

M. Eng. (BT)
St. Gabriel's Library, Au -

_f.utomatic Network Address Adjustment
/

(ANAA)

A thesis

submitted to the Faculty of Engineering

by

JD.and Dersingh

in partial fulfillment of the requirements

for the degree of

Master of Engineering in Broadband Telecommunications

Advisor: Assist. Prof. Dr. Kittiphan Techakittiroj

Assumption University

Bangkok, Thailand

November 2001

"Automatic Network Address Adjustment (ANAA)"

by

Mr .Anand Dersingh

A Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering
Majoring in Broadband Telecommunications

Examination Committee:

1. Asst.Prof.Dr.Kittiphan Techakittiroj (Advisor)

2. Dr.Sudhiporn Patumtaewapibal (Member)

3. Asst.Prof.Dr .Putchong Uthayopas (Member)

4. Dr.Wittawat Na Nacara (MUA Representative)

Examined on: November 10, 2001

Approved for Graduation on: .1?.~~~!1:1~~.1:.).~!.?.q~).

Faculty of Engineering, Assumption University
Bangkok, Thailand

ABSTRACT

This thesis proposes a new technique of address translation called Automatic

Network Address Adjustment (ANAA). ANAA allows computer that contains wrong

IP configuration to be able to access the Internet without any modification. ANAA

translates the packets generated from these computers. The translation starts from

capturing the packet from the Ethernet network, verifying the packet information,

correcting (if needed) the wrong information and then putting it back to the network.

The proposed method allows the computer from outside network (e.g. mobile

computer) or the computer that mis-configures the network configuration, to use

network immediately without reconfiguration. This technique also allows the use of

private IP to solve the shortage of IP addresses.

The thesis includes the study and implementation of ANAA technique and testing

result is given.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Assist. Prof. Dr. Kittiphan Techakittiroj, for all

of his advice and motivation throughout the completion of this thesis. I also would

like to thank Dr. Sudhipom Patumtaewapibal, Dean of Faculty of Engineering, for his

closed follow up of my thesis. Furthermore, I would like to thank Jerapong

Rojanarowan for his suggestion and guidance. I also would like to dedicate a very

special thanks to all of my classmates and friends for their great support.

Most of all, I would like to thank my family for their support, encouragement,

understanding, and everything they have been giving to me.

11

SL Gabriel's Library~-Au

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1 Literature Survey

1.2 Problem Formation

1.3 Summary

CHAPTER2BACKGROUND

2.1 LAN Addressing

2.2 Address Resolution Protocol {ARP)

2.3 Internet Protocol (IP)

2.4 Transmission Control Protocol {TCP)

2.5 User Datagram Protocol {UDP)

CHAPTER 3 ARP SPOOFING

CHAPTER 4 ADDRESS TRANSLATION

4.1 TCP/IP Packet

4.1.1 Setting Up Connection

4.1.2 Incoming Packets

4.1.3 Outgoing Packets

4.2 UDP/IP Packet

4.2.1 Outgoing Packets

111

11

111

v

Vll

1

2

4

7

9

9

11

14

19

23

25

33

35

35

39

43

46

47

4.2.2 Incoming Packets 50

CHAPTER 5 TESTING 54

5.1 Application over ANAA 55

5.2 Performance Comparison 56

CHAPTER 6 CONCLUSION 64

6.1 Future Work 65

Bibliography 67

IV

LIST OF FIGURES

Figure Page

1.1 Ethernet Network 4

1.2 ANAA over Ethernet Network 6

1.3 Network Configurations Implementing ANAA 7

2.1 Star Network Topology 10

2.2 ARP packet format 12

2.3 IP header format 15

2.4 TCP Header format 20

2.5 UDP Header format 23

3 .1 Flow chart of ARP Spoofing 26

3 .2 ARP Request for wrong IP computer 31

3.3 Faked ARP Reply Packet 32

4.1 Flow chart of Address Translation in ANAA 34

4.2 Flow Chart of function send_tcp_opt_ip_to_gw () 39

4.3 Flow Chart of function send_tcp_ip_to_pc () 41

4.4 Flow chart of function send_tcp_ip_to_gw () 45

4. 5 Flow chart of function send_ udp _to_ dns () 48

4.6 Flow chart of function send_udp_to_pc () 51

5.1 ANAA Network Configurations 54

5.2 Network configuration of correct IP 56

5.3 ANAA Network configurations 57

5.4 Graphs of Correct IP Vs ANAA (Server Connection Rate) lOMbit/sec 58

5.5 Graphs of Correct IP Vs ANAA (Average Response Time) lOMbit/sec 59

v

5.6 Graphs of Correct IP Vs ANAA (Throughput) lOMbit/sec 60

5.7 Graphs of Correct IP Vs ANAA (Server Connection Rate) lOOMbit/sec 61

5.8 Graphs of Correct IP Vs ANAA (Average Response Time) lOOMbit/sec 62

5.9 Graphs of Correct IP Vs ANAA (Throughput) lOOMbit/sec 62

Vl

Table

3.1 Example of MAC table

4.1 Example ofIP Table

5.1 Applications over ANAA

LIST of TABLES

5.2 Simulation Result of lOMbit/sec Network

5.3 Simulation Result of lOOMbit/sec Network

vu

Page

29

37

55

59

61

CHAPTER 1. INTRODUCTION

The increasing numbers of computers connected to the Internet create problems

with the IP addresses. Many of these problems have been issued through research

works [4], [5], [6]. The problems can be classified into two major categories.

The first problem concerns with the limited amount of IP addresses. IPv4

provides a network address space of 32 bits, allowing approximately 2 32 or four

billion hosts to exist on the Internet. According to the vast growth rate of new hosts

get connected to the Internet, the current Internet protocol IPv4 does not provide

enough unique addresses for every hosts on the Internet. Two current approaches

have been proposed to solve this problem. The first approach is to use new Internet

protocol known as IPv6 [5] that is designed to ease potential address shortages by

replacing IPv4's 32-bit address space with the new bit scheme. The other approach is

to use private IP address [2] for internal network. Although these two approaches are

the solutions for the limited amount of IPv4 address, there is a problem in connecting

to the Internet by using these two approaches. IPv6 and private IP address currently

cannot be routed on the existing Internet. The address translation is necessary for the

case of private IP address; packet translation can be easily implemented by using

NAT [1] at the edge of the network to allow access from internal network to the

Internet. In the case of using IPv6, the migration technique is still in the development

phase.

The second problem concerns with mobile computers. When mobile computer

changes its physical network, the IP configuration of that mobile computer must be

renumbered to suit with the new network setting, i.e. subnet, gateway, machine's IP

address. Using Dynamic Host Configuration Protocol (DHCP) [7] can solve this

problem. DHCP server provides all necessary IP configurations to the client

computer. The problem of using DHCP is that the mobile computer must be

configured to be a DHCP client or to obtain an IP address automatically. If the

mobile computer use a static IP address in the previous network, when it changes to

the new network it must be reconfigured manually which increases work of

administrator to provide IP information such as IP address, subnet mask, gateway,

DNS. The other problem of using DHCP is when the network size grows up;

reconfiguration of all computers in the network is required.

1.1 Literature Survey

There have been many efforts to solve the problem concerning the computer

address. Some efforts [3] concentrate at the data link layer. While others [l], [6], [4],

[8], [9], [10] solve the problem of the Internet layer.

[3], introduce Proxy ARP that lets a router that connect two physical networks

answer ARP requests pretending that they are in the same physical network. Proxy

ARP is useful for communicating among sub networks, when a computer was

assigned a wrong subnet numbers. The router will answer ARP request to the

computer that has the wrong subnet mask and will forward packets between these two

subnets.

According to the limited amount of IPv4, [2] proposed a method of assigning

private IP addresses to the internal or private network. This method does not allow

internal host to access to the Internet. [1] has proposed translation of private IP

address to make host with non-routable IP address to be able to access to the Internet.

[6], [9] implemented the Network Address Translation technique called IP

Masquerade. IP Masquerade translates packets from computers inside the internal

2

network to one real IP address that can be routable. NAT can be configured easily,

and many modems' routers implement this feature. NAT can be implemented

together with DHCP [7] by assigning a pool of private IP addresses to the DHCP

server and it will provide all information of IP configuration in the network to the

computer inside internal network behind NAT router. When accessing to the public

network, translation of the packet is required by the NAT router at the edge of the

network.

[4], [8] propose another address reusing technique called Realm Specific IP

(RSIP). This technique operates under the same assumptions of physical architecture

as NAT. RSIP is defined in terms of operations on the flow, and the signaling

association between the client host (RSIP client) and gateway router (RSIP server).

When RSIP client want to send packet to the public network, it first has to signal to

the RSIP server requesting for the appropriate public IP address and port number(s) to

utilize, and then prepares a packet using these parameters. The RSIP client tunnels

this packet over the private network to the RSIP server, which then only has to strip

off the tunnel header, and forward the packet on to the public network. This method

requires a small software change to be embedded on both client and server. This

requirement is the main disadvantage for the general applied.

[10] proposes a modified version of NAT called DNAT (Distributed NAT) in

which the subnet hosts perform the address translation, and tunnel translated packets

to the DNAT router. The DNAT router strips off the tunnel (outside IP header) and

forwards the inner packets, unaltered, on to the public network. In fact, it would be

more accurate to say that each host constructs externally bound packets in such a way

that address translation at the router is not required. The main advantage of DNAT is

that it avoids having to code application-specific support into the translation

3

implementation. DNAT also distributes some of the processing requirements from

the router to the hosts, which may enable larger subnets to be supported by a single

router.

The concept of RSIP and DNAT that use tunneling are similar, but technically the

signaling between client and server are totally different. Both techniques require

modification to all clients; therefore it requires more works for the system

administrator or the owner to reconfigure system before using these address

translation system.

1.2 Problem Formulation

A typical Ethernet network connected to the Internet is shown in Figure 1. In this

scenario, as an example, there are five PCs connecting together as a small network. In

order to access to the Internet, all computers in the network must be assigned the

correct IP configuration to send packets to the gateway and gateway will forward

these packets to the Internet.

IP 168.120.18.151 IP 168.120.18.152 IP 168.120.18.153

p 1
IP 168.120.18.129

PC4 PCS
IP 168.120.18.154 IP 168.120.18.155

Figure 1.1 Ethernet Network

4

The problem arises when a computer that uses static IP address from different

network try to access to the Internet via this Ethernet network. It is necessary to

modify IP configurations every time they change network. This modification

increases work of network administrators to take care of renumbering of IP address to

supply the gateway and DNS information.

In order to help users and network administrators to solve this problem, the

technique called Automatic Network Address Adjustment (ANAA) will be designed,

implemented and analyzed. The aim of this technique is to allow relocation of the

client computer that moves from one network to another network and client computer

that was configured mismatch IP configuration for example, wrong gateway, to access

to the Internet without changing IP configuration. The technique is designed in the

way that only a few or no modifications to the network computer or administrators are

required.

The network configuration is simple as shown in the Figure 1.2. We do not have

to change any configurations. One machine will be set as the virtual gateway that will

translate the packets that is not routable on the Internet. This virtual gateway can be

part of the router, embedded inside any workstation or as a stand-alone terminal. This

will be appropriate for the small network where router, DNS, DHCP server and the

virtual gateway will be on the same machine.

5

IP 168.120.18.151 IP 168.120.18.152 IP 168.120.18.153

Mismatch IP

IP 192.168.0.58

PC4 Virtual Gateway

IP 168.120.18.154 IP 168.120.18.155

IP 168.120.18.129

Figure 1.2 ANAA over Ethernet Network

The only requirement is that it must be Ethernet (broadcasting network) in order to

see all the packets transmitting in the LAN.

Two main categories of the packet that will be handled by the virtual gateway

causes by:

1) Non-routable IP information. Usually this packet happens to the machine that

comes from the different network, use the private IP address, or it is mis-

configured.

2) The mis-configuration in the DNS portion. This packet is the UDP/IP packet.

The implementation of ANAA in this thesis is to modify the non-routable packet

to be able to route on the Internet by dealing with the data link layer, network layer

and transport layer. The types of the packets that we consider are only

1) TCP/IP packets that contains problem with wrong IP address, gateway

information, and/or subnet mask.

2) UDP/IP packets with application port 53 that is used to resolve name to IP

address.

6

The network configuration in implementing ANAA is shown in Figure 1.3 that is

going to be used throughout this work.

Name Server

IP address 168.120.18.23

IP
GW

PC

168.120.18.149
168.120.18.129

DNS 168.120.18.23

Switch

Hub

9U991199Utlli

Server

IP 168.120.18.137
GW 168.120.18.129
DNS 168.120.18.23

Router

Virtual Gateway

IP
GW

168.120.18.155
168.120.18.129

DNS 168.120.18.23

Subnet mask 255.255.255.192

Figure 1.3 Network Configurations Implementing ANAA

1.3 Summary

This thesis proposes a new technique to solve the described problems. This

technique is called Automatic Network Address Adjustment (ANAA), ANAA allows

IP address to be reused to allow the private IP address to be able to communicate

inside the network. It corrects the mismatch IP address to be the correct one and be

able to route to the Internet. This technique uses one computer, which may be located

inside a network or at the edge, to act as a gateway of address translation. This

computer translate packet by modifying data link layer, network layer and transport

7

layer. The modification serve two proposes, i.e. address translation of private IP

address and correction of mis-configured address.

Chapter 2 gives the background knowledge of the intemetworking. Chapter 3

describes the ARP spoofing technique that is the pre-processing of packets before the

translation. The detail of packet translation for TCP/IP and UDP/IP are described in

Chapter 4. In chapter 5 shows the testing results in term of supporting applications

and performance. Chapter 6 is a conclusion of this work.

8

CHAPTER2.BACKGROUND

According to the incompatibilities among network technologies, there is a scheme

that provides universal service among heterogeneous networks. It is called

internetworking that uses both hardware and software. Additional hardware systems

are used to interconnect a set of physical networks. Software on all the attached

computers then provides universal service. The resulting system of connected

physical networks is known as an internetwork or Internet. There are many methods

to connect to the Internet, for example connect through the local area network (LAN)

or connect through modem. However, in this work we concentrate on connecting to

the Internet via LAN (Ethernet). This chapter provides background knowledge of

how computers connected together as a network and protocols used to communicate

on the Internet.

2.1 LAN Addresses

LAN is a computer network that is concentrated in a geographical area such as in

a building or on a university campus. When a user accesses the Internet from

university or corporate campus, the access is almost always by way of a LAN. For

this type of Internet access, the user's host is a computer on the LAN, and the LAN

provides access to the Internet through router.

Many LAN technologies have been invented; the topology that we are using in

this thesis is star topology that all computers attach to a central point as shown in

Figure 2.1. The wiring scheme is lOBase-T and lOOBase-T.

9

Hub

PC 2 PC I

Server

Figure 2.1 Star Network Topology

Computers in LAN s send frames to each other over a broadcast channel. This

means that when a computer in a LAN transmits a frame, every other computer

connected to the LAN receives the frame. But usually, a computer in the LAN

doesn't want to send a frame to all of the other LAN computers but instead wants to

send to some particular computer in the LAN. In order to send a frame to a particular

computer, the computers on the LAN must be able to address each other when

sending frames, that is, the computer need LAN addresses and the link-layer frame

needs a field to contain such a destination address.

In fact, it is not a computer that has a LAN address but instead a computer's

adapter that has a LAN address. A LAN address is also called physical address,

Ethernet address, or MAC address. MAC address is six-bytes long, giving 248

possible LAN addresses. These six bytes addresses are expressed as a pair of

hexadecimal numbers. An adapter's MAC address is permanent when an adapter is

manufactured and each adapter has its unique address.

The LAN interface hardware uses physical addressing to prevent the computer

from receiving all packets that travel across the LAN. It is the fact that as a frame

travels across the shared medium; a copy of the signal passes to each station. Once it

10

M. Eng. (BT)
St. Gabriel's Library, Au-

5811 e_ ·1

has captured a complete frame, the interface hardware compares the destination

address in the frame to the station's physical address. If the destination address

matches the station's physical address, the hardware accepts the frame and passes it to

the operating system. If not, the hardware discards the frame and waits for the next

frame.

As described that when adapter wants to send a frame to some destination adapter

on the same LAN, the sending adapter inserts the destination's LAN address into the

frame. When the destination adapter receives the frame, it extracts the enclosed

datagram and passes the datagram up the protocol stack. All the other adapters on the

LAN also receive the frame. This other adapters discard the frame without passing

the network-layer datagram up the protocol stack. However, sometimes a sending

adapter wants all the other adapters in the same LAN to receive and process the

frame. Therefore, the sending adapter inserts a special LAN broadcast address into

the destination address field of the frame. The broadcast address for Ethernet is FF-

FF-FF-FF-FF-FF.

2.2 Address Resolution Protocol (ARP)

A computer connected to an IP/Ethernet LAN has two addresses. One is the

address of the network card, called the MAC address. The MAC, in theory, is a

globally unique and unchangeable address that is stored on the network card itself.

MAC addresses are necessary for the Ethernet protocol to send data back and forth,

independent of whatever application protocols are used on top of it. Ethernet builds

"frames" of data, consisting of 1500 byte blocks. Each frame has an Ethernet header,

containing the MAC address of the source and the destination computer.

11

St Gabriel's Library, Au

The second address is the IP address. IP is a protocol used by applications,

independent of whatever network technology operates underneath it. Each computer

on a network must have a unique IP address to communicate. IP addresses are the

virtual and are assigned via software.

When an Ethernet frame is constructed, it must be built from an IP packet.

However, at the time of construction, Ethernet has no idea what the MAC address of

the destination machine is, which it needs to create an Ethernet header. The only

information it has available is the destination IP from the packet's header. Address

Resolution Protocol (ARP) is the way for the Ethernet protocol to find the MAC

address of the destination machine, given a destination IP.

ARP operates by sending out "ARP request" packets. An ARP request asks the

question, "Is your IP address 168.120.18.145? If so, send your MAC address back to

me." These packets are broadcast to all computers on the LAN. Each computer

examines the ARP request, checks if it is currently assigned the specified IP. If IP

matches with its own configured IP the network stack sends an ARP reply containing

its MAC address to the computer that sends ARP request.

Ethernet
destination

address

Ethernet
source
address

Prot type

Prot size
Frame type

op

HW type
HW size

Sender Eth
address

Sender Destinatio
IP Eth. address

Dest.
IP

~--Ethernet Header·----'!~------- ARP Request I Repy -------~

Figure 2.2 ARP packet format

12

St Gabriel's Library, Au

Figure 2.2 shows the ARP packet format. The first two fields in the Ethernet

header are the source and destination Ethernet addresses. The special Ethernet

destinations address of all one bits (FF-FF-FF-FF-FF-FF) means the broadcast

address, which is used in ARP request for mapping IP address and MAC address. The

next are

Frame type (2-byte)

Ethernet frame type specifies the type of data that follows. For an ARP request or an

ARP reply, this field is Ox0806.

Hardware type (2-byte)

The HW type field specifies the type of hardware address. For Ethernet this value is

OxOOOl.

Protocol Type (2-byte)

Protocol type specifies the type of protocol address being mapped. For IP address this

field is Ox0800.

Hardware Size (1-byte)

HW size specifies the size in bytes of the hardware addresses. For an ARP request or

reply of an IP address on an Ethenwt it is Ox06.

Protocol Size (1-byte)

Protocol size specifies the size in byte of the protocol address. For an IP address on

an Ethernet this field is Ox04.

Operation (2-byte)

The operation field specifies whether the operation is an ARP request (a value of

OxOOOl), ARP reply (Ox0002), RARP request (Ox0003), or RARP reply (Ox0004).

This field is required since the frame type field is the same for an ARP request and an

ARP reply.

13

St. Gabriel's Library, Au

The last four fields that follow are the sender's hardware address (an Ethernet

address in this example), the sender's protocol address (an IP address), the target

hardware address, and the target protocol address.

In ARP request, the target hardware address is set to all O's and the target protocol

address is the IP address of the computer you want to communicate inside LAN.

When a system of computer that has IP address match to target protocol receives an

ARP request directed to it, it fills in its hardware address, swaps the two sender

addresses with the two target addresses, sets the operation field to 2, and sends the

reply.

Keeping a cache of ARP replies can reduce a number of ARP packets being

broadcast in the LAN. When a computer receives an ARP reply, it will update its

cache with the new MAC/IP association. As ARP is a stateless protocol, most

operating systems will update their cache if a reply is received, regardless of whether

they have sent out an actual request.

2.3 Internet Protocol (IP)

IP has made it possible for the Internet to handle heterogeneous networks,

dramatic changes in hardware technology, and extreme increases in scale. To handle

heterogeneity, IP defines a uniform packet format (the IP datagram) and a packet

transfer mechanism. IP datagrams are the fundamental unit of communication in the

Internet. IP also defines a set of addresses that allow applications and higher layer

protocols to communicate across heterogeneous networks without knowing the

differences in hardware addresses used by underlying network systems.

14

St. Gabriel's Library, Au

2.3.11Pv4

In the TCP/IP protocol stack the Internet Protocol version 4 (IPv4) specifies

addressing. The IPv4 standard specifies that each host is assigned a unique 32-bit

number known as the host's Internet Protocol Address. Each packet sent across an

Internet contains the 32-bit IP address of the source as well as the destination. Thus,

to transmit information across a TCP/IP Internet, a computer must know the IP

address of the remote computer to which the information is being sent.

Figure 2.3 shows the format of an IPv4 datagram. The normal size of the IPv4

header is 20 bytes, unless options are present. The following are the fields in the IP

header

0 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source address

Destination address

Figure 2.3 IP header format

Version (4 bits)

The Version field indicates the format of the Internet header. In this thesis we

consider only version 4.

IHL (4 bits)

Internet Header Length is the length of the Internet header in 32 bit words, and thus

points to the beginning of the data. Note that the minimum value for a correct header

is 5

15

TOS (8 bits)

The Type of Service provides an indication of the abstract parameters of the quality of

service desired. These parameters are to be used to guide the selection of the actual

service parameters when transmitting a datagram through a particular network. This

field is composed of a 3-bit precedence field (which is ignored today), 4 TOS bits, and

an unused bit that must be 0. The 4 TOS bits are minimize delay, maximize

throughput, maximize reliability, and minimize monetary. Only 1 of these 4 bits can

be turned on. If all 4 bits are 0 it implies normal service. In this work, this field is

OxOO.

Total Length (16 bits)

Total Length is the length of the datagram, measured in octets, including internet

header and data. This field allows the length of a datagram to be up to 65,535 octets.

Such long datagrams are impractical for most hosts and networks. All hosts must be

prepared to accept datagrams of up to 576 octets (whether they arrive whole or in

fragments). It is recommended that hosts only send datagrams larger than 576 octets

if they have assurance that the destination is prepared to accept the larger datagrams.

The number 576 is selected to allow a reasonable sized data block to be transmitted in

addition to the required header information. For example, this size allows a data

block of 512 octets plus 64 header octets to fit in a datagram. The maximal Internet

header is 60 octets, and a typical Internet header is 20 octets, allowing a margin for

headers of higher-level protocols.

Identification (16 bits)

An identifying value assigned by the sender to aid in assembling the fragments of a

datagram. It normally increment by one each time a datagram is sent.

16

Flags: 3 bits

There are various control flags

Bit 0 reserved, must be zero

Bit 1 (DF)

Bit 2 (MF)

0 = May Fragment,

0 = Last Fragment,

Fragment Offset (13 bits)

1 = Don't Fragment.

1 = More Fragments.

This field indicates where in the datagram this fragment belongs. The fragment offset

is measured in units of 8 octets (64 bits). The first fragment has offset zero.

Time to Live (8 bits)

This field indicates the maximum time the datagram is allowed to remain in the

Internet system. If this field contains the value zero, then the datagram must be

destroyed. This field is modified in Internet header processing. The time is measured

in units of seconds, but since every module that processes a datagram must decrease

the TTL by at least one even if it process the datagram in less than a second, the TTL

must be thought of only as an upper bound on the time a datagram may exist. The

intention is to cause undeliverable datagrams to be discarded, and to bind the

maximum datagram lifetime.

Protocol (8 bits)

This field indicates the next level protocol used in the data portion of the Internet

datagram.

Header Checksum (16 bits)

A checksum is calculated over the IP header only. It does not cover any data that

follows the header. Since some header fields change (e.g., time to live), this is

recomputed and verified at each point that the Internet header is processed.

17

St. Gabriel's Library, Au

The checksum field is the 16 bit one's complement of the one's complement sum of all

16-bit words in the header. For purposes of computing the checksum, the value of the

checksum field is zero.

Source Address (4-byte)

This field specifies the IP address of the sender.

Destination Address (4-byte)

This field specifies the IP address of the target host.

Options

The options field is a variable-length. It may appear or not in datagrams. They must

be implemented by all IP modules (host and gateways). What is optional is their

transmission in any particular datagram, not their implementation. The options field

always ends on a 32-bit boundary. Pad bytes with a value of 0 are added if necessary.

This assures that the IP header is always a multiple of 32 bits.

2.3.21Pv6

The current version of IP, IPv4, has been extremely successful. The primary

motivation for change arises from the limited address space, larger address space are

necessary to accommodate continued growth of the Internet. The secondary

motivations for changes in IP have arisen from new Internet applications such as the

applications that deliver real-time audio and video.

IPv6 retains many of the design features from the IPv4. Despite retaining the

basic concepts from the current version, 1Pv6 changes all the details. For example,

IPv6 uses a series of fixed-length headers to handle header information. Thus, unlike

IPv4, that places key information in fixed fields of the header is always variable size.

The new features in 1Pv6 can be grouped into five broad categories:

18

• Address Size: instead of 32 bits, each 1Pv6 address contains 128 bits

• Header Format: the new 1Pv6 datagram header is completely different that the

1Pv4 header. Almost every field in the header has been changed.

• Extension Headers: unlike 1Pv4, that uses a single header format for all datagrams,

1Pv6 encodes information into separate headers. A datagram consists of the base

1Pv6 header followed by zero or more extension headers, followed by data.

• Support for audio and video: 1Pv6 includes a mechanism that allows a sender and

receiver to establish a high-quality path through the underlying network and to

associate datagrams with that path.

• Extensible Protocol: unlike 1Pv4, 1Pv6 does not specify all possible protocol

features. Instead, the designers have provided a scheme makes 1Pv6 more flexible

than 1Pv4, and means that new features can be added to the design as needed.

2.4 Transmission Control Protocol (TCP)

The transmission control protocol (TCP) is one of the main transport protocols in

the TCP/IP protocol suite. TCP provides application programs with a reliable, flow

controlled, full duplex, stream transport service multiplexing, demultiplexing, and

error detection. It is connection-oriented because before one application process can

begin to send data to another, the two processes must first "handshake" with each

other that is, they must send some preliminary segments to each other to establish the

parameters of the ensuing data transfer.

An example of how a TCP connection is established. Suppose an application

running in one computer wants to initiate a connection with another application in

another computer. The client application process first informs the client TCP that it

wants to establish a connection to a process in the server. The transport layer in the

19

client then proceeds to establish a TCP connection with the TCP in the server. The

client first sends a special TCP segment; the server responds with a second special

TCP segment, and finally the client responds again with a third special segment. The

first two segments contain no "payload," that is, no application-layer data; the third of

these segments may carry a payload. Because three segments are sent between the

two hosts, this connection establishment procedure is often referred to as a three-way

handshake.

After requesting TCP to establish a connection, an application program can use

the connection to send or receive data, TCP guarantees to deliver the data in sequence

order without duplication. Lastly, when both side of computer applications want to

terminate the connection, they request the connection to be terminated.

Figure 2.4 shown below is a TCP segment header format.

0

Data
Offset

Source Port

Reserved

Checksum

Destination Port

Sequence Number

Acknowledgment Number

Control Bits Window

Urgent Pointer

Figure 2.4 TCP Header format

Source Port (16 bits)

Source application port

Destination Port (16 bits)

Destination application port

20

31

SL Gabriel's Library, Au

Sequence Number 32 bits

The sequence number of the first data byte in this segment. If the SYN bit is set, the

sequence number is the initial sequence number and the first data byte is initial

sequence number + 1.

Acknowledgment Number 32 bits

If the ACK bit is set, this field contains the value of the next sequence number the

sender of the segment is expecting to receive. Once a connection is established this is

always sent.

Data Offset (4 bits)

The number of 32-bit words in the TCP header. This indicates where the data begins.

The length of the TCP header is always a multiple of 32 bits.

Reserved (6 bits)

Must be set to zero

Control Bits (6 bits)

There are six flags in the TCP header. One or more of them can be turned at the same

time.

U, URG.1 bit

Significant urgent pointer field

A, ACK.1 bit

Significant acknowledgment field

P, PSH. 1 bit

Push Function field, the receiver should pass this data to the application as

soon as possible.

R, RST. 1 bit

Reset connection field, reset the connection

21

S, SYN. 1 bit

Synchronization sequence number field; synchronize sequence numbers to

initiate a connection.

F,FIN

End of data field, finish sending data.

Window (16 bits)

This is the number of data bytes beginning with the one indicated m the

acknowledgment field that the sender of this segment is willing to accept.

Checksum. 16 bits

This is computed as the 16-bit one's complement of the one's complement sum of a

pseudo header [pseudo header] of information from the IP header, the TCP header,

and the data, padded as needed with zero bytes at the end to make a multiple of two

bytes.

Urgent Pointer (16 bits)

This field communicates the current value of the urgent pointer as a positive offset

from the sequence number in this segment. The urgent pointer points to the sequence

number of the octet following the urgent data. This field is only be interpreted in

segments with the URG control bit set.

Options (variable length)

Options may occupy space at the end of the TCP header and are a multiple of 8 bits in

length. All options are included in the checksum. An option may begin on any octet

boundary. The option that we are dealing in this work is maximum segment size

option, called MSS. It indicates the maximum sized segment that the sender expects

to receive.

22

St G ' . ,., 1 ' • aiJnd s L11..;,rary, Au

2.5 User Datagram Protocol (UDP)

UDP is another transport layer protocol. UDP is a connectionless since there is no

handshaking between sender and receiver. UDP takes messages from the application

process, attaches source and destination port number fields for the multiplexing or

demultiplexing service, adds two other small fields (header length and checksum), and

passes the resulting segment to the network layer. The network layer encapsulates the

segment into an IP datagram and then makes a best-effort attempt to deliver the

segment to the receiving host. If the segment arrives at the receiving host, UDP uses

the destination port number to deliver the segment's data to the correct application

process.

Figure 2.5 shown below is a UDP header format

0 31

Source Port Destination Port

Length Checksum

Figure 2.5 UDP Header format

Source port (16 bits)

Indicates the port of the sending process and it is used to be the port to which a reply

should be addressed.

Destination port (16 bits)

Indicates the port of the receiving process, it is used to demultiplex incoming data

from IP.

Length (16 bits)

Length field indicates the length of the UDP header and the UDP data.

Checksum (16 bits)

23

Checksum is the 16-bit one's complement of the one's complement sum of a pseudo

header of information from the IP header, the UDP header, and the data, padded with

zero octets at the end (if necessary) to make a multiple of two octets.

DNS is one of the application-layer protocols that use UDP. When the DNS

application in a host wants to make a query to find the IP address of the specific

name, it constructs a DNS query message and passes the message to a UDP socket.

Without performing any handshaking, UDP adds header fields to the message and

passes the resulting segment to the network layer. The network layer encapsulates the

UDP segment into a datagram and sends the datagram to a name server. The DNS

application at the querying host then waits for a reply to its query. If it doesn't receive

a reply (possibly because the underlying network lost the query or the reply), it either

tries sending the query to another name server, or it informs the invoking application

that it can't get a reply. We mention that the DNS specification permits DNS to run

over TCP instead of UDP, in practice, however, DNS almost always runs over UDP.

24

CHAPTER 3. ARP SPOOFING

The information or data that going to send from any computers inside network

must be coded in the form of Ethernet frame. ARP is the method of the Ethernet

protocol to translate the IP address of the destination computer to the destination

MAC address.

ARP operates by broadcasting ARP Request to all computers inside the network

asking the question "Is this your IP address? If so, give me your MAC address".

After receiving the ARP request, the destination computer will send an ARP Reply

containing its MAC address.

To satisfy the objective of this thesis, we focus on the computer that has the wrong

or mismatch IP configuration to the physical network. Mismatching of IP

configuration can occur by means of assigning wrong IP configuration, using private

IP, or relocating computer from different network. This computer wants to access to

the Internet without changing IP configuration of the computer. In order to access to

the Internet, this computer will first broadcast ARP Request to all computers inside

this network asking for the MAC address of the gateway or DNS. Because the IP

address of gateway or DNS could not be found in this network, some mechanisms

have to map or translate this unusable ARP Request to the usable ARP Request.

These mechanisms will be implemented on a computer named "virtual gateway". The

first mechanism is to capture all ARP Request packets broadcasting in the LAN. By

looking at the source and destination IP address in the captured packets. These

packets can be categorized into two groups. The first group is the usable or correct

packet containing the correct source and destination IP address. Correct source or

destination IP number is the IP number located on the same network as the virtual

25

gateway. Packets in this first group will be discarded by the virtual gateway because

it can reach to the destination according to the destination IP address in the packet.

The second group is the unusable ARP packet that contains the wrong information of

source or destination IP address in the packet. The virtual gateway will send the ARP

Reply pretending that the virtual gateway is a gateway or DNS of that computer. This

process of pretending to be other machine is called ARP spoofing. Figure 3.1 shown

below is the process of ARP spoofing.

Capture ARP Packet

Filter

yes

Update MAC Table

Construct ARP
Re I

Packet Injection

Figure 3.1 Flow chart of ARP Spoofing

This chapter will describe the concept and implementation by following the ARP

spoofing process. Firstly is to capture all packets transmitting in the network. Then,

26

is to filter packets by selecting the considered packet. After that is to update the MAC

table. And lastly is to construct and inject modified packet back to the network.

To capture all Ethernet packets from the network, the network card has to be in

promiscuous mode. Without being in the promiscuous mode, a network card will

capture only the packets that match its own MAC address and the broadcast packet.

After being in the promiscuous mode, the network card captures all Ethernet packets

and forwards them for further processing, explaining later. The implementation has

been done by the help of "libpcap".

Libpcap is publicly available as the open-source domain library for packet

capturing process. To capture the Ethernet packets in the network, firstly we have to

choose the device of the virtual gateway to capture packets. This device will be

obtained by using function "pcap_lookupdev ()"and obtain device name "ethO". In

order to capture all packets transmitting in the network, this device must be opened

for packet capture and must be in promiscuous mode by using function

"pcap_open_live ()". The step is to filter out the correct packet and passes the wrong

packet to the next step. To distinguish between the correct and wrong packet we need

to look at the Ethernet header and the ARP message of the captured packet to filter

packet. The rules used to filter packets in ARP spoofing process are

1. Frame type in Ethernet header must be Ox0806, which is corresponding to

ARP message.

2. Operation field in ARP message must be OxOl, which is corresponding to

ARP Request.

3. Sender or destination protocol address in ARP message not equal to

168.120.18.X. This rule corresponds to the packets that generate from

mismatch IP computer.

27

The following are the example of the packet that passes these rules is shown

below.

Ethernet Header

Frame type

ARP Message

Operation

Sender protocol address

Destination protocol address

Ox0806

OxOl (ARP Request)

not equal to 168.120.18

not equal to 168.120.18

Packets that pass these rules will be considered as an ARP Request packet

generating from mismatch IP configuration computer. The above rules will pass the

ARP Request packet that contain mismatch sender or destination protocol address to

the function "send_arp ()" for processing. This mismatch or wrong configuration

packet will be corrected by giving the ARP Reply telling that the virtual gateway is

the computer that the ARP Request sender is looking for. The virtual gateway needed

to remember that it self become the gateway for the sender, which is a mismatch IP

computer. This makes the need of table mapping.

In function send_ arp (), before processing this packet the information of this

packet must be kept in the MAC table. MAC table is used to store the information of

this packet. The information needed to store are sender MAC address, sender IP

address and target IP address. This information is necessary in constructing packets

and translating of TCP/IP and UDP/IP packets that going to describe in later chapter.

Table 3.1 shows the example of MAC table.

28

Sender MAC address Sender IP address Target IP address

OO:OO:E8:64:C5:C6 192.168.0.5 192.168.0.l

00:10:4B:C7:18:1A 192.169.1.14 192.169.0.50

Table 3.1 Example of MAC table

The contents of the mismatch ARP Request is then reconstructed by changing

1. Destination MAC address in Ethernet header is source MAC address of the

mismatch ARP Request.

2. Source MAC address in Ethernet header is the virtual gateway MAC

address.

3. Operation code in ARP message is changed to Ox0002 to be ARP Reply.

4. Sender MAC address in ARP message is the virtual gateway MAC address.

5. Sender protocol address in ARP message is the target IP address of the

mismatch ARP Request.

6. Target MAC address in ARP message is the sender MAC address of the

mismatch ARP Request.

7. Target protocol address in ARP message is the sender IP address of the

mismatch ARP Request.

To construct and inject the packet we use another open source library called

"libnet". Libnet is a C library used to construct and inject packet to the network.

However, libnet and libpacap are not the same, libnet do nothing about capturing

process instead its construct the packet using buffer and write the packet that is stored

in buffer to the network. The functions used to construct ARP Reply are

"libnet_build_Ethernet ()" and "libnet_build_arp ()" functions. The values in the

Ethernet header and ARP message in the constructing ARP Reply are as follow

29

Ethernet header:

Destination MAC address7 MAC address field in MAC table

Source MAC address 7 Virtual gateway MAC address

Frame type 7 Ox0806

ARP message:

Hardware type 7 OxOOOl

Protocol type 7 Ox0800

Hardware size 7 Ox06

Protocol size 7 Ox04

Operation code 7 Ox0002

Sender MAC address 7 Virtual gateway MAC address

Sender Protocol address 7 Target IP address field in MAC table

Target MAC address 7 MAC address field in MAC table

Target Protocol address 7 Sender IP address field in MAC table

Finally the reconstructed packet will be send back to the network by using

function "libnet_write_link_layer ()". After successfully injected this packet to the

network, wrong or mismatch IP computer will receive this packet and will map MAC

address of the virtual gateway with the IP address of the gateway or DNS that is not

actually located in this network.

The IP range in this network is 168.120.18.128 to 168.120.18.191. The virtual

gateway has IP address of 168.120.18.155 with MAC address of 00:01:02:92:76:42.

A wrong IP computer has IP address of 192.168.0.4 with 192.168.0.1 is a gateway IP

address and MAC address is OO:OO:CO:D5:6A:Dl. Figure 3.2 shown below is the

ARP Request packet information generates from wrong IP computer. All computers

30

St. G~~brkfs Library, Au

in this network ignore this packet because it is asking for the MAC address of IP

address that is not located in this network. This packet is captured by the virtual

gateway. Then the virtual gateway notices the sender protocol address and the target

protocol address in ARP frame. The virtual gateway take a look at the 29th_ 32°dbyte

and 39th -42°d byte which are sender protocol address and the target protocol address

respectively. If the IP is not beginning with 168.120.18 means wrong IP computer

sends out this packet. Here in Figure 3.2 sender protocol address is 192.168.0.4 and

the target protocol address is 192.168.0.1. Figure 3.3 shows the ARP Reply packet

that is injected by the virtual gateway.

----- General -----
Item number 1, position in logfile 9%
Timestamp: I 6h:55m: 1 Os:928925us
----- Description -----
Item type: Partial frame, 60 bytes available
Frame size is 60 (3C hex) bytes
-----MAC Header----- [0-13]
Destination= Broadcast FFFFFF-FFFFFF - [0-5]
Source= Computer OOOOCO-D56AD1 (Universal; Vendor:???)- [6-11]
Ethertype = 0806h (???)- [12-13]
----- ARP frame----- [14-41]
Hardware type 1 Ethernet - [14-15]
Protocol Type= 0800h IP - [16-17]
Length of hardware address = 6 bytes - [18-18]
Length of protocol address = 4 bytes - [19-19]
Operation code 1 Request - [20-21]
Sender's hardware address= OOOOCO-D56AD 1 (Vendor: ???) - [22-27]
Sender's protocol address= [192.168.0.4] - [28-31]
Target hardware address = 000000-000000 (Vendor: ???) - [32-3 7]
Target protocol address= [192.168.0.l] - [38-41]
-----Padding----- [42-42]
Padding OxO - [42-59]

* FF FF FF FF I FF FF 00 00 I CO D5 6A DI I 08 06 00 0 I [.......... j]
* 08 00 06 04 I 00 01 00 00 I CO D5 6A DI I CO A8 00 04 [.......... j]
* oo oo oo 00 I oo oo co A8 I oo 01 oo oo I oo oo 50 04 [.............. P.]
* 00 00 OA 9C I 00 00 02 04 I 05 B4 01 01 I [............]

Figure 3.2 ARP Request for wrong IP computer

31

----- General -----
Item number 2, position in logfile 17%
Timestamp: l 6h:55m: I Os:93016 l us
----- Description -----
Item type: Partial frame, 60 bytes available
Frame size is 60 (3C hex) bytes
-----MAC Header----- [0-13)
Destination= Computer OOOOCO-D56AD1 (Universal; Vendor:???) - [0-5)
Source= Computer 000102-927642 (Universal; Vendor:???)- [6-11)
Ethertype = OS06h (???) - [12-13]
----- ARP frame ----- [14-41]
Hardware type I Ethernet - [14-15]
Protocol Type = OSOOh IP - [16-17)
Length of hardware address= 6 bytes - [IS-IS]
Length of protocol address = 4 bytes - [19-19]
Operation code 2 Reply - [20-21]
Sender's hardware address= 0001 2-927642 (Vendor:???) - [22-27)
Sender's protocol address= [l 92. l 6S.O. l] - [2S-3 l]
Target hardware address= OOOOCO-D56AD I (Vendor: ???) - [32-3 7)
Target protocol address= [192.16S.0.4) - [3S-41]
-----Padding----- [42-42]
Padding OxO - [42-59]
==
* 00 00 CO D5 16A DI 00 01 I 02 92 76 42 I OS 06 00 01 [... .j vB)
*OS 00 06 04 I 00 02 00 01 I 02 92 76 42 I CO AS 00 01 [.......... vB)
* 00 00 CO D5 [6A DI CO AS I 00 04 00 00 I 00 00 00 00 [.... j)
* oo oo oo oo I oo oo oo oo I oo oo oo oo I [............)

Figure 3.3 Faked ARP Reply Packet

After successfully injected ARP Reply the wrong IP computer will map

192.168.0.1with00:01:02:92:76:42. The virtual gateway has completed pretending

to be the gateway that wrong IP computer is looking for. Therefore, every packet

from wrong IP computer will be automatically sent to the virtual gateway.

32

CHAPTER 4. ADDRESS TRANSLATION

Internet Protocol (IP) is a connectionless protocol that gateways use to identify

networks and paths to networks and hosts. IP handles the transmission of data from

an originating computer to the computer specified by the IP address. Each time a

message arrives at a router, the router decides where to send it next according to the

destination IP address of that packet. In this work we consider the packet generated

from wrong IP address that cannot be routed directly, because of the mis

configuration of the network parameters. Address translation of this packet is

required in order to make this packet routable on the Internet.

The process of address translation is implemented on the virtual gateway. ARP

spoofing technique that described in previous chapter have already pretended the

virtual gateway as a gateway of the mismatch IP address computer. Therefore, every

time when the mismatches IP address computer want to access to the Internet, the

TCP/IP and UDP/IP packets generated from this computer will be automatically sent

to the virtual gateway. The virtual gateway has to capture, modify and inject all

TCP/IP and UDP/IP packets generated by the mismatch IP address computer. The

virtual gateway also handles incoming packets from the Internet translate them and

send back to that computer.

From the previous chapter, the virtual gateway captures the non-mutable packets,

modifies the information in the packet header then pushes it back. This chapter

extends the translation process to the network layer and transport layer. The

modification in the previous chapter redirects all packets from the mis-configured

machine to the virtual gateway. The modification in both network layer and transport

layer make these packets mutable through the Internet.

33

Packet capture

TCP/IP setting
upconnection from

client

no

Incoming TCP/IP

no

Outgoing TCP/IP

no

Outgoing UDP/IP

no

Incoming UDP/IP

no

Discard

yes
send_ tcp _opt_ ip _to _gw ()

yes
send_tcp_ip_to_pc ()

yes
send_tcp_ip_to_gw ()

yes
send_udp_to_dns ()

yes
send_udp_to_pc ()

Figure 4.1 Flow chart of Address Translation in ANAA

34

The procedures of address translation for both type of packets, TCP/IP and

UDP/IP, are the same by capturing, filtering, constructing and injecting packet.

However both type of packets will be handled separately because TCP is connection

oriented that require connection setup, but UDP does not. And the translation in this

work mainly considered the TCP/IP connection, means we will translate all TCP/IP

packets without considering the application port whereby UDP/IP packets are

considered only application port 53 that is a DNS application. Figure 4.1 is a flow

chart of packet translation.

4.1 TCP/IP Packet

TCP/IP packet requires one option for setting up connection. This option is a

maximum segment size (MSS) option that going to be included in the TCP header of

the first packet generating from the client to the server and the first packet that server

replies to the client. To translate TCP/IP in this work we classified TCP/IP packet

into three cases. The first case is the first packet from the mismatch IP computer to

the server that is considered as a setting up connection packet. The second case

describes all incoming packets from the server to the mismatch IP computer. The

third case represents all the outgoing packets from client to the server except the first

packet of that connection.

4.1.1 Setting Up Connection

We consider only the first packet from client, mismatch IP computer, to the

server. This packet is considered as a setting up connection packet by looking at the

TCP options that is included in the TCP header and acknowledgment. This option is

the MSS option, which is used to negotiate the packet size between client and server

35

and it is generated automatically by an operating system. The value in the TCP option

that includes MSS option is Ox0204. However, when the TCP header includes option

the size of the header will be changed. Therefore, the size of this packet from the IP

header will be greater than 40 bytes.

The acknowledgment of this packet must equal to zero because it is the first

packet of the connection. The acknowledgement of zero means no previous packet or

data has to be synchronized. The contents in the packet that we have to consider for

filtering are

1. Frame type in Ethernet header must be equal to Ox0800 for IP packet, and

2. Total length in IP header is greater than 40 bytes, and

3. Protocol type in IP header is Ox06 for TCP, and

4. Acknowledgement in TCP header is zero, and

5. Option is TCP header contains MSS option, Ox0204.

The following are the example of the filter rules

Ethernet header

Frame type

IP header

Total length

Protocol

TCP header

Acknowledgement

Options

Ox0800

greater than 40 bytes (greater than Ox0028)

Ox06

OxOOOOOOOO

MSS option, Ox0204

After successfully filtered packet, this mismatch TCP/IP packet will be translated

by the virtual gateway. The virtual gateway translates by reconstructing the packet

36

St. G<.1briel's Library, Au

and sends the modified packet back to the network. The function that used to process

this mismatch TCP/IP packet is "send_tcp_opt_ip_to_gw ()", Figure 4.2. In this

function, first it check the source MAC address of the packet that pass to the filter

with the MAC table to confirm that it come from the computer that we have already

spoofed. The sender MAC address field in the MAC table is used as a key. After

that, function "search ()" is called for finding the available port and then put it into the

source port of the TCP header after translation. This port number is used to

demultiplex the incoming packets and then translate the incoming packets and send

them back to the original mismatch IP computer, the virtual gateway need a table for

mapping. This table is called IP table. The information of the mismatch TCP/IP

packet that must be kept in this table are source MAC address, source IP address,

destination IP address, source port, destination port and assigned port. Table 4.1

shows the example of the IP table.

Source MAC Source IP Destination IP Source port Destination Assigned port Timestamp

address address address port

00:1048:C7:18:1A 192.168.0.4 202.6. l 01.255 1045 80 10001 1002155102

OO:OO:E8:64:C5:C6 192.168.0.5 202.6.101.2 1039 23 10002 1002155409

Table 4.1 Example of IP Table

Then, the contents of this TCP/IP packet is reconstructed by doing the following

1. Ethernet header is handled by the kernel of the OS in the virtual gateway.

2. Source IP address in IP header is changed to be the virtual gateway IP address.

3. Checksum in IP header, this field will be calculated by the kernel of the virtual

gateway's OS.

37

4. Source port in TCP header to be available port of the virtual gateway by using

function search (), and

5. Checksum in TCP header, calculated by using function "libnet_ do_ checksum

()".

The following are the example of the modified contents of the mismatch TCP/IP

packet header

IP Header

Source IP

Checksum

TCP Header

Source port

Checksum

168.120.18.155

Kernel will handle this field

search (), search available port

libnet_ do_ checksum (), calculate checksum

To construct the TCP/IP packet we use function "libnet_build_ip ()",

"libnet_build_tcp ()" and "libnet_insert_tcp ()". These functions will construct the

packet in the form of buffer before it is injected to the network. Finally the

reconstructing packet is sent back to the network by using function "libnet_ write_ ip

()". This function will pass this TCP/IP packet to the kernel to encapsulate this packet

by the Ethernet header. Therefore, it is the duty of the kernel to add Ethernet header

to this TCP/IP packet and also calculate the checksum of the IP header. In this case

we do not have to go to the data link layer because the injecting packet is now

considered as the correct packet that can be mutable to the desire destination.

38

TCP/IP setting up
connection from client

Check MAC address
with MAC table

yes

Search available port

Insert record in IP table

Construct IP packet

Inject IP packet

no
Discard

Figure 4.2 Flow Chart of function send_tcp_opt_ip_to_gw ()

4.1.2 Incoming Packets

In this case we consider all incoming packets from the server to the virtual

gateway. These packets have to be translated and send back the information from the

server to the mismatch IP computer. According to the packet that we translated and

injected in the first case, the reply from server of this packet will be sent to the virtual

gateway automatically by the gateway. However, we have to block the ports of the

virtual gateway to ignore this reply packet to go to the TCP/IP stack, otherwise the

39

St. Gabrid's Library, Au

TCP/IP stack will send the reset connection to the server. The reset signal will

happen when the TCP/IP stack get the packet at the port it haven't setup.

The method to block port range that we are going to assign to setup connection

packet in the virtual gateway is to use command "ipchains" [11]. Ipchains is used to

set up, maintain, and inspect the firewall rules in the Linux kernel. The rules used to

deny these incoming packets to the virtual gateway are

1. Incoming TCP packet with destination IP address is 168.120.18.155 and

destination port between 10000 and 50000.

2. Incoming UDP packet with destination IP address is 168.120.18.155 and

destination port between 10000 and 50000.

After blocking all incoming packets, these packets are still sent to the virtual

gateway, but according to the ipchains rules, these packets will not be handled directly

by the TCP/IP stack. Our network adapter is in promiscuous mode, therefore we can

capture and translate these packets by first filtering out unwanted packets, modifying

and injecting packet to the network.

The filtering rule in this case is to get the incoming packet that is the reply of the

packet that we injected in the first case. To get this packet we have to look at the

contents in the header of capturing packet. The contents in the packet that we have to

consider for filtering are

1. Frame type in Ethernet header must be equal to0x0800 for IP packet, and

2. Protocol type in IP header is Ox06 for TCP, and

3. Destination IP address in IP header is 168.120.18.155, which is an IP address

of the virtual gateway.

40

The following is the example of the filtering rules

Ethernet Header

Frame type

IP Header

Protocol

Destination IP

TCP header

Options

Ox0800

Ox06

168.120.18.155 (IP of the virtual gateway)

First two bytes equal to Ox0204

Incoming TCP/IP

Check port with IP

table

yes

Construct Ethernet frame

Inject Ethernet frame

Update IP table

no
Discard

Figure 4.3 Flow Chart of function send_tcp_ip_to_pc ()

Then, this packet is passed to function "send_tcp_ip_to_pc ()". Figure 4.3 shows

a flow chart of function "send_tcp_ip_to_pc ()". In this function, the incoming packet

41

has to map with IP table to find the original destination MAC address, destination IP

address and destination port. The key used to map with IP table is the destination port

of the incoming packet that must be equal to the port assigned by the virtual gateway.

Then, the packet will be constructed according to the information in that record.

The contents of the packet that have to modify are as follow:

1. Source MAC address in Ethernet header is changed to be the virtual

gateway MAC address.

2. Destination MAC address in Ethernet header is changed to be the MAC

address of original mismatch IP computer by taking the information from

source MAC address field in IP table.

3. Destination IP address in IP header is changed to be the IP address of

original mismatch IP computer by taking the information from source IP

address field in IP table.

4. Checksum m IP header IS recalculated by usmg function

"libnet_ do_ checksum ()".

5. Destination port in TCP header is changed to be the port number of the

original mismatch IP computer by taking the information from the source

port field in IP table.

6. Checksum m TCP header IS recalculated by usmg function

"libnet_do_checksum ()".

The following is the example of the modifying contents in the packet

Ethernet Header

Destination MAC address7

Source MAC address 7

Mismatch IP computer MAC address

Virtual gateway MAC address

42

IP Header

Destination IP address -7

Checksum -7

TCP header

Destination port

Checksum

Mismatch IP computer IP address

Recalculated by "libnet_ do_ checksum ()"

Mismatch IP computer port

Recalculated by "libnet_do_checksum ()"

In this case we have to construct the Ethernet frame of TCP/IP packet. Unlike the

first case that we construct only TCP/IP packet and let the kernel handle the link layer

because kernel does not recognize mismatch IP computer in the network. Therefore,

in the function "send_ tcp _opt_ ip _to _pc ()" will construct Ethernet frame by using

function "libnet_build_Ethernet ()'', "libnet_build_ip ()", "libnet_build_tcp ()" and

"libnet_insert_tcpo ()". Then, the constructing Ethernet frame is injected to the

network using function "libnet_write_link_layer ()". After successfully injected

packet to the network, IP table has to be updated in the time field.

4.1.3 Outgoing Packets

In this case we consider outgoing packets that generated from mismatch IP

computer. This case does not include the first packet from the mismatch IP computer

to server because it is handled by the first case. We can distinguish this kind of

packet by looking at the acknowledgement in the TCP header not equal to zero that

used to synchronize, check with IP table to make sure that the connection has already

been served. The method of translating this packet is similar to the previous case by

filtering, modifying and injecting packet.

43

To filter out unwanted packet we have to look at the contents in the packet header.

The contents that we have to consider for filtering are

1. Frame type in Ethernet header must be equal to Ox0800.

2. Protocol in IP header is Ox06 for TCP packet.

3. Acknowledgement in TCP header is not equal to zero

The following is the example of the packet header that used to filter

Ethernet Header

Frame type

IP Header

Protocol

TCP Header

Acknowledgement

Ox0800

Ox06

not equal to zero

After filtering, this packet will be passed to function "send_tcp_ip_to_gw ()".

Figure 4.4 shows procedure of function "send_tcp_ip_to_gw ()". In this function, it

first map the source IP address in the IP header and source port number in the TCP

header with the source IP address field and source port field in the IP table

respectively to make sure that this connection has already been served. If the

mapping fail it means that the connection has not been served and the translation of

this packet will not be done. If the connection has already been served there must be

a record in the IP table and used these two fields as a key to find assigned port number

that we use in this connection.

44

TCP/IP
outgoing

Check port with IP
table

yes

Construct IP packet

Inject IP packet

Update IP table

no
Discard

Figure 4.4 Flow chart of function send_tcp_ip_to_gw ()

Then, this packet will be reconstructed by modifying the contents in the packet

header. The contents that will be modified are as following:

1. Ethernet header, will be handled by the kernel of the virtual gateway.

2. Source IP address in IP header is changed to be the virtual gateway IP address.

3. Checksum in IP header, this field will be calculated by the kernel of the virtual

gateway.

4. Source port in TCP header is changed to be assigned port by using the value in

assigned port field in IP table.

5. Checksum in TCP header, calculated by using function "libnet_do_checksum

()".

45

The following are the example of the modified contents of the mismatch TCP/IP

packet header

IP Header

Source IP

Checksum

TCP Header

Source port

Checksum

168.120.18.155

Kernel will handle this field

Assigned port field in IP table

Recalculated by using "libnet_ do_ checksum ()"

Then, the new reconstructing packet will be injected to the network by using

"libnet_ write_ ip ()". Similar to the first case that the kernel can handle data link layer

because the packet is now the correct packet that can be routable to the server or

destination. Finally the time field in the IP table has to be updated to know the last

use of this connection.

4.2 UDP/IP Packet

The TCP/IP protocols within the kernel know nothing about the DNS. DNS is

one of the application-layer protocols that use UDP or TCP to convert a hostname to

an IP address before opening a connection. The port number used for DNS name

server is UDP port 53 or TCP port 53. This implies that the DNS supports both UDP

and TCP. However, to guarantee the DNS operation in different platform this work

covers the case of UDP/IP with application port 53. To translate the UDP/IP packet

we categorize into two sections, outgoing packet and incoming packet. In both

section method of translating are the same by first filtering, modifying and injecting

packet.

46

4.2.1 Outgoing Packet

This packet is the packet that generates from the mismatch IP computer to the

name server to resolve the name to an IP address. This packet contains the destination

IP address that is an IP address of the name server that cannot be founded in this

network by putting wrong information or relocating of computer. This packet will be

filtered by looking at the contents of the header. The contents in the header that used

to filter are the following.

1. Frame type in Ethernet header must be equal to Ox0800 for IP packet.

2. Protocol type in IP header is Oxl 1 or 17 in decimal that correspond to the UDP

type.

3. Destination port in UDP header is Ox0035 or 53 in decimal that correspond to

the DNS application.

The following is the example of the packet header that used to filter

Ethernet Header

Frame type

IP Header

Protocol

UDP Header

Destination port

Ox0800

Oxl 1 (17 in decimal)

Ox0035 (53 in decimal)

After filtering, this packet will be passed to function "send_udp_to_dns ()".

Figure 4.5 shows the procedure of function "send_udp_to_dns ()". In this function,

first it checks source MAC address of this frame with the source MAC address field in

the MAC table to make sure it came from the mismatch IP computer that we have

spoofed an ARP reply.

47

UDP/IP
outgoing

Check MAC address
with MAC table

yes

Search available port

Insert record in IP table

Construct IP packet

Inject IP packet

no
Discard

Figure 4.5 Flow chart of function send_udp_to_dns ()

Then, this packet is considered as the new connection therefore we have to search

an available port of the virtual gateway to find a new source port of a new

constructing packet and insert the information of this packet in IP table as described in

previous section. After that the mismatch packet has to be reconstructed by

modifying the contents in the header. The contents in the header has to be modified

are as follow:

48

1. Ethernet header, will be handled by the kernel of the virtual gateway.

2. Source IP address in IP header is changed to be the virtual gateway IP address.

3. Destination IP address in IP header is changed to be the DNS IP address of

this physical network or the DNS IP address of the virtual gateway.

4. Checksum in IP header, this field will be calculated by the kernel of the virtual

gateway.

5. Source port in UDP header is changed to be assigned port by using the value

in assigned port field in IP table.

6. Checksum m UDP header is recalculated by usmg function

"libnet_do_checksum ()".

The following are the example of the modified contents of the mismatch UDP/IP

packet header

IP Header

Source IP

Destination IP

Checksum

TCP Header

Source port

Checksum

168.120.18.155 (Virtual gateway IP address)

168.120.18.23 (DNS IP address)

Kernel will handle this field

search (), search available port

libnet_ do_ checksum (), calculate checksum

To construct the new UDP/IP packet in this case we use function "libnet_build_ip

()", "libnet_build_udp ()"and "libnet_build_dns ()". Then, this reconstructing packet

is injected to the network by using function "libnet_write_ip ()". Similar to previous

section that let the kernel handles link layer process. After putting this packet back to

49

the network, this packet is now a correct UDP/IP packet and it will be routed to the

name server according to the destination IP address that we assigned in IP header.

4.2.2 Incoming Packet

This incoming packet is the reply from the name server that contains the DNS

message. This packet is routed to the virtual gateway automatically because this

packet contains correct routing information. However, this packet cannot route to the

mismatch IP computer without translating. Before translating packet we have to filter

to get the incoming packet that is a reply to the mismatch IP computer. The contents

in the packet header that used to filter are

1. Frame type in Ethernet header must be equal to0x0800 for IP packet.

2. Protocol type in IP header is Oxl l or 17 in decimal for UDP.

3. Source port is Ox0035 or 53 in decimal that correspond to the reply of the

name server.

The following is the example of the filtering rules

Ethernet Header

Frame type

IP Header

Protocol

UDP Header

Source port

Ox0800

Oxl l (17 in decimal)

Ox0035 (53 in decimal)

After filtering this packet will be passed to function "send_udp_to_pc ()". Figure

4.6 shows the flow chart of function "send_ udp _to _pc ()". In this function, first map

the destination port of this packet with the assigned port field in the MAC table to

50

make sure that this connection has already been served by the virtual gateway. If the

mapping fail this packet will be discarded.

UDP/IP
incoming

Check port with IP
table

yes

Construct Ethernet frame

Inject Ethernet frame

Update IP table

no
Discard

Figure 4.6 Flow chart of function send_udp_to_pc ()

Then, the packet will be reconstructed according to the information of that record

in IP table. The contents of the packet that have to modify are

1. Source MAC address in Ethernet header is changed to be the virtual

gateway MAC address.

2. Destination MAC address in Ethernet header is changed to be the MAC

address of original mismatch IP computer by taking the information from

source MAC address field in IP table.

51

St Gabriel's Library, Au

3. Destination IP address in IP header is changed to be the IP address of

original mismatch IP computer by taking the information from source IP

address field in IP table.

4. Checksum m IP header 1s recalculated by usmg function

"libnet_ do_ checksum ()".

5. Destination port in UDP header is changed to be the port number of the

original mismatch IP computer by taking the information from the source

port field in IP table.

6. Checksum m UDP header 1s recalculated by usmg function

"libnet do checksum()".

The following is the example of the modifying contents in the packet

Ethernet Header

Destination MAC address7

Source MAC address 7

IP Header

Destination IP address 7

Checksum 7

UDP header

Destination port

Checksum

Mismatch IP computer MAC address

Virtual gateway MAC address

Mismatch IP computer IP address

Recalculated by "libnet_ do_ checksum ()"

Mismatch IP computer port

Recalculated by "libnet_do_checksum ()"

Similar to 4.1.2 of TCP/IP packet that we have to construct entire Ethernet frame

because the kernel does not recognize mismatch IP computer. The construction of the

Ethernet header and the IP header in this case are also similar by using function

"libnet_build_ethernet ()"and "libnet_build_ip ()". But the transport layer header and

52

the contents are not the same; therefore we use function libnet_ build_ udp ()" to build

UDP or transport layer header and "libnet_ build_ dns ()" to build the DNS message.

Finally, is to inject the new reconstructing packet back to the network to send it to

mismatch IP computer. The function that used to inject this packet is

"libnet_ write_ link_ layer ()".

53

CHAPTER 5. TESTING

This chapter provides the testing of the implementation of the ANAA. The

purpose of this test is to verify that the computer that contains mismatch IP

configuration can access to the Internet without changing or modifying IP

configuration and to measure the performance of the network. The network

environment of this test is shown in Figure 5 .1. In this test, we separate the test into

two sections the first section is the test of the applications over ANAA and the last

section is the performance testing by comparing mismatch IP configuration computer

with correct IP configuration computer.

Switch

Name Server ······•••11•

Router

Hub
IP address 168.120.18.23

Mismatch IP configuration Virtual gateway

PC 2 PC 1

IP 192.168.0.4
GW 192.168.0.1
DNS 192.168.0.50
Subnet mask 255.255.255.0

Server

IP 168.120.18.155
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

IP 168.120.18.137
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

Figure 5.1 ANAA Network Configurations

54

5.1 Applications over ANAA

There are a lot of applications that used to access or communicate over the

Internet. Most of these applications based on TCP/IP or UDP/IP to transfer the

information from one computer to another computer. This information is wrapped in

the form of packet and this packet will be routed correctly in the Internet depends on

the information in the packet header such as source and destination IP address.

This thesis modifies the information in the packet header of mismatch IP

computer to make it routable in the Internet. However, in modifying the packet

header we do not modify or change the information in the data of the packet. This

cause some applications such as File Transfer Protocol (FTP) cannot access to the

Internet when using with ANAA because these applications add some header

information into the data section of the packet. This is a limitation of this work.

Another limitation of ANAA is that it supports only TCP/IP packet and UDP/IP

packet with application port 53 therefore application that uses UDP/IP is not possible

except DNS application. Table 5.1 shows the supporting applications of ANAA that

has been tested.

Application TCP/IP UDP/IP Port

Web browser Yes - 80

Telnet Yes - 23

SMTP Yes - 25

POP3 Yes - 110

MSN Yes - 1863

ICQ Yes - 5190

DNS - Yes 53

Table 5.1 Applications over ANAA

55

5.2 Performance Comparison

We measure the performance of ANAA by using Webstone benchmark [12] test.

Webstone creates load on a Web server by simulating the activity of multiple clients,

which are called Web clients and which can be thought of as users, Web browsers, or

other software that retrieves files from a Web server.

The purpose of this benchmark is to compare performance of the computer that

has correct IP configuration with mismatch IP configuration computer that implement

ANAA in lOMbits/sec Ethernet network and lOOMbits/sec Fast Ethernet network.

Three parameters that we measure are Server connection rate, Average response time

and Throughput. Figure 5.2 shows the network configurations of correct IP

configuration.

Hub Uplink

PC 2 PC 1

IP 168.120.18.148
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

Server

IP 168.120.18.155
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

IP 168.120.18.160
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

Figure 5.2 Network configuration of correct IP

The specifications of computers in this test are

PCl CPU Intel Celeron 703 MHz, RAM 64 Mbytes, OS Linux Kernel 2.2-16

PC2 CPU Intel Celeron 703 MHz, RAM 64 Mbytes, OS Linux Kernel 2.2-16

56

Server CPU Dual Processors Intel P III, RAM 256 Mbytes, OS Linux Kernel 2.4

In this work PC 2 is running webstone trying to retrieve test files from Server

168.120.18.160, running as a Web server, by using HTTP protocol. There are 5 files

to retrieve by webstone. Each of them has size of 500, 5K, 50K, 500K and 5M bytes.

However, each file has different weight to be hit by the client. File 500 bytes is

weight 350 hits out of 1000, 5Kbytes is 500 hits out of 1000, 50Kbytes is 140 hits out

of 1000, 500Kbytes is 9 hits out of 1000 and 5Mbytes is 1 hit out of 1000. This

simulation is to simulate at the number of 20, 40, 60 and 80 clients. Then we change

the IP configuration of PC 2 to be 192.168.0.4 with gateway 192.168.0.1, and PC 1

acts as a Virtual gateway as shown in Figure 5.3. And run webstone in order to

retrieve the same five files from the same Server. The output results of simulation

under lOMbits hub is shown in table 5.2

Hub Uplink

Mismatch IP configuration Virtual gateway

PC 2 PC 1

IP 192.168.0.4
GW 192.168.0.1
DNS 192.168.0.50
Subnet mask 255.255.255.0

Server

IP 168.120.18.155
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

IP 168.120.18.160
GW 168.120.18.129
DNS 168.120.18.23
Subnet mask 255.255.255.192

Figure 5.3 ANAA Network configurations

57

Number Server Connection Rate Average Response Time Throughput
of

Clients Correct IP ANAA Correct IP ANAA Correct IP ANAA

20 50.53 24.92 0.382 0.727 6.08 3.03

40 50.57 23.92 0.708 1.349 6.02 2.59

60 53.77 24.87 0.988 1.788 6.26 2.69

80 58.53 22.68 1.173 2.389 6 2.72

Table 5.2 Simulation Result of 10 Mbit/sec Network

Server Connection Rate -+-correct IP -ti-ANAA

70

60

"" 50 r::
0

"' Q)

~ 40
0

'B 30 Q)
r::
r::
0 20 u

IO

0
20 40 60 80

Number of Clients

.Figure 5.4 Graphs of Correct IP Vs ANAA (Server Connection Rate) lOMbit/sec

Figure 5.4 shows the result of the rate of the connection that the Server response

in both cases. We can notice that the implementation of ANAA reduces the rate of

the connection that can be made between client and server.

58

St Gabriel's Library, Au

Figure 5.5 Graphs of Correct IP Vs ANAA (Average Response Time) lOMbit/sec

Figure 5.5 shows average response time. Average response time is the total

amount of response time divided by the total number of successful connections. This

can also be called as Latency. Total response time includes the time to connect, the

time to process the request on the server, and the time to transmit the response back to

the client. The time requires to process the request of higher number of clients is

increase when the number of clients increases because the server has to process all the

requests from every client. In the case of ANAA the average response time is longer

because the packets from the clients have to transmit to the virtual gateway first, then

virtual gateway processes those packets by modifying information in the header and

transmits to the server. After the server processes the requested packets and transmits

back to the virtual gateway, virtual gateway takes another processing time in order to

modify packet to send to the original client.

59

Throughput

-+-correct IP

-9-ANAA

20 40 60 80

Number of Clients

Figure 5.6 Graphs of Correct IP Vs ANAA (Throughput) lOMbit/sec

Throughput is the total number of bits of data received from the server expressed

m megabits per second. This data is considered as the data rate of successful

connections. Figure 5.6 shows the throughput of both cases. In the case of correct IP

the throughput is 6 Mbits/sec this mean that the network utilization can achieve up to

60%. However, in the case of ANAA the throughput is low because of the collision

of the packets, since we implement ANAA over one network card that used to receive

and transmit at the same time. Another reason for the slower throughput is that the

virtual gateway has a limitation in handling the limited number of connections, as

shown in figure 5.4. Therefore if the number of connection is reduced, the utilization

of the network is also reduced.

In this work we also compare the result of correct IP and ANAA in the

lOOMbit/sec environment by replacing hub in Figure 5.2 and Figure 5.3 to be a

1 OOMbit/sec hub. The specifications of all computers are the same as in 1 OMbit/sec

environment. Table 5.3 shows the simulation result of the lOOMbit/sec.

60

Number
of

Server Connection Rate Average Response Time Throughput

Clients Correct IP ANAA Correct IP ANAA Correct IP ANAA

20 427.87 54.6 0.047 0.354 70.45 7.29

40 441.97 48.57 0.089 0.788 70.79 8.1

60 445.48 47.25 0.133 1.115 70.18 7.93

80 461.75 52.42 0.17 1.132 72.6 7.37

Table 5.3 Simulation Result of 100 Mbit/sec Network

Server Connection Rate

500

450

400

'"' 350
" ~ 300 c::
0

·~ 250
c:: 200 c::

-+-correct IP

---ANAA
0 u 150

100

50

0

20 40 60 80

Number of Clients

Figure 5.7 Graphs of Correct IP Vs ANAA (Server Connection Rate) IOOMbit/sec

61

1.2

"C) 0.8 c
0
<>
1;l

0.6 .5

" e
f,: 0.4

0.2

0

Average Response Time

20 40 60

Number of Clients

80

-+--correct IP

_._ANAA

Figure 5.8 Graphs of Correct IP Vs ANAA (Average Response Time) lOOMbit/sec

Throughput

80

70

60

~
50

..,, 40
-+-correct IP

~ _._ANAA
30

20

10

0

20 40 60 80

Number of Clients

Figure 5.9 Graphs of Correct IP Vs ANAA {Throughput) lOOMbit/sec

According to the results of 1 OOMbit/sec environment we can see that ANAA can

solve the problem of mismatch IP address. However, the performance of the system

when implementing ANAA over 1 OOMbit/sec is very poor. The utilization of the

62

St. Gal>rlel's Library, Au

network can achieve up to only 8.1% at 40 clients. In case of correct IP, the

utilization of the network can achieve more than 70%. The main factor that effect to

overall performance in 1 OOMbit/sec is that the virtual gateway has a limited capability

in handling a large number of packets. By improving the virtual gateway hardware,

the performance is expected to be increased.

According to the results we can conclude that the performance of the mismatch IP

configuration computer in order to access to the Internet is reduced because the

limitation of the virtual gateway. The first limitation is that we used only one network

card to capture and inject packets at the same time. There might be the case of

packets collision. The second limitation is the limited capability in handling a large

number of packets as shown in Figure 5.5 and 5.8 that the virtual gateway takes

longer time in translating packet when there are a large number of packets.

63

CHAPTER 6. CONCLUSIONS

This thesis presents the study and implementation of ANAA technique. ANAA

allows computer that contains wrong or mismatch IP configuration to be able to

access the Internet without any modification to the network configuration of client

computer. This technique can be used for three main purposes. First is to allow the

use of non-mutable IP address in the internal network to be able to access the Internet.

According to the limited amount of IP addresses, non-mutable IP addresses are widely

used to save cost and to expand the size of the network without requesting new unique

IP address.

Second is to automatically take care of the mobile computer when it changes the

network location. The relocation of this mobile computer can cause the mismatch of

IP configuration in the new network that is not possible to access to the Internet or

access to the server in the same network. Mismatch computer occur when the mobile

computer use static IP configuration or DHCP server does not have enough IP

addresses available to new commg computer. This helps user and network

administrator not to reconfigure every time.

Third, this technique helps the poor configured computer still be used on the

network. Poor configuration in this work means wrong IP address, wrong gateway

address or wrong DNS address. If one of these addresses is configured incorrectly,

accessing to the Server in the network or to the Internet may have problem.

The implementation of ANAA in this work is the software implementation done

over normal computer connected in the Ethernet network with Linux as an Operating

System. This computer is called the virtual gateway. The virtual gateway starts the

process by spoofing the ARP packet. ARP spoofing is a method to make the

64

mismatch IP computer think that the virtual gateway is a real gateway of this network.

This process is done by sending ARP Reply to the mismatch IP computer.

ANAA translates packet from the mismatch IP computer by capturing the packet

from the Ethernet network, verifying the packet information, correcting (if needed)

the wrong information and then putting it back to the network. The type of the packet

that going to be translated are TCP/IP packet and UDP/IP packet with application port

53.

Additionally, this technique reduces the performance in access to the server or

Internet because of three factors. The first factor is it doubles the traffic between

mismatch IP computer and the gateway in the local area network. Increasing the

traffic in local area network can cause the denial of service in the network. The

second factor is the collision of the packets over the Ethernet adapter of the virtual

gateway. This causes the retransmission of the packet. The last factor is the

processing time required modifying the information of the packet and the time

requires transmitting from the client to the virtual gateway and from the virtual

gateway to server back and forth.

6.1 Future Work

According to the translation of the packet by modifying the contents in the packet

header without considering data in the packet cause some application that embeds

addressing information in the packet payload, e.g. FTP cannot access to the Internet

under ANAA because this application add information of the packet header to the data

section. In order to solve this problem we can extend this work by dealing with data

section of the packets. However, modifying the contents in the data of the packet will

change the value of the size of the packet in the header and the value of SYN and

65

ACK of the TCP header also. Therefore, to deal with the data of packets the

information of the size of data is important.

Another limitation of ANAA is that it supports only TCP/IP packet and UDP/IP

packet with application port 53 therefore application that uses UDP/IP is not possible

except DNS application. ANAA can further be developed to support multimedia

applications that use other protocols. Types of the protocols that can be further

developing over ANAA are UDP, ICMP, and IGMP. However, when dealing with

other protocols or applications one important thing that needed to be concerned is

time-out of the connection. Time-out indicates the maximum period of time that the

connection stays idle. This time has to be vary depend on the protocol and

application.

To increase the performance of ANAA we can improve by first increase the

number of network adapter of the virtual gateway to reduce the collision of the packet.

One network card can use for capturing packet and another one can use for injecting

packet to the network. Second is improving the hardware specification of the virtual

gateway. And lastly we can modify the algorithm in storing, retrieving and editing

the value in the mapping table. One possible solution is to use hash table.

66

BIBLIOGRAPHY

[1] P. Srisuresh, M. Holdrege, "The IP Network Address Translation (NAT)'',

Internet RFC 2663, August 1999

[2] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, E. Lear, "Address

Allocation for Private Internet", Internet RFC 1918, February 1996

[3] Stevens, W. R., "TCP/IP Illustrated, Volume I: The Protocols'', Addison

Wesley, 1994

[4] C. Zaccone, Y. T'Jones, B. Sales, "Address reuse in the Internet, adjourning or

suspending the adoption of IP next generation", Proceeding of IEEE

International Conference on Networks (ICON'OO), 2000, Page(s): 462 - 468

[5] M.V. Loukota, J.0. Skytta, "New Possibilities Offered by 1Pv6", Computer

Communication and Networks, 1998. Proceeding 7th International Conference

on Published: 1998, Page(s): 548 - 552

[6] Dewayne Lamont Herbert, S.S. Devgan, C. Beane, "Application of Network

Address Translation in Local Area Network", Southern Symposium on System

Theory, 2001. Proceeding of the 33rd Published: 2001, Page(s): 315 - 318

[7] R Droms, "Dynamic Host Configuration Protocol'', Internet RFC 2131, March

1997

[8] Michael S. Borella, Gabriel E. Montenegro, "RSIP: Address Sharing with End

to-End Security" Proceeding of the Special Workshop on Intelligence at the

Network Edge, March 2000

[9] Brian T. Kurotsuchi, Eric Collins, "Linux IP Masquerading", 1998

[10] Michael S. Borella, David Grabelsky, Ikhlaq Sidhu, Brian Petry, "Distributed

Network Address Translation", citeseer.nj.nec.com

67

[11] Rusty Russell, "Linux IPCHAINS-HOWTO", vl.0.8, 2000

[12] Mindcraft Inc.,"Webstone", v2.5, www.mindcraft.com/webstone

St. Gabriel's Library, Au
68

	Cover and Tietle Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Background
	Chapter 3 : Arp Spoofing
	Chapter 4 : Address Translation
	Chapter 5 : Testing
	Chapter 6 : Conclusions
	Bobliography

