## Senior Project

## The Development of Vegetable Yogurt

## By

Ms. Krittawan Krittanusorn

ID. 4856808

A special proj ect submitted to the Faculty of Biotechnology,
Assumption University in part of fulfillment of the requirement for the degree of Bachelor of Science

## Senior Project

# The Development of Vegetable Yogurt 

By

ID. 4856808

A special project submitted to the Faculty of Biotechnology, Assumption University in part of fulfillment of the requirement for the degree of Bachelor of Science

2010

| Title | $:$ The Development of Vegetable Yogurt |
| :--- | :--- |
| By | $:$ Ms. Krittawan Krittanusorn |
| Advisor | : A. Napida Supbornsug |
| Level of Study | $:$ Bachelor of Science |
| Department | $:$ Food Technology |
| Faculty | $:$ Biotechnology |
| Academic Year | $: 2010$ |


#### Abstract

This project was studied on an innovative of vegetable yogurt production. Pumpkin, carrot and kale were used to produce three kinds of vegetable yogurt by substituting vegetable meat in a portion of milk and fermenting the mixture with yogurt culture. First part was to formulate the suitable vegetable yogurt by using 9-point hedonic scale with 30 panelists. There were $20 \%, 30 \%, 40 \%$ and $50 \%$ variation of each kind of vegetable meat (pumpkin, carrot and kale). The $40 \%$ of pumpkin meat formula and the $30 \%$ of carrot meat formula were chosen as the most suitable formulas from the panelists. The $20 \%$ of kale meat formula was chosen as the most suitable formula but received very low score. Therefore, kale yogurt was regarded as unacceptable from panelists. Subsequently, the amount of sugar in vegetable yogurt formulas chosen from the previous part was varied to $6 \%, 8 \%$ and $10 \%$. The $10 \%$ of sugar variation was chosen from both pumpkin yogurt and carrot yogurt. Final part was consumer acceptance test from 100 panelists, pumpkin yogurt was accepted with $79 \%$ of consumers and carrot yogurt was accepted with $86 \%$ of consumers. The consumers also would be willing to buy both products at the price of 10-15 Bath per one cup.


## Acknowledgement

This project, the development of vegetable yogurt attained with the help of several cooperation. I feel obliged to thank you to those people who assisted me without hesitation.

First of all, I would like to thank my advisor, A. Napida Supbornsug, who always devoted her time to give me useful information and advised me when I encountered difficulty in completing the project.

I would like to thank the other members and staffs in Faculty of Biotechnology, who gave me advices and suggestions to my project.

I would also be a great occasion to thank Dr. Tatsawan Chonweerawong for guiding me throughout the statistic analysis.

Lastly, I owe my warmest thanks to my loving family and my friends whose support and care have encouraged me in my study.

## Contents

Page
ABSTRACT ..... 1
ACKNOWLEDGEMENT ..... 2
CONTENTS ..... 3
LIST OF TABLES ..... 4
LIST OF FIGURES ..... 5
CHAPTER 1 INTRODUCTION ..... 6
CHAPTER 2 LITERATURE REVIEW ..... 9
CHAPTER 3 MATERIALS AND METODS ..... 22
CHAPTER 4 RESULT AND DISCUSSION ..... 27
CHAPTER 5 CONCLUSION ..... 38
REFERENCES ..... - ..... 39
APPENDLX40

## List of tables

Table ..... Page
Table 1 Milk stock formulation ..... 23
Table 2 Vegetable yogurt formulation ..... 24
Table 3 Sugar varying in vegetable yogurt ..... 25
Table 4 Sensory evaluation of pumpkin yogurt with varying pumpkin percentage ..... 27
Table 5 Sensory evaluation of carrot yogurt with varying in carrot percentage ..... 28
Table 6 Sensory evaluation of kale yogurt with varying in kale percentage ..... 29
Table $7 \quad$ Yogurt vegetable analysis ..... 37

## List of figures

Figure ..... Page
Figure 1 Ranking preference evaluation of sweetness in pumpkin yogurt ..... 30
Figure 2 Ranking preference evaluation of sweetness in carrot yogurt ..... 31
Figure 3 Pie chart showed frequency of gender ..... 32
Figure 4 Pie chart showed frequency of acceptance of pumpkin yogurt ..... 33
Figure 5 Pie chart showed frequency of buying decision in pumpkin yogurt ..... 33
Figure 6 Pie chart showed frequency of price acceptance in pumpkin yogurt ..... 34
Figure $7 \quad$ Pie chart showed frequency of acceptance of carrot yogurt ..... 35
Figure 8 Pie chart showed frequency of buying decision in carrot yogurt ..... 35
Figure 9 Pie chart showed frequency of price acceptance in carrot yogurt ..... 36

## Chapter 1

## Introduction

Today, Yogurt is the main dairy product that becomes dietary staple food consumed by every gender and every age of people around the world. There are many brands of yogurt available in the market and each brand provides consumers the variety of flavors. Most people consume yogurt as a quick, easy and nutritious dairy product, while enjoying the taste of yogurt and gaining the healthy benefit.

Previously mentioned, yogurt is a fermented dairy product made from milk that provides excellent unique characteristics and nutritional benefit. But in today's new generation, people are continuing to show a greater concern for better quality, healthier and more variety food. Thus, it is important to produce the product that meets the people's need by adding other ingredients in the common yogurt to create new innovative product.

The yogurt production is to ferment milk with the bacterial cultures to obtain the unique characteristics of yogurt. According to the new trend of people nowadays, the development of yogurt is to combine the vegetable into the fermentation process of yogurt. As vegetable contains high nutrizional values and this could be new variety of yogurt in the market.

In this project, vegetables; pumpkin, carrot and kale were used to develop the innovative yogurt in order to improve quality, nutrition and variety of the product. The reason why pumpkin, carrot and kale were used as the main ingredient was that those vegetables provide many nutrients, good taste, good color and easy to find in the market. Other than that, to approve the product the improvement following the product development method is very important to study the consumer preference on the new variety of yogurt in terms of appearance and sensory evaluation.

Vegetable Yogurt was made by fermenting cooked vegetable and milk with friendly bacteria, mainly Lactobacillus bulgaricus and Streptococcus thermophilus. The process was similar to the normal production of yogurt. In vegetable yogurt production, cooked vegetable meat was added and blended with milk then fermented with starter culture. The sugars were
fermented by bacteria into lactic acid, which caused the fermentation of the characteristic curd. The acid decreased pH of the yogurt to about 4.5 and inhibited the growth of food poisoning bacteria. The bacteria produced lactase which broke down the lactose in milk. Vegetable did not contain lactose but other sugars such as fructose, stachyose and raffinose.

Yogurt contains living friendly bacteria which help to improve human's immune system and also contains many nutrients for health benefit. Even though yogurt itself is an excellent healthy food but to increase other nutrients and give an innovative flavor to yogurt, vegetable was chosen to study in this research. High in nutrition, good color and local vegetables were chose to use for development of vegetable yogurt, which were pumpkin, carrot and kale.

## Objectives

- To produce innovative product
- To improve nutrition and variety of yogurt
- To increase vegetable value
- To formulate vegetable yogurt


## Chapter 2

## Literature Review

## 1. Yogurt

Yogurt is made by fermenting milk with the characteristic bacterial cultures Lactobacillus bulgaricus and Streptococcus thermophilus, which cause the fermentation of milk's sugar, lactose, into lactic acid. This process gives yogurt its refreshingly tart flavor and unique curd texture. It is a common food product throughout the world. It is a nutritional food with unique health benefits. It is nutritionally rich in protein, calcium, riboflavin, vitamin B 6 and vitamin B12 (Cornell University, 2006)

### 1.1 Yogurt Health Benefits

- Yogurt is easier to digest than milk

The milk-intolerant people who have a problem with digesting milk, either because of protein allergy or lactose intolerance, can enjoy yogurt. The fermenting of yogurt culture process makes yogurt more digestible than milk. The active yogurt cultures produce lactase which is an enzyme that lactose-intolerant people lack, and another enzyme, beta-galactosidase, contained in some yogurts also helps to absorb lactose in lactase-deficient persons. Bacterial enzymes created by the culturing process, partially digest the milk protein casein, making it easier to absorb and less allergenic. The culturing process has already broken down the milk sugar lactose into glucose and galactose, two sugars that are easily absorbed by lactose-intolerant persons (Williarn and Martha Sears, 2006).

- Yogurt contributes to colon health

Consuming yogurt makes hurnan's colon healthy in two ways. First, yogurt contains lactic acid bacteria, which is friendy to hurma's intestmes and give a healthy colon, and even lower the risk of colon cancer. Lactic acid backria, especial acidophilus, promotes the growth of
healthy bacteria in the colon and reduces the conversion of bile into carcinogenic bile acids. Lower the chance of colon diseases is the more benefit of these intestines-friendly bacteria. It seems that friendly bacteria in yogurt deactivate harmful substances (such as nitrates and nitrites before they are converted to nitrosamines) before they can become carcinogenic (William and Martha Sears, 2006).

Secondly, yogurt is a rich source of calcium and calcium helps contributing the colon health and decreases the risk of colon cancer. Calcium obstructs excess growth of the cells lining the colon, which can increase a risk of colon cancer. Calcium also binds cancer-producing bile acids and keeps them from irritating the colon wall (William and Martha Sears, 2006).

- Yogurt improves the bioavailability of other nutrients

Culturing of yogurt increases the absorption of calcium and B -vitamins. The lactic acid in the yogurt aids in the digestion of the milk calcium, making it easier to absorb (William and Martha Sears, 2006).

### 1.2 Yogurt Formulation

In yogurt production, milk is heated to kill other microorganisms that would compete with the starter culture. Lactobacillus bulgaricus interacts with Streptococcus thermophilus to form a symbiotic starter culture to ferment milk. These created yogurt cultures increase the production of lactic acid in the fermentation process. Fermentation of the milk usually happens when the milk is approximately $45^{\circ} \mathrm{C}$. Streptococcus thermophilus starts to grow first dropping the milks pH from 6.6 to 5.0 , and produces carbon dioxide and lactic acid. These products stimulate Lactobacillus bulgaricus to grow and further drop the pH to 4.2. The sugar found in milk is lactose, when the starter culture is added to milk it breaks the lactose into glucose. After the sugar glucose is formed it then is fermented into lactic acid by the cultures. Acetaldehyde is also produced, this chemical compound creates the tart and sour taste of plain yogurt. The lactic acid decreases the pH of the milk and causes the casein molecules, protein found in milk, to denature and stick together. The milk then curdles to produce yogurt (Amber Kahl, 2007).

### 1.3 Bacterial culture

$$
1009 \text { e. }
$$

In most yogurt production, starter culture is a symbiotic blend of Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Although they can grow independently, the rate of acid production is much higher when used together than either of the two organisms grown individually. Streptococcus thermophilus grows faster and produces both acid and carbon dioxide. The lactic acid and carbon dioxide produced stimulate Lactobacillus bulgaricus growth. On the other hand, Lactobacillus bulgaricus produces stimulatory peptides and amino acids to stimulate Streptococcus thermophilus. These microorganisms are ultimately responsible for the formation of typical yogurt flavor and texture. The yogurt mixture coagulates during fermentation due to the drop in pH . The following fermentation products contribute to flavor: lactic acid, acetaldehyde, acetic acid and diacetyl (Professor Douglas Goff, 1995).

- Streptococcus salivarius subsp. thermophilus

Streptococcus salivarius subsp. thermophilus (common name Streptococcus thermophilus) is a Gram-positive facultative anaerobe. It is a cytochrome-, oxidase- and catalasenegative organism that is nonmotile, non-spore forming and homofermentative. Streptococcus thermophilus is an alpha-hemolytic species. It is also classified as a lactic acid bacterium (LAB). Streptococcus thermophilus is found in fermented milk products. It is a probiotic (it survives the stomach) and generally used in the production of yogurt (Ali O. Kilic, 1 Sylvia I. Pavlova, WenGe Ma, and Lin Taol, 1996).

- Lactobacillus delbrueckii subspecies bulgaricus

Lactobacillus delbruechii subspecies bulgaricus is one of yogurt cultures used for the production of yogurt. It is a rod-shape and Gram-positive. It is also non-motile, and it does not form spores. This bacterium requires a low pH (around 5.4-4.6) in order to grow effectively. The bacterium has complex nutritional requirements, including the inability to ferment any sugar except for lactose, from which it produces lactic acid, which helps to preserve yogurt. It is often helpful to sufferers of lactose intolerance, whose digestive systems lack the enzymes to break down lactose to simpler sugars. While fermenting milk, it produces acetaldehyde, which is one of the main yogurt aroma components (A. Balows, H.G.Truper, M. Dworkin, W. Harder, K.H.Schleifer, 1991).

## 2. Cow milk

Cow's mammary glands produce clear white liquid which called milk. Nutrients in milk are important source of primary food for the growth of young cows before they can digest other types of food. Milk is a nutritional food which contains almost all important nutrients. Milk consists of proteins (mainly casein), fat, salts, and milk sugar, or lactose, as well as vitamins A, $C, D$, certain $B$ vitamins, and other vitamin but less. Milk is a rich source of calcium and source of phosphorus. Milk is the main ingredient in yogurt process, yogurt cultures will use and turn lactose in milk to lactic acid during fermentation (George Mateljan, Founder, 2001-2010).

### 2.1 Health benefits

The basis of all other dairy product is cow's milk which contains high amount of calcium, vitamin $K$ and vitamin $D$ to promote bones health. In addition, cow's milk is a very good source of iodine which helps thyroid to function well. Riboflavin and vitamin B12 in milk are necessary for cardiovascular health and energy production. Also vitamin A in cow's milk is important for immune system, and potassium, a nutrient important for cardiovacular health (George Mateljan, Founder, 2001-20:0).

In bone mineralization, calcium joins with phosphorus and from calcium phosphate which is a major component of the mineral complex (called hydroxyapatite). Calcium phosphate is an important role in maintaining the strength and density of bones (George Mateljan, Founder, 2001-2010).

## 3. Pumpkin

Pumpkins are related to squash. Most pumpkin fruits are orange, but some are white, yellow, or other colors. The outer shell of pumpkin is hard and lined inside with a thicker layer of coarse pulp. Inside that, the pumpkin's central cavity holds seeds within its stringy mass. The mature pumpkin fruit usually weighs 15 to 30 pounds ( 6.8 to 14 kilograms), but some giants may weigh over 800 pounds ( 363 kilograms). The eatable pulp of a pumpkin is rich in vitanin A and potassium. Pumpkin is an excellent source of vitamin A. It is also a very good source of vitamin

C, potassium, dietary fiber, and manganese. In addition, pumpkin is a good source of folate, omega-3 fatty acids, thiamin, vitamin B5, vitamin B6, niacin and copper (George Mateljan, Founder, 2001-2010)

### 3.1 Health benefits

- Promote Lung Health

Consuming foods rich in beta-cryptoxanthin, an orange-red carotenoid found in highest amounts in pumpkin, may significantly lower one's risk of developing lung cancer. A study published in Cancer Epidemiology, Biomarkers and Prevention reviewed dietary and lifestyle data collected from over 60,000 adults in China and found that those eating the most crytpoxanthin-rich foods showed a $27 \%$ reduction in lung cancer risk. When current smokers were evaluated, those who were also in the group consuming the most cryptoxanthin-rich foods were found to have a $37 \%$ lower risk of lung cancer compared to smokers who ate the least of these health-protective foods (George Mateljan, Founder, 2001-2010).

- A Variety of Health-Promoting Nutrients

Pumpkin is an excellent source of vitamin A (in the form of beta-carotene), a very good source of vitamin C, potassium, dietary fiber and manganese. Pumpkin also emerged as a good source of folate, omega-3 fatty acids, vitamin B1, copper, vitamin B6, niacin-vitamin B3 and pantothenic acid. Beta-carotene in pumpkin has been shown to have very powerful antioxidant and anti-inflammatory properties. Beta-carotene is able to prevent the oxidation of cholesterol in the body. Since oxidized cholesterol is the type that builds up in blood vessel walls and contributes to the risk of heart attack and stroke, getting extra beta-carotene in the diet may help to prevent the progression of atherosclerosis. It may also protect against diabetic heart disease and may be useful for preventing other complications caused by free radicals often seen in longterm diabetes. Additionally, intake of foods such as pumpkin that are rich in carotenoids may be benencial to blood sugar toguation. Research has suggested that physiological levels, as well as dietary moke, of carotenoids may be inversely associated with insulin resistance and high blood sugar levels (George Mateljan, Founder, 2001-2010).

The potassium in pumpkin may help to lower blood pressure, and the vitamin C may be able to reduce the severity of conditions like asthma, osteoarthritis, and rheumatoid arthritis and also to prevent the progression of conditions like atherosclerosis and diabetic heart disease. In addition to its ability to lower high cholesterol levels, which reduces the risk of heart disease, the fiber found in pumpkin is also able to prevent cancer-causing chemicals from attacking colon cells. This is one of the reasons why diets high in fiber-rich foods have been associated with a reduced risk of colon cancer (George Mateljan, Founder, 2001-2010).

- Folate to Help Prevent Birth Defects and Heart Attack and Support Colon Health

The folate found in pumpkin may help to prevent certain birth defects if taken by women before and during pregnancy. Folate is also needed by the body to break down a dangerous metabolic byproduct called homocysteine, which can directly damage blood vessel walls. Since high levels of homocysteine are associated with an increased risk for heart attack and stroke, getting plenty of folate in the diet is a good for health. Folate has also been shown to help protect colon cells from the effects of cancer-causing chemicals. In fact, diets high in folate-rich foods are associated with a significantly reduced risk of colon cancer, especially in people who have a history of alcohol use (George Mateljan, Founder, 2001-2010).

## 4. Carrot

The carrot has a thick, fleshy, deeply colored root, which grows underground, and feathery green leaves that emerge above ground. Carrots belong to the umbelliferae family along with parsnips, fennel caraway, cumin and dill which all have the umbrella-like flower clusters that characterize this family of plants. Carrots are an excellent source of antioxidant compounds, and the richest vegetable source of the pro-vitamin A carotenes. Carrots' antioxidant compounds help protect against cardiovascular disease and cancer and also promote good vision, especially night vision (Buck Levin, 2010).

### 4.1 Health Benefits

## - Better Vision

Beta-carotene helps to protect vision, especially night vision. After beta-carotene is converted to vitamin A in the liver, it travels to the retina where it is transformed into rhodopsin, a purple pigment that is necessary for night-vision. Moreover beta-carotene's powerful antioxidant actions help provide protection against macular degeneration and the development of senile cataracts, the leading cause of blindness in the elderly (George Mateljan, Founder, 20012010).

## - Carotenoids and Optimal Health

Carrots are one of the richest sources of carotenoids. High carotenoid intake has been linked with a $20 \%$ decrease in postmenopausal breast cancer and up to $50 \%$ decrease in the incidence of cancers of the bladder, cervix, prostate, colon, larynx, and esophagus. Carotenoids are powerful antioxidants, protecting the cells of the body from damage caused by free radicals. Carotenoids, specifically beta-carotene, are also believed to enhance the function of the immune system (George Mateljan, Founder, 2001-2010).

## - Falcarinol in Carrots Promote Colon Health

Carrot also contains a phytonutrient called falcarinol. Falcarinol provides protection against colon cancer, suggests a study published in the Journal of Agricultural and Food Chemistry. Three groups of laboratory animals in whom precancerous colon lesions (aberrant crypt foci) had been chemically-induced were fed a standard diet, one supplemented with freeze-dried carrots naturally containing falcarinol, or one supplemented with an extract of falcarinol. After 18 weeks, precancerous lesions in the animals given diets containing carrots or falcarinol were much smaller than those in the control animals, and far fewer of the lesions had grown in size or progressed to become tumors. (George Mateljan, Founder, 2001-2010).

## 5. Kale

The leaves of the kale plant provide an earthy flavor and more nutritional value for fewer calories than almost any other food around. It can be found in markets throughout the year. Kale is a leafy green vegetable that belongs to the brassica family, a group of vegetables including cabbage, collards and Brussels sprouts that have gained recent widespread attention due to their health promoting, sulfur-containing phytonutrients. Kale is an excellent source of vitamin A, vitamin C and manganese. It is also a very good source of dietary fiber, copper, calcium, vitamin B6 and potassium (George Mateljan, Founder, 2001-2010).

### 5.1 Health Benefits

- Organosulfur Phytomutrients that Help Prevent Cancer

In kale contains organosulfur compounds which have been main subject of phytonutrient research, and these include the glucosinolates and the methyl cysteine sulfoxides. Although there are over 100 different glucosinolates in plants, only $10-15$ are present in kale and other Brassicas. Yet these 10-15 glucosinolates appear able to lessen the occurrence of a wide variety of cancers, including breast and ovarian cancers. Exactly how kale's sulfur-containing phytonutrients prevent cancer is not yet fully understood, but several researchers point to the ability of its glucosinolates and cysteine sulfoxides to activate detoxifing enzymes in the liver that help neutralize potentially carcinogenic substances. (These detoxifying enzymes include quinone reductases and glutathione-S-transferases). For example, scientists have found that sulforaphane, a potent glucosinolate phytonutrient found in kale and other Brassica vegetables, boosts the body's detoxification enzymes, potentially by altering gene expression, thus helping to clear potentially carcinogenic substances more quickly. Sulforaphane, which is formed when cruciferous vegetables such as kale are chopped or chewed, triggers the liver to produce enzymes that detoxify cancer-causing chemicals, inhibits chemically-induced breast cancers in animal studies, induce colon cancer cells to commit suicide (George Maieljan, Founder, 2001-2010).

## - Optimize Your Cells' Detoxification / Cleansing Ability

Phytonutrients in kale, work at a much deeper level. These compounds actually signal our genes to increase production of enzymes involved in detoxification, the cleansing process through which our bodies eliminate harmful compounds. That result in clearing free radicals and toxins, including potential carcinogens, which may be why kale appears to significantly lower our risk of cancer (George Mateljan, Founder, 2001-2010).

- Carotenoids that Lower Cataract Risk

In addition to its unique organosulfur compounds, kale is well known for its carotenoids, especially lutein and zeaxanthin. These carotenoids act like sunglass filters and prevent damage to the eyes from excessive exposure to ultraviolet light (George Mateljan, Founder, 2001-2010).

- Vitamin A in Kale

Kale is an excellent source of vitamin $A$ on account of its concentrated beta-carotene content. Once inside the body, beta-carotene can be converted into vitamin A, so when you eat kale, it is like getting both these beneficial nutrients at once. One cup of kale contains just 36.4 calories, but provides $192.4 \%$ of the daily value for vitamin A. Both vitamin A and beta-carotene are important vision nutrients (George Mateljan, Founder, 2001-2010).

- A Healthy Dose of Vitamin C for Antioxidant Protection and Immune Support

Kale is an excellent source of vitamin C, just one cup of this cooked vegetable supplies $88.8 \%$ of the daily value for vitamin C. Vitamin C is the primary water-soluble antioxidant in the body, decreasing free radicals and preventing damage in the aqueous environment both inside and outside cells. Inside cells, a potential result of free radical damage to DNA is cancer. Especially in areas of the body where cellulat tumover is especially rapid, such as the digestive system, preventing DNA mutations translates into preventing cancer. A good intake of vitamin C is associated with a reduced risk of colon cancer. Free radical damage to other cellular structures and other molecules can result in painful inflammation, as the body tries to clear out the damaged parts. Vitamin C , which prevents the free radical damage that triggers the inflammatory
cascade, is thus also associated with reduced severity of inflammatory conditions, such as asthma, osteoarthritis, and rheumatoid arthritis. Free radicals also oxidize cholesterol. Only after being oxidized does cholesterol stick to artery walls, building up in plaques that may eventually grow large enough to impede or fully block blood flow, or rupture to cause a heart attack or stroke. Since vitamin C can neutralize free radicals, it can help prevent the oxidation of cholesterol. Vitamin C, which is also vital for the proper function of a healthy immune system, is good for preventing colds and may be helpful in preventing recurrent ear infections (George Mateljan, Founder, 2001-2010).

## - Manganese-Energy Production plus Antioxidant Protection

One cup of kale will provide $27 \%$ of the day's needs for manganese. This trace mineral helps produce energy from protein and carbohydrates, and is involved in the synthesis of fatty acids that are important for a healthy nervous system and in the production of cholesterol that is used by the body to produce sex hormones. Manganese is also a critical component of an important antioxidant enzyme called superoxide dismutase. Superoxide dismutase (SOD) is found exclusively inside the body's mitochondria (the oxygen-based energy factories inside most of our cells) where it provides protection against damage from the free radicals produced during energy production (George Mateljan, Founder, 2001-2010).

- A Very Good Source of Fiber

Kale's health benefits continue with its fiber, a cup of kale provides $10.4 \%$ of the daily value for fiber, which has been shown to reduce high cholesterol levels thus helping to prevent atherosclerosis. Fiber can also help out by keeping blood sugar levels under control, so kale is an excellent vegetable for people with diabetes. Kale's fiber binds to cancer-causing chemicals, keeping them away from the cells lining the colon (George Mateljan, Founder, 2001-2010).

## - Calcium-For A Lot Less Calories and Minus the Fat in Cow's Milk

Kale is also very good source of calcium. Calcium is one of the nutrients needed to make healthy bones, and dairy products are a heavily promoted source of this nutrient. But unlike dairy products, kale is not a highly allergenic food, nor does it contain any saturated fat-plus, a cup of kale supplies 93.6 mg of calcium ( $9.4 \%$ of the daily value for this mineral) for only 36.4 calories. In contrast, a cup of $2 \%$ cow's milk provides 296.7 mg of calcium, but the cost is high: 121.2 calories and $14.6 \%$ of the day's suggested limit on saturated fat (George Mateljan, Founder, 2001-2010).

## 6. Previous study about vegetable yogurt

### 6.1 Vegetable-flavored yogurt

One of previous studies about vegetable yogurt was a special project submitted in partial fulfillment of the requirement for the Bachelor degree of Science in Pharmacy, Faculty of Pharmacy, Mahidol University in 2005 by Ms. Nida Jianteerangkool and Ms. Wasinee Bhudhikanok. The study about vegetable-flavored yogurt production to produce an innovative yogurt flavor to the Thai market by using Thai vegetable as the ingredients was conducted. The process of vegetable-flavored yogurt was to sugaring the vegetables which were chopped in pieces and then added to the home made yogurt. Eight vegetable flavors, which were pumpkin, carrot, cucumber, lotus root (รากบัว), tomato, white gourd (พัก), aloe jelly (วุ้นว่านหางจระเข้) and ginger were produced.

Sensory evaluation was carried out in 4 replications by using 9-point Hedonic Scale method among 25 panelists. According to Analysis of Variance, pumpkin-flavored yogurt received the significant highest mean score of 7.19 ("like moderately" to "like very much") ( $P<0.05$ ). Tomato-flavored and carrot-flavored yogurts received the mean scores of 6.38 and 6.02 ("like slightly" to "like moderately") and white gourd-flavored, lotus root-flavored and aloe jelly-flavored yogurts obtained the mean scores of $5.71,5.68$ and 5.62 ("neither like nor dislike" to "like slightly"), respectively. These flavored yogurts obtained significantly more preference ( $P<0.05$ ) than cucumber-flavored yogurt which received the mean score of 4.60 ("dislike slightly" to "neither like nor dislike"). Ginger-flavored yogurt received the significantly lowest mean score of 3.19 ("dislike moderately" to "dislike slightly"), $(P<0.05)$ (Nida Jianteerangkool and Wasinee Bhudhikanok, 2005).

### 6.2 Vegetable yogurt without milk

There was another study about vegetable yogurt, Remo Zuccato, an inventor of vegetable yogurt has been invented this product for his objectives to provide a process capable of achieving a product similar to yogurt obtained exclusively starting from raw materials of vegetable origin. In addition, to offer to the consumers with a plurality of vegetable substance yogurt with no fat because it was not milk based yogurt.

A process for the production of a vegetable yogurt is formed by fermentation of vegetable products such as green vegetables under the action of lactic acid bacteria. In the first phase the vegetable substrate is prepared whereby the green vegetables are homogenized, then water is added to obtain a creamy or liquid product which is then pasteurized. Afterwards the cultures of lactic acid bacteria are inoculated whereby the fermentation step is carried out at a temperature depending on the strain of lactic acid bacteria being used until the pH reaches a value of about 3.8-4.5, at which point fragrances and/or thickening agents, vegetable puree or cereals are added and the product is packed (Remo Zuccato, 2005).

## Chapter 3

## Materials

## Ingredients used for this study:

1. Pumpkin
2. Carrot
3. Kale
4. Pasteurized cow's milk (CP Maji brand)
5. Sugar
6. Starter culture (plain yogurt Dutchie's brand)
7. Skim milk powder (Dumex brand)

## Equipments used for this study:

1. Yogurt maker (Severin: Typ3520, 220V 50Hz)
2. Digital balance (Zepper: ES-3000H, $3000 \mathrm{~g} \times 0.1 \mathrm{~g}$ )
3. Steamer
4. Jam jar
5. Blender (Philips Model HR-2001)
6. pH meter (Hanna instrument: pH 211 )
7. Thermometer
8. Cylinder ( $10 \mathrm{ml}, 500 \mathrm{ml}$ )
9. Beaker ( $50 \mathrm{ml}, 500 \mathrm{ml}$ )

## Methods

## 1. The study of suitable vegetable yogurt formulation.

### 1.1 Methods for preparing milk stock

In one batch of milk stock, 10 g of sugar (5\%) and 10 g of skim milk (5\%) were added to 200 ml of pasteurized cow's milk. All the mixtures were mixed well and heated to 45 C for 10 15 minutes.

## Table 1: Milk stock formulation

| Milk stock ingredients | Quantity |
| :--- | :---: |
| 1. Pasteurized cow's milk | $200 \mathrm{ml}(85 \%)$ |
| 2. Sugar | $10 \mathrm{~g}(5 \%)$ |
| 3. Skim milk | $10 \mathrm{~g}(5 \%)$ |

### 1.2 Methods for making cooked vegetable meat

Pumpkin, carrot and kale were used in this study. Skin of pumpkin and carrot were peeled off then each vegetable were cut in to small pieces. Each vegetable was cooked by the steamer until the texture is soft. Each vegetable was mashed and weighted according to each formula.

### 1.3 Method for making vegetable yogurt

Cooked vegetable meat was blended with milk stock follow each formula. In this study, 200 ml of vegetable and milk is equal to one batch of the product, substitution of stock milk by vegetable meat (pumpkin, carrot, or kale) by 4 percentages: $20 \%, 30 \%, 40 \%$ and $50 \%$. Formula 1: vegetable meat 40 g with milk stock 160 ml , formula 2: vegetable meat 60 g with milk stock 140 ml , formula 3: vegetable meat 80 g with milk stock 120 ml and formula 4: vegetable meat 100 g with milk stock 100 ml . Starter culture (plain yogurt) was added into jam jar which was already contained vegetable milk and the mixture was mixed well. The jam jar was closed with
lid and put into the yogurt maker, leaved for 3-4 hours (until pH drops to 4.5). Yogurt is kept in refrigerator overnight.

## Table 2: Vegetable yogurt formulation

| Vegetable meat <br> varying | Vegetable meat | Milk stock | Starter culture <br> $\mathbf{( 5 \% )}$ |
| :--- | :---: | :---: | :---: |
| Formula 1 | $40 \mathrm{~g}(20 \%)$ | 160 ml | 10 ml |
| Formula 2 | $60 \mathrm{~g}(30 \%)$ | 140 ml | 10 ml |
| Formula 3 | $80 \mathrm{~g}(40 \%)$ | 120 ml | 10 ml |
| Formula 4 | $100 \mathrm{~g}(50 \%)$ | 100 ml | 10 ml |

## Yegetable yogurt process flow chart



$$
\begin{gathered}
! \\
\text { Weight }
\end{gathered}
$$

Blend vegetable meat (pumpkin, carrot or kale) with milk stock


Close lici and put into yogurt maker


### 1.4 9-Point Hedonic scale test

The treatments were evaluated for the organoleptic sensory test by using 30 taste panelists with 9-point hedonic score preference test to determine the most acceptable treatment. The data was analyzed using Randomizes Complete Block Design, RCBD and means were compared using Duncan's multiple range test. The SPSS at $95 \%$ confidence level was used for this statistical analysis.

## 2. The suitable amount of sugar in vegetable yogurt formula.

The most acceptable treatment in each vegetable yogurt was varied with the amount of sugar added to develop the suitable sweetness for the consumers. Sugar was increased to $6 \%, 8 \%$ and $10 \%$ in the milk stock for each treatment.

Table 3: Sugar varying in vegetable yogurt

| Sugar varying | Sugar added in milk <br> stock |
| :--- | :---: |
| Formula 1 | $12 \mathrm{~g}(6 \%)$ |
| Formula 2 | $16 \mathrm{~g}(8 \%)$ |
| Formula 3 | $20 \mathrm{~g}(10 \%)$ |

### 2.2 Ranking prefereace test

Two formulas containing different kinds of the vegetable meat substitution selected from 1.4 were used in the sugar varying. The sugar variations with 3 purcentages - $6 \%, 8 \%$, and $10 \%$ of sugar were evaluated for the oganoleptic sensory test by 30 taste panclists with ranking preference test to determine the most acoeptable treatment. The data was analyzed using percentage calculation.

## 3. The study of consumer acceptance in suitable formula.

From the ranking preference test in 2.2, the most preferred formulas were used in the Consumer acceptance test. The data was set to determine consumer acceptant to pumpkin yogurt and carrot yogurt by using 100 taste panelists. Questionnaire included personal question such as gender, age, education level, occupation and income. Product evaluation included 9-point hedonic scale was used for the consumer preference test based on the appearance, color, flavor, sweetness, odor, texture and overall. In addition, the consumers were asked to evaluate the acceptance of the product by using yes/no answer and also rated the acceptance price of the product.

## 4. The analysis of the vegetable yogurt

1. pH analysis
2. Lactic acid total plate count
1) Samples were prepared
2) Prepared the initial $10^{-1}-10^{-6}$ dilutions
3) Delivered the 0.1 ml diluted samples every series in each petri dish containing MRS media
4) Incubated plate at 37 C for 48 hours
5) Counted colonies on plate

## Chapter 4

## Result and Discussion

## 1. The study of suitable vegetable yogurt formulation

Four formulas of pumpkin yogurt, four formulas of carrot yogurt and four formulas of kale yogurt were evaluated by using 9 -point hedonic scale method to evaluate the degree of magnitudes of like or dislike of the sample.

### 1.1 Pumpkin yogurt

Table 4: Sensory evaluation of pumpkin yogurt with varying pumpkin percentage

| Formula | Appearance | Color | Pumpkin <br> Flavor | Yogurt <br> flavor | Sweetness | Odor | Texture | Overall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Pumpkin <br> $\mathbf{2 0 \%}$ | $6.73^{\mathrm{a}}$ | $6.43^{\mathrm{a}}$ | $6.10^{\mathrm{a}}$ | $6.47^{\mathrm{b}}$ | $6.00^{\mathrm{a}}$ | $6.43^{\mathrm{a}}$ | $6.53^{\mathrm{a}}$ | $6.53^{\mathrm{a}}$ |
| $\mathbf{2 . P u m p k i n}$ <br> $\mathbf{3 0 \%}$ | $7.17^{\mathrm{ab}}$ | $6.90^{\mathrm{ab}}$ | $6.40^{\mathrm{a}}$ | $6.47^{\mathrm{b}}$ | $6.27^{\mathrm{a}}$ | $6.50^{\mathrm{a}}$ | $6.90^{\mathrm{a}}$ | $6.53^{\mathrm{a}}$ |
| $\mathbf{3 . P u m p k i n}$ <br> $\mathbf{4 0 \%}$ | $7.53^{\mathrm{b}}$ | $7.37^{\mathrm{b}}$ | $7.43^{\mathrm{b}}$ | $7.10^{\mathrm{c}}$ | $6.87^{\mathrm{b}}$ | $7.00^{\mathrm{b}}$ | $7.57^{\mathrm{b}}$ | $7.43^{\mathrm{b}}$ |
| $\mathbf{4 . P u m p k i n}$ |  |  |  |  |  |  |  |  |
| $\mathbf{5 0 \%}$ | $6.93^{\mathrm{a}}$ | $6.70^{\mathrm{a}}$ | $6.53^{\mathrm{a}}$ | $6.00^{\mathrm{a}}$ | $6.10^{\mathrm{a}}$ | $6.13^{\mathrm{a}}$ | $6.70^{\mathrm{a}}$ | $6.50^{\mathrm{a}}$ |

Note: The same letter means: There is no significant difference at $95 \%$ confidential level

From table 1, the sensory evaluation of pumpkin yogurt showed that the most preferable formula was formula 3 with $40 \%$ of pumpkin. It received the highest score in appearance, color, pumpkin flavor, yogurt flavor, sweetness, odor, texture and overall. There were significant different in pumpkin flavor, yogurt flavor, sweetness, odor, texture and overall. It indicated that varying amount of pumpkin meat affected those attributes of pumpkin yogurt.

However, the score value of rormula 2 was accepted to be the same group in formula 3 as seen in Duncan table (table 6 and 9 in appendix). There were significant different in pumpkin
flavor, yogurt flavor, sweetness, odor, texture, overall, but no significant different in appearance and color. It indicated that formula 2 ( $30 \%$ of pumpkin) and formula 3 ( $40 \%$ of pumpkin) were not affected to panelists in appearance and color. They did not feel the change in appearance or color in formula 2 and formula 3.

### 1.2 Carrot yogurt

Table 5: Sensory evaluation of carrot yogurt with varying carrot percentage

| Formula | Appearance | Color | Carrot <br> Flavor | Yogurt <br> flavor | Sweetness | Odor | Texture | Overall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Carrot <br> $\mathbf{2 0 \%}$ | $6.67^{\mathrm{a}}$ | $6.83^{\mathrm{a}}$ | $6.50^{\mathrm{a}}$ | $6.57^{\mathrm{a}}$ | $6.00^{\mathrm{a}}$ | $6.10^{\mathrm{a}}$ | $6.47^{\mathrm{a}}$ | $6.60^{\mathrm{a}}$ |
| $\mathbf{2 .}$ Carrot <br> $\mathbf{3 0 \%}$ | $7.73^{\mathrm{b}}$ | $7.83^{\mathrm{b}}$ | $7.70^{\mathrm{b}}$ | $7.60^{\mathrm{b}}$ | $7.10^{\mathrm{b}}$ | $7.10^{\mathrm{b}}$ | $7.60^{\mathrm{b}}$ | $7.70^{\mathrm{b}}$ |
| $\mathbf{3 . ~ C a r r o t}$ <br> $\mathbf{4 0 \%}$ | $6.90^{\mathrm{a}}$ | $7.10^{\mathrm{a}}$ | $6.73^{\mathrm{a}}$ | $6.27^{\mathrm{a}}$ | $6.17^{\mathrm{a}}$ | $6.17^{\mathrm{a}}$ | $6.53^{\mathrm{a}}$ | $6.60^{\mathrm{a}}$ |
| $\mathbf{4 .}$ Carrot <br> $\mathbf{5 0 \%}$ | $6.67^{\mathrm{a}}$ | $6.73^{\mathrm{a}}$ | $6.67^{\mathrm{a}}$ | $6.27^{\mathrm{a}}$ | $6.00^{\mathrm{a}}$ | $6.20^{\mathrm{a}}$ | $6.60^{\mathrm{a}}$ | $6.37^{\mathrm{a}}$ |

Note: The same letter means: There is no significant difference at $95 \%$ confidential level

From table 2, the result of sensory evaluation in carrot percentage showed that the most preferable formula was formula 2 with $30 \%$ of carrot. It received the highest score in appearance, color, carrot flavor, yogurt flavor, sweetness, odor, texture and overall. There were significant differences in carrot flavor, yogurt flavor, sweetness, odor, texture and overall. It indicated that varying amount of carrot meat affected those attributes of carrot yogurt.

### 1.3 Kale yogurt

Table 6: Sensory evaluation of kale percentage varying in kale yogurt

| Formula | Appearance | Color | Kale <br> Flavor | Yogurt <br> (lavor | Sweetness | Odor | Texture | Overall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 .}$ Kale <br> $\mathbf{2 0 \%}$ | $5.53^{\mathrm{c}}$ | $5.50^{\mathrm{c}}$ | $5.03^{\mathrm{c}}$ | $5.13^{\mathrm{d}}$ | $4.70^{\mathrm{d}}$ | $4.83^{\mathrm{d}}$ | $4.93^{\mathrm{d}}$ | $5.07^{\mathrm{d}}$ |
| $\mathbf{2 .}$ Kale <br> $\mathbf{3 0 \%}$ | $5.13^{\mathrm{c}}$ | $5.17^{\mathrm{c}}$ | $4.43^{\mathrm{b}}$ | $4.50^{\mathrm{c}}$ | $4.27^{\mathrm{c}}$ | $4.30^{\mathrm{c}}$ | $4.40^{\mathrm{c}}$ | $4.63^{\mathrm{c}}$ |
| $\mathbf{3 . ~ K a l e}$ <br> $\mathbf{4 0 \%}$ | $4.40^{\mathrm{b}}$ | $4.47^{\mathrm{b}}$ | $4.07^{\mathrm{b}}$ | $4.03^{\mathrm{b}}$ | $3.87^{\mathrm{b}}$ | $3.87^{\mathrm{b}}$ | $3.83^{\mathrm{b}}$ | $3.93^{\mathrm{b}}$ |
| $\mathbf{4 .}$ Kale <br> $\mathbf{5 0 \%}$ | $3.50^{\mathrm{a}}$ | $3.57^{\mathrm{a}}$ | $3.17^{\mathrm{a}}$ | $3.37^{\mathrm{a}}$ | $3.23^{\mathrm{a}}$ | $3.20^{\mathrm{a}}$ | $2.97^{\mathrm{a}}$ | $3.10^{\mathrm{a}}$ |

Note: The same letter means: There is no significant difference at $95 \%$ confidential level
From table 3, the sensory evaluation in kale percentage showed that the most preferable formula was formula 1 with $20 \%$ of kale. It received the highest score in appearance, color, kale flavor, yogurt flavor, sweetness, odor, texture and overall. There were significant differences in appearance, color, kale flavor, yogurt flavor, sweetness, odor, texture and overall. It indicated that varying amount of kale meat affected those attributes of kale yogurt.

From the result of sensory evaluation of kale yogurt, although formula 1 was the most preferable, the scores were very low compared to pumpkin yogurt and carrot yogurt. The overall score was approximately 5 , this could be implied that panelists felt neither like nor dislike the product. Some panelists also commented on the product that kale did not go well with yogurt as it gave bitter taste and the texture was not smooth like pumpkin yogurt and carrot yogurt. Since kale is the green leafy vegetable which contains high amount of fiber, leading to the rough texture of the yogurt.

It could be concluded that kale was not suitable to make vegetable yogurt and most of the panelists did not accept kale yogurt.

## 2 The suitable amount of sugar in vegetable yogurt formula

From the previous experiment of 9-point hedonic evaluation, most of panelists commented on the sweetness of the yogurt that they would like it to be sweeter. Therefore, the sweetness of yogurt was varied in to three formulas, formula 1 with $6 \%$ of sugar, formula 2 with $8 \%$ of sugar and formula 3 with $10 \%$ of sugar.

From the first part of the experiment, pumpkin yogurt with $40 \%$ of pumpkin meat and carrot yogurt with $30 \%$ of carrot meat were chosen to be the most suitable formulas. However, kale yogurt was unaccepted from the panelists and it would not be included in this part of the experiment. In this part, varying formulas for sweetness were evaluated by using ranking preference method to evaluate the degree of magnitudes of preference of the samples.


Figure 1: Ranking preference evaluation of sweetness in pumpkin yogurt

From figure 1, the ranking preference of varying sugar in pumpkin yogurt showed that most panelists ranked formula 3 with $10 \%$ of sugar highest or the most preference. There were $66.67 \%$ of panelists chose formula 3 with $10 \%$ of sugar as their most preference, $26.67 \%$ of panelists chose formula 2 with $8 \%$ of sugar as their most preference and only $6.67 \%$ of panelists chose formula 1 with $6 \%$ of sugar as their most preference. This indicated that most preference
formula was formula 3 with $10 \%$ of sugar in pumpkin yogurt, most panelists preferred the sweetest formula.


Figure 2: Ranking preference evaluation of sweetness in carrot yogurt
From figure 2, the ranking preference of varying sugar in carrot yogurt showed that most panelists ranked formula 3 with $10 \%$ of sugar highest or the most preference. There were $73.33 \%$ of panelists chose formula 3 with $10 \%$ of sugar as their most preference, $26.67 \%$ of panelists chose formula 2 with $8 \%$ of sugar as their most preference and only $6.67 \%$ of panelists chose formula 1 with $6 \%$ of sugar as their most preference. This indicated that most preference formula was formula 3 with $10 \%$ of sugar in carrot yogurt, most panelists preferred the sweetest formula.

## 3 The study of consumer acceptance in suitable formula

The study was conducted to determine consumer acceptance of vegetable yogurt; pumpkin yogurt and carrot yogurt, by using 100 panelists. The data was calculated into percentage.

From 100 panelists, there were $33 \%$ of male and $67 \%$ of female participated in this study.


Figure 3: Pie chart showed frequency of gender

### 3.1 Pumpkin yogurt



Figure 4: Pie chart showed frequency of acceptance of pumpkin yogurt


Figure 5: Pie chart showed frequency of buying decision in pumpkin yogurt


Figure 6: Pie chart showed frequency of price acceptance in pumpkin yogurt
From figure 4-6, there were $79 \%$ of consumers accepted the pumpkin yogurt. However, $21 \%$ of consumers did not accept the product. While $64 \%$ of consumers decided to buy the product if it was launched into the market, $29 \%$ of consumers were not sure that they would be willing to buy it or not and $7 \%$ of consumers decided not to buy the product. There were $82 \%$ of consumers accepted the price of product if it was set at the market price of 10-15 Bath per 1 cup containing 150 g (same as the normal yogurt sold in the market).

### 3.2 Carrot yogurt



Figure 7: Pie chart showed frequency of acceptance of carrot yogurt


Figure 8: Pie chart showed frequency of buying decision in carrot yogurt


Figure 9: Pie chart showed frequency of price acceptance in carrot yogurt
From figure 7-9, there were $86 \%$ of consumers accepted the carrot yogurt. However, $14 \%$ of consumers did not accept the product. While $69 \%$ of consumers decided to buy the product if it was launched into the market, $27 \%$ of consumers were not sure that they would be willing to buy it or not and $4 \%$ of consumers decided not to buy the product. There were $85 \%$ of consumers accepted the price of product if it was set at the market price of 10-15 Bath per 1 cup containing 150 g (same as the normal yogurt sold in the market).

## 4. The analysis of vegetable yogurt

Table 7: Yogurt vegetable analysis

| Type of yogurt | pH | LAB plate count (cfu/mal) |
| :--- | :---: | :---: |
| Plain yogurt (Dutchie brand) | 4.3 | $4.9 \times 10^{7}$ |
| Pumpkin yogurt | 4.2 | $2.6 \times 10^{8}$ |
| Carrot yogurt | 4.2 | $1.74 \times 10^{8}$ |

## Chapter 5

## Conclusion

From the previous experiments, it can be seen that pumpkin and carrot were excellent raw materials used to substitute a portion of milk in vegetable yogurt. Not only pumpkin and carrot provided more nutrients, but also more variety to the consumers.

The results indicated that $40 \%$ of pumpkin meat substitution in yogurt was the most preferred formula among variations of pumpkin meat substitution with the highest score in every attribute. Furthermore, $30 \%$ of carrot meat substitution in yogurt was the most preferred formula among variations of carrot meat substitution with the highest score in every attribute.

In ranking preference test of sugar variation of vegetable yogurt, $10 \%$ of sugar in milk stock was the most ranking preference in both pumpkin yogurt and carrot yogurt.

Finally, the consumer acceptance test was carried out and the results showed that $79 \%$ of consumers accepted pumpkin yogurt and $86 \%$ of consumers accepted carrot yogurt. The consumers would be willing to buy both products at the price of 10-15 Baths for one cup of yogurt ( 150 g ).

In the further study of vegetable yogurt, other kind of vegetable might be use to produce vegetable yogurt, not only pumpkin or carrot and it would be more variety for consumers. Moreover the process of vegetable yogurt could be improved, such as addition of vegetable pieces into vegetable yogurt.

## References

- Ali O. Kilic, 1 Sylvia I. Pavlova, Wen-Ge Ma, and Lin Taol 1996, Streptococcus thermophilus, Available at http://en.wikipedia.org/wiki/Streptococcus thermophilus
- Amber Kahl 2007, Yogurt production, Available at http://bioweb.uwlax.edu/bio203/s2007/kahl ambe/yogurt production.htm
- Balows, H.G.Truper, M. Dworkin, W. Harder, K.H.Schleifer, 1991, Lactobacillus delbrueckii subsp. Bulgaricus, Available at http://en.wikipedia.org/wiki/Lactobacillus delbrueckii_subsp._bulgaricus
- Comell University 2006, Yogurt production, Available at http://www.milkfacts.info/Milk\ Processing/Yogurt\ Production.htm
- George Mateljan, Founder, 2001-2010, Carrot, Available at http://www. whfoods.com/genpage.php?tname=foodspice\&dbid=21
- George Mateljan, Founder, 2001-2010, Kale, Available at http://www.whfoods.com/genpage.php?tname=foodspice\&dbid=38
- George Maieljan, Founder 2001-2010, Pumpkin, Available at http://www.whfoods.com/genpage.php?tname=foodspice\&dbid=63
- Nida Jianteerangkool and Wasinee Bhudhikanok 2005, Vegetable yegurt flavor, Available at http://www.pharmacy.mahidol.ac.th/thai/research special abstract.php?num=26\&year=2 548
- Remo Zuccato 2005, Vegetable yogurt without milk, Available at http://www.feepatentsonline.com/6875455.pdf
- William and Martha Sears 2006, Yogurt benefit, Available at http://www.whfoods.com/genpage.php?tname=foodspice ${ }^{\circ} \mathrm{d}$ bid=124


## Appendix

## 1. Questionnaire for 9-point Hedonic scale

9-point Hedonic scale test

## Name

$\qquad$ Date $\qquad$

## Liking Preference Test

## Product: Pumpkin yogurt/Carrot yogurt/Kale yogurt

Instruction: Please test and rate the sample on the tray for appearance, aroma, texture, flavor and overall impression. First look at the sample and then evaluate its appearance (record your evaluation). Second, taste the sample and evaluate its Odor, texture and flavor (record your evaluation). Third, taste the sample again and make an evaluation for each sample. You may taste the sample as many times as you need to. Rinse your mouth with water any time you would like to.

9 Like extremely
8 Like very much
7 Like moderately
6 Like slightly
5 Neither like or dislike

| Sample | Appearance | Color | Pumpkin <br> flavor | Yogurt <br> flavor | Sweetness | Odor | texture | Over <br> all |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 950 |  |  |  |  |  |  |  |  |
| 341 |  |  |  |  |  |  |  |  |
| 428 |  |  |  |  |  |  |  |  |
| 607 |  |  |  |  |  |  |  |  |

Commens.

## 2. Questionnaire of ranking Preference test

Ranking preference test
Name $\qquad$ Date $\qquad$

## Ranking preference test

Product: Pumpkin yogurt/Carrot yogurt
Instruction: Rank these samples according to your preference. The most preferred sample is ranked first, the second most preferred sample is ranked second, and the least preferred sample is ranked third. Please test the sample in the following order.

| Taste Order | 695 | 128 | 431 |
| :--- | :--- | :--- | :--- |
| Preference Order |  |  |  |

## 3. Consumer acceptance

## Consumer Acceptance

Title: This questionnaire is a part of senior project of Ms. Krittawan Krittanusorn, student of Biotechnology faculty, Assumption University. Please test this product and answer the questions. All of your information would be helpful for us. Thank you for your cooperation.

Instruction: Please fill $\sqrt{ }$ in the space () that match your opinion.

## Part 1: Demographic Data

1. GenderMaleFemale
2. Age
$\square$ Lower than 20 years old
$\square$ 21-25 years old
$\square$ 26-30 years old31-35 ears old
$\square$ 36-40 years old
$\square 40-45$ years oldMore than 45 years old
3. EducationLower than high school student
$\square$ High school studentVocational schoolBachelor degreeHigher than Bachelor degree
4. OccupationStudent
Government officerEmployeeOther
5. IncomeLess than 5,000 baht
$\square 5,001-10,000$ baht10,001-15,000 baht
$\square$ 15,001-20,000 bahtMore than 20,000 baht

## Part 2: Question about the product

6. Please fest the product and fill $\sqrt{ }$ into the space according to your opinion.

| Product | like <br> extremely | like <br> very <br> much | like <br> moderately | like <br> slightly | neither <br> like <br> nor <br> dislike | dislike <br> slightly | dislike <br> moderately | dislike <br> very <br> much | dislike <br> extremely |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Appearance |  |  |  |  |  |  |  |  |  |
| Color |  |  |  |  |  |  |  |  |  |
| Flavor |  |  |  |  |  |  |  |  |  |
| Sweetness |  |  |  |  |  |  |  |  |  |
| Odor |  |  |  |  |  |  |  |  |  |
| Texture |  |  |  |  |  |  |  |  |  |
| Overall |  |  |  |  |  |  |  |  |  |

Comment. $\qquad$
$\qquad$
$\qquad$

## 7. Do you accept Pumplin yogurt/carrot yogurt or not.

Accept, becauseNot accept, because8. What the price should be for one cup of Pumpkin yogurt/carrot yogntt containing 150 g10-15 bath15-20 bath
9. Would you be willing to buy pumpkin yogurt/carrot yogurt if it is launched in the market?Yes, because.Not sure, because $\qquad$No, because $\qquad$

## 4. Statistical Analysis

4.1 Pumpkin yogurt in pumpkin meat varying

### 4.1.1 Appearance

Table 8: Descriptive Statistics in Appearance
Dependent variable: appearance

## Appearance

| Pumpkin | Mean | N | Std. Deviation |
| :---: | :---: | :---: | :---: |
| $20 \%$ | 6.7333 | 30 | 1.20153 |
| $30 \%$ | 7.1667 | 30 | 1.05318 |
| $40 \%$ | 7.5333 | 30 | .81931 |
| $50 \%$ | 6.9333 | 30 | .86834 |
| Total | 7.0917 | 120 | 1.02896 |

Table 9: Tests of Between-Subjects Effects in appearance

Dependent Variable: Appearance

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $65.367^{2}$ | 32 | 2.043 | 2.931 | .000 |
| Intercept | 6035.008 | 1 | 6035.008 | 8660.548 | .000 |
| frt | 10.625 | 3 | 3.542 | 5.082 | .003 |
| rep | 54.742 | 29 | 1.888 | 2.709 | .000 |
| Error | 60.625 | 87 | .597 |  |  |
| Total | 6161.000 | 120 |  |  |  |
| Corrected Total | 125.992 | 119 |  |  |  |

a. $R$ Squared $=.519$ (Adjusted $R$ Squared $=.342$ )

Table 10: Homogeneous subsets

| Appearance |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% | 30 | 6.7333 |  |
|  | 50\% | 30 | 6.9333 |  |
|  | 30\% | 30 | 7.1667 | 7.1667 |
|  | 40\% | 30 |  | 7.5333 |
|  | Sig. |  | . 030 | . 092 |

Means ior groups in homogeneous subsets are displayed.
Qased on coserved means.
The error lem is Mean Square(Error) $=.697$.
a. Uses Hammonic Mean Sample Size $=30.000$.

### 4.1.2 Color

Table 11: Descriptive Statistics in Color
Dependent variable: color

Color

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.4333 | 30 | 1.30472 |
| $30 \%$ | 6.9000 | 30 | 1.02889 |
| $40 \%$ | 7.3667 | 30 | .92786 |
| $50 \%$ | 6.7000 | 30 | 1.14921 |
| Total | 6.8500 | 120 | 1.14972 |

Table 12: Tests of Between-Subjects Effects in color

Dependent Variable: Color

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $64.767^{\text {a }}$ | 32 | 2.024 | 1.903 | .010 |
| Intercept | 5630.700 | 1 | 5630.700 | 5293.994 | .000 |
| trt | 13.967 | 3 | 4.656 | 4.377 | .006 |
| rep | 50.800 | 29 | 1.752 | 1.647 | .040 |
| Error | 92.533 | 87 | 1.064 |  |  |
| Total | 5788.000 | 120 |  |  |  |
| Corrected Total | 157.300 | 119 |  |  |  |

a. $R$ Squared $=.412$ (Adjusted $R$ Squared $=.195$ )

Table 13: Homogeneous subsets

| Color |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |
|  |  |  | 18 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% | 30 | 8.4333 |  |
|  | 50\% | 30 | 6.7000 |  |
|  | 30\% | 30 | 6.9000 | 6.9000 |
|  | 40\% | 30 |  | 7.3667 |
|  | Sig. |  | . 101 | . 083 |

[^0]a. Uses Harmonic Mean Sample Size $=30.000$

### 4.1.3 Pumpkin flavor

Table 14: Descriptive Statistics in Pumpkin flavor
Dependent variable: pumpkin flavor

Pumpkin flavor

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.1000 | 30 | 1.12495 |
| $30 \%$ | 6.4000 | 30 | 1.13259 |
| $40 \%$ | 7.4333 | 30 | .97143 |
| $50 \%$ | 6.5333 | 30 | 1.52527 |
| Total | 6.6167 | 120 | 1.29110 |

Table 15: Tests of Between-Subjects Effects in pumpkin flavor
Dependent Variable: Pumpkin flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $138.500^{\circ}$ | 32 | 4.328 | 6.290 | .000 |
| Intercept | 5253.633 | 1 | 5253.633 | 7634.734 | .000 |
| frt | 29.633 | 3 | 9.878 | 14.355 | .000 |
| rep | 108.867 | 29 | 3.754 | 5.455 | .000 |
| Error | 59.867 | 87 | .688 |  |  |
| Total | 5452.000 | 120 |  |  |  |
| Corrected Total | 198.367 | 119 |  |  |  |

a. $R$ Squared $=.698$ (Adjusted $R$ Squared $=.587$ )

Table 16: Homogeneous subsets

| Pumpkin flavor |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% | 30 | 6.1000 |  |
|  | 30\% | 30 | 6.4000 |  |
|  | 50\% | 30 | 6.5333 |  |
|  | 40\% | 30 |  | 7.4333 |
|  | Sig. |  | . 058 | 1.000 |

[^1]
### 4.1.4 Yogurt flavor

Table 17: Descriptive Statistics in Yogurt flavor
Dependent variable: yogurt flavor

Yogurt flavor

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.4667 | 30 | 1.22428 |
| $30 \%$ | 6.4667 | 30 | 1.10589 |
| $40 \%$ | 7.1000 | 30 | .95953 |
| $50 \%$ | 6.0000 | 30 | 1.23176 |
| Total | 6.5083 | 120 | 1.18815 |

Table 18: Tests of Between-Subjects Effects in yogurt flavor

Dependent Variable: Yogurt flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $109.600^{a}$ | 32 | 3.425 | 5.103 | .000 |
| Intercept | 5083.008 | 1 | 5083.008 | 7573.370 | .000 |
| trt | 18.358 | 3 | 6.119 | 9.118 | .000 |
| rep | 91.242 | 29 | 3.146 | 4.688 | .000 |
| Error | 58.392 | 87 | .671 |  |  |
| Total | 5251.0 C |  | 120 |  |  |
| Corrected Total | 167.992 | 119 |  |  |  |

a. R Squared $=.652$ (Adjusted $R$ Squared $=.525$ )

Table 19: Homogeneous subsets

| Yogurt flavor |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |  |
|  |  |  | 18 | 2 | 3 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 6.0000 |  |  |
|  | 20\% | 30 |  | 6.4687 |  |
|  | 30\% | 30 |  | 5.4687 |  |
|  | 40\% | 30 |  |  | 7.1000 |
|  | Sig. |  | 1.000 | 1.000 | 1.000 |

[^2]
### 4.1.5 Sweetness

Table 20: Descriptive Statistics in Sweetness
Dependent variable: sweetness

## Sweetness

| Pumpkin | Mean | $N$ | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.0000 | 30 | 1.41421 |
| $30 \%$ | 6.2667 | 30 | 1.22990 |
| $40 \%$ | 6.8667 | 30 | 1.33218 |
| $50 \%$ | 6.1000 | 30 | 1.34805 |
| Total | 6.3083 | 120 | 1.35842 |

Table 21: Tests of Between-Subjects Effects in yogurt flavor

Dependent Variable: Sweetness

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $160.900^{\text {a }}$ | 32 | 5.028 | 7.453 | .000 |
| lntercept | 4775.408 | 1 | 4775.408 | 7078.697 | .000 |
| trt | 13.558 | 3 | 4.519 | 6.699 | .000 |
| rep | 147.342 | 29 | 5.081 | 7.531 | .000 |
| Error | 58.692 | 87 | .675 |  |  |
| Total | 4995.000 | 120 |  |  |  |
| Corrected Total | 219.592 | 119 |  |  |  |

a. $R$ Squared $=.733$ (Adjusted $R$ Squared $=.634$ )

Table 22: Homogeneous subsets

Sweetness

|  | Pumpkin |  | Subset |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% | 30 | 5.0000 |  |
|  | 50\% | 30 | 8.1000 |  |
|  | 30\% | 30 | 6.2667 |  |
|  | 40\% | 30 |  | 6.8667 |
|  | Sig. |  | . 240 | 1.000 |

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) $=675$.
a. Uses Hamonic Mean Sample Size $=30.000$.

### 4.1.6 Odor

Table 23: Descriptive Statistics in Odor
Dependent variable: odor

## Odor

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.4333 | 30 | 1.04000 |
| $30 \%$ | 6.5000 | 30 | .97379 |
| $40 \%$ | 7.0000 | 30 | 1.31306 |
| $50 \%$ | 6.1333 | 30 | 1.10589 |
| Total | 6.5167 | 120 | 1.14483 |

Table 24: Tests of Between-Subjects Effects in odor

Dependent Variable: Odor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $99.100^{\text {a }}$ | 32 | 3.097 | 4.738 | .000 |
| Intercept | 5096.033 | 1 | 5096.033 | 7796.393 | .000 |
| trt | 11.633 | 3 | 3.878 | 5.933 | .001 |
| rep | 87.467 | 29 | 3.016 | 4.614 | .000 |
| Error | 56.867 | 87 | .654 |  |  |
| Towl | 5252.000 | 120 |  |  |  |
| Corrected Total | 155.967 | 119 |  |  |  |

a. $R$ Squared $=.635$ (Adjusted $R$ Squared $=.501$ )

Table 25: Homogeneous subsets

| Odor |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | $N$ | Subset |  |
|  |  |  | 148 | 2 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 6.1333 |  |
|  | 20\% | 30 | 6.4333 |  |
|  | 30\% | 30 | 6.5000 |  |
|  | 40\% | 30 |  | 7.0000 |
|  | Sig. |  | . 100 | 1.000 |

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) $=.654$.
a. Uses Hamonic Mean Sample Size $=30.000$.

### 4.1.7 Texture

Table 26: Descriptive Statistics in Texture
Dependent variable: texture

Texture

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.5333 | 30 | 1.16658 |
| $30 \%$ | 6.9000 | 30 | .99481 |
| $40 \%$ | 7.5667 | 30 | .97143 |
| $50 \%$ | 6.7000 | 30 | .91539 |
| Total | 6.9250 | 120 | 1.07814 |

Table 27: Tests of Between-Subjects Effects in texture

Dependent Variable: Texture

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $73.067^{2}$ | 32 | 2.283 | 3.044 | .000 |
| Intercept | 5754.675 | 1 | 5754.675 | 7671.920 | .000 |
| itr | 18.492 | 3 | 6.164 | 8.217 | .000 |
| rep | 54.575 | 29 | 1.882 | 2.509 | $.001 \mid$ |
| Error | 65.258 | 87 | .750 |  |  |
| Total | 5893.000 | 120 |  |  |  |
| Corrected Total | 138.325 | 119 |  |  |  |

a. R Squared $=.528$ (Adjusted R Squared $=.355$ )

Tabie 28: Homogeneous subsets

| Texture |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |
|  |  |  | $1 / 8$ | 2 |
| Duncan ${ }^{3}$ | 20\% | 30 | 6.5333 |  |
|  | 50\% | 30 | 6.7000 |  |
|  | 30\% | 30 | 6.9000 |  |
|  | 40\% | 30 |  | 7.5667 |
|  | Sig. |  | . 125 | 1.000 |

[^3]
### 4.1.8 Overall

Table 29: Descriptive Statistics in Overall
Dependent variable: overall

Overall

| Pumpkin | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.5333 | 30 | .89955 |
| $30 \%$ | 6.5333 | 30 | .81931 |
| $40 \%$ | 7.4333 | 30 | .93526 |
| $50 \%$ | 6.5000 | 30 | .82001 |
| rotal | 6.7500 | 120 | .94602 |

Table 30: Tests of Between-Subjects Effects in overall

Dependent Variable: Overall

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $61.200^{\circ}$ | 32 | 1.912 | 3.673 | .000 |
| Intercept | 5467.500 | 1 | 5467.500 | 10500.497 | .000 |
| trt | 18.700 | 3 | 6.233 | 11.971 | .000 |
| rep | 42.500 | 29 | 1.466 | 2.815 | .000 |
| Error | 45.300 | 87 | .521 |  |  |
| Total | 5574.000 | 120 |  |  |  |
| Corrected Total | 106.500 | 119 |  |  |  |

a. R Squared $=.575$ (Adjusted R Squared $=.418$ )

Table 31: Homogeneous subsets

| Overall |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pumpkin | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 6.5000 |  |
|  | 20\% | 30 | 6.5333 |  |
|  | 30\% | 30 | 6.5333 |  |
|  | 40\% | 30 |  | 7.4333 |
|  | Sig. |  | . 868 | 1.000 |

[^4]
### 4.2 Carrot yogurt in carrot meat varying

### 4.2.1 Appearance

Table 32: Descriptive Statistics in Appearance
Dependent variable: appearance

Appearance

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.6667 | 30 | 1.37297 |
| $30 \%$ | 7.7333 | 30 | .78492 |
| $40 \%$ | 6.9000 | 30 | 1.18467 |
| $50 \%$ | 6.6667 | 30 | 1.15470 |
| Total | 6.9917 | 120 | 1.21265 |

Table 33: Tests of Between-Subjects Effects in appearance
Dependent Variable: Appearance

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $117.333^{2}$ | 32 | 3.667 | 5.533 | .000 |
| ntercept | 5866.008 | 1 | 5866.008 | 8851.153 | .000 |
| rrt | 23.092 | 3 | 7.697 | 11.614 | .000 |
| rep | 94.242 | 29 | 3.250 | 4.903 | .000 |
| Error | 57.658 | 87 | .683 |  |  |
| Total | 6041.000 | 120 |  |  |  |
| Corrected Total | 174.992 | 119 |  |  |  |

a. $R$ Squared $=.671$ (Adjusted $R$ Squared $=.549$ )

Table 34: Homogeneous subsets
Appearance

|  |  | Subset |  |
| :---: | ---: | ---: | ---: |
| Carrot | $N$ | 1 | 2 |
| Duncan ${ }^{2}$ | $20 \%$ | 30 | 6.6667 |
|  | $30 \%$ | 6.6667 |  |
| $40 \%$ | 30 | 6.9000 |  |
| $30 \%$ | 30 |  | 7.7333 |
| Sig. |  | 300 | 1.000 |

Means for groups in homogeneous subsets are displayed.
Based on absenved means.
The error term is Man Square(Error) $=.063$.
a. Uses Hamonic Mean Sample Size $=30.000$.

### 4.2.2 Color

Table 35: Descriptive Statistics in Color

## Dependent variable: Color

Color

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.8333 | 30 | 1.23409 |
| $30 \%$ | 7.8333 | 30 | 1.01992 |
| $40 \%$ | 7.1000 | 30 | 1.29588 |
| $50 \%$ | 6.7333 | 30 | 1.38796 |
| Total | 7.1250 | 120 | 1.30005 |

Table 36: Tests of Between-Subjects Effects in color
Dependent Variable :Color

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $137.600^{2}$ | 32 | 4.300 | 5.889 | .000 |
| Intercept | 6091.875 | 1 | 6091.875 | 8343.064 | .000 |
| trt | 22.225 | 3 | 7.408 | 10.146 | .000 |
| rep | 115.375 | 29 | 3.978 | 5.449 | .000 |
| Error | 63.525 | 87 | .730 |  |  |
| Total | 6293.000 | 120 |  |  |  |
| Corrected Total | 201.125 | 119 |  |  |  |

a. $R$ Squared $=.684$ (Adjusted $R$ Squared $=.568$ )

Table 37: Homogeneous subsets

| Color |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Carrot | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 6.7333 |  |
|  | 20\% | 30 | 6.8333 |  |
|  | 40\% | 30 | 7.1000 |  |
|  | 30\% | 30 |  | 7.8333 |
|  | Sig. |  | . 120 | 1.000 |

[^5]a. Uses Hammonic Mean Sample Size $=30.000$.

### 4.2.3 Carrot flavor

Table 38: Descriptive Statistics in Carrot flavor
Dependent variable: Carrot flavor

Carrot flavor

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.5000 | 30 | 1.22474 |
| $30 \%$ | 7.7000 | 30 | .59596 |
| $40 \%$ | 6.7333 | 30 | 1.28475 |
| $50 \%$ | 6.6667 | 30 | 1.44636 |
| Total | 6.9000 | 120 | 1.25959 |

Table 39: Tests of Between-Subjects Effects in carrot flavor
Dependent Variable: Carrot flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $118.767^{2}$ | 32 | 3.711 | 4.611 | $.000 \mid$ |
| Intercept | 5713.200 | 1 | 5713.200 | 7097.312 | .000 |
| int | 26.467 | 3 | 8.822 | 10.960 | .000 |
| rep | 92.300 | 29 | 3.183 | 3.954 | .000 |
| Error | 70.033 | 87 | .805 |  |  |
| Total | 5902.000 | 120 |  |  |  |
| Corrected Total | 188.800 | 119 |  |  |  |

a. R Squared $=.629$ (Adjusted R Squared $=.493$ )

Table 40: Homogeneous subsets

| Carrot flavor |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Carrot | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{3}$ | 20\% | 30 | 6.5000 |  |
|  | 50\% | 30 | 6.6667 |  |
|  | 40\% | 30 | 6.7333 |  |
|  | $30 \%$ | 30 |  | 7.7000 |
|  | Sig. |  | . 348 | 1.000 |

[^6]
### 4.2.4 Yogurt flavor

Table 41: Descriptive Statistics in Yogurt flavor
Dependent variable: Yogurt flavor

Yogurt flavor

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.5667 | 30 | 1.30472 |
| $30 \%$ | 7.6000 | 30 | .67466 |
| $40 \%$ | 6.2667 | 30 | 1.31131 |
| $50 \%$ | 6.2667 | 30 | 1.38796 |
| Total | 6.6750 | 120 | 1.31035 |

Table 42: Tests of Between-Subjects Effects in yogurt flavor
Dependent Variable: Yogurt flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $123.100^{a}$ | 32 | 3.847 | 4.120 | .000 |
| ntercept | 5346.675 |  | 1 | 5346.675 | 5726.817 |
| rrt | 36.025 | 3 | 12.008 | 12.862 | .000 |
| rep | 87.075 | 29 | 3.003 | 3.216 | .000 |
| Error | 81.225 | 87 | .934 |  |  |
| Total | 5551.000 | 120 |  |  |  |
| Corrected Total | 204.325 | 119 |  |  |  |

a. $R$ Squared $=.602$ (Adjusted $R$ Squared $=.456$ )

Table 43: Homogeneous subsets

| Yogurt flavor |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Carrot | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 6.2667 |  |
|  | 40\% | 30 | 5.2667 |  |
|  | 20\% | 30 | 5.5667 |  |
|  | 30\% | 30 |  | 7.6000 |
|  | Sig. |  | 202 | 1.000 |

Means for groups in homogeneous suosets are displayed.
Based on observed means.
The error term is Mean Square(Error) $=.934$.
a. Uses Harmonic Wean Sample Sige $=20.000$.

### 4.2.5 Sweetness

Table 44: Descriptive Statistics in Sweetness
Dependent variable: Sweetness

## Sweetness

| Carrot | Mean | N | Std. Deviation |
| :--- | :---: | ---: | ---: |
| $20 \%$ | 6.0000 | 30 | 1.38962 |
| $30 \%$ | 7.1000 | 30 | 1.32222 |
| $40 \%$ | 6.1667 | 30 | 1.44039 |
| $50 \%$ | 6.0000 | 30 | 1.36458 |
| Total | 6.3167 | 120 | 1.43769 |

Table 45: Tests of Between-Subjects Effects in sweetness
Dependent Variable: Sweetness

| Source | Type III Sum of Squares | df | Mean Square | F | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Corrected Model | $196.567^{\text {a }}$ | 32 | 6.143 | 10.818 | . 000 |
| Intercept | 4788.033 | 1 | 4788.033 | 8432.366 | . 000 |
| fret | 25.100 | 3 | 8.367 | 14.735 | . 000 |
| rep | 171.467 | 29 | 5.913 | +10.413 | . 000 |
| Error | $49.400$ | 87 | . 568 |  |  |
| Total | $\square 5034.000$ | 120 |  | 7 |  |
| Corrected Total | 245.967 | 119 |  |  |  |

a. R Squared $=.799$ (Adjusted R Squared $=.725$ )

Table 46: Homogeneous subsets

| Carrot |  | N | Subset |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |
| Duncan ${ }^{2}$ | 20\% |  | 30 | 6.0000 |  |
|  | 50\% | 30 | 6.0000 |  |
|  | 40\% | 30 | 6.1687 |  |
|  | 30\% | 30 |  | 7.1000 |
|  | Sig. |  | . 425 | 1.000 |

[^7]
### 4.2.6 Odor

Table 47: Descriptive Statistics in Odor
Dependent variable: Odor
Odor

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.1000 | 30 | 1.18467 |
| $30 \%$ | 7.1000 | 30 | 1.24152 |
| $40 \%$ | 6.1667 | 30 | 1.28877 |
| $50 \%$ | 6.2000 | 30 | 1.27035 |
| Total | 6.3917 | 120 | 1.29832 |

Table 48: Tests of Between-Subjects Effects in odor
Dependent Variable: Odor

| Source | Type lll Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $142.567^{\text {a }}$ | 32 | 4.455 | 6.680 | .000 |
| intercept | 4902.408 | 1 | 4902.408 | 7350.444 | .000 |
| trt | 20.225 | 3 | 6.742 | 10.108 | .000 |
| fep | 122.342 | 29 | 4.219 | 6.325 | $.000 \mid$ |
| Error | 58.025 | 87 | .667 |  |  |
| Total | 5103.000 | 120 |  |  |  |
| Corrected Total | 200.592 | 119 |  |  |  |

a. R Squared $=.711$ (Adjusted R Squared $=.604$ )

Table 49: Homogeneous subsets

| Odor |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Carrot | N | Subset |  |
|  |  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% | 30 | 6.1000 |  |
|  | 40\% | 30 | 6.1667 |  |
|  | 50\% | 30 | 6.2000 |  |
|  | 30\% | 30 |  | 7.1000 |
|  | Sig. |  | . 659 | 1.000 |

[^8]
### 4.2.7 Texture

Table 50: Descriptive Statistics in Texture
Dependent variable: Texture

Texture

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.4667 | 30 | 1.22428 |
| $30 \%$ | 7.6000 | 30 | .81368 |
| $40 \%$ | 6.5333 | 30 | 1.07425 |
| $50 \%$ | 6.6000 | 30 | 1.24845 |
| Total | 6.8000 | 120 | 1.18534 |

Table 51: Tests of Between-Subjects Effects in texture
Dependent Variable: Texture

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $81.067^{2}$ | 32 | 2.533 | 2.559 | .000 |
| Intercept | 5548.800 | 1 | 5548.800 | 5604.632 | .000 |
| trt | 25.867 | 3 | 8.622 | 8.709 | .000 |
| rep | 55.200 | 29 | 1.903 | 1.923 | .011 |
| Error | 86.133 | 87 | .990 |  |  |
| Total | 5716.000 | 120 |  |  |  |
| Conected Total | 167.200 | 119 |  |  |  |

a. R Squared $=.485$ (Adjusted R Squared $=.295$ )

Table 52: Homogeneous subsets
Texture

| Carrot |  | N | Subset |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 |
| Duncan ${ }^{\text {a }}$ | 20\% |  | 30 | 6.4667 |  |
|  | 40\% | 30 | 6.5333 |  |
|  | 50\% | 30 | 8.6000 |  |
|  | 30\% | 30 |  | 7.6000 |
|  | Sig. |  | 629 | 1.000 |

[^9]
### 4.2.8 Overall

Table 53: Descriptive Statistics in Overall
Dependent variable: Overall
Overall

| Carrot | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 6.6000 | 30 | .85501 |
| $30 \%$ | 7.7000 | 30 | .74971 |
| $40 \%$ | 6.6000 | 30 | .85501 |
| $50 \%$ | 6.3667 | 30 | .96431 |
| Total | 6.8167 | 120 | .99565 |

Table 54: Tests of Between-Subjects Effects in overall
Dependent Variable: Overall

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $69.767^{2}$ | 32 | 2.180 | 3.935 | .000 |
| Intercept | 5576.033 | 1 | 5576.033 | 10064.624 | .000 |
| trt | 32.300 | 3 | 10.767 | 19.434 | .000 |
| rep | 37.467 | 29 | 1.292 | 2.332 | .001 |
| Error | 48.200 | 87 | .554 |  |  |
| Total | 5694.000 | 120 |  |  |  |
| Corrected Total | 117.967 | 119 |  |  |  |

a. $R$ Squared $=.591$ (Adjusted $R$ Squared $=.441$ )

Table 55: Homogeneous subsets
Overall

|  |  | Subset |  |
| :---: | ---: | ---: | ---: |
|  | Carrot | $N$ | 1 |
| Duncan ${ }^{\text {a }}$ | $50 \%$ | 30 | 6.3667 |
|  | $20 \%$ | 30 | 6.6000 |
| $40 \%$ | 30 | 6.6000 |  |
| $30 \%$ | 30 |  | 7.7000 |
| Sig. |  | .257 | 1.000 |

[^10]a. Uses Harmonic Mean Sample Size $=30.000$.

### 4.3 Kale yogurt in kale meat varying

4.3.1 Appearance

Table 56: Descriptive Statistics in Appearance
Dependent variable: appearance

Appearance

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 5.5333 | 30 | 1.65536 |
| $30 \%$ | 5.1333 | 30 | 1.75643 |
| $40 \%$ | 4.4000 | 30 | 1.95818 |
| $50 \%$ | 3.5000 | 30 | 2.23992 |
| Total | 4.6417 | 120 | 2.04486 |

Table 57: Tests of Between-Subjects Effects in appearance
Dependent Variable: Appearance

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $443.800^{9}$ | 32 | 13.869 | 22.431 | .000 |
| Intercept | 2585.408 | 1 | 2585.408 | 4181.512 | .000 |
| Irt | 71.958 | 3 | 23.986 | 38.794 | .000 |
| rep | 371.842 | 29 | 12.822 | 20.738 | .000 |
| Error | 53.792 | 87 | .618 |  |  |
| Total | 3083.000 | 120 |  |  |  |
| Corrected Total | 497.592 | 119 |  |  |  |

a. $R$ Squared $=.892$ (Adjusted $R$ Squared $=.852$ )

Table 58: Homogeneous subsets

|  | Kale | N | Subset |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 3.5000 |  |  |
|  | 40\% | 30 |  | 4.4000 |  |
|  | 30\% | 30 |  |  | 5.1333 |
|  | 20\% | 30 |  |  | 5.5333 |
|  | Sig. |  | 1.000 | 1.000 | . 052 |

Means for groups in homogeneous subsets are displayed.
Based on obsenved means.
The error term is inean Square(Error) $=.618$.
a. Uses Hamonic Haan Sample Size $=30.000$.

### 4.3.2 Color

Table 59: Descriptive Statistics in Color
Dependent variable: Color

Color

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 5.5000 | 30 | 1.79559 |
| $30 \%$ | 5.1667 | 30 | 1.85850 |
| $40 \%$ | 4.4667 | 30 | 2.09652 |
| $50 \%$ | 3.5667 | 30 | 2.35889 |
| Total | 4.6750 | 120 | 2.14657 |

Table 60: Tests of Between-Subjects Effects in color
Dependent Variable: Color

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $470.900^{a}$ | 32 | 14.716 | 16.535 | .000 |
| intercept | 2622.675 | 1 | 2622.675 | 2947.016 | .000 |
| frt | 65.825 | 3 | 21.942 | 24.655 | .000 |
| rep | 405.075 | 29 | 13.968 | 15.696 | .000 |
| Error | 77.425 | 87 | 890 |  |  |
| Total | 3171.000 | 120 |  |  |  |
| Corrected Total | 548.325 | 119 |  |  |  |

a. R Squared $=.859$ (Adjusted R Squared $=.807$ )

Table 61: Homogeneous subsets

|  | Kale |  |  | bbset |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | 16 | 2 | 3 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 3.5067 |  |  |
|  | 40\% | 30 |  | 4.4667 |  |
|  | 30\% | 30 |  |  | 5.1867 |
|  | 20\% | 30 |  |  | 5.5000 |
|  | Sig. |  | 1.000 | 1.000 | 175 |

[^11]a. Uses Harmonic Mean Sample SEe $=30.000$.

### 4.3.3 Kale flavor

Table 62: Descriptive Statistics in Kale flavor
Dependent variable: Kale flavor

Kale flavor

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 5.0333 | 30 | 1.88430 |
| $30 \%$ | 4.4333 | 30 | 1.77499 |
| $40 \%$ | 4.0667 | 30 | 2.06670 |
| $50 \%$ | 3.1667 | 30 | 2.08580 |
| Total | 4.1750 | 120 | 2.04842 |

Table 63: Tests of Between-Subjects Effects in kale flavor
Dependent Variable: Kale flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $430.033^{a}$ | 32 | 13.439 | 16.873 | .000 |
| Intercept | 2091.675 | 1 | 2091.675 | 2626.228 | .000 |
| trt | 54.958 | 3 | 18.319 | 23.001 | .000 |
| rep | 375.075 | 29 | 12.934 | 16.239 | .000 |
| Error | 69.292 | 87 | .796 |  |  |
| Total | 2591.000 | 120 |  |  |  |
| Corrected Total | 499.325 | 119 |  |  |  |

a. R Squared $=.861$ (Adjusted R Squared $=.810$ )

Table 64: Homogeneous subsets

| Kale flavor |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kale | N | Subset |  |  |
|  |  |  | 1 | 2 | 3 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 3.1667 |  |  |
|  | 40\% | 30 |  | 4.0667 |  |
|  | 30\% | 30 |  | 4.4333 |  |
|  | 20\% | 30 |  |  | 5.0333 |
|  | Sig. |  | 1.000 | . 115 | 1.000 |

[^12]
### 4.3.4 Yogurt flavor

Table 65: Descriptive Statistics in Yogurt flavor
Dependent variable: Yogurt flavor

Yogurt flavor

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 5.1333 | 30 | 1.85199 |
| $30 \%$ | 4.5000 | 30 | 1.67641 |
| $40 \%$ | 4.0333 | 30 | 1.99107 |
| $50 \%$ | 3.3667 | 30 | 2.09241 |
| Total | 4.2583 | 120 | 1.99367 |

Table 66: Tests of Between-Subjects Effects in yogurt flavor
Dependent Variable: Yogurt flavor

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $422.833^{a}$ | 32 | 13.214 | 22.919 | .000 |
| Intercept | 2176.008 | 1 | 2176.008 | 3774.303 | .000 |
| trt | 50.092 | 1 | 3 | 16.697 | 28.961 |

a. R Squared $=.894$ (Adjusted $R$ Squared $=.855$ )

Table 67: Homogeneous subsets
Yogurt flavor

|  | Kale | N | Subset |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |
| Duncan ${ }^{\text {a }}$ | 50\% | 30 | 3.3667 |  |  |  |
|  | 40\% | 30 |  | 4.0333 |  |  |
|  | 30\% | 30 |  |  | 4.5000 |  |
|  | 20\% | 30 |  |  |  | 5.1333 |
|  | Sig. |  | 1.000 | 1.000 | 1.000 | 1.000 |

[^13]a. Uses Harmonic Mean Sample Size $=30.000$.

### 4.3.5 Sweetness

Table 68: Descriptive Statistics in Sweetness
Dependent variable: Sweetness

Sweetness

| Kale | Mean | N | Std. Deviation |
| :--- | :--- | ---: | ---: |
| $20 \%$ | 4.7000 | 30 | 1.87819 |
| $30 \%$ | 4.2667 | 30 | 1.70057 |
| $40 \%$ | 3.8667 | 30 | 2.01260 |
| $50 \%$ | 3.2333 | 30 | 1.95965 |
| Total | 4.0167 | 120 | 1.94454 |

Table 69: Tests of Between-Subjects Effects in sweetness
Dependent Variable: Sweetness

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $405.433^{2}$ | 32 | 12.670 | 24.752 | .000 |
| Intercept | 1936.033 | 1 | 1936.033 | 3782.221 | .000 |
| trt | 34.967 | 3 | 11.656 | 22.770 | .000 |
| rep | 370.467 | 29 | 12.775 | 24.957 | .000 |
| Error | 44.533 | 87 |  |  |  |
| Total | 2386.000 | 120 |  |  |  |
| Corrected Toial | 449.967 | 119 |  |  |  |

a. R Squared $=.901$ (Adjusted R Squared $=.865$ )

Table 70: Homogeneous subsets
Sweetness


[^14]
### 4.3.6 Odor

Table 71: Descriptive Statistics in Odor
Dependent variable: Odor
Odor

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 4.8333 | 30 | 1.83985 |
| $30 \%$ | 4.3000 | 30 | 1.98529 |
| $40 \%$ | 3.8667 | 30 | 2.22421 |
| $50 \%$ | 3.2000 | 30 | 2.10746 |
| Total | 4.0500 | 120 | 2.10581 |

Table 72: Tests of Between-Subjects Effects in odor
Dependent Variable: Odor

| Source | Type Ill Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $479.667^{2}$ | 32 | 14.990 | 27.150 | .000 |
| lntercept | 1968.300 | 1 | 1968.300 | 3565.068 | .000 |
| trt | 42.967 | 3 | 14.322 | 25.941 | .000 |
| rep | 436.700 | 29 | 15.059 | 27.275 | .000 |
| Error | 48.033 | 87 | .552 |  |  |
| Total | 2496.000 | 120 |  |  |  |
| Corrected Total | 527.700 | 119 |  |  |  |

a. R Squared $=.909$ (Adjusted R Squared $=.875$ )

Table 73: Homogeneous subsets
Odor


Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square $(E r r o n)=552$.
a. Uses Harmonic Mean Sarmple Size $=30.000$.

### 4.3.7 Texture

Table 74: Descriptive Statistics in Texture
Dependent variable: Texture

Texture

| Kale | Mean | N | Std. Deviation |
| :--- | ---: | ---: | ---: |
| $20 \%$ | 4.9333 | 30 | 1.83704 |
| $30 \%$ | 4.4000 | 30 | 1.92264 |
| $40 \%$ | 3.8333 | 30 | 2.03560 |
| $50 \%$ | 2.9667 | 30 | 1.86591 |
| Total | 4.0333 | 120 | 2.02892 |

Table 75: Tests of Between-Subjects Effects in Texture
Dependent Variable: Texture

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $435.033^{\text {a }}$ | 32 | 13.595 | 21.570 | .000 |
| Intercept | 1952.133 | 1 | 1952.133 | 3097.306 | .000 |
| rit | 63.667 | 3 | 21.222 | 33.672 | .000 |
| rep | 371.367 | 29 | 12.806 | 20.318 | .000 |
| Error | 54.833 | 87 | .630 |  |  |
| Total | 2442.000 | 120 |  |  |  |
| Corrected Total | 489.867 | 119 |  |  |  |

a. $R$ Squared $=.888$ (Adjusted $R$ Squared $=.847$ )

Table 76: Homogeneous subsets
Texture


Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error tem is Mean Square(Error) $=.630$.

### 4.3.8 Overall

Table 77: Descriptive Statistics in Overall
Dependent variable: Overall
Overall

| Kale | Mean | N | Std. Deviation |
| :--- | :---: | ---: | ---: |
| $20 \%$ | 5.0667 | 30 | 1.87420 |
| $30 \%$ | 4.6333 | 30 | 1.84733 |
| $40 \%$ | 3.9333 | 30 | 1.99885 |
| $50 \%$ | 3.1000 | 30 | 2.00603 |
| Total | 4.1833 | 120 | 2.04973 |

Table 78: Tests of Between-Subjects Effects in overall
Dependent Variable: Overall

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Corrected Model | $442.533^{a}$ | 32 | 13.829 | 20.948 | .000 |
| Intercept | 2100.033 | 1 | 2100.033 | 3181.130 | .000 |
| rrt | 66.567 | 3 | 22.189 | 33.612 | .000 |
| rep | 375.967 | 29 | 12.964 | 19.638 | .000 |
| Error | 57.433 | 87 | .560 |  |  |
| Total | 2600.000 | 120 |  |  |  |
| Corrected Total | 499.967 | 119 |  |  |  |

a. R Squared $=.885$ (Adjusted R Squared $=.843$ )

Table 79: Homogeneous subsets
Overall


Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Enor) $=660$.
a. Uses Hamonic Mean Sample Size $=30.000$.

### 4.4 Consumer Acceptance

Table 80: Frequency of gender

| Gender | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Male | 33 | 33.0 | 33.0 | 33.0 |
| Female | 67 | 67.0 | 67.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 81: Frequency of age

| Age | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Less than 20 <br> years | 27 | 27.0 | 27.0 | 27.0 |
| $21-25$ years | 32 | 32.0 | 32.0 | 59.0 |
| $26-30$ years | 25 | 25.0 | 25.0 | 84.0 |
| $31-35$ years | 8 | 8.0 | 8.0 | 92.0 |
| $41-45$ years | 4 | 4.0 | 4.0 | 96.0 |
| More than 45 <br> years | 4 | 4.0 | 4.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |



Figure 10: Pie chart showed frequency of age

Table82: frequency of education

| Education | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Lower high <br> school | 5 | 5.0 | 5.0 | 5.0 |
| High school | 19 | 19.0 | 19.0 | 24.0 |
| Vocational <br> school | 2 | 2.0 | 2.0 | 26.0 |
| Undergraduate | 53 | 53.0 | 53.0 | 79.0 |
| Graduate or <br> higher | 21 | 21.0 | 21.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |



Figure 11: Pie chart showed frequency of education

Table 83: Frequency of occupation

| Occupation | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Student | 77 | 77.0 | 77.0 | 77.0 |
| Government <br> officer | 2 | 2.0 | 2.0 | 79.0 |
| Employee | 19 | 19.0 | 19.0 | 98.0 |
| Other | 2 | 2.0 | 2.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |



Figure 12: Pie chart showed frequency of occupation

Table 84: Frequency of income

| Income | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Less than 5,000 <br> bath | 8 | 8.0 | 8.0 | 8.0 |
| $5,001-10,000$ <br> bath | 54 | 54.0 | 54.0 | 62.0 |
| $10,001-15,000$ <br> bath | 17 | 17.0 | 17.0 | 79.0 |
| $15,001-20,000$ <br> bath | 19 | 19.0 | 19.0 | 98.0 |
| More than <br> 20,000 bath | 2 | 2.0 | 2.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |



Figure 13: Pie chart showed frequency of income

Table 85: Descriptive statistic of final product of Pumpkin yogurt in each attributes

| Attribute | N | Minimum | Maximum | Mean | Std. <br> Deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Appearance | 100 | 5.00 | 9.00 | 7.40 | 0.82878 |
| Color | 100 | 6.00 | 9.00 | 7.17 | 0.87132 |
| Flavor | 100 | 4.00 | 9.00 | 7.78 | 0.84154 |
| Sweetness | 100 | 5.00 | 9.00 | 7.29 | 0.79512 |
| Odor | 100 | 4.00 | 8.00 | 7.44 | 0.64071 |
| Texture | 100 | 4.00 | 9.00 | 7.48 | 0.91541 |
| Overall | 100 | 5.00 | 9.00 | 7.52 | 0.88169 |
| Valid N | 100 |  |  |  |  |

Table 86: Descriptive statistic of final product of Carrot yogurt in each attributes

| Attribute | N | Minimum | Maximum | Mean | Std. <br> Deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Appearance | 100 | 5.00 | 9.00 | 7.51 | 0.85865 |
| Color | 100 | 6.00 | 9.00 | 7.79 | 0.83236 |
| Flavor | 100 | 4.00 | 9.00 | 7.44 | 1.14874 |
| Sweetness | 100 | 5.00 | 9.00 | 7.43 | 0.85582 |
| Odor | 100 | 5.00 | 9.00 | 7.36 | 0.82291 |
| Texture | 100 | 5.00 | 8.00 | 7.31 | 0.80019 |
| Overall | 100 | 6.00 | 9.00 | 7.56 | 0.76963 |
| Valid N | 100 |  |  |  |  |

Table 87: Pumpkin yogurt acceptance

| Acceptance | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Accept | 79 | 79.0 | 79.0 | 79.0 |
| Not accept | 21 | 21.0 | 21.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 88 : Carrot yogurt acceptance

| Acceptance | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Accept | 90 | 90.0 | 90.0 | 90.0 |
| Not accept | 10 | 10.0 | 10.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 89: Frequency of buying decision in pumpkin yogurt

| Decision | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Buy | 64 | 64.0 | 64.0 | 64.0 |
| Not sure | 29 | 29.0 | 29.0 | 93.0 |
| Not buy | 7 | 7.0 | 7.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 90: Frequency of buying decision in carrot yogurt

| Decision | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| Buy | 69 | 69.0 | 69.0 | 69.0 |
| Not sure | 27 | 27.0 | 27.0 | 96.0 |
| Not buy | 4 | 4.0 | 4.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 91: Frequency of price that consumer accept in pumpkin yogurt

| Price | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| $10-15$ bath | 82 | 82.0 | 82.0 | 82.0 |
| $15-20$ bath | 18 | 18.0 | 18.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

Table 92: Frequency of price that consumer accept in carrot yogurt

| Price | Frequency | Percentage | Valid percentage | Cumulative <br> percentage |
| :--- | :--- | :--- | :--- | :--- |
| $10-15$ bath | 85 | 85.0 | 85.0 | 85.0 |
| $15-20$ bath | 15 | 15.0 | 15.0 | 100.0 |
| Total | 100 | 100.0 | 100.0 |  |

## MKIE ASSUMPTION UNIVERSTTY LIBRARTM


[^0]:    Means for groups in homogeneous subsets are displayed.
    Based on ooserved means.
    The error tera is Mean Square $($ Error $)=1.064$

[^1]:    Means for groups in homogeneous subseis are displayed.
    Based on observed means.
    The error tem is Wean Square(Emor) $=.688$
    a. Uses Harmonic Mean Sample Size $=30.000$.

[^2]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error termi is Mean Square(Error) $=.671$.

[^3]:    Means for groups in homogeneous subsels are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.750$.
    a. Uses Hamonic Mean Sample Size $=30.000$.

[^4]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.521$.
    a. Uses Hammonic Mean Sample Size $=30.000$.

[^5]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.730$.

[^6]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.805$.
    a. Uses Harmonic Mean Sample Size $=30.000$.

[^7]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error tem is Mean Squere(Error) $=$ ES8
    a. Uses Hamonic Mean Sample Size $=30.000$.

[^8]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Asan Square(Error) $=.667$.
    a. Uses Harmonic Mean Sample Size $=30.000$.

[^9]:    Means for groups in homogeneous subsets are displayed.
    Based on obseryed means.
    The error term is Mean Square(Error) $=.990$.
    a. Uses Harmonic Mean Sample Size $=30.000$.

[^10]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.554$.

[^11]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.890$.

[^12]:    Means for groups in nomogeneous subsels are displayed
    Based on observed means.
    The error tem is wean Square(Error) $=796$.
    a. Uses Harmonic Mean Sample Size $=30.000$.

[^13]:    Means for groups in homogeneous subsets are displayed.
    Based on observed means.
    The error term is Mean Square(Error) $=.577$.

[^14]:    Means for groups in homogeneous subsets are displayed.
    Sased on observed means.
    The error tern is Mean Square(Error) $=.512$.
    a. Uses Harmonic Mean Sample Size $=30.000$.

