

' s

Using of Security Protocols

by
Mr. Sirisak Sirisawatdiwat

A Final Report of Three-Credit Course
IC 6997 E-Commerce Practicum

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Internet and E-Commerce Technology

Assumption University

November 2003

Project Title Using of Security Protocol for Payment

Name Mr. Sirisak Sirisawatdiwat

Project Advisor Rear Admiral Prasart Sribhadung

Academic Year November 2003

The Graduate School of Assumption University has approved this final report of the
three-credit course, IC 6997 E-Commerce Practicum, submitted in partial fulfillment of
the requirements for the degree of Master of Science in Internet and E-Commerce
Technology.

Approval Committee:

(Rear Admiral Prasart
Dean and Advisor

/ / (') /
,l ! ' //))

(Dr. Ketchayong Skowratananont)
Member

(Prof. Dr. Srisakdi Charmonman)
Chairman

(Assoc.Prof. Somchai Thayartlyong)
CHE Representative

November 2003

ABSTRACT

This project studies the feasibility of security protocols including type and

explanation of security protocols, using security protocols for applications online,

comparison of security protocols per each application.

In this report studies in 3 types of security protocols which are TLS protocol, SSL

protocol and SET protocol and differential properties in each protocol.

For application online in this report studies in term of sending password, sending

E-mail, digital product for download and payment online.

The ending of report is the analytical about using security protocols for each

application, how to choose security protocols for using which is analysis from details

and explanation of security protocols and application online.

ACKNOWLEDGEMENTS

I am indebted to the following people and organizations. Without them, this

project would not have been possible.

I wish to express sincere gratitude to my advisor and dean of IEC, Rear Admiral

Prasart Sribhadung. His patient assistance, guidance, and constant encouragement have

led me from the inception to the completion of this research, and insights into the field

of Computer Security, which is of utmost importance for our academic.

I wish to thank the entire faculty of the Graduate School, and Rear Admiral

Prasart Sribhadung, a lecturer in IEC class for providing building blocks to the

knowledge of E-Commerce Security Course.

Special appreciation is due to my family for their fervent and continuous

encouragement and patience during this period of time. Above all, I am forever grateful

to my parents whose willingness to invest in my future has enabled me to achieve my

education goal.

11

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION I

1.1 Objective

1.2 Scope

1.3 Deliverable

1.4 Research Methodology

II. REVIEW 2

2.1 Background and Impact of Electronic Commerce 2-6

2.2 Shopping and Payment on Electronic Commerce 7 - 11

III. SECURITY PROTOCOLS 12

3.1 Transport Layer Security (TLS) 12 - 39

3.2 Secure Sockets Layer (SSL) 40 - 66

3.3 Secure Electronic Transaction (SET) 67 - 118

IV. USING OF SECURITY PROTOCOLS FOR APPLICATION 119

4.1 Sending Password to user 119 - 122

4.2 Sending E-mail 123 - 125

4.3 Sending Digital Product Online 126 - 130

4.4 Payment Online 131 - 135

v. CONCLUSION 136 - 137

BIBLIOGRAPHY 138

111

LIST OF FIGURES

Figure

3 .1 Message Flow in TLS Handshake Protocol 18

3 .2 Compare the Performance of Secure Web Server 21

3 .3 Timing Analysis of TLS Handshake Protocol 26

3.4 Crypto Overhead in Data Transfer 27

3.5 TLS Handshake with Cached Server Certificate 30

3.6 Message Flow in Optimized TLS Handshake Protocol 32

3. 7 Estimated Latencies With and Without Certificate Caching 34

3.8 Secret-Key Cryptography 67

3.9 Public-Key Cryptography 68

3 .10 Encryption Overview 73

3 .11 Hierarchy of Trust 80

3 .12 Detailed Diagrams 83

3 .13 Guide to Diagrams, continued 84

3 .14 Cardholder Registration 88

3 .15 Cardholder Initiates Registration 89

3 .16 Certificate Authority Sends Response 89

3.17 Cardholder Receives Response and Request Registration Form 91

3.18 Ce1iificate Authority Processes Request and Sends Registration Form 92

3 .19 Cardholder Receives Registration Form and Request Certificate 94

3 .20 Certificate Authority Process Request and Creates Certificate 96

3 .21 Cardholder Receives Certificate 97

3 .22 Merchant Registration 98

3.23 Merchant Request Registration Form 99
IV

Figure Page

3.24 Certificate Authority Processes Request and Send Registration Form 100

3.25 Merchant Receives Registration Form and Request Certificate 101

3.26 Certificate Authority Processes Request and Create Certificate 103

3.27 Merchant Receives Certificate 104

3.28 Purchase Request 105

3.29 Cardholder Initiates Request 106

3.30 Merchant Send Certificate(s) 106

3.31 Cardholder Receives Response and Send Request 108

3.32 Merchant Processes Request Message 109

3.33 Cardholder Receives Purchase Response 110

3.34 Payment Authorization 111

3.35 Merchant Requests Authorization 112

3.36 Payment Gateway Processes Authorization Request 114

3.37 Merchant Processes Response 115

3.38 Payment Capture 116

3.39 Merchant Request Payment 117

3.40 Merchant Receives Response 118

4.1 SSL Payment 132

4.2 SET Payment 133

v

I. INTRODUCTION

1.1 Objective

(a) For analysis "Co-worker between Security Protocols and Application on E-

commerce.

1.2 Scope

This project is for research in term of security protocol on E-commerce. The core

detail of this project is How to use security protocol for Application E-commerce

such as how to transmit application E-commerce, how to security payment on E

commerce included the Analysis of How to security protocol for Application Payment.

1.3 Deliverable

(a) Full report.

(b) Presentation - Power Point

1.4 Research Methodology

The research emphasizes document research. The way of research is find

Information in Text book and Internet information and then analysis conclusion.

II. REVIEW

2.1 Background and Impact of Electronic Commerce

There is no question that electronic commerce, as exemplified by the popularity of

The Internet is going to have an enormous impact on the financial services industry. No

financial institution will be left unaffected by the explosion of electronic commerce.

The number of payment card purchases made through this medium will grow as

Internet based online ordering systems are created.

(a) Many banks are planning to support this new form of electronic commerce by

offering card authorizations directly over the Internet.

(b) Several trials with electronic currency and digital cash are already under way.

(i) Projected use With more than 30 million users today, and 90 million

Projected To come on board in the next two years, the Internet is a new way for

Businesses to establish computer based resources that can be accessed by consumers as

well as business partners around the world.

(ii) Internet The Internet is changing the way we access and purchase

information, communicate and pay for services, and acquire and pay for goods.

Financial services such as bill payment, brokerage, insurance, and home banking are

Now or soon will be available over the Net. Any organization can become a global

Publisher by establishing an information site on the Internet's World Wide Web.

(iii) World Wide Web The Web - or other interactive transport mechanism can

display text, sound, images, and even video, allowing merchants to transmit

information directly to potential consumers around the world and around the clock.

(iv) Consumer payment devices With open networks, consumer-driven devices

will make payments increasingly. As advanced technologies become more practical and

affordable, the marketplace will move from "brick and mortar" to more convenient
2

locations such as the home or office. As financial services evolve, consumers will

consolidate their payment needs into one multifunctional relationship product that

enables widespread, around-the-clock access.

(v) Publicity Recently, an explosion of publicity has heralded the growth of the

Internet and the possibilities for consumers and merchants to create a new type of

shopping called electronic commerce. The publicity has focused on three areas:

(a) Marketing opportunities to develop new ways to browse, select, and pay for

goods and services to on-line consumers,

(b) New products and services, and

(c) Security risks associated with sending unprotected financial information

across Public networks.

All three areas must be addressed to facilitate the future growth of payment card

transaction volume in the electronic marketplace.

(vi) Role of payment systems Payment systems and their financial institutions

Will play a significant role by establishing open specifications for payment card

transactions that:

(a) Provide for confidential transmission,

(b) Authenticate the parties involved,

(c) Ensure the integrity of payment instructions for goods and services order data,

(d) Authenticate the identity of the cardholder and the merchant to each other.

(vii) Procedures needed Because of the anonymous nature of communications

networks, procedures must be developed to substitute for existing procedures used in

face-to-face or mail order/telephone order (MOTO) transactions including the

authentication of the cardholder by the merchant. There is also a need for the cardholder

to authenticate that the merchant accepts SET transactions and is authorized to accept
3

payment cards.

(viii) Use of payment card products Financial institutions have a strong interest

In accelerating the growth of electronic commerce. Although electronic shopping and

Ordering do not require electronic payment, a much higher percentage of these

transactions use payment card products instead of cash or checks. This will hold true in

both the consumer marketplace and the commercial Marketplace. To meet these needs,

the SET Secure Electronic Transaction protocol uses cryptography to:

(a) Provide confidentiality of information,

(b) Ensure payment integrity, and

(c) Authenticate both merchants and cardholders.

This specification will enable greater payment card acceptance, with a level of

security that will encourage consumers and businesses to make wide usage of payment

card products in this emerging market.

(a) Objectives

(i) Motivation Primary: motivations for the payment card brands to

provide specifications for secure payments are to:

(a) Encourage the payment card community to take a leadership

Position in establishing a secure payment specification and, in

so doing, to avoid costs associated with future reconciliation of

implemented approaches,

(b) Respect and preserve the relationship between merchants and

Acquirers and between cardholders and Issuers,

(c) Facilitate rapid development of the marketplace,

(d) Respond quickly to the needs of the financial services market,

(e) Protect the integrity of payment card brands.

4

(ii) Payment security: The objectives of payment security are to:

(a) Authenticate cardholders, merchants, and acquirers,

(b) Provide confidentiality of payment data,

(c) Preserve the integrity of payment data, and

(d) Define the algorithms and protocols necessary for these security

services.

(iii) Interoperability: The objectives of interoperability are to:

(a) Clearly define detailed information to ensure that applications

developed by various vendors will interoperate,

(b) Create and support an open payment card standard,

(c) Define exportable technology throughout, to encourage globally

interoperable software,

(e) Build on existing standards where practical,

(f) Ensure compatibility with and acceptance by appropriate

standards bodies, and

(g) Allow for implementation on any combination of hardware and

software platforms, such as PowerPC, Intel, Spare, UNIX, MS-

DOS, OS/2, Windows, and Macintosh.

(iv) Market acceptance: The objectives of market acceptance are to:

(a) Achieve global acceptance via ease of implementation and

minimal impact on merchant and cardholder end users,

(b) Allow for "bolt-on" implementation of the payment protocol to

existing client applications,

(c) Minimize change to the relationship between acquirers and

merchants, and cardholders and issuers,
5

(d) Allow for minimal impact to existing merchant, acquirer, and

payment system applications and infrastructure, and

(e) Provide a protocol that will be efficient for financial institutions.

6

2.2 Shopping and Payment on Electronic Commerce

(a) Electronic shopping experience

The electronic shopping experience can be divided into several distinct stages.

Stage Description

(i) The cardholder browses for items in a variety of ways, such as:

(a) Using a browser to view an online catalog on the merchant's World

Wide Web page.

(b) viewing a catalog supplied by the merchant on a CD-ROM; or

(c) looking at a paper catalog.

(ii) The cardholder selects items to be purchased.

(iii) The cardholder is presented with an order form containing the list of items,

Their prices, and a total price including shipping, handling, and taxes.

This order form may be delivered electronically from the merchant's server or

created on the cardholder's computer by electronic shopping software. Some online

merchants may also support the ability for a cardholder to negotiate for the price of

items (such as by presenting frequent shopper identification or information about a

competitor's pricing).

(iv) The cardholder selects the means of payment. This specification focuses on

the case when a payment card is selected.

(v) The cardholder sends the merchant a completed order along with payment

instructions.

In this specification, cardholders who possess certificates digitally sign the order

And the payment instructions.

(vi) The merchant requests payment authorization from the cardholder's financial

institution.

7

(vii) The merchant sends confirmation of the order.

(viii) The merchant ships the goods or performs the requested services from the

order.

(ix) The merchant requests payment from the cardholder's financial institution.

Although these stages are listed in a specific order, variations are possible; many

Such variations are described later in this specification.

This specification focuses on stages 5, 6, 7, and 9 when the cardholder chooses to

use A payment card as the means of payment.

(b) Within the scope

The following are within the scope of this specification:

(i) Application of cryptographic algorithms (such as RSA and DES)

(ii) Certificate message and object formats

(iii) Purchase messages and object formats

(iv) Authorization messages and object formats

(v) Capture messages and object formats

(vi) Message protocols between participants

(c) Outside the scope

The following are outside the scope of this specification:

(i) Message protocols for offers, shopping, delivery of goods, etc.

(ii) Operational issues such as the criteria set by individual financial institutions

for The issuance of cardholder and merchant certificates.

(iii) Screen formats including the content, presentation and layout of order entry

forms as defined by each merchant

(iv) General payments beyond the domain of payment cards

(v) Security of data on cardholder, merchant, and payment gateway systems

8

including protection from viruses, Trojan horse programs, and hackers

Note: This is only a paiiial list of categories of things that are outside the scope of the

SET specification.

(d) Kinds of Shopping

Cardholders will shop in many different ways, including the use of online catalogs

And electronic catalogs. The SET protocol supports each of these shopping experiences

And should support others as they are defined.

(e) Online catalogs

The growth of electronic commerce is attributed largely to the popularity of the

World Wide Web. Merchants can tap into this popularity by creating virtual storefronts

on the Web that contain online catalogs. They can quickly update these catalogs as their

product offerings change for seasonal promotions or other reasons.

A cardholder can visit these Web pages and select items to order. When the

Cardholder finishes shopping and submits a request, the merchant's Web server can

send the cardholder a completed order form to review and approve. Once the cardholder

approves the order and designates a payment card, the SET protocol enables the

cardholder to transmit payment instructions by a secure means, while enabling the

merchant to obtain authorization and receive payment.

(f) Electronic catalogs

A growing number of merchants are distributing their catalogs via electronic

media such as diskette or CD-ROM. This approach allows the cardholder to browse

through merchandise off-line. With an on-line catalogue, the merchant has to be

concerned about bandwidth and may choose to include fewer graphics or reduce the

resolution of the graphics. By providing an off-line catalogue, such constraints are

significantly reduced.

9

s

In addition, the merchant may provide a custom shopping application tailored to

The merchandise in the electronic catalogue. Cardholders will shop by browsing

Through the catalogue and selecting items to include on an order. Once the cardholder

approves the order and chooses to use a payment card, an electronic message using the

SET protocol can be sent to the merchant with the order and payment instructions. This

Message can be delivered on-line, such as to the merchant's Web page, or sent via a

store-and-forward mechanism, such as electronic mail.

(g) Payment System Participants Interaction of participants

E-commerce changes the way that participants in a payment system interact. In a

face-to-face retail transaction or a mail order transaction, electronic processing begins

with the merchant or the Acquirer. However, in a SET transaction, the electronic

processing begins with the cardholder.

(h) Cardholder

In the electronic commerce environment, consumers and corporate purchasers

Interact with merchants from personal computers. A cardholder uses a payment card

that has been issued by an Issuer. SET ensures that in the cardholder's interactions with

the merchant, the payment card account information remains confidential.

(i) Issuer

An Issuer is a financial institution that establishes an account for a cardholder and

Issues the payment card. The Issuer guarantees payment for authorized transactions

Using the payment card in accordance with payment card brand regulations and local

legislation.

(j) Merchant

A merchant offers goods for sale or provides services in exchange for payment.

With SET, the merchant can offer its cardholders secure electronic interactions. A

10

s

2C~2~) I

merchant that accepts payment cards must have a relationship with an Acquirer.

(k) Acquirer

An Acquirer is the financial institution that establishes an account with a merchant

And processes payment card authorizations and payments.

(1) Payment gateway

A payment gateway is a device operated by an Acquirer or a designated third party

That processes merchant payment messages, including payment instructions from

cardholders.

(m) Brand

Financial institutions have founded payment card brands that protect and advertise

the brand, establish and enforce rules for use and acceptance of their payment cards, and

provide networks to interconnect the financial institutions. Financial services companies

that advertise the brand, and establish and enforce rules for use and acceptance of their

payment cards own other brands. These brands combine the roles of Issuer and Acquirer

in interactions with cardholders and merchants.

(n) Third parties

Issuers and Acquirers sometimes choose to assign the processing of payment card

Transactions to third-party processors. This document does not distinguish between the

financial institution and the processor of the transactions.

11

III. SECURITY PROTOCOLS

3.1 Transport Layer Security (TLS Protocols)

(a) Introduction

Security is importation the Internet. Whether sharing financial, business, or

Personal information, people want to know with whom they are communicating

(authentication), they want to ensure that what is sent is what is received (integrity), and

they want to prevent others from intercepting their communications (privacy). The

Secure Sockets Layer (SSL) protocol provides one means for achieving these goals at

the transport layer. It was designed and first implemented by Netscape Corporation as a

security enhancement for their Web servers and browsers. Since then, almost all

vendors and public domain software developers have integrated SSL in their security

sensitive Client -server applications. At present, SSL is widely deployed on the intranet

as well as over the public Internet in the form of SSL-capable servers and clients and

has become the defector standard for transport layer security. Recently, the Internet

Engineering Task Force (IETF) has staiied an effort to standardize SSL as an IETF

Standard under the name of Transport Layer Security (TLS) protocol. In the rest of this

paper, we refer to SSL as the Transport Layer Security protocol, or simply TLS. One of

the reasons that TLS has outgrown other transport and application layer security

protocols such as SSH, SET, and SMIME in terms of deployment is that it is application

protocol independent. Conceptually, any application that runs over TCP can also run

over TLS. There are many examples of applications such as TELNET and FTP running

transparently over TLS. However, TLS is most widely used as the secure transport

layer below HTTP. A large number of Websites dealing with private and sensitive

information, including all those engaged in electronic commerce; use TLS as the secure

transport layer. This number is expected to grow exponentially as more and more

12

businesses and users embrace electronic commerce. As security becomes an integral

feature of Internet applications and the use of TLS raises, its impact on the performance

of the servers as well the clients is going to be increasingly important. The objective of

these papers is to take a close and critical look at the TLS protocol with an eye on

performance.

The TLS protocol is composed of two mam components: the TLS Record

Protocol responsible for data transfer, and the TLS Handshake Protocol responsible for

Establishing TLS session states between communicating peers. At the lowest level,

layered on top of some reliable transport protocol (e.g., TCP), is the TLS Record

Protocol. The Record Protocol provides two basic security services: privacy and

Message integrity. It uses data encryption using symmetric cryptography (e.g., DES,

RC4, etc.) To provide privacy and a keyed message authentication digest (e.g. MD5,

SHAl) to ensure message integrity. The TLS Record Protocol is used for encapsulation

of various higher level protocol messages, including the TLS handshake protocol. The

TLS Handshake Protocol is responsible for authenticating the server and the client to

each other. It is also entrusted with the job of negotiating an encryption algorithm along

with the required session keys before the application protocol transmits or receives its

first byte of data. The Handshake protocol typically uses public key cryptography for

exchanging secret information (e.g. RSA and Diffie-Hellman). TLS allows the session

state to be cached for configurable amount of time. If a client needs to setup a new TLS

session while its session state is cached at the server, it can skip the steps involving

authentication and secret negotiation and reuse the cached session state to generate a set

of keys for the new session. In the rest of the paper, We analyze the performance impact

of TLS on HTTP and quantify the overhead associated with different components of

TLS. To measure the performance impact ofTLS on Web server performance, we have
13

modified the SPECweb96 benchmark to generate client workload for servers and clients

running HTTP transactions over TLS. Using this modified SPECweb96 benchmark, we

evaluated the performance of two different secure Web servers with varying degrees of

session reuse. Our results show that depending on the degree of session reuse the

overhead due to TLS can decrease the rate at which the server can process HTTP

transactions by up to two orders of magnitude. To identify the overhead associated

with different components of TLS, we have instrumented and traced the TLS

Handshake Protocol and TLS Record Protocol using timers with sub-micro second

granularity. Our results indicate that for a typical HTTP transaction (10-15 Kbytes); the

bulk of the overhead comes from the TLS Handshake Protocol unless the session state is

reused. For very large HTTP transactions (1 Mbytes or more), the overhead due to data

encryption and authentication is significant. We also observed that TLS hand-shake

protocol adds significant latency to Web transfers due its four-way handshake. In light

of these observations, we propose two techniques to improve the performance of the

TLS Handshake protocol, namely caching of server certificates by clients and a three-

way handshake protocol. As discussed later in the paper, by caching server certificates

at the client, it is possible to reduce the number of messages exchanged during TLS

handshake and consequently a round trip time. Certificate caching also reduces

computational overhead at the client and the volume of data transferred during

handshake. The second scheme is designed to of float the computationally expensive

private key operations from the server. The rest of the paper is organized as follows. In

section II, we present the operational overview of the TLS protocol. Section III is

devoted to the evaluation and analysis of TLS protocol performance and its impact on

secure Web servers . In section IV, we discuss the proposed enhancements to improve

the performance of TLS handshake protocol. We conclude this paper in section V.
14

(b) Transport Layer Security

TLS provides the ability to setup private communication channels in a public

network. Broadly, the operation of TLS can be split up along two major axes. One is the

cryptographic techniques that it uses to provide security and the other is the operation

of the protocol itself. First we review a few basic cryptographic operations that are

critical to TLS and then describe the protocol.

(i) Basic Mechanisms

TLS uses symmetric key encryption techniques, such as DES and RC4, to

Ensure privacy. In symmetric key encryption the sender and the receiver share a

secret key which is used to encrypt or decrypt messages. However, this secret key

must somehow be exchanged between the communicating parties before any

secure communication can take place. During the TLS handshake process the

client chooses a secret, which it then sends to the server. Public key cryptography

is used to protect this exchange. Unlike symmetric key cryptography, public key

cryptography uses a pair of keys, a public key and a private key. As the name

suggests, the owner of the key pair publishes the public component of the key and

keeps the private component secret. If the Public key is used to encrypt a message

then only the private key can be used to decrypt it and vice versa. In TLS, the

initiator of a session, typically the client generates the secret and encrypts it with

the public key of the peer, typically the server. The server, upon receipt of this

message, uses its private key to decrypt it.

Since the server is the only one who possesses the private key, from this

point on, the client and the server share a secret that no one else knows. One of the

main reasons why public key cryptography is used only to communicate the

shared secret is the fact that it is computationally rather expensive and so in reality
15

it can only be used to encrypt a few bytes of data. So the key exchange problem is

solved, provided the client knows the server's public key. The server can supply

this, but the client has to be able to bind the public key with the true identity of the

server. TLS makes use of X.509 certificates to associate a public key with the real

identity of an individual, server, or other entity, known as the subject. A certificate

is signed by a trusted agency, commonly referred to as a certificate authority (CA).

The signature process again typically involves public key cryptography.

The signing entity computes a hash function of the data to be signed and

Encrypts that with its private key. Performing the corresponding decryption with

the public component of the private key and then matching the result with the

freshly computed hash of the data can verify the signature. Although encryption

guarantees privacy, it does not ensure message integrity. An adversary may still

alter the encrypted messages without the sender or receiver being aware of it. TLS

ensures message integrity by sending a digest of the message to the receiver along

with the original message. Digest algorithms, such as MD5 and SHA, are one-way

hash functions that output a unique digest for each input message. It is relatively

easy to verify a digest given the original message. However reproducing the

message given the digest is impossible. TLS guarantees message integrity by

keying the message digests with a secret key shared between the sender and the

receiver. Any modification to the message will result in a mismatch between the

digests computed by the sender and the receiver, thus enabling the receiver to

detect a compromised message.

16

(ii) Protocol Overview

Rather than defining a completely new transport layer protocol, TLS is

layered on top of an existing reliable transport protocol viz. TCP/IP. This naturally

introduces inefficiency since the TLS negotiation cannot start until the TCP/IP

handshake is completed. However, this clean separation between the transport and

security operations enabled a fairly rapid prototyping effort and partly contributed

to the wide popularity of TLS.A TLS connection involves two stages. First, the

communicating parties optionally authenticate each other and then exchange

session keys. This phase is known as the TLS handshake. Once the handshake is

complete, the two parties share a secret which can be used to construct a secure

channel over which application data can be exchanged. TLS is an asymmetric

protocol. It differentiates between a client and a server. The TLS handshake

sequence may vary, depending on whether the RSA or Diffie-Hellman key

exchange is used. Although TLS handshake allows both the client and the server

to be authenticated to each other, most commonly, it is only the server that is

authenticated. Client authentication is optional and is omitted in most cases. A

typical TLS session makes use of the RSA key exchange with only the server

being authenticated. We only consider this case in this paper. Figure l(a) shows

the message flow required to establish a new session. The client initiates the

communication by sending a Hello message to the server. The Hello message

includes a random number that is used in the handshake to prevent replay attacks.

In response to the client hello, the server replies With a Hello of its own, Followed

by a certificate that contains the server's public key.

17

Cknl

~?;~.:~:~r·~~~ · t:;.;1~j~/~i~~-~.e
Si>r1(!rhdb

'S.?!1·:1 :;r:':::.r:: ~.:x!.'f::f<f·."Xt"i~;;ir $~S::J.'!f•
:.;;'.1.'i/ ~~'.~? ~ ?:<'!.'.''if.:>H.l '-'.~<?f';•'}

Mn~.·sx.'•"
->'-'.':!jpt<J.it't'S,tf).'[•J.'.';; 1n'1·

firid~:I

Appi:,;io11 <lala

(a! C'ornplet.c hand~;Jt1k

Ck11 hdb
~:·i,....~) ;,;!~!:r." • ::·'t ~r:,' · ~ ... ;s~.1.1'11JJ
d,!i1;.-_t ~~hi> ~SY.";li'~~ '.''t."ii{~.1}!

;:.:.-.·~-.-·.<:1•:.{.V" •• \11t'.\h/ .~;t\;\~~~j~· i:.,.'~~ •;i"1 f!J
:>f'.~'.' ~~,,~, .. :o:t"}J ~~i.1'1.".'~jl,l~'

Fili,Jd

Figure 3.1. Message flow in TLS handshake protocol.

Optionally, it may also send a chain of certificates belonging to the

authorities in the certification hierarchy. The client verifies the certificate (or chain

of certificates) by verifying the identity of the server and checking the validity of

the CA's signature.

The client then generates a pre-master secret and encrypts it with the public

key obtained from the server's certificate. This is sent to the server, which does a

decryption using its private key, thus obtaining the pre-master secret. The pre-

master secret is used to generate a master secret that is now shared between the

client and the server. The master secret is then used to generate symmetric keys

for encryption and message authentication. In other words the master secret is a

shared state between the client and server and this constitutes a TLS session. This

session can identify by the session ID that was included in the initial server Hello

message. In contrast to the initial handshake protocol, the reestablishment of a

cached TLS session is relatively simple. Figure 1 (b) shows the messages

exchanged to reestablish a TLS session. As shown in the figure, the client simply

18

specifies the session ID of the old or existing sess10n it wishes to reuse when

sending the Hello message. The server checks in its cache to determine if it has

state associated with this session. If the session state still exists in the cache, it

uses the stored master secret to create keys for the secure channel. The client

repeats the same process and generates an identical set of keys. Note that multiple

secure channels between the same pair of hosts can be established by reusing a

single session state. This is a rather key feature of the TLS protocol that is

paiiicularly important in the context of the World Wide Web. A single secure

web-page may be composed of multiple HTTP links and being able to reuse an

existing session state to obtain the multiple links greatly reduces the latency and

processing involved in setting up the secure channel.

(c) Performance Profile

Although TLS can be used with a variety of application protocols, such as

TELNET and FTP, the most important and most common use of TLS has been to

ensure privacy and authentication for HTTP transactions. All commercial web sites that

require privacy and authentication use TLS. In this section, we benchmark the

performance of secure Web servers and quantify the overheads of different components

of TLS. We use the SPECweb96 benchmark as it attempts to capture real-world usage

of a web-server and is based on the analysis of server logs from a few different Internet

servers.

(a) Experimental Setup

Our tested consisted of a single IBM RS/6000 model 43P-200 running AIX

4.2, working as the server with multiple PCs working as clients. The server (model

43P-200) was equipped with a PowerPC 604e CPU running at 200 MHz with 32

KB on chip 4-way associative instruction and data caches, a 512 KB direct

19

mapped secondary cache, and 128 MB of RAM. The client machines were 266

MHz Pentium II PCs running Linux 2.0.35. A total of 8 client machines were

directly attached to a Fast Ethernet Switch to which the server machine was also

com1ected. This ensured that there were no bottlenecks due to network capacity

during any of the experiments.

We have modified SPECweb96 to generate client workload for our secure

web servers. The modified SPEC web clients make HTTP requests over TLS

sessions. Since a typical web access results in several different links being fetched

from the same web-server, there is bound to be some reuse of TLS session state

when setting up subsequent connections. The amount of reuse is heavily coupled

with the way web pages are setup, and we would like to investigate the server

throughput with varying amounts of session reuse. Towards this end, we

introduced a tunable knob that allows the SPEC web clients to control the degree

of TLS session reuse.

For the experiments reported in this section, we did not modify the workload

Generated by SPEC web. The workload generated by SPEC web is designed to

mimic the workload on regular Web servers. More specifically, workload mix is

built out of files in four classes: files less than IKB account for 35% of all

requests, files between IKB and IOKB account for 50% ofrequests, I4% between

lOKB and IOOKB, and finally 1% between lOOKB and lMB. There are 9 discrete

sizes within each class (e.g. I KB, 2 KB, on up to 9KB, then I 0 KB, 20 KB,

through 90KB, etc.), resulting in a total of 36 different files (9 in each of 4 classes).

Accesses within a class are not evenly distributed; they are allocated using a

Poisson distribution centered on the midpoint within the class. The resulting

access pattern mimics the behavior where some files (such as "index. Html") are

20

more popular when the rest, and some files (such as "mydog.gif') are rarely

requested.

Figure 3.2. Compare the performance of secure Web server.

Although, the "real-life" workloads for standard and secure are servers are

Likely to be different, we chose to use the standard SPECweb workload for two

reasons: (a) "real-life" workload for secure Web servers are not available at this

time, and (b) our objective is to compare the performance of secure Web servers

with that of non-secure servers and to analyze the performance impact of TLS.

Using this modified SPECweb96 benchmark, we have evaluated two of the more

Popular web servers -Netscape Enterprise Sever 3.5.1, and Apache 1.2.4 with

SSLeay 0.8.

(b) Benchmark Results

Figures 2 and 3 show the latency versus the number of HTTP (over TLS)

Requests handled by the Netscape and Apache server respectively. The servers are

21

configured with certificates for 1024-bit keys. In all of these experiments, we used

RC4 for data encryption and MD5 for message authentication, since these are the

most widely used in real life.

Performance of other encryption and message authentication schemes are

presented later in the section. We varied the degree of session reuse from 0-100%.

When session reuse is 0% all TLS sessions setup between the server and the

clients require a full handshake with the associated public and private key

operations. When session reuse is 100%, only the first TLS session setup between

the server and a client involves a full handshake. All subsequent connections reuse

the already established session state between the server and the client. When the

percentage of session reuse is in between 0 and 100, the clients reuse the same

session for a certain number of times depending on the value of the reuse

percentage. The way this is done is by maintaining a running counter of the

number of connections that attempted to reuse session state. Whenever this

counter drops below the desired fraction (reuse percentage) of total connections,

the client attempts to reuse an existing session ID.

For example, when the reuse percentage is set to 50, the sessions setup by a

SPECweb client takes the form NRNR: : : ::::,where N stands for a new session

and R stands for a reused session. From Figure 3 it is evident that the Apache

server can handle, at most, 13 requests per second when there is no session reuse.

For the same case, Figure 2 indicates that the Netscape server can only handle

About 7 requests per second. At these operating points the latencies are extremely

high in both cases with Apache coming in at around 300 msec and Netscape

hovering above the 600 msec mark. In both the Figures we notice that as the

amount of session reuse is increased the performance improves and with a 100%

22

reuse the latency is fairly low even when the rate of connection requests is quite

high. The numbers for 100% reuse are only provided as a reference since in all

practicality a web-server is unlikely to experience such a large amount of session

reuse. In comparison, the SPECweb96 numbers for Netscape and Apache for

regular web-pages on the same server are around 300 and 250 requests a second,

respectively. The behavior of the Netscape server is fairly typical of what one

would expect when the level of session reuse is varied. In Figure 2 we observe that

the latency reduces and the sustainable throughput increases as the level of session

reuse is increased. In contrast, with the Apache server at light loads there does not

seem to be much difference in the latency results when the reuse is increased from

0 to 80%. This behavior may be a result of how session reuse is implemented in

the Apache web server. Apache uses a process model in its web-server

implementation. The web-server is composed of several, dynamically created

server processes that serve web-requests. Rather than make a single entity

responsible for dispatching the requests to each of the server processes, the

creators of Apache chose to have each server process pick up a connection request

and service it. This provides for some natural load-balancing features since a

server process only picks up a request when it is free. When a TLS client wishes to

reuse a session, it includes the session ID in the client Hello message. However at

the time the connection is accepted by a server process, it has no knowledge of

what the session ID will be since the Hello message is received only after the

connection is accepted.

Unfortunately, with most flavors of Unix, once a connection request is

accepted there is no way to rescind it and so the server process is forced to serve

the request, whether or not it has the session ID in its cache. To get around this

23

problem, the Apache server runs a separate process which acts as the global cache

(gcache) server. Whenever a server process gets a session reuse request from a

client, it first searches its own local session cache. If the local session cache does

not have an entry for the client, the server process contacts the gcache server. If

the gcache server has the specified entry in its database, it returns the cached state

to the server process and session reuse is performed. Otherwise, a full handshake

is performed and the session state is added to both the local cache and the global

session cache. Since Apache spawns several server processes for the purpose of

efficiency, at light loads it is quite likely that a newly arriving reuse request will

be sent to a different server process (say process B) than the original process (say

process A) with which the session state was established. As a result of this B

needs to obtain the session state from the gcache server before setting up the new

connection. Now B will not get a response from the gcache server until the gcache

process is scheduled and subsequently B is scheduled to run again. This can take

quite a while and so, for light loads, there is hardly any apparent reduction in

latency even when there is session reuse. In fact, we ran a separate experiment

where we reused the same session state over and over again and noticed that after

about 16 requests (the maximum number of server processes was limited to 16)

the latency to establish a secure connection dropped down significantly to little

over 3 ms. This is because by this time all the server processes have a copy of the

session state in their local cache and so do not need to go to the global cache to

obtain the session state. This effect can also be seen in Figure 3 for the case where

we have a 100 % reuse of session state.

Since the same session is now being reused all the time, each of the server

Processes has the session state in its local cache and so the latency is really low

24

even at fairly high rates of connection requests.

(c) Overhead Analysis

In the last section, we quantified the performance of secure Web servers and

compared it with that of standard non-secure servers under the same workload,

namely SEPCweb96. Our results show that the price we have to pay for security is

rather large. In this section, we take a closer look at the performance overhead

associated with different components of TLS. For this purpose, we have

instrumented the TLS protocol stack for detailed profiling of various processing

modules in the data path. The instrumented stack can be used to capture a

sequential flow of time-stamped events on the data path. The time-stamps are of

sub-microsecond granularity and are taken by reading a real time clock, which is

an integral part of the PowerPC CPUs used in RS/6000s. We use a two-instruction

assembly language routine to read two 32-bit clock registers with minimal

overhead. In the following, we present a detailed analysis of the overhead

associated with the TLS handshake protocol, and the performance impact of

encryption and authentication during data transfer

25

! ~::;~~~t:~:~.:;:~1~:~ttj~:,.,
2.-*=' n1{51.2-1:~11<"'~·!
lt.1 rm (:il:";S-b• lo.i•/l
r.Otiru.(1024-bit h:yJ

1 ~i~n!,'.~"~:u~~;..~;:
1,31 ru(~1l-b.it~.~y)
1.1C rra !'t:a:-t:..• h·,-!
~i'Omt,f1lll~-ili1~-"'Yl 1----------

J S:'~~lt~,:~,t~~-:.~;:"·~:~,

T«:.I c:hnl :uJ1;
ptoo:tuingiM

45 rn i~11'-bit~~'t·)
C..4 m(rt.t.-bi1J..;.;Y:1
U.W mt !1~~-Lt M:,•I

Tc-bl1;.:raf';;i~
proun.l191in'

10.H rtn: (s1Hil k~yl
.2!-.i:.t. ru !:'-i$-bil hy)
-4r.9) rnt f10...~-bil~~J1

10,W m !•12-M hy)
u.::ro mt 1i'Gt-bi1 ~¢'/!
;ti,W mi:: ("10lit-bii k-:o

Figure 3.3. Timing Analysis of TLS Handshake Protocol.

(d) Session Setup Overhead

The TLS session setup overhead can be divided up into (1) an increase in

Data volume due to additional data items, such as server certificates, and (2)

computational overhead for crypto functions. Data items exchanged during TLS

handshake increase the latency of HTTP transactions. When the server uses a self-

signed 1 certificate the amount of data sent by the server to the client during

handshake is about 750 bytes.

When the server sends a chain of certificates to the client, each certificate

adds about 750 bytes to the data sent by the server. The amount of data sent by the

client is about 250 bytes. The relative overhead due to increase in data volume

depends on the network connectivity.

For clients connected via dialup lines, the increase in latency due to increase

m data volume may be significant. For clients connected via LANs, the overhead

due to mcrease m data volume pales 111 comparison with the computational
26

overhead incurred by the crypto functions. Figure 4 shows the overheads involved

in setting up a TLS session. There are 3 sets of numbers based on the size of the

server's public key, i.e. 512, 768 or 1024-bit. As seen in Figure 4, the most

expensive component in session setup is the private key operation at the server

side. Verification of the server certificate(s) and generation and encryption of the

master secret are the major operations performed on the client side.

Ironically, the most expensive of the crypto operations is performed at the

server, resulting in rather low throughput numbers. Note that both server and

client side operations are more expensive when the server uses longer private keys.

For US domestic use 1024-bit server certificates are recommended and used

Reusing existing session state can greatly reduce the cost of connection setup.

Since there are no public key operations involved, when the session state is being

reused, the time taken to setup a secure channel is about 3 to 4 msec.

This is of the same order of magnitude as a TCP handshake as part of

the latency is due to the round trip time from the client to the server and back.

110

D JPh:S

CJ DFS

• l~C4

f.I' bytr.?~ 1024 b';·I•:-:-~

(.1) Enayption"dccrypti•.m p.:rfommnc.:

1.40

•J' 120
l~I

J."~

."2 100

G
'i~· 80

-.g 00

-~AO
&i ;?o

Figure 3.4. Crypto overhead in data transfer.

27

[2j MD~
E:J SH/<

.SHA1

(e) Data Transfer Overhead

Figure 5 shows the performance of crypto functions used in the data path to

encrypt/decrypt message and to generate/verify message digests. Most web

browsers are by default configured to use RC4 for data encryption. When higher

level of security is required, DES is preferred. For the highest level of security,

3DES is the recommended encryption algorithm. Figures (a) shows the

performance of RC4, DES, and 3DES for different data block sizes. When RC4 is

used as the encryption/decryption algorithm, the server can encrypt/decrypt more

than 120Mbps. The encryption rate for DES is between 20-40Mbps and is based

on the block size. With 3DES the encryption/ decryption rate goes down to about

10-15Mbps. Note that in the results reported in Figures 3 and 2 we used RC4 for

data encryption. The results in Figure 5(a) further confirms the fact that

encryption/decryption is only small part of the overhead in TLS. As the figure

shows, as the block size increases so does the performance. However, the

performance improvement due to increase in data block size diminishes rapidly

and almost flattens out beyond block sizes of 512 bytes.

Figure 5(b) shows the performance of the message digest generation and

Verification algorithms. By default all web browsers use MD5 as the message

digest algorithm. Browsers can also be configured to use SHA and SHA 1, which

are considered to be more secured. As the figure shows, MD5 can generate/verify

message digest at a rate of 20Mbps for 8 byte messages and at more than 120Mbps

for messages of size 1024 byte and more. SHA and SHAl achieve comparable

performance of about 20Mbps for small (8 byte) messages and up to 120Mbps for

larger messages (1024 bytes and more). We should note here that typical web

transfers are about 4 Kbytes or more. The results in Figure 5 (b) show that

28

generation and verification of message digests is clearly not the bottleneck in TLS.

(d) Optimizations to the handshake protocol

In this section we propose two techniques that can be used to speed up the TLS

Handshake operation . One involves the simple caching of server certificates by clients

Thereby obviating the need for the server to send its certificate to the client. The second

approach is more involved as it reverses the role of client and server in terms of the

generation of the pre-master secret. This reversal reduces the customary two round-trips

of a TLS handshake to a 3-way handshake. In fact, the client can send data after a single

set of messages is exchanged, i.e. after one round-trip time.

Another important feature of this scheme is that it offloads the expensive private

key operations from the server to the client. This should significantly increase the rate at

which the server can accept secure connections.

(i) Certificate Caching

Clients often setup multiple TLS sessions to the same server. If successive

Sessions to the same server are within a short time window, the same session state

Can be reused. However, for security reasons, servers typically do not cache

Session state for more than 30 minutes. Consequently, if a client needs to setup a

TLS session after its cache state has been timed out, it has to undergo the complete

handshake again. As shown in Figure 4 a full handshake involves exchange of

four sets of messages and takes two round trip times.

If clients can make use of the server certificate obtained during past

Exchanges with the same server it is possible to reduce the number and size of

messages as well as the processing on the client side. In fact, in the context of the

web, most people have bookmarks and access a few pages rather frequently. If the

the web-browse r were to store the server certificates in its bookmark file then

29

there is no need for the server to have to send a certificate back to the client. All

that is required is for the client to include a fingerprint, which can be the result of

applying a well-known hash function like SHA or MD5 on the certificate, in its

hello message to the server. In the following, we outline in more detail the

message flow involved when certificates are cached at the client.

(ii) Message Flow

Figure 6 shows the message flow for the modified handshake protocol

Designed to take advantage of the cached certificates. As shown in the figure, the

Client includes the pre-master secret encrypted in the public key of the server in

the client hello message.

Additionally, it also includes the finger print of the cached server certificate,

With the hello message. The server verifies the finger print contained in the client

Clb11I

Figure 3.5. TLS Handshake with Cached Server Certificate.

hello message with the fingerprint of its certificate. If the fingerprints match,

the server decrypts the pre-master secret and proceeds to the finish message

30

directly. If the fingerprints do not match, either because the server certificate has

changed or because the client has an incorrect certificate, the server discards the

pre-master secret and proceeds with the server hello as depicted in Figure 4(a).

Note that caching of certificates does not, in any way, impact the security

functions of the TLS handshake protocol. Consequently, it does not have any

implication on the security of TLS.

(iii) Performance Implications

Besides eliminating a round trip time from the handshake protocol,

certificate caching can lead to significant savings both in terms of number and size

of messages exchanged during the handshake. Since ce1iificates can be quite large,

and the server often sends multiple certificates, this saving may translate into

significant reduction in connection setup latency, especially for clients connected

over low bit rate links.

Table I presents numerical results quantifying the reduction in perceived

Latency for different network scenarios. Certificate caching also helps eliminate

The public key operations at the client end to verify the certificates sent by the

server. Since the certificates are cached only after they have been verified, when

cached certificates are reused they do not need to be verified again. If, for some

reason, the certificate cached at the client is no longer in use by the server, the

proposed modifications may inflict a slight penalty. Since, in this case the server

ignores the encrypted pre-master secret sent by the client as part of client hello and

proceeds with the standard handshake protocol, the number of messages

exchanged and the round trip time taken remains the same. Consequently, the

public key operations performed by the client in step 1 of Figure 6 is wasted. The

client has to generate the pre-master secret again and send it as a part of client key

31

exchange message. However, the scenario where the finger print of the certificate

cached at the client does not match the one maintained at the server is expected to

be extremely rare as server certificates change rather infrequently.

~.!-3: ti# 'llfh h°'41
~~~~:1~{1'l~f!'J'U 
~.til JTI1- Y>lh ("~o:h;d 
ur11;rc:,,.1fo::ll"' 
C'S.1 J 1a N,~ .::~J.:<J 
Kr.~r«riflK;"i" 

~:*J~r/1~·~titlr~; 
~.Hrnt<•MliHr'.~I ~((;"l ru Ni1hWih 
U·Mi1.:..S"' -:.~lt-«f «rtilt.:-.~;; (..""')o;}a:.d 

16:.00 n.- fi:.U-b- ~.i:;I 
2~~0mr·f?OY-b• hy) 

O.Zru. 

it.Ail 1m 'i\~h ·~1rbt1 t.~y 
2'.\.00 mi; '#;jh ~~l~I ~-~~· 

Fi,g. 7. !.!,.,,_,~ ... llro\\ i11 1•p11111i/c•.I TL'.'> hrnl(hhak.;, prnf(IO.d •:All dh:11t ~id: 
H';mfl~ an.:· 1'1.1f 512-hit krnru··r~ny ':'~T.1.:·r i.:.:..·r1i1k.:1to..•.) 

Figure 3.6. Message flow in optimized TLS handshake protocol 
(All client side results are for 512-bit temporary server certificate). 

(iv) Optimized Handshake 

Certificate caching and the associated changes to the handshake protocol 

Described in the previous section improve the connection setup latency. However, 

it does not reduce the computational burden on the server. As discussed earlier, the 

most expensive server side component in the handshake protocol is the private key 

operation and it is clearly the limiting factor on the critical path of the server side 

protocol processing . One of the reasons why this private key operation is 

necessary is due to the fact that it enables the authentication of the server. It is 

32 



however, possible to reduce the overhead by using a key of a smaller size. Since a 

smaller key is easier to break, it needs to be changed more frequently than a longer 

key. For example, a 1024 bit RSA key is considered safe for months, while a 512-

bit RSA key is considered safe for days. Assume that a server possesses a 1024-bit 

key and the corresponding certificate is signed by a well-known CA. 

Our objective is to reduce server side protocol processing overhead without 

Compromising security. For this purpose, we propose to use a certificate with a 

temporary 512-bit (or 768-bit) key for server authentication. This certificate is 

signed with the server's 1024 bit key. 

The temporary key can be changed frequently (every half hour) to limit the 

Exposure caused by the smaller key. Another reason to change the server's key 

pair frequently is the recently discovered security exposure of TLS against a 

chosen cipher text attack. The exposure is a result ofTLS's use of the PKCS#l 

encoding of the pre-master secret prior to encryption with the server's public key 

and is described in. 

In the current TLS handshake the (public) key used by the client to encrypt 

The shared pre-master secret, is also obtained from the server certificate. In the 

proposed scheme, we turn this around and have the server choose the pre-master 

secret and send that to the client encrypted with client's public key. A certificate 

containing the public key of the client can be sent to the server along with the 

client Hello message. 

Note: The client public key is used only for the purpose of encryption and hence it 

is sufficient for the client to have a self-signed certificate. 

33 



Line Speed R'IT Dal a 'lbnsler Time Round Trip De by 'lbtal 
C:ii:hed Stand:1rd C•iLhcd Stand:ird Cached Standard 

28.8 Kl;ps 5ms 4.5ms 41 61l1S 5ms !Oms 62.51115 4S6ms 
28.8 Kbps 250ms 4.5ms 41 6111:-> 250ms 500ms 307.5111:-. 966ms 

I .5 Mbps 5rns 0. I ms .sms 5ms !Oms 57.6rn:; 78ms 
1.5 Mbpi; 250111:; 0.1 in;;; 8rns 250Jll)< 500ms 302. Im~ 5681ns 

L\llLF I 

F!d IMXITJ) I AIT\f'IF:' Willi .\\[1 Wllllfll' JI: 'J.:Rlll'I• '.\IF {'AClll\<:i. 

Figure 3.7. Estimated Latencies with and without Certificate Caching. 

A self-signed certificate can be generated locally or can be included in the 

web-browser or other application program. In the following, we present the 

message flow of the proposed scheme and discuss its security and performance 

implications. 

(v) Message Flow 

Figure 7 shows the message flow in the optimized TLS handshake protocol. 

As shown in the figure, besides the information that is part of the standard TLS 

Client hello message, in our proposed scheme the client also includes its own 

certificate. If client authentication is not required, which is typically the case, this 

certificate can be self-signed. The server, upon receipt of the client hello message, 

generates the pre-master secret, signs the pre master secret and the client random 

with the temporary 512-bit key, and encrypts the signed pre-master secret and the 

client random with the public key of the client. It then sends the signed and 

encrypted pre-master secret to the client along with its certificate chain, i.e. the 

temporary as well as the original certificate. The client upon receipt of the signed 

and encrypted pre-master secret decrypts the pre-master secret with its private key 

and verifies the signature by extracting the 512-bit public key from the temporary 

34 



certificate. By verifying the signature on the pre master secret as well as the server 

certificates, the client authenticates the server. By signing the pre-master secret 

and the client random together, the server binds the pre-master secret with the 

current session . This ensures that a malicious third party can not launch a replay 

attack later. Once the client extracts the pre-master secret and verifies the 

signatures, it sends a Finished message to the server and proceeds to key 

generation and data exchange. 

The modifications to the TLS handshake protocol can be used in conjunction 

with the certificate caching described in Section IV-A. The client can send the 

finger prints of the server certificate as well as the finger print of the temporary 

certificate (if un-expired) with the client hello if it has those cached at its end. If 

the same certificates are still in use by the server it can avoid transmitting the 

certificates to the client. The client also saves two public key operations since it 

does not need to verify the server certificates again. Notice, that the optimized 

scheme is significantly different from the standard TLS handshake. In the standard 

TLS handshake, the pre-master secret is generated by the client and is encrypted 

with the public key of the server. As a result, the server needs to perform the 

private key operation to extract the pre-master secret from the client key exchange 

message. In the proposed scheme, the server generates the pre-master secret. It is 

signed with a 512 -bit temporary private key and is encrypted with the public key 

of the client. 

Consequently, the client performs the expensive 1024 - bit private key 

operation. By of - floating the expensive 1024-bit private key operation form the 

server, the proposed scheme improves server scalability in terms of number of 

new connections it can handle. In the following, we discuss the security and 

35 



performance implications of these modifications. 

(v) Security Considerations 

In this section, we argue that in terms of security, the proposed scheme is as 

secure as the standard TLS handshake protocol. The purpose of the TLS 

handshake protocol is to (1) authenticate the server to the client, (2) establish a 

shared secret between the server and the client, and (3) optionally authenticates the 

client to the server. Server authentication is performed using the server's original 

certificate, which is signed by a CA. In the original TLS handshake protocol, the 

client verifies the server certificate and uses the public key contained in the 

certificate to encrypt the pre-master secret it sent to the server. The server, by 

decrypting the pre-master secret using its private key, furnishes a proof that it is 

indeed the server that the client desires to communicate with. In the proposed 

protocol, the server authenticates itself by signing the client random and the pre-

master secret with its 512-bit temporary private key. The client verifies this 

signature with the corresponding public key which itself the 1024-bit private key 

of the server signs. The public key corresponding to the 1024-bit private key is 

contained in a certificate which is signed by a well known CA. 

Note: The strength of the server authentication scheme depends on a 512-bit 

signature which appears to be weaker than the 1024-bit signature required by the 

original TLS handshake protocol. However, this 512-bit key pair is changed 

frequently (once every half hour) to reduce the time window in which this key 

must be broken to compromise security. 

Using a brute force technique, with a large number of distributed computers, 

it takes days to break a 512-bit RSA key. Hence, if the keys are refreshed every 

half hour, it is extremely difficult, if not impossible to break this key. The expiry 

36 



date and time in the temporary 512-bit ce1iificate indicates the lifetime of the 512-

bit key pair. 

In our scheme, we use the client public key contained in the client certificate 

for encrypting the shared secret exchanged between the server and the client. The 

client decrypts the pre-master secret using its private key. Depending on the 

security needs of the client, it can use 512-bit, 768-bit or 1024-bit key pairs for 

this purpose. The refresh interval for the key can also be a function of its security 

needs. 

(vi) Performance Implications 

The objective of the proposed scheme is to off load some of the burdens of 

the TLS handshake protocol from the server. The proposed modification reduces 

the computational burden on the server at the expense of putting additional 

computational load on the clients. However, since the client's setup far less TLS 

sessions, the scheme proposed here makes the secure servers more scalable in 

terms of the number of TLS sessions they can setup per unit of time. It may even 

reduce the TLS handshake latency observed by the clients under similar load 

conditions . The proposed scheme may not be suitable for clients with low 

computing power, such as hand-held palm-tops. However, the preferable way to 

provide a secure channel to small palm-top computers is through the use of a 

security proxy. The client can establish a single session to the security proxy, 

thereby requiring very few handshake messages. In the original TLS handshake 

protocol, the client performs two public key operations, once in step 1 of Figure 4 

to verify server certificate, and once in step 2 of Figure 4 to encrypt the pre-master 

secret with the server public key. The bulk of the computational overhead is on the 

server which has to perform a private key operation in step 3 of Figure 4 to 

37 



decrypt the pre-master secret. In contrast, in the proposed protocol, a client 

performs one private key operation and three public key operations. 

All operations are performed in step 2 of Figure 7 which includes (1) 

decryption of the master secret using a 1024-bit private key, (2) verification of the 

server signature on the pre-master secret and client random using the public key 

(corresponding to the 512 -bit temporary certificate, (3) verification of the 

signature on the 512-bit temporary certificate, and ( 4) verification of the signature 

in the server certificate. The server needs to perform a 512-bit private key 

operation to sign the pre-master secret and the client random and a public key 

operation to encrypt the pre-master secret. As shown in Figure 7 the total 

computational cost on the server side is 16.40 ms as compared to 48.50 ms in the 

original TLS handshake protocol. In contrast, the client side processing overhead 

goes up from 12.80 ms to 65.53 ms. Figure 7 also lists the computational costs for 

a 768- bit temporary key. When the modifications to the TLS handshake protocol 

are used in conjunction with certificate caching, the client saves on the processing 

need to verify the server's certificates. 

As a result the processing overhead at the client goes down to 50.73 ms and 

58.13 ms depending on whether both permanent and temporary or only the 

permanent server certificate is cached at the client. 

( d) Conclusion 

TLS is widely deployed on the intranet as well as over the public Internet in the 

form of TLS-capable servers and clients and has become the de facto standard for 

transport layer security. Although the security implications of TLS have been under the 

microscope ever since its inception, similar analysis of its performance has not been 

performed. In this paper, we have analyzed TLS from a performance perspective and 
38 



quantified its impact on applications protocols and servers, specifically HTTP and Web 

servers. Using a modified SPECweb96 benchmark, we evaluated the performance of 

Web servers running HTTP transactions over TLS. Our results show that the overhead 

due to TLS can decrease the number of HTTP transactions handled by up to two orders 

of magnitude. Given the rather significant growth in the use ofTLS particularly in the 

burgeoning field of E-commerce, it is not clear how secure web-servers of today will 

keep pace with this growth. We analyzed the specific components responsible for this 

overhead and based on our observations we proposed two techniques, namely certificate 

caching and a three-way handshake to improve the performance of the TLS protocol. 

We are currently benchmarking Web servers running HTTP transactions on the 

optimized TLS protocol. 

39 



3.2 Secure Socket Layer (SSL PROTOCOL) 

(a) Abstract 

This document specifies the Secure Sockets Layer (SSL) protocol, a security 

protocol that provides privacy over the Internet. The protocol allows client/server 

applications to communicate in a way that cannot be eavesdropped. Servers are 

always authenticated and clients are optionally authenticated. 

(b) Motivation 

The SSL Protocol is designed to provide pnvacy between two 

communicating applications (a client and a server). Second, the protocol is 

designed to authenticate the server, and optionally the client. SSL requires a 

reliable transport protocol (e.g. TCP) for data transmission and reception. 

The advantage of the SSL Protocol is that it is application protocol 

independent. A "higher level" application protocol (e.g. HTTP, FTP, TELNET, 

etc.) can layer on top of the SSL Protocol transparently. The SSL Protocol can 

negotiate an encryption algorithm and session key as well as authenticate a server 

before the application protocol transmits or receives its first byte of data. All of the 

application protocol data is transmitted encrypted, ensuring privacy. 

The SSL protocol provides "channel security" which has three basic 

properties: 

(i) The channel is private. Encryption is used for all messages after a 

simple handshake is used to define a secret key. 

(ii) The channel is authenticated. The server endpoint of the conversation 

is always authenticated , while the client endpoint is optionally 

authenticated. 

40 



(iii) The channel is reliable. The message transport includes a message 

integrity check (using a MAC). 

( c) SSL Record Protocol Specification 

(i) SSL Record Header Format 

In SSL, all data sent is encapsulated in a record, an object that is composed 

of a header and some non-zero amount of data. Each record header contains a two 

or three byte length code. If the most significant bit is set in the first byte of the 

record length code then the record has no padding and the total header length will 

be 2 bytes, otherwise the record has padding and the total header length will be 3 

bytes. 

The record header is transmitted before the data portion of the record. Note 

That in the long header case (3 bytes total), the second most significant bit in the 

First byte has special meaning. When zero, the record being sent is a data record. 

When one, the record being sent is a security escape (there are currently no 

examples of security escapes; this is reserved for future versions of the protocol). 

In either case, the length code describes how much data is in the record. The 

Record length code does not include the number of bytes consumed by the record 

Header (2 or 3). For the 2 byte header, the record length is computed by (using a 

"C"-like notation): 

RECORD-LENGTH= ((byte[O] & Ox7f) << 8)) I byte[l]; Where byte[O] 

represents the first byte received and byte[l] the second byte received. When the 3 

byte header is used, the record length is computed as follows (using a "C"-like 

notation): 

RECORD-LENGTH= ((byte[O] & Ox3f) << 8)) I byte[l]; 

IS-ESCAPE= (byte[O] & Ox40) != O; 

41 



PADDING= byte[2]; 

The record header defines a value called PADDING. The PADDING value 

specifies how many bytes of data were appended to the original record by the 

sender. 

The padding data is used to make the record length be a multiple of the block 

ciphers block size when a block cipher is used for encryption. The sender of a 

"padded" record appends the padding data to the end of its normal data and then 

encrypts the total amount (which is now a multiple of the block cipher's block 

size). The actual value of the padding data is unimportant, but the encrypted form 

of it must be transmitted for the receiver to properly decrypt the record. Once the 

total amount being transmitted is known the header can be properly constructed 

with the PADDING value set appropriately. The receiver of a padded record 

decrypts the entire record data (sans record length and the optional padding) to get 

the clear data, then subtracts the PADDING value from the RECORD-LENGTH 

to determine the final RECORD-LENGTH. The clear form of the padding data 

must be discarded. 

(ii) SSL Record Data Format 

The data portion of an SSL record is composed of three components 

(transmitted and received in the order shown): 

MAC-DATA[MAC-SIZE] 

ACTUAL-DATA[N] 

PADDING-DATA[PADDING] 

ACTUAL-DATA is the actual data being transmitted (the message payload). 

PADDING-DATA is the padding data sent when a block cipher is used and 

padding is needed. Finally, MAC-DATA is the Message Authentication Code. 

42 



When SSL records are sent in the clear, no cipher is used. Consequently the 

amount of PADDING-DATA will be zero and the amount of MAC-DATA will be 

zero. When encryption is in effect, the PADDING-DATA will be a function of the 

cipher block size. 

The MAC-DATA is a function of the CIPHER-CHOICE (more about that 

later). 

The MAC-DATA is computed as follows: 

MAC-DATA = HASH[ SECRET, ACTUAL - DATA, PADDING-DATA, 

SEQUENCE-NUMBER] 

Where the SECRET data is fed to the hash function first, followed by the 

ACTUAL-DATA, which is followed by the PADDING-DATA which is finally 

followed by the SEQUENCE-NUMBER. The SEQUENCE-NUMBER is a 32 bit 

value which is presented to the hash function as four bytes, with the first byte 

being the most significant byte of the sequence number, the second byte being the 

next most significant byte of the sequence number, the third byte being the third 

most significant byte , and the fourth byte being the least significant byte (that is, 

in network byte order or "big endian" order). 

MAC-SIZE is a function of the digest algorithm being used. For MD2 and 

MD5 the MAC-SIZE will be 16 bytes (128 bits). 

The SECRET value is a function of which party is sending the message. If 

the client is sending the message then the SECRET is the CLIENT-WRITE-KEY 

(the server will use the SERVER-READ-KEY to verify the MAC). If the client is 

receiving the message then the SECRET is the CLIENT-READ-KEY (the server 

will use the SERVER-WRITE-KEY to generate the MAC). 

The SEQUENCE-NUMBER is a counter which is incremented by both the 

43 



sender and the receiver. For each transmission direction, a pair of counters is kept 

(one by the sender, one by the receiver). Every time a message is sent by a sender 

the counter is incremented. Sequence numbers are 32 bit unsigned quantities and 

must wrap to zero after incrementing past OxFFFFFFFF. 

The receiver of a message uses the expected value of the sequence number 

as input into the MAC HASH function (the HASH function is chosen from the 

CIPHER-CHOICE). The computed MAC-DATA must agree bit for bit with the 

Transmitted MAC-DAT A. If the comparison is not identity then the record is 

considered damaged, and it is to be treated as if an "I/O Error" had occurred (i.e. 

an unrecoverable error is asserted and the connection is closed). 

A final consistency check is done when a block cipher is used and the 

protocol is using encryption. The amount of data present in a record (RECORD

LENGTH) must be a multiple of the cipher's block size. If the received record is 

Not a multiple of the cipher's block size then the record is considered damaged, 

and it is to be treated as if an "I/O Error" had occurred (i.e. an unrecoverable error 

is asserted and the connection is closed). 

The SSL Record Layer is used for all SSL communications, including 

Handshake messages, security escapes and application data transfers. The SSL 

Record Layer is used by both the client and the server at all times. 

For a two byte header, the maximum record length is 32767 bytes. For the 

Three byte header, the maximum record length is 16383 bytes. The SSL 

Handshake Protocol messages are constrained to fit in a single SSL Record 

Protocol record. 

Application protocol messages are allowed to consume multiple SSL Record 

Protocol records. Before the first record is sent using SSL all sequence numbers 

44 



Are initialized to zero. The transmit sequence number is incremented after every 

message sent, starting with the CLIENT-HELLO and SERVER-HELLO messages. 

(iii) SSL Handshake Protocol Specification 

(a) SSL Handshake Protocol Flow 

The SSL Handshake Protocol has two major phases. The first phase is 

Used to establish private communications. The second phase is used for 

client authentication. 

Phase 1 The first phase is the initial connection phase where both 

Parties communicate their "hello" messages. The client initiates the 

conversation by sending the CLIENT-HELLO message. The server receives 

the CLIENT-HELLO message and processes it responding with the 

SERVER-HELLO message. At this point both the client and server have 

Enough information to know whether or not a new master key is needed. 

When a new master key is not needed, both the client and the server proceed 

immediately to faze 2. 

When a new master key is needed, the SERVER-HELLO message will 

contain enough information for the client to generate it. This includes the 

server's signed certificate (more about that later), a list of bulk cipher 

specifications ( see below ), and a connection-id ( a connection-id is a 

randomly generated value generated by the server that is used by the client 

and serve r during a single connection). The client generates the master key 

and responds with a CLIENT-MASTER-KEY message (or an ERROR 

message if the server information indicates that the client and server cannot 

agree on a bulk cipher). 

45 



It should be noted here that each SSL endpoint uses a pair of ciphers 

per connection (for a total of four ciphers). At each endpoint, one cipher is 

used for outgoing communications, and one is used for incoming 

communications. When the client or server generates a session key, they 

actually generate two keys, the SERVER-READ-KEY (also known as the 

CLIENT-WRITE-KEY) and the SERVER-WRITE-KEY (also known as the 

CLIENT-READ-KEY). The master key is used by the client and server to 

generate the various session keys (more about that later). 

Finally, the server sends a SERVER-VERIFY message to the client 

after the master key has been determined. This final step authenticates the 

server, because only a server, which has the appropriate public key, can 

know the master key. 

Phase 2 The second phase is the authentication phase. The client has 

Already authenticated the server in the first phase, so this phase is primarily 

used to authenticate the client. In a typical scenario, the server will require 

something from the client and send a request. The client will answer in the 

positive if it has the needed information, or send an ERROR message if it 

does not. This protocol specification does not define the semantics of an 

ERROR response to a server request (e.g., an implementation can ignore the 

error, close the connection, etc. and still conform to this specification). 

When a party is done authenticating the other party, it sends its 

finished message. 

For the client, the CLIENT-FINISHED message contains the 

Encrypted form of the CONNECTION-ID for the server to verify. If the 

verification fails, the server sends an ERROR message. 

46 



s Au 

Once a party has sent its finished message it must continue to listen 

to its peers messages until it too receives a finished message. Once a party 

has both sent a finished message and received its peers finished message, the 

SSL handshake protocol is done. At this point the application protocol 

begins to operate (Note: the application protocol continues to be layered on 

the SSL Record Protocol). 

(b) Typical Protocol Message Flow 

The following sequences define several typical protocol message flows 

For the SSL Handshake Protocol. In these examples we have two principals 

in the conversation: the client and the server. We use a notation commonly 

found in the literature [ 10]. When something is enclosed in curly braces 

" {something} key" then the something has been encrypted using "key". 

(i) Assuming no session-identifier 

Client-hello 

Server-hello 

C -> S: challenge, cipher specs 

S -> C: connection-, server certificate, 

cipher_ specs 

Client-master-key C -> S: {master_key}server_public_key 

Client-finish 

Server-verify 

Server-finish 

C -> S: {connection-id}client_write_key 

S -> C: {challenge}server_write_key 

S -> C: {new_session_id}server_ write_key 

(ii) Assuming a session-identifier was found by both client & 

server 

Client-hello 

Server-hello 

Client-finish 

C -> S: challenge, session_id, cipher specs 

S -> C: connection-id, session_id_hit 

C-> S: {connection-id}client_write_key 

47 



Server-verify 

Server-finish 

S -> C: {challenge}server_write_key 

S -> C: {session_id}server_write_key 

(iii) Assuming a session-identifier was used and client 

authentication is used 

Client-hello C -> S: challenge, session_id, cipher_ specs 

Server-hello S -> C: connection-id, session_id_hit 

Client-finish C -> S: {connection-id}client_write_key 

Server-verify S -> C: {challenge} server_ write_ key 

Request-certificate S -> C: {auth_type,challenge'}server_write_key 

Client-certificate C -> S: {cert_type,client_cert, 

response_ data} client_ write_ key 

Server-finish S -> C: {session_id}server_write_key 

In this last exchange, the response_ data is a function of the au th_ type. 

(c) Errors 

Error handling in the SSL connection protocol is very simple. When an 

error is detected, the detecting party sends a message to the other party. 

Errors that are not recoverable cause the client and server to abort the secure 

connection. Servers and client are required to "forget" any session-identifiers 

associated with a failing connection. 

The SSL Handshake Protocol defines the following errors: 

NO-CIPHER-ERROR 

This error is returned by the client to the server when it cannot find a 

cipher or key size that it supports that is also supported by the server. This 

error is not recoverable. 

48 



NO-CERTIFICATE-ERROR 

When a REQUEST-CERTIFICATE message is sent, this error may be 

returned if the client has no certificate to reply with. This error is recoverable 

(for client authentication only). 

BAD-CERTIFICATE-ERROR 

This error is returned when a certificate is deemed bad by the receiving 

party. Bad means that either the signature of the certificate was bad or that 

the values in the certificate were inappropriate (e.g. a name in the ce1iificate 

did not match the expected name). This error is recoverable (for client 

authentication only). 

UNSUPPORTED-CERTIFICATE-TYPE-ERROR 

This error is returned when a client/server receives a certificate type 

that it can't support. This error is recoverable (for client authentication only). 

( d) SSL Handshake Protocol Messages 

The SSL Handshake Protocol messages are encapsulated in the SSL 

Record Protocol and are composed of two parts: a single byte message type 

code, and some data. The client and server exchange messages until both 

ends have sent their "finished" message, indicating that they are satisfied 

with the SSL Handshake Protocol conversation. While one end may be 

finished, the other may not, therefore the finished end must continue to 

receive SSL Handshake Protocol messages until it too receives a "finished" 

message. 

After each party has determined the pair of session keys, the message 

bodies are encrypted using it. For the client, this happens after it verifies the 

session-identifier or creates a new session key and has sent it to the server. 

49 



For the server, this happens after the session-identifier is found to be good, 

or the server receives the client's session key message. 

The following notation is used for SSLHP messages: 

Char MSG-EXAMPL 

Char FIELD I 

Char FIELD2 

Char THING-MSB 

Char THING-LSB 

Char THING-DATA [(MSB<<8) ILSB]; 

This notation defines the data in the protocol message, including the 

Message type code. The order is presented top to bottom, with the top most 

element being transmitted first, and the bottom most element transferred last. 

For the "THING-DATA" entry, the MSB and LSB values are actually 

THING-MSB and THING-LSB (respectively) and define the number of 

bytes of data actually present in the message. For example, ifTHING-MSB 

were zero and THING-LSB were 8 then the THING-DATA array would be 

exactly 8 bytes long. This shorthand is used below. 

Length codes are unsigned values, and when the MSB and LSB are 

combined the result is an unsigned value. Unless otherwise specified lengths 

values are "length in bytes". 

( e) Client Only Protocol Messages 

There are several messages that are only generated by clients. These 

messages are never generated by correctly functioning servers. A client 

receiving such a message closes the connection to the server and returns an 

error status to the application through some unspecified mechanism. 

50 



CLIENT-HELLO (Phase 1; Sent in the clear) 

Char MSG-CLIENT-HELLO 

Char CLIENT-VERSION-MSB 

Char CLIENT-VERSION-LSB 

Char CIPHER-SPECS-LENGTH-MSB 

Char CIPHER-SPECS-LENGTH-LSB 

Char SESSION-ID-LENGTH-MSB 

Char SESSION-ID-LENGTH-LSB 

Char CHALLENGE-LENGTH-MSB 

Char CHALLENGE-LENGTH-LSB 

Char CIPHER-SPECS-DATA [(MSB<<8) ILSB] 

Char SESSION-ID-DATA [(MSB<<8) ILSB] 

Char CHALLENGE-DATA [(MSB<<8) ILSB] 

When a client first connects to a server it is required to send the 

CLIENT-HELLO message. The server is expecting this message from the 

client as its first message. It is an error for a client to send anything else as its 

first message. 

The client sends to the server its SSL version, its cipher specs (see 

below), some challenge data, and the session -identifier data. The session

identifier data is only sent if the client found a session-identifier in its cache 

for the server, and the SESSION-ID-LENGTH will be non-zero. When there 

is no session-identifier for the server SESSION-ID-LENGTH must be zero. 

The challenge data is used to authenticate the server. After the client and 

Server agree on a pair of session keys, the server returns a SERVER

VERIFY message with the encrypted form of the CHALLENGE-DATA. 

51 



Also note that the server will not send its SERVER-HELLO message 

until it has received the CLIENT-HELLO message. This is done so that the 

server can indicate the status of the client's session-identifier back to the 

client in the server's first message (i.e. to increase protocol efficiency and 

reduce the number of round trips required). 

The server examines the CLIENT-HELLO message and will verify that 

it can support the client version and one of the client cipher specs. The server 

can optionally edit the cipher specs, removing any entries it doesn't choose to 

support. The edited version will be returned in the SERVER-HELLO 

message if the session-identifier is not in the server's cache. 

The CIPHER-SPECS-LENGTH must be greater than zero and a 

multiple of 3. 

The SESSION-ID-LENGTH must either be zero or 16. 

The CHALLENGE-LENGTH must be greater than or equal to 16 and 

less than or equal to 32. 

This message must be the first message sent by the client to the server. 

After the message is sent the client waits for a SERVER-HELLO message. 

Any other message returned by the server (other than ERROR) is disallowed. 

CLIENT-MASTER-KEY (Phase 1; Sent primarily in the clear) 

Char MSG-CLIENT-MASTER-KEY 

Char CIPHER-KIND [3] 

Char CLEAR-KEY-LENGTH-MSB 

Char CLEAR-KEY-LENGTH-LSB 

Char ENCRYPTED-KEY-LENGTH-MSB 

Char ENCRYPTED-KEY-LENGTH-LSB 

52 



Char KEY-ARG-LENGTH-MSB 

Char KEY-ARG-LENGTH-LSB 

Char CLEAR-KEY-DATA [MSB<<SILSB] 

Char ENCRYPTED-KEY-DATA [MSB<<SILSB] 

Char KEY-ARG-DATA [MSB<<SILSB] 

The client sends this message when it has determined a master key for 

the server to use. Note that when a session-identifier has been agreed upon, 

this message is not sent. 

The CIPHER-KIND field indicates which cipher was chosen from the 

server's CIPHER-SPECS. 

The CLEAR-KEY-DATA contains the clear p011ion of the MASTER-

KEY. 

The CLEAR-KEY-DATA is combined with the SECRET-KEY

DATA (described shortly) to form the MASTER-KEY, with the SECRET

KEY-DATA being the least significant bytes of the final MASTER-KEY. 

The ENCRYPTED-KEY-DATA contains the secret portions of the 

MASTER-KEY, encrypted using the server's public key. The encryption 

block is formatted using block type 2 from PKCS#l [5]. 

The data portion of the block is formatted as follows: 

Char SECRET-KEY-DATA [SECRET-LENGTH] 

SECRET-LENGTH is the number of bytes of each session key that is 

Being transmitted encrypted. The SECRET-LENGTH plus the CLEAR

KEY-LENGTH equals the number of bytes present in the cipher key (as 

defined by the CIPHER-KIND). It is an error ifthe SECRET-LENGTH 

found after decrypting the PKCS# 1 formatted encryption block doesn't 

53 



match the expected value. It is also an error if CLEAR-KEY-LENGTH is 

non-zero and the CIPHER-KIND is not an export cipher. 

If the key algorithm needs an argument (for example, DES-CBC's 

Initialization vector) then the KEY-ARG-LENGTH fields will be non-zero 

and the KEY-ARG-DATA will contain the relevant data. 

For the SSL_CK_RC2_128_CBC_ WITH_MD5, 

SSL_CK_RC2_128_CBC_EXPORT40_ WITH_MD5, 

SSL_CK_IDEA_l28_CBC_ WITH_MD5, 

SSL CK DES 64 CBC WITH MD5 - - - -

And SSL_CK_DES_192_EDE3_CBC_ WITH_MD5 algorithms the 

KEY-ARG data must be present and be exactly 8 bytes long. 

Client and server session key production is a function of the CIPHER-

CHOICE: 

SSL CK RC4 128 WITH MD5 - - - - -

SSL CK RC4 128 EXPORT40 WITH MD5 - - - - - -

SSL CK RC2 128 CBC WITH MD5 - - - - - -

SSL CK RC2 128 CBC EXPORT40 WITH MD5 - - - - - - -

SSL CK IDEA 128 CBC WITH MD5 - - - - - -

KEY-MATERIAL-0 = MD5 [MASTER-KEY, "O", CHALLENGE, 

CONNECTION-ID] 

KEY-MATERIAL-1 = MD5 [MASTER-KEY, "1 ", CHALLENGE, 

CONNECTION-ID] 

CLIENT-READ-KEY= KEY-MATERIAL-0[0-15] 

CLIENT-WRITE-KEY= KEY-MATERIAL-1[0-15] 

Where KEY-MATERIAL-0[0-15] means the first 16 bytes of the 

54 



KEY-MATERIAL-0 data, with KEY-MATERIAL-0 [O] becoming the most 

significant byte of the CLIENT-READ-KEY. 

Data is fed to the MD5 hash function in the order shown, from left to 

right: first the MASTER-KEY, then the "O" or "l ",then the CHALLENGE 

and then finally the CONNECTION-ID. 

Note: The "O" means the ascii zero character (Ox30), not a zero value. "1" 

means the ascii 1 character (Ox31 ). MD5 produces 128 bits of output data 

which are used directly as the key to the cipher algorithm (The most 

significant byte of the MD5 output becomes the most significant byte of the 

key material). 

SSL CK DES 64 CBC WITH MD5 - - - -

KEY-MATERIAL-0 = MD5[ MASTER-KEY, CHALLENGE, 

CONNECTION-ID] 

CLIENT-READ-KEY= KEY-MATERIAL-0[0-7] 

CLIENT-WRITE-KEY= KEY-MATERIAL-0[8-15] 

For DES-CBC, a single 16 bytes of key material are produced using 

MD5. The first 8 bytes of the MD5 digest are used as the CLIENT-READ-

KEY while the remaining 8 bytes are used as the CLIENT-WRITE-KEY. 

The initialization vector is provided in the KEY-ARG-DATA. Note that the 

raw key data is not parity adjusted and that this step must be performed 

before the keys are legitimate DES keys. 

55 



SSL CK DES I 92 EDE3 CBC WITH MD5 - - - - - - -

KEY-MATERIAL-0 = MD5 [MASTER-KEY, "O", CHALLENGE, 

CONNECTION-ID] 

KEY-MATERIAL-I MD5 [MASTER-KEY, "I", CHALLENGE, 

CONNECTION-ID] 

KEY-MATERIAL-2 = MD5 [MASTER-KEY, "2", CHALLENGE, 

CONNECTION-ID] 

CLIENT-READ-KEY-0 = KEY-MATERIAL-0[0-7] 

CLIENT-READ-KEY-I= KEY-MATERIAL-0[8-I5] 

CLIENT-READ-KEY-2 = KEY-MATERIAL-I[0-7] 

CLIENT-WRITE-KEY-0 = KEY-MATERIAL-I[8-I5] 

CLIENT-WRITE-KEY-I= KEY-MATERIAL-2[0-7] 

CLIENT-WRITE-KEY-2 = KEY-MATERIAL-2[8-I5] 

Data is fed to the MD5 hash function in the order shown, from left to 

right: first the MASTER-KEY, then the "O", "I" or "2", then the 

CHALLENGE and then finally the CONNECTION-ID. 

Note: The "O" means the ascii zero character (Ox30), not a zero value. "I" 

means the ascii I character (Ox3 I). "2" means the ascii 2 character (Ox32). 

A total of 6 keys are produced, 3 for the read side DES-EDE3 cipher 

and 3 for the write side DES-EDE3 function. The initialization vector is 

provided in the KEY-ARG-DATA. The keys that are produced are not parity 

adjusted. This step must be performed before proper DES keys are usable. 

Recall that the MASTER-KEY is given to the server in the CLIENT-

MASTER-KEY message. The client in the CLIENT-HELLO message gives 

the CHALLENGE to the server. The server in the SERVER-HELLO 

56 



message gives the CONNECTION-ID to the client. This makes the resulting 

cipher keys a function of the original session and the current session. Note 

that the master key is never directly used to encrypt data, and therefore 

cam10t be easily discovered. 

The CLIENT-MASTER-KEY message must be sent after the 

CLIENT-HELLO message and before the CLIENT-FINISHED message. 

The CLIENT-MASTER-KEY message must be sent ifthe SERVER

HELLO message contains a SESSION-ID-HIT value of 0. 

CLIENT-CERTIFICATE (Phase 2; Sent encrypted) 

Char MSG-CLIENT-CERTIFICATE 

Char CERTIFICATE-TYPE 

Char CERTIFICATE-LENGTH-MSB 

Char CERTIFICATE-LENGTH-LSB 

Char RESPONSE-LEN GTH-MSB 

Char RESPONSE-LENGTH-LSB 

Char CERTIFICATE-DATA [MSB<<8ILSB] 

Char RESPONSE-DATA [MSB<<8ILSB] 

One sends an SSL client in response to a server REQUEST

CERTIFICATE message this message. The CERTIFICATE-DATA contains 

data defined by the CERTIFICATE-TYPE value. An ERROR message is 

sent with error code NO-CERTIFICATE-ERROR when this request cannot 

be answered properly (e.g. the receiver of the message has no registered 

certificate). 

57 



CERTIFICATE-TYPE is one of: 

SSL X509 CERTIFICATE - -

The CERTIFICATE-DATA contains an X.509 (1988) [3] signed certificate. 

The RESPONSE-DATA contains the authentication response data. This data 

is a function of the AUTHENTICATION-TYPE value sent by the server. 

When AUTHENTICATION-TYPE is SSL AT MD5 WITH RSA - - - - -

ENCRYPTION then the RESPONSE-DATA contains a digital signature of 

the following components (in the order shown): 

the KEY-MATERIAL-0 

the KEY-MATERIAL-I (only if defined by the cipher kind) 

the KEY-MATERIAL-2 (only if defined by the cipher kind) 

the CERTIFICATE-CHALLENGE-DATA (from the REQUEST-

CERTIFICATE message) 

the server's signed certificate (from the SERVER-HELLO message) 

The digital signature is constructed using MD5 and then encrypted 

using the client's private key, formatted according to PKCS#l 's digital 

signature standard [ 5]. The server authenticates the client by verifying the 

digital signature using standard techniques. Note that other digest functions 

are supported. Either a new AUTHENTICATION-TYPE can be added, or 

the algorithm-id in the digital signature can be changed. 

The client only in response to a REQUEST-CERTIFICATE message 

must send this message. 

58 



CLIENT-FINISHED (Phase 2; Sent encrypted) 

Char MSG-CLIENT-FINISHED 

Char CONNECTION-ID [N-1] 

The client sends this message when it is satisfied with the server. 

Note: The client must continue to listen for server messages until it receives 

a SERVER-FINISHED message. The CONNECTION-ID data is the 

original connection-identifier the server sent with its SERVER-HELLO 

message, encrypted using the agreed upon session key. 

"N" is the number of bytes in the message that was sent, so "N-1" is the 

number of bytes in the message without the message header byte. 

For version 2 of the protocol, the client must send this message after it has 

received the SERVER-HELLO message. If the SERVER-HELLO message 

SESSION-ID-HIT flag is non-zero then the CLIENT-FINISHED message is 

sent immediately, otherwise the CLIENT-FINISHED message is sent after 

the CLIENT-MASTER-KEY message. 

(f) Server Only Protocol Messages 

There are several messages that are only generated by servers. The 

messages are never generated by correctly functioning clients. 

SERVER-HELLO (Phase 1; Sent in the clear) 

char MSG-SERVER-HELLO 

char SESSION-ID-HIT 

char CERTIFICATE-TYPE 

char SERVER-VERSION-MSB 

char SERVER-VERSION-LSB 

char CERTIFICATE-LENGTH-MSB 

59 



char CERTIFICATE-LENGTH-LSB 

char CIPHER-SPECS-LENGTH-MSB 

char CIPHER-SPECS-LENGTH-LSB 

char CONNECTION-ID-LENGTH-MSB 

char CONNECTION-ID-LENGTH-LSB 

char CERTIFICATE-DATA[MSB<<8ILSB] 

char CIPHER-SPECS-DAT A[MSB< <8 ILSB] 

char CONNECTION-ID-DATA[MSB<<8ILSB] 

The server sends this message after receiving the clients CLIENT-

HELLO message. 

The server returns the SESSION-ID-HIT flag indicating whether or not 

the received session-identifier is known by the server (i.e. in the server's 

session-identifier cache). 

The SESSION-ID-HIT flag will be non-zero if the client sent the server 

a session-identifier (in the CLIENT-HELLO message with SESSION-ID-

LENGTH! = 0) and the server found the client's session-identifier in its 

cache. If the SESSION-ID-HIT flag is non-zero then the CERTIFICATE-

TYPE, CERTIFICATE-LENGTH and CIPHER-SPECS-LENGTH fields 

will be zero. 

The CERTIFICATE-TYPE value, when non-zero, has one of the 

values described above (see the information on the CLIENT-CERTIFICATE 

message). When the SESSION-ID-HIT flag is zero, the server packages up 

its certificate, its cipher specs and a connection-id to send to the client. Using 

this information the client can generate a session key and return it to the 

server with the CLIENT-MASTER-KEY message. 
60 



When the SESSION-ID-HIT flag is non-zero, both the server and the 

Client compute a new pair of session keys for the current session derived 

from the MASTER-KEY that was exchanged when the SESSION-ID was 

created. 

The SERVER-READ-KEY and SERVER-WRITE-KEY are derived 

from the original MASTER-KEY keys in the same manner as the CLIENT

READ-KEY and CLIENT-WRITE-KEY: 

SERVER-READ-KEY= CLIENT-WRITE-KEY 

SERVER-WRITE-KEY = CLIENT-READ-KEY 

Note: when keys are being derived and the SESSION-ID-HIT flag is set 

and the server discovers the client's session-identifier in the server's cache, 

then the KEY-ARG-DATA is used from the time when the SESSION-ID 

was established. This is because the client does not send new KEY-ARG

DA TA (recall that the KEY-ARG-DATA is sent only in the CLIENT

MASTER-KEY message). 

The CONNECTION-ID-DATA is a string of randomly generated bytes 

used by the server and client at various points in the protocol. The CLIENT

FINISHED message contains an encrypted version of the CONNECTION

ID-DAT A. The length of the CONNECTION-ID must be between 16 and 

than 32 bytes, inclusive. 

The CIPHER-SPECS-DATA defines a cipher type and key length (in 

bits) that the receiving end supports. Each SESSION-CIPHER-SPEC is 3 

bytes long and looks like this: 

char CIPHER-KIND-0 

char CIPHER-KIND-I 

61 



char CIPHER-KIND-2 

Where CIPHER-KIND is one of: 

SSL CK RC4 128 WITH MD5 - - - - -

SSL CK RC4 128 EXPORT40 WITH MD5 - - - - - -

SSL CK RC2 128 CBC WITH MD5 

SSL CK RC2 128 CBC EXPORT40 WITH MD5 
- - - - - - -

SSL CK IDEA 128 CBC WITH MD5 - - - - - -

SSL CK DES 64 CBC WITH MD5 - - - -

SSL CK DES 192 EDE3 CBC WITH MD5 - - - - - - -

This list is not exhaustive and may be changed in the future. 

The SSL_CK_RC4_128_EXPORT40_ WITH_MD5 cipher is an RC4 

cipher where some of the session key is sent in the clear and the rest is sent 

encrypted (exactly 40 bits of it). MD5 is used as the hash function for 

production of MAC's and session key's. This cipher type is provided to 

support "export" versions (i.e. versions of the protocol that can be distributed 

outside of the United States) of the client or server. 

An exportable implementation of the SSL Handshake Protocol will 

have secret key lengths restricted to 40 bits. For non-export implementations 

key lengths can be more generous (we recommend at least 128 bits). It is 

permissible for the client and server to have a non-intersecting set of stream 

ciphers. This, simply put, means they cannot communicate. 

62 



Version 2 of the SSL Handshake Protocol defines the 

SSL_CK_RC4_128_ WITH_MD5 to have a key length of 128 bits. The 

SSL_ CK_RC4_128_EXPORT40_ WITH_MD5 also has a key length of 128 

bits. 

However, only 40 of the bits are secret (the other 88 bits are sent in the 

clear by the client to the server). 

The SERVER-HELLO message is sent after the server receives the 

CLIENT-HELLO message, and before the server sends the SERVER

VERIFY message. 

SERVER-VERIFY (Phase 1; Sent encrypted) 

char MSG-SERVER-VERIFY 

char CHALLENGE-DATA[N-1] 

The server sends this message after a pair of session keys (SERVER

READ-KEY and SERVER-WRITE-KEY) have been agreed upon either by 

a session-identifier or by explicit specification with the CLIENT-MASTER

KEY message. The message contains an encrypted copy of the 

CHALLENGE-DATA sent by the client in the CLIENT-HELLO message. 

"N" is the number of bytes in the message that was sent, so "N-1" is the 

number of bytes in the CHALLENGE-DATA without the message header 

byte. This message is used to verify the server as follows. A legitimate 

server will have the private key that corresponds to the public key contained 

in the server certificate that was transmitted in the SERVER-HELLO 

message. Accordingly, the legitimate server will be able to extract and 

reconstruct the pair of session keys (SERVER-READ-KEY and SERVER

WRITE-KEY). Finally, only a server that has done the extraction and 

63 



decryption properly can correctly encrypt the CHALLENGE-DATA. This, 

in essence, "proves" that the server has the private key that goes with the 

public key in the server's certificate. 

The CHALLENGE-DATA must be the exact same length as originally 

Sent by the client in the CLIENT-HELLO message. Its value must match 

exactly the value sent in the clear by the client in the CLIENT-HELLO 

message. The client must decrypt this message and compare the value 

received with the value sent, and on:ly if the values are identical is the server 

to be "trusted". If the lengths do not match or the value doesn't match then 

the connection is to be closed by the client. 

This message must be sent by the server to the client after either 

detecting a session-identifier hit (and replying with a SERVER-HELLO 

message with SESSION-ID-HIT not equal to zero) or when the server 

receives the CLIENT-MASTER-KEY message. This message must be sent 

before any Phase 2 messages or a SEVER-FINISHED message. 

SERVER-FINISHED (Phase 2; Sent encrypted) 

char MSG-SERVER-FINISHED 

char SESSION-ID-DATA[N-1] 

The server sends this message when it is satisfied with the clients 

security handshake and is ready to proceed with transmission/reception of 

the higher level protocols data. The SESSION-ID-DATA is used by the 

client and the server at this time to add entries to their respective session

identifier caches. The session-identifier caches must contain a copy of the 

MASTER-KEY sent in the CLIENT-MASTER-KEY message as the master 

key is used for all subsequent session key generation. 

64 



"N" is the number of bytes in the message that was sent, so "N-1" is the 

number of bytes in the SESSION-ID-DATA without the message header 

byte. 

This message must be sent after the SERVER-VERIFY message. 

REQUEST-CERTIFICATE (Phase 2; Sent encrypted) 

char MSG-REQUEST-CERTIFICATE 

char AUTHENTICATION-TYPE 

char CERTIFICATE-CHALLENGE-DATA[N-2] 

A server may issue this request at any time during the second phase of 

the connection handshake, asking for the client's certificate. The client 

responds with a CLIENT-CERTIFICATE message immediately if it has one, 

or an ERROR message (with error code NO-CERTIFICATE-ERROR) ifit 

doesn't. 

The CERTIFICATE-CHALLENGE-DATA 1s a short byte string 

(whose length is greater than or equal to 16 bytes and less than or equal to 32 

bytes) that the client will use to respond to this message. 

The AUTHENTICATION-TYPE value is used to choose a particular 

means of authenticating the client. The following types are defined: 

SSL AT MD5 WITH RSA ENCRYPTION - - - - -

The SSL AT MD5 WITH RSA ENCRYPTION type requires that - - - - -

the client construct an MD5 message digest using information as described 

above in the section on the CLIENT-CERTIFICATE message. Once the 

digest is created, the client encrypts it using its private key (formatted 

according to the digital signature standard defined in PKCS#l). The server 

authenticates the client when it receives the CLIENT-CERTIFICATE 

65 



message. This message may be sent after a SERVER-VERIFY message and 

before a SERVER-FINISHED message. 

(g) Client/Server Protocol Messages 

These messages are generated by both the client and the server. 

ERROR (Sent clear or encrypted) 

char MSG-ERROR 

char ERROR-CODE-MSB 

char ERROR-CODE-LSB 

This message is sent when an error is detected. After the message is 

sent, the sending party shuts the connection down. The receiving party 

records the error and then shuts its connection down. 

This message is sent in the clear if an error occurs during session key 

negotiation. After a session key has been agreed upon, errors are sent 

encrypted like all other messages. 

66 



3.3 SET PROTOCOL 

(a) Cryptography Protection of sensitive information 

Cryptography has been used for centuries to protect sensitive information as 

it 1s transmitted from one location to another. In a cryptographic system, a 

message is encrypted using a key. The resulting cipher text is then transmitted to 

the recipient where it is decrypted using a key to produce the original message. 

There are two primary encryption methods in use today: secret-key cryptography 

and public-key cryptography. SET uses both methods in its encryption process. 

(b) Secret-key cryptography 

Secret-key cryptography, also known as symmetric cryptography, uses the 

Same key to encrypt and decrypt the message. Therefore, the sender and the 

recipient of a message must share a secret, namely the key. A well known secret-

key cryptography algorithm is the Data Encryption Standard (DES), which is used 

by financial institutions to encrypt PINs (personal identification numbers). 

Figure 3.8. Secret-Key Cryptography. 

( c) Public-key cryptography 

Public-key cryptography, also known as asymmetric cryptography, uses two 

67 



keys: one key to encrypt the message and the other key to decrypt the message. 

The two keys are mathematically related so that data encrypted with either key can 

only be decrypted using the other. Each user has two keys: a public key and a 

private key. The user distributes the public key. Because of the relationship 

between the two keys, the user and anyone receiving the public key can be assured 

that data encrypted with the public key and sent to the user can only be decrypted 

when the user uses the private key. This assurance is only maintained ?f the user 

ensures that the private key is not disclosed to anyone else. Therefore, the key pair 

should be generated by the user. The best known public-key cryptography 

algorithm is RSA (Named after its inventors Rivest, Shamir, and Adleman). 

Public-Koy Crypt09r11phy 

Figure 3.9. Public-Key Cryptography. 

Secret-key cryptography is impractical for exchanging messages with a large 

group of previously unknown correspondents over a public network. For a 

merchant to conduct transactions securely with millions of Internet subscribers, 

each consumer would need a distinct key assigned by that merchant and 

transmitted over a separate secure channel. On the other hand, by using public-key 

cryptography, that same merchant could create a public/private key pair and 

68 



; 

s 

publish the public key, allowing any consumer to send a secure message to that 

merchant. 

( d) Encryption Relationship of keys 

Confidentiality is ensured by the use of message encryption. When two users 

want to exchange messages securely, each of them transmits one component of 

their key pair, designated the public key, to the other and keeps secret the other 

component, and designated the private key. Because messages encrypted with the 

public key can only be decrypted using the private key, these messages can be 

transmitted over an insecure network without fear that an eavesdropper could use 

the key to read encrypted transmissions. 

For example, Bob can transmit a confidential message to Alice by encrypting 

The message using Alice's public key. As long as Alice ensures that no one else 

has access to her private key, both she and Bob will know that only Alice can read 

the message. 

(e) Use of symmetric key 

SET will rely on cryptography to ensure message confidentiality. In SET, 

message data will be encrypted using a randomly generated symmetric encryption 

key. This key, in turn, will be encrypted using the message recipient's public key. 

This is referred to as the "digital envelope" of the message and is sent to the 

Recipient along with the encrypted message itself. After receiving the digital 

envelope, the recipient decrypts it using his or her private key to obtain the 

randomly generated symmetric key and then uses the symmetric key to unlock the 

original message. 

Note: To provide the highest degree of protection, it is essential that the 

programming methods and random number generation algorithms generate keys in 

69 



a way that ensures that the keys cannot be easily reproduced using information 

about either the algorithms or the environment in which the keys are generated. 

(f) Digital signatures 

Integrity and authentication are ensured by the use of digital signatures. 

(g) Relationship of keys 

Because of the mathematical relationship between the public and private 

keys, data encrypted with either key can only be decrypted with the other. This 

allows the sender of a message to encrypt it using the sender's private key. Any 

recipient can determine that the message came from the sender by decrypting the 

message using the sender's public key. For example, Alice can encrypt a known 

piece of data, such as her telephone number, with her private key and transmit 

it to Bob. When Bob decrypts the message using Alice's public key and compares 

the result to the known data, he can be sure that that the message could only have 

been encrypted using Alice's private key. 

(h) Using message digests 

When combined with message digests, encryption using the private key 

Allows users to digitally sign messages. A message digest is a value generated 

For a message (or document) that is unique to that message.I A message digest is 

generated by passing the message through a one-way cryptographic function; that 

is, one that cannot be reversed. When the digest of a message is encrypted using 

the sender's private key and is appended to the original message, the result is 

known as the digital signature of the message. 

The recipient of the digital signature can be sure that the message really 

Came from the sender. And, because changing even one character in the message 

changes the message digest in an unpredictable way, the recipient can be sure that 

70 



the message was not changed after the message digest was generated. 

(i) Example of the use of a digital signature 

For example, Alice computes the message digest of a property description 

and encrypts it with her private key yielding a digital signature for the message. 

She transmits both the message and the digital signature to Bob. When Bob 

receives the message, he computes the message digest of the property description 

and decrypts the digital signature with Alice's public key. If the two values match, 

Bob knows that the message was signed using Alice's private key and that 

it has not changed since it was signed. 

(j) Two key pairs 

SET uses a distinct public/private key pair to create the digital signature. 

Thus, each SET participant will possess two asymmetric key pairs: a " key 

exchange" pair , which is used in the process of encryption and decryption, and a 

"signature" pair for the creation and verification of digital signatures. 

Note: The roles of the public and private keys are reversed in the digital signature 

process where the private key is used to encrypt (sign) and the public key is used 

to decrypt (verify the signature). 

(k) Certificates Need for authentication 

Authentication is further strengthened by the use of certificates. Before two 

Parties use public-key cryptography to conduct business, each wants to be sure 

that the other party is authenticated. Before Bob accepts a message with Alice's 

digital signature, he wants to be sure that the public key belongs to Alice and not 

to someone masquerading as Alice on an open network. One way to be sure that 

the public key belongs to Alice is to receive it over a secure channel directly from 

Alice. However, in most circumstances this solution is not practical. 

71 



(a) Need for a trusted third party 

An alternative to secure transmission of the key is to use a trusted third party 

to authenticate that the public key belongs to Alice. Such a party is known as a 

Certificate Authority (CA). The Ce1iificate Authority authenticates Alice's claims 

According to its published policies. For example, a Certificate Authority could 

Supply certificates that offer a high assurance of personal identity, which may be 

Required for conducting business transactions; this Certificate Authority may 

Require Alice to present a driver's license or passport to a notary public before it 

will issue a certificate. 

Once Alice has provided proof of her identity, the Certificate Authority 

Creates a message containing Alice's name and her public key. The Certificate 

Authority digitally signs this message, known as a certificate. It contains owner 

identification information, as well as a copy of one of the owner's public keys 

("key exchange" or "signature"). To get the most benefit, the public key of the 

Certificate Authority should be known to as many people as possible. Thus, by 

trusting a single key, an entire hierarchy can be established in which one can have 

a high degree of trust . Because SET participants have two key pairs, they also 

have two certificates. Both certificates are created and signed at the same time by 

the Certificate Authority. 

(m) SET authentication 

The means that a financial institution uses to authenticate a cardholder or 

merchant is not defined by this specification. Each payment card brand and 

financial institution will select an appropriate method. 

(n) Encryption summary 

This diagram provides an overview of the entire encryption process when 

72 



Alice wishes to sign, for example, a property description and send it in an 

Encrypted message to Bob. The numbered steps in the diagram are explained on 

the following pages. 

1 >mz; 

Figure 3.10. Encryption Overview. 

Encryption The encryption process in Figure 3 consists of the following 

steps: 

Step Description 

(i) Alice runs the property description through a one-way algorithm to produce 

a unique value known as the message digest. This is a kind of digital 

fingerprint of the property description and will be used later t o test the 

integrity of the message. 

(ii) She then encrypts the message digest with her private signature key to 

73 



produce The digital signature. 

(iii) Next, she generates a random symmetric key and uses it to encrypt the 

Property description, he r signature and a copy of her certificate, which 

Contains her public signature key. To decrypt the property description, Bob 

will require a secure copy of this random symmetric key. 

(iv) Bob's certificate, which Alice must have obtained prior to initiating secure 

communication with him, contains a copy of his public key-exchange key. 

To ensure secure transmission of the symmetric key, Alice encrypts it using 

Bob's public key-exchange key. The encrypted key, referred to as the digital 

envelope, will be sent to Bob along with the encrypted message itself. 

(v) Alice sends a message to Bob consisting of the following: the symmetrically 

encrypted property description, signature and certificate, as well as the 

asymmetrically encrypted symmetric key (the digital envelope). 

(vi) Bob receives the message from Alice and decrypts the digital envelope with 

His private key-exchange key to retrieve the symmetric key. 

(vii) He uses the symmetric key to decrypt the property description, Alice's 

signature, and her certificate. 

(viii) He decrypts Alice's digital signature with her public signature key, which he 

acquires from her certificate. This recovers the original message digest of the 

property description. 

(ix) He runs the property description through the same one-way algorithm used 

by Alice and produces a new message digest of the decrypted property 

description. 

(x) Finally, he compares his message digest to the one obtained from Alice's 

Digital signature. If they are exactly the same, he confirms that the message 
74 



content has not been altered during transmission and that it was signed using 

Alice's private signature key. 

If they are not the same, then the message either originated somewhere else 

Or was altered after it was signed. In that case, Bob takes some appropriate action 

such as notifying Alice or discarding the message. 

( o) Dual signature 

SET introduces a new application of digital signatures, namely the concept 

of dual signatures. To understand the need for this new concept, consider the 

following scenario: Bob wants to send Alice an offer to purchase a piece of 

prope1iy and an authorization to his bank to transfer the money if Alice accepts the 

offer, but Bob doesn't want the bank to seethe terms of the offer nor does he want 

Alice to see his account information. Further, Bob wants to link the offer to the 

Transfer so that the money is only transferred if Alice accepts his offer. He 

accomplishes all of this by digitally signing both messages with a single signature 

operation that creates a dual signature. 

(p) Generating a dual signature 

A dual signature is generated by creating the message digest of both 

messages, concatenating the two digests together, computing the message digest 

of the result and encrypting this digest with the signer's private signature key. The 

signer must include the message digest of the other message in order for the 

recipient to verify the dual signature. A recipient of either message can check its 

authenticity by generating the message digest on its copy of the message, 

concatenating it with the message digest of the other message (as provided by the 

sender) and computing the message digest of the result. If the newly generated 

digest matches the decrypted dual signature, the recipient can trust the authenticity 
75 



of the message. 

Example: If Alice accepts Bob's offer, she can send a message to the bank 

indicating her acceptance and including the message digest of the offer. The bank 

can verify the authenticity of Bob's transfer authorization and ensure that the 

acceptance is for the same offer by using its digest of the authorization and the 

message digest presented by Alice of the offer to validate the dual signature. Thus 

the bank can check the authenticity of the offer against the dual signature, but the 

bank cannot see the terms of the offer. 

(q) Use of dual signatures 

Within SET, dual signatures are used to link an order message sent to the 

merchant with the payment instructions containing account information sent to the 

Acquirer. When the merchant sends an authorization request to the Acquirer, it 

Includes the payment instructions sent to it by the cardholder and the message 

digest of the order information. The Acquirer uses the message digest from the 

merchant and computes the message digest of the payment instructions to check 

the dual signature. 

(r) Import/export issues 

A number of governments have regulations regarding the import or export of 

cryptography. As a general rule; these governments allow cryptography to be used 

when: 

(i) the data being encrypted is of a financial nature; 

(ii) the content of the data is well-defined; 

(iii) the length of the data is limited; and 

(iv) the cryptography cannot easily be used for other purposes. 

The SET protocol is limited to the financial portion of shopping and the 

76 



content of the SET messages has been carefully reviewed to satisfy the concerns 

of governments. As long as software vendors can demonstrate that the 

cryptography used for SET cannot easily be put to other purposes, import and 

export licenses should be obtainable. 

(s) Certificate Issuance Cardholder certificates 

Cardholder certificates function as an electronic representation of the 

Payment card. Because a financial institution digitally signs them, they cannot be 

altered by a third party and can only be generated by a financial institution. A 

cardholder certificate does not contain the account number and expiration date. 

Instead the account information and a secret value known only to the cardholder's 

software are encoded using a one-way hashing algorithm. If the account number, 

expiration date, and the secret value are known, the link to the certificate can be 

proven, but looking at the certificate cannot derive the information. 

Within the SET protocol, the cardholder supplies the account information 

And the secret value to the payment gateway where the link is verified. A 

ce1iificate is only issued to the cardholder when the cardholder's issuing financial 

institution approves it. By requesting a certificate, a cardholder has indicated the 

intent to perform commerce via electronic means. This certificate is transmitted to 

merchants with purchase requests and encrypted payment instructions. Upon 

receipt of the cardholder' s certificate, a merchant can be assured, at a minimum, 

that the account number has been validated by the card-issuing financial institution 

or its agent. In this specification, cardholder certificates are optional at the 

payment card brand's discretion. 

(t) Merchant certificates 

Merchant certificates function as an electronic substitute for the payment 
77 



brand decal that appears in the store window-the decal itself is a representation 

that the merchant has a relationship with a financial institution allowing it to 

accept the payment card brand. Because they are digitally signed by the 

merchant's financial institution, merchant certificates cannot be altered by a third 

party and can only be generated by a financial institution. These certificates are 

approved by the acquiring financial institution and provide assurance that the 

merchant holds a valid agreement with an Acquirer. A merchant must have at least 

one pair of certificates to paiiicipate in the SET environment, but there may be 

multiple certificate pairs per merchant. A merchant will have a pair of certificates 

for each payment card brand that it accepts. 

(u) Payment gateway certificates 

Payment gateway certificates are obtained by Acquirers or their processors 

for the systems that process authorization and capture messages. The gateway's 

encryption key, which the cardholder gets from this certificate, is used to protect 

the cardholder' s account information. Payment gateway certificates are issued to 

the Acquirer by the payment brand. 

(v) Acquirer certificates 

An Acquirer must have certificates in order to operate a Certificate Authority 

that can accept and process certificate requests directly from merchants over 

public and private networks. Those Acquirers that choose to have the payment 

card brand process certificate requests on their behalf will not require certificates 

because they are not processing SET messages. Acquirers receive their certificates 

from the payment card brand. 

(w) Issuer certificates 

An Issuer must have certificates in order to operate a Certificate Authority 
78 



's 

that can accept and process ce1iificate requests directly from cardholders over 

public and private networks. Those Issuers that choose to have the payment card 

brand process certificate requests on their behalf will not require certificates 

because they are not processing SET messages. Issuers receive their certificates 

from the payment card brand. 

(x) Hierarchy of trust 

SET certificates are verified through a hierarchy of trust. Each certificate is 

linked to the signature certificate of the entity that digitally signed it. By following 

the trust tree to a known trusted party, one can be assured that the certificate is 

valid. For example, a cardholder ce1iificate is linked to the certificate of the Issuer 

(or the Brand on behalf of the Issuer). The Issuer's certificate is linked back to a 

root key through the Brand's certificate. 

The public signature key of the root is known to all SET software and may 

be used to verify each of the certificates in turn. The following diagram illustrates 

the hierarchy of trust. 

79 



~ U·:il:,>Hd 

:i-ynmr,.:-

Fii!lll'l' 4: Hiernrch:· nfTrnst 

Figure 3 .11. Hierarchy of Trust. 

The number of levels shown in this diagram is illustrative. A payment card 

Brand may not always operate a geopolitical Certificate Authority between itself 

and the financial Institutions. 

Root key distribution 

The root key will be distributed in a self-signed certificate. This root 

Key certificate will be available to software vendors to include with their 

software. 

Root key validation 

Software can confirm that it has a valid root key by sending an initiate 

Request to The certificate Authority that contains the hash of the root 

certificate. 

In the event that the software does not have a valid root certificate, the 

80 



Certificate Authority will send one in the response. 

Note: In this extremely unusual case where the software's root key is invalid, 

the user (cardholder or merchant) will have to enter a string that corresponds 

to the hash of the certificate. This confirmation hash must be obtained from a 

reliable source, such as the cardholder' s financial institution. 

Root key replacement 

When the root key is generated, a replacement key is also generated. 

The replacement key is stored securely until it is needed. The self-signed 

Root certificate and the hash of the replacement key are distributed together. 

Software will be notified of the replacement through a message that contains 

a self-signed certificate of the replacement root and the hash of the next 

replacement root key. 

Software validates the replacement root key by calculating its hash and 

comparing it with the hash of the replacement key contained in the root 

certificate. 

(y) Payment Processing 

(i) Overview 

(a) Purpose This chapter describes the flow of transactions as they are 

processed by various systems. 

(b) Protocol description In the event that the description of the processing 

in this book differs from that in Book 3: Formal Protocol Definition, 

the Formal Protocol Definition takes precedence. 

( c) Transactions described SET defines a variety of transaction protocols 

that use the cryptographic concepts introduced in Chapter 3 to securely 

conduct electronic commerce. This chapter describes the following 

81 



transactions: 

( d) Other transactions The additional transactions listed below are part 

of the SET specification, but are not described m this book. For 

more information bout these transactions, see Book 2: Programmer's 

Guide. Certificate inquiry and status if the CA is unable to complete 

the Processing of a certificate request quickly, it will send a reply 

to the cardholder or merchant indicating that the requester should 

check back later. The cardholder or merchant sends the Certificate 

Inquiry message to determine the status of the certificate request and to 

receive the certificate if the request has been approved. 

Purchase inquiry Allows the cardholder to check the status of the 

processing of an order after the purchase response has been received. 

Note: This message does not include information such as the status of 

back ordered goods, but does indicate the status of authorization, 

capture and credit processing. Authorization reversal allows a merchant to 

correct previous authorization requests. If the order will not be completed, 

the merchant reverses the entire authorization. If part of he order will not be 

completed (such as when goods are back ordered), the merchant reverses 

part of the amount of the authorization. Capture reversal allows a merchant 

to correct errors in capture requests such as transaction amounts that were 

entered incorrectly by a clerk. 

Credit allows a merchant to issue a credit to a cardholder' s account 

such as when goods are returned or were damaged during shipping. Note that 

the SET Credit message is always initiated by the merchant, not the 

cardholder. All communications between the cardholder and merchant that 

82 



result in a credit being processed happen outside of SET. Credit reversal 

Allows a merchant to correct a previously request credit. Payment gateway 

Certificate request Allows a merchant to query the Payment Gateway and 

Receive a copy of the gateway's current key - exchange and signature 

Certificates . Batch administration allows a merchant to communicate 

information to the Payment Gateway regarding merchant batches. Error 

message indicates that a responder rejects a message because it fails format 

or content verification tests. 

( e) Guide to the diagrams 

The following abbreviations are use in the detailed diagrams in this 

chapter to indicate the participant who digitally signs a message or certificate. 

l11ilidl f\1r1id1\:illl 

Figure 3.12. Detailed Diagrams. 

83 



The following symbols are used in the detailed diagrams: 

Symhul 

<> 

l!!!J 

l:b:aipli•.>ll 

Th~·-'·~· .1r1..~ i.:rJv1ugc1phk kC'r~. 

"' rl>;· "k,;·ih" ,·,r Ilic kc•)' i11dirnh: ll1i: kc'}'':-: .1w1wr. 

"' Key; 1•·i1h "I'll" •'11 lhc haudk arc• public k·:y,;. illld lh•'•'.v: with 
.. P\ ··· ;1r..: pri 1.'1l11} keys. Privak k,_·y:-: :u..:· .1Jw .. :1y=' k1ll.H'dl lu llh:ir 
1i\; l'l('f. 

"' Ko.')':\ •:•ilh ii dh1111°.011>.l 1 0-1 al•.' >11,'mllllfC kcy;.:1nd llWM.' 11 iLl1 a 
~rn<.11 I k..:·y 1 .., .i.:11-..: k..:.')'-t...~x1 . .-!"1it 11,~·~· k ... -r:-:. 

Thi' i,; ii .Ji:,:iliil '.i;Jll.llllrc'. Th;;· i11ili<.il i11dk<1k;; \\ hkh p1irnl.: key 
1•-;io; 11; • .-d I•.) Lr•:ak· lhc· .;i~1Mlllr\.'. F•"r .;;.:;1111pk, 1111.; ;i,,,rn1111rl:' w.i;. 
crc .. 1bl hy iii.:· 111.::rch.ml pri•:;,1>.: >ig11.1lmc key. 

ll11\ i,; .1 du.ii :;ii! r~11l1rc-. ·1 h..:• i ni I i.il i ndka h-'' wh k h priva k key 
"''"' 11:.:d lu Lr•.'ilk the .d;;mallll'·~'. F•"f (.':\;1111pk, 1hb d1wl ;.i~nalur...
wa;...:1-.:akd by Iii:: c:1rcl11nld;:·r priv.1k ·,;i911;1111n: k...-y. 

rh.'.i(: ;1r..:·ccr1il"io:·;11..:s. 

"' lk· i1111.ial i11 lh: ",;c·.11" iudirnki. whid1 r·ri'.·""-' key w.1> u,;..:,1 
!(1 :-;i~n thc· 1.:i:.:r1in..:.1k·. 

"' ll1;· klkr r•n lhc c•.'11ilk1k'111dh:;Jic,; lh.: puhlk key he-in\' 
cc-r1il°l·:d. 

"' The· di;1m•"lld illld k.:y :;)'mb»I;. di:-1i11;cubh >ii,'llillllr~· 
(('f1ifK;tl('\ lh1m ki..:-y-e,\Lh.J11µi: i.>.:rlilk.:1K':o'. 

I'll: ""f '., .. in lh.;·;,,: >ymhnl,; i11clk'ak:< lll.1111·.:-:;c' c•:r1irk;1k·:< wen: 
u\·Jibl h" ih·: ( \'r1ilk:ilc:: Aulhorily. aui.l lh: "M .. 111dici1h:' I hey 
~ir ... • mL·ri: ll~m!. (('rl i fi..:~ih.:·::. 

rJ11, I:; ii :<ymm;•lri.; h'Y U;;c'."l l«• CIKl")"Jll dill:!. Ji. V>ill 
a Iv.a;:, h.;· ".;·111 v>ilh the <:.lKryptc:xl dala in !he· di;,dl<il 
·:1n-.:l•"r•:. ·1 he munba· l«•llo.•\1·in;:! lhc k·:y dilfcr.:nliillc';, 
>r111111drk k·:}':< us-.'d in <i tmn;;a..:11•'11 :;c1. 

ll1i' i ,: .1 p.1 '.>'llk'nl .:ard a 11d b w;.;,I I>"• i11d k.1k 1;·hc•11 I It;· 
o:•;trdh"l<kr":< ,.:·u011111 m11nb1;r is J·dn)! lr .. m,;rnillc\I in lh.:· 
d1~11,i1c111·(·l1..,1•:·11l .. m9 will1 !IF: ·c.y111rr1dri..: ,·r.:1ypli<'l1 k·:}. 

ll1h is l'rnk«io:·d d:llu. ll i·;.11<.•:.,J I•:• n::pr..:·:v.Til iK..:n11r11 
i11f.•m1;11i"n , . .,:nl in Ilic' di;;.d1;il •:n•>'ci•.01,..:· o.•fr.:.·'.,'hlrdli•:>ll 
r..:-..111,~·:·;I :'-.. fi,)r 111..:·ri.: hanl ~. a ud pay1111..~nf ?ot li.: 1:~' .1.~,-~. 

ll1i\ j, an •:r.:-ryplc:·d lrlc-.<:iil,g<-' i11.;l11di11~ lh: d1.~U.1I 
.;·11'.-.;·l·••1:.:. Th.;; daL1 in lhc· sh;1d-:d r•::,::inn hu:-: he·:ll 
>'IK f)'J'kd 11,j II;! " f;l llck•lll ly !!·:1wrnt.;1;J S}'ll1111·:1 ri ( k.;·y 
1io.L-111i lk·d lic·r-.: 1;.; llw ,,..x ... •11d su..:h k<; }'cr,,;·r"kd 1«-.r lhb:. 
wu1.>o1•:·1ir•n ,:•cl.•. Th: •:ntily \llJo.•:ic public· k·:·y w;1,; 11s-.:d I<• 
c·11u:.r1 lhe c1n-.:l•"P·;· h:, kkntllkd alwl":· lllc·:ll"'c·l""I'.>..' du 
1h1.' >:»IS<:. Ill: l"aym.;·111 (i .. 1l·:·wi1:;1. 

N··I·: lhctl 111 !Iii,; C;b>:· llw d(~il.11 •:'11'.';·l•"P·:· i11d11d:-.; l:•:•th 
Iii.:· ·;.y11H1KHii: b:;; and 1hc..:11rdh···ld.::·r",; ,ll:.;>'11111111.11111~.'L 
l1h··i 111..1!1: !h.:Jt Uk" ru,1rtia,-1n cir llK· llH>:..~a,g .... · ,_:•ni..:rypl>.:~·d ll'~in~ 
Ilk ;.y1nmdri< kc;• •011L11m.11-.: .;•,1rdl"1<.•l<Lr",; ;;i;,::nillt11\:· 

•:·c'r11 lh'.11<:· ;rnd '\Id:< d11;1 I si;in;·d by llK· .;;irdl1 .. •lda·. 

Figure 3.13. Guide to Diagrams, continued. 

84 



(f) Certificate Authority functions 

The primary functions of the Certificate Authority are to: 

(i) Receive registration requests, 

(ii) Process and approve/decline requests, 

(iii) Issue certificates. The processing flows describe these functions as 

though they are performed by a single entity, but they actually may be 

performed by one to three entities. Payment card brands and individual 

financial institutions will review their business needs for these 

functions to select a solution for implementation. The selected solution 

may be to implement a single - server device that provides the 

Certificate Authority functions or multiple devices that distribute the 

processmg. 

The following list suggests some possible arrangements with 

variations on distribution: 

(a) A company that issues proprietary cards may perform all three 

steps for its cardholders. 

(b) A financial institution may receive, process, and approve 

certificate requests for its cardholders or merchants, and forward 

the information to the appropriate payment card brand(s) to issue 

the certificates. 

( c) An independent Registration Authority that processes payment 

card certificate applications for multiple payment card brands 

may receive certificate requests and forward them to the 

appropriate financial institution (Issuer or Acquirer) for 

processing; the financial institution forwards approved requests to 

85 



the payment card brands to issue the certificates. 

These scenarios simply suggest some possible arrangements. 

Payment card brands and financial institutions will select an 

appropriate solution based on their individual business needs. 

Optional cardholder certificates 

The diagrams and processing flows that follow describe the 

processing of the transactions when the cardholder is in possession of a 

signature certificate issued under the trust hierarchy of the payment 

card brand. Payment card brands at their option may allow cardholders 

to process transactions without a certificate as a temporary measure to 

facilitate implementation of this specification. 

(i) Cardholder authentication 

The SET protocol uses a cardholder signature certificate to 

confirm that a transaction is from a registered user of a payment 

card. 

(ii) Strength of cardholder certificates 

A cardholder certificate is not a guarantee of the identity of 

the cardholder. The strength of a cardholder certificate is wholly 

dependent on the methods used by the payment card brand and 

the payment card issuer to authenticate the cardholder prior to the 

certificate being issued. 

(vii) No digital signature 

When a cardholder does not possess a signature certificate, no digital 

signature is generated. In place of the digital signature, the cardholder 

generates the message digest of the data and inserts the message digest into 

86 



the digital envelope. 

(a) Assurance of integrity 

The recipient of data from the cardholder uses the message digest 

from the digital envelope to confirm the integrity of the data. 

(b) Cardholder Registration 

Figure 6 provides a high-level overview of the cardholder 

registration process, showing its seven fundamental steps. The detailed 

sections that follow describe each step. The icon to the left corresponds 

to Figure 6 and serves as a map to the scenario; it is repeated in the 

more detailed sections with a shaded region that indicates which step is 

being described. 

87 



CARD HOLDER 
COMPUTER 

CJ\l:;J:>HOUJEI~ 

INlllAIES 
HHllSrnAllON 

GJIJ:;JJll:JLDLH 
llECLl\•t:S 

i:;J;st:-:::NSE 
/l.l,f) 

r:;r.ctiFSlS 
m~:Gl8lRATION 

F•::m.1 

CARDHOLDER REGISTRATION 

ltllTIA 1 E 
REOIJES T 

----D----+ 
IHlllATE 

RESPONt•E 

CERTIFICATE 
AUTHORITY (CA) 

PROCESS 

cn~IIFICJdL 

AIJllt:HllY 
SEtuJS 

llESF\:iNSE 

• D---.. - 1------1 

l~EGIS Tl'«\ llOH 
FOllt.1 REOLIEST 

-·D-· CFHllFICAIE 
AUlHOf,IJY 
PJ.;.t;CESSES 

1-------1 RCGISlRA TIOll flLOUFSl /•ND 
SFt·U:~; 

1:;i:c~;mA1ni 

nmu 
CN:;JJH::tDFI' 

llECEl\1l:s 
l'.ECIEffllA llON 

FORM . o~ 
FCHl.l C!<RDllOl. DEi~ 
M..IJ 

l<EC:UESTS CERTIFl:/dG llEO.JEST 

l1;1rni:1cA1E D 
1----1__. -

C/..i;fJl·KXDEt' 
llECFl";ES 

Ct lnlrt:::f<TE 

CAR IJllCt DEil 
crn11r1CtdE 

D 
Fii:!ltr(· 6: C.inlltnh:kr lte(.!iMrnliun 

CERllFICAIE 
AUi llOl'<llY 
Pl~C(:E.Si:SES 

llEOUFSf /<l>Ul 
(~r;J;,1\ 1 ES 

CERllFIG>\lE 

Figure 3 .14. Cardholder Registration. 

Cardholders must register with a Ce1iificate Authority (CA) 

Before they can send SET messages to merchants. In order to send SET 

Messages to the CA, the cardholder must have a copy of the CA public 

key - exchange key, which is provided in the CA key-exchange 

certificate. 

The cardholder also needs a copy of the registration form from 

the cardholder's financial institution. In order for the CA to provide the 

registration form, the cardholder software must identify the issuing 

financial institution to the CA. Obtaining the registration form requires 

88 



two exchanges between the cardholder software and the CA. The 

registration process is started when the cardholder software requests a 

copy of the CA's key-exchange certificate. 

C.:mlholdor 
initiate•& 
rngistration 

CARDHOLDER COMPUTER 

INITIATE 
llFO:JUESI 

L Cmdh::ldor sofl•.-~irc• sor.::ls iniliato 11:q.10,;f to CA ---... 1 c !NIT I ,... H.b:, 

Figure 3 .15. Cardholder initiates registration. 

When the CA receives the request, it transmits its certificates to 

the cardholder. The CA key encryption certificate provides the 

cardholder software with the information necessary to protect the 

payment card account number in the registration form request. 

Ci?rtificato 
Authority 
Si:>nds 
respons0 

INlllATE 
l~EDUEST 

INITltdF 
HFSPONSE 

CERTIFICATE AUTHORITY (CA) PROCESS 

3. C/'>. g0nHSIC'O fl"SJX:flS(• and 

dt;iilall.I' siqns ii tY,' (J'.:-f18fi'llit¥,J a 
lll•h;n:.r:- digE•SI d llw l•:-S[X'.fl'i.6 

ari:i rncryplir~J ii with lhi:• CA 
prr,.cil•3 siqnalure key. ]Sr~ 

4. C/.. seords r o:•;p:os8 along •nilh 
tho Ct .. corliliiXllos lo ~'fdhokl:.'f. 

Figure 3.16. Certificate Authority sends response. 

89 



! 

s 

The cardholder software verifies the CA certificate by traversing 

the trust chain to the root key, as described in Section 3.3. The software 

must hold the CA certificates to use later during the registration 

process. Once the software has a copy of the CA key-exchange 

certificate, the cardholder can request a registration form. The 

cardholder software creates a registration form request message. Next 

the software generates a random symmetric encryption key. It uses this 

random key to encrypt the registration form request message. The 

random key is then encrypted along with the account number into the 

digital envelope using the CA public key-exchange key. Finally, the 

software transmits all of these components to the CA. 

The cardholder software: 

(a) verifies the CA certificate by traversing the trust chain to the root 

key, 

(b) holds the CA certificates to use later during the registration 

process, 

( c) creates a registration form request message, 

(d) generates a random symmetric encryption key, 

( e) uses this random key to encrypt the registration form request 

message, 

(f) encrypts the random key along with the account number into the 

digital envelope using the CA public key-exchange key, transmits 

all of these components to the CA. 

90 



CJrdhold·2r 
rcn~dVG·S 
rnspo11s0 and 
f'!?CjU%t& 
m1istrntion 
fo1

7m 

CARDHOLDER COMPUTER 

[,, Cadhok:tT scfl•Arn!.? r·:~:>':iVc'S irilble 
msp:mw ari:l '.Uiri:;,; corlifiMk'S 
l:'i II ::r.·orsiro;i 11¥.; lrtfil dnin 10 ii)::• rool. 

13, C:idhorJ:f sdl1\11ro vmilios CA ~qnalUK' Lw 

docr•1plin,1 ii wilh CA pliiic :>iJ1aluro ko1·E;~ (> 
m1d c1J111p;nin~1 11¥~ rosull wilh a 1¥C:'».I';' 
go:>nora~'i•:J m:>ssw:r; digL>sl ol llw rosp:11""''· 

H. Cffdhokb sollwmc• OJiflErnles 

rc.xjislr al i::rr lei rn r oqtt;sl. 

9. C,,'fdhok:k:f SdlW;110 c:fl(!l')'pls 

rric"5sw;p ""lilh a rin:lornly gr.;n:rnl,~:I 

syrnIY~ric ko-; (#1:1.l1 !his kc1·,., 
rtlon;;i wilh lhe cardfr.:4der's r.:,counl 

mrrTC•N, L:iiil i5 lhci1 on~ryplc•d 
wilh llrn CA pti~ic kc<.•·t1':ciumcp k£"r·~ 

10, Ca·dhokh sdt•»:.111; lr8nsr11ils c-rrcr)'pl.:.:J 

ro:~1is1r:lli::n bm roqr.v_;,;I lo CJ•" 

lt~lllAlE 
HLSPONSE 

nFGISTIV'.TION 
FOl~M 

HEQUESr 

Figure 3 .17. Cardholder receives response and requests registration form. 

Cardholder Registration : The CA identifies the cardholder's 

Financial institution (using the first six to eleven digits of the account 

number) and selects the appropriate registration form. It digitally signs 

and then returns this registration form to the cardholder. In some cases, 

the CA may not have a copy of the registration form but can inform the 

cardholder software where the form can be obtained. For example, the 

cardholder's issuing financial institution may operate its own CA. In 

this event, the CA returns a referral response instead of the registration 

form. (This referral response is not shown in the diagram below.) 

91 



Co rtifi-:ato 
Authority 
processes 
requost and 
S,1)11cl5 

rnciistration 
torin 

HEGISTHAllOH 
rom.1 

HEQUFSI 

l"ti?SI 
,,,~ .. , FD!'J.~ I 
I ;:.";S·'.:l 

l~ECISfHAllON 

FOHM 

CERTIFICATE AUTHORITY \CA) PROCESS 

11 . CA d«::rjpls s•1rn1no1ric ki?',' (ill) 
i'.1rd C81d1oldor"; l.:lil 
n=.1.mr nuni.m 
•MlhCAFfr,~310 ~-, 

ke1··c•xchcing•? kc't. i:;,;..... 
lh•;,n dec1yp1s lhc- rc.;iisl1alion form 
[C').11.E'Sl l.lsillf) itfll G> 
s~1 1T1fllt':ilric kc1y. U1 

12. CA do101rnirws apprcprial•:. 
rc~Jf>lralion form and d·~ildl:1• 
si[ll'IS ii IJ~ ']t:•l):'filiill(j !-l lrltl&$.'19•:! 

diJ<:->I of' lht:· lorrn mr.l o::mf)'plincJ 
it wilh llio CA p1iuile sign::iluro 

ket E::io, 
13 GA ,;,:x1ds ro9islrnlim knn 

im:J G•\ ce<1lilicaiL' lo c~irdlr.:.klc~. 

Figure 3 .18. Certificate Authority processes request and sends registration form. 

The cardholder software verifies the CA certificate by traversing 

the trust chain to the root key. The cardholder needs a signature 

public/private key pair for use with SET. The cardholder software 

generates this key pair if it does not already exist. To register an 

account, the cardholder fills out the registration form that was returned 

by the CA with information such as the cardholder's name, expiration 

date, account billing address, and any additional information the 

issuing financial institution deems necessary to identify the certificate 

requester as the valid cardholder. The cardholder software generates a 

random number that will be used by the CA in generating the 

certificate. The usage of this random number is described in the 

processing performed by the CA. 

The cardholder software takes this registration information and 

92 



combines it with the public key in a registration message. The software 

digitally signs the registration message. Next the software generates 

two random symmetric encryption keys. The software places one 

random key inside the message; the CA will use this key to encrypt the 

response. It uses the other random key to encrypt the registration 

message. This random key is then encrypted along with the account 

number, expiration date, and the random number into the digital 

envelope using the CA public key-exchange key. Finally, the software 

transmits all of these components to the CA. 

Note: If the CA returned a referral response as described earlier in the 

CA processing, the cardholder software will return to the beginning of 

the registration process communicating with the referral CA to receive 

that CA' s certificates and the appropriate registration form. 

93 



CarclholckH· 
f8Cl?iV05 
rngistration 
form and 
rnqtwst& 
co rtifi cat0 

CARDHOLDER COMPUTER 

1.1 ~.d~N~t·l ~-;;;::·,~!'.'l.i- l~g~HdK1.! frnr: {§1;! 

,,,..,I~\;:; C . .\ >::;."'·fi!t~'/i< t:)' L"N~r<.;ng !fl.~ Hu:; 
K» b,, t:'..{.'! ~·:)'. 

'~ t~:"l.u·r:t:.: W£nl~t•':,t. :'.;}iy:~hH1 t~{ J«'~~1'FH1~ # 'Mf"; 

!S> '::r. pi:rtc ~01:::'1.i:-? '!.<,"'/ €14) lt,;· r..:·$dl v..1l~ 
:l n~,'ll"\1 'J~rr;ni;,,J n:.:o~;:r.•\1f'.; d~\>'·~I f.t t .. "" ;~~:Ji.~t'NK\I i;;;m 

i~ <'.:-:f·.!!!lirt;,r n"1ll'/.':HY- qu,..ui-~-:• ~11tn~:<~"' r.;q,g,.,,! 
mf.'J,.r3f"q in~ nL.n-n.1tn, •Et1.r~,d !nt:i t':!>:i 

rwy~1mt1:m t~~ 

1~. ,:_:._·w.:t'.<:«J:i ~dw."t>:. '3<4:1!~-;; r;,-~.-t>~=<'l~ vttti !-::~iu;;s 

:.~ ;~~~~l~tf~t;~~~~:'. -~~; ~;~~~:~~:~;~:-~;~~/F;~;.~~j~11t~~~'l 
~~r=~-H i·v ,1<:\:i11r:9 ::1 rn-::1;f..f»?'J ~9i<') u u,~ .:-.• . .nn::(t:.: 
rJ.q;lt;.'d i"f)j: t,:t1G','f"1hl :ln1tl: n-,:;--;({iJ'?j~:k<' Fm:;!-;.• 

<';n:lcr" "'Y C• "<> f, 

.d. C:«d'DhNt -:;d~N:N !Vi~t.V!if~ ;·ti;:J1,;;1d ;:x.!.!.fk:;~}; 

:f:q<.h~~ l'!H,::.~: ~fl"' ~:'~::A 

r,'rnT'"1 
~ 

I~ 
. 

+ . 
+ 

. 

Figure 3.19. Cardholder receives registration form and requests certificate. 

When the CA receives the cardholder's request, it decrypts the 

digital envelope to obtain the symmetric encryption key, the account 

information, and the random number generated by the cardholder 

software. It uses the symmetric key to decrypt the registration request. 

It then uses the signature key in the message to ensure the request was 

signed using the corresponding private signature key. If the signature is 

verified, the message processing continues; otherwise, the message is 

rejected and an appropriate response message is returned to the 

94 



cardholder. Next the CA must verify the information from the 

registration request using the cardholder's account information. The 

process by which the CA and the Issuer exchange information and the 

steps taken to verify the information in the registration request are 

outside the scope of this specification. As described in Section 4.1, 

there are several ways to configure the processing performed by the 

CA and the Issuer, such as having the payment card brand provide 

some or all of the functions on behalf of the Issuer or having the Issuer 

provide all of the functions . If the information in the registration 

request is verified, a certificate will be issued. First, the CA generates a 

random number that is combined with the random number created by 

the cardholder software to generate a secret value. This secret value is 

used to protect the account information in the cardholder certificate. 

The account number, expiration date, and the secret value are encoded 

using a one-way hashing algorithm. The result of the hashing algorithm 

is placed into the cardholder certificate. If the account number, 

expiration date, and the secret value are known, the link to the 

certificate can be proven, but looking at the certificate cannot derive 

the information. 

Next, the CA creates and digitally signs the cardholder certificate. 

The validity period of this certificate will be determined by CA policy; 

often it will correspond to the expiration date of the payment card, but 

it may expire sooner. A response message containing the random 

number generated by the CA and other information (such as the brand 

logo) is then generated and encrypted using the symmetric key sent by 

95 



the cardholder software in the registration message. The response is 

then transmitted to the cardholder. 

4.2 Cardholder Registration, o:•ntinu•:'.ci 

Cor1ificato 
Autlwrity 
1xoc0ssos 
ruquos t af)(l 
crc>at0s 
c0rtificat0 

CNmHDlDFR 
CERllFICATE 

nrnUEST 

l~I 
I crnr I 

RF.() 

CNlDHOLIJEH 
CEHTIFICATE 

CERTIFICATE AUTHORITY (CA) PROCESS 

--4' I ·~i;' I 
... 

® ~· 
+ 
fz .... 

2:i. CA dcxt1ypls s1m1111lri'J ke,· (!!3) .m:l 

car dfyjdo( s ac>X1.111l inknnal bi Wil 
'.>.illr CA r;fi'1al0 k£'Y·12xd1ang':' ki7;>. P:: ~ -lh•?l1 ch~rypl~ !ht:· cc>11ific,1h: rc•:iuosl 

usi1-i,1 lho S"1trm1:11 •J ke,·. ~, 
1~) 

23. CA ·.;;ri~•!S •:>:'ldhol:fri· st;irmlur•J t1i• 
do::rypllng ii '.>.ilh !ho card1cide1 r.tiblic 

o:iorrilur~ k•:l')' e•" <> " an:J cnnparing 

llw rosull •,;,1!11 '1 n<J.>.1')' \~'11e1alod 
lll•?SS..">JG d~Jc.sl or lh& cmlil1~11i; mquesl. 

24. CA '•'urilk.s co:flili~1r.: r.:x1uos1 usinq 

rn1 dhd•fot ooco.ml infcnml kx1 and 

inlorrnalion from !he regislrallon rant 

1 L\ Upon vmilimlim CA Cf(i<llc;; omdl·ddN 

o:-rlil'i::al•J, digilall•{ ·:;igning corlilicale 

.. ,;111 ct .. rxi .. ·ai.:~ s•;:r1::i1ur<· kef.E~~ 

26 CA gc~n:::ralc~ i:iorlific::ilo 1Psp::t1s.1: and 
d!;jtily signs ii I~~ 9:,~1mnling a rnessage 

di;,~?SI of rho rc•sr;ortE>3 and mcrypling ii 
'.\ilh lhc• CA r~i·:ali? sigrnlUIG KC'y.~ 

Cl\ or.~1~·pl':; corlificalo n: ... ;p1.--:f1&:4 'Nilh 
s11111nolric k1?)1 (ii71 frcm cmctrol1fa1 

IR1-l>:!Sl.0 
Hz 

++------ :w, CA llansrrils respon~o 10 c':'lrdl-.::khJL 

Figure 3.20. Certificate Authority processes request and creates certificate. 

When the cardholder software receives the response from the CA, 

it verifies the certificate by traversing the trust chain to the root key, as 

described in Section 3.3. It stores the certificate on the cardholder's 

96 



Cardhold&r 
nici;ivos 
c011i fi cato 

computer for use in future electronic commerce transactions. 

Next, the cardholder software decrypts the registration response 

Using the symmetric encryption key that it sent to the CA in the 

Registration message. It combines the random number returned by the 

CA with the value that it sent in the registration message to determine 

the secret value. It then stores the secret value to use with the 

certificate. Cardholder software vendors will ensure that the certificate 

and related information is stored in a way to prevent unauthorized 

access. 

CARDHOLDER COMPUTER 

29. Cardt·ol:lor sdlwaro verifies t'.\~iilicate by 

lm·m>irt;J 11-.::• 111151 chain lo II-.:; root k.:t~. 

30. Carr.lliol:kf sof11\~1h:. i:k.c1 '1Pls r0'>r•:~1so 

llsill(j the s~·rr111rollin klY!' (ii?) e 
S.:l'.'(•:l hem slcp HJ. Ii~ 

31. C:irdh:.,kfor S>::lll'.rn e '"milies CA s~;inalure 
by d•:.cf•1ptil)J ii wilh tho C.I\. publ~~ sigrntrn ~ () 
~D)' @~ and cornpmirg 11-.:: rnsull with 
a 1w11ly germ·atEd nw>sago dgesl ol llw response. 

3/. Cardh:il:IN wt\\\llO sterns e•:tlilicntc· '1nt:I 
infcmialim Jmn tho rn·Eron&:. kf f1.11l110 
ok:t:~IJ(:4'1ic (1::4·1unorcf~ u.::.o. 

... 

Figure 3 .21. Cardholder receives certificate. 

CAHDllOl.DEH 
CEHl1FICATE 

( c) Merchant Registration 

Figure 7 provides a high-level overview of the merchant 

registration process, showing its five fundamental steps. The detailed 

sections that follow describe each step. The icon to the left corresponds 

97 



to Figure 7 and serves as a map to the scenario; it is repeated in the 

more detailed sections with a shaded region that indicates which step is 

being described. 

MERCHANT 
COMPUTER 

MEHCIL'Wf' 
r<rnurnrs 

REGIS rR•\ new 
FOHM 

MERCHANT REGISTRATION 

111111>\ lE 
HEOIJE5 l 

·-·D-· 
ll. L(jl::; I RM ION 

FOl:.-:M 

r •. 1ERCH<\t·ff 
1·•---0•.----Rlicr::rvLs 

HEGl~lTR•\ rlON 
FOl~M 

,•\ND 
RFOUESTS 

CEHrlFICA'TES 

r.11'1Klli\N1 
CEHllFl':AIC' 

1irours1 

CERTIFICATE 
AUTHORITI' fCAl 

PROCESS . 

CEHllFl(~l\fT 

N.JflK)HllY 
PIRX::EStJES 

l'EOUGST /•ND 
SCNDS 

HLGISH~·\TION 
FOHt.1 

, __ ___,., .. D __ _,.,.. crnrlFICAn: 
f>,Uflt:)RIJY 

t--------t PHO:::ESSES 
r.1rnc 11.M·H r'rnur::sT t<l'm 

Mtm:r·t•,Nr crr:nrnc:.:rrs cm'.mrs D.. cr;r:mrrct·.·rr:s l:::ECEJ\fbS -· 
CEHrlFICA.lES 1••---

Figure 3.22. Merchant Registration. 

Merchants must register with a Certificate Authority (CA) before 

they can receive SET payment instructions from cardholders or process 

SET transactions through a payment gateway. In order to send SET 

messages to the CA, the merchant must have a copy of the CA public 

key-exchange key, which is provided in the CA key-exchange 

certificate. 

The merchant also needs a copy of the registration form from the 

98 



Merchant 
roquest& 
r0gistration 
form 

merchant's financial institution. The merchant software must identify 

the Acquirer to the CA. The registration process starts when the 

merchant software requests a copy of the CA's key exchange 

certificate and the appropriate registration form. 

MERCHANT COMPUTER 

Figure 3 .23. Merchant requests registration form. 

INlflATE 
BEClUESl 

The CA identifies the merchant's financial institution and selects 

the appropriate registration form. It returns this registration form along 

with a copy of its own key-exchange certificate to the merchant. 

99 



Cortific11to 
Authority 
PfOCl?SSC•S 
rnquos t and 
s«nds 
rnqistration 
form 

INl!lt<lT 
liEQUFST 

l~EGISIHAllON 
FOnt,l 

CERTIFICATE AUTHORITY \GA} PROCESS 

CA delern1if):;s ni:p1op1bb 
rc•;iislralio11 !01rn 81Y.1 diqilalt1• 

signs ii by g:-1181 alil)J a rff.:-ssa93 
dii;y.:-sl of Ii-.:; !onn md Of)~lj'pling 
ii wilh !ho CA p1i .. \:llo sign:ll Lm 

kef. 8Q. 
,j. GA s.:'11ds rogt>lrnlion form 

ard CA c•;11Hie:1le<s lo rnmchw11. 

Figure 3.24. Certificate Authority processes request and sends registration form. 

The merchant software verifies the CA certificate by traversing 

the trust chain to the root key, then holds the CA certificate to use later 

during the registration process. Once the software has a copy of the CA 

key-exchange certificate, the merchant can register to accept SET 

payment instructions and process SET transactions. The merchant must 

have a relationship with an Acquirer that processes SET transactions 

before a certificate request can be processed. The merchant needs two 

public/private key pairs for use with SET: key-exchange and signature. 

The merchant software generates these key pairs if they do not 

already exist. To register, the merchant fills out the registration form on 

the screen with information such as the merchant's name, address, and 

merchant ID. The merchant software takes this registration information 

and combines it with the public keys in a registration message. The 

software digitally signs the registration message. Next the software 

generates a random symmetric encryption key. It uses this random key 

100 



to encrypt the message. The random key is then encrypted into the 

digital envelope using the CA public key-exchange key. Finally, the 

software transmits all of these components to the CA. 

4.3 Merchant Registration, continued 

MNchant 
rncc,iw:-:s 
rc·gistration 
form and 
rc;quGsts 
certificates 

MERCHANT COMPUTER 

:-. ~· • .t;'l'\':h:inl-:'itWl.::w.;· l';i'.<~~U,;:":• r.:;i.jM':J~:,.(1!!.'fl!l11;,j 

·.~~-·tl!Y.:~ Ct\ Xf!i!(~)i;-! t·'1' tu,i;rs:B h\l ti'V~i t:Wdf"> ..... -------+--oo 
!Q no; r·:-01 ~t!{ ~ 

~~- M;f«YtV'il 'Hi!'.YN\( V·Zrl¥fr'.f c.~ . .'>1:J:Mitrn t.~; 

-:b..'X)1<H·>gil'Nt!t: h>:i Cil.pbit'':'i\gr::-li.r-.z 't-><<l o~ () 
11:r~ :::i:Gp.nt-v:~ Hx; ;·~!-'l~ ·11f-t) '.t fht1'/!f !fi'll'd ;:,i.;ii 

ITTG:S'i;):ji'..: ct0'~! -:f !~ rn11s:r.~11cn t:-rrn 

::. McfdYnl compldH r~g1grn1bn fonn. 

i~'. M~{\':h::rn! '101W:·f~· <::!•);';-!.~-:; m~~'1~?~·~ 011ti r.;i,q;;-;-sl ::-ndt•:{n 

m~r,:h:.n! piltJK': h .. y~ 1r,,j a"j~:H)' !-"fr~ n ll)' gu-titMr~~ .1 

:,:i:~~;·:n~;~~~~;~:.:'::;;:~:,;:;~~~10;.:'~"'.11';h9 I 

1;,' ¥.t;f.Ti:rn! -sctw.x;; H1r,;;mf5 •Efl"/f~,;s; r~¥tiK'-"tt< 1:w-;t1is: 

WENCHM4T 
,:Ef<l!FJCA1T 

RE,:~Js;·r 

lif"'I 

rn.:'.H>j.;. bCA ------+----' 

Figure 3 .25. Merchant receives registration form and requests certificates. 

When the CA receives the merchant's request, it decrypts the 

digital envelope to obtain the symmetric encryption key, which it uses 

to decrypt the registration request. It then uses the signature key in the 

message to ensure that the request was signed using the corresponding 

101 



private signature key. If the signature 1s verified, the message 

processing continues; otherwise, the message is rejected and an 

appropriate response message is returned to the merchant. Next the CA 

must verify the information from the registration request using known 

merchant information. The process by which the CA and the acquirer 

exchange information and the steps taken to verify the information in 

the registration request are outside the scope of this specification. As 

described in Section 4.1, there are several ways to configure the 

processing performed by the CA and the Acquirer, such as having the 

payment card brand provide some or all of the functions on behalf of 

the Acquirer or having the Acquirer provide all of the functions. If the 

information in the registration request is verified, the CA creates and 

digitally signs the merchant certificates. 

The validity period of these certificates will be determined by CA 

policy; often it will correspond to the expiration date of the merchant's 

contract with the Acquirer, but it may expire sooner. The certificates 

are then encrypted using a new randomly generated symmetric key, 

which in turn is encrypted using the merchant public key-exchange key. 

The response is then transmitted to the merchant. 

102 



4.3 Merchant Registration, continu.:jJ 

C eortific ato 
Authority 
proc,•ssos 
r0qu&st.:md 
cr>:>at&s 
c.ntificati?s 

l.lEHCHANI 
C ERllflCATF 

HEQLJESf 

li'iii"I 

CERTIFICATE AUTHORITY (CAJ PROCESS 

_.. I CEl'XT I •-,. RF) 

+ 
€''.;..: 

n CA d1:.::r1pls s1mmolric kei (iin 
ard rnHcti<-.11 acwunl daia !iii 
1,11.1th CA f:fival o k~;1~oxcl1m);16 

ke;, !J~ lhon d:•~r~·pls lhE· 0 moss.~e u~.lng ttw s1·rnnmlrio k•Yi'-11 

Ci< w:i ilios rna dnnl sigmllff· by 
dcm•1plinq ii wilh lho merchanl put4ia 

sigrmlur e ke·1· © · an:l mrn~<?i ing 
th~ rc•sull wilh a ro::>;.t• gcmxatod 
ITl•?s.saJf: digc>;I of lhe c1~1 tificato r<XJUOEI, 

I (~~1g I 15. CA c-cfllirms c0rlifica10 IL'(fllm;I usin;i 
_ _ nwrchanl informalion. 

CA (Jl'llm'll~-s cNlilic:lh? rnsr..:mso 
m¥:1 digililll't' &~JlS ii by gonoml ir't;I 
a nws.sago dig1:.sl ol" lh•' resr..:11so rn1d 

micr•;pling il with llm CA pr r.:nlo 

signalure ke"t«E•:t 
,....;i------18. CA lr<m~rri Is r8£POnsc• lo rw:fohanl. 

Figure 3.26. Certificate Authority processes request and creates certificates. 

When the merchant software receives the response from the CA, 

it decrypts the digital envelope to obtain the symmetric encryption key. 

It uses the symmetric key to decrypt the registration response 

containing the merchant certificates. 

After the merchant software verifies the certificates by traversing 

The trust chain to the root key, it stores the certificates on the 

merchant's computer for use in future electronic commerce 

transactions. 

103 



Morcllant 
rncoivf!s 
certifi cat.: s 

MERCHANT COMPUTER 

19. M>21dmnl wflwme '<Hific,s c•?1lilic~il1~~ by 

lrn'•ffsn·~ 1i-.:, lrt.tiil cll;Jin lo lt.:-rool key •,----t-t 
MFHCHANT 

CFllllFIC.11.TE.S 

20. Mad1snl wllwarn '>Y.:iilic•s CA sg1alm1 b•1• 

dc.::r1pling ii wilh lh~ CA pul:lic- sigmflJe key@d; ~ 
and cornpminq t l>.'l rnsull wilh fl nc'.~t~ V 
gc>ncrnkxl ff>'''i>rn;J1; digC<sl ol lhe w~ponso:>. 

i'.1. Machan! wll•Narn sl::fe~ C()llilic:ale~ 
ard i1bml3lion lrorn r.:>sr.o:im.0 lor lulwo 

olf~~lronio 1xnrnC<1c1? tJSo. 

Figure 3.27. Merchant receives certificates. 

(b) Purchase Request 

-

Figure 8 provides a high level overview of the purchase request portion of a 

cardholder' s order process, showing its five fundamental steps. The detailed 

sections that follow describe each step. The icon to the left corresponds to Figure 8 

and serves as a map to the scenario; it is repeated in the more detailed sections 

with a shaded region that indicates which step is being described. 

104 



CARDHOLDER 
COMPUTER 

f:C.•\F;:Dttct DEH 
INlrl/dES 
llFOULK! 

GO.HDllCtDl'.I~ 

f~ECEll/ES 
m:srot.JSE 

AND 
SFNIJS 

BEOUFSl 

PURCHASE REQUEST 

INlll,.\l I' 
i-;:r;.,;;ui:sr 

--~~·o--~~· 

MERCHANT 
COMPUTER 

hlEHCH•\I~ f 
IN IT l<'d E m:NOS 

RESPONSE CFfrllFICfd F(S/ 

... ·----0 .... ~1---- ~------i 
PURCllM;L 
REOIJESl 

-·D-· 
------t l'Ull•:Ht..&E 

f,1EHCl'l>\Nl 
FHO::!FSSES 

l'.FOUF:>l 
MES-'S-1\GE G•\f~DIKA.DEI~ 

l:.::ECEl',/ES 
PUHCHl'SE 
RFSF'JNSF ... -----D' ... ~1----------.... _____ __. 

Fi:!,llrl' .~: Purdrnsl' lkqu c-st 

Figure 3.28. Purchase Request. 

The SET protocol is invoked after the cardholder has completed browsing, 

selection, and ordering. Before this flow begins, the cardholder will have been 

presented with a completed order form and approved its contents and terms, such 

as the number of installment payments if the merchant is billing for the transaction 

in installments. In addition, the cardholder will have selected a payment card as 

the means of payment. 

In order to send SET messages to a merchant, the cardholder must have a 

copy of the Payment Gateway' s key-exchange keys. The SET order process is 

started when the cardholder software requests a copy of the gateway's certificate. 

The message from the cardholder indicates which payment card brand will be used 

for the transaction. 

105 



Cardl"lold0r 
initiat0s 
roquost 

CARDHOLDER COMPUTER 

1. C~n:lholder $h•)l)S. 
INITIAIE 

HEl'.JUESl 

P!Nff 
2. Cmdh::Mor rofl•;.\31•? serds irilhlo 1t:•:fll•?!J lo lll(l1drnn1 - -!Jo. '---'"'-"''__. 

Figure 3.29. Cardholder initiates request. 

When the merchant receives the request, it assigns a umque transaction 

identifier to the message. It then transmits the merchant and gateway certificates 

that correspond to the payment card brand indicated by the cardholder, along with 

the transaction identifier to the cardholder. 

Morchant 
sc•ncfs 
certificat0(s) 

MERCHANT COMPUTER 
INITIATE 

HFOUFSl ----.. 3. t,1orctn·r1 sot1wa10 rn:d-.-e:;;, irilblo 1oquo!J. 

INITIAIE 
HESPONSE 

Figure 3.30. 

4. t,1ordn·11 soflt1mo (Jd'!Oralos 1•3!\f:lOlls•:< 

md digilsll1• signs ii th,• gmcmlinq 

;:i rnc'S'.i.'.!Qt' dgesl ol lho l":.!;f)onso an:l 
onayplil);J i I \\ilh II., ffn'fd-.1nl 

r.fr•;:~IO signature; kc1~·- (} 0 · 

Ci. t,fordu·11 softi\•are se1d6 1.:-;p::n,;,, illong with 

lh<l morcl~nl on:I r:xi/mCf1I gal ~"N"ll 
cmlili1x1ltls lo cadhol::k•r. 

Merchant send certificate (s). 

The cardholder software verifies the merchant and gateway certificates by 

traversing the trust chain to the root key, then holds these certificates to use later 

106 



during the ordering process. The cardholder software creates the Order 

Information (OI) and Payment Instructions(PI). The software places the 

transaction identifier assigned by the merchant in the OI and the PI; this identifier 

will be used by the Payment Gateway to link the OI and the PI together when the 

merchant requests authorization. 

Note: The 01 does not contain the order data such as the description of goods (the 

items and quantities) or the terms of the order (such as number of installment 

payments) . This information is exchanged between the cardholder and merchant 

software during the shopping phase before the first SET message. The cardholder 

software generates a dual signature for the 01 and the PI by computing the 

message digests of both, concatenating the two digests, computing the message 

digest of the result and encrypting that using the cardholder private signature key. 

The message digests of the 01 and the PI are sent along with the dual signature. 

Next the software generates a random symmetric encryption key and uses it to 

encrypt the dual signed Pl. The software then encrypts the cardholder account 

number as well as the random symmetric key used to encrypt the PI into a digital 

envelope using the Payment Gateway's key-exchange key. Finally, the software 

transmits a message consisting of the OI and the PI to the merchant. 

107 



Carclholdeer 
ro·:0iv0s CARDH0LDER COMPUTER 
rc.&ponsi:; and 
son els rnquost t3. 

7. 

8. 

9. 

10. 

11 

12. 

Cardtdder sdlwme recei»es initiate resp:m&e 
ard "'erifies catific:iles by 1rn·.1€f~i11g the !rust ~ 

chain to tM root key. 

Cardtdder wtwarE< '.lerifies 1mrchant 

signature t'i' decr1pting it with lhe merchant Q 
put4ic signalure key~>· (> cmj 
O::f11X!rir.g the ri;.sult 1\i lh a ne.>iy ga1.;rated 

mes~ digest C•f the response. 

Cardtdder sdtware creates ader 
I informstion using information from I ('.,j 

shopping r:fia&e. 

Garclh.::•ld€<r cc·mplot,;s p.1y11N111 I Fi I 
i nstnictk•tis. 

Cardtdfar wflware gener;:ite<; a d.ial 
signature by hashiri~ a comalenotion of the I cx()I 
mes&')~ digests of It.? 01 aid th? Pl aid 
encr;pting th<: r,;sulting dual h..~h with tM L::3(>I 
c.ardt.:olj;;r pri'o-ale si;,Jmlure key. ;:;) · · 0 

Csrdl"):lder s.::ftware em1ypts Pl •,\ith J f 
rari±ffly gffierated s1·mmelric key ;;# 1 ). 

1 
This key, along with th? G.-Ydholjer·s I ~ I 
aco:xmt infonrotion.Bij is. then €flcrypted ~ 
\\ith the ~<aj•ment galewa:· p.iblic 

kE'.i~e:..change Kl?'l €> 9-;, 

Cardhclder wt1•me tranffi'i ts 01 

ord ffiOf}'pted Pl to the merchz.nt. 

INITIATE 
RESPONSE 

~ . 

• 
~ - rifJ 

C . .i.RDHOLDER 
PURCHASE 
REQUEST 

L4)J 
.... 

r:;Ait'.-.\\'AY 

~I 
IC4)lf 

+ 

~ 

Figure 3.31. Cardholder receives response and send request. 

When the merchant software receives the order, it verifies the cardholder 

signature certificate by traversing the trust chain to the root key. Next it uses the 

cardholder public signature key and the message digest of the PI (included with 

the OI) to check the digital signature to ensure that the order has not been 

tampered with in transit and that it was signed using the cardholder private 

signature key. The merchant software then processes the order including the 

payment authorization described in Section 4.5. Note: It is not necessary for the 

merchant to perform the authorization phase prior to sending a response to the 

108 



cardholder. The cardholder can determine later if the authorization has been 

performed by sending an order inquiry message. (The order inquiry flow is 

described in Book 2: Programmer's Guide.) After the OI has been processed, the 

merchant software generates and digitally signs a purchase response message, 

which includes the merchant signature certificate and indicates that the 

cardholder's order has been received by the merchant. The response is then 

transmitted to the cardholder. If the authorization response (see Section 4.5) 

indicates that the transaction was approved, the merchant will ship the goods or 

perform the services indicated in the order. 

r.lerchnnt 
1xoc0M;1?s 
rnquest 
nwssago 

CJ\H DlltJl..DFH 
PUHCHr,sE 
f~EC!UEST 

MERCHANT COMPUTER 

13. Mmdu-11 sol1wao v1.,1ifios cadlddo1 
oc11iilirn t<!Ji lrfwnsin;i 11-~_, I.lust chain 
lo lht:> rool ke•;. 

ltTul -
~ 

H. Mmch:i1I. sollwao »EfiliE<:; cadlddo1 
dml i;iq11c11um m Of bi' d;:;~r}pling ii. 
with the c;ardh::Mm rA1bli0 si·~rrnluro 
key@ "o , :and cornpmi1g !ho 
restJ t wilh fl 1¥.'•''I;' g:~1erntod 111os:;;.1ge 
dgesl or the OJJ)::alenalion ol thll 
111oss1go dgosls or !ho 01 ~m:1 ill'' Pl. 

PUl~CHASE 
F?.ESPOMSE 

15. riforchant pr•:<COS~•:S f(Hlll•oSI 

(indudi119 fo1warding Pl tQ the 
pa1·111.:-11t gM£·,•;ay for mrl:horiz.ation). 

1 G. M@::hml soll".••a \-) m-:rilc-6 rxir chase• 
~ rc-si:,1·1!iii• indudi·i·J rncichant 

~ sigrnluc• CHlili:inlc• and digital!¥' 
signs it by ge1¥imling a 1noss.age 
dgost of Iha pi.reins<' 1e;;ponso ;mj 

ciier,ptir-.;J ii with the· mrndnnt rAi'.nb 

sigmtuG ~fi'jl. [} o,· 

1 r. t.forchml sollw.'ft~ lransrnils puch;1s.c• 
r•:-:-sr.•:11s.::· lo (Hdhol:t:or. 

<t,__,1----- 18. If transaGtion 'Nas Juthoriz.ed. 
merd1an t f!.1 lfil Is on:IE>I to c.mlh>:•ld>':'r, 
(().g., by shippin9 ~1oc.:ls). 

Figure 3.32. Merchant processes request message. 

109 



When the cardholder software receives the purchase response message from 

The merchant, it verifies the merchant signature certificate by traversing the trust 

chain to the root key. It uses the merchant public signature key to check the 

merchant's digital signature. Finally, it takes some action based on the contents of 

the response message, such as displaying a message to the cardholder or updating 

a database with the status of the order. The cardholder can determine the status of 

the order (such as whether it has been authorized or submitted for payment) by 

sending an order inquiry message. 

This message is described in Book 2: Programmer's Guide. 

Cilrdholdcr 
roct?i\'0S 
purcha&o 
f0!5p011S\? 

CARDHOLDER COMPUTER 

l!l. Cadhoktcf sollwaro ;wiflc,s rncreh:ml 
sgrnlurn C>'!l1ilical•) by 111rmsi1g 11¥,; 11us1 d1ain +-
I".) lhe t(X~ ke'(. 

20. c,~dhol±f i;.::•fl•.wlf)J »Ninos mcfclunl digilal 
si;;iialuro L•~ d&~l'IJlling ii wilh lho rnm d1ilnl 
p.ibliJ sigmiluro koy@ o-· ari:l cornr.~ing 
lh8 resull wilh a rn;wly gc•nC<ral o:<l rn:;ssagc· 
digr•st ol lhr< pLralmo 1e>r-H1so. 

PIJRCHA.SE 
RESPONSE 

+ 

Figure 3.33. Cardholder receives purchase response. 

( c) Payment Authorization 

Figure 9 provides a high level overview of a merchant's payment 

Authorization process, showing its three fundamental steps. The detailed sections 

that follow describe each step. The icon to the left corresponds to Figure 9 and 

serves as a map to the scenario; it is repeated in the more detailed sections with a 

shaded region that indicates which step is being described. 

110 



MERCHANT 
COMPUTER 

t.ll'llGMANl 
r~i;c;,ur;;.srn 

AUTllOl'.IZ.~ rlON 

l.lH~l1f•.Nf 
PHOGESSEf> 
HFSPONSE 

PAYMENT AUTHOR!ZA TfON 

,.\Ul HOI·~ fl,.\ 1 IC•tl 

---·'lll>D--·· 
.... .(--0•.(--

MJJHOl'<llt< I ION 
lffSF0HSE 

Fi~m·r 9: Paym1•11L Aulhrori1ulion 

PAYMENT 
G.4.TE'l'.'AY 

l'.•\11.JEN'I 
Gl1.1FN!i.Y 

PFWCESS[S 
NJHDl,ll/1 TION 

l'H:iUESl 

Figure 3.34. Payment Authorization. 

During the processing of an order from a cardholder (see Section 4.4), the 

Merchant will authorize the transaction. The merchant software generates and 

digitally signs an authorization request, which includes the amount to be 

authorized, the transaction identifier from the 01, and other information about the 

transaction. 

The request is then encrypted usmg a new randomly generated symmetric 

key, which in turn is encrypted using the public key-exchange key of the Payment 

Gateway. (This is the same key the cardholder used to encrypt the digital envelope 

of the payment instructions. ) The authorization request and the cardholder 

payment instructions are then transmitted to the Payment Gateway. 

Note: The SET protocol also includes a sales transaction that allows a merchant to 

authorize a transaction and request payment in a single message. While the sales 

message includes an additional block of data on the request from the merchant, it 

otherwise parallels the message flow described in this section. Details about the 

processing of a sales transaction are provided in Book 2: Programmer's Guide. 

111 



Merchant 
rnqu0sts 
auth oriz at ion 

s 

MERCHANT COMPUTER 

1. t.kfl~h:ml soflwarc• crc<:c)fC•S ~l!li)::ri.tJ tbn 
fC<flY.~bl. 

2. lkn::h:m1 wflwarn di~ilall·i· 
st;J1s au1ho1~'.alio11 K.'JUl3~1 
tJp' gc·flt?laliri;J fl f110SS..'¥,JO dt;r.'1>1 
cl lh1;, aJllD i.rali•::r1 1 tXllC'1 aid 

CilCf'tT:H1g it wilh !ho 111c•1di•mt 
r;fi•;al(~ si;Jn;:ilurn koy. IE•' o' · 

3. M::fclnnl sol1•1;\1rc• (?f)cr,·pts 
aulho1 inilion 1cquc~~I .,..; lh 

a 11m::trnlv Q:.'ff•)l~~h.:d ~ 

symnKllic ht,· fit?). I his kc•'!' ~? 
is !hon oncr·,pk:>d .,,; lh lh:; 
f'..'<li'm::-111 galeN,3Y r.ublk'. 
kf''>'-<'".>:Cfl;if)"o) f;E,,.c,.. ' . ., ' ' " ' ''\,;/ ... 

4. M:Tclnnl soflW<JfC• lrnnsmils 

('flCl!J~C<l aulho1 kalion ic:-:1uo~1 

and ;;r.::1yp1od Pl from 

~ 
~ 

ih:? (ffdhoi:b p1.11chas<? rc•11.10S1 -----

to 11-.::· p.1'11rn:f1i q~l<:WJy. 

MEHCHANI 
,•\UlllOHILll.l ION 

nrnuEsr 

>'.:i.\TI:',\'/,)' 

[Fl 
~ 
~ 

+ 
(~,\ 'l'E\\\W 

lt~I 

lo01I 
+ 

Figure 3.35. Merchant requests authorization. 

When the Payment Gateway receives the authorization request, it decrypts 

the Digital envelope of the authorization request to obtain the symmetric 

encryption key. 

It uses the symmetric key to decrypt the request. It then verifies the merchant 

signature certificate by traversing the trust chain to the root key; it also verifies 

that the certificate has not expired. It uses the merchant public signature key to 

ensure the request was signed using the merchant private signature key. Next the 

Payment Gateway decrypts the digital envelope of the Payment Instructions to 

obtain the symmetric encryption key and the account information. It uses the 

symmetric key to decrypt the PI. It then verifies the cardholder signature 

certificate by traversing the trust chain to the root; it also verifies that the 

112 



certificate has not expired. Next it uses the cardholder public signature key and the 

message digest of the OI (included in the PI) to check the digital signature to 

ensure that the PI has not been tampered with in transit and that it was signed 

using the cardholder private signature key. Next, the Payment Gateway verifies 

that the transaction identifier received from the merchant matches the one in the 

cardholder Payment Instructions. The Payment Gateway then formats and sends 

an authorization request to the Issuer via a payment system. Upon receiving an 

authorization response from the Issuer, the Payment Gateway generates and 

digitally signs an authorization response message, which includes the Issuer's 

response and a copy of the Payment Gateway signature certificate. The response 

also includes an optional capture token with information the Payment Gateway 

will need to process a capture request (see Section 4.6). The capture token is only 

included if required by the Acquirer. The response is then encrypted using a new 

randomly generated symmetric key, which in turn is encrypted using the merchant 

public key-exchange key. The response is then transmitted to the merchant. 

113 



Pavnwnt 
Ga.t0viay 
proc.:ossos 
autl1orization 
reqLWSt 

•\UTI iC'F~l./l, Tf::=!·..f 

+ 

+ 

~~. LJ 1r ! CfW. ~\ 11 <'..'Z { 
P.ESP•:'tff:S 

+ 
t~~!IWXt 

1m1 
rr:Til 
~ 

+ 

~ 

<> 

mill 
ll!>.) 

·t 

DD 

PA.YMENT C;A.TEWAY 

<::,:J,~W'Jl v.;m!(i!:· rnum:1:r ~-::-.;:1,J!e~!':~- t<'i io~,...~r:.~;9 b><:· 

t:u::.! ct1.\r: ''f.:.: ,,>J!l.:;,•( 

'3;,!.::.'f,::.q 11•.~:typ~~ ·:J.:.rn-..:;t ~: ~-~:t ,~:;;,~ ·MS"l 9;1t~m.-y p.:.w1!>J 

:,:~;;'::'~~:~·;;,;-;~:~ f" """Yi'" ''"'t<o;,,,tc.n '"'1""' 

,-ltJ<:.WY/ w·n1,~~ rrrnu:t1.-:t:t ,jiJ!tii !i~'mUc-t .. y ·:K·{ryptrq n v.tn lti>:o 

rrnid1.Ht !==ti.Hf: ~lJ">:J~l§•l ~~~>0""~ -:;-.nd {')Htf0.:tmg ltE<·rn5dt 
·Mni,;, ri:;,~.-.~,! g;>i•~rnk~1 mk'•!'-'iif'~ ·"!~j':;;.f,;t (~om n:nn·<'l:.m:.n r.:;'V>-Z~'#. 

,:;_~J-:;;w:q i.~"n~~s, <:·;;ctvJ~ff :li .:~wc::1~· t.,>' LY/.->::"l~ttig n~; 

t~,i';J B::'~!": !(.~ §-·,-<- ~i:.)' 

G;/,:<.'li'ft/ ~',Hif~~:_, ,;;g,:tir1H>.t t:k;J s:sn.1n.;, ,:<! !!1~ F1 t>y .::;.~~JTlrr? 
~r y,5t1 !ht< ;::>.:Ot.'lh:4::t:,·~ ~"1th: ~~fYi~if"< ~k)0· .o' ,,, ·:m:\ 

::t.Hf:-t11g nr:' r-;_,;;jJ 1/it!! ~~ !l•:U/1'.i 'J~<f~nt>«.i rr;,!-.'.::·~i]'> ;j~'~! A 

b•1 0~1~!_\it~~::ib!1 lil b2ir9<>~t:(fa1~?;~b d bi'.i C{ :wd b~· H 

·i l, '~j;·J<;•t.wt' i:,rc,H{,~':t .:~~-n~~._!;;W.'1_l t<-;;-!\Wv~~1 m~~;ti;·,sl! io 

'.""ij!r~:<tn:~:r> r;:,qs1::1 '4l'ld t::>!ii"'r:-&~;:-:; H 

·'.·"i:.i.;;w:zy ~~fff;~, :wtirrntrJ1rn1 µ,;;~~ih'~l ltlV-Jj:f'i }"! fr~:sw:J 

r,.:;rn·:~): !D ~:.r>!h·:4-:·1-;f~ !~<m:q! ITT:1mJ~:--n 

·u. ,:~:/i~w.'!i G"Vi~«'& .~;t!~ml'('.fi.1Dr: t,;;~">!1~-1 m;·'5r,,_<g;. ·m.j 

<:1lgl:nl t;.qn~ t 'i:/j 9~-!lG"U~~J ·:i: rr:~~-~'.i:JF· d;j:~! r;~ h, 

:;~::;:~:';:)1!,:~~;:~;~~~7:i~~-l~ t l\ib tu 

1n;'','~I '·' ;~~~.:;;~,;:.~:~~~,s;~;;,;~·{:~s:,:,~~~~·~: f, 
l"'F7?F11 ~!~, o:.¥:.w:q r---;--.;~~,:,_,:t, \'-::fl!.f.;- !(;$,.;fj (ifr:J >:1ffl:i~l !~~6 1 b'j gc«(.C;'!fft~ 
~ -:, rn:,~!A:'(F• t1q;>=:;! <.d h~ >:'.::.~fll.r~:,(.;.::\1 .:ff~::i .:;flrfyptr9 !! wni it:;,. 

':f~l.:.W~)' pWlif; Sl--?::1.i..f~ ¥..iJ{ -'<O 
~i), ':;;;;.Y:..w:~/ i.<l~l'.1'F~:l ,::0!>?'+1 !c?:u-1'tiWi ·:-. n~w r·:m:txri'./ s;-:.::m£,~/0t.j 

~~;;~~£~~,·::\'.~~l.:;~f::;~~::.~~~:~'.;~:,,:';,:': i 

Figure 3.36. Payment Gateway processes authorization request. 

When the merchant software receives the authorization response message 

From the Payment Gateway, it decrypts the digital envelope to obtain the 

Symmetric encryption key. It uses the symmetric key to decrypt the response 

message. It then verifies the Payment Gateway signature certificate by traversing 

the trust chain to the root key. It uses the Payment Gateway public signature key 

to check the Payment Gateway digital signature. The merchant software stores the 

authorization response and the capture token to be used when requesting payment 

114 



through a capture request (see Section 4.6 ). The merchant then completes 

processing of the cardholder's order (see Section 4.4) by shipping the goods or 

performing the services indicated in the order. 

l.lt>rch.:int 
proce&st>s 
rospons.s· 

MERCHANT COMPUTER 

18. Mad1ant soft·1.ar.;; '«erifie& gatewa:,· 
catffi~tes. by lr3'1t?rshg tlr? lrust ch..~n •·---. 

to the red key. L i-
19. Madiant sofl.·1.me decry~·ts symrnetrb 

11.e'i (#3) l\ith merchant prr«at.;; 
l\e'J'-e:>:diarge key. !)•·.,.; lh.;;n 
decr/pts aulhorizatioo respon&e 

using lhe symrnanc key. ~ 
lll'-

1~1 

20. Madlant softl'.ar.;; "'erifies gate'.\\l'.f' digital 

signalUre by decr'jptirg it 1\ith the g:i teway 0 
publi:l signature k<>:,·E) 

0 
and comparirg 

the reeult with a ne1\i/' g.;;nerated mes.~e-
digest of the aulhorization respon&e. 

21. Merdian! softwar.;; stores encr1r:ted 
i:>Jj:tl.J"e- token crid en·,.aopE< 
fer lat<?r e;:ptur.;; i:rnoessir~. 

22. Mei ch~nt completE•s processing 
of purc.lu ~" 1 c<ejllt?st. 

Figure 3.37. Merchant processes response. 

( d) Payment Capture 

PAYMENT 
GATE'...-AY 

AUTHORIZA T!Ot-l 
RESPONSE 

l~I 

11 
·\l};H 11 
f~£..$ .... 

v 

+ 

+ 

~ 

Figure 10 provides a high level overview of a merchant's payment capture 

process, showing its three fundamental steps. The detailed sections that follow 

describe each step. The icon to the left corresponds to Figure 10 and serves as a 

map to the scenario; it is repeated in the more detailed sections with a shaded 

region that indicates which step is being described. 

115 



MERCHANT 
COMPUTER 

t.fr:r~:::HHff 
flE•:)UESlS 
f'/IYMEN1 

1--------1 

MERCHl•Nl 
f![CEr•/ES 
llESPONSE 

PAYMENT CAPTURE 

(:M'IUHE 

---·D---· 
..... --0 ...... --

C,\PTURL 
P. E&l'\:.•tJ $[ 

PAYMENT 
GATEWA:l' 

Pl'.'tMEfff Gl'.lE'.V/..Y 
Pl~OCEf,SCS 

CN'T'IJRG 
HEOUEsr 

Figure 3.38. Payment Capture. 

After completing the processing of an order from a cardholder (see Section 

4.4), The merchant will request payment. There will often be a significant time 

lapse between the message requesting authorization and the message requesting 

payment. The merchant software generates and digitally signs a capture request, 

which includes The final amount of the transaction, the transaction identifier from 

the OI, and other information about the transaction. The request is then encrypted 

using a new randomly generated symmetric key, which in turn is encrypted using 

the public key-exchange key of the Payment Gateway. The capture request and 

optionally the capture token if one was included in the authorization response (see 

Section 4.5) are then transmitted to the Payment Gateway. 

Note: While the flow described here contains only a single capture request, the 

merchant software is permitted to batch multiple requests into a single message. 

116 



Morchant 
rc.c1u0sts 
paymont 

MERCHANT COMPUTER 

:.-i: t-.k-rch ... T1I !idt\'1\'ifl'.' iU:¢:lr. lrP~fdt.:1111 t«lflr.111~~ 

i' c."J:lue roqt»cA ,,.,;J dij1dt1 <i(''" i bi• 
gr.f¥ifi'llil~l .'.'J trt::"'::S<Jg~ <l~~l{!::.f d th~ •>':f1lure 
ft!-(jlt'..~!i O''.'O:i et¥:rf1~in9 • \'.;lh 1111.· lllNO::h.'"Jli 

1:fi-..i1h.• ~~gr..;urn ~Y."{· 1:1" 
0

. 

J. t.~rd1~i oof11..a,·.y~ e1~:r~pb c.:Jplure- rt-qm!!OI ® 
wilh -a Mn·:kiml~· gi1i·,~t111r.~d !.(lt'Ht!-lrk J.:e~· (#:.). ll(. 
IN!; ko1· i" 1f'Jcr1 a'ICrn:lod ~;1h !Im P"l'""'"' 

\j!llO\WY/ puLlk l:>:'/-e»:f·,._yF kt»; 0 J.:; 

4. M1~·:h."111I ~..dru":tr12' 1r.:·1Y:-'r~I!> e:n:r~r~e-.:1 .:~tpft .. c 

ux11v.~r.1 ..,.,d N-r:~.pk·d ~~ar..tut: k1kcn r•~\·t)l.1$1~· 
!ik'Jr~J fr·:int 1 f~ ·:'f.Jll.:1ril\1lbn r~!op<1ll!» 1\.1 lh:

fA'Y/tnCf'I !]lllt"o'Rt~'. 

Figure 3.39. Merchant requests payment. 

. 

f,Ll;,\.;IW·JI 
CAPlUP.C 
Hu.:urnr 

+ 

+ 

When the Payment Gateway receives the capture request, it decrypts the 

Digital envelope of the capture request to obtain the symmetric encryption key. It 

Uses the symmetric key to decrypt the request. It then uses the merchant public 

Signature key to ensure the request was signed using the merchant private 

signature key. The Payment Gateway decrypts the capture token (if present) and 

then uses the information from the capture request and the capture token to format 

a clearing request, which it sends to the Issuer via a payment card payment system. 

The Payment Gateway then generates and digitally signs a capture response 

message, which includes a copy of the Payment Gateway signature certificate. The 

response is then encrypted using a new randomly generated symmetric key, which 

in turn is encrypted using the merchant public key-exchange key. The response is 

then transmitted to the merchant. 

117 



Mor.::lrnnt 
rncdv0s 
ms pons.::, 

MERCHANT COMPUTER 

M. t.fo1cl-.'11 i sottwarn "'uli Ii Gs cpli7Nay 
cortifirote by tnr.-u:iing lhil trust chain .. ,1-----.. 
lo tho 1o:il k<y 

1 &. t.101ctrc'll I sottwm o dt.uypls sy1111n::~ nc 
key (#G) with nt<?rchanl p1r•al•3 
kl(,.·.exi:t1anget ki?!'.E' ,.., .. thi?n 
d:.:;r1•pts .:;-~ptuw 1<7'E.1:ons.3 u:iing 
ihe S'tl111110ilic ~£'1'· e 

gc 
1 G. M131clk:rt1 sottwm 1; "'01i!k·s g:~li7t1ay digital 

sigm ILJIO 1:11• d''°'i'Plirg ii \\ilh i11Q gillii'tr.1'.• 

r.ublic sl;]latura kE"l® <> ar.:1 co1nr~inng 
tlw 11:-01.11! 'Ailh il rw·~i't' ·~mo1ntcod lfl•3S!>'.1go 

dgosl ol lhc• c"1t=Hrn rnsponso. 

--

Figure 3.40. Merchant receives response. 

118 

l'AYMENf 
G/),lE\'h\Y 
CAPHJHE 

RESPOMSF 

IF""I 
~ 
~ 

+ 

~ 



IV. USING OF SECURITY PROTOCOLS FOR APPLICATION PAYMENT 

4.1 Sending Password to user 

(a) Meaning 

Protected/private a set of unique bit patterns that are used to represent letters 

of an alphabet, decimal digits, punctuation marks, and other special signs and 

symbols used in grammar, business, and science, such as those displayed on 

conventional typewriter keyboards used to verify the identity of a user, user device, 

or other entity, or the integrity of data stored, transmitted, or otherwise exposed to 

unauthorized modification in an information system (IS), or establish the validity 

of a transmission. an identity or to authorize access to data. 

(b) Using Security Protocol for Transferring 

(i) TLS Protocol 

TLS uses symmetric key encryption techniques, such as DES and RC4, 

to ensure privacy. In symmetric key encryption the sender and the receiver 

share a secret key which is used to encrypt or decrypt messages. However, 

this secret key must somehow be exchanged between the communicating 

parties before any secure communication can take place. 

During the TLS handshake process the client chooses a secret, which it 

then sends to the server. Public key cryptography is used to protect this 

exchange. When sent password in this method must have secreted key for 

exchange and receive password and must show real owner for hand checking. 

(ii) SSL Protocol 

The SSL Handshake Protocol has two major phases. The first phase is 

Used to establish private communications. The second phase is used for 

client authentication. The first phase is the initial connection phase where 
119 



both parties communicate their "hello" messages. 

The channel is private. Encryption is used for all messages after a 

simple handshake is used to define a secret key. When sent password in this 

method must have private key for receive password and must show real 

owner for hand checking. 

(iii) SET Protocol 

Encryption The encryption process in Figure 3 consists of the 

following steps: 

Step Description 

(a) Alice runs the property description through a one-way algorithm 

to produce a unique value known as the message digest. This is a 

kind of digital fingerprint of the property description and will be 

used later to test the integrity of the message. 

(b) She then encrypts the message digest with her private signature 

key to produce the digital signature. 

(c) Next, she generates a random symmetric key and uses it to 

encrypt the property description, her signature and a copy of her 

certificate, which contains her public signature key. To decrypt 

the property description, Bob will require a secure copy of this 

random symmetric key. 

(d) Bob's certificate, which Alice must have obtained prior to 

initiating Secure communication with him, contains a copy of his 

public key-exchange key. To ensure secure transmission of the 

symmetric key, Alice encrypts it using Bob's public key-

exchange key. The encrypted key, referred to as the digital 
120 



envelope, will be sent to Bob along with the encrypted message 

itself. 

( e) Alice sends a message to Bob consisting of the following: the 

Symmetrically encrypted prope1iy description, signature and 

ce1iificate, as well as the asymmetrically encrypted symmetric 

key (the digital envelope). 

(f) Bob receives the message from Alice and decrypts the digital 

envelope with his private key-exchange key to retrieve the 

symmetric key. 

(g) He uses the symmetric key to decrypt the property description, 

Alice's signature, and her certificate. 

(h) He decrypts Alice's digital signature with her public signature 

key, which he acquires from her certificate. This recovers the 

original message digest of the property description. 

(i) He runs the property description through the same one-way 

algorithm used by Alice and produces a new message digests of 

the decrypted property description. 

(j) Finally, he compares his message digest to the one obtained from 

Alice's digital signature. If they are exactly the same, he confirms 

that the message content has not been altered during transmission 

and that it was signed using Alice's private signature key. 

If they are not the same, then the message either originated 

Somewhere else or was altered after it was signed. In that case, Bob 

takes some appropriate action such as notifying Alice or discarding the 

message. 

121 



( c) Analysis 

When sent password by SET protocol has a lot of process for send and 

receives per each of time because SET protocol has test the integrity of the 

message. In the first step and then have digital signature for inspect the 

massage again. And then have the symmetric for authenticate the massage. 

But if processing use SS L and TLS protocols for sent password processing 

will faster than sending by SET protocol Because SSL and TLS uses 

symmetric key encryption techniques, such as DES and RC4, to ensure privacy. 

In symmetric key encryption the sender and the receiver share a secret key, 

Which is used to encrypt or decrypt messages. However, this secret key must 

Somehow be exchanged between the communicating parties before any secure 

communication can take place. During the TLS handshake process the client 

chooses a secret, which it then sends to the server. Public key cryptography is used 

to protect this exchange. 

So who want to send password to protect data or information of them. 

They want fast processing for each process. So password sending use SSL and 

TLS protocols better than use SET protocol. 

122 



4.2 Sending E-mail 

(a) E-mail Meaning 

Messages automatically passed from one computer user to another, often 

through computer networks and/or via modems over telephone lines. A message, 

especially one following the common RFC 822 standard, begins with several 

lines of headers, followed by a blank line, and the body of the message. An 

increasing number of e-mail systems support the MIME standard which allows the 

message body to contain "attachments" of different kinds rather than just one 

block of plain ASCII text. It is conventional for the body to end with a signature. 

(b) Using Security Protocol for Transferring 

(i) TLS Protocol 

TLS protocol (Transportation Layer Security) as RFC2246. It offers 

Both encryption of the communication (stopping eavesdropping) and strong 

authentication ( making sure that both parties of a communication are 

correctly identified and that the communication cannot be altered). 

TLS does not realize the TLS protocol itself; it rather uses the Open 

SSL package for this task. At the Open SSL WWW-site you can also find 

links to in-depth documentation of the protocol and its features, so that it is 

not necessary to included them here. (And, of course, there is no use ofre

writing what other people already wrote down, it just introduces additional 

errors.) 

(ii) SSL Protocol 

SSL stands for Secure Sockets Layer encryption. SSL is a protocol that 

Utilizes public/private key encryption to negotiate a connection between the 

web server and your browser, or in this case, the mail server and your mail 

123 



client. SSL connections provide security because the communication 

between the mail server and your mail software is encrypted. This does not 

encrypt your e-mail, only the transmission that delivers the mail from the 

mail server to your computer. This lessens the chance that your password or 

mail could be read while in transit between the mail server and your 

computer. 

(iii) SET Protocol 

SET uses a system of locks and keys along with certified account IDs 

for both sender and receiver. Then, through a unique process of "encrypting" 

or scrambling the information exchanged between the sender and the 

receiver, SET ensures send and receives process that is convenient, private 

and most of all secure. Specifically, SET: 

(a) Establishes industry standards to keep your E-mail confidential. 

(b) Increases integrity for all transmitted data through encryption. 

( c) Provides authentication that a sender is a legitimate user of name 

account. 

( d) Provides authentication that a receiver can accept name transactions 

through its relationship with an acquiring institution. 

( e) Allows the use of the best security practices and system design 

techniques to protect all legitimate parties in an electronic mail 

transaction. 

(c) Analysis 

E-MAIL or Messages automatically passed from one computer user to 

another, for communication they want comfortable for sending per each time. 

When sender send e-mail to receiver may have security protocol for protect 
124 



Massage form disturb or bandit data between the way. SSL stands for Secure 

Sockets Layer encryption. SSL is a protocol that utilizes public/private key 

Encryption to negotiate a connection between the web server and your browser, 

or in this case, the mail server and your mail client. SSL connections provide 

security because the communication between the mail server and your mail 

software is encrypted. TLS protocol (Transportation Layer Security) as RFC2246. 

It offers both encryption of the communication (stopping eavesdropping) and 

strong authentication (making sure that both parties of a communication are 

correctly identified and that the communication cannot be altered). SET: 

Establishes industry standards to keep your E-mail confidential. 

Increases integrity for all transmitted data through encryption. Provides 

Authentication that a sender is a legitimate user of name account. Provides 

authentication that a receiver can accept name transactions through its relationship 

with an acquiring institution. Allows the use of the best security practices and 

system design techniques to protect all legitimate parties in an electronic mail. 

transaction So SET protocol have more protection more than SSL and TLS but 

sender and receiver want comfortable for reading or sending for each time. 

For SSL and TLS enough for sending and receiving E-mail. 

125 



4.3 Sending Digital Product Online 

After you've finished creating the HTML files on your computer, you'll need to 

Transfer them onto your web server. 

(a) What Is FTP? 

FTP stands for File Transfer Protocol. It's a method of transferring files 

Over the Internet. This is usually done with an ftp program, such as WS-FTP. 

There are a number of ftp programs. You can use whatever you like. WS-FTP is 

perhaps the most popular, and most hosting services can help you with installation 

and configuration. 

How to Use It 

(i) To use FTP, log in to the Internet and establish an online connection. 

(ii) Start the FTP program. 

(iii) Select your Profile. If you have only one, then it will appear. (If there 

are other profiles that you don't use, you can delete them.) 

(iv) Click OK. 

(v) FTP will connect to your web host. You will see the following dialog 

box. 

(vi) On the left side are the files on your computer (Local System.) 

(vii) On the right side are the files on your web hosting space. 

(viii) The first time you log in, you'll need to navigate to the web page 

folders. On the right side, there is a folder named http docs. This is the 

folder that holds your website files. Double-click it to enter it. 

(ix) On the left side, navigate to your website's folder on your computer. 

(x) When you're ready, you'll have your files on your computer on the left 

side, and the web host site on the right side. 

126 



(xi) So you'll be in these folders in the future, you can save the current 

folders. Select Options, click the Session tab, and click Save Current 

Folders as Connection Folders. From now on, FTP will open in your 

folders, ready to go. 

(xii) At the bottom of the windows, there are two boxes marked Binary and 

Auto. Select both of these. This lets FTP use the right setting to 

transfer your files. 

(xiii) To transfer HTML documents and images, select the file on one side 

and click the arrows in the middle to transfer the file to the other side. 

(ivx) You can transfer filc-s from your computer to your website. You can 

also transfer files from the website to your computer. 

(vx) You can also transfer a whole folder in one step. Click the folder to 

select it And then click the transfer arrow. 

(vxi) You can transfer multiple files simultaneously. Select all the files that 

you want to transfer and then click the transfer arrow. 

(vxii)And finally, you can open several FTP programs and transfer many 

files at the same time. In one, you can set it to transfer images, and in 

the other, you can traIJ.sfer HTML files. 

(vxiii)To see if it worked, open a browser and visit your website. The page 

should open in your browser. 

(b) Using protocol for digital product 

(i) TLS and SSL Protocol 

Transport Layer Security (TLS) is a protocol that ensures privacy 

between communicating applications (The term application is a shorter form 

of application program. An application program is a program designed to 

127 



perform a specific function directly for the user or, in some cases, for 

another application program. Examples of applications include word 

processors, database programs, Web browsers, development tools, drawing, 

paint, image editing programs, and communication programs. Applications 

use the services of the computer's operating system and other supporting 

applications. The formal requests and means of communicating with other 

programs that an application program uses is called the application program 

interface (API)) and their users on the Internet. When a server and client 

communicate, TLS ensures that no third party may eavesdrop or tamper with 

any message. TLS is the successor to the Secure Sockets Layer (SSL). 

TLS is composed of two layers: the TLS Record Protocol and the TLS 

Handshake Protocol. The TLS Record Protocol provides connection security 

with some encryption method such as the Data Encryption Standard (DES). 

The TLS Record Protocol can also be used without encryption. The TLS 

Handshake Protocol allows the server and client to authenticate each other 

and to negotiate an encryption algorithm and cryptographic keys before data 

is exchanged. 

(ii) SET Protocol 

Cryptography has been used for centuries to protect sensitive 

Information as it is transmitted from one location to another. In a 

cryptographic system, a message is encrypted usmg a key. The resulting 

cipher text is then transmitted to the recipient where it is decrypted using a 

key to produce the original message. 

There are two primary encryption methods 111 use today: secret-key 

cryptography and public-key cryptography. SET uses both methods in its 

128 



encryption process. 

(c) Analysis 

Digital product mean data or software can be downloading it by internet. 

After you've finished creating the HTML files on your computer, you'll need 

To transfer them onto your web server by ftp (FTP stands for File Transfer 

Protocol . It' s a method of transferring files over the Internet. This is usually 

Done with an ftp program, such as WS-FTP. There are a number of ftp programs. 

You can use whatever you like. WS-FTP is perhaps the most popular and most 

hosting services can help you with installation and configuration.). So when who 

want to sell digital product by E-commerce must have security for protect data or 

software from thief or hacker. Such as seller should have chosen security protocol 

for protect. 

In this subject have 3 protocols for choose TLS and SSL protocol have main 

property is a protocol that ensures privacy between communicating applications 

(The term application is a shorter form of application program. An application 

program is a program designed to perform a specific function directly for the user 

or, in some cases, for another application program. Examples of applications 

include word processors, database programs, Web browsers, development tools, 

drawing, paint, image editing programs, and communication programs. 

Applications use the services of the computer's operating system and other 

supporting applications. The formal requests and means of communicating with 

other programs that an application program uses is called the application program 

interface (API)) and their users on the Internet. When a server and client 

communicate, TLS ensures that no third party may eavesdrop or tamper with any 

message. And SET protocol is Cryptography has been used for centuries to protect 

129 



sensitive information as it is transmitted from one location to another. 

In a cryptographic system, a message is encrypted using a key. The 

resulting cipher text is then transmitted to the recipient where it is decrypted 

using a key to produce the original message. There are two primary encryption 

methods in use today: secret-key cryptography and public-key cryptography. 

SET uses both methods in its encryption process. Form content of 2 major 

methods will acknowledge about detail of security protocol per each type. Sending 

and receiving digital product more important for seller and buyer. So security 

protocol for use in this process must high security. Such as SET protocol more 

appropriate than SSL and TLS protocol. 

130 



4.4 Payment Online 

(a) Meaning 

On-line settlements have made possible instantaneous payments (especially 

instant payments at "virtual shops") so that commercial transactions over the 

Internet have become a reality. Settlement through a membership system. 

Membership system settlements are offered by ISP's (Internet Service Providers) 

as one element of the service menu they provide to their network members. The 

settlements are performed using a) prepaid deposits orb) credit card numbers or 

bank account information which has been provided to the ISP ahead of time. 

Small charges can be paid little by little from the prepaid deposits, or the total 

amount which has been used each month can be invoiced to the credit card or 

other account as a lump sum, along with the ISP's service fees. Through such 

methods, transactions involving comparatively small amounts can be conducted 

efficiently. However, these systems have many restrictions. For example, because 

these are membership systems, one must become a member ahead of time. 

Also, regarding security, since each service provider operates according to 

its own standards, the trustworthiness of the service provider company becomes 

very important. 

(b) Using Security Protocol for Transferring 

(i) SSL and TLS Protocol 

With SSL settlements, safe communication channels (resistant to 

"wiretapping") are assured by SSL encryption of transmissions between the 

shopping user and the virtual shop. In this method, credit card numbers, etc. 

flow through these secure channels and credit card settlements are done in 

the "backyard" 

131 



I fJ:ttU-0 l.~£~'); ic~ b?:Ul ~{ 
:u:c>11hsv11<. J% SSL 

E't!\f{flW•I 
n<t11tYt 

Flguro 1: SSL Paymoo1 

'."n11fflli¥~ 
i1~!J:l}1 

lnfila'.>'ll:W 
u&:<&a~ur~ 

Figure 4.1. SSL Payment. 

When the membership system is adopted at virtual shops, once one's 

credit card number has been registered, from the second time onward, 

product purchases can be done using only the member number(+ password.) 

If a shopper simply has a credit card, he/she using their browser (which in 

General are compatible with SSL communication) can make instantaneous 

purchases of products even at virtual shops they are visiting for the first time. 

For this reason, in the US this is the most widely used settlement 

method. However, there are many problems of false (impersonated) virtual 

shops because, depending on the individual virtual shop, the standard for 

security may be quite different. (In general the majority of virtual shops do 

not have an adequate security level. ) This is a particular problem for 

shopping users because they have no method for judging whether the 

security level is adequate or not, or whether the virtual shop they are dealing 

with has formally contracted with the credit card company to become a 

"member shop." There is a strong possibility that area could become a 

132 



hotbed of crime. 

(ii) SET Protocol 

SET settlement is the safest net settlement system, utilizing the four 

mechanisms of authentication agency, wallet, merchant POS, and settlement 

gateway. 

flgure 2: SET Payment 

Figure 4.2. SET Payment. 

It is designed to resist such attacks as impersonation of the shopper, 

impersonation of the virtual shop, falsification of settlement information, and 

hacking of the virtual shops, which are the element with the lowest level of 

security in this settlement channel. 

At present, a scheme for standardization of settlements which supports 

both SET Debit (settlements linked to bank accounts) and SET Credit 

(settlement by means of credit cards) is being promoted. The group pushing 

133 



it is the Japan Conference on Promotion of the Internet Economy, in which 

over 300 companies participate, including the Postal Savings Bureau of the 

Ministry of Posts and Telecommunications, banks, and credit card 

compames. 

( c) Analysis 

Money or cash more important for every body. So when who want transfer 

money must have security for protect it. In this case mention 3 type of security 

are SSL, TLS, SET protocol. Each type ha s differentiated in detail of security. 

For SSL and TLS When the membership system is adopted at virtual shops, 

once one's credit card number has been registered, from the second time 

onward, product purchases can be done using only the member number ( + 

password.) If a shopper simply has a credit card, he/she using their browser 

(which in general are compatible with SSL communication) can make 

instantaneous purchases of products even at virtual shops they are visiting for 

the first time. For this reason, in the US this is the most widely used settlement 

method. However, there are many problems of false (impersonated) virtual shops 

because, depending on the individual virtual shop, the standard for security may 

be quite different. 

For SET protocol It is designed to resist such attacks as impersonation 

of the shopper, impersonation of the virtual shop, falsification of settlement 

information, and hacking of the virtual shops, which are the element with the 

lowest level of security in this settlement channel. 

At present, a scheme for standardization of settlements which supports 

both SET Debit (settlements linked to bank accounts) and SET Credit (settlement 

by means of credit cards) is being promoted. So SET more security than SSL or 

134 



TLS because SET specification for shopping payment. 

135 



V. CONCLUSION 

Internet Protocol Security (IPSec) provides application-transparent encryption 

services for IP network traffic as well as other network access protections for the 

operating system. 

This guide focuses on the fastest way to use IPSec transport mode to secure 

application traffic between a client and a server. It demonstrates how to enable security 

using IPSec default policies between based systems that belong to a domain. Once the 

two computers have joined the domain , you should complete the first part of the 

walkthrough, which demonstrates default policies in 30 minutes or less. Notes are 

included on how to enable non-IPSec clients to communicate to the server. Steps are 

provided on how to use certificates, and how to build your own custom policy for 

further interoperability testing, or to demonstrate IPSec when a domain is not available. 

Using Internet Protocol Security (IPSec), you can provide data privacy, integrity, 

authenticity, and anti-replay protection for network traffic in the following scenarios: 

Provide for end-to-end security from client-to-server, server-to-server, and client-

to-client using IPSec transport mode. 

This report concerned about method of using security protocol for another 

application. The first of all mention sending password form one place to another place 

have property to concern is security between point to point in almost of thing may 

respect about security of password. So should have security protocol for transfer per 

each time and protocol for security in this case have 3 protocol are SSL, TLS, SET 

protocol for protocol have another property quite differentiate for SET protocol have a 

lot of security step per each time but SSL and TLS have security less than SET protocol. 

So SSL and TLS protocol are matched for sending password . Password same as 

sending E-mail because sender and receiver want comfortable for sending each time. 

136 



So it will choose SSL and TLS for transfer data. But sending digital product and 

payment online want high security more than E-mail and Password because product 

and money high value more than them and product and money can change to money 

easier than password and E-mail. So secure for they must be high security. Such as 

SET protocol will matched for digital product and payment online. 

137 



BIBLIOGRAPHY 

1. "Transport Layer Security" Available at 
http://searchsecurity.techtarget.com/sDefinition/O,,sid14 gci.557332,00.html 

2. "TLS (Transport Layer Security)" Available at 
http://www.nwfusion.com/links/Eneyclopedia/+/78 9 .html 

3. "The SSL Protocol Version 3. O" Available at 
http://wp.netscape.com/ eng/ ssl3 I ssl-toc.html 

4. "The SSL Protocol" Available at 
http://wp.netscape.com/eng/security/ssl-2.html 

5. "The SSL Protocol" Available at 
http://byerley.es. waikato. ac.nz/ ~longm/ articles/ sslnode-3 .html 

6. "Secure Electronic Transaction CSET protocol" Available at 
http://islab.oregonstate.edu/koc/ece478/project/2003RP/li-wang.pdf 

7. "How to Provide Security Transaction For Your Online Customer" Available at 
http://www/profiljump.com/articles/0725-secure-transaction.html 

8. "Description of The Password Fields" Available at 
http://www/instantweb/comhelp/signup/password.html 

9. "Programming Internet Email" Available at 
http ://www.oreilly.com/ catalog/progintemail/ close.html 

10. "File Transfer Protocol" Available at 
http://www.imeprint.com/ftp/ description/ asp 

11. "Online Payment" Available at 
http://www.guideonce.be/dotNet Srv/Services show.aspx?ServID=227 

138 




	Cover and Title Page
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	Chapter  I :  INTRODUCTION
	Chapter  II :  REVIEW
	Chapter  III :  SECURITY PROTOCOLS
	Chapter  IV :  USING OF SECURITY PROTOCOLS FOR APPLICATION PAYMENT
	Chapter  V :  CONCLUSION
	BIBLIOGRAPHY

