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ABSTRACT 

Shape from Shading is a technique to determine shape of the object in 3D 

from its gray-scale 2D image. This technique does not mimic the mechanism of the 

human brain but is a method applied to execute in the computing world. 

Optimal Thresholding is a thresholding applied to extract or separate one 

objects from another in the gray-scale image. 

Histogram Equalization and Histogram Specification are the histogram 

processing technique for enhancing the contrast of the image. 

Applied Shape from shading technique in reconstructing 3D image, the result 

may be ambiguous because of ambiguity and darkness of 2D image. 

This thesis introduces Optimal Thresholding and Histogram Processing as 

preprocessing to relieve the effect of darkness and ambiguity in the image before 

reconstructing 3D image by Shape from shading. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

In reconstruction of 3D from 2D image quaJity of the 3D image may be 

deteriorated by many reasons, some of the problems are caused by the nature of 

the image itself. 

Shape from shading is the technique introduced for recovery shape of the 

image in 3D from 2D image. 

Optimal Thresholding is a method to extract some part of the object from 

gray-scale image by applying histogram in associate. 

Histogram Equalization and Histogram Specification are the contrast 

enhancement technique used in Histogram Processing. -
This thesis introduces process for 3D reconstruction by Shape from shading 

with applying Optimal thresholding method with Histogram Processing to get 

rid of or relieve some problems in the 2D image cause by some darkness or 

ambiguity on the 2D image which can deteriorate the generated 3D. 

The thesis . organizes as following: Chapter 1 is an introduction. Chapter 2 

introduces concept of Shape from shading. Chapter 3 is concept of Optimal 

Thresholding. Chapter 4 is a Histogram Processing. Chapter 5 is proposed 

techniques. Chapter 6 and 7 are the experimental results and conclusion 

respectively. Finally Chapter 7 is bibliography. 

1.2 Problem Definition 
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Darkness and some ambiguity parts that appear on 20 image can be the 

cause of ambiguity of shape in reconstructed 30 image by Shape from shading. 

1.3 Objectives 

The objective of the thesis is to improve the result of 30 reconstructed from 

Shape from shading. The ambiguity of 30 images are because of some shadow, 

some dark parts or some ambiguity from the 20 images. This thesis introduces 

the method to relieve the effect of darkness or ambiguity in 30 reconstruction 

using Shape from shading by applying Optimal thresholding and Histogram 

Processing. ~ 

I.;;, 

1.4 Scope of Work 

1. Shape from shading 

I.I Studying of Shape from shading concept. 

1.2 Surveying of Shape from shading research and development. 

1.3 Implementing Shape from shading from the concept. 

1.4 Finding the problem of Shape from shading. 

2.0ptimal Thresholding 

2.1 Studying of Optimal Thresholding concepts. 

2.2 Implementing Optimal Thresholding from concept. 

3. Histogram Processing 

3.1 Studying of Histogram Processing concepts. 

3.2 Studying of Histogram Equalization concept. 
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3.3 Studying of Histogram Specification concept. 

3.4 Implementing Histogram Equalization. 

3.5 Implementing Histogram Specification. 

4. The proposed techniques of Improving Shape from Shading by Applying 

Optimal Thresholding and Histogram Processing. 

3.1 Studying feasibility of the proposed techniques. 

3.2 Implementing the proposed techniques. 

3.3 Simulating and Experimenting proposed technique on sample images. 

3.4 Providing experimental results. 

3.5 Providing conclusion. 

3 



CHAPTER 2 SHAPE FROM SHADING 

2.1 Introduction 

Research in computer vision has attempted to provide the method for 

computer to recover 3D shape of the 2D image. Shading is important 

information for human being and also computer to use to determine shape of any 

object. 

First proposed in 1970s, Shape from shading is a method to determine 

shape of the object by its shade in image. The traditional assumption in Shape 

from shading is based on Lambertian reflectance, known light source direction 

and local shape recovery. After first proposed, many researchers have proposed 

their techniques applied from the fundamental technique. In this proposal Shape 

from shading techniques are classified in to four approaches: minimization 

approach, propagation approach, local approach, and linear approach. 

The four approaches are introduced in 2.2, follow by reflectance models 

in 2.3, and Implementation of Shape from shading in 2.4. 

2.2 Four Approaches of Shape from Shading 

Four approaches which are minimization, propagation, local, and linear 

approach are described in brief. 

2.2.1 Minimization Approach 

4 



Techniques in minimization approach compute the shape of the object by 

minimizing energy function over an entire image and apply constrains to resolve 

unknowns. The constraints are as follows: 

The Brightness constraint - indicates the total brightness error of the 

reconstructed image compared with the input image. 

I l(I-R/dx dy (2-1) 

The Smoothness constraint - ensures a smooth surface in order to 

stabilize the convergence to a unique solution. 

ll(p/ + p/ + q/ + q/) dxdy (2-2) 

where p and q are surface gradients along the x and y directions. Another version 

of the smoothness term is * 
'Jf?"Cti. SINCE 196 al ~~ 

>7v1i11a'6\t\~ 
11 (p/+ q/J dx dy (2-3) 

and can also be described in terms of the surface normal N : 

(2-4) 

The Integrability constraint - ensures valid surfaces, that is Zx,y = Zy,x· It 

can be described by either 
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ff (p/ -q/) dx dy (2-5) 

or 

(2-6) 

The Intensity Gradient constrain - requires that the intensity gradient of 

the reconstructed image be close to the intensity gradient of the input image in 

both the x and y directions: \" ERS1,-,, 
()~ 

,A (2-7) 

~ 

ff ((Rx - IJ2 + (Ry - ly/) dx dy 

The Unit Normal constraint - forces the recovered surface normal to be 

unit vectors: 

ff(// N x /f-1) dx dy "''" * (2-8) 
' 969 ~"o~ 

~,,,f/1&tJst\$,,t 
2.2.2 Propagation Approach 

Propagation approach starts from a single reference surface point or a set 

of surface points where the shape either is known or can be uniquely determined 

(such as singular points) and propagate the shape information across the whole 

image. 

2.2.3 Local Approach 
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Local approach derives the shape by assuming local surface type. They 

use the intensity derivative information and assume spherical surface. 

2.2.4 Linear Approach 

Linear approach reduces the nonlinear problem into a linear through the 

linearization of the reflectance map. The idea is based on the assumption that the 

lower order components in the reflectance map dominate. Therefore, these 

algorithms only work well under this assumption. 

2.3 Reflectance Model 

The reflectance models can be categorized depending on their physical 

properties. There are Lambertian surface model, specular surface models, 

hybrid surface models, and more sophisticated surface models. 

Some models are presented in the following. 

2.3.1 Lambertian Reflectance Model 

Lambertian surfaces light in all directions as diffuse reflectance. The 

brightness of a Lambertian surface depends on energy of the light, which fall on 

the surface. The amount of light energy falling on a surface element is 

proportional to the area of the surface element on the direction of light. The 

foreshortened area mentioned and can be represented as a dot product between 
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surface normal and light source direction or a cosine of the angle between 

surface normal and light source where surface normal and light source direction 

are unit vector. 

The formulae used to model Lambertian surface are: 

h = R = ApcosO; (2-9) 

or \"ER /J"y 

h =ApN S (2-10) 

where h is the Lambertian brightness 

R is the reflectance map 

A is the strength of the light source 

O; is the angle between the surface normal N = (nx,ny,nJ and the source 

..... 
direction S = (sx,sy,sJ 

2.3.2 Specular Reflectance Model 

Specularity reflects from the surface composes of specular spike and 

specular lobe. Incident angle of the light source in specularity is equal to the 

reflected angle. The light beam in the reflected angle is specular spike. Specular 

lobe spreads around the direction of specular spike. 

The simplest model for specular reflection represents in delta function. 
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Is = B/i(Bs - 20,.) (2-11) 

where ls is the specular brightness. 

B is the strength of the specular component. 

Os is the angle between the light source direction and the viewing 

direction. 

(),.is the angle between the surface normal and the viewing direction. 

E 
Another model applies the Gaussian distribution as the facet orientation 

function and considering the other components as constants. It can be described 

as: ,_. -
Is= Ke-(a/m)2 (2-12) 

where K is a constant. * 
a is the angle between the surface normal N and the bisector Hof the 

viewing direction and source direction. 

m indicates the surface roughness. 

2.3.3 Hybrid Reflectance Model 

Combination of Lambertian surface model and Specular surface model 

are hybrid surfaces. One straightforward equation for a hybrid surface is: 

9 



I= (1 - ojh + mis (2-13) 

where I is the total brightness of the surface 

h is the Lambertian brightness 

ls is the specular brightness 

mis the weight of the specular component 

Another hybrid reflectance model consists of three components: diffuse 

lobe, specular lobe, and specular spike. The Lambertian model was used to 

represent the diffuse lobe, the specular component of the Torrance-sparrow 

model was used to model the specular lobe, and the spike component of the 

Beckmann Spizzichino model was used to describe the specular spike. The 

resulting hybrid model is given as: -r-
~ 

(2-14) 

* * where KJ1, Kst. and Kss are the strengths of the three components. 

pis the angle between the surface normal of the micro-facet on a patch 

and the mean normal of this surface patch. 

ais its standard derivation. 

(B;, </JJ is the direction of incident light in terms of the slant and tilt in 3D. 

(Br.¢,.) is the direction of reflected light. 

2.3.4 More Sophisticated Reflectance Models 

10 
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Because of poor approximation to the diffuse component of rough 

surfaces of Lambertian model, more sophisticated reflectance models were 

introduced. . :·c Q ·1 
A simplified qualitative model was derived by considering the relative 

significance of the various terms in the function approximation 

I= cosO;(A + BMax[O, cos(f/J,.- <PJ]sina tanp) (2-15) 

where A ;:::p(J/Jr- 0.09(m2/(m2 + 0.4))) 

(O;, <PJ and (Br, t/J,.) are the same as in the previous section 

a = Max[(};, Br] 

p = Min[O;, (},] 

p is the albedo value 

mis the surface roughness 

* 
This model is the same as Lambertian model when m = 0. 

Clark applied perspective projection in modeling reflectance rather than 

orthographic projection. His model does not require light source to be at infinity. 

The reflectance model is 

16) =K(R(S)l{/Zz+ i 12 /zz/2)) (2-16) 

11 



where x = (x,y) is the image coordinate vector 

K is the constant 

R is the reflectance map 

S = (Z x + i )I/ Z x + i /the direction from the surface point to the 

light source 

t is the location of the light source with respect to the coordinate system 

centered on the focal point of the camera 

X = (x/f, y/f, -1/,/is the focal length of the camera 

Z is the depth 

Hougen and Ahuja approximated the light source distribution by a set of 

- - - -m distinct light source vectors, S 1, S 2, ... , Sm where Skis the average value of 

S over a neighborhood angle of S k· By writing S k as a product of its magnitude 

Ak and unit direction S k ', the brightness equation can be expressed by 

* 
(2-17) 

m .......... 

I= p(A-oRo + L AkR(N, S k)) 
k=I 

where pA-oRo is due to the contribution of ambient light 

R is the reflectance map and is dependent of the magnitude of the 

light source 

Langer and Zucker introduced the concept of "Shape from Shading on a 

Cloudy Day", claimed that under diffuse lighting, the radiance depends 

primarily on the amount of the diffuse source visible from each surface element, 

with the surface normal of secondary importance and assumed the effect of 

12 



mutual illumination can be ignored, the brightness at image point x = (x,y) is 

described as 

- ·1 ----J(x) = plv - - N (x). S dfl 
1[ u(x) 

(2-18) 

where pis the albedo 

Iv is the illuminance from the uniform hemispheric light 

source 

u( x) is the set of unit directions in which sky is visible from 

x 

dflis an infinitesimal solid angle 

This reflectance models attempt to remove one or more of the 

following constraints in the Lambertian model 

• The brightness is independent of the viewing direction. 

• The illumination is from an infinite point source. 

• The projection of the object onto the image plane is 

perspective. 

2.4 Some Algorithms of Shape from Shading 

Algorithm and implementation detail in brief are presented. The 

algorithms chosen are global minimization approach of Q. Zheng, and R. 
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Chellappa, propagation approach of M. J. Brooks, W. Chojnacki, A. van den 

Hengel, and W. N. Agutter and local approach of P. Tsai and M. Shah. 

2.4.1 Zheng and Chellappa: Minimization Approach 

Some minimization approaches apply smoothness constraint to stabilize 

the minimization process by convergence of the iteration process and also push 

the reconstruction toward a smooth surface. But smoothness constraint has 

several drawbacks. First, it causes the solution ''to walk away" from the ground 

truth, even if the ground truth is used as an initial condition. Second, it flattens 

the reconstruction causing distortions along image discontinuities. Third, the 

result will depend on the value of coefficient multiply to smoothness term. Zheng 

and Chellappa adapt an intensity gradient constraint instead of a smoothness 

constraint combine with another two constraints, which are intensity constraint 

and integrability constraint. 

Taylor series are applied to simplify reflectance map and represent the 

depth, gradient and their derivatives in discrete form. Then an iterative scheme 

is applied to update depth and gradients. The algorithm was implemented using 

a hierarchical structure (pyramid) in order to speed up the computation. 

Boundary has not to initialize specially. The initial values of both depth and 

gradient can be zero. 

2.4.1.1 An Algorithm 

From irradiance equation 
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R(p,q) = l(x,y) (2-19) 

Adaptive smoothing can be implemented by requiring the gradients of the 

reconstructed intensity to be equal to gradient of the input image. 

Rx(p, q) = fx(x,y) 

Ry(p,q) = ly(x,y) 

(2-20) 

(2-21) 

Computation by interpolating, constraints are applied to form the formula. 

ff (R(p,q) - J(x,y)/ 

+ µ((p - Z/ + (q - Z/) dx dy (2-22) 

* where the first term is intensity constraint. 

the second and the third term are adaptive constraints. 

the fourth term is integrability constraint. 

µis a weighing factor. 

Minimization is equivalent to solving the following Euler equations: 

a a 
F,p - -F,px - - F, = 0 

OX 0y PY 
(2-23) 

15 



a a 
(2-24) Fq-- Fqx- - F. =0 ax ay qy 

a a 
(2-25) Fz- -Fz.x - -Fz =0 ax 8_y -Y 

Approximating the reflectance map around (p,q) by Taylor senes 

expansion of up to first-order terms, Fp can be written as. 

1 
-Fp = (R - l(x,y))R + µ(p - Zx) 
2 

(2-26) 

Let variables with primes (') represent the values after updating variables 

without primes represent the values before updating. 

Then 

p'= p + <}7, q'= q +liq, Z'= Z +OZ (2-27) 

The corresponding increments in the partial derivatives of (p,q,Z) after 

updating are 

Px'= Px + <}7, Zx'= Zx +OZ 

py'= Py+ <}7, qy' = qy + liq, Z'=Z +OZ y y 

Pxx' = Pxx - 2<}7, Zxx '= Zxx - 2 OZ 

Zyy' = Zyy - 2 OZ (2-28) 

Substituting (39) and (40) into (38) and expanding the reflectance map R 

up to linear terms we obtain 
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1 - Fp = (R + Rpfp + Rq&J -l(x,y)) Rp + µ(p - Zx + fp +bZ )(2-29) 
2 

The other terms in (2-25) can be derived and the results are list as 

follows: 

1 a 2 2 ax Fpx = (RpPxx + Rqqxx - lrx)Rp - 2Rp fp- 2RpRq&J (2-30) 

1 
- Fq = (R + Rpfp + Rq&J - J(x,y))Rq + µ(q - Zy + &J + bZ) (2-32) 
2 

1 a 2 
- - Fqy = (Rppyy + Rqqyy - fyy)Rq - 2RpRqfp - 2Rq &J (2-34) 
2 Oy 

Fz = 0 (2-35) 

1 a 
- - FZx = -µ(px - Zxx -fp + 2bZ) 
2 Ox 

(2-36) 

I a 
-:--- - Fzy = -µ(qy -Zyy -fp + 2bZ) 
2 Oy 

(2-37) 

Substituting (2-39)-(2-37) into (2-25), the result can be solved. 

2.4.1.2 Implementation Details 

1) Hierarchical Structure: is an efficient way of reducing the 

computations arising in complex image-related tasks. An important advantage of 

17 



hierarchical implementation is the communication of the results from one layer 

to another. The input images for various resolution layers are derived from the 

given highest resolution image by averaging the pixels that belong to the same 

cell in the low-resolution layer. The surfaces shape descriptions should be 

consistent between different resolution layers. 

• (')stand for the shape descriptors of the higher resolution layer. 

• without (') stand for the shape descriptors of the lower resolution 

layer. \\JER 1,.y 

Rule I : The illuminant direction and albedo are the same. 

(r~ y; 1J~ (i'j = (r; y, 1/. o) (2-38) 

which mean they are insensitive to changes in resolution. 

* * Rule 2: The surface descriptions of a higher resolution layer are 

interpolated from the descriptions of the adjacent lower resolution layer. 

Let M'be the image size of the higher resolution layer. 

For ij & (2,. .. , MJ, the shape descriptions for the higher resolution layer 

are 

(p~q;Z')ij (p,q,2ZJv1J12 if i andj are evens. (2-39) 

= ~ ((p,q,2Z) (i+J}l2jl2 + (p,q,2Z) (i-JJl2jl2) if i is odd andj is even. 

18 



(2-40) 

= Yi ((p,q,2Z) il2,(i+l)l2 + (p,q,2Z) i/2,(i-1)12) if i is even andj is odd. 

(2-41) 

~ ((p,q,2Z) (i+l)/2,(i+l)/2 + (p,q,2Z) (i+l)/2,(j-1)12 

+ (p,q,2Z) (i-1)12.0+1;12 + (p,q,2Z) (i-1)12,(i-1)12) if i andj are odds. 

(2-42) 

Rule 3: The natural boundary condition is used for the interpolation of 

boundary pixels. 

For the boundaries of i =I and j =I 

Zu '= Zi,2 ' - q;,1 ' forj ~ 2 

Zu '= Zv ' -Pu ' - qu ' (2-43) 

* * 
I) Iterative scheme: £ 1NCE- 1 969 ~Q\ 

°' °" o.! \I 
Step 1 Estimation of the reflectance map parameters (t, y, T}, cr) 

Step 2 Normalization of the input image: 

/'=(I - <1)/T/ (2-44) 

Reduce the input image size to that of the lowest resolution 

layer and set the values of p 0
, q° and Z' to zero. 
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Step 3 Update the current shape reconstruction. For each pixel, 

the partial derivatives are approximated by 

Px 
k k 

P (x+/,y) + P (x,y} (2-45) 

Pxx 
k k 2 k P (x+l ,y) + P (x-1,y) - P (x,y) (2-46) 

Pyy 
k k 2 k P (x,y+J) + P (x,y-1) - P (x,y) (2-47) 

qy 
k k 

q (x,y+l) + q (x,y+l) (2-48) 

qx.x 
k k 2 k 

q (x+l,y) + q (x-1,y) - q (x,y) (2-49) 

qyy 
k k 2 k 

q (x,y+l) + q (x,y-1) - q (x,y) (2-50) 

Zx Zrx+1.y; - zkrx.y) (2-51) 

Zxx i'-(x+1.y) - zkrx-1,y) - 2zkrx.y) (2-52) 

Zy Z (x,y+I) - zk(x,y) (2-53) 

Zyy Zrx.y+l) - zkrx.y-1; - 2zk(x.y) (2-54) 

!'xx f (x+l,y) + f(x-1 ,y) - 2f(x,y) (2-55) 

l~y f {x,y+l) + f(x,y-1) - 2f(x,y) (2-56) 

* * where we use natural boundary conditions similar to Rule 3 for values outside 

the image frame. The shape reconstruction is updated by: 

<lJ = (C1A22- C2AJ2)/.d l+I = l + <l'J (2-57) 

Jq = (C2A11 - C1A1z)l.d l +I = l +liq (2-58) 

OZ = (C3 - "1 + /Jq)/4 z+1 =Z+ oz (2-59) 

where 

Au = 5R/ + 1.25µ (2-60) 

A12 = 5RpRq + 0.25µ (2-61) 
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A12 = 5R/ + 1.25µ 

C1 = (c-&}Rp-µ(pk - Zx)-0.25µC3 

C2 = (s-c)Rq- µ(qk-Zy) -0.25µC3 

c = R - l'(x.yJ 

(2-62) 

(2-63) 

(2-64) 

(2-65) 

(2-66) 

(2-67) 

(2-68) 

(2-69) 

(2-70) 

(2-71) 

If {(Solution is stable) OR (Iteration has reached Nmax of current layer)} 

continue to Step 4 

else 

repeat Step 3 

end if. 

Step 4 

If {Current image is in the highest resolution} 

stop 

else 

• Increase the image size and expand the shape reconstruction to the 

adjacent higher resolution layer by (51)-(52). 

• Reduce the normalized input image to the current resolution. 

• Go to Step 3. 

end if 
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2.4.2 Tsai and Shah: Linear Approach 

This is a simple algorithm of Ping-Sing Tsai and Mubarak Shah, which is 

a linear approach. Tsai and Shah applied discrete approximation of the gradient 

and then employed linear approximation of the reflectance function in terms of 

the depth. Both Lambertian surface model and Specular surface model are 

introduced in his paper. Lambertian surface model is chosen to represent along 

with implementation details. 

2.4.2.1 An Algorithm 

The reflectance function for the Lambertian surface model is 

E(x,y) = R(p,q) 

= 

= cosa + pcosisina + qsin icosa 
(l+p2 +q2)1/2 

where E(x,y) is gray level at pixel (x,y), 

az az . 
p = - and, q = - , are gradient of surface normal 

OX Oy 
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cos zsin u sin zsin u . . 
Ps = and, qs = , are gradient ofhght source 

cosu cosu 

r is the tilt of the illuminant. 

uis the slant of the illuminant. 

Then apply discrete approximations for p and q 

az 
p = ax = Z(x,y) - Z(x-1,y) (2-75) 

az 
q = Oy = Z(x,y) -Z(x,y-1) 

Rewritten the reflectance equation as: 

0 = f(E(x,y),Z(x,y),Z(x-J,y),Z(x,y-1)) (2-77) 

= E(x,y)-R(Z(x,y)-Z(x-1,y), Z(x,y)-Z(x,y-1)) (2-78) 

Linear approximation (Taylor series expansion up through the first order 

terms) of the function/ about a given depth map zi-1 is 

0 = f(E(x,y),Z(x,y),Z(x-1,y),Z(x,y-l)) 

>:::.f(E(x,y),Zn-1 (x,y),zn-I (x-l,y),Z"-1 (x,y-1)) 

(2-79) 

+ (Z(x,y) _ zn-1(x,y)) a f(E(x,y), z-1(x,y), zr-1(x-l,y), zr-1(x,y-l)) 
oZ(x,y) 

+ (Z(x-l,y)-zn-1(x-l,y)) 
0 

j(E(x,y), z 11
-
1(x,y), zr-1(x-l,y), zi-1(x,y-l)) 

oZ(x-1,y) 
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a 
+ (Z(x,y-1) - zi-1(x,y-l)) BZ(x,y-1) f(E(x,y), zn-1(x,y), zi-1

(x-l,y), zi-1
(x,y-l)) 

(2-80) 

Then Z and zn-I are separated on each side of equation. 

a 
BZ(x,y-l)j(E(x,y), Z 11

-
1
(x,y), Z'-1

(x-l,y), Z'-1
(x,y-l))* Z(x,y-1) 

+ a f(E(x,y), zn-1(x,y), Z'-1(x-l,y), Z'-1(x,y-l))* Z(x-1,y) 
oZ(x-1,y) 

+ a f(E(x,y), zn-1(x,y), Z'-1(x-l,y), zi-1(x,y-l))* Z(x,y) 
oZ(x,y) 

= -f(E(x,y), zn-l (x,y), Z'"1 (x-1,y), Z'-1 (x,y-1)) ~ 

+ zi-1 (x,y) * a f(E(x,y), zn-I (x,y), zi-1 (x-1,y), zi-1 (x,y-1)) 
az(x,y) 

+ zn-i (x-1,y) * a f(E(x,y), zn-I (x,y), Z'·1 (x-1,y), Z'-1 (x,y-1)) 
oZ(x-1,y) 

a . 
+ zi-1 (x,y-1) * BZ(x,y-l) f(E(x,y), zn-

1 
(x,y), zi-1 

(x-1,y), Z'-1 
(x,y-1)) 

(2-81) 

The depth value Z(x,y) at the n'h iteration can be solved using the previous 

estimates, Zn-I (i,j), for all the Z n-l (i,j) with i * x and j * y. Substitute Z(x-1,y) and 

Z(x,y-1) with zn·I (x-1,y) and zn·l (x,y-1) in equation (32) then the third and fourth 

terms on the right hand side cancelled out. The equation reduces in the 

following. 

0 = f(Z(x,y)) (2-82) 
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~ f(Z'-1 (x,y)) + (Z(x,y) - zi-1 (x,y)) d f( zi-1 (x,y)) (2-83) 
dZ(x,y) 

Then for Z(x,y) = Z"(x,y), depth map at the n-th iteration can be solved. 

Z'(x,y) = Z'-1 (x,y) + (-f(Z'-1 (x,y)))/ (d ft zn-1 (x, y)) ) (2-84) 
dZ(x,y) 

where 

( (p + q)(PPs + qqs +I) ) 
(p2 + q2 + 1)3/2 (p; + q; + 1)1/2 

(2-85) 

-
Assume the initial estimate of t1 (x,y) = 0 for all pixels, the depth map can 

be iteratively refined using equation (2-83), 

2.4.2.2 Implementation Details 

Assuming the initial estimate of t1 (x,y) = 0 for all pixel. 

Equation (2-83) is refined for the depth map. Iterative computation of the 

function f(Z'-1 (x,y)), and the first derivative of the function f '( Z'-1 (x,y)) are 

needed. Notice that f '( zi-1 (x,y)) cannot be zero since that cause the division by 

zero. So equation (2-83) is rewritten as follows: 

Z'(x,y) = Z'-1 (x,y) + K'(f(Z'-1 (x,y))) (2-86) 
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where K' needs to satisfy three constraints: 

1. K' is approximately equal to the inverse of df(Z'-1 
(x.y)) 

dZ(x,y) 

2. K' equals zero when df(zn-t (x,y)) approaches zero. 
dZ(x,y) 

3. K' becomes zero when Z'(x,y) approaches to true Z(x,y) 

K' is defined as follows: 

dlj(zn-i (x )) 
where M = ,y 

x,y dZ(x,y) 

Sx/ = E[(Z'(x,y) - Z(x,y)/J 

Eis the expectation operator. 

Wx,y is small, but non-zero. 

1 
Then K'~ --

Mx.y 

So 
dlf(Z n-I (x )) 

K' is the inverse of 'y 
dZ(x,y) 
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Mx,y approaches to zero, K' becomes zero. 

Sx/ becomes zero, when Z1(x,y) approach to true Z(x,y) 

Clearly that definition of K0 satisfies all three constraints. 
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CHAPTER 3 OPTIMAL THRESHOLDING 

3.1 Introduction to Thresholding 

Thresholding is a method in image processing to extract some parts of an 

object or some objects from a gray-scale image. Considering a histogram, gray-

scale image can determine the contents such as number of objects by counting 

groups of the gray level in the histogram. Thresholding use gray level as a mean 

to find threshold to extract the objects from one another. 

Suppose that a gray-level histogram corresponds to an imagef(x,y), which 

composed of light objects on a dark background. The histogram illustrates gray 

level grouped into two dominant modes. To extract the objects from the 

background is to find the threshold T which for any point (x,y) -

0 = if(x,y) /f{x,y) > T} 

r­
~ 

(::) (3-1) 

B = if(x,y) /f(x,y) ST} * (3-2) 

where 0 is the set of objects. 

1 '"' (, E- l 9 6 9 ol ~o\ 
~,,,v1at1at\i\\I 

Bis the set of background. 

Extracting more than one object from one another, more than one 

threshold is required, and called mutilevel thresholding. 

For function T, define p(x,y) is the local property of point (x,y), andf(x,y) 

is the gray level of point (x,y). If T depends only onf(x,y) the threshold is called 

global. If T depends on bothf(x,y) and p(x,y) the threshold is called local. Finally, 

if T depend on spatial coordinates x and y the threshold is called dynamic. 
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3.2 Optimal Thresholding 

Optimal Thresholding is introduced base on the assumption that the 

image determined contains two principal brightness regions. Thresholding 

processes start by dividing parts of image into brighter and darker region. For 

the image with more than two brightness regions, the division can further 

process each region into two more regions. The processes terminate when the 

image has satisfying segmented parts. 

Suppose that an image contains two values combined with additive 

Gaussian noise. The mixture probability density function is 

(3-3) 

where p(z) is brightness probability density function 

(3-4) 

where µ1 and µ2 are the mean values of the two brightness levels. 

ai and u.z are the standard deviations about the means. 

P1 and P2 are a priori probabilities of the two levels. 

The constraint that must be satisfied is 
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(3-5) 

Assume the object as the brighter region, µ1 < µ2, the probability of 

classifying and object point as a background point is 

(3-6) 

and the probability of classifying a background point as an object point is 

y 
~~ (3-7) 

~ 
1=' -Then the overall probability of error is 

r-
~ 

(3-8) 

To get the minimum error, differentiate E(I') with respect to T and set the 

result to 0. 

(3-9) 

Apply the result to Gaussian density, take logarithms, and simplify, give 

quadratic equation 

AY +BT+ C= 0 (3-10) 
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THE ASSUMPTION UNIVERSITY LtnttAft• 

where 

2 2 A=a1 -m (3-11) 

(3-12) 

(3-13) 

The two values can be gained by solving the quadratic equation then 

choose a reasonable value be a threshold. 

Rs1,_y 
3.3 Implementation of Optimal Thresholding ()__ 

~ 

The two results of quadratic function are: 

T1 = (-B + (B2-4AC/12)/2A 

T2 = (-B - (B2 
- 4AC)u2)/2A 

* Assuming the priori probabilities to be equal. 

~ 
~ -

(3-14) 

(3-15) 

(3-16) 

The other initial values can be obtained by dividing the histogram into 

two parts about its mean value. The mean of each part then been computed by. 

(~>J 
µ= 

N 
(3-17) 
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where x is value of gray level of each pixel in the image presenting on the 

histogram of that part. 

N is number of pixel m the image presenting on that part of the 

histogram. 

The standard deviation of each part is 

(3-18) 

where µis the mean of that part of the histogram. 

The priori probability can be determined from 

(3-19) 

where M is the total number of pixel of the image presented of the whole 

histogram. 

Find the threshold by 

(3-20) 

The process performed iteratively find threshold T and terminate when 

rm+/) = rm) at the (m+ 1)-th iteration. 
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CHAPTER 4 HISTOGRAM PROCESSING 

4.1 Introduction 

Histogram of gray level image is a graph to represent gray level of the 

image versus the number of pixels in each level which can present the 

characteristics of the image in global view. In digital image processing, 

histogram processing is the process to manipulate histogram of an image to 

affect the gray level of the image. For the image with gray level of range [O, L-1] 

its histogram is a bar of discrete function 

p(r;) = n,/N (4-1) 

where rk is the k th gray level 

nk is the number of pixel in the k th level 

N is the number of pixel in the image 

SINCE 9~9 
o!. 

By histogram processing, information of the image can be manipulated and 

enhanced. In this chapter Histogram Equalization and Histogram Specification 

will be presented in 4.2 and 4.3 respectively. 

4.2 Histogram Equalization 

Histogram Equalization is the way to enhance the contrast of the image 

by the global intensity distribution. The technique reflects the idea of flattening 
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out the histogram, or making the histogram closest to the probability density 

function of the uniform distribution and lets the spacing between gray levels be 

proportional to the frequency of that gray level. 

4.2.1 Implementation Details 

1. Find probability density function of gray level of the image. 

pr(r,J == nJ/N 

where k is in the interval [O, L-1] 

rk is in the interval [O, 1] 

nk is number of pixels in k level 

N is the total number of pixel in the image. 

2. Find transformation function Sk by . 

* ol.~ 

(4-2) 

(4-3) 

3. For every value k in the image replace k with round down of the 

multiplication of sk and L-1 

l(m,n) = round(sk * (L-1)) (4-4) 

where J(m,n) is the intensity value of k of the pixel (m,n) in the image 
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4.3 Histogram Specification 

Histogram Specification is similar to Histogram Equalization which both 

can be applied to improve contrast of image. Instead of making the output 

histogram uniform, Histogram Speci~cation can be applied to make it whatever 

is wanted. That is output histogram can be specified in shape. 

4.3.1 Implementation Details 

1. Find transformation function Sk or T(r,Jof the original image by 

applying step 1 and 2 of Histogram Equalization. 

2. Find transformation function Vk or G(z,J of the desired histogram by 

repeating step 1 and 2 of the 

3. For every value k in the image replace k with round down of the 

multiplication of G(sk(k)(L-1)) and L-1 

Jp 

l(m,n) = round(G(sk(k)*(L-1))* (L-1)) (4-5) 

where l(m,n) is the intensity value of k of the pixel (m,n) in the image 
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CHAPTER 5 PROPOSED TECHNIQUES 

5.1 Introduction 

The proposed techniques used to prepare the 2D image by applied 

processes of Optimum Thresholding and Histogram Processing which are 

Histogram Equalization by Zones for 2 Zones (HEQBZ_2Z), Histogram 

Specification by Zones for 2 Zones (HSPBZ_2Z), Histogram Equalization by 

Zones for Multiple Zones (HEQBZ_MZ) and Histogram Specification by Zones 

for Multiple Zones (HSPBZ_MZ). 

5.2 Concept of the Proposed Techniques 

Since the image which is low contrast or too dark (low intensity) or 

ambiguity 2D image resulting in ambiguity in generated 3D. The proposed 

techniques are tried to present enhance in contrast of the 2D image reasonably. 

Optimal Thresholding is applied to divide histogram of the image in zone for 

distributing intensity of the image thoroughly by Histogram Equalization and 

Histogram Specification. 

5.3 HEQBZ_2Z 

HEQBZ _ 2Z performs by first dividing histogram of the image into 2 

zones and then apply histogram equalization to each zone. 
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5.3.1 Implementation Details 

1. Find histogram of the original image. 

2. From histogram of the original image, applied Optimal Thresholding 

to the histogram to get a threshold. 

3. Find the probability density function Pk of the image. 

p(k) = nJ/N (5-1) 

where k is in the interval [O, L-1] 
R l'ty 

nk is number of pixels ink level of histogram 

N is the total number of pixel in the image. 

4. Divide histogram of the image into 2 zones by the threshold. Find the 

transformation function For the first zone 

~ 

s,, ~ round((~p(k))*(L-1) J (5-2) 

For the other zone fl1iill'il 

Sk2 =round(( Ip(k))* (L-l)J 
k~T+I 

(5-3) 

where k is the level of the gray level 

Tis the threshold 

p{k) is probability density of the gray level at level k 

Lis the number oflevels of histogram 

5. Substitute all pixel in the image by 

the first zone, 
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l(i,j) = su (5-4) 

the last zone, round down of multiplication of sk and L plus T 

/(i,j) = T + s1c2 (5-5) 

where l(i,j) is the gray value of the pixel (i,j) 

5.4 HSPBZ_2Z 
\"ERS/J-y 

HSPBZ_2Z is Histogram Specification by zones for 2 zones which 

performs by combining Histogram specification using Gaussian density as a 

desired probability density function and Optimal Thresholding. 

5.4.1 Implementation Details 

1. Find histogram of the original image. CJ * ol.~ 

2. Find a threshold by appling Optimal Thresholding 

3. Find probability density function p(k) like step 3 of HEQBZ_2Z 

4. Find sk of the histogram by for any k summation of all p(k-1) to p(O) 

multiply with L-1 and round down the result. 

s, =round((~p(k) )•(£-!)) (5-6) 
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5. Divide histogram into 2 zones by the threshold and then find means 

and standard deviations of each zone. 

For the first zone, mean is calculated by 

(5-7) 

where µ 1 is the mean of the first zone 

z is the gray level of the histogram 

Xz is number of pixels of the gray level z 

Tis the threshold. 

N is the number of pixels of the first zone of the histogram 

and standard deviation of the first zone is 

N 

where OJ is the standard deviation of the first zone 

For the other zone, mean is calculated by 

a\~~ 
-t1'5'6' .~ 

where µi is mean of the last zone 

Lis number oflevels of the histogram 

(5-9) 

Mis number of pixels of the last zone of the histogram 

and standard deviation of the last zone is 
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(5-10) 

where a2 is standard deviation of the last zone 

6. Find desired probability density function Pz by using means and 

standard deviation of step 5. 

For the first zone 

p(z) = (N+M) l(ai(21t) 112
) exp[-(z-µ1/1(2a/)j (5-11) 

where z is in the interval [O, T] 

For the last zone 

(5-12) 

where z is in the interval [T+ 1,L-1] 

7. Find transformation function gz ·by 

(5-13) 

8. Substitute every pixel with gray level k by gz(sk(k)) 

I(i,j) = gz(sk(k)) (5-14) 

5.5HEQBZ MZ 

Similar to HEQBZ_2Z, HEQBZ_MZ performs by combination of 

Histogram equalization and Optimal Thresholding. Instead of dividing 
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histogram into 2 zones by a threshold, HEQBZ_MZ divide histogram into more 

than 2 zones by more than a threshold. The number of thresholds depends on the 

suitability of each image. 

5 .. 5.1 Implementation Details 

1. Find histogram of the image. 

2. Applied Optimal Thresholding to get multiple thresholds. 

3. Find the probability density function pk of the image. 

4. Find Sk of each zone similar to step 4. ofHEQBZ_2Z 

For the first zone su is calculate by the same way as HEQBZ_2Z 

(5-15) 

where Tl is the first threshold 

For the second zone Sk2 is 

* 
For then zone s1cn is 

5. Like step 5 of the HEQBZ_2Z 

For the first zone 
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/(i,j) =Ski (5-18) 

For then zone 

I (i,J) = Tn-1 + SkJ (5-19) 

5.6HSPBZ_M 

Like HSPBZ_2Z, HSPBZ_MZ performs by combination of Histogram 

Specification and Optimal Thresholding. Unlike HSPBZ_2Z, HSPBZ_MZ 

divides histogram of the image into more than 2 zones with more than one 

threshold. 

5.6.1 Implementation Details 

Like HSPBZ _ 2Z but the histogram will be divided into many zones. 

1. Find histogram of the original image. 

2. Find multiple thresholds of the histogram. 

3. Find the probability density function Pk of the original histogram. 

4. Find transformation function of the original image sk 

5. Find means and standard deviations of each zone. 

6. From means and standard deviation, Find probability function p(z) of 

each zone. 

7. Fromp(z), find transformation functiongz 

8. Substitute gz(sk(k)) to all the pixels in the image. 
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CHAPTER 6 EXPERIMENTAL RESULTS 

6.1 Overview of The Results 

The experimental results are received from two modules: the processes in 

2D image module and 3D generating module. The combination of histogram 

processing and Optimal Thresholding for process 2D image before passing to 

Shape from Shading module to produce the 3D image. The 3D results from 

Shape from Shading of Tsai and Shah's algorithm are linear approach with 

reasonable results. Six techniques are applied to be compared in result with one 

another for each image. There are histogram equalization, histogram 

specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ and HSPBZ_MZ. 

For Shape from Shading due to disadvantage of the technique which 

determine depth of the image from intensity, parts of the image which have low 

intensity or darker part will be look flatter when generated into 3D whether 

there are flat or not in 2D. All six techniques applied to 2D images are needed to 

give the images more contrast to stretch their histograms to provide less 

ambiguity of the gray level images. Nevertheless too high in contrast will effect 

the quality of the results by unreasonable in relative depth of3D. 

The results of some proposed technique look better than the original 

images for the 2D image which have some shadows or darker parts in the image 

like the left side of the face in Lenna image and the right side of the face in 

Debbie image. For the low contrast image like Paolina and Zelda image the 

results are better for the 2D image after the proposed technique, which have the 

more in number of pixels in the lighter part of the histogram than the original 

43 



image and distribute the intensity more reasonably. For bird image which is 

quite high in contrast and has more in number of lighter pixels than any other 

images when notice in the histogram, give the worse result than the original 

image in all six techniques. Pepper image provides comparable results in all 

technique when compared to the original. 

6.2 Results of Original Images 

3D generated from original image without any processing have smoother 

look among seven images (images after six techniques and original image) except 

for Debbie image which the other six image after processing image have better 

and smoother look. ~ ,_, -,.... 
6.3 Results of Images after Histogram Equalization Process ~ 

~ 

The result of uniform histogram stretching or contrast enhance of 

Histogram Equalization give the better image when compared to the original 

image in some image 3D of Pepper image has a more complete look at the branch 

of the paprika. 3D of Debbie image has a better look for the whole image when 

compare to the 3D of the original, especially for the right side of her face which 

cover with shadow in the original 2D. 

6.4 Results of Images after Histogram Specification Process 
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Notice in the histograms of the image after Histogram Specification 

process, middle part of the histograms will have been stretched longer than the 

other parts. Those are because of choosing Gaussian probability density function 

as a desired histogram which makes the 2D images too high in contrast and 

finally result in 3D image generated such as Paolina image. The results from this 

technique are worse than the original image except for Debbie image which this 

technique give the best result since the histogram of the image stretched most 

reasonably by this technique 

6.5 Results of Images after HEQBZ _ 2Z Process 

Histogram of images after HEQBZ_2Z are divided into two zones because 

of the intention to give the histogram to stretch more reasonably. Results of this 

technique have a step look when compared to results from Histogram 

Equalization which give worse results in some image but give better in some 

Like HEQBZ_2Z, this technique divides histogram into two parts because 

of the intention to stretch the histogram more reasonable but result in this step 

look 3D. Like Histogram Specification technique, HSPBZ_2Z give the image 

which higher in contrast in each zone when compare to HEQBZ _2Z. Results of 

HSPBZ 2Z are much like HEQBZ 2Z but better in Debbie. - -

6.7 Results of Images after HEQBZ_MZ Process 
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When dividing the histogram into more zones, results of HEQBZ_MZ 

are much better in Zelda and Lenna. For Lenna image, this technique gives the 

best result since the image after HEQBZ_MZ has a reasonable distributing in 

intensity the maximum number of pixel in each gray level is not greater than 

900. For Paolina image result of this technique is comparable to the result of the 

original image since image and background of the image are separate clearly 

after zoning and histogram processing. 

6.8 Results of Images after HSPBZ_MZ Process 

3D of images after HSPBZ_MZ are comparable in every image of the 

Histogram Specification type of technique (Histogram Specification, HSPBZ_2Z, 

HEQBZ_MZ). 

After 30 reconstruction, converted 20 images from 30 are generated, the 

results of converted 20 images are not so different from 30. For Histogram 

Specification kind of techniques (Histogram Specification, HSPBZ_2Z, 

HSPBZ _ MZ) converted 2D images look so clear but 3D are not so nice since 2D 

images before reconstruction process have too high contrast. 
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CHAPTER 7 CONCLUSION 

Form experimental results we can conclude that proposed techniques can 

improve in generating JD by relieving effect of darkness and ambiguity of 2D 

image. The conclusions are 

I. From the test images, the results of histogram equalization 

techniques (Histogram Equalization, HEQBZ_2Z, 

HEQBZ_MZ,) give the better results than histogram 

specification techniques (Histogram Specification, HSPBZ_2Z, 

HSPBZ _ MZ) because of the characteristics of the image which 

can be noticed from histogram. But for the image which has 

high number of pixel in the darker side the Histogram 

Specification technique kind will give in better result which 

results from choosing Gaussian distribution density function as 

a desired shape of histogram. 

2. From the test images, in most of the results of zoning techniques 

(HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ) will give 

the more step look in 3D generated than no zoning techniques 

(Histogram Equalization, Histogram Specification) 
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I Fig.2-1 Lambertian reflection geometry 
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I Fig.2-2 Specular reflection geometry 
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APPENDIXB 
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Figure 2-3 Tsai and Shah ·s Algortthm Flowc.'lart 
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APPENDIXC 

(a) 
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Figure 3-1 Illustration of Optimal Thresholding 
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APPENDIXD 

Figure 6-1 From upper left are the bird image, Debbie image, Lenna image, Paolina 
image, pepper image and Zelda image respectively 
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Figure 6-2 from upper left, histogram of bird image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ and 
original image respectively 
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Figure 6-3 From upper left, 3D of bird image after Histogram Equalization, 
Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, HSPBZ _ MZ and 
original image respectively 
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Figure 6-4 From upper left, Histogram of Debbie image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original image respectively 
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E 

Figure 6-5 From upper left, 3D of Debbie image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original image respectively 
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Figure 6-6 From upper left, Histogram of Lenna image after Histogram Equalization, 
Histogram specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original respectively 
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Figure 6-7 From upper left, 3D of Lenna image after Histogram Equalization, 
Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, HSPBZ _ MZ, and 
original image respectively 
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Figure 6-8 From upper left, Histogram of Paolina image after Histogram Equalization, 
Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, HSPBZ _ MZ, and 
original respectively 
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Figure 6-9 From upper left, 3D of Paolina image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original image respectively 
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Figure 6-10 From upper left, Histogram of pepper image after Histogram 
Equalization. Histogram Specification. HEQBZ 2Z, HSPBZ_2Z, HEQBZ_MZ, 
HSPBZ _ MZ, and original respectively 
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Figure 6-11 From upper left, 3D of pepper image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original image respectively 
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Figure 6-12 From upper left, histogram of Zelda image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original respectively 
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Figure 6-13 From upper left, 3D of Zelda image after Histogram Equalization, 
Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, HSPBZ_MZ, and 
original image respectively 
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Figure 6-14 From upper left converted 2D from 3D of Bird image after Histogram 
Equalization, Histogram Specification, HEQBZ _2Z, HSPBZ _ 2Z, HEQBZ _ MZ, 
HSPBZ _ MZ and original image 
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Figure 6-15 From upper left converted 2D from 3D of Debbie image after Histogram 
Equalization, Histogram Specification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, 
HSPBZ _ MZ, and original image 
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Figure 6-16 From upper left converted 2D from 3D of Lenna image after Histogram 
Equalization, Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, 
HSPBZ _ MZ, and original image 
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Figure 6-17 From upper left converted 3D from 2D of Paolina image after Histogram 
Equalization, Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, 
HSPBZ _ MZ, and original image 
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Figure 6-18 From upper left converted 2D from 3D of Pepper image after Histogram 
Equalization, Histogram Specification, HEQBZ _ 2Z, HSPBZ _ 2Z, HEQBZ _ MZ, 
HSPBZ _MZ, and original image 
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Figure 6-19 From upper left converted 2D from 3D of Zelda image after Histogram 
Equalization, Histogram SJ>ecification, HEQBZ_2Z, HSPBZ_2Z, HEQBZ_MZ, 
HSPBZ _ MZ, and original image 
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