

100 

IOI 

l IO 

Ill 

000 001 010 011 JOO IOI 110 lll 

output 

(a) 8 x 8 Ooo .. <rbir &.itch 

(XX)--

001 

010---

011--

100 

101-...... --

110--

111 

I 

010 

Oll 

f-------010 

f------011 /~ 
/ >-------~ 

1------100 

f------101 

>-----110 

f-------111 

llO i_J 
l ll----1-<. 

~-~ 

(b) 8 x 8 Shuffle-Exchange 

---fXXl 

001 

·~~--~!==--:~ 

( c) 8 x 8 Bmyan Net\\uk 

Figure 2.3 Dynamic networks: (a) crossbar switch, (b) single-stage, (c) multistage 

9 



10 

Second is the single-stage network. In this case, data must pass repeatedly 

through the network in order to route them from an input to an output. In other words, 

the data must enter the network, be passed through the network for the number of 

times necessary to route them to the correct output, and then exit the network. One 

well-known example is the "Shuffle-exchange" [Lang 1975; Lang and Stone I 976; 

Lawrie 1975; Stone 1971], as shown in Figure 2.3(b). The network connects each of 

the inputs on the left side to some outputs on the right side through a single layer of 

binary switches represented by the rectangles. The binary switches can direct the 

message on the left-side input to one of two possible outputs that is on the right side. 

Clearly, the single-stage network topology is limited, however this type of network has 

become a basis for multistage network, for instance, if we cascade enough single-stage 

networks together, these networks will form a completely connected multistage 

network. 

The last is the multistag€ network; most switching networks on now a day 

consists of several stages, which range from as few as two stages, through some very 

powerful three-stage networks, or up to networks with a very large number of stages. 

Formally, the "staging" is as a result from several repercussions. Staging decreases 

immediately the number of crosspoint required for large N crossbar network. However 

staging generate the increasing delay, which becomes significant in the many-staged 

networks that require interconnecting large numbers of inputs and outputs. 

One well-known example of multistage networks is Banyan network shown in 

Figure 2.3(c). The Banyan type network consists of n stages where N = 2n (N 

represents the number of input and output nodes). Therefore, each stage may use N/2 

switch elements, and each switch element is base 2 (i.e., 2 x 2 switching element). The 

interconnection patterns from stage to stage determine the network topology. Each 

stage is connected to the next stage by at least N paths. The network delay is 



-st. Gabiiet s Library, Au 
6247 ~-2-

11 

proportional to the number n of stages in a network. The cost of a size N x N network 

is proportional to N log2 N. This class of interconnection networks is also known as a 

class of cube-type networks. 

In addition, the switching elements of Banyan network are controlled as self-

routing. This control algorithm determines how the state of each switch will be set. 

Refer to Figure 2.3(c), it shows the switching decision at an 2x 2 elementary switch in 

a given stage for connecting source S = 101 to destination D = 001 of a Banyan 

network. To route the signal, the algorithm simply uses the bits of the destination 

address, 001, as instructions for dynamically selecting a path through the switches. For 

illustration, the destination address says to set the first two switches to 0 followed by 

setting the third switch to 1. This path leads to the desired destination. If the bit is 0, 

the switching element will be set to connect the upper output of switch. In contrast, if 

the bit is 1, the switching element will be set to connect the lower output of switch. A 

path from any input side to all destination address from 000 to 111 can be obtained in 

this fashion. Note that the general state for each switch element can be assumed either 

the straight or the exchange states. In other words, each switch can be in any one of 

four legitimate states: straight, exchange, upper broadcast, and lower broadcast which 

are shown in Figure 2.4. 

ao :jse~~~~i~tg I : g ~ a1 

a o : I I : b 0 Straight a1 b1 

ao =l~I : b 0 Exchange a I b1 

ao :j~-~1 : g ~ Up per 
a1 broadcast 

:1~-1 ao 
a1 

: b 0 

Lower 

b1 broadcast 

Figure2.4 A two-by-two switching box and its four interconnection states. 



St. Gabriel's Library, Au 
12 

2.2 Multistage Interconnection Networks (MINs) 

Refer to Figure 2.2, classification of dynamic networks, the multistage 

networks are further divided into concentrators, i.e., the network interconnects a 

specific idle input to an arbitrary idle output, and connectors, i.e., the network 

establishes a path from a specific input to a specific output. However, in this thesis, 

the multistage networks as connectors are considering, they are called Multistage 

Interconnection Networks (MINs) 

2.2. l MIN s Connection Capability 

Formally, MINs can be classified by their ability to establish desired 

connections between any input and any output. To a large extent, this is the ability to 

add a new arbitrary connection to a network with arbitrary existing connections. In 

other words, it is the ability that either a network may allow any arbitrary connection 

to be established at any time or the establishment of some connection may be blocked 

by an existing connection which uses a path or contact pair the new connection needs. 

As depicted in Figure 2.2 MINs are classified further to nonblocking, rearrangeable, 

and blocking networks. 

Firstly, nonblocking network, any desired connection between unused ports 

can be always established immediately without interference from any arbitrary 

existing connections. All possible permutations (i.e., the connection of a set of 

sources to a set of destinations) can be provided in a nonblocking network, which 

sometimes is called the universal network. Secondly, rearrangeable network is also a 

universal network; however, this network may not be always possible to connect an 

idle pair of terminals without disturbing from any existing connections. That means 

when the rearrangeable network is given any set of connections in progress and any 

pair of idle terminals, the existing connections can be reassigned new routes (if 

necessary) so as to make it possible to connect the idle pair at any time. Lastly, 



13 

Figure 2.5 Path conflict in the simplest MIN 

blocking network, in contrast to universal network, the blocking network may not be 

possible to connect of an idle pair of terminals in any way because in the blocking 

network, there is one and only one path for each pair. Figure 2.5 shows a path conflict 

in the simplest MIN. 

2.2.2 Main Properties of MIN s 

A N x N multistage interconnection networks (MINs) is a communication 

network with N input terminal.s (sources) and N output terminals (destinations) 

composed of a certain number of stages of switching elements (with 2 x 2 switching 

elements, the number of stages is usually not less than log2 N ). Each stage is 

connected to the next stage by at least N data transmission lines between any "source-

' 
destination" pair. Each switching element may select from two or more output lines 

when establishing a connection with an input line. 

The simplest MIN (as shown in Figure2. 5) consists of the two-input switching 

elements. It has been shown theoretically that such a two-input switching element 

ensures the least number of connection points. In addition, the control algorithms for 

two-input element networks are the simplest. However, component availability 

considerations may suggest using a MIN in which the number of switchable channels 

is different from two. Thus, there are large MIN s with 16 x 16 switching elements. 



14 

The important properties of MINs include 1) blocking of information in the 

network; 2) speed, i.e., the rate of transmission of a message from the source to the 

destination; 3) ease of use, i.e., the degree to which connections are automatically 

established in the network; 4) partitionability, i.e., the possibility of partitioning the 

system into subsystems of different size; 5) modularity, i.e., the possibility of 

constructing the system from a limited number of basic modules; 6) LSI compatibility, 

i.e., the possibility of implementing the modules on an LSI chip; 7) scalability, i.e., 

amount the changes needed in order to make the system work with a greater number of 

inputs/outputs; 8) fault-tolerance, i.e., the ability of the system to remain functional 

even when some components are faulty (possibly with some degradation of 

performance). 

2.2.3 MINs Application 

As it has been noted m the abstract, multistage interconnection networks 

(MINs) initially were developed for needs of telephony as an alternative to a crossbar, 

which is impractical for large networks. For the past few decades, the theory and 

practical implementation of MINs has evolved dramatically. They are widely used as 

ATM switch fabrics in Broadband Integrated Services Digital Networks (B-ISDN) 

environment that of supporting a wide range of audio, video, and data services within 

the same network. Moreover, they are used to be interconnection facilities in parallel 

computers for delivering information streams to interactive devices. 

2.2.3.1 A TM Switches in B-ISDN Environment 

The basic concept behind Broadband Services Integrated Digital Network (B­

ISDN) is that of supporting a wide range of audio, video, and data services within the 

same network. ATM (Asynchronous Transfer Mode) has been designated as the target 

transfer mode approach to providing the desired integration of the various traffic types 

to be supported by B-ISDN. It is essentially a packet-switched mode of transfer 



15 

through the network, using short, fixed-length, 53-octet (byte) packets called cells. 

The cells are assigned on demand at the user network interface (UNI). 

Once in the network, each A TM cell moves along the virtual connection 

associated with the virtual path established end-to-end. The routing function required 

to move the cells along their respective virtual paths is carried out at the network 

nodes shown in Figure 2.6. These nodes are called switches in the ATM switches. The 

prime purpose of the ATM switch is to switch incoming cells arriving on a particular 

input link to the output link associated with the appropriate virtual path (route). Figure 

2. 7 is the schematic portrayal of this generic function. In the example of Figure 2. 7, 

cells following VP 1 are shown arriving on link 1 and being switched to output link N. 

Acx:essoontmller 

l -I L __ _ 

2 

N 

! 

VP! 

• 
• 
• 

i 
Input links 

~ oode: A1Ms\\itch 

_/ 
(lJSer-lliwirl<Interface) VP~~~;'.( _ f~, .(Virtual Rlth) 

.. 1.JNI ,,."' .· ·-::-, I 

. ·1 / ~'VP! 
I /-·- // ·.', 

t ) 
butfer: f · 

adrrission oontrol 
irrµR<l here ' 

,/ 
I 

Figure 2.6 Rudimentary ATM network 

-..... ..... ..... ..... ..... ..... 
............... 

-...,VP! 
.......... • ..... ..... ..... ..... • ............ ..... I ..... ..... I • 

1JNI 
I 

)1---'i- destimtion 
I 

2 

...... 
----- N 

i 
Output links 

Figure 2. 7 A TM switch 



16 

Furthermore, the examples of an A TM switch are found in [ 17], one of them is 

Batcher-Banyan architecture. In this case, Batcher sorter, which arranges incoming 

requests to the proper sequence, is followed by a Banyan network. As a while such 

configuration combines self-routing with non-blocking property. 

2.2.3.2 Interconnection Facilities in Parallel Computers 

Single instruction stream-multiple data stream (SIMD) multiprocessor 

computing systems occupy an important place among parallel computing system 

architectures. In these systems, N processors or "processor elements" (PE) execute the 

same instruction in a synchronized fashion on many data values, where each processor 

operates on a different subset or partition of the data [5]. For example, if the 

instruction were SUB C, D each PE would subtract its own value of D from its own 

value of C. The class of problem that an SIMD machine is especially designed to 

perform is vector computations over matrices or arrays of data. 

A SIMD computer may assume one of two slightly different configurations, as 

illustrated in Figure 2.8 [16].Configuration I (Figure 2.8(a)), each processor element 

(PE) has its own individual memory module (M) and is linked by interconnection 

network to other identical processor elements. On the other hand, configuration II 

(Figure 2.8(b)), the interconnection network is interposed between the processor 

elements and the shared memory modules of all the processor elements. It is noticed 

that each processor element in configuration II can access to any arbitrary shared 

memory, but each processor in configuration I must access to its individual memory 

only. However, in configuration II, there is a possibility of memory collision when two 

or more processors try to access the same memory module, and its interconnection 

network can introduced the additional delay when accessing the memory. 

Additionally, the permutation requests for SIMD computers are typical 

therefore, the interconnection network, which provides for communication among the 



~L Gabriel's Librarv. Au 
17 

processors and memory modules, in Sll\1D sometimes referred to as an alignment 

network or permutation network. Note that permutation networks are those that can 

connect their inputs to their outputs in any arbitrary way as long as no two inputs want 

the same output, i.e., for an N output network, there are NJ possibilities. 

1/0 

Dllabus Dlla & Instructions 

CUmmciy 

cu ------------------------------------

Crotrol bus 

i i 1 
PFn I+- PE1 I+- l'EN1 I+-. . . 
Mi Mi Mv.1 

t t t 
• i 

I 
INIEROONNECTIONNETWJRK r-·-

(a) Configuration I 

1/0 

~--~Dat-a-bm-------------<Data&lnstructicm 

L"1Jmemo1y 

cu --------------------------------------1 
'--~- i 

IN1ER.0)NNECTJONNEIWORK 

i 
i 

I 
! 
: 

I i 
[.----.J O:utrol 

~----~---------------~! 

M/;1 

(b) Conti guration II 

Figure 2.8 Architectural configurations of SIMD computers 



18 

Chapter 3 

Omega Networks and BPC Permutations 

3.1The1-path Omega Network 

The I-path Omega network was originally proposed by Duncan H. Lawrie [I] 

as an alignment network between processors and memories in the array processor 

systems. It was introduced as an alternative alignment network of the costly crossbar 

switch and the complicated rearrangeable Benes network (i.e., the rearrangeable, 

nonblocking multistage interconnection network). One possibility for an alignment 

network is the traditional N x M crossbar switch. This switch can perform any one-to­

one of inputs to outputs and with slight modification, it can do one-to-many mapping. 

The time required to do this mapping is O(log N) or O(log M) gate delays. However, 

the number of gates in an N x M crossbar is proportional to N x M, and this is overly 

expensive in terms of gates and reliability for using in large systems. Benes network is 

an another possibility for an alignment network. It has the same capability as a 

crossbar but only 0 (N log N) gates for an N x N network. The time to pass through the 

network is 0 (log N). However, it is not easy to set up this algorithm for doing these 

time units and this is too long to be practical in this application. 

In contrast to crossbar and Benes networks, as an alignment in parallel 

computer, an N x N I-path Omega network can connect N processors to N memories 

by using a small number of stages, and each stage composed of fewer than N switches. 

In addition, its use of multiple simple switches can ensure system feasibility, and its 

use of a few stages with many switching modules can preclude needing a long, 

inefficient interconnection network pathway. 



19 

As it has been noted in introduction, the self-routing algorithm to establish the 

path for any given source and destination of 1-path Omega network is efficient. Each 

switch is set itself according to a particular bit in the destination address. However, the 

ability of fault-tolerance (i.e., the ability of the system to remain functional even when 

some components failed) of I-path Omega network is limited because it can provide 

only one path through the network between any source-destination pair. For example, 

if there is only failure in a link or a partial failure of a switch the whole system will be 

destroyed. Furthermore, I-path Omega network is a blocking network, some 

permutations, i.e., the connection of a set of sources to a set of destinations, cannot be 

established by the network. 

3.1.1 Network Structure 

An N x N I-path Omega network consists of n = log2N identical stages, where 

N is the number of inputs (outputs). Each stage consists of a perfect shujjle 

interconnection followed by N/2 switching elements. The perfect shuftle 

interconnection has the property taking an input at a position whose binary 

representation is so s1 . . . sn-J, and moving it to position s1 . . . sn-J s0. For 

illustration, Figure 3 .1 and Figure 3 .2 reptesent the perfect shuftle interconnection and 

the I-path Omega network for N = 8 respectively. 

2 2 

3 

4 

5 

6 6 

Figure 3.1 The perfect shuffle interconnection 



000 

001 

010 

011 

100 
101 

110 

111 -------; 

Stage 0 

~L Gabriel's Librarv. Au 
20 

1-100 
' 

c__ ___ 1-101 

-110 

--Ill 

L__---Stage 3 

Figure 3.2 A 1-path Omega network with N=S 

3.1.2 Routing Tag Control 

The switching elements in 1-path Omega network are controlled individually. 

In order to pass data from the networks inputs to the network outputs, it is necessary to 

have the routing algorithm for setting the stages of the switches. Refer to Figure 2.4, 

each switch can have one of four possible connection states. The network may send its 

input straight through, interchange the inputs or broadcast one of the inputs to both 

outputs. However, to switch both inputs to the same output is not allowed because that 

means data are in a conflict. 

As it has been mentioned, the 1-path Omega network is a subclass network of 

Banyan type. They have an equivalent topology which is basing on 2 x 2 switching 

elements of the self-routing multistage network (Note that the only difference between 

1-path Omega network and Banyan network is their internal switch 

connections). Therefore, the self-routing algorithm of Banyan network is maintained as 

the one of 1-path Omega network 



21 

Let S = s0 s1 . .. sn-J be the source tag, i.e., the binary representation of the input 

number, and let D =do d1 . .• dn-J be the destination tag, i.e., the binary representation 

of the desired output number. The self-routing algorithm is as simply uses the bits of 

the desired output number as instructions to control the successive stages in order. The 

input of the switch on the /h stage, where i is between 0 and n-1, is connected to the 

upper output if di= O; and to the lower output if d1 = 1. For an illustration, Figure 3.2, 

shows a path between source S = 001 and destination D = 010. 

3.1.3 Information Blocking 

To set up a particular path from any source to any destination in I-path Omega 

network, it just simply follows the above procedure simultaneously for all sources or 

all destinations. It can be observed that the algorithm will choose the unique set of 

paths in the network for any given mapping. In addition, since the paths in a set will 

not necessarily be disjoint, a "blocking" situation (due to conflicts) may be presented 

to any source-destination pair. Note that, to continue accessing the blocked message 

when a conflict arising in the network, the blocked message must be waited until the 

other has completed its transmission. 

A blocking condition generally happens when the messages that exist on the 

two input links of a switch want to go out the same output link, as the result, two 

different signals sharing a common wire. In fact, the two different signals are not 

allowed to share a common wire, they are allowed to share a common wire if and only 

if both signals have a common source, in which case, it can be said that they are 

identical. Figure 3 .3 shows the conflicted paths which are established for the mapping 

0010000, 1010011, which are sharing a common connection at the output of the first 

stage. 



22 

000-----i 

001 L. 
000 

010 

I 00 

101 

Figure 3.3 Path for (001,000), (101,011) in A 1-Path 8 x 8 Omega network 

3.2 The R-Path Omega Network 

K. Padmanabhan and D. Lawrie proposed Modified Omega Network or R-

path Omega network [2], in order to overcome the fault-tolerance limitation of the I-

path Omega network by using basic switches with the number of input and output 

greater than 2. The R-path Omega network has been derived from the I-path Omega 

network; therefore, it can maintain all connection properties of the original I-path 

Omega network. The fault-tolerance of R-path Omega network is achieved in the form 

of being a multipath network, i.e., R-disjoint connection paths for every source-

destination pair are provided through the R sets of intermediate switches and links. 

Figure 3 .4 shows two different paths from source S = 010 to destination D = 011 in 8 x 

8 2-path Omega network. The failure in one of these two sets of intermediate switches 

or links will not prevent source S = 010 from accessing destination D = 011. For the 

permutation admissibility, the authors of R-path Omega network proved that the 

permutation capability of a multipath network is not worse than that of a I-path 

Omega network; R-path network would pass any permutation (n) that the I-path 



3L Gabriel's Library. Au 

23 

(OJ ~ I e.z !~ 
1- lXXl 

i 
i 

001 (X)J I 

1-. 1-
010 ---r··. 010 

Oil \ 
\ 011 

~ 
\ \ 

----1 

! 

'..._,>( 'x / . \ 

v \ 
' I /', 

100 I 
I 

'· \ _ __j I I 100 
"'-. I 1-

? 
1-

IOI I 
-- ·-.~ I- IOI ----1 /_ 

I 

110 _/ 

~o~ ... 1-
I- I IO 

Ill 

----

1- Ill 
Stage I Stage2 

Figure 3.4 Path for (010,011) in a 2-Path 8 x 8 Omega network 

network passes, and no conflict could occur in R-path network if none occurred in 1-

path network. 

3.2.1 Network Structure 

An N x N R-path Omega network consists of flogs N 7 identical stages of Bx B 

switching elements, where each stage consists of NIB switches, it is a uniform network 

with all switches of size B. In fact, the R-path Omega network does not require N to be 

a power of B, because when N = Bd the network will equivalent to I-path Omega 

network. Stages of R-path Omega network are interconnected by the B * NlB shuffle. 

A B * NIB shuffle is the permutation of elements as defined in equation (3 .1 ), where i 

is any input terminal, and ;r(i) is the output terminal to which is linked the input 

terminal in a given stage (or between two columns of switches). For example, Figure 

3 .4 shows that in stage 0 the input terminal i = 2 (or 010) is linked to the output 

terminal ;r(2) = 1 (or 001). 



24 

n-(i)=(Bi+\_i lJ 
IN/ B modN 

(3. I) 

3.2.2 Establishing A Path 

In an R-path Omega network, every source will keep track of the set of paths, 

which is using to get to the destinations, but when the source receives notice of a fault 

in one of those paths, the alternative of (R-I) sets of paths is selected. Let N = 2n and 

B = 2h. The N x N R-path Omega network using with Bx B switching element has R 

redundant paths where R = B[nlb]. The expression (3.2) shows the general pattern of an 

entire path of every source-destination pair. 

(3.2) 

It is easily seen that the entire path in (3 .2) consists of source tag so s1 ... sn-J 

(i.e., the binary representation of the input number), extra bits ®1 ®2 ... ®r (i.e., the 

binary representation that use to set a switch), and destination tag do d1 • •. dn-J (i.e., the 

binary representation of the output number to which input number S is connected). The 

extra bits (denoted by ® 's) are used to set a switch in one stage in order to selecting 

one route among the set of alternative redundant path for a given input-output pair. 

The number of the extra bits, r, equals log2 R . Note that, there is no extra bit 

consisting in I-path Omega network because there are no redundant path providing 

connectivity in I -path Omega network. 

(3.3) 

The output terminal (of a switch) that a path occupies at stage 0 ~ i ~ \log8 Nl 

is generally given by the n-bit window with starting at bit position bi as indicated in 

the box shown in (3 .3). It can be noticed that the log2 R extra bits ( ®1 ®2 ... ®,) are as 



25 

a part of every window except the input and output window [2]. For illustration, refer 

to Figure 3.4, the terminals occupy at each stage of the pathe1 -e2 -e4 , ande1 -e3 -e4 , 

which connecting source S = 010 to destination D = 011 are shown in Table I, and 

Table II. Note that the extra bit, 0, is set to be 0 and 1 for path e1 - e2 - e4 in Table I, 

and path e1 - e3 - e4 in Table II respectively. 

Sn s1 s 2 0 Do Di D2 

0 1 0 0 0 1 1 

TABLE I 

THE TERMINALS AT DIFFERENT STAGES OF PATH (01000, 00110) WHEN EXTRA BIT IS 0 

Stage (i) Terminal 

0 (source) 

2 (destination) 

J..S'o 5\ 
0 1 

s 2 

0 

010 ( e1 = S0S1S2 ) 

ooo ( e2 = S2 0 D0 ) 

011 (e4 =D0D 1D2 ) 

0 Do Di D2 
1 0 1 1 

TABLE II 

THE TERMINALS AT DIFFERENT STAGES OF PATH (01000, 00110) WHEN EXTRA BIT IS 1 

Stage (i) Terminal 

0 (source) 

2 (destination) 

010 ( e1 = S0S1Sz) 

o 10 ( e3 = S2 0 D0 ) 

011 (e4 =D0D1D2) 

It is noted that when a source is forced to take an alternate path because a 

"regular" one is down, it could interfere with (or block) another input that would 

normally have taken that path. Therefore, to avoid this from happening under no-fault 

conditions, it has to be ensured that certain sources follow only certain paths and not 



26 

others. For instance in Figure 3.4, when the connections 0-0 and 2-3 are desired, the 

two connections cannot simultaneously use the paths e5 - e2 - e6 and e1 - e2 - e4 

because there will be the conflict at link e2 . 

The procedure of the design of an R-path N x N Omega network is given in 

[2]. The possible values of redundancy that can be obtained in a uniform N x N 

network and the sizes of the switches to be used are presented in Table III. 

TABLE III 

POSIIBLE VALUES OF REDUNDANCY IN UNIFORM NETWORKS 

N R B(smallest) 

2 l 2 
4 I 2 
8 2,1 4,2 
16 4,1 8,2 
32 8,2,l 16,4,2 
64 16,4,l 32, 16,2 
128 32,8,4,2,l 64,32,8,4,2 
256 64, 16,4,2,l 128,64,32,8,2 
512 128,32,8,2, l 256, 128, 16,4,2 
1024 256,64, 16,4, 1 512,256, 128,8,2 
2018 512, 128,32,8,2, 1 1024,512,256, 128,4,2 

3.2.3 Permutation Capability 

Permutation capability, which can loosely defined as the blocking probability 

of the network, of R-path Omega is concerned in [2]. There are two aspects to the 

operation of the R-path network under a no-fault situation. First, an R-path network 

should be able to pass every permutation that a I-path network does. Second, the 

blocking (due to conflicts) in a multipath network should be no more than that in the 

corresponding I-path network. 

The authors of R-path Omega network had an observation on the Omega 

permutation capability that one way to ensure that a R-path Omega network passes 

every permutation which a I-path Omega network does is to ensure that an input-

output path occupies the same terminal at the output of first stage in the R-path Omega 



27 

network as it does in the I-path Omega network. In other words, in an R-path 

network, a packet (or path being created) on leaving the source could fork in one of R 

ways at the first stage. Upon leaving the first stage of switching elements, there is 

exactly one path the packet has to follow to reach the destination. If this portion of the 

path can be made identical to that in the I-path network, the permutation will be 

passed by the multipath network. For example, consider I-path and 2-path Omega 

network with size N = 8. Path between input S and output D in the two networks are 

given by the followings. 

sals1s2do ~1d2 

SoS1 I S2 ®do ft1 d2 

I -path network 

2-path network 

Terminals that these paths occupy at the output of first stage are indicated by 

the boxes. From this, it can be seen that if the source address bits in the 2-path network 

were rotated right by one position ( s0 s1s2 => s2s0s1) and set®= s2, the two windows 

would match as follow. 

sols1s2do ft1d2 

s2sals1s2do ft1d2 

I-path network 

2-path network 

In addition, all following windows would also match in the two paths meaning 

the paths would be identical in the two networks beyond this point. Rotating the 

source bits is a fixed permutation that can be accomplished by a connection in front of 

the network. With this permutation, source s0s1s2 is connected to terminal s2S(/\'1 at 

the input to the first stage of the network. If this source sets the extra tag bit® to s2 , 

the path from the input of the network to the output is given by s2s0s1d0d1d2 and this 

path occupies the same terminals at the output of each stage as does the path in the I-

path network. 



28 

From the above idea, authors of R-path Omega network generated the theorem. 

Denote the permutation obtained by a k-bit right rotation by r k . The following 

theorem explains that an R-path Omega network (with a bit-rotate permutation in 

front) in a fault-free situation will be able to emulate a I-path network if sources use 

their r least significant bits as the extra tag bits. A B *NIB shuffle is equivalent to 

rotating the source address bits b positions to the left while a r k permutation rotates it 

r positions to the right. Hence, the net result is a b-r bit left rotate in front of the first 

stage of switches. If R = B/2 (r = b- I), this is the perfect shuffle. An example of a 2-

path network realizing the identity permutation is shown in Figure 3. 5. It can be seen 

that when tags are set as in theorem, the settings of the switches (in all stages except 

the first) are identical to those in the corresponding I-path network. 

r 1 Connection 4 * 2 Shuffle 

' / 

1 000 
1_01) 1 
l_Qjo 
'f-°J 1 

100 
101 

1-

j-1.10 
-111 

1

000 
_Q_Q 1 
filO 
ifil 1 
I 

j_QO 
j_Q1 

J..iO 
.ll 1 

Figure 3.5 A 2-path 16 x16 Omega network with switches set up to realize the identify permutation 



29 

Theorem: Let log R = r, where R is the number of redundant path of network. 

If a multipath Omega network is constructed with a r k permutation in front and every 

source s s · · · s employs the tag s · · · s d d · · · d to access the destination 0 I n-1 n-r n-1 0 I n-1 

dtA · · · dn-i , then the multipath Omega network will, in a no-fault condition, pass 

every permutation that the corresponding I-path Omega network does. 

Proof' Consider a permutation Jr = { ( S, D)} that is passed by the I-path Omega 

network, and a path S - D. The r k permutation in the multipath network takes source 

s s · · · s · · · s to s · · · s s · · · s . Following this permutation a path in the 0 I n-r n-1 n-r n-1 0 n-r-1 ' 

network is given by following, where the extra tag bits 0 's are set as in the statement 

of the theorem. 

S ···S SS ···S ···S d ···d n-r n-1 0 I n-r n-1 0 n-1 
'----v------' 

~)(x) ... (~) 

As observed in the proof of Theorem, the output terminal such a path will 

occupy in stage I is given by the n-bit window. 

S ···S d ···d b-r n-1 0 b-r-1 (3.4) 

It can be verified that b - r ,= log k where k is k = BL 1~ NJ , so that (3 .4) is also 

the terminal that the path from S to D would occupy in a I-path Omega network at the 

output of stage I. This is true of every output terminal (and every input-output path) in 

stage I so that no two paths would occupy the same terminal in stage I. Successive 

windows corresponding to terminals in the remaining stages are identical in the two 

networks so that no conflict can occur in the multipath network if none occurs in the 1-

path network. Thus, the multipath network will pass any permutation n that the I-path 

network passes. 



~t. Gabriel's Library .. Au 
30 

3.3 BPC Permutation 

As it was stated above, a permutation refers to the connection of a set of 

sources to a set of destinations such that each source is connected to a single 

destination. A permutation is said to be admissible to a network, only when all N 

source-destination pairs are conflict free. Otherwise, such permutation is non-

admissible and the conflict or blocking occurs. 

The class of permutation that we are considering is Bit Permutation 

Complement (BPC). Recall that a permutation is called BPC permutation if the 

destination tag can be obtained of the source tag by permuting and/or complementing 

some or all of its bit positions [ 13]. Frequently used permutations of this class usually 

have names and they are listed together with their names, as below where each 

equation shows the mapping of a source (s0s1s2 • • • sn_2sn-i) to the destination. 

Bit reversal: 

Matrix transposition: 

if n = 21 

if n = 21+1 

Perfect shuffle: 

Vector reversal: 

Bit shuffle: 

if n = 21 

if n = 21+1 



Unshuffie: 

Shuffle row major: 

Butterfly: 

Exchange: 

if n = 21 

ifn=2/+l 

31 



32 

Chapter 4 

Exploring of BPC Permutation Admissibility to R-path Omega Network 

4.1 BPC Permutation Admissibility 

The problem, which is being solved in this section, is most closely resemble 

the problem of permutation admissibility (PA) solved by Xiaojun Shen in [12]. 

However Shen' s investigations are in concern with another class of interconnection 

network, namely with k-Extra Stage Multistage Cube-Type Networks (k-EMCTN), 

where redundant disjoint paths for any source-destination pair are provided by 

adding k more stages in front of an Omega network implemented of switches with 

size 2x 2. In this works mentioned above Shen resorts to the graph theory. We base 

our conclusions on rather simple and evident considerations. 

As it has been already noted in section 3.3, for a BPC (Bit Permute 

Complement) permutation, the destination address is obtained by permuting the bits 

in the binary representation of the source in accordance with a given rule and/or 

complementing some of these bits. Thus for a BPC permutation ;rr the transition 

sequence in a general case looks as follow 

SOSI ... sn-2sn-1 0 ... 0 s!r(O)S,,(1) ..• s,,(n-2)s7r(n-1) 

with some or all components of the destination, part of the sequences may be 

complemented but for our approach, it makes no difference as it can be seen 

from the further discussion. It should be recalled that when routing each 

window defines terminal numbers in one of stages of the network. So to avoid 

blocking each window should allow to form different terminal numbers in a 

given stage for all input-output pairs but it is possible only if there are no 

components with the same subscripts inside the window, otherwise the 



33 

complete set of terminal numbers cannot be formed. Therefore, we receive a 

straightforward way to check the admissibility of any BPC permutation to an 

R-path Omega network of a given structure. It is quite evident that in this case 

only replica of components with the same subscripts within a window is of 

importance, it makes no difference whether such two components are mutual 

complements or not. 

For illustration, we shall try perfect shuffle permutation, i.e., the frequently 

used permutation in parallel programming destination address that are derived from 

source addressed by cyclic shifting the latter to the left by one bit position, on both 

I -path and 2-path Omega networks with using the foregoing approach. 

Example 4-1 The I-path Omega Network 

Test the per.feet shuffle admissibility to a I-path Omega network using with 

N = 32 and n = 5, B = 2 and b =I respectively. Number of stage K equals 5, and the 

transition sequence does ndt contain extra bits as follows 

s 3 

TABLE IV 
THE TERMINALS AT DIFFERENTSTAGES OF PERFECT SHUFFLE 

PERMlJT A TION FOR 1-PATH OMEGA NETWORK WITH N = 32 AND B = 2 

Stage (i) Terminal 

0 

2 

3 

4 

5 

SOSIS2S3S4 

s1s2s3s4s1 
s2s3s4s1s2 
S/.,'/.,\S2S3 

s4s1s2s3s4 
SIS2S3S4SO 



34 

Application of routing with moving window to this case results in Table IV. 

(Stage 0 in what follows will be taken to mean input terminals whereas stages 

consisting of switches begin with stage 1). From the Table IV, it can be seen that 

terminals in stages 1, 2, 3, and 4 contain components with coinciding transcripts. 

Therefore, in this case of I-path Omega network, perfect shuffie permutation is 

non-admissible. 

Example 4-2 The 2-path Omega Network 

Test perfect shuffle admissibility to a 2-path Omega network usmg the 

foregoing approach. Now let N = 32 or n = 5, R = 2, B = 4 orb= 2. Number of 

stages K here equals 4 and only one extra bit is needed. The transition sequence for 

perfect shuffle in this case looks as follows. 

s I s 0 

TABLE V 
THE TERMINALS AT DIFFERENTSTAGES OF PERFECT SHUFFLE 

PERMUf A TION FOR 2-PATH OMEGA NETWORK WITH N = 32 AND B = 4 

Stage (i) Terminal 

0 

2 

3 

S0S1S2S/i4 

S/)'3S4 ® .S\ 

S4 ®S/i2S3 

s1s2s3s4so 

Moving the window of length five in the above transition sequence starting 

at each step in 2i position results in symbolic terminal numbers shown in Table V. 

Here, no one terminal number contains components with the same subscript so the 

proper choice of extra bit values may provide the complete set of 5-bit binary 



,:,L tiabriel's Library .. Au 

35 

numbers corresponding to the physical terminals in each stage. Therefore, m this 

case of 2-path Omega network, perfect shuffle permutation is admissible. 

For convincing, Figure 4.1 displays occurrence of blocking when trying to 

realize the perfect shuffle permutation with I-path 32x32 Omega network. The 

same permutation is admissible to 2-path 32x32 Omega network (Figure 4.2). Our 

analysis shows that it is admissible to any R-path Omega network with R> 1. This 

finding is of fundamental importance: perfect shuffle is commonly used in parallel 

programming for matrix transposition, for fast Fourier transform, for various 

sorting procedures, for polynomial evaluation etc. 

ooooo----+--,.!----1----+-----F=;;.;+-----F=;;;i-----i;;=~ooooo 
00001 00001 

000 I 0 

00011 

00 I 00 

00 I 0 I 

00110 

00 I I I 

0 I 000 

0 I 001 

0 I 0 I 0 

O IO 11 

o I I 00 

01101 

01110 

01111 

10000 -

10001 _ _J 

I 
10010 _ _!,, 
10011 --'/, 

" 10100 _ _!/, 
10101 --'/, 

// 
/// 

000 10 

000 11 

t-;..,---4-00 I OU 

001 O I 

00 110 

_oo 111 

,._.j,-..-1-- 0 I O O 0 

0 I 001 

0 I 010 

-01011 

i"-!--,.f--,l1VIN ~~..;.;;...hr\Vll'lll'--F=;;;i-.,11111NXl'-~~-.\VIN 1L-.i;;;;=1--o 11 oo 
0 1101 

01110 

I 0 1 1 0 - ~II ,..,,---,...._ 
// I 

10111 --'/I , , 
I I I 

l JUOO -....£I I 
I I 

11001 --'I I 
I I 

I I 

11010 --1/ / 
11011 __ /I 

I 
I / 

11100--',/ ,. 
11101 _ _, 

llllfl --

,. ,. ,. 

Figure 4.1A1-path 32x32 Omega network when realize perfect shuffle permutation 



00000 ------+----+------+-----!------+----+-- 00000 
!)(JOO I 0000 I 

I 
00010 00010 

00011 00011 

00100--, 

00101--, 

00110 -\ 
00111-

I 
I 

I 

I 
\ I 

1\ 

~\ 
!l!OOO ___} ~ \ I ~ I '---+------+~ 
01001 __/~- ~ ~J..---r-----r-" ~ I 
01010 -

01011 

" "' 

I '--+----t-- 00100 

~+----I-- 00101 
I 00110 

'/ 00111 

''-1----------1- 01000 

v~ .J---;-------r-- 0 JOO I 

~+----------;- 01010 

r--11--------+- 01011 

01100~\~\ Yi I ~ '- y " 01100 
0110 I ~ ~-+----+---. 0110 I 

\ " ~ \ 011 JO ,---1---+--., \ , I. I\ ) /.,---+---+-- 01110 

1:
1 = 0 ~ ~,---+----+----",~ ) ' I ~ " " 1::

1 

:::: -g X~i.~r----11----------+~~ \ Ktr----11----------+~'// :L\i1~1------+- l~~:~ 
10100 __/ / M 10100 

10 lO I ~ \,__t------+- 10101 

:~::~ ~ - \ \ - :~::~ -.. , \ 

11000 _I 

11001 -

11010 ___J 

!IOI! __j 

I I 

I 
\ 

~+-------l__j ' 

I 

.\ 

,._+----t-- 11000 

'--t------+- 1100 I 
r\ 11010 

~1------+- 11011 

11100 l'--+-------11-- 11100 

11101 \ ~+---------!- 11101 

11110 \ '~!------+- 11110 
11111 -------+-----+------+-----1------+----t-- 11111 

Stage 0 Stage I Stage2 ~--~ Stage3 

Figure 4.2 A 2-path 32x32 Omega network when realize perfect shuffle permutation 

36 



37 

4.2 Admissibility Algorithm 

The transition sequence for a BPC permutation can be rewritten as 

sn'S'1 .. . lsbisb;+1 ... Sn_1 ® 1 ® 2 .•. ®, .. dbi-r- 1 1 ... dn-l. The sequence as indicated in the box is 

the general tag sequence for every window except input and output windows. It can 

be observed that sb; is the first of source tags, sn_1 is the last of source tags, and the 

last of destination tags is db
1
_,_1 • Note that i is the indicator of the window number 

of each stage, where 0 :::;; i < K . B is size of switch, where B = 2b . N is size of 

network, where N = 2 n . R is number of redundant path, where R = 2' , and K is the 

total number of identical stage ofR-path Omega network, whereK = jlog8 Nl. 

To check permutation admissibility, it is starting at window i = 0. While i 

is less than K, the bit of source tags, sbisbi+l ... sn_1 are read and stored into strl one by 

one. At the same time, each bit of destination tags, which always end at db
1
_,_1 , is 

read and stored into str2. Next step, the subscripts of source and destination tags 

inside the window i are checked one to one whether they are same. In checking, the 

subscript of first source tag (M = 0), which has been in strl, is foremost compared 

to the first destination tag (N = p), which has been in str2. If their subscripts are 

same, Check = Check +I. If else, the subscript of the same first source tag will 

continue comparing to one of the next destination tag (N = N+ I), and this will keep 

on until the last destination tag is investigated. After that, the next source tag (M = 

M+ 1) is counted, and the above comparing procedure is repeated until subscript of 

the last source tag is compared to one of the last destination tag. Finally, the result 

is concluded. If Check ?: I that means the permutation is non-admissible, if else, it 

is admissible. This procedure is repeated for the next window ( i = i +I) and ended 

up when all components in the last window ( i = K-1) is inspected. 



Algorithm: Admissibility 

Output: "admissible", "non-admissible" 

Set i = O 

While (i< K) 

x =bi 

While (x :S n-1) 

Read s[x] and Store instr 1 

x=x+l 

End Do 

Set y = O 

While (y :S bi-r-1) 

Read d[y] and Store in str 2 

y=y+l 

End Do 

Set check= 0 

Set M = 0 

Set N = 0 

While (M < strlen (strl)) 

Do 

If str 1 [M] = str2 [N] 

Then check = check + 1 

End if 

N=N+l 

While (N < strlen (str2)) 

38 



End 

End Do 

M=M+l 

Set N = O 

If (check 2'. I) 

Then Non-admissible 

Else Admissible 

End if 

End Do 

i=i+I 

End Do 

39 



Flowchart: Admissibility 

( START ) 

'2 (--- i K? ~· 

X n-1? 

_:L_ 
~ad S[X] in strl 

Y=O 

· Y · ib-r- I 

I 
Yes I 

Read D[Y] 
and Store in str2 

l 

\ 

No 

No 

END 

I 

I 
I 

l-
1 

, I I I 
' I Y+Y+I : I 

i __J L2.J_j 
r-

(1) 

No 

Check=O 

L 
[}f=o J 

i 
i 

I N=O --~ -~ 

~ 
M · strlen(strl) 

'. 

N strlen(str2) 

str I [M) = str2[N] 

Yes 

Check = Check + I I 

' t 

I 

I 
111 

i M=M+l I 
i 

No 

No r----- . Check = l 
Yes 

Achnissible Non-admissible 
1 

40 



41 

4.3 Frame Format of Program Design 

The BPC admissibility on R-path Omega network is simulated in C 

language program with the variable sizes of network and switching elements as 

mentioned in Table.III of section 3 .2.2. 

Flowchart Procedure 

( START ) 

Input N, B 

Computing Parameters 
(n,b,K,R,r) 

I 
Assign Source Tags and Extra 

Bits 

I 

I 

Selecting Permutation 

I.Bit Reversal 

2. Matrix Transposition 

3. Perfect Shuffle 

4. Vector Reversal 

5. Bit Shuffle 

6 . U n sh u ff! e 

7. Shuffle Row Major 

8. Butterfly 

9. Exchange 

Sliding Window 

Admissibility C becking 

J. 

Routing Step and 
Showing Terminal Address 

of Each Stage 

I 



42 

Algorithm Procedure 

1. Compute Parameters ( n, b, K, R, r ) 

Input: size of network ( N ), size of switch ( B ) 

Output: n, b, K, R r 

Read ( N ), ( B ) to compute n, b, K, R r by following equations 

n = log2 N; 

b = log2 B; 

r =log R-
2 ' 

2. Assign Source Tags ( s =SOS! •.. sn-2sn-I) and Extra Bits ( 01 02 ... 0,) 

I* This step is to assign the arrays of source tags and extra bits *I 

Input: a number cf bit ( n ), extra bit number ( r) 

Output: array S[O ... n-1], array X[l.. .r] 

For i=O to n-1; 

For j=l tor; 

Do array of extra bit XO]= 0 1 0 2 · · · 0,; 

3. Select Permutation and Show the Entire Path 

I* This step performs the permutation selection and then the entire path of 

the selected permutation is shown s0 ... sn-i 0 1 .•. 0, d0 ... dn-i *I 

Input: CaseNumber (x) /*To select the case of permutation*/ 

For x=l to 9; switch to case (x) 



~L Gabriel's Library. Au 

43 

Case x=l; Bit_Reversal_Pe_rmutation 

Case x=2; Matrix_ Transposition _Permutation 

ifn = 21 

if n = 21+1 

/* Source goes to destination 

destination s1s1+1 • • • s21s0s1 • • • s1_1 when n bit number equals 

to 21 + 1. */ 

Case x=3; Shuffie_permutation 

Case x=4; Vector_Reversal_Permutation 

Case x=5; Bit_ Shuffie _Permutation 

if n = 21 

if n = 21 +I 

I* Source goes to destination 

s s · · · s s s · · · s when n bit number equals to 21 and to 0 2 n-2 1 3 n-1 

destination S 0S 2 · · · Sn_ 1S 1S3 • · • Sn-l when n bit number equals to 

21+1.*/ 

Case x=6; Unshuffie _Permutation 



44 

I* Source goes to destination 

Case x=7; Shuftle _Row_ Major _Permutation 

if n = 21 

if n = 21+1 

/* Source goes to destination 

21+1.*/ 

Case x=8; Butterfly _Permutation 

Case x=9; Exchange _Permutation 

/* Source goes to destination 

Print("EntirePath") according to the selected permutation 

4. Sliding Window 

Input: K, b, n 

Output: Window Address 

Read( K, b, n ); 

For i = 0 to K 

WindowAddress =data from bit ib to ( ib + n ); 



Print( "Window Address stage = ", i, WindowAddress); 

5. Admissibility Checking 

Output: "admissible", "non-admissible" 

Check: 

For i =I to K 

Forx=ibton-I 

ReadList( S[x] ); 

Ifh=K 

For y = 0 to ib-r-l 

ReadList( D[y] ); 

If( any oflist S[x] = any oflist D[y]) 

Print("non-admissible"); 

Else 

Print(" admissible"); 

6. Routing Step and Showimg Terminal Address of Each Stage 

Input: bit number (n), bit number (b), stage number (K) 

Output: Terminal Address 

For i=O to K Do 

Read data from ib position to (ib+n) position. 

45 

I* Therefore, we obtain the general address of each stage, 

For source address= 0 to N-1 

Do the following method to arrange extra bit 



46 

1. Sort order of source address from 0 to N-1 in the binary 

representation. 

2. Consider the bits in that stage excluding the extra bit that 

3. Set extra bit of the first address equal to 0 (in binary 

representation). 

4. Then we consider the next address, if it is distinct from the 

previous one, the extra bit will be set to 0. 

5. If not, the extra bit will be increased by one m binary 

representation number. 

6. The process will continue until source address= N-1. 



47 

4.4 Summary of Permutation Capability Results 

TABLE VI 

SUMMARY OF PERMUfATION CAPABILITY RESULTS 

Note: "X" means "non-admissible","./" means "admissible" 

~ 
s= <!) ~ 

~ 0 E 
<l'l <!) 

'"" <!) <!) <l'l 
~ :-e <!) E ~ >-. 

'"" ::s > E '"" t: 00 
<!) 

·- <l'l ..c: ::s 0 s= > !:: 0 
<!) ::s ro 

<!) ro o.. {/) ~ ..c: ..c: <!) -~ <!) ..c: Networks ~ ~ 
<l'l ..... 

'"" 
{/) <l'l E~ t (.) 

s= (.) 0 ...... s= ::s :.< ..... ro ~ as ;::i ::s o::l ~ as '"" 
t) ..c: 

E-< <!) <!) {/) 

~ > 
I -path Omega with N = 8 x x x ./ x x x x ./ 

2-Path Omega with N = 8 x ./ ./ ./ ./ x ./ x ./ 

I-path Omega with N = I6 x x x ./ x x x x ./ 

4-Path Omega with N = I 6 x ./ ./ ./ ./ x ./ x ./ 

1-path Omega with N = 32 x x x ./ x x x x ./ 

2-Path Omega with N = 32 x x ./ ./ x x ./ x ./ 

8-path Omega with N = 32 x ./ ./ ./ ./ x ./ x ./ 

1-path Omega with N = 64 x x x ./ x x x x ./ 

4-Path Omega with N = 64 x x ./ ./ ./ x ./ x ./ 

16-path Omega with N = 64 x ./ ./ ./ ./ x ./ x ./ 

I-path Omega with N = I28 ,x x x ./ x x x x ./ 

2-Path Omega with N = I28 x x ./ ./ x x x x ./ 

4-Path Omega with N = 128 x x ./ ./ ./ x ./ x ./ 

8-path Omega with N = I 28 x ./ ./ ./ ./ x ./ x ./ 

32-path Omega with N = I28 x ./ ./ ./ ./ x ./ x ./ 



48 

TABLE VI 

SUMMARY OF PERMUTATION CAPABILITY RESULTS 

Note: "X" means "non-admissible", "./" means "admissible" 

ta s= Cl) ta 
~ 0 E 

tll Cl) 

'""' 
Cl) Cl) tll ..... Q) E 0 ;:>-, 

'""' x .-;:: E 00 
Q) ::s > ~ """ 13 ..... tll ..c: Q) ::s 0 s= 
> """ 0 t/l ~ ..c: ::s 

Q) """""' Q) ti:! 
Q) ~ 0. ..c: E~ ..c: 

Networks ~ 2 ~ t) """ 
(/) tll ;::: u 

0 .... s= ::s x .... ti:! ct as ~ 
::s o:l as .... ..c: ~ 

""" u 
t--< Cl) Cl) (/) 

i:i... > 
I-path Omega with N = 256 x x x ./ x x x x ./ 

2-Path Omega with N = 256 x x ./ ./ x x x x ./ 

4-Path Omega with N = 256 x x ./ ./ ./ x ./ x ./ 

16-path Omega with N = 256 x ./ ./ ./ ./ x ./ x ./ 

64-path Omega with N = 256 x ./ ./ ./ ./ x ./ x ./ 

I-path Omega with N = 512 x x x ./ x x x x ./ 

2-Path Omega with N = 512 x x ./ ./ x x x x ./ 

8-Path Omega with N = 512 x x ./ ./ x x ./ x ./ 

32-path Omega with N = 512 x ./ ./ ./ ./ x ./ x ./ 

128-path Omega with N = 512 x ./ ./ ./ ./ x ./ x ./ 



5.1 Thesis Summary 

Chapter 5 

Conclusion 

49 

Multistage interconnection networks are of interest for use in large-scale 

parallel computer and telecommunication systems. The class of multistage, self­

routing networks which, in its basis form requires log2 B stages of 2x2 switches to 

connect N inputs to N outputs with N/2 2x2 switches, are needed in each stage is 

known as the Banyan or cube-type class of networks. This class includes Omega 

network [ 1]. The problem with this topology is that there is only one path from a given 

network input to a given output. Therefore, it is vulnerable to component faults. To 

achieve the problem, R-path Omega network with multiple disjoint paths for each 

input-output pair was presented [2]. 

The objective of the thesis· is to explore how the presence of redundant paths of 

R-path Omega network improves the permutation capability in comparison with a 1-

path Omega network. We introduce a simple algorithm that determines the 

admissibility of various kinds of regular BPC (bit-permute-complement) permutations 

to R-path Omega networks. The investigations were based on computational 

experiment with C language program and were done for the variable sizes of network 

and switching elements. 

At the end of exploration, it was proved that permutation capability of R-path 

Omega networks is much better than of I-path Omega networks. Of nine most 

frequently used in parallel programming permutations listed in section 3.3, I-path 

Omega can realized for one pass only two permutations, whereas R-path Omega 

realizes up to six permutations (see section 4.4). This fact is of importance for parallel 



50 

computer hardware and software designers. The findings of the done research are also 

of interest for designers of switching systems in telecommunication. E.g. R-path 

Omega network may be considered as an alternative to the Banyan router in Batcher­

Banyan architecture of ATM switches. 

5.2 Recommendation for Future Work 

It can be recommended to expand the developed algorithm in this work 

approach to k-Extra-Stage multistage cube-type networks (k-EMCTN), where 

redundant disjoint paths for any source-destination pair are provided by adding k more 

stages in front of an Omega network implemented of switches with size 2 x 2 . 



Appendix A 

Source Code 

#include "c:\project\project.cpp" 

void main(void) 

char ch; 

inti; 

do 

printf("\n I .Input Parameter."); 

printf("\n2. Select Permutation."); 

printf("\n3 .Check Admissibility."); 

printf("\n4.Routing Step."); 

printf("\n5. Show All Addresses."); 

printf("\n6. Show All Parameters And Write Data."); 

printf("\n7.Exit. "); 

printf("\nSelect =>_ "); 

ch= getche(); 

switch( ch) 

case 'l ': 

Pararµeter(); getch(); 

case '2': 

Input_Per(); getch(); break; 

case '3': 

break; 

char* added = ( char*)malloc(sizeof( char)*r); 

for(i=O;i<r;i++) 

case '4': 

added[i] = 'X'; 

added[r] = '\O'; 

BlockingCheck( ch _Per, added); 

Sort_ First(); 

GenAdded(); 

break; 

51 



.SL Gabriel's Library .. Au 

case '5': 

case '6': 

case '7': 

} 

while( ch!='7'); 

showall(); 

getch(); 

SearchSort(); 

showall(); 

get ch(); 

Show Parameter(); 

WriteOutput(); 

cl earn ode(); 

#include "c:\project\projhead.h" 

int N,n,B,b,R,r,K,Total_length; 

//int check=O; 

char lp _Per[256],ch _Per='\O'; 

node *hnode, *wnode, *nnode; 

node *newnode() 

return ( node*)malloc( sizeof( node)); 

void delnode(node *p) 

if(p->lp==NULL && p->rp!=NULL) 

break; 

break; 

hnode = p->rp; wnode = hnode; 

else 

if(p->lp!=NULL && p->rp!=NULL) 

break; 

break; 

52 



else 

else 

wnode = p->rp; 

if(p->lp!=NULL && p->rp==NULL) 

wnode = p->lp; 

hnode = NULL; wnode = hnode; 

free((void*)p); 

node *firstnode(node *head,int x) 

{ 

} 

head = newnode(); 

head->index = x; 

head->lp = NULL; 

head->rp = NULL; 

return head; 

void insertnode(node *start,int x) 

if(hnode==NULL) 

else 

hnode = firstnode(hnode,x); 

start = hnode; 

while( start->rp ! =NULL) 

start = start ->rp; 

node *newn; 

newn = newnode(); 

newn->index = x; 

53 



if( start->rp== NULL) 

newn->rp = NULL; 

else 

{ 

newn->rp = start->rp; 

newn->rp->lp=newn; 

newn->lp = start; 

start->rp = newn; 

wnode = start; 

void deletenode(node *current) 

node *after, *before; 

if( current ! = NULL) 

after = current->rp; 

before= current->lp; 

delnode( current); 

before->rp = after; 

after->lp =before; 

void clearnode() 

wnode = hnode; 

nnode = wnode->rp; 

while( wnode ! =NULL) 

deletenode( wnode ); 

wnode = nnode; 

54 



55 

nnode = nnode->rp; 

void shownow() 

if( wnode ! = NULL) 

printf("\n %3 d = o/os %s\n", wnode->index, wnode->source, wnode-

>dest); 

else 

printf(11 \nNo Data in List\n11
); 

printf( 11 -----------------------------------------------\n11
); 

void showall() 

node *x, *y; 

x = hnode; 

y = hnode; 

for(int i=O;i<(N/2);i++) 

y =y->rp; 

printf("\n"); 

while(y!=NULL) 

if( x==wnode) 

else 

printf("->"); 

printf(" "); 

printf("%4d = %s %s o/os",x->index,x->source,x->added,x->dest); 

x=x->rp; 

if(y==wnode) 

else 

printf( 11\t->%4d = o/os %s %s\n",y->index,y->source,y­

>added,y->dest); 

printf("\t %4d = %s %s %s\n",y->index,y->source,y­

>added,y->dest ); 



y=y->rp; 

void swapnode(node *nl,node *n2) 

node temp; 

temp. index = n 1->index; 

strcpy( temp. source, n 1->source ); 

strcpy( temp. added, n 1->added); 

strcpy( temp. dest, n 1->dest); 

strcpy( temp. databit,n 1->databit ); 

n I ->index = n2->index; 

strcpy( n 1->source, n2->source ); 

strcpy( n l->added,n2->added); 

strcpy( n 1->dest, n2->dest ); 

strcpy( n 1->databit, n2->databit); 

n2->index = temp. index; 

strcpy( n2->source, temp. source); 

strcpy( n2->added, temp. added); 

strcpy( n2->dest, temp. <lest); 

strcpy( n2->databit, temp. databit ); 

long CI (char *Bin) 

long sum=O; 

int i; 

for (i = O; i < strlen(Bin); i++) 

if(Bin[i] >= 'O' && Bin[i] < '2') 

sum+= ((Bin[i]-'O') * pow(2,strlen(Bin)-i-l)); 

else 

{ 

56 



printf('1ERROR\n11
); getch(); sum=O; 

} 

return( sum); 

char *ItoChar(int Dec,int number) 

char *Bin,str[ 11 ]; 

int i; 

Bin = ( char*)malloc(number+ 1 ); 

Bin[n] = 1\01
; 

for(i=O;i<number;i++) 

Bin[i]=1 1
; 

Bin[i]=1\01
; 

i=O; 

do 

while(Dec>O); 

Bin[i]=(Dec% 10)+101
; 

Dec= Dec/IO; 

i++; 

strcpy( str, strrev(B in)); 

free( ( char*)Bin); 

return str; 

char *ItoChar(int Dec,int x,int number) 

char *Bin; 

int i; 

Bin = ( char*)malloc( number+ 1 ); 

Bin[r] = '\O'; 

57 



for(i=O;i<number;i++) 

Bin[i]='O'; 

Bin[i]='\O'; 

i=O; 

do 

{ 

} 

B in[i ]=(Dec%x )+'O'; 

Dec=Dec/x; 

i++; 

while(Dec>O); 

return strrev(Bin); 

void Sort(int type) 

long datal,data2; 

int ch,start=b; 

node* a = hnode; 

node* b = a->rp; 

if(type == '4') 

do 

clrscr(); 

printf("There are %d stages. ",K); 

printf("\nWhich stage do you want to sort?\n=> "); 

scanf("%d" ,&ch); 

while(!(ch>=l & ch<=K)); 

start= ch*start; 

while(a!=NULL) 

while(b !=NULL) 

58 



} 

char* strTmpl = (char*)malloc(sizeof(char)*n); 

char* strTmp2 = (char*)malloc(sizeof(char)*n); 

for(int i=O;i<n;i++) 

{ 

strTmp 1 [i] = a->databit[i+start ]; 

strTmp2[i] = b->databit[i+start]; 

strTmp 1 [ n ]='\0'; strTmp2[ n ]='\O'; 

datal = Cl(strTmpl); data2 = Cl(strTmp2); 

free(strTmp 1 ); 

free(strTmp2); 

if( data 1 > data2) 

swapnode( a, b ); 

else 

if(data2 == datal & a->index > b->index) 

swapnode( a, b ); 

a= a->rp; 

b = a->rp; 

b = b->rp; 

ShowStage( ch); 

getch(); 

return; 

else 

while(a!=NULL) 

while(b ! =NULL) 

{ 

switch( type) 

case 'l': 

59 



case '2': 

datal = a->index; 

data2 = b->index; 

break; 

//datal = Cl(a->source); 

//data2 = CI(b->source); 

60 

datal = Cl(a->added); 

break; 

data2 = Cl(b->added); 

} 

case '3': 

datal = Cl(a->dest); data2 = Cl(b->dest); 

break; 

if( data2 < data 1) 

swapnode( a,b ); 

b = b->rp; 

a= a->rp; 

b = a->rp; 

void SearchSort() 

int ch; 

do 

clrscr(); 

printf("l.Sort by Index or Source.\n"); 

printf("2.Sort by Added Bit.\n"); 

printf("3.Sort by Destination.\n"); 

printf("4.Sort by Stage.\n"); 

printf("Y ou select :> "); 

ch = getche(); 

while(!(ch>='l' & ch<='4')); 

Sort( ch); 



clrscr(); 

int Num _ Route(int B,int n,int b) 

float a,x; 

int number; 

if((n%b)) 

else 

a= (n/b+l)-(1.0*n/b); 

a= 0.0; 

if(B==2 II N==B) 

return 1; 

if(N==8 && B==4) 

return 2; 

number= pow(B,a); 

if(number%2) 

return number+ 1 ; 

else 

return number; 

void Parameter(void) 

clrscr(); 

printf("Enter Node of Network: "); scanf("%d",&N); 

printf("Enter Size of switch: "); scanf("%d",&B); 

II N = 2"n II B = 2"b 

n = log10(N)llog10(2); b = log10(B)llog10(2); 

int Buf= loglO(N)lloglO(B)*lOO; 

if(Buf>/o 100) 

K = loglO(N)lloglO(B)+l; 

else 

K = loglO(N)lloglO(B); 

61 



~L Gabriel's Library. Au 

R = Num_Route(B,n,b); 

r = loglO(R)/logl0(2); 

Total_length = 2*n+r; 

printf( 11 \nn=%d11 ,n); printf( 11 \nb=%d 11 ,b); 

printf( 11 \nR=%d 11 ,R); printf( 11 \nr=%d 11 ,r); 

printf( 11 \nK =%d 11 ,K): 

void ShowStage(int x) 

x--; 

inti; 

char s[l l],d[l l],strl[l l],str2[1 l],str[l l]; 

node *a, *y; 

a= hnode; 

y = hnode; 

for(i=O;i<(N/2);i++) 

y=y->rp; 

printf( 11 \n11
); 

while( a!= NULL) 

for(i=b+(x*b );i<n;i++) 

strl [Hb+(x*b ))] = a->source[i]; 

strl [i-(b+(x*b ))] = '\O'; 

if( K != x+l) 

} 

else 

for(i=O;i<b+(x*b )-r;i++) 

str2[i] = a->dest[i]; 

str2[i] = '\0'; 

strcpy( str2, a->dest); 

strcpy(str, 1111
); 

strcat( str, str 1 ); 

62 



if(K != x+l) 

streat( str ,a->added); 

streat(str,str2); 

63 

printf("\n Stageo/od: node %2d: o/os o/os o/os",x+l,a­

>index, str 1, a->added, str2); 

a=a->rp; 

void GenAdded() 

int i=O,x=pow(2,r); 

node* a=hnode; 

clrser(); 

while(a!=NULL) 

for(i=x-1 ;i>=O;i--) 

{ 

} 

strepy( a->added,ItoChar(i,2,r) ); 

strepy( a->databit,a->souree); 

streat( a->databit, a->added); 

streat( a->databit, a->dest ); 

a=a->rp; 

II printf("\n\n ..... Complete ..... \n\n"); 

II geteh(); 

clrser(); 

void Bit_reversal(ehar *strSouree,ehar *strDestination) 

strepy( strDestination,strSouree ); 

strrev( strDestination); 



strDestination[strlen(strSource)] = '\O'; 

strcpy(lp _Per, "Permutation : Bit reversal"); 

return; 

void Matrix _transposition( char *strSource,char *strDestination) 

char *sl, *s2; 

int l,x=O; 

if( strlen( strSource )%2) 

l = ( strlen( strSource )-1 )/2; 

s 1 = ( char*)calloc(l+ l ,sizeof( char)); 

else 

l = strlen(strSource)/2; 

sl = (char*)calloc(l,sizeof(char)); 

s2 = ( char*)calloc(l,sizeof( char)); 

for( int i=l;i<strlen( strSource );i++) 

sl[x] = strSource[i]; 

x++; 

sl[x] = '\O'; 

for(i=O;i<l;i++) 

s2[i] = strSource[i]; 

s2[i] = '\O'; 

strcpy( strDestination, s 1); 

strcat( strDestination, s2 ); 

free(sl ); 

free(s2); 

' 

strcpy(lp _Per, "Permutation : Matrix transposition"); 

64 



void Perfect_shuffle( char *strSource,char *strDestination) 

char ch= strSource[O]; 

for( int i=O;i<strlen( strSource )-1 ;i++) 

strDestination[i]=strSource[i+ I]; 

strDestination[i] = ch; 

strDestination[i+ I] = '\O'; 

strcpy(lp _Per, "Permutation : Perfect shuffle"); 

void Vector _reversal( char *strSource,char *strDestination) 

for( int i=O;i<strlen(strSource );i++) 

if( strSource[i ]=='0') 

strDestination[i] = 'l '; 

else 

strDestination[i] = 'O'; 

strDestination[i] = '\O'; 

strcpy(lp_Per,"Permutation,: Vector reversal"); 

void Bit_ shuffle( char * strSource,char * strDestination) 

char *sl, *s2; 

int x=O,y=O,i=O; 

s I = ( char*)calloc(strlen(strSource),sizeof( char)); 

s2 = ( char*)calloc( strlen( strSource ),sizeof( char)); 

for(i=O;i<strlen( strSource );i++) 

if(!(i%2)){ s2[x] = strSource[i]; x++; } 

65 



else { sl[y] = strSource[i]; y++;} 

strcpy( strDestination, strcat( s2, s 1) ); 

free(sl ); 

free(s2); 

strcpy(lp _Per, "Pemmtation : Bit shuffle"); 

void Unshuffie(char *strSource,char *strDestination) 

strDestination[O] = strSource[ strlen(strSource )-1 ]; 

for( int i=O;i<strlen( strSource )-1 ;i++) 

strDestination[i+ 1] = strSource[i]; 

strDestination[i+ 1] = '\O'; 

strcpy(lp _Per, "Permutation : Unshuffie"); 

void Shuffle _row_ major( char *strSource,char *strDestination) 

int l,len=strlen(strSource); 

strcpy( str Destina ti on, " "); 

l = (strlen(strSource))/2; 

for(int i=O;i<l;i++) 

if( strlen( strSource )%2) 

} 

else 

{ 

strDestination[i *2]=strSource[i]; 

strDestination[i*2+ 1]=strSource[l+i+1 ]; 

strDestination[len-1] = strSource[l]; 

strDestination[i *2]=strSource[i]; 

strDestination[i *2+ 1 ]=strSource[l+i]; 

66 



strDestination[len] = '\O'; 

strcpy(lp _Per, "Permutation : Shuffie _row _major"); 

void Butterfly( char *strSource,char *strDestination) 

strcpy( strDestination, strSource ); 

strDestination[ O] = strSource[ strlen( strSource )-1 ]; 

strDestination[ strlen(strSource )-1] = strSource[O]; 

strDestination[strlen(strSource)] = '\O'; 

strcpy(lp _Per, "Permutation : Butterfly"); 

void Exchange( char *strSource,char *strDestination) 

int I = strlen( strSource )/2-1; 

if( strlen( strSource )%2) 

l=strlen( strSource )/2; 

strcpy( strDestination, strS ource); 

if(strSource[l] == 'O') 

else 

strDestination[l] = 'l~; 

strDestination[l] = 'O'; 

strcpy(lp_Per,"Permutation : Exchange"); 

char showmenu() 

char ch; 

do 

clrscr(); 

67 



printf("l. Bit reversal.\n"); 

printf("2. Matrix transition.\n"); 

printf("3. Perfect Shuffie.\n"); 

printf("4. Vector Reversal.\n"); 

printf("S. Bit Shuffie.\n"); 

printf("6. Unshuffie.\n"); 

printf("7. Shuffie Row Major.\n"); 

printf("8. Butterfly.\n"); 

printf("9. Exchange.\n"); 

printf("Y ou select :> "); 

ch = getche(); 

while(! (ch>=' I' & ch<='9') ); 

return ch; 

void Input_Per() 

ch_Per = showmenu(); 

char* added= (char*)rnalloc(sizeof(char)*r); 

for(int i=O;i<r;i++) 

added[i] = 'O'; 

added[r] = '\O'; 

II BlockingCheck(ch_Per,added); 

if(hnode ! = NULL) 

clearnode(); 

hnode = NULL; 

node *a; 

llclrscr(); 

for(i=O;i<N;i++) 

if(hnode==NULL) 

68 



{ 

} 

hnode = firstnode(hnode,i); 

a= hnode; 

else 

insertnode(a,i); 

while(a!=NULL) 

II if(a==wnode) printf("->"); 

II else printf("\n "); 

strcpy(a->source,ItoChar(a->index,2,n)); 

switch(ch_Per) 

{ 

} 

case 'l ': Bit _reversal( a->source,a->dest ); 

break; 

case '2': Matrix _transposition(a->source,a->dest); 

break; 

case '3': Perfect_shuffie(a->source,a->dest); 

break; 

case '4': Vector _reversal( a->source,a->dest ); 

break; 

case '5': Bit_,_shuffie(a->source,a->dest); 

break; 

case '6': Unshuffie(a->source,a->dest); 

break; 

case '7': Shuffie_row_major(a->source,a->dest); 

break; 

case '8': Butterfly(a->source,a->dest); 

break; 

case '9': Exchange(a->source,a->dest); 

break; 

strcpy( a->added,added); 

69 



strcpy( a->databit," "); 

strcat( a->databit, a-> source); 

strcat( a->databit, a->added); 

strcat( a->databit, a->dest ); 

70 

II printf("%4d = %s %s %s",a->index,a->source,added,a->dest); 

a=a->rp; 

free( added); 

clrscr(); 

printf("\n ..... Complete ..... \n "); 

showall(); 

void BlockingCheck( char ch, char* added) 

char s[l l],d[l l],strl [11],str2[11]; 

int i,j,check; 

for(i=O;i<n;i++) 

if(i<9) 

else 

s[n] = '\0'; 

switch( ch) 

case 'I': 

s[i] = i+49; 

s[i] = i+65-1 O; 

Bit_reversal(s,d); break; 

case '2': Matrix_ transposition( s,d); break; 

case '3': Perfect_ shuffle( s, d); break; 

case '4': Vector _reversal(s,d); break; 

case '5': Bit_ shuffle( s,d); break; 

case '6': Unshuffie(s,d); break; 

case '7': Shuffle _row_ major(s,d); break; 



case '8': Butterfly(s,d); 

case '9': Exchange(s,d); 

break; 

break; 

printf("\n\nPermutation = %s %s %s",s,added,d); 

for( int x= 1 ;x<=K;x++) 

for(i=(x*b );i<=n-1 ;i++) 

strl[i-(x*b)] = s[i]; 

strl[i-(x*b)] = '\O'; 

if( K!= x) 

{ 

else 

for(i=O;i<(x*b )-r;i++) 

str2[i] = d[i]; 

str2[i] = '\O'; 

strcpy(str2,d); 

if(K!=x) 

printf("\n\nStage %d = %s%s%s",x,strl,added,str2); 

else 

printf("\n\nStage %d = %s",x,str2); 

check=O; 

for(i=O;i<strlen( str 1 );i++) 

for(j=O;j<strlen(str2);j++) 

if( check>= 1) 

if(strl[i] == str20]) 

check++; 

71 

II printf("\nDuplicate %d Position.BLOCKING!! !\n",check); 

printf("\nDuplicate %d Position.NON-ADMISSIBLE!! !\n\n",check); 

else 

printf("\nNo Duplicate .ADMISSIBLE!! !\n\n"); 



~L GabrleJ ·s Library_ Au 

void ShowParameter() 

clrscr(); 

printf("\nN=%d",N); printf("\nB=%d",B); 

printf("\nn=%d",n); printf("\nb=%d",b); 

printf("\nR=%d",R); printf("\nr=%d",r); 

printf("\nK=%d\n" ,K); 

getch(); 

void WriteOutput() 

node *x; 

char str[256]="",strl [11],str2[1 l],ch='\O',buffer[256]; 

char DirName[lOO] = "C:\\Project\\File\\"; 

if(hnode ! = NULL) 

do 

{ 

clrscr(); 

printf("Do you want write DATA ???\n"); 

printf("Select y/n ==> "); 

ch = getche(); 

while(!(ch=='y' I ch=='n')); 

if( ch == 'n') 

return; 

flushall(); 

char* fileName = (char*)calloc(9,sizeof(char)); 

do 

{ 

72 



printf("\nEnter file name for write ==> "); 

gets(fileName); 

} 

while(!strlen(fileName)); 

strncat(DirName,fileName,8); 

strcat(DirName,". txt"); 

free(fileName); 

FILE *fp = fopen(DirName, "w"); 

/////l//l ///I ////I/// l///l// l////I / 

strcpy(str, "Size ofNetwork(N)="); strcat(str,ltoChar(N,2)); 

strcat(str, "\nSize of Switch(B)="); strcat(str,ltoChar(B,2)); 

strcat(str, "\nNumber of Stage(K)="); strcat(str,ltoChar(K,2)); 

strcat(str, "\nNumber Bit of Source(n)="); 

strcat( str, "\nOfset of Shift Stage(b )="); 

strcat( str, ltoChar( n,2) ); 

strcat(str,ltoChar(b,2)); 

73 

strcat(str, "\nNumber of Redundant Path(R)="); strcat(str,ItoChar(R2)); 

strcat(str, "\nNumber Bit of Added Bit(r)="); strcat(str,ltoChar(r,2)); 

strcat(str, "\n\n"); 

fwrite(&str,strlen(str), l,fp ); 

//////I/////// I/// II/ I///////////// 

char *lp_source = (char*)calloc(n,sizeof(char)); 

char *lp_added = (char*)calloc(r,sizeof(char)); 

char *lp_dest = (char*)calloc(n,sizeof(char)); 

for(irit i=O;i<r;i++) 

lp_added[i] = 'X'; 

lp_added[r] = '\O'; 

for(i=O;i<n;i++) 

if(i<9) 

Ip_ source[i] = i+49; 

else lp_source[i] = i+65-10; 

} 

lp_source[n] = '\O'; 

switch( ch _Per) 



case 'l ': Bit_reversal(lp _source,lp_dest); break; 

case '2': Matrix_ transposition(lp _source, Ip_ de st); break; 

case '3': Perf~ct_shuffle(lp_source,lp_dest); break; 

case '4': Vector_reversal(lp_source,lp_dest); break; 

case '5': Bit_shuffle(lp_source,lp_dest); break; 

case '6': Unshuffle(lp_source,lp_dest); break; 

case '7': Shuffle _row_ major(lp _source,lp _ dest); break; 

case '8': Butterfly(lp_source,lp_dest); break; 

case '9': Exchange(lp_source,lp_dest); 

strcpy(str,lp_Per); strcat(str," ==> "); 

strcat(str,lp_source); strcat(str," "); 

strcat(str,lp_added); strcat(str," "); 

strcat(str,lp _dest); strcat(str, "\n\n"); 

fwrite(&str,strlen(str), l ,fp ); 
' 

I/ I/ llllll I II I I Ill I lllll I I I I I lllll 

int check; 

for(int q=O;q<K;q++) 

check=O; 

for(i=b+( q *b );i<n;i+t) 

strl(i-(b+(q*b))] = lp_source[i]; 

strl[i-(b+(q*b))] = '\0'; 

if( K != q+l) 

{ 

} 

else 

for(i=O;i<b+( q *b )-r;i++) 

str2[i] = lp_dest[i]; 

str2[i] = '\0'; 

strcpy(str2,lp _ dest); 

strcpy(str," Stage "); 

break; 

74 



strcat(str,ItoChar( q+ 1,2)); strcat(str, 11 
"); 

strcpy(buffer, str 1 ); 

if(K != q+l) 

strcat(buffer,lp _added); 

strcat(buffer, str2); 

II printf("\n\nStage %d = %s 11 ,q+ 1,str); 

for(i=O;i<n;i++) 

for(int j=i+ 1 ;j<n;j++) 

if(buffer[i] != 'X') 

strcat( str, buff er); 

if( check>= 1) 

{ 

if(buffer[i] == bufferLi]) 

check++; 

//printf("\nDuplicate %d Position.NONADMISSIBLE! ! ! ",check); 

strcat(str," >>Duplicate "); 

strcat( str, Ito Char( check, 2) ); 

strcat(str," Position.NON-ADMISSIBLE!! !\n"); 

else 

//printf("\nNo Duplicate .ADMISSIBLE!!!"); 

strcat(str," >>No Duplicate .ADMISSIBLE!! !\n"); 

fwrite(&str,strlen(str), l ,fp ); 

fwrite("\n", 1, 1,fp ); 

free(lp _source); 

free(lp _added); 

free(lp _ dest); 

I lllllll II I II llllll ///I// I I //Ill/I 

x = hnode; 

while(x!=NULL) 

strcpy( str, " 11
); 

strcat( str, Ito Char( x->index, 4) ); 

75 



strcat(str, 11 11
); 

strcat( str,x->source ); 

strcat(str, 11 11
); 

strcat(str,x->added); 

strcat(str, 11 11
); 

strcat( str, x->dest); 

strcat(str, 11 \t 11
); 

lll/llllllll II lllll Ill II/ II I lllll II lllll 

for(int j=O;j<K;j++) 

} 

for( int i=b+(j *b );i<n;i++) 

strl[i-(b+(j*b))] = x->source[i]; 

strl[i-(b+(j*b))] = '\0'; 

if( K != j+l) 

{ 

} 

else 

for(i=O;i<b+(j *b )-r;i++) 

str2[i] = x->dest[i]; 

str2[i] = '\O'; 

strcpy( str2,x->dest); 

strcat( str, str I); 

if(K!=j+l), 

strcat(str,x->added); 

strcat(str,str2); 

strcat(str, 11 \t 11
); 

I I I II I I Ill// II lllll I/I ll/llllllllllll/ll 

strcat(str, 11 \n 11
); 

fwrite( &str, strlen( str ), l ,fp ); 

II printf( 11 %4d = %s 11 ,x->index,x->databit); 

x=x->rp; 

fclose(fp ); 

76 



clrscr(); 

gotoxy(l 5 ,11); 

printf("Write DATA in file o/os Complete ..... ",DirName); 

getch(); 

void Sort_First() 

long datal,data2; 

int ch,start=b; 

node* a = hnode; 

node* b = a->rp; 

while(a!=NULL) 

while(b!=NULL) 

char* strTmp 1 = ( char*)malloc(sizeof( char)*n); 

char* strTmp2 = (char*)malloc(sizeof(char)*n); 

for(int i=O;i<n;i++) 

strTmp 1 [i] = a->databit[i+start ]; 

strTmp2[i] = b->databit[i+start ]; 

strTmp 1 [ n ]=l\O';strTmp2[ n ]='\O'; 

datal = Cl(strTmpl); data2 = Cl(strTmp2); 

free(strTmp 1 ); 

free(strTmp2); 

if(datal > data2) 

else 

swapnode( a,b ); 

if(data2 == datal & a->index > b->index) 

swapnode(a,b); 

77 



a= a->rp; 

b = a->rp; 

b = b->rp; 

78 



79 

Appendix B 

Results of Computational Experiments 



I-Path Omega Network with Size of Network (N) = 8, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "../" means "admissible" 

The Terminal at Different Stages 
Permutation 

Permutation Stage 0 Stage 1 Stage 2 Stage 3 Capacity 
(Source) (Destination) 

I .Bit Reversal 

SoS1S2 S2S1So 
SOSIS2 S1S2S2 S2S2S1 S2S1So x 

2. Matrix Transposition 
s1s2s1 S2S1S2 s1s2so x SOSIS2 

SoS1S2 S1S2So 

3. Perfect Shuffle ' .. 

SaS1S2 S1S2So 
SOSIS2 s1s2s1 s2s1s2 S1S2So x 

4. Vector Reversal 
s2:fos; Yas;s2 ../ SoS1S2 s1s2so 

SoS1S2 SoS1S2 

5. Bit Shuffle 
SoS1S2 SoS2S1 

SOSIS2 SIS2SO S2SoS2 SaS2S1 x 
6. Unshuffie 

SoS1S2 SzSoSI 
SOSIS2 s1s2s2 S2S2So SzSoSI x 

7. Shuffle Row 
Major s 0s1s 2 s 0s 2s 1 

SOSIS2 s1s2so S2SoS2 SoS2S1 x 
8. Butterfly 

SoS1S2 S2S1So 
SOSIS2 S1S2S2 S2S2S1 S2S1So x 

9. Exchange 
s2sos; sos;s2 ../ SOSIS2 s1s2so 

SOSIS2 sos;s2 



2-Path Omega Network with Size of Network (N) = 8, and Size of Switch (B) = 4 

Note: ·'X'· means "non-admissible","./" means "admissible" 

The Terminal at Different Stages 
Permutation 

Permutation Stage 0 Stage 1 Stage 2 Capacity 
(Source) (Destination) 

I .Bit Reversal 
s 2 0 s 2 S2S1So x SoS1S2 

S0S1S2 Q9 S2S1S0 

2. Matrix Transposition 
s 2 0s1 S1S2So ./ SoS1S2 

S0S1S2 Q9 S1S2S0 

3. Perfect Shuffle 
s 2 0s1 S1S2So ./ SoS1S2 

S0S1S2 Q9 S1S2S0 ' 

4. Vector Reversal 
s2 ®Sa SOSIS2 ./ SoS1S2 

S0S1S2 Q9 Sa5i°Sz 
5. Bit Shuffle 

Sz ®so SaS2S1 ./ SOSIS2 
s 0s 1s 2 0 S0S2S1 

6. Unshuffle 
s 2 0 s 2 S2SOSI x SaS1S2 

SaS1S2 0 SzSOSI 

7. Shuffle Row Major 
s 0s 1 S2 Q9 S0S2S1 

SOSIS2 Sz ®so SoS2S1 ./ 

8. Butterfly 

SoS1S2 0 S2S1So 
SOSIS2 s 2 0 S2 S2S1So x 

9. Exchange 
s 0s 1s 2 0 S05i°S2 

SoS1S2 Sz ®so SoS1S2 ./ 



I-Path Omega Network with Size of Network (N) = 16, and Size of Switch (B) = 2 

Note: "X" means "non-admissible",",/" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 
(Source) (Destination) 

Capacity 

I .Bit Reversal 

SoS1S2S3 S3SzS1So 
SoS1S2S3 S1S2S3S3 S2S3S3S2 S3S3S2S1 S3S2S1So x 

2. Matrix Transposition 

SoS1S2S3 S2S3SoS1 
SoS1S2S3 S1S2S3S2 S2S3Sy'i'3 S3S2S3So S2S3SoS1 x 

3. Perfect Shuffle 

SOSIS2S3 S1S2S3So 
, SoS1S2S3 S1S2S3S1 s2s3s1s2 S3S1S2S3 S1S2S3So x 

4. Vector Reversal 

SOSIS2S3 Yas;s;s; 
SOSIS2S3 5 15 253Sa 5 25 3Yas; 53Yas;s; Yas;s;s; 

,/ 

5. Bit Shuffle 

SoS1S2S3 SoS2S1S3 
SoS1S2S3 S1S2S3So S2S3SoS2 S3SoS2S1 SoS2S1S3 x 

6. Unshuffle 

SoS1S2S3 S3SoS1S2 
SoS1S2S3 S1S2S3S3 S2S3S3So S3S3SoS1 S3SoS1S2 x 

7. Shuffle Row Major 

SaS1S2S3 SoS2S1S3 
SoS1S2S3 S1S2S3So SzS3SoS2 S3S3SoS1 SoS2S1S3 x 

8. Butterfly 

SoS1S2S3 S3S1S2So 
SoS1S2S3 S1S2S3S3 S2S3S3S1 S3S3S1S2 S3S1S2So x 

9. Exchange 

sos1s2s3 sos;s2s3 
SoS1S2S3 SIS2S3SO s2s3sos; s3sos;s2 sos;s2s3 ,/ 



4-Path Omega Network with Size of Network (N) = 16, and Size of Switch (B) = 8 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage 0 Stage 1 Stage 2 

(Source) (Destination) 
Capacity 

1.Bit Reversal 

SoS1S2S3 00 S3S2S1So 
SoS1S2S3 S3 00 s 3 S3S2S1So x 

2. Matrix Transposition 

SoS1S2S3 0 0 S2S3SoS1 
SoS1S2S3 S3 00 s 2 S2S3SoS1 ,/ 

3. Perfect Shuffie 
S0S1 S2S3 0 0 SJS2s 3s 0 

SoS1S2S3 S3 00 S1 S1S2S3So ,/ 

4. Vector Reversal 

S0S1S2S3 0 0 :fo5i:5;s; 
SoS1S2S3 S3 00 Sa Yas;s;s; ,/ 

5. Bit Shuffie 
S0S1S2S3 00 s 0s 2s 1s 3 

SoS1S2S3 S3 00 s 0 SoS2S1S3 
,/ 

6. Unshuffie 

SoS1S2S3 00 S3SoS1S2 
SoS1S2S3 S3 00 s 3 S3SoS1S2 x 

7. Shuffie Row Major 

SoS1S2S3 0 0 SoS2S1S3 
SoS1S2S3 S3 00 s 0 SoS2S1S3 ,/ 

8. Butterfly 

SoS1S2S3 00 S3S1S2So 
SoS1S2S3 S3 00 s 3 S3S1S2So x 

9. Exchange 

SOS1S2S3 00 so5is2S3 
SoS1S2S3 S3 00 S0 . so5is2s3 

,/ 



1-Path Omega Network with Size of Network (N) = 32, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "./" means "admissible" 

The Terminal at Different Stages 
Permutation Stage O · Stage I Stage 2 Stage 3 Stage 4 Stage 5 

(Source) (Destination) 
I. Bit Reversal 

SoS1S2S3S4 S4S3S2S1So 
SoS1S2S3S4 S1S2S3S4S4 S2S3S4S4S3 S3S4S4S3S2 S4S4S3S2S1 S4S3S2S1So 

2. Matrix Transposition 

SoS1S2S3S4 S2S3S4SoS1 
SoS1S2S3S4 S1S2S3S4S2 S2S3S4S2S3 S3S4S2S3S4 S4S2S3S4So S2S3S4SoS1 

3. Perfect Shuffle 

SoS1S2S3S4 S1S2S3S4So 
SoS1S2S3S4 S1SzS3S4S1 s2S3s4s1s2 S3S4S1S2S3 S4S1S2S3S4 S1S2S3S4So 

4. Vector Reversal 

SOS! S2S3S4 Yas;s;s;~ 
SoS1S2S3S4 S1S2S3S4Sa s2s3s4Ya5i S3S4Yas;s; s4Yas;s;s; Yas;s;s;~ 

5. Bit Shuffle 

sos1s2S3S4 sos2s4s1s3 
SoS1SzS3S4 S1S2S3S4So SzS3S4SoS2 S3S4SoS2S4 S4SoS2S4S1 SoS2S4S1S3 

6. Unshuffle 

SoS1S2S3S4 S4SoS1S2S3 
SoS1SzS3S4 S1SzS3S4S4 SzS3S4S4So S3S4S4SoS1 S4S4SoS1S2 S4SoS1S2S3 

7. Shuffle Row Major 
S0S1S2S3S4 S0S3S1S4S2 

SoS1S2S3S4 S1S2S3S4So S2S3S4SoS3 S3S4SoS3S1 S4SoS3S1S4 SoS3S1S4S2 

8. Butterflv 

SoS1SzS3S4 S4S1S2S3So SoS1S2S3S4 S1S2S3S4S4 S2S3S4S4S1 S3S4S4S1S2 S4S4S1S2S3 S4S1S2S3So 

9. Exchange 

SoS1S2S3S4 sos1s;s3S4 
SoS1S2S3S4 S1S2S3S4So SzS3S4SoS1 S3S4Sos1s; S4Sos1s;s3 sos1s;s3s4 

Permutation 
Capacity 

x 

x 

x 

./ 

x 

x 

x 

x 

./ 

CJ. 
~ 

~ 
Q) 
O" 
"1 -· ~ -'f.ll 
~ -· 0-

~ 
·~ • 
~ 

= 



2-Path Omega Network with Size of Network (N) = 32, and Size of Switch (B) = 4 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Stage O Stage 1 Stage 2 Stage 3 
Permutation 

(Source) (Destination) 
Capacity 

I . Bit Reversal 

SaS1S2S3S4 ® S4S3S2S1So 
SaS1S2S3S4 SzS3S4 QS) S4 S4 QS) S4S3S2 S4S3S2S1So x 

2. Matrix Transposition 

SaS1S2S3S4 ® S2S3S4SaS1 
SaS1S2S3S4 SzS3S4 QS) S2 S4 QS) S2S3S4 S2S3S4SaS1 x 

3. Perfect Shuffle 

SaS1S2S3S4 ® S1S2S3S4So . 
SaS1S2S3S4 S2S3S4 QS) SI S4 QS) S1S2S3 S1S2S3S4So ./ 

, 

4. Vector Reversal 

Sa.S\S2S3S4 QS) Yas;s;s;~ 
SaS1S2S3S4 SzS3S4 QS) Sa S4 '8J Yas;s; Yas;s;~~ ./ 

5. Bit Shuffle 

SaS1S2S3S4 ® SaS2S4S1S3 
SaS1S2S3S4 S2S3S4 QS) So S4 '8J SaS2S4 SoS2S4S1S3 x 

6. Unshuffle 

SaS1SzS3S4 ® S4SaS1S2S3 
SaS1S2S3S4 S2S3S4 QS) S4 S4 QS) S4SaS1 S4SaS1S2S3 x 

7. Shuffle Row Major 

SaS1S2S3S4 ® SaS3S1S4Sz 
SaS1S2S3S4 SzS3S4 Q9 So S4@ SaS3S1 SaS3S1S4S2 ./ 

8. Butterfly 

SaS1S2S3S4 ® S4S1S2S3So 
SaS1S2S3S4 S2S3S4 QS) S4 S4 Q9 S4S1S2 S4S1S2S3So x 

9. Exchange 

SaS1S2S3S4 ® Sas1s;s3S4 
SaS1SzS3S4 S2S3S4 QS) So s4 ® sos1s; sos1s;s3s4 ./ 



8-Path Omega Network with Size of Network (N) = 32, and Size of Switch (B) = 16 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Stage 0 Stage 1 Stage 2 
Permutation 

(Source) (Destination) 
Capacity 

1 . Bit Reversal 

SoS1S2S3S4 0 0 0 S4S3S2S1So 
SoS1S2S3S4 S 4 000 S4 S4S3S2S1So x 

2. Matrix Transposition 
S 0S1S,S3S4 000 SSS SS S0S1 S2 S~S4 ·- S4 000 s2 S2S3S4SoS1 ./ 

" 23401 

3. Perfect Shu file 

SoS1S2S3S4 000 S1SiS3S4So 
SoS1S2S3S4 . S4 ®®® s1 S1S2S3S4So ./ 

4. Vector Reversal 

SoS1S2S3S4 Q9 Q9 Q9 Yas;s;~s:i 
SoS1S2S3S4 S4 0®® Sa Yas;s;~s:i ./ 

5. Bit Shuffie 
S0S1S,S3S4 00® SSS SS 

SoS1S2S3S4 S 4 0@@ s 0 SoS2S4S1S3 ./ 
" 02413 

6. Unshuffie 
S0S1S 2S3S4 00® SSS SS 

SoS1S2S3S4 S4 QS)QS)QS) S4 S4SoS1S2S3 x 
4 0 I 2 3 

7. Shuffie Row Major 

SoS1SzS3S4 0 0 0 SoS3S1S4S2 
SoS1S2S3S4 S4 QS)QS)QS) So SoS3S1S4S2 ./ 

8. Butterflv 

SoS1S,S3S4 ®®®SSS SS 
SoS1S2S3S4 S4 ®®® S4 S4S1SzS3So x 

" 41230 

9. Exchange 

SOSJS,S3S4 ®®® s SS s s 
SoS1S2S3S4 S4 QS)QS)QS) So SoS1SzS3S4 ./ 

" 01234 



I-Path Omega Network with Size of Network (N) = 64, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "./" means "admissible" 

The T errninal at Different Stages Permutation 
Permutation Stage 0 Stage 6 

(Source) 
Stage I Stage 2 Stage 3 Stage 4 Stage 5 Capability 

(Destination) 
I. Bit Reversal 

SoS1S2S3S4S5 S5S4S3S2S1So 
SoS1S2S3S4S5 S1S2S3S4S5 S5 S2S3S4S5 S5S4 S3S4S5 S5S4S3 S4S5 S5S4S3S2 S5 S5S4S3S2S1 S5S4S3S2S1So x 

2. Matrix Transposition 

SoS1S2S3S4S5 S3S4S5SoS1S2 
S0S1 S2S3S4S5 S1S2S3S4S5 S3 S2S3S4S5 S3S4 S3S 4S 5 S3S4S5 s 4s5 S3S4S5So S5 S3S4S5SaS1 S3S4S5SaS1S2 x 

2. Perfect Shuffie 

SoS1S2S3S4S5 S1S2S3S4S5So 
S0S1S2S3S4s 5 s 1s 2s3-s4s 5 s 1 S2S3S4S5 S1S2 S3S4S5 S1S2S3 S4S5 S1S2S3S4 s, S1S2S3S4S5 S1S2S3S4S5So x 

4. Vector Reversal 

SoS1S2S3S4S5 :fo:5;s;:5;~Ys 
SoS1S2S3S4S5 S1S2S3S4S5 Sa S2S3S4S5 s;,s; S3S4S5 s;,s;s; S4S5 Yas;s;s; S5 ~s;s;s;~ s;,s;s;s;s4Ys ./ 

5. Bit Shuffie 

SaS1S2S3S4S5 SaS2S4S1S3S5 
SoS1S2S3S4S5 S1S2S3S4S5 Sa S2S3S4S5 SOS2 S3S4S5 SaS2S4 S4S5 SaS2S4S1 S5 SoS2S4S1S3 SoS2S4S1S3S5 x 

6. Unshuffie 

SoS1S2S3S4S5 S5SoS1S2S3S4 
S0S1S2S3S4s 5 S1S2S3S4S5 S5 S2S3S4S5 S5So S3S4S5 S5SoS1 S4S5 S5SoS1S2 S5 S5SoS1S2S3 S5SoS1S2S3S4 x 

. Shuffie Row Major 
SoS1S2S3S4S5 SaS3S1S4S2S5 

SoS1S2S3S4S5 s,s2S3S4S5 So S2S3S4S5 SoS3 S3S 4S 5 SoS3S1 S 4S5 SoS3S1S4 S5 SoS3S1S4S2 SoS3S1S4S2Ss x 
8. Butterfly 

SoS1S2S3S4S5 S5S1S2S3S4So 
SoS1S2S3S4S5 S1S2S3S4S5 S5 S2S3S4S5 S5S1 S3S4S5 S5S1S2 S 4S5 S5S1SzS3 S5 S5S1S2S3S4 S5S1SzS3S4So x 

9. Exchange 

SoS1S2S3S4S5 sos1s;s3S4S5 
SaS1S2S3S4S5 s,s2S3S4S5 So S2S3S4S5 S0S1 S3S4S5 Sos,s; s4ss sos1s;s3 ss sos1s;s3S4 s 0s 1s;s3s 4s 5 

./ 

-----



4-Path Omega Network with Size of Network (N) = 64, and Size of Switch (B) = 16 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage 0 Stage 1 Stage 2 

(Source) (Destination) 
Capacity 

I .Bit Reversal 

SaS1S2S3S4S5 00 S5S4S3S2S1So 
SaS1SzS3S4S5 S4S5 (8)(8) S5S4 S5S4S3SzS1So x 

2. Matrix Transposition 

SaS1S2S3S4S5 0 0 S3S4S5SoS1S2 
SaS1S2S3S4S5 S4S5 (8)(8) S3S4 S3S4S5SoS1S2 x 

3. Perfect Shuffie 

SaS1S2S3S4S5 0 0 S1SzS3S4S5So 
SaS1S2S3S4S5 S4S5 (8)(8) S1S2 S1S2S3S4S5So ./ 

4. Vector Reversal 

SaS1S2S3S4S5 00 Yas;s;s;s4:fs 
SaS1SzS3S4S5 S4S5 (8)(8) '.foYi Yas;s;s;s4:fs ./ 

5. Bit Shuffie 

SOS] S2S3S 4S5 0 0 SaSzS 4s1 S3S5 
SaS1S2S3S4S5 S4S5 (8)(8) SoS2 SaS2S4S1S3S5 ./ 

6. Unshuffie 

SaS1S2S3S4S5 00 S5SoS1S2S3S4 
SaSI SzS3S 4S5 S4S5 (8)(8) S5So S5SoS1S2S3S4 x 

7. Shuffie Row Major 

SaS1S2S3S4S5 0 0 SaS3S1S4SzS5 
SOSI SzS3S 4S5 S4S5 (8)(8) SaS3 SaS3S1S4SzS5 ./ 

8. Butterfly 

SaS1SzS3S4S5 00 S5S1SzS3S4So 
SaS1SzS3S4S5 S4S5 (8)(8) S5S1 S5S1S2S3S4So x 

9. Exchange 

SoS1SzS3S4S5 00 sos1s;s3S4S5 
SaS1SzS3S4S5 S4S5 (8)(8) SOSI SOSI s;s3s 4S5 ./ 



16-Path Omega Network with Size of Network (N) = 64, and Size of Switch (B) = 32 

Note: "X" means "non-admissible","./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage 0 Stage I Stage 2 

(Source) (Destination) 
Capacity 

I .Bit Reversal 
SoS1SoS3S 4S5 0000 SSS SSS 

SoS1S2S3S4S5 S5 0000 S 5 S5S4S3S2S1So x 
~ 5 4 3 2 I O 

2. Matrix Transposition 
S0S1SoS3S 4S5 00 00 SSS SSS 

SoS1S2S3S4S5 S 5 0000 s 3 S3S4S5SoS1S2 ../ 
~ 3 4 5 0 I 2 

3. Perfect Shuffie 
SoS1SoS3S 4S5 0000 SSS SSS 

SoS1S2S3S4S5 S5 0000 S1 S1S2S3S4S5So ../ 
k 123450 

4. Vector Reversal 
S 0S1S2S3S 4S5 0000 :fo:5;:5;:5;s4Ys SoS1S2S3S4S5 S 5 0000 Sa Ya s;s; s; s:i Ys ../ 

5. Bit Shuffie 

SaS1S2S3S4S5 0000 SaS2S4S1S3S5 
SoS1S2S3S4S5 S 5 0000 s0 SoS2S4S1S3S5 ./ 

6. Unshuffie 

SoS1S2S3S4S5 00 00 S5SoS1SzS3S4 
S0S1S2S3S 4s5 S5 0000 S 5 S5SoS1SzS3S4 x 

7. Shuffie Row Major 
SoS1SzS3S4S5 0000 s s s s s s 

SoS1S2S3S4S5 S 5 0000 S 0 SoS3S1S4SzS5 ./ 
- 031425 

8. Butterfly 

SoS1S2S3S4S5 0 0 0 0 S5S1S2S3S4So 
SoS1S2S3S4S5 S 5 0000 S 5 S5S1S2S3S4So x 

9. Exchange 
s0s,s"s3S 4S 5 0000 s ss s s s SoS1SzS3S4S5 S 5 0000 S0 sos1s;s3S4Ss ../ 

~ - 012345 



I-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "../" means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Capability 

(Source) (Destination) 
1. Bit Reversal S1S2S3 S2S3S4 S3S4S5 S4S5S5 S5S5 S6 S5 S5S5 

S5S5S4S3S2S1So x 
SoS1S2S3S4S5S5 S5S5S4S3S2S1So SoS1S2S3S4S5S5 

S4S5S5 S6 sss6 s6ss S6 S6S5S4 S5S5S4S3 S5S4S3S2 S4S3S2S1 

2. Matrix Transposition S1S2S3 S2S3S4 S3S4S5 S 4S5S6 S5S5 S3 S6 S3S4 
S3S4S5S5SoS1S2 x 

SoS1S2S3S4S5S5 S3S4S5S5SoS1S2 SoS1S2S3S4S5S5 
S4S5S5 S3 SSS6 S3S4 s6. S3S4S5 S3S4S5S6 S4S5S6SO S5S6SOS1 

3. Perfect Shuffle S1S2S3 S2S3S4 S3S4S5 S4S5S5 s5s6 S1 S5 S1S2 
S1S2S3S4S5S5So x SoS1S2S3S4S5S5 , 

SoS1S2S3S4S5S5 S1S2S3S4S5S5So 
S4S5S5 Sl sss6 s1s2 S6 S1S2S3 S1S2S3S4 SzS3S4S5 S3S4S5S6 

4. Vector Reversal S1S2S3 S2S3S4 S3S4S5 S4S5S5 S5S5 So s6 S0S1 Sa s;s; s; ~ Ys s;, ../ s0s1s 2s 3s4s5s6 :fos;s;s;~s,s;, SoS1S2S3S4S5S6 
S4S5S6 Sa 5s5 6 Yas; 56 Yos;s2 Yas;s;s; s;s;s;s4 s2s;~s; 

5. Bit Shuffle SI S2S3 S2S3S4 S3S4S5 S4S5S5 S5S5 So s6 SoS2 
SoS2S 4 s6sl S3S5 x 

SoS1S2S3S4S5S5 SoS2S4S5S1S3S5 SoS1S2S3S4S5S5 
S4S5S6 So s5s6 SOS2 s6 SoS2S4 SoS2S4S5 s2s4s6s1 S4S5S1S3 

6. Unshuffle S1S2S3 S2S3S4 S3S4S5 S 4S5S5 S5S6 S6 S6 SGSO 
S6SoS1S2S3S4S5 x 

SoS1S2S3S4S5S5 S6SoS1SzS3S4S5 SoS1S2S3S4S5S5 
S4S5S5 S6 S5S5 S6SO S6 S6SOS1 S6SoS1S2 SoS1S2S3 S1S2S3S4 



1-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "./" means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Capability 

(Source) (Destination) 
7. Shuffle Row Major 

S1S2S3 S2S3S4 S3S4S5 S4S5S6 S5S6 So S6 SOS4 
SOS4SIS5S2S6S3 x 

SoS1S2S3S4S5S6 SoS4S1SsS2S6S3 SoS1S2S3S4S5S6 
S4S5S6 So s5s6 SOS4 S6 SOS4Sl SoS4S1Ss S4S1SsS2 s1sss2s6 

8. Butterfly 
SI S2S3 S2S3S4 S3S4S5 S4S5S6 S5S6 S6 s6 s6s1 

s6sl S2S3S4S5So x 
SoS1S2S3S4S5S6 S6SJS2S3S4S5So 

SoS1S2S3S4S5S6 
S4S5S6 S6 sss6 s6s1 ~6 s6s1s2 s6s1s2s3 S1S2S3S4 S2S3S4S5 

9. Exchange S1 S~S3 S2S3S4 S3S4S5 S4S5S6 S5S6 So S6 S0S1 
s 0s 1 s 2:5;s4s 5s 6 

,/ 
SoS1S2S3S4S5S6 SoS1S2S3S4S5S6 

SoS1S2S3S4S5S6 
S4S5S6 So s5s6 SOS] S6 SOSIS2 sos1s2s; s1s2s;s4 s2s;s4ss 



2-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 4 

Note: "X" means "non-admissible", "./"means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage O Stage l Stage 2 Stage 3 Stage 4 
(Source) (Destination) 

Capacity 

l . Bit Reversal 

SoS1S2S3S4S5S6@ S6S5S4S3S2S1So 
SoS1S2S3S4S5S6 S2S3S4S5S6@ S6 s4s5s6 ® s6sss4 S6 @ S6S5S4S3S2 S6S5S4S3S2S1So x 

2. Matrix Transposition 

S0S1S2S3S4S5S6 @ S3S4S5S6S0S1S2 
SaS1S2S3S4SsS6 S2S3S4S5S6@ S3 S4SsS6 @ S3S4S5 S6@ S3S4S5S6So S3S4S5S6SoS1S2 x 

•. . .. 
3. Perfect Shuffle 

S0S1S2s 3s 4s 5s 6 @ s 1s 2s 3s 4s 5s 6s 0 
SoS1S2S3S4S5S6 S2S3S4S5S6@ SI S4S5S6@ S1S2S3 S6@ S1S2S3S4S5 S1S2S3S4S5S6SO ./ 

-· ... 

4. Vector Reversal 

SoS1S2S3S4S5S6@ Yas;s;s;~s;~ 
SaS1S2S3S4S5S6 S2S3S4S5S6@ Sa S4S5S6 @ Yas;s; s6 @ Yas;s;s;~ Yas;s;s;~s;~ ./ 

5. Bit Shuffle 

S0S1S2S3S4S5S6 @ S0S2S4S6S1S3S5 
SoS1S2S3S4S5S6 S2S3S4S5S6@ So S4S5S6 @ SoS2S4 s6@ SaS2S4S6SI SaS2S4S6S1S3S5 x 

6. Unshuffle 

S0S1S2S3S4S5S6 @ s 6s 0s 1s 2s 3s 4s 5 
SoS1S2S3S4S5S6 SzS3S4S5S6@ s6 S4S5S6@ S6SOSI s6 @ S6SoS1S2S3 S6SoS1S2S3S4S5 x 

7. Shuffle Row Major 

S0S1S2S3S4S5S6 @ S0s 4s 1s 5s 2s 6s 3 
SoS1S2S3S4S5S6 S2S3S4S5S6@ So S4S5S6@ SoS4S1 s6@ SoS4S1S5S2 SaS4S1S5S2S6S3 x 

8. Butterfly 

SoS1S2S3S4S5S6@ S6S1S2S3S4S5So 
SoS1S2S3S4S5S6 S2S3S4S5S6@ s6 s4sss6@ s6s1s2 S6@ S6S1S2S3S4 S6S1S2S3S4S5So x 

9. Exchange 

SoS1S2S3S4S5S6@ sos1s2s;s4S5S6 
SoS1S2S3S4S5S6 S2S3S4S5S6@ So S4S5S6@ SoS1S2 s6@ sos1s25;s4 SoS1s2s;s4S5S6 ./ 



4-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 8 

Note: "X" means "non-admissible","./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage O Stage I Stage 2 Stage3 
(Source) (Destination) 

Capacity 

1. Bit Reversal 

SoS1S2S3S4S5S5 ®® S5S5S4S3S2S1So 
SoS1S2S3S4S5S6 S3S4S5S5 @@ S6 S6 @@ S5S5S4S3 S5S5S4S3S2S1So x 

2. Matrix Transposition 

SoS1S2S3S4S5S5 ® ® S3S4S5S5SoS1S2 
SaS1S2S3S4S5S5 S3S4S5S5@@ S3 S6 @@ S3S4S5S5 S3S4S5S5SoS1S2 x 

3. Perfect Shuffle 

SoS1S2S3S4S5S5 ®@ S1S2S3S4S5S5So 
SoS1S2S3S4S5S5 S3S4S5S5@@ SI S6@@ S1S2S3S4 S1S2S3S4S5S6SO ./ 
, 

4. Vector Reversal 

SoS1S2S3S4S5S5@@ Yas;s;s;~s;s;, 
SoS1S2S3S4S5S5 S3S4S5S5@@ Sa s6 ® ® 5as;s;s; Sa s;s; s; ~ 5s s;, ./ 

5. Bit Shuffle 

SaS1S2S3S4S5S5 ® ® SaS2S4S5S1S3S5 
SoS1S2S3S4S5S5 S3S4S5S5@@ So S6 @@ SOS2S4S6 SaS2S4S5S1S3S5 ./ 

6. Unshuffle 
S0S1S2S3S4S5S6 @@ S6S0S1S2s 3s 4s 5 

SoS1S2S3S 4S 5S 6 S3S4S5S5 @@ S6 S6 @@ S6SOSIS2 S6SoS1S2S3S4S5 x 

7. Shuffle Row Major 

SoS1S2S3S4S5S5 ® ® SoS4S1S5SzS5S3 
SaS1S2S3S4S5S6 S3S4S5S6 @@So s6 ®® SoS4S1S5 SaS4SIS5S2S6S3 ./ 

8. Butterfly 

SoS1S2S3S4S5S5 ®® S5S1S2S3S4S5So 
SoS1S2S3S4S5S5 S3S4S5S5 @@ S6 s6 ®® s6s1s2s3 S6S1S2S3S4S5So x 

9. Exchange 

s 0s 1s 2s 3s 4s 5s 6 ® ® s 0s 1s 2s;s4s 5s 6 
SoS1S2S3S4SsS6 S3S4S5S6 @@So s6 ®® sos1s2s; SoS1S25;S4S5S6 ./ 



8-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 32 

Note: "X" means "non-admissible", "../" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage O Stage l Stage2 
(Source) (Destination) 

Capacity 

1. Bit Reversal 

SoS1S2S3S4S5S6 ® ® ® S6S5S4S3S2S1So 
SoS1S2S3S4S5S6 sss6 ® ® ® s6ss S6S5S4S3S2S1So x 

2. Matrix Transposition 

S0S1S2S3S4S5S6 @@@ S3S4S5s 6s 0s 1s 2 
SoS1S2S3S4S5S6 S5S6 (8) (8) (8) S3S4 S3S4S5S6SoS1S2 ../ 

3. Perfect Shuffle 

S0S1S2S3S4S5S6 @@@ S1S2S3S4s,s6s 0 
SoS1S2S3S4S5S6 s,s6 ®@® s s S1S2S3S4S5S6SO ../ 

- I 2 
/ -

4. Vector Reversal 

S0S1S2S3S4s 5s 6 (8) (8) (8) Yas;s;s;s:i:fs~ 
SoS1S2S3S4S5S6 sss6®®® :fo5i Ya5is;5;~5s~ ../ 

5. Bit Shuffle 
S0S1S2S3S4S5S6 @@@ S0S2S4s 6s 1s 3s 5 

SoS1S2S3S4S5S6 SsS6 (8) (8) (8) SoS2 SoS2S4S6S1S3S5 ../ 

6. Unshuffle 

S0S1S2S3S4S5S6 (8)@@ S6S0S1S2S3S4S5 
SoS1S2S3S4S5S6 S5S6 @ (8)@ S6SO S6SOS1S2S3S4S5 x 

7. Shuffle Row Major 

S0S1S2S3S4S5S6 @@@ S0S4S1S5S2S6S3 
SoS1S2S3S4S5S6 s,s6 ® @@ s s - 0 4 SoS4S1SsS2S6S3 ../ 

8. Butterfly 

SoS1S2S3S4S5S6 (8) ®@ s6sl S2S3S4S5So 
SoS1S2S3S4S5S6 sss6®®® s6s1 S6S1S2S3S4S5So x 

9. Exchange 

SoS1S2S3S4S5S6 (8)@@ SoS1s2s;s4s5s6 
SoS1S2S3S4S5S6 S-S6 @ @<8) SS SoS1S25;S4S5S6 ../ ) 0 I 



32-Path Omega Network with Size of Network (N) = 128, and Size of Switch (B) = 64 

Note: "X" means "non-admissible", '"../" means "admissible" 

Permutation 
The Terminal at Different Stages 

Stage O Stage I Stage2 
Permutation 

(Source) (Destination) 
Capacity 

l. Bit Reversal 

SoSIS"S3S4S5S6 0 0 0 0 S S S S S SS 
SoS1S2S3S4S5S6 S5S6 0@00s

6 S5S5S4S3S2S1So x 
• 6543210 

2. Matrix Transposition 

SoS1SoS3S4S5S6 0@0 0 S S S S S SS 
SoS1S2S3S4S5S5 S5S6 0000 S3 S3S4S5S5SoS1S2 ../ 

• 3456012 

3. Perfect Shuffle 

SaS1SoS3S4s,s6 0@0 0 SS S S S S S 
SoS1S2S3S4S5S5 S5S6 0@00 S1 S1S2S3S4S5S6SO ../ 

• - 1234)60 

4. Vector Reversal 

SoS1S2S3S4S5S6 0000 :fo5i5;~:f.i:f,5;, SoS1S2S3S4S5S6 S5S6 0000 Sa Yos;s; ~ s:i s, s;; ./ 

5. Bit Shuffle] 

SoS1S2S3S4S5S6 0 0 0 0 S0S2S4S6s1s3s5 
SoS1S2S3S4S5S6 S5S6 0@@0 S0 SOS2S4S6SIS3S5 ./ 

6. Unshuffle 

SoS1S2S3S4S5S6 @@0 0 s6s0s1s2s3s4s5 
SoS1S2S3S4S5S6 S5S6 0000 S6 S6SoS1S2S3S4S5 x 

7. Shuffle Row Major 

SoS1S2S3S4S5S6 @0 0 0 S0S4S1S5s2s6s3 
SoS1S2S3S4S5S5 S5S6 0@00 S0 SoS4S1SsS2S5S3 ./ 

8. Butterfly 

SoS1SoS3S4s,s6 0 0 0 0 s s s s s s s SoS1S2S3S4S5S5 S5S6 0000 S6 S6SIS2S3S4S5So x 
• - 6123450 

9. Exchange 

SoS1SoS3S4s,s6 0@00 SSS SSS S 
SoS1S2S3S4S5S5 S5S6 0000 S0 SoS1S2~S4S5S6 ./ 

• - 0123456 



1-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "../"means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Capability 

(Source) (Destination) 
1. Bit Reversal SoS1SzS3S4S5S6S7 S1SzS3S4 SzS3S4S5 S3S4S5S6 S4S5S6S7 s5s6s7 S7 s6s7 s7s6 S7 S7S6S5 S7S6S5S4S3S2S1So x 
SoS1S2S3S4S5S6S7 S7S6S5S4S3S2S1So sss6s7 S7 s6s7 s1s6 S7 S7S6S5 S7S6S5S4 S6S5S4S3 S5S4S3S2 S4S3SzS1 

l2. Matrix Transposition SoS1SzS3S4S5S6S7 S1SzS3S4 SzS3S4S5 S3S4S5S6 S4S5S6S7 sss6s1 S4 s6s1 S4S5 S7 S4S5S6 S4S5S6S7SoS1S2S3 x 
SoS1S2S3S4S5S6S7 S4S5S6S7SoS1S2S3 S5S6S7 S4 s6s7 S4S5 S7 .94S5S6 S4S5S6S7 S5S6S7So S6S7SOS1 S7SoS1S2 

G. Perfect Shuffle SoS1S2S3S4S5S6S7 s1s2s3'~-4 SzS3S4S5 S3S4S5S6 S4S5S6S7 sss6s1 st s6s1 S1S2 S7 S1S2S3 S1SzS3S4S5S6S7So x 
SoS1SzS3S4S5S6S7 S1S2S3S4S5S6S7So S5S6S7 SI s6s7 s1s2 S7 S1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 

~. Vector Reversal SoS1SzS3S4S5S6S7 S1SzS3S4 SzS3S4S5 S3S4S5S6 S4S5S6S7 sss6s7 Su s6s7 sost S7 SoS1S2 SaS1SzS3S4S5S6S7 ../ 
S0s 1s 2s 3S4S5S6s 7 S0S,.s2 "S:is4°8s~S7 ----

S..s2S:is4 s2S:i~8s ~s48ss6 SsS6S7 So s6s7 sas1 S7 SaS1S2 SaS1S2S3 

5. Bit Shuffle SoS1SzS3S4S5S6S7 S1S2S3S4 SzS3S4S5 S3S4S5S6 S4S5S6S7 sss6s7 So s6s7 sas2 S7 SaS2S4 SaSzS4S6S1S3S5S7 x 
SaS1SzS3S4S5S6S7 SaS2S4S6S1S3S5S7 SsS6S7 Sa s6s7 sas2 S7 SaS2S4 SaS2S4S6 s2s4s6s1 s4s6sts3 S6S1S3S5 

6. Unshuffle SaS1S2S3S4S5S6S7 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 sss6s1 S1 s6s7 S7So S7 S7SaS1 S7SaS1S2S3S4S5S6 x 
SoS1SzS3S4S5S6S7 S7SaS1SzS3S4S5S6 S5S6S7 S7 s6s7 S7So S7 S7SaS1 S7SaS1S2 SaS1S2S3 S1SzS3S4 S2S3S4S5 



I-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "./" means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Capability 

(Source) ;Destination) 
r?. Shuffle Row Major SoS1S2S3S4SsS6S7 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 S5S6S7 So s6s7 SoS4 S7 SoS4S1 SoS4S1SsS2S6S3S7 x 
SoS1S2S3S4S5S6S7 SoS4S1S5S2S6S3S7 

sss6s7 so s6s7 SOS4 S7 SOS4Sl SOS4SlS5 S4S1S5S2 S1S5S2S6 S5S2S6S3 

8. Butterfly SoS1S2S3S4S5S6S7 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 SsS6S7 S7 s6s1 s1s1 S7 S7S1S2 S7S1S2S3S4S5S6SO x 
s 0s 1s 2s 3s 4s 5s 6s 7 S7S1S2S3S4S5S6S0 sss6s1 s1 s6s1 s1s1 s 7 s 1s 1s 2 S7S1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 

19. Exchange SoS1SzS3S4S5S6S7 S1S2S3S71 S2S3S4S5 S3S4S5S6 S4S5S6S7 S5S6S7 So s6s7 SOS] S7 SoS1S2 sos1s2s;s4sss6s1 ./ 
SoS1 S2S3S4S5S6S7 SOS] s2s;s4s5s6s7 sss6s7 so s6s7 SOS! s1 sos1s2 sos1s2s; s1s2s;s4 s2s;s4ss s;s4sss6 



2-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 8 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages 

Permutation 
Stage 0 Stage 1 Stage 2 Stage3 

(Source) (Destination) 
Capability 

1. Bit Reversal 

SaS1S2S3S4S5S6S7@ S7S6S5S4S3S2S1So 
SaS1S2S3S4S5S6S7 S3S4S5S5S7@ s7s6 s6s7 @ S7S6S5S4S3 S?S6S5S4S3S2S1So x 

2. Matrix Transposition - ""· ~. 

SaS1S2S3S4S5S6S7@ S4S5S6S7SaS1S2S3 
S0S1 S2S3S4s 5s 6s 7 S3S4S5S.6S7@ S4S5 s6s7@ S4S5S6S1So S4S5S6S1SaS1S2S3 x 

3. Perfect Shuffie , 

S0S1S2S3S4s 5s 6s 7 @ S1S 2S3S4s5s6s7s0 
SoS1 SzS3S4S5S6S7 S3S4S5S6S7 @ sls2 s6s7@ S1S2S3S4S5 S1S2S3S4S5S6S7S0 ./ 

4. Vector Reversa 
l s 0s 1s 2s 3s 4s 5s 6s 7 ® Yos;s;s;s45;;~s; 

SoS1SzS3S4S5S6S? S3S4S5S6S?@ So5i 8681 ® Yas;s;s;s:i Yas;s;s;s4s;;~s; ./ 

5. Bit Shuffie 
S0S1S2S3S4s 5s 6s 7 @ S0S 2S4S6S1S3S5S7 

SoS1S2S3S4S5S5S7 S3S4S5S5S7 @ SaS2 s6s7 @ SoS2S4S6SI S0S 2S4S6S1S3S5S7 x 

6. Unshuffie 

SoS1S2S3S4S5S6S7@ S7SoS1S2S3S4S5S6 
SoS1S2S3S4S5S6S7 S3S4S5S6S7 @ S7So S5S7@ S7SoS1S2S3 S7SoS1S2S3S4S5S6 x 

7. Shuffle Row Major 
S0S1S2S3S4S5S6S7 @ S0S4S1S5S2S6S3S7 

SoS1S2S3S4S5S5S7 S3S4S5S6S7@ SaS4 S5S7@ SoS4S1SsS2 SoS4S1SsS2S6S3S7 x 

8. Butterfly 

SoS1S2S3S4S5S5S7@ S7S1S2S3S4S5S5So 
SoS1S2S3S4S5S6S7 S3S4S5S6S7 @ S7S1 S5S7@ S7S1S2S3S4 S7S1S2S3S4S5S5So x 

9. Exchange 

SoSJ S2S3S4S5S6S7 @ SOS! s2s;s4s5s6s7 
SoS1S2S3S4S5S6S7 S3S4S5s 6s 7 @ S0S1 S5S1 (8) sos1s2s;s4 SOS! s2s;s 4S5S5S7 ./ 



4-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 32 

Note:" X" means "non-admissible",''./" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage 1 Stage2 
(Source) (Destination) 

Capacity 

1. Bit Reversal 

SoS1SzS3S4S5S6S7 ® ® S7S6S5S4S3SzS1So 
SoS1S2S3S4S5S6S7 sss6s1 ® ® s1s6ss S7S6S5S4S3S2S1So x 

2. Matrix Transposition 
SoS1S2S3S4S5S6S7 ® ® S4S5S6S7SoS1S2S3 

SoS1S2S3S4S5S6S7 SsS6S7 @@ S4S5S6 S4S5S6S7SOSI S2S3 x 

3. Perfect Shuffle 

SoS1SzS3S4S5S6S7 ® ® S1SzS3S4S5S6S1So 
SoS1S2S3S4S5S6S7 SsS6S7 ®® S1SzS3 S1SzS3S4S5S6S1So ,/ 

4. Vector Reversal 

SoS1S2S3S4S5S6S7 ® ® Yos;s;s;s45s:f,;:f, 
SoS1 SzS3S4S5S6S7 SsS6S7 @@ Yas;s; Yas;s;s;~s;~s:, ,/ 

5. Bit Shuffle 

SoS1S2S3S4S5S6S7 ® ® SaSzS4S6S1S3S5S7 
SoS1S2S3S4S5S6S7 SsS6S7 ® ® SoSzS4 SaSzS4S6S1S3S5S7 ,/ 

6. Unshuffle 

SoS1S2S3S4S5S6S7 ® ® S7SoS1S2S3S4S5S6 
SoS1S2S3S4S5S6S7 SsS6S7 ® ® S7SoS1 S7SoS1S2S3S4S5S6 x 

7. Shuffle Row Major 

SoS1S2S3S4S5S6S7 ® ® SoS4S1S5S2S6S3S7 
SoS1SzS3S4S5S6S7 S5S6S7 (8)@ SoS4S1 SoS4S1SsS2S6S3S7 ,/ 

8. Butterfly 

SoS1S2S3S4S5S6S7 ® ® S7S1SzS3S4S5S6SO 
SoS1S2S3S4S5S6S7 SsS6S7 @@ S7S1S2 S7S1S2S3S4S5S6SO x 

9. Exchange 
s0s1s2s3s4s5s6s7 ® ® s 0s 1s 2s;s4s 5s 6s 7 

SoS1S2S3S4S5S6S7 SsS6S7 @@ SaS1S2 SOS! s2s;s 4S5S6S7 ,/ 

J_ 
~ 

~ 
~ 
O' 
::!. 
\'ti -VJ. 

~ -:r 
.s 
• 
> = 



16-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 64 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage 1 Stage2 
(Source) (Destination) 

Capacity 

1. Bit Reversal 

SoS1S2S3S4S5S6S7 ® 0 0 0 S7S6S5S4S3S2S1So 
SoS1S2S3S4S5S6S7 s 6s 7 0®00 s 7s 6 S7S6S5S4S3S2S1So x 

2. Matrix Transposition 
SoS1S,S3S4S5S6S7 0 0@ 0 S S S S S SS S 

S0S1 S2S3S4S5S6S7 s6s 7 000 0 s 4s 5 S4S5S6S1SoS1 s2s3 ./ 
" 45670123 

3. Perfect Shuffle 
SoS1S,S3S4S,S6S7 @@00 S1S,S SSS SS 

SoS1S2S3S4SsS6S7 s 6s 7 0 ® 0 ® s 1s 2 S1S2S3S4S5S6S7S0 ./ 
" - .345670 

4. Vector Reversal 

SoS1S2S3S4S5S6S7 0 0 0 0 :fos;s;s;s:i5s~S:, 
SoS1S2S3S4S5S6S7 s 6s 7 ®00 0 :foYi Yo s; s; s; s:i 5s s;; s:, ./ 

5. Bit Shuffle 

SoS1S2S3S4S5S6S7 0 0 0 ® SoS2S4S6S1S3S5S7 
SoS1SzS3S4S5S6S7 s6s7 0000 SOS2 SOS2S 4s6sl S3S5S7 ./ 

6. Unshuffle 

SoS1SzS3S4S5S6S7 ® 0 0 0 S7SoS1S2S3S4S5S6 
SoS1SzS3S4S5S6S7 s6s 7 0®0 0 s 7s 0 S7SoS1SzS3S4S5S6 x 

7. Shuffle Row Major 

SoS1SzS3S4S5S6S7 ® 0 0 0 SoS4S1S5S2S6S3S7 
SoS1 S2S3S4S5S6S7 s 6s 7 ®®0 0 s 0s 4 SoS4S1SsS2S6S3S7 ./ 

8. Butterfly 

SoS1SzS3S4S5S6S7 ® 0 0 0 S7S1S2S3S4S5S6SO 
SoS1S2S3S4S5S6S7 s 6s 7 0000 s 7s 1 S7S1S2S3S4S5S6SO x 

9. Exchange 
s 0s1s 2s 3s 4s 5s 6s 7 ® 0 0 ® s 0s 1s 25;s4s 5s 6s 7 

SaS1S2S3S4S5S6S7 s6s7 0000 SOS] SOS1s2s;s4S5S6S7 ./ 



64-Path Omega Network with Size of Network (N) = 256, and Size of Switch (B) = 128 

Note: "X" means "non-admissible", ''../" means "admissible" 

Permutation 
The Terminal at Different Sta ~es 

Permutation 
Stage 0 Stage 1 Stage2 

(Source) (Destination) 
Capacity 

1. Bit Reversal 
SoS1S,S3S4S5S6S7 @(8)(8)@@<8) S S S S S S SS 

SoS1S2S3S4S5S6S7 S7®@@@@@ S7 S7S6S5S4S3S2S1So x 
- 76543210 

2. Matrix Transposition 
SoS1S,S3S4S5S6s7@®@@®® s s s s s s s s SoS1S2S3S4S5S6S7 S7®@@@@@ S4 S4S5S6S7SoS1S2S3 ../ 

- 45670123 

3. Perfect Shutlle 
SoS1SoS3S4S5S6S7 ©®@®®® s s s s s s S'S 

SoS1S2S3S4S5S6S7 S7@@@@@@S1 S1S2S3S4S5S6S7SO ../ 
- l 2 3 4 5 6 7 0 

4. Vector Reversal 
SoS1SoS3S4S5S6S7 @@@@@<8) SSSSSSSS SoS1S2S3S4S5S6S7 S7@@@@@@ Sa Yas;s;s;s4s;~s:, ../ 

- 01234567 

5. Bit Shuffie 

SoS1S2S3S4S5S6S7 @® ® ® ® ® SoS2S4S6S]S3S5S7 
SoS1S2S3S4S5S6S7 S7 @@@@@@So S0S 2S4S6S1S3S5S7 ../ 

6. Unshuffie 
SoS1S2S3S4S5S6S7 @@@® ® ® S7SoS1SzS3S4S5S6 

SoS1S2S3S4S5S6S7 S7 @@@@@@ S7 S7SoS1SzS3S4S5S6 x 
7. Shutlle Row Major 
SoS1S2S3S4S5S6S7 @@@@@® SoS4S1S5SzS6S3S7 

SoS1S2S3S4S5S6S7 S7®@@@@<8) So SoS4S1S5S2S6S3S7 ../ 

8. Butterfly 
S0S1S,S3S4S5s 6s 7 @@@@@<8) SSS SSS SS 

SoS1S2S3S4S5S6S7 S7@@@@@@ S7 S7S1S2S3S4S5S6SO x 
~ 71234560 

9. Exchange 
SoS1SoS3S4S5S6s7@@@®®® s s s s s s s s SoS1 S2S3S4S5S6S7 S7 @@@@@@So sos1s2s;s4s5s6s1 ../ 

- 0 I 2 3 4 5 6 7 



1-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 2 

Note: "X" means "non-admissible", "¥'" means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Capability 

(Source) (Destination) 
1. Bit Reversal SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S1 S5S6S1Ss s6s1ssss S7S8S8S7 S 8S8s 1s 6 sss1s6ss 

SoS1S2S3S4S5S6S7S8 SsS1S6S5S4S3S2S1So S4S5S6S1Ss s 5s 6s 7s 8s 8 s 6s 7s 8s 8s 7 s 7s 8s 8s 7s 6 s 8s 8s 7s 6s 5 sss1s6sss4 S7S6S5S4S3 S6S5S4S3S2 S5S4S3S2S1 S4S3S2S1So x 

2. Matrix Transposition S0S1 S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 SsS6S7S8 S 6S7S 8S4 S7S8S4S5 S 8S4S 5S6 S4S5S6S7 

SoS1S2S3S4S5S6S7Sg S4S5S6S7S3SoS1S2S3 
S4S5S6S7S8 S5S6S7S8S4 s 6s 7s8s 4s 5 s 7s 8s 4s 5s 6 SsS4S5S6S7 S4S5S6S1Ss SsS6S1SsSo S6S7S8SOS1 S7S8S0S1S2 SsSoS1S2S3 x 

3. Perfect Shuffle SoS1 S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 s 5s 6s 7s 8 s6s1sss1 S7S8S1S2 S8S1S2S3 S1S2S3S4 

S0S1s 2s 3s 4s 5s 6s 7s 8 S 1S 2S 3S 4S5S6S 1S 8S 0 S4S5S6s 7s 8 S5S6S1SsS1 s 6s 7s 8s1s 2 s 7s 8s 1s 2s 3 S8S1S2S3S4 S1S2S3S4S5 S2S3S4S5S6 S3S4S5S6S1 S4S5S6S7S8 S5S6S7S8SO x 

4. Vector Reversal SoS1 S2S3 S1S2S3S4 SzS3S4S5 S3S4S5S6 S4S5S6S7 SsS6S1Ss S6S7SsSo S7S8S0S1 S8S0S1S2 SoS1S2S3 

~~~~~~~~~~~~~~5s~~Sg S4S5S6S7S8 s 5s6s 7s 8s 0 s 6s 7s8s 08i S7SsSa'SiSz ss:fo"Sis2s; ~~~~~ ~~~~5s s2~s45s~ ~~5s~~ s45s~~Sg v' 

5. Bit Shuffle SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 s 5s 6s 7s 8 S 6S 1S 8S0 S 1S8S0S 2 S8S0S 2S4 SoS2S4S6 

s 0s 1s 2s 3s 4s 5s 6s 7s 8 S0S2S4S6S8S1S3S5S7 s 4s 5s6s 7s 8 S5S6S7S8S0 s 6s7s8s 0s 2 S7S8S0S2S4 S8S0S2S4S6 SoS2S4S6S8 s2s4s6sss1 s4s6sss1s3 S6S8S1S3S5 S8S1S3S5S7 
x 

6. Unshuffle SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 s 5s 6s 7s 8 s6s1ssss s 7s 8s 8s 0 S8S8S0S1 SgSoS1S2 

s 0s 1s 2s 3s 4s 5s 6s 7s 8 S8S0S1S 2S3S4S5S6S7 S4S5S6S7S8 s 5s 6s 7s 8s 8 S6S7S8S8S0 S7S8S8S0S1 SgSsSoS1S2 SsSoS1S2S3 SoS1S2S3S4 S1S2S3S4S5 S2S3S4S5S5 S3S4S5S6S1 x 



1-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 2 

Note: "X" means "non-admissible",".../" means "admissible" 

The Terminal at Different Stages Permutation 
Permutation Stage 0 Stage I Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Capability 

(Source) (Destination) 
7. Shuffle Row Major SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 s 5s6s 7s 8 S6S7S8SO S7S8S0S5 S8S0S5S1 SOS5SIS6 

SoS1S2S3S4S5S6S7S8 SoS5S1S6S2S"S3SgS4 S4S5S6S7S8 S5S6S7S8S0 S6s 7s 8s 0s 5 s 7s8s 0s 5s1 SsSoS5S1S6 SOS5SIS6S2 sss1s6s2s1 S1S5SzS7S3 s 6s 2s 7s 3s 8 s 2s 7S3S8S4 
x 

8. Butterfly SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 S5S6S7S8 s6s1ssss S7S8S8S1 sssss1s2 S8S1S2S3 
S0S1S2S3S4S5S6S7S8 S8S1S2S3S4S5S6S0 S0 S4S5S6S7S8 S5S6S7S8S8 s 6s7s8s 8s 1 s 7s8s 8s 1s 2 s8s8s1 s 2s3 S8S1S2S3S4 S1S2S3S4S5 S2S3S4S5S6 S3S4S5S6S7 S4S5S5S7So x 

9. Exchange SoS1S2S3 S1S2S3S4 S2S3S4S5 S3S4S5S6 S4S5S6S7 s 5s 6s7s 8 S6S7S8SO S7S8S0S1 S8S0S1S2 505152534 

SoS1S2S3S4S5S5S7Sg SoS1S2S3~S5S5S7Sg S4S5S6S7S8 S5S6S7S8S0 S6S7S8S0S1 S7S8S0S1S2 S8S0S1S2S3 SaS1S2S3~ S1S2S3~S5 S2S3~S5S5 S3~S5S6S7 SS5S5S7Sg ../ 



2-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 4 

Note: "X" means "non-admissible", "../"means "admissible" 

Permutation 
The Terminal at Different Stages 1r-.ermutation 

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Capability 
(Source) (Destination) 

1. Bit Reversal 
SoS1S2S3S4S5S6S7Sg ® SgS7S6S5S4S3S2S1So 

S0S1S2S3S4s 5s 6s 7s 8 S2S3S4S5S6S7S8 ® S8 S4S5S6S7S8 ® S8s7s6 s6s7s8 ® SgS7S6S5S4 s 8 ® s8s7s6s5s4s3s2 S8S7S6S5S4S3S2S1S0 x 
2. Matrix Transposition 
SoS1S2S3S4S5S6S7Sg <8J S4S5S6S7SgSoS1S2S3 

SoS1S2S3S4S5S6S7Sg S2S3S4S5S6S7S8 ® S4 S4S5.$9S7Sg @.S4S5S6 s6s7s8 ® S4S5S6S7Sg S8 @ S4S5S6S7S8S0S1 S4S5S6S7S8S0S1S2S3 x 
3. Perfect Shuffle 
SoS1S2S3S4S5S6S7Sg ® S1S2S3S4S5S6S7SgSo 

S0S1S2S3s 4s 5s 6s 7s 8 S-zS3S4S5S6S7S8 @ S1 S4S5S6S7S8 @ S1S2S3 s6s7s8 ® S1S2S3S4S5 s 8 @ s1s2s3S4S5S6S7 S1S2S3S4S5S6S7SsSo ..,/ 

4. Vector Reversal 
SoS1S2S3S4S5S6S7S8 ® :fos;s;s;s45ss6s78g 

SoS1SzS3S4S5S6S7Sg S2S3S4S5S6S7Sg Q9 Sa S4S5S6S7S8 ® :fos;s2 s6s7s8 0 sos;s2s;s4 s 8 0 :fos;s2s;s4:fss6 s 0s;s; s; s 4 :fss6s 78g ..,/ 

5. Bit Shuffle 
SoS1S2S3S4S5S6S7Sg ® SoS2S4S6SsS1S3S5S7 

S0S1S2s 3s 4s 5s 6s 7s 8 SzS3S4S5S6S7Sg ® So S4S5S6S7Sg ® SoSzS4 s6s7s8 0 SoSzS4S6S8 Sg 0 SaS2S4S6SsS1S3 SaS2S4S6SsS1S3S5S7 x 
5. Unshuffle 
SoS1S2S3S4S5S6S7Sg ® SgSoS1S2S3S4S5S6S7 

S0S1S2S3S4s 5s 6s 7s 8 S2S3S4S5s 6s 7s 8 @ S8 S4S5S6S7S8 ® S8S0S1 s6s7s8 ® SgSoS1S2S3 S8 @ s8s0s1s2s3s4s5 s8s0s1s2s3s4s5S6S7 x 
7. Shuffle Row Major 
SoS1S2S3S4S5S6S7Sg <8J SoS5S1S6S2S7S3SgS4 

S0S1S2S3S4S5s 6s 7s 8 SzS3S4S5S6S7Sg <8J So s 4s 5s 6s 7s 8 (8) S0S5S1 s6s7s8 0 SoS5S1S6S2 S8 @ S0S5s1s6s2s7s3 SoS5S1S6S2S7S3SgS4 x 
8. Butterfly 
SoS1SzS3S4S5S6S7Sg <8J SgS1S2S3S4S5S6S7SO 

SoS1SzS3S4S5S6S7Sg s 2s 3s 4s 5s 6s 7s 8 Q9 s 8 s 4s 5s 6s 7s 8 ® S8S1S2 s6s7s8 0 SgS1S2S3S4 S8 @ S8s1s2s3s4s5s6 SgS1SzS3S4S5S6S7So x 

9. Exchange 
SoS1SzS3S4S5S6S7Sg <8J SoS1SzS3S4S5S6S7Sg 

S0S1S2S3S4S5S6S7S8 SzS3S4S5S6S7S8 ® So S4S5S6S7S8 @ S0S1S2 s 6s 7s 8 0 s0s1s2s3s4 Sg 0 SoS1SzS3~S5S6 s0s1s2s3s4s5s6s7s8 
..,/ 



8-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 16 

Note: "X" means "non-admissible", "./" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage I Stage 2 Stage3 
(Source) (Destination) 

Capability 

I. Bit Reversal 
SoS1S2S3S4S5S6S7Sg ® ® ® SgS7S6S5S4S3S2S1So 

S0S1s2s3s4s5s6s7s8 S
4

S
5

S6S7S8 @@@ s
8 S8 @@@ S

8
S7s6s5

s4 S8S7S6S5S4S3S2S1S0 x 

2. Matrix Transposition 
SoS1S2S3S4S5S6S7Sg ® ® ® S4S5S6S7SgSoS1 S2S3 

S0S1S2S3S4S5S6S7S8 S4S5S6S7S8 @@@ S4 S8 @@@ S4S5S6s 7s 8 S 4S5S6S7S8SOS1 S2S3 x 

3. Perfect Shuffle 

SoS1S2S3S4S5S6S7Sg ® ® ® S1S2S3S4S,s6S7SgSo 
S0 ~1 S2S3s4s5s6s7s8 S4S5S6S7 S8 @@@ s 1 S8 @@@ S

1
S2S3s4s5 S1S2S3S4S5S6S7S8S0 ./ 

4. Vector Reversal 
S0s1s2s3s4s5s6s7s8 @@@ Yas;s;s;~:fs"S;,:f,Sg 

S0S1S2s3s4s5s6s7s8 S4S5S6S7S8 @@@Sa Sg @@@ Yas;s;s;s4 Yas;s; s; ~ :fs s;; s:, Sg ./ 

5. Bit Shuffle 

SoS1S2S3S4S5S6S7Sg @@@ SoS2S4S6S8S]S3S5S7 
S0S1S2s3s4s5s6s7s8 s

4
s

5
s6s7

s
8

@@@ s 0 S
8 

@@@ S
0

S
2

S4S
6

S8 S0S2S4S6S8S1S3s 5s 1 x 

6. Unshuffle 
SoS1S2S3S4S5S6S7Sg @@® SgSoS1SzS3S4S5S6S7 

S0S1 s2s3s4s5s6s7s8 S4s5s6s7s8 @@@ s8 
S

8 
@@@ S

8
S0S1S

2
S3 S8S0S1S2S3S4S5S6S1 x 

7. Shuffle Row Major 
SoS1S2S3S4S5S6S7Sg ®@@ SaSsS1S6S2S7S3SgS4 

SoS1 S2S3S4S5S6S7Sg S4S5S6s7s8 @@@ S0 s8 @@@ S0S5S1s 6s 2 S0S5S1S6S2S7S3S8S4 ./ 

8. Butterfly 
SoS1S2S3S4S5S6S7Sg @@® SgS1 SzS3S4S5S6S7SO 

SoS1S2S3S4S5S6S7Sg S
4

S
5

S
6
s

7
s8 @@@ s8 S8 @@@ S

8
S

1
s

2
s

3
s

4 S8S1S2S3S4S5S6S1S0 x 

9. Exchange 

SoS1S2S3S4S5S6S7Sg @® ® SoS1S2S3~S5S6S7S8 
SoS1 S2S3S4S5S6S7Sg S

4
S5S6S7S8 @@@ S0 s8 @@@ s0s1s2s3s:i SoS1S2S3~SsS6S1Ss ./ 



32-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 128 

Note:" X" means "non-admissible","./" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage 1 Stage2 
(Source) (Destination) 

Capability 

1. Bit Reversal 
SoS1S~S3S4Sc,S6 S7 S8 0 0 0 0@ S S S S S S S SS 

S0S1s 2s 3s 4s 5s 6s 7s 8 s 7s 8 00@@0 S8S7 SgS7S6S5S4S3SzS1So x 
~ - 876543210 

2. Matrix Transposition 
SoS1 S2S3S4S5S6S7S3 0 © 0 0@ S4S5S5S7S3SoS1S2S3 

S0S1S2S3S4S5S6s 7s 8 S7S8 @0@0@ S4S5 S4S5S5S7S3SoS1SzS3 ./ 

3. Perfect Shuffie 
SoS1 s~S3S4S5S5S7S3 0 © © 0@ s s s s s s s 'S s 

s 0s 1s 2s 3s 4s 5s 6s 7s 8 s 7s 8 00©©0 s 1s 2 S1SzS3S4S5S5S7SgSo ./ 
~ 123456780 

4. Vector Reversal 
SoS1S~S3S4S5S6S7 S8 0000@ SSSSSSSSS 

S0S1s 2s 3s 4s 5s 6s 7s 8 S7S8 00000 5ci5i 5ci5i:5; s; ~ :fs ~ s:, Sg ./ 
k 012345678 

5. Bit Shuffle 
SoS1S~S3S4S5S6S7S8 @@@@@ S S S S S SSS S 

SoS1S2S3S4S5S5S7S3 S7S8 00@0@ S0S2 S0S 2S4S6S8s 1s 3s 5s 7 ./ 
k 024681357 

6. Unshuffle 
SoS1S~S3S4S5 S6 S7 S8 0@ @0@ SSS S SS SSS 

S0S1S2S3S4S5S6s 7s 8 S7S8 0@@0@ S8S0 S3SoS1SzS3S4S5S6S7 x 
k 801234567 

7. Shuffle Row Major 
SoS1S~S3S4S5S6s7s80©©0@s s SS s s s s s 

S0S1S2S3s 4s 5s 6s 7s 8 S7S8 00©©0 SoS5 S0S5S1S6S2S7S3s 8s 4 ./ 
- 051627384 

8. Butterfly 
SoS1S~S3S4S5S5S7S8 000@0 SSS SSS SSS 

SaS1SzS3S4S5S6S7S8 S7S8 0@00@ S8S1 S8S1S2S3S4S5S6S7S0 x 
~ 812345670 

9. Exchange 
SoS1S~S3S4S5S5S7S8 @@@00 SSS SSS SSS 

S0S1S2S3S4S5S6S7S8 S7S8 @@@00 S0S1 SoS1S2S3~S5S5S7Sg ./ 
~ 012345678 



128-Path Omega Network with Size of Network (N) = 512, and Size of Switch (B) = 256 

Note: "X" means "non-admissible'', "../" means "admissible" 

Permutation 
The Terminal at Different Stages Permutation 

Stage 0 Stage 1 Stage2 
(Source) (Destination) 

Capability 

1. Bit Reversal 
SoS1S~S3S4S,s6s7s8 ® ® ® ® ® ® ® s s s s s s s s s 

S0S1s2s3s4s5s6s7s 8 s
7

s
8 

(8)(8)(8)(8)(8)(8)(8) S
8 SsS7S5S5S4S3S2S1So x 

" - 876543210 

2.Matrix Transposition 
S0S1S,S3S4S,S6S7S8 (8)(8)(8)(8)(8)(8)(8) SSS SSS SSS 

S0S1 S2S3s4s5s6s7s8 S7S
8 

@(8)(8)(8)(8)(8)(8) S
4 S4S5S6S7S8SaS1S2S3 

../ 
" - 456780123 

2. Perfect Shuffle 
S0 S1 S~S3S4s,s6 s7 s8 (8)(8)(8)(8)(8)(8)(8) SSS SSS SSS 

SoS1S2S3S4S5S6S7Ss S
7

S
8 

(8)(8)(8)(8)(8)(8)(8) S
1 S1S2S3S4S5S6S7S8S0 

../ 
- - 123456780 

3 . Vector Reversal 
SoS1S,S3S4S5S6S7S8 (8)(8)(8)(8)(8)(8)(8) SSSSSSSSS 

S0s1s 2s3s4s 5s6s7s 8 S7S8 (8)(8)(8)(8)(8)(8)(8) Sa 5as;s; s; Y.i s; ~ s; s; ../ 
" 012345678 

4. Bit Shuffle 

SoS1S2S3S4S5S6S7S8 ® ® ® ® ® © ® s0s2s4s6s8sls3s5s7 
s0s1s 2s 3s4s 5s6s7s 8 s

7
s

8 
(8)(8)(8)(8)(8)(8)(8) Sa SoS2S4S6SsS1S3S5S7 ../ 

5. Unshuffle 
SoS1S2S3S4S5S5S7Sg ® ® ® ® © © ® SgSoS1S2S3S4S5S6S7 

S0S1s2s3s4s5s6s 7s 8 s
7

s
8 

(8)(8)(8)(8)(8)(8)(8) s
8 SgSaS1SzS3S4S5S5S7 x 

6. Shuffle Row Major 
SoS1S,S3S4S5s6s 7s 8 (8)(8)(8)(8)(8)(8)(8) SSS SSS SSS 

SaS1SzS3S4S5S5S7S8 s 7s8 (8)(8)(8)(8)(8)(8)(8) Sa SaS5S1S6S2S7S3S8S4 ../ 
" a51627384 

7. Butterfly 
SaS1S~S3S4S5S6S7S8 (8)(8)(8)(8)(8)(8)(8) SSS SSS SSS 

SaS1S2S3s4s 5s6s7s 8 S
7

S
8 

(8)(8)(8)(8)(8)(8)(8) s
8 SsS1SzS3S4S5S6S1Sa x 

" 81234567a 

8. Exchange 
Sos,s,S3S4S,S5S7S8 ®®®®®©® s s s s s s s s s 

S0S1S2s3s 4s 5s6s 7s 8 s
7

s
8 

@Q9Q9Q9Q9Q9Q9 Sa SoS1SzS3~S5S6S7S8 ../ 
" - 012345678 



St. Gabriel's Library, Au 

108 
References 

1. Duncan H. Lawrie "Access and Alignment of Data in an Array Processor", IEEE 

Transactions on Computer, December 1975 

2. Krishnan Padmanabhun and Duncan H. Lawrie, "A Class of Redundant Path Multistage 

Interconnection Networks", IEEE Transactions on Computer, Vol. C-32, No.12, 

December l 97 5 

3. Robert l McMillen, "A Survey oflnterconnection Networks", Proceedings of Globecom, 

1984, pages 105-113 

4. Hwang, Kai, and Briggs, Faye Alaye, "Computer Architecture and Parallel Processing", 

l st ed., New York: Mcgraw-Hill, 1985 

5. G.G. Veselovskii, M. F. Karavai, and S.M. Kuzneckik, "Switching Networks for SIMD 

Multiprocessor Computing Systems", Automatika i Telemekhanika, No.2, pp.3-39, 

February, 1989 

6. Howard Jay Siegel, Wayne G. Nation, Clydie P. Kruskal, and Leonard M. Napolitano, 

Jr., "Using the Multistage Cube Network Topology in Parallel Supercomputers", 

Proceedings of the IEEE, Vol. 77, N ~ .12, December 1989 

7. Lewis, Ted G. El-Rewini, Hesham and Kim, In-Kyu, "Introduction to parallel 

computing", 151 ed., Englewood Cliffs, NJ:Prentice Hall, cl992 

8. Harrison, Peter G. Patel, and Naresh M, "Performance Modelling of Communication 

Networks and Computer Architectures", 1st ed., Wokingham: Addison-Wesley, cl 993 

9. Schutzer, Daniel, "Parallel Processing and the Future Data Center:Computing in the Land 

of the Lilliputians", 1st ed., New York:Van Nostrand Reinhold, 1994 



109 
10. Suresh Chalasani, C.S. Raghavendra, and Anujan Varma, "Fault-Tolerant Routing in 

MIN-based Supercomputers", Journal of Parallel and Distributed Computing 22(2): 

Pages 154-167 (1994) 

11. Xiaojun Shen, Mao Xu, and Xiangzu Wang, "An optimal Algorithm for Permutation 

Admissibility to Multistage Interconnection Networks", IEEE Transactions on 

Computers, Vol.44, No.4, April 1995 

12 Xiaojun Shen, "Optimal Realization of Any BPC Permutation on K-Extra-Stage Omega 

Networks",IEEE Transactions on Computers, Vol.44, No.5, May 1995 

13. Xiaojun Shen, "An optimal O(NlgN) Algorithm for Permutation Admissibility to Extra­

Stage Cube-Type Networks", IEEE Transactions on Computers, Vol.44, No.9, September 

1995 

14. Qing Hu, Xiaojun Shen and Weifa Liang, "Optimally Routing LC Permutation on K­

Extra-Stage Cube-Type Networks", IEEE Transactions on Computers, Vol.45, No. I, 

January 1996 

15. Zomaya, Albert Y., ed. "Parallel Computing:Paradigms and Applications", 1st ed., 

London:International Thomson Computer Pr., c 1996 

16. Zargham, Mehdi R., "Computer Arqhitecture:Single and Parallel Systems", 1st ed., Upper 

Saddle River, NJ:Prentice Hall., cl 996 

17. Schwartz, M., "Broadband Integrated Networks", 1st ed., Upper Saddle River, 

NJ:Prentice Hall., cl996 

"SI.Gabriel'~ Library, Au 




	Cover and Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 :  Introduction
	Chapter 2 :  Fundamental Theory and Basic Concept
	Chapter 3 :  Omega Networks and BPC Permutations
	Chapter 4 :  Exploring of BPC Permutation Admissibility to R-path Omega Network
	Chapter 5 :  Conclusion
	Appendix : A
	Appendix : B 
	References

