

An Analysis of Web Development Tool

by
Mr. Kittikhun Kiattichaiprasop

A Final Report of the Six-Credit Course
IC 6998 E-Commerce Practicum

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Internet and E-Commerce Technology

Assumption University

July 2003

s

Project Title An Evaluative Analysis of Interactive Data Retrieval Program

Name Mr. Kittikhun Kiattichaiprasop

Project Advisor Rear Admiral Prasart Sribhadung

Academic Year July 2003

The Graduate School of Assumption University has approved this final report of the
six-credit course, IC 6998 E-Commerce Practicum, submitted in partial fulfillment of
the requirements for the degree of Master of Science in Internet and E-Commerce
Technology.

Approval Committee:

~ (Rear Admiral PraSartSrililii~g)
Dean and Advisor

(Dr. Ketchayong Skowratananont)
Member

July 2003

(Prof.Dr. Srisakdi Charmonman)
Chairman

(Assoc.Prof. Somchai Thayamyong)
MUA Representative

ABSTRACT

This is a documentary research project studying ASP and ASP.NET program.

The report includes the history of ASP and ASP.NET, what they are used for, and their

features. A comparison on ADO and ADO.NET was analyzed. Moreover, it includes a

real case study using ASP.NET.

The finding shows that ASP.NET can communicates with the database better

than ASP and it can retrieves data faster than ASP.

ACKNOWLEDGEMENTS

Several people have made contributions to this project. The writer would like to

acknowledge their efforts and thank them for their contributions through the making of

this project.

He would like to thank Rear Admiral Prasart Sribhadung, his project advisor, for his

valuable suggestions and advice given in preparation of this project. Also the writer

would· like to thank all the members of MS(IEC) committee, Prof.Dr. Srisakdi

Charmonman, Dr. Ketchayong Skowratananont.

This project could not have. been completed without the assistance and the will

power given by his parents in full support. He also wishes to express his

acknowledgement to his brothers and aunt for their timely assistance and information

provided to him while carrying out the data collection required for his project.

Finally, he would like to extend his gratefulness to all his friends for their support

and friendship, thank you.

11

TABLE OF CONTENTS

Chapter Page

ABSTRACT

ACKNOWLEDGEMENTS 11

LIST OF FIGURES VI

LIST OF TABLES Vll

I. INTRODUCTION 1

1.1 Background of the Project

1.2 Objectives of the Project 3

1.3 Scope of the Project 3

1.4 Research Methodology 3

II. ASP OVERVIEW 4

2.1 An Overview of the Technologies 5

2.2 Static Web Pages vs Dynamic Web Page 14

2.3 Simple Web Theory 23

III. ASP HISTORY 32

3.1 Leaming from the History of ASP 32

3.2 The ASP Time Line 40

IV. ASP 42

4.1 What Is ASP? 42

4.2 How Does ASP Work? 47

4.3 Advantages and Disadvantages of ASP 49

v. .NET FRAMEWORK 51

5.1 .NET Background and Purposes 51

111

Chapter Page

5.2 What Is the Roles of .NET Framework? 51

5.3 What Are Advantages of .NET Framework? 53

5.4 What Is .NET? 53

5.5 Why We Need .NET? 56

5.6 .NET Vision? 60

VI. ASP.NET 64

6.1 What Is ASP.NET? 64

6.2 Weaknesses in ASP2 Model 65

6.3 Weaknesses in the ASP3 Model 66

6.4 The Need for a New ASP Model 66

6.5 Reviewing the Basic of the ASP.NET 74

6.6 Benefits of ASP.NET 75

6.7 ASP .NET Example 77

6.8 How Does ASP.NET Work? 80

Vll. ASP VS ASP.NET 83

VIII. COMPARATIVE ANALYSIS: ADO AND ADO.NET 90

8.1 ADO and ADO.NET Overview 90

8.2 What Is ADO? 91

8.3 What Is ADO.NET? 91

8.4 Why We Need Another Data Access Model? 94

8.5 Comparisons of ADO and ADO.NET 97

IX. COMPARATIVE DAT ABASE CONNECTION BETWEEN ASP AND
ASP.NET 100

9.1 Database Connection Forms 100

IV

Chapter

9.2 ASP and ASP.NET Database Connection code

X. CASE STUDY

Page

105

117

10.1 Straight Ahead Ministries 117

10.2 www.netballnorthharbour.co.nz 119

XI. COMPARATIVE ANALYSIS: TOTAL COST OF ASP AND ASP.NET 124

XII. CONCLUSIONS AND RECOMMENDATIONS 127

12.1 Conclusions 127

12.2 Recommendations 129

BIBLIOGRAPHY 131

v

LIST OF FIGURES

Figure Page

2.1 A Welcome Message Page 15

2.2 Static Web Page 16

2.3 Welcome Page Enhanced 17

2.4 Client-side Dynamic Web Page 20

2.5 Server-side Dynamic Web Page 21

2.6 HTTP Protocol 24

2.7 HTTP Request and HTTP Response 26

6.1 The Result from test.aspx File 79

6.2 HTML Source for test.asp after the Execution 79

6.3 Without ASP.NET 80

6.4 With ASP.NET 81

7.1 Error Message from ASP .NET 85

7.2 Error Message from ASP 86

9.1 OLEDB Architecture 101

9.2 OLEDB Providers and ODBC Drivers 101

9.3 The Result from ASP 108

9.4 The Result form ASP .NET 110

9.5 A Page Modified by ASP 114

9.6 A Page Modified by ASP .NET 115

10.1 Original Site 121

10.2 New Site 121

VI

LIST OF TABLES

Table Page

9.1 Provider Names to Connect a Database 104

9.2 Performance Comparison 104

12.1 ASP Hardware Specification 129

12.2 ASP .NET Hardware Specification 129

Vll

I. INTRODUCTION

1.1 Background of the Project

Internet is more than a network of computers-it is really a network of networks.

Beyond that, Internet is also a network of services and resources, a library, a database,

and a community of people from all walks of life ready to answer questions, listen, and

share. The Internet is a worldwide computer network, linking more than two million

computers. Furthermore, the Internet is estimated to grow by more than 100,000

additional computers every month. Therefore, the Internet applied to commerce-is

called "E-commerce"- is a general concept covering any form of business transaction or

information exchange executed using infonnation and communication technologies. E

commerce takes place between companies, between companies and their customers, or

between companies and public administrations. It includes electronic trading of goods,

services and electronic material.

Online commerce is impossible without working on the security and reliability

problems. While some are attacking them by taking the sensitive material offline. Many

others are using public key cryptography to encrypt sensitive infornrntion, to digitally

sign orders and responses, and to make sure that message has been transmitted

unmodified such as secure server, digital authentication, encryption, merchant software,

and electronic payment software, etc.

Many different approaches can be taken to the problem of transferring money

from one individual to another, ranging from existing methods. For examples, bank

draft authorization and credit cards, to indirect use of existing methods such as

registering your payment information with a third party who processes all transactions,

or registering it with the vendor outside of the public network and using an account

1

number online etc. All the way the use of digital currencies that permit the digital

movement of cash endorsed by digital signatures.

To create an effective e-commerce site, the programs are important and necessary.

ASP (Active Server Page) program is the one of many programs that can be used to

support those tasks such as Dell Online, Barnes and Noble, 1-800-Flowers and the

Microsoft site itself. With all of the acronyms floating around the web, ASP might seem

like just another development language. On the contrary, it is a hugely powerful

database tool, which is in use by most major corporate sites. ASP is primarily a

database access language, which allows you to quickly and easily get at information in a

database. You can have an inventory page update with the latest items to sell, with

current pricing and photographs. You can have your counters track up-to-the-second,

creating reports that are truly current. You can create rotating ads, contests, bulletin

boards, and more.

ASP.NET, the latest version of Active Server Page, is Microsoft's technology for

building dynamic, database-driven Web sites. ASP.NET is a key component to

Microsoft's .NET Framework. It brings many great things to the table like,

Performance, Flexibility, Simplicity, Manageability, Scalability, Security, Tools and

many, many more. This will be one of the technologies that empowers the next

generation of the Internet. One of the great things about ASP.NET is if you know Visual

Basic or VB script then you already know a lot about ASP. But the cool thing about

ASP.NET is that you don't have to use VB program it, you can program in VB, C# and

Jscript, plus other languages being incorporated into ASP.NET like Cobol, Perl and

more. ASP.NET represents a radical departure from previous versions of Active Server

Pages. If you have the program with earlier versions of Active Server Pages and you

have not been exposed to the new features of ASP.NET, prepare to be shocked.

2

1.2 Objectives of the Project

(1) Studies what ASP and ASP.NET is.

(2) Compare General issues between ASP and ASP.NET.

(3) Understand why we need ASP.NET.

(4) Compare Data Connection ASP and ASP.NET.

1.3 Scope of the Project

(1) Compare General issues between ASP and ASP.NET.

(2) Compare Data Connection ASP and ASP.NET

1.4 Research Methodology

This research is using Documentary Research.

3

II. ASP OVERVIEW

Since 1996, ASP programmers have faced one upgrade after another, often with

no extremely visible advantages until version 3.x-it has been quite a wild ride. Now we

have the first significant improvement in ASP programming within our grasp ASP.NET.

Our reliance on a watered-down version of Visual Basic has been alleviated now that

more powerful version of Visual Basic or the latest version of C++: C#, which is more

Web friendly. ASP.NET allows programmers and developers to work with both

VB.NET within the same ASP.NET page. .NET itself is a milestone for Microsoft; it

marks Microsoft's entry into the "run once, run everywhere" compiler market alongside

Java and Ruby .. NET is also notable for its extreme flexibility; unlike the other choices

available, .NET allows the programmer to use any number of .NET - compliant

languages to create its code and have it run anywhere through the robust .NET

Framework. Visual Basic and C++ have undergone changes as well; Visual Basic was

already somewhat Web-oriented through its sibling, Visual Basic Script (VBS).

With .NET in general, Visual Basic and VBS are now one and the same. All of

the Web-oriented abilities ofVBS have been given to Visual Basic and it has received a

significant retooling of the language and syntax. Many previous problems, such as poor

memory management and object control, have been resolved by the .NET Common

Language Runtime (CLR) and internal programming additions, such as the inclusion of

the Try/Catch enor-handling system and more low-level abilities than before. All in all,

Visual Basic can now be called a true programming language.

C++ retained all the aspects that made it a powerful programming language, such

as its excellent object control and error-handling techniques, in its new version, C#. It

has now gained a very good as well as being more Web-based, a trait that can be

4

attributed to the .NET Framework and ASP.NET. It is expected that many programmers

will still use C# for object control while combining it with Visual Basie's ease of use

for GUI and presentation.

This project is meant to show all ASP programmers, new and old, just how

powerful ASP.NET now is. Unlike ASP 1.x through 3.x, which worked in Windows 95

through the Personal Web Server tool, you will need at least Windows 2000, all the

latest service packs, Internet Explorer 6, IIS 5.x (up to date), and the NET SDK

installed.

2.1 An Overview of the Technologies

If we mention old style ASP. Not all of the technologies work in the same way as

ASP.NET, but they all allow the user to achieve the same end-result - that of dynamic

web applications. If ASP.NET is not an ideal solution to your problems, then you might

want to consider these following technologies, taking into account the following

questions:

(1) Are they supported on the platform you use?

(2) Are they difficult to learn?

(3) Are they easy to maintain?

(4) Do they have a long-term future?

(5) Do they have extra capabilities, such as being able- to parse XML?

(6) Are a lot of people already using them - are there a lot of tools available?

(7) Are the supports, skills, and knowledge required use them available?

We are now going to give a quick overview of technologies.

5

2.1.1 Client-Side Technologies for Providing Dynamic Content

Each of these technologies rely on a module (or plug-in) built into the browser to

process the instructions. The client-side technologies are a mishmash of scripting

languages, controls, and fully fledged programming languages.

JavaScript

JavaScript is the original browser scripting language, and is not to be confused

with Java. Java is a complete application programming language in its own right.

Netscape had originally developed a scripting language, known as LiveScript, to add

interactivity to their web server and browser range. It was introduced in the release of

the Netscape 2 browser. When Netscape joined forces with Sun and in the process, they

changed its name to JavaScript. JavaScript bon-ows some of its syntax and basic

structures from Java (which in tum hon-owed ideas from C), but has a different purpose

- and evolved from different origins (LiveScript was developed separately to Java).

For example, while JavaScript can control browser behavior and content, it isn't

capable of controlling features such as file handling. In fact, JavaScript is actively

prevented from doing this for security reasons. Think about it: you wouldn't want a

web page capable of deleting files on your hard drive, now would you? Meanwhile,

Java can't control the browser as a whole, but it can do graphics and perf01m network

and threading functions.

JavaScript is much easier to learn than Java. It is designed to create small,

efficient, applications that can do many things, from performing repetitive tasks, to

handling events generated by the user (such as mouse clicks, keyboard responses, and

so on).

Microsoft introduced their own version of JavaScript, known as JScript, m

Internet Explorer 3.0 and has supported it ever since right up to, and including IE6. It

6

has only minor differences from the Netscape version of the language, although in older

versions of both browsers, the differences were originally quite a lot wider.

VBScript

In Internet Explorer 3.0, Microsoft also introduced their own scripting language,

VBScript, which was based on their Visual Basic programming language. VBScript

was intended to be a direct competitor to JavaScript. In terms of functionality, there

isn't much difference between the two, it is more a matter of personal preference -

VBScript has a similarly reduced functionality. Visual Basic developers sometimes

prefer VBScript because VBScript is, for the most part, a subset of Microsoft's Visual

Basic language. However, it enjoys one advantage that makes it more attractive to

novice programmers, in that, unlike JavaScript, it isn't case-sensitive and is therefore

less fussy about the particulars of the code. Although this "advantage", makes it a lot

slower and less efficient.

The biggest drawback is that there isn't a single non-Microsoft browser that

supports VBScript for client side scripting. For a short while there were some

proprietary plug-ins for Netscape that provided VBScript suppmi, but these never took

off. You '11 find that JavaScript is much more widely used and supported. If you want to

do client-side scripting of web pages on the Internet then JavaScript is the only

language of choice. Indeed Microsoft themselves have replaced VBScript in their NET

framework, with VB.NET. VBScript should only be considered when working on

Internet pages where it is known that all client are IE on Windows.

With both of JavaScript and VBScript there is a module, known as a script engine,

built into the browser that dynamically processes the instructions, or as it is known in

this case.

7

ActiveX Controls

An ActiveX control is a self-contained program (or component), written 111 a

language such as C++ or Basic. When added to a web page, it provides a specific piece

of client-side functionality, such as timer, client authentication, or database access.

ActiveX controls are added to HTML pages <object> tag, which is now part of the

HTML standard. ActiveX controls can be executed by browser when they are embedded

in a web page.

There is a catch. ActiveX controls were developed by Microsoft, and despite

being compatible with the HTML standard, they are not supported on any Netscape

browser prior to version 6 (which, at time of writing, was still in beta) without an

ActiveX plug-in. Without this, they will only function on Internet Explorer. Also, unlike

VBScript, ActiveX is able to manipulate items on the user's machine such as the files or

Windows registry. For this reason it is very often considered a security risk and is not

even allowed through firewalls. Consequently, ActiveX controls still cannot really be

considered either a common or a cross-platform way of making your pages dynamic and

are failing out of use.

Java Applets

Java is a cross-platform language for developing applications. When Java first hit

the Web in the mid 1990s, it created a tremendous stir. The idea is to use Java code in

the form of applets, which are essentially Java components that can be easily inserted

into web pages with the aid of the <applet> tag.

Java enjoys better functionality than scripting languages, offering better

capabilities in areas such as graphic functions and file handling. Java is able to provide

these powerful features without compromising security because the applets run in what

is known as a sandbox - which prevents a malicious program downloaded from the web

8

from doing damage to your system. Java also boasts strong database support through

JDBC.

Microsoft and Netscape browsers both have built-in Java support via something

known as the Java Virtual Machine (JVM), and there are several standard <object> and

non-standard <applet> tags that are used to add Java applets to a web page. These tags

tell the browser to download a Java file from a server and execute it with the Java

Virtual Machine built into the browser. Of course, this extra step in the web page

building phase means that Java applets can take a little while to download, and can take

even longer to process once on the browser. So, while smaller Java applets (that

provide features Such as drop-down menus and animations) are very popular on the

Web, larger ones are still not as widespread as scripted pages.

Although the popularity of Java today isn't quite what some people expected, it

makes an ideal teaching tool for people wishing to break out into more complex

languages; and its Versatility makes it suited for programming web applications.

Curl

A very recent innovation comes from a company partly set up by Tim Berners

Lee (the innovator behind the Web and the HTML language). Curl is another

programming language like Java, but unlike Java, where a second file (or more) has to

be downloaded with the HTML file, it completely replaces the HTML source and the

Java files. It relies on a Curl plug-in having been installed on your browser first, and

currently only works on very recent browsers. The advantage are that the download

time is faster than Java, and also you don't have to worry about integrating different

languages into the page, as Curl is capable of providing the same features as both Java

and JavaScript.

9

Curl is still in the very early stages of development, although the first version has

been released, and more details can be obtained at http://www.curi.com.

Sever-Side Technologies for Providing Dynamic Content

Each of these technologies rely on a modular attachment added onto the web

server rather than the browser. Consequently, only HTML and any client-side script,

are sent back to the browser by the web server. In other words, none of the server-side

code is sent back. Server-side technologies have a more consistent look and feel than

client-side ones, and it does not take that much extra learning to move between some of

the server-side technologies (excepting CGI).

CGI

The Common Gateway Interface (CGI) is a mechanism for creating scripts on the

server, which can then be used to create dynamic web applications. CGI is a module

that is added to the web server. It has been around for quite a bit longer than even ASP,

and right now, a large proportion of dynamically created web pages are created using

CGI and a scripting language. However, it is inc01Tect to assume that CGI does the

same job as ASP.NET or ASP. Rather, CGI allows the user to invoke another program

(such as a Perl script) on the web server to create the dynamic web page, and the role of

CGI is to pass the user supplied data to the this program for processing. However, it

does provide the same end result - a dynamic web application. You should be aware

that CGI has some severe shortcomings:

(1) It is not easy for a beginner to learn how to program such modules.

(2) CGI requires a lot of server resources, especially in a multiuser situation.

(3) It adds an extra step to our server-side model of creating dynamic content:

namely, it is necessary to run a CGI program to create the dynamic page,

before the page is processed on the server.

10

2677 0 ,

What is more, the format in which CGI receives and transmits data means that the

data is not easily manipulated by many programming languages, so you need one with

good facilities for manipulating text and communicating with other software, The most

able programming languages that can work on any, operating system for doing this are

C, C++ and Perl. While they can adequately do the job for us, they are some of the more

complex languages to learn. Visual Basic does not offer adequate text handling

facilities, and is therefore rarely used with CGI.

Despite this, CGI is still very popular with many big web sites, particularly those

running on UNIX operating systems. It also runs on many different platforms, which

will ensure its continued popularity.

ASP

Active Server Pages (ASP) is now dubbed "Classic ASP". ASP commonly relied

on either of the JavaScript or VBScript scripting languages (although it was also

possible to use any scripting language installed on Windows, such as PerIScript) to

create dynamic web pages. ASP is a module (the asp.dll file) that you attach to your

web server, and it then processes the JavaScript/VBScript on the web server, and turns

it into HTML, before sending it into the server, rather than doing it on the browser.

ASP lets us use practically any of the functionality provided by Windows, such as

database access, e-mailing, graphics, networking and system functions, and all from

within a typical ASP page. However, it is very, very slow performance wise. It is also

restricted to using only scripting languages. It ca not do all the things that a fully

.fledged programming language can. Secondly, languages, being like "junior" versions

of full programming languages, took a lot of shortcuts to make the languages smaller.

Some of these shortcuts make their programs longer and more complicated than is

11

otherwise necessary. As we are going to see, ASP.NET rectifies a lot of this by code

more structured, easier to understand, and sho1ier.

JSP

JavaServer Pages (JSP) is a technology that allows you to combine markup

(HTML or XML) with Java code to dynamically generate web pages. The JSP

specification is implemented by several web servers, as opposed to ASP which is only

supp01ied under IIS, and plug-ins are available that allow you to use JSP with IIS

4.015.x. One of the main advantages of JSP is the portability of code between different

servers. JSP is also very powerful, faster than ASP, and instantly familiar to Java

programmers. It allows the Java program to leverage the aspects of the Java2 platform

such as JavaBeans and the Java2 libraries. JavaServer Pages isn't directly related ASP,

but it does boast the ability to embed Java code into your web pages using server-side

tags.

ColdFusion

ColdFusion (http://www.macromedia.com/software/coldfusion/) also enables

servers to access data as the server builds an HTML page. ColdFusion is a module

installed onto your web server. Like ASP, ColdFusion pages are readable by any

browser. ColdFusion also utilizes a proprietary set of tags, which are processed by the

ColdFusion Server software. This server software can run on multiple platforms,

including IIS, Netscape Enterprise Server and Unix/Apache. The major difference is

that while ASP.NET solutions are built primarily with programming languages and

objects, ColdFusion utilizes HTML-like tags, which encapsulate functionality. A

drawback is that the ColdFusion software does not come for free and indeed you could

find yourself paying well in excess of a thousand dollars for the privilege of running

Cold Fusion on your web server.

12

PHP

PHP (originally Personal Horne Pages, but more recently PHP HyperText

Preprocessor) is another scripting language for creating dynamic web pages. When a

visitor opens the page, the server processes the PHP commands and then sends the

results to the visitor's browser, just as with ASP.NET or ColdFusion. Unlike ASP.NET

or ColdFusion, however, PHP is open-source and cross-platform. PHP runs on

Windows NT and many Unix versions, and it can be built as an Apache module and as a

binary that can run as a CGI. When built as an Apache module, PHP is especially

speedy. A downside is that you have to download PHP separately and go through a

series of quite complex steps to install it and get it working on your machine. Also

PHP's session management was non-existent until PHP 4, and still is even now, inferior

to ASP's even now.

PHP's language syntax is similar to C and Perl. This might prove a bmTier to

people with no prior programming experience, but if you have a background in either

language then you might want to take a look. PHP also has some rudimentary object

oriented features, providing a helpful way to organize and encapsulate your code.

ASP.NET

So why are you telling me about all these other technologies if we are only going

to be learning about ASP.NET you might be wondering? Hopefully you will see a

similarity between the technologies, and this will aid your understanding of ASP.NET.

ASP.NET also relies on a module attached to the web server. However, the

ASP.NET module (which is a physical file called aspnet_isapi.dll) doesn't do all of the

work itself, it passes some on to the .NET Framework to do the processing for it.

13

2.2 Static Web Pages VS Dynamic Web Pages

2.2.1 What Is a Static Web Page?

If you surf around the Internet today, you will see that there are a lot of static web

pages out there. What do we mean by a static web page? Essentially, it is a page whose

content consists of some HTML code that was typed directly into a text editor and saved

as an .htm or .html file. Thus, the author of the page has already, completely

determined the exact content of the page, in HTML, at some time before I user visits the

page.

Static web pages are often quite easy to spot; sometimes you can pick them out by

just looking at the content of the page. The content (text, images, hyperlinks, etc.) and

appearance of a static web page is always the same - regardless of who the page, or

when they visit, or how they an-ive at the page, or any other factors.

For example, suppose we create a page called welcome.htm for our website, by

writing some simple HTML like this:

<hmtl>

<head><title> A Welcome Message</title></head>

<body>

<hl> W elcome</hl>

Welcome to our humble web site. Please feel free to view our

List of contents</ a>.

If you have any difficulties,. you can

send e- mail to webmaster

</body>

</html>

14

Whenever any client comes to our site to view this page, it will look like this

(Figure 2.1). The content of the page was determined before the request was made at

the time the webmaster saved the .htm file to disk.

Welcotne
Welcome to our humble website. Please fed fret to 11iew our hst of conter;ts.

If you have any difficulties. you can. send email f<, !he webmast~r

Figure 2.1. A Welcome Message Page.

How Are Static Web Pages Served?

Ok, so let us think for a moment about how a static, pure-HTML page finds its

way onto a client browser as Figure 2.2:

(1) A web author writes a page composed of pure HTML, and saves it within an

.htm file on the server.

(2) Sometime later, a user types a page request into their browser, and the

request is passed from the browser to the web server.

(3) The web server locates the .htm page and converts it to an HTML stream.

(4) The web server sends the HTML stream back across the network to the

browser.

15

(5) The browser processes the HTML and displays the page.

Web server locates .l1trn ffle

Author writes 113

)
HTML -----.

.
.

'iieb Server

Client requests
webpage

HTML stream (from .htm page)
returned to browser

5

Client

Browser processes HTML
and displays page

Figure 2.2. Static Web Page.

Static, pure-HTML files like Welcome.htm make perfectly serviceable web pages.

We can even spruce up the presentation and usability of such pages by adding more

HTML to create frames and tables. However, there is only so much we can achieve by

writing pure HTML, precisely because their content is completely determined before the

page is ever requested.

Limitations of Static Web Pages

For example, suppose we want to enhance our Welcome page - so that it displays

the current time or a special message that is personalized for each user. These are

simple ambitions, but they are impossible to achieve using HTML alone. If you are not

convinced, try writing a piece of HTML for a web page that displays the current time,

like Figure 2.3:

16

] ~e~cr;.·,+ ·--@[~y~~·.i~~·5~~~··~~·F;;~~ii~··~[-~~·~~ ~~··»>I
I j /jlocalhost/5040/chOl/Punctua!.a>Px :..,. ·. ~Go I
l --•·•H~•">e>--·~-----'"'-·~.>-·-·-••'""-"

In WebServerLand the time is currently: 15:11:38

Figure 2.3. Welcome Page Enhanced.

As you type in the HTML, you will soon realize the problem - you know that the

user will request the page sometime, but you don't know what the time will be when

they do so! Hard-coding the time into your HTML will result in a page that will always

claim that the time is the same (and will almost always display the wrong time).

In other words, trying to write pure HTML for a web page that displays the time -

but you cannot be sure of the exact time that the web page should display until the time

the page is requested. It can't be done using HTML alone.

Also HTML offers no features for personalizing your web pages, each web page

that is served is the same for every user. There is also no security with HTML, the code

is there for everybody to view, and there is nothing to stop you from copying somebody

else's HTML code and using it in your own web page. Static pages might be very fast

as quick as copying a small file over a network, but they are quite limited without any

dynamic features.

17

Since we cannot create our page by saving our hard-coded HTML into a file

before the page is requested, what we need is a way to generate the HTML after the

page is requested. There are two ways of doing this; we will look at them both now.

What Is a Web Server?

A web server is a piece of software that manages web pages and makes them

available to 'client' browsers - via a local network or over the Internet. In the case of the

Internet, the web server and browser are usually on two different machines, possibly

many miles apaii. However, in a more local situation, we might set up a machine that

runs the web server software, and then use a browser on the same machine to look at its

web pages. It makes no difference whether we access a remote web server (that is, a

web server on a different machine to our browser application) or a local one (web server

and browser on the same machine), since the web server's function - to make web pages

available to all - remains unchanged. It might well be that you are the only person with

access to our web server on your own machine, as would be case if you were running a

web server from our home machine. Nevertheless, the principles remain the same.

While there are many web servers available (the commonest ones being Apache,

IIS and !planet's Enterprise server). This is because it is the only web server that will

run ASP.NET. The web server comes as part of the installation for both Windows 2000

and Windows XP. IIS version 5.0 comes with Windows 2000, and IIS version 5.1 with

Windows XP; however, there is very little to distinguish the two, and we shall treat

them in this chapter as the same product.

2.2.2 What Is Dynamic Web Page?

To fully understand the nature of dynamic web pages, we first need to look at the

limitations of what we can and cannot do with a static web page. There are two ways of

providing dynamic web page content as:

18

Client-Side Dynamic Web Pages

In the client-side model, modules (or plug-ins) attached to the browser do all the

work of creating dynamic pages. The HTML code is typically sent to the browser along

with a separate file containing a set of instructions, which is referenced from within the

HTML page. However, it is also quite common to find these instructions intermingled

with the HTML codes. The browser then uses them to generate pure HTML for the

page when the user requests the page - in other words, the page is generated

dynamically on request. This produces a HTML page, which is sent back to the

browser.

So, in this model as Figure 2.4, our set of five steps now becomes six:

(1) A web author writes a set of instructions for creating HTML, and saves it

within an .htm file. The author also writes a set of instructions in a different

language. This might be contained within the .htm file, or within a separate

file.

(2) Sometime later, a user types a page request into their browser, and the

request is passed from the browser to the web server.

(3) The web server locates the .htm page, and may also have to locate a second

file that contains the instructions.

(4) The web server sends both the newly created HTML stream and instructions

back across the network to the browser.

(5) A module within the browser processes the instructions and returns it as

HTML within the .htm page - only one page is returned, even if two were

requested.

(6) The HTML is then processed by the browser which displays the page.

19

WE8SERYE.R

~~
·':[\ AutMr writ.es .!, . ; ' I
'-~,! lnstru<;tfOns -· •

I ji-......~

... \\ ,b "'\(:;·) HTMU!l'Kl instroctions
'-.../ 1etumed to brow:>er

\~ \ (;;;; A module in \he browse1 p=ss~s
.-" Clle;it \ \.. lns\Nct<ans and l•ims them 1<110 H1'Mt

\3..Jre<iuests web pa

..._

(3) Web server locat<l'S HTML and instr\J<:Hons file
./

Figure 2.4. Client-side Dynamic Web Page.

Client-side technologies have fallen out of favor in recent times, as they take a

long time to download, especially if we have to download a second file with a separate

set of instructions. In some cases, we might have to download several files of separate

instructions. A second drawback is that each browser interprets these instructions in

different ways, so we have no way of guaranteeing that if Internet Explorer understands

them, whether Netscape Navigator or Opera will. Another major drawbacks are that it

is a problem to write client-side code that uses server-side resources such as databases,

because it is interpreted at client-side. Also all code for client-side scripting is available

to everybody, which can be undesirable.

Server-Side Dynamic Web Pages

With the server-side model, the HTML source is sent to the web server with an

intermingled set of instructions. Again this set of instructions will be used to generate

HTML for the page at the time the user requests the page. Once again, the page is

20

generated dynamically upon request. Our set of five steps once more becomes six,

however, with the subtle twist regarding where the processing of instructions is done as

Figure 2.5:

W£USEfWER

i= I:
:=I:
l :

.,.; /=

(!) Wl!b $tMlr locatlons lnstructloos file

0 web &eMlf ~ lnStructloos to<:reate HTMt

(·5~Browset puxe$ses. HTML
• •... j and displays page

~~

Figure 2.5. Server-side Dynamic Web Page.

(1) A web author writes a set of instructions for creating HTML, and saves these

instructions within a file.

(2) Sometime later, a user types a page request into their browser, and the

request is passed from the browser to the web server.

(3) The web server locates the file of instructions.

(4) The web server follows the instructions in order to create a stream of HTML.

(5) The web server sends the newly created HTML stream back across the

network to the browser.

(6) The browser processes the HTML and displays the page.

21

• s

The twist is that all the processing is done on the server, before the page is sent

back to the browser. One of the key advantages this has over the client-side model is

that only the HTML code describing the finished page is actually sent to the browser.

This means that our page's logic is hidden away on the server, and that we can safely

assume that most browsers should be able to at least have a go at displaying it.

ASP.NET as you might have gathered, follows the server-side model.

In fact either process of serving a dynamic web page is only slightly different

from the process of there is just one extra step involved (Step 5 on the client or Step 4

on the both cases this difference is crucial -the HTML that defines the web page is not,

page has been requested. For example, we can use either technique to instructions for

creating a page that displays the current time:

<html>

<head><title>The Punctual Web Servers</title></head>

<body>

<hl> W elcome</hl>

In W ebserverland, the time is exactly

<INSTRUCTOM: write code to display the current time>

</body>

</html>

In this case, we can compose most of the page using pure HTML. It is just that

we cam1ot hard-code the current time. Instead, we can write a special code (which

would replace the italicized line here) that instructs the web server to generate that bit of

HTML during Step 5 on the client, or Step 4 on the server, at the time the page is

requested.

22

2.3 Simple Web Theory

The web server's main job is to make your web pages available to all and sundry.

Another job of the web server is to provide an area (typically in a directory or folder

structure) in which to organize and store your web pages, or whole web site.

When you use the Web to view a web page, you will automatically be making

contact with a web server. The process of submitting your URL is called 'making a

request' to the server. The server interprets the URL, locates the coITesponding page,

and sends back the code to create the page as part of what is called the response to the

browser. The browser then takes the code it has received from the web server and

compiles a viewable page from it. The browser is referred to as a client in this

interaction, and the whole interaction as a client-server relationship.

2.3.1 Client-Server

This term describes the workings of the Web, by outlining the distribution of

tasks. The server (the web server) stores, interprets data, and distributes data (that is

compiled into web-pages), and the client (browser) accesses the server to get at the data.

From now on, whenever we use the term client, we are just referring to the browser.

To understand what is going on in greater detail, we need to briefly discuss how

the client and server communicate over the Internet using the HTTP protocol.

2.3.2 The HTTP Protocol

The Internet is a network of interconnected nodes. It is designed to carry

info1mation from one place to another. When the user tells the browser to fetch a web

page, a message is sent from the browser to the web server.

This message is sent using Hypertext Transfer Protocol (or HTTP). HTTP is the

protocol used by the World Wide Web in the transfer of information from one machine

23

to another - when you see a URL prefixed with http://, you know that the internet

protocol being used is HTTP.

The message passed from the browser to the web server asking for a particular

web page is known as an HTTP request. When the web server receives this request, it

checks its stores to find the appropriate page. If the web server finds the page, it bundles

up the HTML in an HTTP response, and sends this back across the network to the

browser. If the web server cannot find the requested page, it issues a response that

features an appropriate error message, and dispatches that page to the browser. Here is

an illustration of the process as Figure2.6:

HTTP Request
{http:/ /web site)

BROWSER

HH?
Re5pons:t~

VieL

rdJ~*''

Figure 2.6. HTTP Protocol.

HTTP is known as a stateless protocol. This is because HTTP does not know

whether the HTTP request that has been made, is paii of an ongoing correspondence, or

just a single message. Just as the same way your postman will not know whether your

letter is, the first asking your local hi-fi company for a refund on the piece of junk they

24

sold you, or the fifteenth one penned in giant green capital letters demanding that they

give you the refund and a brand new stereo system on top.

The reason HTTP is stateless, is that it was only intended to retrieve a single web

page for display. The Internet would be very slow and might even collapse if

pennanent connections needed to be maintained between browsers and servers, as

people moved from one page to another. Think about the extra work HTTP would have

to do if it had to worry about whether you had been connected for one minute or

whether you had been idle for an hour, and needed disconnecting. Then multiply that

by- a million for all the other users. Instead, HTTP makes the connection and delivers

the request. And then returned the response and disconnects. The downside of this is

that HTTP cam1ot distinguish between difference requests however, and cannot assign

different priorities, so it will not be able to tell whether a particular HTTP request is the

request of a user, or the request of a virus infected machine. That has been set up to hit

a government web server 1000 times a minute. It will treat all requests equally with the

same status, as there are no ways for HTTP to determine where the request originated.

How HTTP Works

When a request for a web page is sent to the server, this request chains more than

just the desired URL. There is a lot of extra inforn1ation that is sent as part of the

request. This is also true of the response - the server sends extra information back to the

browser.

The infonnation that is passed within the HTTP message is generated

automatically, and the user does not have to deal with it directly, so you do not need to

worry about transmitting such information yourself. While you do not have to worry

about creating this information yourself, you should be aware that it is being passed

between machines as pmi of the HTTP request and HTTP response. It is because the

25

ASP.NET code that we write can allow us to have a direct effect on the exact content of

this information.

Every HTTP message assumes the same format (whether it is a client request or a

server response). We can break this fonnat down into three sections: the

request/response line, the HTTP header, and the HTTP body. The content of these three

sections is dependent upon whether the message is an HTTP request or HTTP response

- so we will take these two cases separately. Let us just pause and illustrate our

understanding of the process now:

Bfowser

HTTP Request

Get.

8.9qu~s\: /HTTTP:/ /WWW,WflOX.COM
/HTTP1.1 '

User. Agent: lF.5
Accept:'/'
Date:9/1/.01.

fJ9dy:1~%ty)

HTTP Response

Hesponse: HTTPLl/2000

He.Mer
Server:115
Date:9/1/01

fJ_q<;Jy:<HTMb

</HTMi.>

Port80

Figure 2. 7. HTTP Request and HTTP Response.

Web
Server

il
f,:8','

'

~

I

Executes
ASi?NE1 Code

' '
i

"'
Web i
Page f

;

We can see that the HTTP request and HTTP response have broadly similar

structures, and that there is information common to both that is sent as part of the HTTP

header.

There are other pieces of information that can only be known to either the browser

or the server, and are only sent as part of either the request or response, so it makes

sense to examine their constituent parts in greater detail. These pieces of information,

26

such as the server name, the date, the acceptance code returned by the server if it finds a

web page, are all termed environment or server variables. They are easily readable

when using ASP.NET code.

The HTTP Request

The browser sends the HTTP request to the web server, and it contains the

following three listed elements:

(1) The Request line

(2) The HTTP header

(3) The HTTP body

The Request Line

The first line of every HTTP request is the request line, which contains three

pieces of infom1ation:

(1) An HTTP command, known as a method

(2) The file name, and the path in the server directory structure of the resource

that the client is requesting from the server.

(3) The version number of HTTP

So, an example request line might look like this:

GET/Testpage.htm HTTP/1.1

The method is used to tell the server how to handle the request, and usually

consists of a GET or POST command. These basically tell the server to find some

particular data. There are a number of other methods supported by HTTP - including

PUT, DELETE, TRACE, CONNECT, and OPTIONS.

The HTTP Header

The next bit of information sent is the HTTP header. This contains details of what

document types the client will accept back from the server, like the type of browser that

27

has requested the page, the date, and general configuration information. The HTTP

request's header contains information that falls into three different categories:

(1) General: contains information about either the client or server, but not

specific to one or the other.

(2) Entity: contains information about the data being sent between the client and

server.

(3) Request: contains information about the client configuration and different

types of acceptable documents.

An example- HTTP header might look like this:

Accept:*/*

Accept-Language: en-us

Connection: Keep-Alive

Host: www.wrox.com

Referer: http://webdev.wrox.co. uk/books/Sampl eList.aspx ?bookcode=5 040

User-Agent: Mozilla (XII; I; Linux 2.0.32 i586)

As you can see, the HTTP header is composed of a number of lines; each line

contains the description of a piece of HTTP header information, and its value. For

example, the user agent line refers to the type of browser that made the request. The

accept-language indicates the human-readable language used within the web page; in

this case, US English. There are many different lines that can be contained in a HTTP

header, and most of them are optional, so HTTP has to indicate when it has finished

transmitting the header information. To do this, a blank line is used.

The HTTP Body

The HTTP request body will contain any data that is being sent to the server - for

example, data that the user typed into an HTML. Otherwise, the HTTP request body

28

will be empty. Data can actually be sent in the URL line (thus, still leaving the request

body empty).

The HTTP Response

The HTTP response is sent by the server back to the client browser, and contains

the following three elements:

(1) The Response line

(2) The HTTP header

(3) The HTTP boy

The Response Line

The response line contains only two bits of information:

(1) The HTTP version number

(2) An HTTP status code that reports the success or failure of the request

An example response line might look like this:

HTTP/1.1 200 OK

First of all- fall, we can see the HTTP version number - this is not Significant,

there are only two versions 1.0 and 1.1 and it just tells the sever which fon11at was used

to package up the request. The version number is followed by the status code. This

example returns the HTTP status code 200, which represents the message "OK". This

denotes the success of the request, and that the response contains the required page or

data from the server. Error code values are three-digit numbers, where the first digit

indicates the class of the response. There are five classes ofresponse:

(1) 100-199: These codes are informational - they indicate that the request is

currently being processed.

(2) 200-299: These codes denote success - that the web server received and

carried out the request successfully.

29

(3) 300-399: These codes indicate that the request has not been per-forn1ed,

because the information required has been moved.

(4) 400-499: These codes denote a client error-that the request was incomplete,

incorrect, or impossible.

(5) 500-599: These codes denote a server error-that the request appeared to be a

valid, but that server failed to carry it out.

The HTTP Header

The HTTP response header is similar to the request header, which we discussed

above. In the HTTP response, the header inf01mation again falls into three types:

(1) General: contains information about either the client or server, but is not

specific to one or the other

(2) Entity: contains information about the data being sent between the client and

the server

(3) Response: information about the server sending the response, and how it can

deal with the response

Once again, the header consists of a number of lines, and uses a blank line to

indicate that the header information is complete. Here is a sample of what a header

might look like, with the name of each line down the side:

HTTP/1.1 200 OK

Date: Mon, Ist Nov 1999, 16:12:23 GMT

Server: Microsoft-IIS/5.0

- the response line

- the general header

- the response header

Last-modified: Fri, 29th Oct 1999, 12:08:03 GMT - the entity heads

We have already discussed the first line, and the second is self-explanatory. On

the third line, server, indicates the type of software the web server is running, and as we

30

are requesting a file somewhere on the web server, the last bit of information refers to

the last time the page we are requesting was modified.

The HTTP Body

If the request was successful, then the HTTP response body contains the HTML

code (together with any script that is to be executed by the browser), ready for the

browser to use. Additional HTTP requests are used to retrieve any other resource, such

as images, dictated by the HTML code returned after the first request.

31

' s

III. ASP HISTORY

3.1 Learning from the History of ASP

You can trace the history of ASP right back to 1995 and the momentous

occasion when Microsoft realized they were falling behind in a fundamental shift in

the industry by not embracing the Internet. Up until that point Microsoft had been

developing their proprietary technologies, tools, and network's protocols for the

Microsoft Network; all of a sudden they needed an Internet strategy and fast.

Microsoft has gone from a position of playing catch-up to one close to dominance

with the Internet Explorer Web browser having a strangle-hold on the Web browsing

market, and Internet Infonnation Server (IIS) installed at the majority of Fortune

1000 companies.

3.1.1 The Origins of ASP

Back in the mid'90s, when the commercial Web world was still young, there

was not a great deal of choice of tools for the Web developer who wanted to make his

or her Web site a truly useful place to do business. The choices were limited in both

available server-side programming platforms and also desktop development tools to

produce the solutions. In the end, the programmer was stuck with clumsy Common

Gateway Interface (CGI) programs using compiled languages such as C, Delphi, and

Visual Basic, or interpreted scripting languages like Perl or Rexx, and operating

system shell scripts on systems such as UNIX.

In early 1996 Microsoft had a first stab at improving the situation by including

the Internet Server Application Programming Interface (ISAPI) technology as part of

Internet Information Server. ISAPI is an extension to the Windows Win32 APL It

was developed as a way to create Web server software that interacts with the inner

32

workings of Internet Info1mation Server, bringing what was claimed to be a five-fold

increase in performance. As you can well imagine from this description, as well as

the immediate performance increase, it also had a side effect of increasing the

complexity of the development for the programmer. It was not for the faint hearted,

and it takes some serious hardcore programming knowledge to do ISAPI applications

right. As well as ISAPI, Microsoft encouraged developers to embrace their Internet

Database Connector (IDC) technology. This was a new way to connect Web sites to

backend databases through Open Database Connectivity (ODBC).

The ISAPI and IDC technologies lifted Microsoft's youthful and as yet

unproven Web server from being a glorified file server to being a basic interactive

application server platform for the first time.

Other vendors had tools out there, and several were very popular, such as

Netscape Livewire. Livewire was a technology that ran under Netscape's Web server

and used a version of JavaScript for page logic, and also used Java components.

Unfortunately, Livewire had similar limitations to ISAPI in that it was a compiled

technology and the server needed stopping and starting to make changes visible.

3.1.2 Why ASP Was Needed?

Not all Web developers have the programming skills needed to write ISAPI

applications, and because ISAPI requires the compilation of programs, there are extra

steps in producing an ISAPI-based site that slow development down. Novice and

inte1mediate programmers found the need to learn an industrial-strength language,

such as C++, and compile even the simplest of their page logic into .dll files a real

barrier.

Visual Basic programs, although easier to develop, when used for CGI, per

fonned poorly and the overhead hogged resources. Other languages such as Perl

33

require the Web server to launch a separate command-line program to interpret and

execute the requested scripts, increasing page-load time and reducing server

performance. CGI itself hogs resources because eve1y page request forces the Web

servers to launch and kill new processes and communicate across these processes.

This is time consuming and also uses up precious RAM.

Another problem facing development teams in the mid'90s was the fact that a

Web site is a mixture of Hypertext Markup Language (HTML) and logic. They

needed a way to mix the programmer's code with the designer's page-layout HTML

and designs without one messing up the other. There were many solutions to this

problem, ranging from custom template systems to Sever Side Include (SSI)

statements that told the server to execute code based on special HTML comment tags.

Database-driven interactivity was another challenge. The demand for complex

Web sites had just kicked off, and developers needed to supply that demand in a

manageable fashion, but the tools available did not make this an easy task. Those

who could achieve it demanded rewards that matched the difficulty of what they were

being asked to do.

What was needed was a solution for the rest of us. It needed to be a simple

scripted text-based technology like Perl, so developers could tweak and alter their

pages without compilation and with simple text-editing tools such as Notepad. It

needed to have low resource requirements while keeping high performance; therefore

it needed to be executed within the server environment just like ISAPI, but without

the complexity. Designers and cross-discipline teams demanded that it should

include SSI and template features to make integrating page layouts simpler to

manage. To be truly popular, it should run off a language that would be easy to pick

up and was familiar to a large community of developers.

34

3.1.3 Why ASP Was Not Originally Embraced?

Active Server Pages was not an overnight success, though understandably it did

capture the imagination of a large sector of the development community, particularly

those already well versed in Visual Basic programming or Visual Basic for

applications scripting.

Others who did not have an investment in Visual Basic knowledge found the

limitations of Visual Basic, and by extension Visual Basic Scripting, reasons to avoid

the technology. Faults included poor memory management, the lack of strong string

management abilities, such as Regular Expressions, found in other established

languages. When compared to CGI with Perl, ASP was found lacking.

At that time, Internet Inforn1ation Server was in its infancy, and take-up was

low, despite Microsoft's public relations juggernaut going into fun flow after the is on

to cmTent versions company's much-reported dramatic turnaround. In comparison of

the software it seems very poor, but it was still competitive on perfonnance.

Until 1997, back-end Web programming was pretty much owned by CGI and

Perl. High-performance Web sites usually had a mix of C-compiled programs for the

real business engine, and Perl for the more lightweight form processing.

There was a fair amount of doubt and suspicion around Microsoft's Internet

efforts, including IIS and Internet Explorer, and ISAPI had not done all that much to

bring across a huge sector of the development community. Despite this uncertain

atmosphere, Microsoft saw many Windows NT 4 licenses being bought specifically

for Web hosting and development increasing. Third-party support for anything other

than small components was initially slow, but, as with all Microsoft products, after

the first couple of releases they usually get things right, and ASP was no exception.

35

Whereas Perl had a huge community of developers led by the heroic figure of

Larry Wall, the ASP developer was not yet well supported. A Perl programmer was

encouraged from the top to share and make his or her code open. Therefore, the

community thrived, with every conceivable solution or library just a few clicks away

at the Comprehensive Perl Archive Network (CPAN) site, or at one of the many other

web sites and news groups. Contrast this with the ingrained competitive and

financially led philosophies of the third-party component vendors in the Windows

Distributed Internet Applications (DNA) world. Of course, it did not take the ASP

community long to grow to be the loving, sharing success it is now.

3.1.4 Developing ASP l.x

ASP 1 was an upgrade to Internet Inf01mation Server 2, bringing it up to

version 3, and was installed as an optional downloaded component. The public beta

was first made available in October 1996 and the final release was a factor in IIS

quickly overtaking Netscape in the server market.

Around the same period, Microsoft had purchased and further developed a Web

site authoring tool called FrontPage that brought with it a new organizational and

hosting concept of the FrontPage Web, enabling the developer to deploy Web

applications in drag and drop style without using the File Transfer Protocol (FTP).

This concept would be carried through into Microsoft Visual Interdev, Microsoft's

new HTML and ASP editing environment.

ASP 1 was surprisingly feature-rich for a version 1 product. It included much of

the revolutionary functionality ASP that today's programmers take for granted. For

example, ActiveX Data Objects that shield the programmer from differences in

database implementations, with record sets to easily access and navigate database

query results, and the ability to mix and match logic and presentation code in the

36

same page. Programmers found the limitations of some areas frustrating, for

example, options for reading and writing to the file system; but overall, ASP 1 was a

breath of fresh air, and many developers quickly and eagerly adopted it.

3.1.5 Developing ASP 2.x

Once ASP 1 had settled and become established, Microsoft released a new

version of Internet Information Server and an upgrade to ASP, with a combined

download called the Windows NT 4 Option Pack. This time, ASP was built in to the

Web server setup and was not seen as an extra. The Web server was a big

improvement, with better support and functionality all round and the addition of a

Simple Mail Transfer Protocol (SMTP) Mail service.

With ASP 2, the technology matured to the point where developers could really

implement powerful, large-scale solutions. Big-name companies adopted the

Microsoft platform for their high traffic transactional-sites and the technology proved

itself time and again against the demands of serving up millions of page views.

From launch, ASP 2 showed improvements across the board, such as increased

file system functionality, added components, and language improvements. Third

pmiy developers released components into the market place that filled in every

conceivable gap in functionality, and developers were producing their own bespoke

components through ASP's Component Object Model (COM)-based architecture.

Developer tools also had upgrades, with Visual Interdev becoming much

improved and better integrated into the Visual Studio suite, with access to Visual

Source Safe for source control. Third-party tool vendors had also developed their

own solutions, with many wizard-style developers' toolkits and integrated

environments coming to market, such as the popular Macromedia Ultradev.

37

Microsoft extended the language code with incremental releases of the language

runtime Scripting Engines, allowing for improvements in the languages, such as

suppo1i for Regular Expressions, without the need for full new versions of Active

Server Pages.

3.1.6 Major Changes with ASP 2.0

Moving to Active Server Pages 2 brought the developer into a more stable and

feature-rich environment. All aspects of the technology were tuned and tweaked, and

programmers really felt that things had settled into a stable technology. This new

found confidence was in part due to the evidence of successful transactional sites

actually showing that the platform could deliver, but also the fact that the technology

had been boosted under the hood with tighter integration with Microsoft Transaction

Server (MTS). In fact, IIS 4 was rebuilt to be a MTS application, and so ASP and

MTS components were actually running in the same processes. Another improvement

was the work with Microsoft Message Queue. This allow ASP and components to

communicate across networks, ideal for language applications with complex backend

requirements, for example, e-commerce systems integrating with existing legacy

enterprise resource planning (EPP) infrastructures.

3 .1. 7 Developing ASP 3. 0

With the release of windows 2000, Active Server Pages 3 was available.

Performance was increased considerably by the addition of a step in the execution of

the pages that checked for a previously cached version of the compiled page, and the

compiler checking for script elements rather than always processing the page line by

line.

38

The Windows 2000 operating system and features in IIS5 that included the

option to selectively separate out Web applications and processes addressed stability

issues.

Functionally, it did not have many revolutionary additions (perhaps they were

waiting for .NET, which was already on the drawing board at Microsoft), but

developers did get several features. They had been asking for, such as server-side

redirects to replace the Hypertext Transfer Protocol (HTTP)-header client-side

implementation, better en-or handling, and dynamic includes.

3.1.8 Final Changes to Original ASP Model

With version 3, Microsoft introduced the concept of server scriptlets. These

were COM objects that were developed as Extensible Markup Language (XML)

based text files. This enabled programmers to rapidly prototype multi-tiered

application business logic without the "change, recompile, upload, stop the server,

register, test, change" cycle of component development.

ASP and ActiveX Data Objects (ADO) were given a boost in capability with

the addition of XML-processing abilities. XML was, at this point, a massive deal in

the developer community, and Microsoft wanted to appear to be fully embracing it,

and so the whole of Microsoft's product line seemed to be receiving an XML

makeover.

As well as the new script execution changes mentioned earlier, it included

many other performance improvements, such as the ability of the Web server to self

tune, checking adding threads when needed, and having response buffering on by

default.

39

3.2 The ASP Time Line

Before looking at ASP.NET, let's briefly take a look at the short but eventful

history of Active Server Pages to see how we got to where we are today:

(1) December 1995: Microsoft makes a dramatic U-turn and announces that

their whole product lineup will be refocused to embrace the Internet. Up

until this point they had largely ignored the Internet market and had fallen

dangerously behind the competition.

(2) February 1996: Microsoft releases Internet Infmmation Server to the

public for free download. Microsoft spokespeople claim that the server

offers a four-fold increase in performance over Netscape Netsite server.

IIS includes ISAPI and IDC technologies.

(3) With the release of Windows NT 4, IIS version 2 is bundled, while IIS 1 is

available for Windows NT 3.51.

(4) October 1996: Microsoft releases the public beta for IIS 3 as an optional

upgrade to IIS 2. The major change with this version is the inclusion of a

new development environment called Active Server Pages, forn1erly

known under its project name of "Denali." As part of their public

relations campaign, Microsoft claims they are beating Netscape 2- 1 in the

server market. IIS no longer supports MIPS and NT 3. 51.

(5) August 1997: Microsoft releases ASP 2 with IIS 4. IIS now includes the

Microsoft Management Console (MMC) to make administering the server

more straightforward, and the SMTP server is now bundled, having

previously been a part of the Commercial package. IIS and ASP are now

tightly integrated with Microsoft Transaction Server, and this is seen as a

40

real step forward in making the platform a credible choice for large-scale

deployment.

(6) 1998-2000: Microsoft started releasing incremental vers10ns of the

language Scripting Engines, adding language features and functionality

without the need for full ASP version updates, such as the addition of

Regular Expressions for VBScript programmers.

(7) With the release of Windows 2000 with IIS 5, Active Server Pages 3

became available. ASP 3 allowed for server-side redirects, better error

support, AD0.2.5 with support for XML, and caching of compiled code.

IIS 5 enabled the administrator to finely separate processes to prevent

crashing of the server.

(8) July 2000: .NET makes their first public announcement, revealing their

new C# language, promising to deliver better functionality and flexibility

than ever before, and promising support for a wide variety of Internet

standards.

41

IV. ASP

4.1 What Is ASP?

ASP stands for Active Server Pages, and it is free! It's build into Windows

2000, and can easily be installed on Windows 95/98/NT, hence the question whether

you should say "What Is ASP?" or "What Are ASP?" Active Server Pages represents

a new paradigm in computer development.

(1) Early data programming (pre-database): For a quick recap, the

programmers of several decades ago created both the program and the

data. The data was in a special file whose very structure was defined by

the program. In short, the data could only be read by that specific

program. Each program module that accessed the data file would begin by

"formatting" the data. It would read in a record and then break it down as

account number = 10 characters, customer name = 25 characters, etc. If

an error in the program had the account number as 9 characters, then the

program would assume that the tenth character was actually the first

character of the customer name. Errors like these could result in trashing

the data. If the customer came along with a request to add a new field or

change the size of a field, the programmer would have to write a

conversion program to operate on the existing data and then change every

single program module that accessed the data. Data integrity had to be

maintained by the program. If the program wasn't written properly, you

could wind up with missing account numbers or two customers with the

same account number.

42

;

s

(2) Database programmmg: Somewhere down the line, someone got the

bright idea to develop a database external to the program. As soon as the

program opened the data file, the database itself defined the fields. The

account number could only be ten characters (assuming that the database

defined it as such). The program could never read part of one field and

part of another by accident. If a field had to be enlarged or a new one

added, it was done in the database and all the program modules

automatically knew about it. At first, data integrity (missing account

numbers, duplicate account numbers) was handled by the program.

Eventually, databases improved so that they handled these rules. Once

these rules were coded into the database, the programmer didn't have to

worry about forgetting these rules in the program code. The database

itself would issue a warning if these rules were violated.

(3) Early Networks (pre Client-server): Early programming was done on

mainframes and minis. Here the user sat at a "dumb terminal" and all the

processing took place at the CPU (central processing unit) which was

housed in the mainframe. The CPU was an expensive piece of equipment

designed to handle many user requests. But then PCs and PC Networks

proliferated. The central CPU where the data resided (the server) was not

really designed to handle multiple requests simultaneously. So PC servers

were mostly file servers, where their purpose was to keep the files in a

central area accessible to many users. But the actual processing took place

at the local user's machine. So when a user requested to see all clients

who had an outstanding balance, the server sent the entire client file over

to the user's machine, where the local CPU filtered the data to show only

43

those with an outstanding balance. Transmitting all these unnecessary

records over the LAN wasted a good deal of time.

What we really needed was to do the same with program code as we did with

the data. Three-tiered architecture, with languages such as ASP, is the result. Instead

of just the database server, there is now a database server and an application server.

The users communicate with the application server. The application server makes

requests of the database server, creates the code for the page the user needs to see and

sends just that page to the user. The only application that resides on the user's

machine is the browser needed to communicate with the application server and view

the pages being received. Browsers are fairly standard and don't get updated as

frequently as a custom application. If the application is updated, the user gets the new

version as soon as he hits refresh or reloads the browser. Distributing the application

is also easier. There is usually no code to install on the user's machine. The

application server is connected to the Internet or Intranet. The database server is

connected. The user is given the URL to the application server. Anything that needs

to be installed on the user's machine is "pushed" to the user by the application.

Active Server Pages (ASP) can be defined as code that can be put into an html

page to make it respond dynamically to user requests. ASP allows you to take

advantage of server-side scripting. Furthermore, ASP provides an array of objects

and components that manage the interaction between the browser and the web server.

Scripting languages such as VBScript and JScript are used to manipulate these

objects. ASP is not actually a language in itself. Meaning there is no ASP code, but

VBScript or JScript or whichever scripting language you decide you want to use.

VBScript is the most widely used language for ASP.

44

ASP is written in a mixture of VBScript (server side) and JavaScript (client

side). If the server is able to decode it, it can replace ASP code with HTML code and

send back to the user a plain HTML page. If the user clicks view-source, he won't

see the ASP code, he will see the HTML code that the ASP code produced. For an

example, view our online catalog from the link on the left. The ASP page opens a

database of our products, formats an html page and displays the items. It turns the

item code into a clickable link to another ASP page. When you click the link, that

ASP page formats another HTML page with information about the specific item. To

more understand ASP, it's important to know the difference between ASP and regular

HTML pages.

In a HTML page, everything on it is static (i.e. it's just a page that the server

takes out from it's 'filing cabinet' and sends to the user's browser).

In an ASP, it is dynamic. For example, the webmaster actually typed into the

page is a set of instructions for the server to go and fetch, gather or calculate some

kind of data. And then compile it in a nice orderly way and 'write' all the

information into html and send the page back to the user's browser.

The internet user brings up a web page which has the extension .asp. When the

browser requests the ASP file from the web server, instead of processing the page like

a normal .html or .htm page, the ASP is processed on the server. ASP processes the

requested file from top to bottom, executing any script commands contained in the

file, and produces pure 100% HTML code. The resultant html is then sent back to the

browser for the user to view. Because your script runs on the server, the Web server

does all of the processing and standard HTML pages can be generated and sent to the

browser.

45

The good news is that ASP pages are thus browser independent, so a web page

with .asp extension can be viewed by all browsers. Have a look at the Figure 4.1

below. They are pretty simplistic and self-explanatory.

How a Html page is displayed

Your computer

4 .Yout Btowset
interprets the
html me and
dlsp1avs it.

l .mowser requests me from setVet

J .Server returns file to your computer

How an Asp page is di:!;played

Your computer

4.Yout Browser
interprets the
Asp file and
dlsp1avs it.

Lbtowser requests file from sentet

...
JJierver returns file lo VoUt computer

The Asp code has been converted
into lltml.

The Web Server

Server searches
for and Retrliaves
File from Hard
Drive

The Web Server

2,
Server searches
for and Retrieves
File from Hilt'd
Drive. If there i5i
Asp code then it
is processed,

Figure 4.1. HTML vs ASP Processes.

As a webmaster, what you type into your .asp page is actually mostly Scripts

(this is then the instruction mentioned above), usually in Visual Basic Script

(VB Script) or JScript and some html. Mostly, webmasters use ASP so they can do

some cool stuff and especially, use information from a Database in their web site.

46

At no time did you have to download any application to connect to our

database. ASP sent it all to you in a format your browser could handle. The

webmasters longer have to create a new page every time they add a product to their

line. They no longer have to review their pages to make sure it reflects the latest

pricing. All it takes is an entry in our database and ASP does the rest. Most people

believe that is much faster to create fully functional service side scripts in ASP then

say CGI. You are able to connect to a database with just a few lines of code or mix

and match ASP and HTML. Another big advantage is the flexibility of how you

write the code. Most people use VB SCRIPT or JSCRIPT. For example is as:

<HTML>

<TITLE>My First ASP!</TITLE>

<BODY>

<CENTER>My First ASP!

<% Response.Write(Welcome to ASP World!")%>

All done!</CENTER>

</BODY>

</HTML>

Any web pages containing ASP cannot be run by just simply opening the page

in a web browser. The page must be requested through a web server that supports

ASP, this is why ASP stands for Active Server Pages, no server, no active pages.

4.2 How Does ASP work?

Instead of creating HTML documents (.html or .htm), you create ASP

documents (.asp). In fact, you can rename your HTML documents to ASP and they

47

will continue to work exactly as expected. Typically, ASP code and HTML code are

both inte1mingled in the same ASP document. This is somewhat confusing for

developers new to ASP, but it quickly becomes understood.

So how does ASP work? Let's assume you have a web server setup and that it

is running IIS and that you have both HTML and ASP documents on your web site.

Lets now assume someone visits your web site. When a request to view an HTML

document (.html or .htm) is made by a browser visiting your web site, the IIS running

on your web server simply loads the requested HTML document and sends it to the

browser that made the request. When a request is made for an ASP document (.asp),

the IIS managing your web server does not simply load and send the document to the

browser making the request. Instead, IIS processes the requested ASP document,

looking to "run" or "execute" any embedded ASP script code it finds. This script

code can be written in VBScript or JavaScript.

In summary, any document with an ASP extension is loaded and processed

differently by IIS than an HTML document. An ASP file can have no ASP code

present, or it can have lots of ASP code in it. It doesn't matter. Because the document

has a .asp extension, IIS automatically loads and scans the document looking to run

script info1mation. Keep in mind that all this processing is done on the web server

itself, and not on the client computer. The end result is that the web server is

responsible for processing ASP files and delivering HTML content back to connected

web browsers.

Another cool thing about ASP is that only HTML code is sent back to the web

browser. This means that your ASP source code (i.e. VBScript and JavaScript) is

never sent to the browser so nobody can see it! This is done for you automatically by

48

IIS on the web server. The embedded ASP script IS ripped out by IIS as it Is

processed.

4.3 Advantages and Disadvantage of ASP

Advantages of ASP are:

(1) Script Language-independent: ASP allows to use VBScript, Jscript or Perl

("PerlScript") and have it executed on the server without having to learn

another scripting language.

(2) Utilize COM components from your web server - reuse any functionality

built using COM components for your company's software product can on

your website through ASP pages. ASP is the connection between the

conventional software and the web site.

(3) ODBC links to any data source.

(4) You can use server-side Active components.

(5) No worries about installation, maintenance, upgrading and management of

software, which enables companies to concentrate on their core activities.

(6) IT maintenance and management costs are reduced because large in-house

computers are no longer required.

(7) ASP allows has the Header () function in one file that every page on the

site includes. If we want to change the page header, we change only one

file and other page will be included.

49

Disadvantages of ASP:

(1) Only on Windows that has IIS or personal web server program.

(2) SLOW! Comparable ASP code even on a dual-processor 600 MHz

Pentium III. A server will execute significantly slower than a PHP

solution on a 133 MHz single processor machine.

(3) No compilation - but compilers do find errors. Debugging is trial-and-

error.

50

V. .NET FRAMEWORK

5.1 .NET Background and Purposes

.NET was introduced to the public in July 2000 at Microsoft's Professional

Developers Conference. This technology had been in development for more than two

years, under very heavy wraps. We had seen various aspects of what was to become

.NET (at that time called "Next Generation Windows Services") at different times in

the preceding year. .NET makes our job as developers quite a bit easier for a

multitude of tasks.

Microsoft .NET represents a revolution in application development-not just for

Web application development, but for Windows applications as well. Moving

information from anywhere to anywhere is the basic message of .NET. This means

that information should be able to flow from a mainframe to a phone or a wireless

device and anything in between. The key to making this information flow possible is

Microsoft .NET's heavy reliance on standards- based protocols and formats, such as

XML and SOAP. Another key factor is that .NET has been specifically designed

with the Internet in mind.

To make the .NET vision a reality, companies must make many changes not

just in technology, but also in philosophy. It can be a challenge for corporations to

fully grasp the .NET vision, despite the many attempts to explain and demonstrate the

different scenarios in which .NET is useful.

5.2 What Is the Roles of .NET Framework?

Microsoft wants to create the standard to every devices connections, so all

devices can communicate each other without installing any driver program. This

technology is called ".NET Framework". It is not operating system. It is a program

51

and Microsoft has the future plan for deploying this technology to be installed all

devices and causes all are one system .. NET Framework has 3 classes as:

(1) Programming Language: It is the language fom1 that can be implemented

.NET and they are:

(a) C#: it is the new language that Microsoft develops it from C++ and

JAVA.

(b) VB.NET: it comes from Visual Basic version6.0 development.

(c) JScript.net: Microsoft develops it from JScript that is JavaScript.

(2) Base Classes Library: It is like a set of command that you can apply to it

by writing it on the code program. Most of commands are usually used by

a programmer. This makes the program developer creates them for any

convenient. Library language is formed as "include". For ASP, the library

language is the component. .NET will have the basic library language,

therefore a programmer can use any program language development by

taking the basic library language on the code. If we do not have .NET,

each program language has its own library and so we have to change the

code from one language to other one.

(3) Common Language Runtime(CLR): It is the most important language of

.NET because CLR has the responsibility for making the various programs

to become standard form. It is called "Intennediate Language(IL)". When

we run any program, CLR will evaluate the status of a computer that we

use it and CRL will compile it to become the appropriate program for that

computer. Therefore, we can apply to any program on any computer.

52

5.3 What Are Advantages of .NET Framework?

The benefits and advantages of .NET Framework are brief as:

(1) Library Standard form: According to library standard forn1, we do not

worried about a program language has any library. We can use any library

for any program language.

(2) Independence OS: Many organizations or many personal computer users

implement the difference operating system, there is no problem on .NET

framework. We can still use any program on difference operating system.

(3) Any language development: We do not need to studying the new language

for developing the program language and we can use any program based

on your skill or knowledge.

(4) Good execution environment controls: According to standard system, it

can manage the system such as memory management, etc. This gains the

computer has the good performance and reduce the computer hang.

(5) High Security: .NET has the ability to detennine the right's usage or

permission of each user which a part of program can be accessed.

5.4 What Is .NET?

In fact, .NET is a catchall term that embraces Microsoft's core strategy, plans,

and vision for the foreseeable future. At the heart of this strategy is the .NET

Framework, which provides the core The Framework itself consists of several

components, of which ASP.NET is just one .

. NET is designed to help solve many fundamental problems faced by

programmers. It takes care of a great deal of the hard work involved in building

large, reliable applications. It also blurs the line between writing applications to run

locally on your own machine and writing applications that can be accessed over the

53

Web. What's more, it doesn't bring with it all the overheads traditionally associated

with "simple" programming frameworks - that is, we don't need to write complex

code in a high-powered language to get some fairly impressive speed out of our .NET

programs.

We can break down our discussion of the .NET Framework into a few specific

topics:

(1) MS Intennediate Language - all the code we write is compiled into a more

abstract before it's executed.

(2) The Common Language Runtime (CLR) - this is a complex system

responsible for executing the code on the computer. It takes care of all the

tasks involved in talking to Windows and IIS.

(3) The .NET Framework Class Libraries - these are code libraries containing

a mass of tremendously useful functionality, which we can very easily bolt

into our own applications to make complex tasks much more

straightforward.

(4) The .NET Languages - these are simply programming languages that

conform to certain specific structural requirements (as defined by the

Common Language Specification), and can therefore be compiled.

(5) ASP.NET - this is how the .NET Framework exposes itself to the Web,

using IIS to manage simple pages of code, so that they can be compiled

into full .NET programs. These are then used to generate HTML that can

be sent out to browsers.

54

There are the main pieces of .NET:

(1) The .NET Vision - the idea that all devices will some day be connected

together by a global broadband network (that is, the Internet), and that

software will become a service provided over this network.

(2) The .NET Framework - new technologies like ASP.NET that makes .NET

more than just a vision, providing concrete services and technologies so

that developers can build applications to support the needs of users

com1ected to the Internet today.

(3) The .NET Enterprise Servers - server products like SQL 2000 and BizTalk

2000 that are used by .NET Framework applications, but are not currently

written using the .NET Framework. All future versions of these server

products will support .NET, but will not necessarily be rewritten using

.NET.

For developers, another important piece of the .NET platforn1 is of course

developer tools. Microsoft also has a major new update of Visual Studio called Visual

Studio .NET that is the premier development enviromnent for .NET. However, you

can still develop .NET applications using Notepad or any other tools you prefer,

which is what a lot of the Microsoft development teams do.

In summary, .NET means that all devices on the world will be connected like

the net. They have the ability to communicate together such as not only we can play

the Internet from any where as a computer, a notebook, a mobile phone etc. but also

we can play it on TV, a refrigerator, etc.

55

5.5 Why We Need .NET?

The reasons why we need .NET are:

5.5.1 .NET - A Clean Start

When programming applications for Windows platform today, there are a

myriad of programming languages and technologies that we can use. Depending on

what programming language you choose, the technologies available are typically very

different, and can often be restricted. For example, a C/C++ programmer who has to

write a GUI Application can either use the Microsoft Foundation Classes (MFC), the

Windows Template Library (WTL), or the lower level WIN32 APis. A VB

programmer has to use the VB forms package. This approach's problems are:

(1) Microsoft spends more time developing two or more competing

technologies, rather than focusing on improving one shared technology.

(2) The availability of so many technologies doing the same thing confuses

people.

(3) Multi-faceted developers who know multiple languages have to learn

multiple technologies to achieve the same results.

(4) Companies have to predominantly invest in one language, smce cross

training can be time consuming and expensive.

(5) Not all languages will necessarily expose all of the same functionality, or

be as productive as each other. For example, with CIC++ and MFC today

we can easily write applications with toolbars and windows. With VB, we

have to buy a third-party package or write the functionality ourselves.

With .NET there is now just one clean object-oriented way of accessing the

functionality of the .NET Framework and building applications. All the best and most

56

commonly used features of existing technologies have been merged together into a

single framework.

For example, when developing GUI applications you use Windows Fonns.

Windows Forms is a consistent GUI framework that exposes the same set of classes

to any language supported by the .NET Framework. All languages typically also

have the same Visual Designers. This makes the development of GUI applications

simple. You use one technology, and it does not matter what language you use. The

same simplicity also applies to building web applications using ASP.NET. No longer

you have to choose between writing VB Web Classes, ISAPI Extensions, or ASP, so

you just use ASP.NET. It provides all of the features application developers need,

and again all languages are equal and can access exactly the same functionality.

Of course, there are some downsides to .NET. If you're writing applications that

require absolute perfonnance, such as real-time applications, or applications like SQL

Server, .NET vl .0 might not be the platform for you. Although .NET has huge

benefits to the average application developer, it simply doesn't have the raw

performance of a well-written CIC++ application, although ce1tain aspects of a .NET

application (such as memory allocation) are faster than CIC++. For reasons of

performance and investment, many Microsoft teams will not be rewriting their

applications using .NET, instead they will be .NET enabling them. For example, the

next major release of SQL Server will enable you to write stored procedures using

.NET languages like VB and C#.

5 .5 .2 No More Language Functionality Debates

If you have programmed using VB before, no doubt you have been aware that

CIC++ is a much more powerful environment for low-level development, and suffers

from far fewer limitations than VB. With .NET, all programming languages are first-

57

class citizens. This means you can implement solutions in a programming language

that your developers are productive with, without any penalties. With version 1.0 of

.NET there will be four languages shipped by Microsoft:

(1) VB.NET

(2) C#

(3) j Script.NET

(4) MC++

There are no significant technical difference factors between these languages;

so again, it's a matter of personal preference and/or company benefits. One caveat to

note is that some languages may perform marginally better (about 5%) than others.

The C# is marginally faster than VB, and MC++ (Managed CIC++) is faster than C#

since it optimizes the output it creates. At the end of the day perf01mance really

comes down to the abilities of the compiler writers to generate good code, and how

long the compiler has been under development for.

If performance is crucial to your applications, you may want to do some basic

performance testing before choosing a language. Eventually, one would assume all

languages would be as performance as each other. You can deploy the language that

will give you the most productivity.

Anything that we can do from within a .NET class we can do in an ASP.NET

page. This means that rather than having to always use components to develop our

web application, we now have the choice of when, how and if we use them. This

flexibility in ASP.NET sterns from the fact that all ASP.NET pages are conve1ied into

classes and compiled into a DLL behind the scenes. Of course, just because we now

have this new-found flexibility, doesn't mean we should be silly and forget

58

everything we've learnt in the past. We should still use components to encapsulate

data access and other common functionality used in our applications.

5.5.3 Multiple Platform Support

.NET has been designed with multiple platfom1 support as key feature. For

version 1.0 of .NET, this means that code written using the .NET Framework can run

on all versions of Windows: Windows 95, 98, 98SE, Windows NT, Windows 2000,

Windows XP, and so on. Depending upon the class libraries used, the same code will

also execute on small devices under operating systems like Windows CE, which will

run a special compact edition of .NET. However, unlike Java, .NET does not promise

that all classes will work under all platfonns.

Rather than restricting the class libraries available in .NET to cover

functionality that's only available on all platforms, Microsoft has included rich

support for all platforms. As developers, it's down to us to make sure we only use

.NET classes supported on those platforms (although it's expected that Microsoft will

provide tools to help with this process). An exciting prospect for companies is that the

.NET code you write today will also work under 64-bit versions of Windows without

change.

Targeting multiple platforms with .NET does introduce the potential -for well

known Java problems to hit companies. Since the code is being compiled dynamically

on different platforms, the compilation process will result in different native code.

Looking forward, it is expected that .NET will run under other platfo1ms like

UNIX, although it is unlikely that the whole of the .NET Framework will be

suppmied, probably just the languages and the base class libraries.

59

5.5.4 Perforn1ance

Since day one, an important design goal for .NET has been great performance

and scalability. For .NET to succeed, companies must be able to migrate their

applications, and not suffer from poor performance due to the way code is executed

by the CLR (Common Language Runtime). To ensure optimal performance, the CLR

compiles all application code into native machine code at some point. This

conversion can either be done just in time as an application rnns (on a method-by

method basis), or when an application is first installed. The compilation process will

automatically make use of the microprocessor features available on different

platforn1s, something traditional Windows applications could never do, unless you

shipped different binaries for different platforms.

With the first version of ASP.NET you can expect well-written web

applications to rnn two to four times faster than equivalent ASP applications, with

similar gains in the area of scalability.

5.6 .NET Vision?

For years now Microsoft has been investing heavily in the Internet, both m

terms of product development, technology development, and consumer marketing.

You can think of any Microsoft product or technology that isn't web? You can think

of any marketing material Microsoft has released that isn't Internet-centric. The

reason for this Internet focus is that Microsoft are betting their future on the success

of the Internet and other open standards such as XML succeeding and gaining

widespread adoption. They are also betting that they can provide the best

development platform and tools for the Internet in a world of open standards.

The .NET Framework provides the foundations and plumbing on which the

Microsoft .NET vision is built. Assuming the .NET vision becomes reality, one day

60

very soon the whole world will be predominantly Internet enabled, with broadband

access available just about anywhere, at any time. Devices of all sizes will be

connected together over this network, trading and exchanging infonnation at the

speed of light. The devices will speak common languages like XML over

standardized or shared protocols such as HTTP, and these devices will be running a

multitude of software on different operating systems and devices. This vision is not

specific to Microsoft, and many other companies like IBM and Sun have their own

spin on it.

The .NET Framework provides the foundation services that Microsoft sees as

essential for making their .NET vision a reality. It's all well and good having a

global network and open standards like XML that make it easier for two parties to

exchange data and work together, but history has shown that great tools and

technologies that implement support for standards are an important ingredient in any

vision. Marketing dribble alone doesn't make applications, great developers with

great tools and a great platform do. Enter the .NET Framework.

ASP.NET provides the tools and technologies needed to write applications that

can seamlessly and easily communicate over the Internet (or any other network such

as an Intranet) using open standards like XML (eXtensible Markup Language). The

.NET Framework also solves many of the problems developers face today. For

example, ever cursed at having to shutdown ASP applications to replace component

files? Ever wished you didn't have to register components, or spend hours trying to

track down binary compatibility or versioning problems? The good news is that the

.NET Framework provides a solution to problems like these. No more registering

components or shutting down applications to upgrade them!

61

Even better news is that the .NET Framework also solves many of the problems

you're likely to experience in the future. For example, ever considered how you're

going to adapt your applications or web sites to run on or support small hand-held

devices? Have you thought about the impact of the up and coming 64-bit chips from

Intel? Microsoft has, and these are all catered for as part of .NET Framework.

So, the whole push towards the Internet stems from Microsoft's belief that all

devices (no matter how small or large) will one day be connected to a broadband

network: the Internet. We will all benefit in unimaginable ways from the advantages

this global network will bring - your fridge could automatically send orders out to

your local supe1market to restock itself, or your microwave could download the

cooking times for the food you put in it, and automatically cook it. Wouldn't that be

cool?

These ideas might sound a little futuristic, but manufacturers are already

working on prototypes. Imagine if you were part of a team working on one of these

projects. Where would you start? How many technologies and protocols would you

need to use? How many are languages? How many are different compilers? Just

thinking about some of these fairly elementary issues make my brain hurt. However,

this is just the tip of the iceberg.

If a fridge were going to restock itself automatically, wouldn't it be cool to have

it connect via the Internet to the owner's local supermarket, or any other supernrnrket

available in some global supennarket directory. The supermarket systems and fridge

would need to exchange information in some standard format like XML, ordering the

goods and arranging delivery. Delivery times would have to be determined, probably

by the fridge, based upon the owner's electronic diary (maybe stored on a mobile

62

device or in a central Internet location - Hailstorm for example), telling the fridge

when the owner will be at home to accept the delivery.

Our lives as developers really are going to change a lot in the future, especially

when web services are widely adopted. The Internet has already changed our lives

and careers dramatically, and that change isn't slowing down. More and more

devices are going to get connected, and if we are going to adapt quickly to these

changes, we need a great tool set that enables us to meet the time-to-market

requirements of the Internet. A tool set that also provides a consistent development

strategy, no matter what type of development we're doing.

63

VI. ASP.NET

6.1 What Is ASP.NET?

Unfortunately, the Internet still has bandwidth limitations and not every person

is running the same web browser. These issues make it necessary to stick with

HTML as our mark-up language of choice. This means that web pages will not look

quite as amazing as a fully fledged application running under Windows, but with a bit

of skill and creative flair, you can make some rather amazing web applications with

ASP.NET. ASP.NET processes all code on the server (in a similar way to a normal

application). When the ASP.NET code has been processed, the server returns the

resultant HTML to the client. If the client supports JavaScript, then the server will

use it to make the clients browser experience quicker and easier.

ASP.NET (Active Server Pages) is a new and extended technology to the

earlier classic ASP, introduced by Microsoft Corporation, which fully supports

Microsoft .NET Framework for developing next generation web Applications. It

supplies all the required user interfaces under the name "WebForms" and also works

with all .NET languages like Visual C#.NET, Visual Basic .NET etc. WebForms are

used to create user interfaces for the web pages. Till now, you have to apply specific

HTML tags like <Input> and <Select> for creating user interfaces and ASP scripting

using VBScript or JavaScript. But with the introduction of ASP .NET, you need not

apply them any more. All you have to do is to call the custom GUI classes defined in

the System.Web.UI.WebControls namespace of the .NET Framework.

Moreover, System.Web namespace provides necessary classes, methods and

properties for developing client - server applications and System.Web.DI namespace

64

interacts with other .NET language .like C#, VB.NET. Therefore, a C# file containing

some methods or C# syntax can be easily called in your ASP applications.

6.2 Weaknesses in the ASP 2 Model

Failings in the ASP 2 model were most noticeable when the platform was

contrasted against newcomers and developments in other technologies, such as Java

Server Pages (JSP), Perl 5, PHP, and ColdFusion.

The main contender for ASP mind-share m Microsoft's most-needed

marketplace, large-scale blue chip projects, was Java Server Pages. Microsoft could

discuss the others as low-rent small to medium business and hobbyist technologies,

and had an army of certified solutions companies and consultants to take care of

those. On the other hand, products from Microsoft's biggest competitors, such as

IBM, Oracle, and Sun, supported Java, and these companies had massive opinion

forming clout in the world's largest corporations. As well as products such as IBM

Net. Commerce (now Websphere), other vendors such as ATG and Broadvision were

releasing application servers based around Java. To make matters worse, Microsoft

could not claim to have the better technology.

JSP was outperforming and out-scaling ASP, plus the application servers and

host operating systems proved time and again to be more robust and stable, and had

lower cost of ownership and higher uptime!

The Java Server Pages and Servlets technologies allowed performance gains

against ASP 2 partly because the code is compiled before execution. The Java

language also had better error handling, object orientation, housekeeping, and

variable typing. ASP, on the other hand, was based around interpreted scripting and

languages that were compromised shadows of their already flawed parents.

65

6.3 Weakness in the ASP 3 Model

Despite the great achievements of Active Server Pages, particularly in the areas

of speed and stability, the platform was still based on incomplete scripting languages

of VB Script and JScript, and third-party languages such as Perl.

Scripting languages required the developer to compromise coding standards and

bolsters the application with components written in a second language, usually C++

or VB. The languages were not properly objects oriented, although they were object

aware, and could never perform very well whenever they required an interpreter to

execute.

The reliance on the systems administrator for Web server configurations was

also a problem; the administrator must register components, settings, and permissions

on the server, and so deployment was not as simple as just uploading your files.

6.4 The Need for a New ASP Model

It was evident that Microsoft would require a fundamental change to bring ASP

up to the standard of industrial-strength programming. Active Server Pages was a

technology based on the foundations of COM, ActiveX and COM technology

provided much of its strength, but also many of its limitations. Microsoft would need

to have a long hard look at COM to see how it could improve, and these changes

would be bound to affect ASP. At the same time, Microsoft realized that the

developers' playing field was changing. With new standards arriving all the time,

particularly in information-sharing and distributed applications using XML, such as

Simple Object Access Protocol (SOAP) and XML-RPC. Web services were

becoming all the rage; Java was everywhere, and XML was taking the developer

community by storm. A new version of ASP was not going to be enough to meet

66

these demands; the changes must be more far-reaching if they were not just going to

catch up but also take the lead against such tough challenges.

In today's world, we do not have to contend just with different Web browsers

but also with different distribution channels and modes of operation, with mobile

phones and computers, interactive digital TV, intelligent appliances, digitally

networked homes, and possibly moving from Web pages to disposable applications

and Web services.

No doubt, as Microsoft was looking at their own technologies they must have

analyzed the competition. As they announced the .NET framework, they also

introduced a new language for the twenty-first century, C#. C# and .NET would

address all of the criticisms, provide for a whole new way of looking at applications

and the Web, and replace everything that had gone before, including Microsoft's

flagships Visual C++, Visual Basic, and Active Server Pages.

ASP has achieved enormous success as a way of developing web sites, so why

is a new version needed? Simply put, ASP has not evolved to take into account the

way it's now being used. ASP has led to problems:

(1) ASP is a scripted language, relying mainly on VBScript and JScript. Other

languages are available if we install an interpreter, but it is still

interpreted. The two disadvantages of interpreted languages are the lack of

strong types (as supported by typed languages such as Visual Basic and

CIC++), and the lack of a compiled environment. ASP does cache code,

but it's still interpreted, and this inevitably leads to performance and

scalability problems.

(2) ASP does not provide an inherent structure for applications. In the days of

static web pages, we used to see small, focused source files. With the

67

dynamic concept of ASP, it was possible to build code into the web page,

again leading to problems. There is the eternal worry of mixing code and

content, which can be a problem if you have a mixed team, with certain

people designing the HTML and the interface, with different people doing

the other coding. Having two sets of people working on the same files is

asking for trouble. Another problem was the ability to make the code

complex, leading to larger source files. Include files allow a certain

amount of structure and code reuse, but it was never really a great

solution.

(3) The world of browser compatibility has morphed into device

compatibility. Whilst the majority of Web access still takes place from a

PC and browser, how long will that remain the case? Mobile devices are

becoming more prevalent, and more powerful, leading to more problems

designing sites. If you want your web site to obtain maximum reach you

need to contend with these devices, and this means writing code to detect

the device and render the appropriate content.

(4) Standards compatibility also plays a big part m Web development.

XHTML is becoming more widely accepted, XML and XSL/T are both

now widely used, and talking to mobile devices might also mean support

for WML. Support for these standards means that our ASP applications

not only have to work with existing standards, but also be easily

upgradeable to support future standards.

These are just some of the problems we will encounter when building ASP

applications, but they aren't the only ones. The rapidly changing nature of the

Internet often requires rapid changes to applications. For languages that have strong

68

development environments, practices such as componentization, code reuse, rapid

development, and so on, are a great boon to a developer, but this sort of support is

lacking in ASP. The rise of Business-to-Business applications, and peer-to-peer data

sharing also brings great challenges to the developer.

ASP.NET was written from the ground up to meet these needs. Not only does it

answer many of the questions posed by the existing development environment, but

also provides great extensibility, and brings great toot support. At its minimum, all

you require is the ASP.NET redistributable, which is freely available, and you can

continue to use your favorite editor of choice (come on, admit it - it's Notepad). This

gives us access to everything possible with ASP.NET, including multi-language

support. For a richer environment you can use Visual Studio.NET, where you get the

drag and drop support, colored code, context-sensitive help and tooltips, and all of the

usual great editing features that Visual Studio has brought in the past.

The reasons for using ASP.NET are:

(1) Developer Productivity

(a) Easy Programming Model. ASP.NET makes building real world

Web applications dramatically easier. ASP.NET server controls

enable an HTML-like style of declarative programming that let you

build great pages with far less code than with classic ASP.

Displaying data, validating user input, and uploading files are all

amazingly easy. Best of all, ASP.NET pages work in all browsers,

including Netscape, Opera, AOL, and Internet Explorer.

(b) Flexible Language Options. ASP.NET lets you leverage your current

programming language skills. Unlike classic ASP, which supports

only interpreted VBScript and JScript, ASP.NET now supports more

69

than 25 .NET languages (including built-in support for VB.NET, C#,

and JScript.NET-no tool required), giving you unprecendented

flexibility in your choice of language.

(c) Great Tool Support. You can harness the full power of ASP.NET

using any text editor-even Notepad! But Visual Studio .NET adds

the productivity of Visual Basic-style development to the Web.

Now you can visually design ASP.NET Web Forms using familiar

drag-drop-double click techniques, and enjoy full-fledged code

support including statement completion and color-coding.

(d) Rich Class Framework. Application features that used to be hard to

implement, or required a 3rd-party component, can now be added in

just a few lines of code using the .NET Framework. The .NET

Framework offers over 4,500 classes that encapsulate rich

functionality like XML, data access, file upload, regular expressions,

image generation, performance monitoring and logging, transactions,

message queuing, SMTP mail, and much more!

The Enterprise versions of Visual Studio .NET deliver life-cycle

features to help organizations plan, analyze, design, build, test, and

coordinate teams that develop ASP.NET Web applications. These include

database modeling (conceptual, logical, and physical models), testing tools

(functional, performance and scalability), and enterprise frameworks and

templates, all available within the integrated Visual Studio .NET

environment.

(2) Improved Performance and Scalability

ASP .NET lets you use serve more users with the same hardware.

70

(a) Compiled execution. ASP.NET is much faster than classic ASP,

while preserving the 'just hit save" update model of ASP. However,

no explicit compile step is required! ASP.NET will automatically

detect any changes, dynamically compile the files if needed, and

store the compiled results to reuse for subsequent requests. Dynamic

compilation ensures that your application is always up to date, and

compiled execution makes it fast. Most applications migrated from

classic ASP.

(b) Rich output caching. ASP.NET output caching can dramatically

improve the performance and scalability of your application. When

output caching is enabled on a page, ASP.NET executes the page

just once, and saves the result in memory in addition to sending it to

the user. When another user requests the same page, ASP .NET

serves the cached result from memory without re-executing the page.

Output caching is configurable, and can be used to cache individual

regions or an entire page. Output caching can dramatically improve

the performance of data-driven pages by eliminating the need to

query the database on every request.

(c) Web-Farm Session State. ASP.NET's session state lets you share

session data user-specific state values across all machines in your

Web farm. Now a user can hit different servers in the web fam1 over

multiple requests and still have full access to her session.

(3) Enhanced Reliability

ASP.NET ensures that your application is always available to your

users. Memory Leak, DeadLock and Crash Protection. ASP.NET

71

automatically detects and recovers from errors like deadlocks and

memory leaks to ensure your application is always available to your

users.

For example, say that your application has a small memory leak, and

that after a week the leak has tied up a significant percentage of your

server's virtual memory. ASP.NET will detect this condition,

automatically start up another copy of the ASP .NET worker process, and

direct all new requests to the new process. Once the old process has

finished processing its pending requests, it is gracefully disposed and the

leaked memory is released. Automatically, without administrator

intervention or any interruption of service, ASP.NET has recovered from

the error.

(4) Easy Deployment

ASP.NET takes the pain out of deploying server applications.

(a) "No touch" application deployment. ASP.NET dramatically

simplifies installation of your application. With ASP.NET, you can

deploy an entire application as easily as an HTML page: just copy it

to the server. No need to run regsvr32 to register any components,

and configuration settings are stored in an XML file within the

application.

(b) Dynamic update of running application. ASP.NET now lets you

update compiled components without resta1iing the web server. In

the past with classic COM components, the developer would have to

restart the web server each time he deployed an update. With

ASP.NET, you simply copy the component over the existing DLL.

72

ASP .NET will automatically detect the change and start using the

new code.

(c) Easy Migration Path. You do not have to migrate your existing

applications to start using ASP.NET. ASP.NET runs on IIS side-by-

side with classic ASP on Windows 2000 and Windows XP

platforms. Your existing ASP applications continue to be processed

by ASP.DLL, while new ASP.NET pages are processed by the new

ASP.NET engine. You can migrate application by application, or

single pages. And ASP .NET even lets you continue to use your

existing classic COM business components.

(5) New Application Models

ASP.NET extend your application's reach to new customers and

partners.

(a) XML Web Services. XML Web services allow applications to

communicate and share data over the Internet, regardless of

operating system or programming language. ASP .NET makes

exposing and calling XML Web Services simple. Any class can be

converted into an XML Web Service with just a few lines of code,

and can be called by any SOAP client.

Likewise, ASP.NET makes it incredibly easy to call XML

Web Services from your application. No knowledge of networking,

XML, or SOAP is required.

(b) Mobile Web Device Support. ASP.NET Mobile Controls let you

easily target cell phones, PDAs-over 80 mobile Web devices-using

ASP.NET. You write your application just once, and the mobile

73

controls automatically generate W AP/WML, HTML, or iMode as

required by the requesting device.

6.5 Reviewing the Basic of the ASP.NET

Microsoft has done a great job of bringing ASP and their older languages into

the twenty-first century with .NET. ASP.NET, using VB. NET, is now a full- fledged

object-oriented Web application development platform, and has seen many

improvements; but the past legacy languages should not hold back a new initiative as

massive as .NET, so Microsoft developed a new headline-grabbing language for the

.NET Framework, called C#.

The following are some key points about ASP.NET:

(1) ASP.NET is a key part of the wider Microsoft .NET initiative, Microsoft's

new application development platform.

(2) .NET is both an application architecture to replace the Windows DNA

model and a set of tools, services, applications and servers based around

the .NET Framework and common language runtime (CLR).

(3) Rather than just being ASP 4 or an incremental upgrade, ASP.NET is a

complete rewrite from the ground up, using all the advanced features

.NET makes available.

(4) ASP.NET can take advantage of all that .NET has to offer, including

support for around 20 or more .NET languages from C# to Perl.NET, and

the full set of .NET Framework software libraries.

(5) Web applications written in ASP.NET are fast, efficient, manageable,

scalable, and flexible, but, above all, easy to understand and to code!

74

(6) Components and Web applications are all compiled .NET objects written

in the same languages, and they offer the same functionality, so no need to

leave the ASP environment for purely functional reasons.

(7) You'll have less need for third-party components. With a few lines of

code, ASP .NET can talk to XML, serve as or consume a Web service,

upload files, "screen scrape" a remote site, or generate an image.

6.6 Benefits of ASP. NET

ASP .NET offers several important advantages over previous Web development

models:

(1) Enhanced Performance. ASP .NET is compiled Common Language

Runtime code running on the server. Unlike its interpreted predecessors,

ASP.NET can take advantage of early binding, just-in-time compilation,

automatic resource optimization, runtime profiling, automatic memory

management, enhanced exception handling, and caching services, right

out-of-the-box, this improves the performance before you start coding.

For example, a database table will spend the majority of its

execution time connecting to the database and querying the information.

ASP.NET comes with a data-caching module. This data-caching module

allows you to specify what data on an ASP page to cache and on what

conditions to empty the cache and re-query the data-store. ASP.NET

ships with Performance Counters which system administrators can use to

gather application metrics. They can be used to measure the performance

of either a single instance of an ASP.NET application or all ASP.NET

applications combined on a computer.

75

(2) World-class Tool Support. The ASP.NET framework is complimented by

a rich toolbox and designer in the Visual Studio integrated development

environment. WYSIWYG editing, drag-and-drop server controls, and

automatic deployment are just a handful of features this powerful tool

provides.

(3) Power and Flexibility. Because ASP.NET is based on the Common

Language Runtime, the power and flexibility of that entire platform is

made available to web application developers. The Common Language

Runtime's Base Class libraries, Messaging, and Data Access solutions are

all seamlessly accessible from the web. ASP.NET is also language

independent, so you can choose a language that best applies to your

application, or partition your application across many languages. Further,

Common Language Runtime interoperability guarantees that your existing

investment in COM-based development is preserved when migrating to

ASP.NET.

(4) Simplicity. ASP.NET makes it easy to perform common tasks, from

simple form submission and client authentication to deployment and site

configuration. For example, the ASP.NET Page Framework allows you to

build user interfaces that cleanly separate application logic from

presentation code, and handle events m a simple, VB-like forms

processing model. Additionally, the Common Language Runtime

simplifies development with managed code services like automatic

reference counting and garbage collection.

(5) Manageability. ASP.NET employs a text-based, hierarchical configuration

system, which simplifies applying settings to your server environment and

76

web applications. Because configuration information is stored as plaintext,

new settings may be applied without the aid of local administration tools.

This "zero local administration" philosophy extends to deploying

ASP.NET applications as well. An ASP.NET application is deployed to a

server simply by copying the necessary files to the server. No server

restart is required, even to deploy or replace running compiled code!

(6) Scalability and Availability. ASP.NET has been designed with scalability

in mind, with features specifically tailored to improve performance in

clustered and multi-processor environments. Further, processes are closely

monitored and managed by the ASP.NET runtime, so that if one

misbehaves (leaks, deadlocks), a new process can be created in its place,

which helps keep your application constantly available to handle requests.

(7) Customizability and Extensibility. ASP.NET delivers a well-factored

architecture that allows developers to "plug-in" their code at the

appropriate level. In fact, it is possible to extend or replace any sub-

component of the ASP.NET runtime with your own custom-written

component. Implementing custom authentication or state services has

never been easier.

(8) Security. With built m Windows authentication and per-application

configuration, you can be assured your applications are secure.

6.7 ASP.NET Example

(1) Open up a text editor and type in the following code:

<html>

<head><title>ASP.NET Test Example</title></head>

<body>

77

<hl>Welcome</hl>

This message comes from HTML.

<asp:label id="label" runat="server" text="This message comes from ASP.net"/>

</body>

</html>

(2) Save this page as test.aspx.

When you save the file, you should double-check that your new file

has the correct suffix. It should be .aspx, since this is how you tell the

web server that the page contains ASP.NET code. Be aware that Notepad

(and many other text editors) consider .txt to be the default. So in the

Save or Save As dialog, make sure that you change the Save As type it to

read All Files, or All Files(*. *),or enclose the path and filename in

quotes.

(3) Now start up your browser and it will display as Figure 6.1:

78

,
... i&Go ! links »

Welcome
Tills message comes from HI'lvll.
Tills message comes from ASP.net

Figure 6.1. The Result from test.aspx File.

<head><title>The Punctual Web Server<ltitle></head>

<oody>

<hl> Welcome</hl>

Tbis message comes from HTML.

<bt>

Tbis message comes from ASP.net

</oody>

</html>

Figure 6.2. HTML Source for test.aspx after the Execution.

79

(4) Now on your browser select View Source or similar, (depending on which

browser you are using) from the browser menu to see the HTML source

that was sent from the web server to the browser. The result is shown

below as Figure 6.2. You can see that there is no ASP.NET code to be

seen, the ASP.NET code has been processed by the web server and used to

generate pure HTML, which is hard-coded into the HTML source that is

sent to the browser.

(5) As we mentioned before, you can expect this to work in any browser -

because the ASP .NET is processed on the web server. If you have another

browser available, try it out.

6.8 How Does ASP.NET Work?

For a better understanding on how ASP.NET works, let you see the traditional

way that a Web page works (without ASP.NET) as Figure 6.3.

'--~I-n_t_e-rn_e_t~U-se~r~~~~~l~~~~-:-. ~l~~~S-e_r_v_e_r~~--'
Figure 6.3. Without ASP.NET.

(1) Any internet user (client) is asking for internet-page.

(2) The Web-Server sends the physical content of the page back.

As you can see in the above image, calling a static page is very simple process.

A client is asking/demanding for a Web page. For that you will need a connection

between your client (by using IE, Netscape etc.) and the server - this is done through

80

the Internet. The file must exist on the server otherwise you will get a "404 File not

found" error. The server reads the requested file and sends it back to the client. It does

not matter who the client is or when the request reaches the server, the result will

always be the same - until the file on the server is modified.

Now let us see how this will look with the usage of ASP.NET as Figure 6.4:

1
Internet User - Server ..

2
l.

4 ASP.NET
Engine

·~
3

H'

(;!

Figure 6.4. With ASP.NET.

(1) Any Internet user (Client) is asking for internet-page.

(2) Server sends the inquiry to the ASP.NET engine.

(3) ASP.NET creates the required new web page for the user.

(4) ASP.NET sends the created page back the Client.

The request of a dynamic Web page differs much from the static one. After the

server has received the inquiry, it will be sent to the ASP.NET engine. This checks

whether the requested file exists. If the file exists, ASP .NET will not simply send the

81

content back, instead it will create a new dynamic page as HTML that will be sent

back to the client. This dynamic page can look different from user to user. If the file

dose not exist, it will send back the message to let the user knows that request cannot

process because there is no file.

82

VII. ASP VS ASP.NET

The first difference an experienced ASP developer will notice is that VBScript

support has been dropped in favor of VB.NET. This is not as much of a hurdle as it

sounds like, as the syntax is quite similar, and VB.NET is a full-fledged language and

so provides a lot richer environment than VBScript ever could.

As described above, all ASP.NET languages are object oriented, event driven,

and server compiled. This brings many benefits, especially where improvements

were needed most, namely, performance, stability, scalability, and manageability.

With Classic ASP, you pretty much had to code your whole application from

scratch. ASP.NET has several labor-saving additions to make life easier. Web forms

introduce a new Visual Basic Rapid Development-style way of looking at forms in

Web pages. With Web Forms, the developer uses new form components that you can

add in the traditional way or through code, and they enable the programmer to call on

server-side event-driven programming and true separation of layout and logic. You

can separate the layout code and functions by using code behind pages that use

inheritance to add methods to the form .. NET form controls maintain the session state

so the users input remains when the page is submitted, and the controls' property

values are available to the ASP code without resorting to querying the request object.

The framework foundation class libraries contain exciting new features,

previously only available from third parties such as the System.Drawing tools, which

enable you to build dynamic images on the fly, built-in browser-based file upload and

system network services for working with TCP/IP and DNS.

83

With Web Services and built-in support for SOAP you can distribute code and

applications. Your ASP.NET scripts can consume services across the Web, and

publish and expose routines as services just as easily.

Deployment, including server configuration, is mostly just a matter of

transferring files with configuration that was previously only available from the

MMC now implemented with XML files. Now you do not need to register and not

register components, and the server can handle multiple versions of the same

component without conflicts.

Mission critical services has increased support with load balancing and several

state-management options, including the ability to store state information in an SQL

Server database and pass the session ID on the URL to avoid requiring the user to

have cookies. The core differences between ASP and ASP .NET are:

(1) Any language for writing script: The old version of ASP can use only the

script as VBScript and Jscript, but ASP.NET has the full version of

language which has the three basic languages are C#, VB.NET, and

Jscript.NET. Microsoft have the future plan to develop the language for

all.

(2) Flexibility on program: ASP.NET can provide the allowance to us coding

the program by using multi-language on same file. This is good for a

programmer who can take any language that he wants to code. For

example, the loop of VB is coded easier than C# but its functions usage is

more easiest, therefore the loop should use VB and the functions should

use C#.

(3) More Libraries: Some application on ASP is not created easily and has to

use various components to support it, but ASP.NET can solve that

84

problem by a library such as a mail and uploading library, etc. Therefore,

we can create the application for the free host that it has the limitation on

the components.

(4) Easy controls: It is the addition from ASP version that is no controls. This

control provides us to create the home page effectiveness and efficiency,

so we do not worry about the old or new browser that supports a language.

Another advantage is the controls can be used to instead of any script that

we often use them. For example, when we need to display the data in form

of a table on the home page and if we use ASP, so we have to code a

program so complicated and many lines. On contrast, if we use the

ASP.NET, it has less code line and causes to good execution for program.

(5) Independence hardware: Any device can communicate together such as

Palm, PDA, W AP mobile phone and etc.

rJ Compilatmn Error - Microsoft Internet bploter , "·~~ ~ ~
i Ff<>· Edi: .~'faMes,~T.;,is H$.·.·· ... · ··)' c' :·.· .. ' .
'.·-----·---::->•·•~7--::---:-,...:.:.-.~~:::.....,~M~,'~~:-,'-'':~-:-~>'':'~•;~,'.m'°--<~"'.';~:'°;_'~~-.-~·:"'..-.:..-:..~

~~U'!i!tl;!!~===r·;::·····:·::·~·d

Compilation Error

Description: An error occurred during the compHstion of a resource required to service this request. Please review the foHowing specific error details
and modify your source code appropriately.

Compiler Er-ror Message: BC30451: Name 'd' is not declared.

Source Error:

Line 13: dim ds as new dataset()
line 14: myda. fi 11 (ds, "showphone")
:... ·i u.: 1 :.> ; r:1y LL"sl-~:;ir id. d<.ita~~0vr::.0 "ti. T ;_,'J 11.:s('" :.;ho• .. ·i:·h::t:t:")
Line 16: mydatagrid.databind()
Line 17: end sub

Source Fiie: D.\Codes\<lspxNet~SPwtty\showdb.aspx Line: 15

Show Detailed Compiler Outout:

Show Complete Compilation Source:

Version Information: Microsoft .NET Framework Version:1.0.3705.0; ASP NET Version:1.0.3705.0

Figure 7.1. Error Message from ASP.NET.

85

l

Technical Information (for support personnel)

• Error Type:
Server object1 ASP 0177 (Ox800401F3)
Invalid ProgIO, For additional information specific to this
message please visit the Microsoft Online Support site located
at: http://www.m1crosoft.com/contentredirect.asp.

S ! /Phonebook/add/addrec.asp, line 53

• Browser Type:
Mozilla/4.0 (compatible; MSJE 6.0; Windows NT 5.0; .NET CLR
1.0.3705)

• Page:
POST 176 bytes to /Phonebook/add/addrec.asp

• POST Data:
admin_name=dsgdsvds&task= 0/oCA'%01 %Cl %Cl %D2%B9%
D2&position_name=&company_name=&admin_address=&admin_mobile-&admin_tel=&adrnin_offtel=&adrnin_fax=&se_narr

• Time:
11 iiQUlllU 2546 1 15:43:11

Figure 7 .2. Error Message from ASP.

no o o Aqal

(6) Error detection easily: If we use the ASP and there is an error on the

program, it will inform you which line has the error as Figure 7.2. On the

other hand, if we use ASP.NET and there is the error on the program, it

will inform you more details with the solutions as Figure 7.1.

(7) Event self-checking within the homepage: There is the various events self-

checking from uploading a page till closing a page, so we can set up any

event easily.

(8) HTML and ASP separate: The HTML and ASP source will be mixed

together on the file but the new ASP.NET version will separate each part

which one is HEML and which one is ASP.

(9) Web From Controls: When we use ASP with HTML to server-side, we

have the problems as:

86

(a) Consistency. We are still stuck with the rather non-intuitive nature of

some HTML controls. Why for example, is there an "INPUT" tag

for single-line text entry, but a "TEXT AREA" tag for multi-line text

entry? Surely a single control where we specify the rows and

columns makes more sense?

(b) User Experience. How do we easily write sites that render rich

content for browsers such as IE, while also preserving compatibility

with down level browsers? HTML doesn't have the ability to

change its content depending on the browser - we have to write the

code for that.

(c) Devices. How do we write sites that cope with devices other than

browsers? W AP-phones, PDAS, and even fridge have browsers

nowadays. Like the browser issue, we'd have to manually write code

for this.

The ASP .NET can tackle the above problems by:

(a) Providing a consistent naming standard. For example, all text entry

fields are handled by the "TextBox" control. For the different modes

(multi-line, password, etc.) we just specify attributes.

(b) Providing consistent properties. All server controls use a consistent

set of properties, making it easier to remember. For example, the

"Text" field of a "TextBox" is more intuitive than a value field.

(c) Providing a consistent event model. Traditional ASP pages often

have large amounts of code handling the posting of data, especially

when one page provides multiple commands. With ASP.NET we

87

wire up controls to event procedures, giving our server-side code

more structure.

(d) Emitting pure HTML, or HTML plus client-side JavaScript. With

one minor exception (which is intentional) the server controls emit

HTML 3.2 by default, giving great cross-browser compatibility. This

can be changed so that by default we target up-level browsers such

as IE, where the controls will emit HTML 4.0 and DHTML,

providing a richer interface. All the user ever sees is the HTML

content, not the server controls.

(e) Emitting device-specific code. Certain controls will emit HTML

when requested by a browser, but WML when requested by a W AP

phone. The control handles the detection of the device and the

generation of the correct markup.

Let's take a quick look at a simple example to show how these controls work:

<html>

<script language ="VB" runat ="server">

Public Sub btn_Click(Sender As Object, E As EventArgs)

'some code goes here

End Sub

</script>

<body>

<form runat ="server">

Press the button: <asp:Button runat="server" Text="Press Me", OnClick="btn_lick.,

runat="erver"/>

</form>

88

</body>

</html>

The server control in this example is a button, added to the page using the asp:

Button element. There are several things to note about this control:

(1) It has the runat = "server" attribute set, to tell ASP.NET that it should

process this control,

(2) It uses the "Text" attribute to set the text to be shown on the button. This

is consistent with other controls.

(3) It uses the "OnClick" attribute to identify the event procedure to be run

when the button is clicked. Since this is a server control this event

procedure runs on the server.

89

VIII. COMPARATIVE ANALYSIS: ADO AND ADO.NET

8.1 ADO and ADO.NET Overview

There are some areas in which ADO and ADO.NET resemble one another

closely and others in which they are wildly different. Let us first look at areas of

similarity.

Both models require a connection to a data store to fetch data, and the code for

getting a connection is similar for both. Both models have Connection and Command

objects. The Connection object is extremely similar in both models. The Command

object is conceptually similar in its function for both, but the object model changes.

However, the similarity in these areas means that code to create and open a

connection, and use a Command object to execute commands, will look immediately

familiar to the experienced ADO developer.

Both models manipulate collections of rows and fields, but their techniques of

manipulation are different. Both models have support for transactions through the

Connection object, and this functionality uses similar code in both models. And both

models can be bound to controls for automatic data handling.

At that point the similarities begin to diminish. In ADO, the main construct for

holding data to be manipulated is the Recordset. It is a set of rows or records holding

data that was typically fetched from some data store. ADO.NET has no Recordset

object. The functional equivalents to a Recordset in ADO.NET depend on the type of

data access you need. The two main ones are called a DataReader and a DataSet.

There are other significant differences. For example, ADO.NET has no

functionality at all for pessimistic concurrency, in which records are locked when

they are accessed and remain locked until the lock is released by the accessing code.

90

This type of concurrency has no place in a stateless Web environment because it

depends on extensive maintenance of state information. The only type of concurrency

available in ADO.NET is optimistic concurrency, in which records are checked for

changes when an attempt is made to rewrite a record.

8.2 What Is ADO?

ADO stands for Active Data Object. It is based on the concept of a 24/7 (24

hours, 7 days a week) "connected world," such as is found on a corporate local area

network (LAN). You can create a RecordSet; can connect it to a data source. The

RecordSet stays "plugged in," if you will, to the data source, and changes to the data

are posted to the data store immediately. A Microsoft data access technology that

enables your client applications to access and manipulate data from a database server

or any other data store through an OLEDB provider. Sometimes called just Active

Data Objects. ADO provides to:

(1) Allow access to all types of data

(2) Support simple object model

(3) Support asynchronous queries

(4) Support client-side and server-side cursors

(5) Support disconnected RecordSets

(6) Can define and use disconnected Recordsets

A programmer can use ADO to access database with general programming

languages or script languages. ADO is supported by a lot of languages (e.g. Visual

Basic, Java or Visual C++) including ASP.

8.3 What Is ADO.NET?

Traditional data access with ADO revolves around the fundamental data storage

object the RecordSet. The technique used there is to create a connection to a data

91

store using either an OLEDB (Object Linking and Embedding Database) provider or

an ODBC through OLEDB driver (depending on the data store and the availability of

the provider). Then execute commands against it that return a RecordSet object

containing the appropriate data. This can be done using a Command object, or

directly against the Connection object. Alternatively, to insert or update the data, we

simply execute a SQL statement or a stored procedure within the data store using the

Connection object or Command object directly, without returning a RecordSet object.

Data access in .NET follows a broadly similar principle, but uses a different set

of objects. So, switching to .NET does not involve learning a completely different

technique. However, the objects we use are quite different, providing much better

performance with more flexibility and usability.

The .NET data accesses object model is based around one fundamental object -

the DataSet. This replaces the RecordSet from traditional ADO. It provides many

new features that make complex data access techniques much more efficient, while

remaining as easy to use as the RecordSet object. The main difference is that a

DataSet object can hold more than one table (in other words more than one RowSet)

from the same data source, as well as the relationships between them.

We can create a DataSet from existing data in a data store, or fill it directly with

data one record at a time using code. It also allows us to manipulate the data held in

the DataSet's tables and build and/or modify the relationships between the tables

within it. Each table within a DataSet maintains details of the original values of the

data as we work with it, so that these changes can be pushed back into the data store

at a later date. The DataSet also contains metadata describing the table contents, such

as the columns' types, rules, and keys. Remember that the whole ethos is to be able

to work accurately and efficiently in a disconnected environment.

92

The DataSet object can also persist its contents, including more than one data

table or RowSet, directly as XML, and load data from an XML document that

contains structured data in the correct format. In fact, XML is the standard persistence

format for data sets in .NET -bringing it more into line with the needs of disconnected

and remote clients.

Since data access has become very important in all types of applications -

windows and web, Microsoft has brought out a new data access technology -

ADO.NET- to access data. This is successor to ADO, which was used to access data

prior to .NET. This is a new Data Access Technology that the Microsoft .Net

Framework uses to access Databases/Data providers such as SQL, OleDb, OBDC etc

and also it is main exchange of Data that is done XML, this makes is able to

interoperate with basically any system on the internet.

It uses a disconnected form of technology in the sense that once Data is

retrieved, that client that retrieved the data gets disconnected from the main Database

until it is time to Update its changes, by using the disconnected idea the following are

achieved:

(1) There is an overall increase in performance of your network because the

Webserver/clients do not have to stay connected to the DataSource.

(2) This relieves the Developer of have to implement his own disconnected

RecordSet in his Code (ASP) .

. NET has brought so many changes to the way one writes programs. Once of

the key changes has been ADO.NET. It is an improvement over ADO. Though

ADO was used in windows and web applications for quite some time, it suffers from

the following limitations. The following are the some of the problems with ADOs:

93

u

(1) Data is stored in RecordSet - a data structure that is stored in memory and

needs a connection to the database throughout the lifetime of the

RecordSet. This exhausts connections on the database. Though this

problem is solved using disconnected recordsets and RDS (Remote Data

Services), it involves extra programming.

(2) Establishing relationship between multiple tables is difficult. Each table

should have its own RecordSet and after taking a row from master table

(first RecordSet); we have to search for its child records in child table

(second RecordSet). Otherwise we have to join both the tables and put the

joined data into the RecordSet. The first approach involves more

programming effort and later approach needs more space in memory, as

master record is stored along with each child record.

(3) Does not support XML (Extensible Markup Language)

(4) Data is transmitted across machines using COM marshalling. This

supports the data types that are defined in COM standard and in some

cases it requires that existing data to be converted to the standard data

type. This will also have problem in Internet, as Firewalls may not permit

low-level data transfer.

Whether you have faced with any of the problems mentioned above or not, you

have to more on to ADO.NET. If not anything else (assuming you don't need

anything more than what ADO provides) at least it will provide all that your ADO is

providing.

8.4 Why We Need Another Data Access Model?

Data access techniques in Visual Basic have evolved quickly in the last few

years. We have gone from local access using things like the Access Jet engine, to

94

client-server access using databases such as Oracle and SQL Server, and then to

Internet access, all since 1993.

In an attempt to keep up, Microsoft has introduced several models for accessing

data. Data Access Objects (DAO) were introduced for local access.

DAO proved insufficient to work well with client-server architectures, so

Remote Data Objects (RDO) came next. RDO proved less than ideal and was only

used widely for a couple of years. Microsoft learned from that attempt and introduced

ADO.

Like RDO, ADO was designed for connection-based, client-server

architectures, but it was introduced just about the time the Web became an important

factor in creating business systems. Microsoft responded with regular versions of

ADO, rolling out new capabilities

Despite Microsoft's attempt to retrofit Web-oriented capabilities on ADO,

developers began to see limitations in ADO for Web development. The most

important were:

(1) Connection-based use of ADO required unacceptable overhead.

Architectures to avoid continuous connections required more development

work.

(2) RDS (Remote Data services) worked for distributed access but imposed a

variety oflimitations. Using it effectively involved a steep learning curve.

(3) XML became a de facto standard for data interchange on the Web, but

ADO was designed before XML became important, and so ADO's

integration with XML was weak.

(4) Early versions of ADO were mutually incompatible. This was fixed in

later versions but only after developers had been forced to make many

95

conversions to newer versions just to keep software systems on one server

in synch with a single version of ADO.

We can summarize the most important problems into two areas. ADO is not

ideal for distributed architectures, and it does not integrate well with XML. These are

the biggest problems with ADO that Microsoft needed to address as it moved to

.NET.

We should move to ADO.NET because .NET is the future for programmers

working with Microsoft technologies. So, we have to move on to new technologies

that are made available on .NET. ADO is gone and now is ADO.NET and ADO.NET

does come with some new interesting and important features. The reasons why we

need the new data access model are:

Scalability

This is very crucial for Web applications. ADO.NET provides a new

component called DataSet. It does not need constant connection to the database. It

connects to database, retrieves data and disconnects from database. It allows the data

stored in memory to be manipulated. It again connects to the database when changes

made to data in memory are to be made to database.

That means the connection time to database is kept to absolute minimum. This

is an important development since connections of the database are a bottleneck. This

process allows more number of clients to connect to database thus increasing

scalability (the ability to scale application up/down) of the application. That also

means though more number of clients is accessing the database, the number of

connections at any given time will not significantly increase and thus enabling system

provide more scalability.

96

Performance

ADO.NET increases performance. It uses XML to transmit the data whereas

ADO used COM marshalling. COM marshalling spent a lot of time in converting data

types of the database to data type defined in COM. This overhead removed from

ADO.NET.

ADO.NET supports DataSet, which is a mini database in memory. It supports

constraints and relationship between tables in memory. This enables master-detail

relationship between tables in memory.

XML Support Is Built-in

As XML is becoming new way of storing information, XML support in

ADO.NET is much wanted. ADO.NET supports storing data in XML documents and

retrieving information from XML documents.

Apart from the ADO.NET stores data in XML format internally and transmits

data using XML. This enables any application - whether or not ADO.NET based -

can receive the data sent by an ADO.NET component. This becomes an important

feature while developing Web Services, which are based on protocol SOAP that also

uses XML.

8.5 Comparisons of ADO and ADO.NET

There are differences between ADO and ADO.NET:

(1) Modify from objects to libraries: The old version of ADO uses the objects,

but ADO.NET employs a class form that is the principle of Base Classes'

.NET framework. Therefore, you can import the namespace file into the

program.

(2) XML database connection: ADO does not support the database connection

of XML, but ADO.NET does.

97

(3) Database connectionless: If you use ADO for the database connection, the

connection will be processed all the time till you write the close command.

This makes utilize the resource of a server and it is time-assuming that you

write the close command always. The source code will be long and

sometimes you may forget writing it. ADO.NET, it will copy the data

from the database to "Catch" and then it disconnects to database

automatically. However, if you need to connect the database, ASP.NET

allows that.

(4) There are the specific libraries to connect database of SQL server and

XML: the connection to database has to have the middle connection that

can communicate between database such as OLEDB, ODBC, etc. ASP

requires ODBC, but ADO.NET has the capability to connect the database

by using a namespace. The namespaces are employed for connecting

database of SQL server or XML without the middle connection. It is

convenient and high-speed for connection to database. However, the

connection to database by using a middle connection is still processed.

(5) DataSet, DataReader replacing RecordSet: ADO needs the RecordSet

object to manage the data in the form of Table, but ADO.NET applies to

the DataSet and DataReader object instead. This provides the alternative

to a user or a programmer for managing the data.

(6) Data Transmission by using XML: If there is the firewall on the server,

when you transmit the data to that server, you cannot transmit it because

the firewall will protect all damaged things to it. ADO has this problem,

but ADO.NET will not be. Because you can transmit the data file in from

of XML to server via the firewall on HTTP protocol as same as HTML.

98

(7) Relationship between tables: ADO can use only one table's database. If

you need to connect more than one database table within the same

homepage, you have to examine the previous database table is already

closed because if you do not close it, you cannot connect another database

table. On the other hand, ADO.NET has the capability to connect more

than one database table at the same page.

99

IX. COMPARATIVE DATABASE CONNECTION BETWEEN ASP AND
ASP.NET

9.1 Database Connection Forms

There are a number of ways to connect to a database. You can use a DSN, a

DSN-less connection, or the native OLEDB provider.

Back in the old days, database connectivity was difficult. Everybody had their

own database formats, and developers had to know a low level API (Application

Programming Interface) for each database they wished to develop for. There was a

push for a universal API, an API that would work for numerous data stores. It was

about this time that ODBC, or Open Database Connectivity, which was an early

attempt at creating this universal APL A number of databases conformed to this

standard, and became known as ODBC-compliant databases. ODBC-compliant

databases consist of Access, MS-SQL Server, Oracle, Informix, etc.

Well, ODBC was not perfect. It still contained a lot of low-level calls, and was

difficult to develop with. Developers had to focus more on low-level

communications with the database, as opposed to being able to concentrate on getting

the data they needed and using it how they saw fit. Along came Microsoft's solution:

DAO, or Data Access Objects.

After DAO came RDO (Remote Data Objects, targeted for distributed database

architecture), and then ADO. These have all had their shortcomings, though.

According to Microsoft, "ODBC provides native access to SQL data" and "DAO

provides high-level objects to data." Even DAO and RDO require the data in a data

store to be in SQL format (Structured Query Language). In response to these

shortcomings, Microsoft introduced OLEDB, a COM-based data access object which

100

provides access to all types of data, and even provides access to disconnected data

stores.

d Jet
bVl.

Appication

Data Store

Figure 9.1. OLEDB Architecture.

OLE DB

OLE DB

I I sOL I I Oracle I I OD:BC

OLE DB Layer

I
I Jet 11 SQL I

I B ODBCLayer

0§§0
t

§J

Figure 9.2. OLEDB Providers and ODBC Drivers.

From Figure 9 .1, the highest layer is the application that can be a web site or

any application written from various languages. Those will access to a database such

101

as RDBMS (Relational Database Management System) that is a database, Messaging

or Directory Services that has OLEDB. It responses to direct the connection between

various languages such as Visual C++, JAVA, etc. In the case of a language does not

connect to it own OLEDB such as Visual Basic etc and this includes any script such

as VBScript, Jscript, etc. Those have the middle connection between application and

OLEDB are ADO (ActiveX Data Object).

From Figure 9.2, we can see that the Provider will locate on OLEDB layer,

while Drivers is ODBC layer. If we apply OLEDB Providers to connection a

database, it is high-speed connection because OLEDB connect directly to a database

without going through ODBC. ODBC has to connect the driver of a database at the

first time to know the database type and after that it will access to that database.

ADO has three classes for a database connection as:

(1) DSN Connection

The DSN (Data Source Name) connection technique requires the

setup of ODBC (Open Database Connectivity) Data Source in the first.

ODBC has the responsibility for the middle connection. This technique

has the script written shorter than other techniques and more facility than

other database connection methods. The drawbacks are:

(a) It is slow for connection.

(b) Some host does not allow using this technique because each database

connection has to setup ODBC and the setup can be done by only a

server administrator.

At the present day, this method is not so popular and Microsoft

announced that ASP.NET removes it. The example of DSN Connection

1s:

102

Set Conn= Server.CreateObject("ADODB.Connection")

Conn.Open "b"

From an example, we declare the variable object in order to open

the database by opening ODBC that is referred to "b''.

(2) DSNLess Connection

This technique does not require DSN, but it applies to a driver of

each Database. It is more facility than DSN connection because we do

not set up any things for the connection. Most of hosts have ability to

connect a database by this method.

(3) OLEDB (Object Linking and Embedding Database) Connection

This is the latest technique for the database connection. Many

developers have to test it and it is very high-speed to connect a database

than others. The example is:

Set Conn= Server.CreateObject("ADODB.Connection")

Conn.Provider= "Microsoft.Jet.OLEDB.4.0"

Conn. Open Server .MapPath("\a.mdb")

From an example, we will declare the variable by determining

"Microsoft.Jet.OLEDB.4.0" in order to connect the database as Microsoft

Access type. The position of database is named a.mdb that is located in

the root directory of a server.

In addition to ADO can apply to the database as Microsoft Access, but it

employs to other database types by settling the provider name. After it is settled, we

can connect to a database. The lists of provider name are shown as Table 9 .1:

103

Table 9.1. Provider Names to Connect a Database.

Microsoft.Jet.OLEDB.4.0 Microsoft Jet database

MSDAIPP.DSO.l Microsoft Internet Publishing

MSDAORA Oracle database

MSDAOSP Simple text files

MSDASQL Microsoft OLEDB provider for ODBC

MSDataShape Microsoft Data Shape

MS Persist Locally saved files

SQLOLEDB Microsoft SQL server

According to tests done by Wrox in their book ADO 2.0 Programmer's

Reference, if we use an OLEDB connection as opposed to a DSN or DSN-less

connection, we will see the following improvements as Table 9.2:

Table 9.2. Performance Comparison.

Performance Comparison
SQL Access

OLEDB DSN OLEDB DSN
Connection Times: 18 82 Connection Times: 62 99
Iterating Time 2900 5400 Iterating Time 1,000 100 950
1, 000 Records Records Times:
Times:

Note: these results are published on pages. 232, 233 in Wrox's ADO 2.0

Programmer's Reference. Times are in milliseconds and the iterating through 1,000

Records times were calculated using server-side cursors (there was only a minor

104

' s u

difference in performance between OLEDB & DSN recordset iterations when using

client-side cursors.

9.2 ASP and ASP.NET Database Connection Code

In this research report, the writer will build both an Active Server Pages (ASP)

page and an ASP.NET page, each of which generates an HTML page using data from

a database. In both examples, the concept of data access is the same-they both

involve a connection to the database. The difference is in the way the codes are

employed to connect and retrieve data from a database. It is different between ASP

and ASP.NET to connect a database. These are:

The principles of database connection of ASP are:

(1) To connect a database as:

Set Conn = Server. CreateObject("ADODB. connection')

(2) To open the database with identifying a Provider type:

Conn= ''Provider=Microsoft.Jet.OLEDB.4.0; DataSource=D:\a.mdb"

(3) To employ SQL commands to select data from a database as:

sql = ''select *from member"

(4) To employ the data retrieved with Recordset object

set RS= server.createobject(''ADODB.Recordset')

sql = ''select *from member"

RS.open sql,Conn,1,3

(5) To close the database

Conn.close()

The principles of database connection of ASP.NET are:

(1) To import a namespace

<%@import namespace= ''system.data"%>

105

<%@import namespace= "system.data.oledb '%>

Note: syetem.data: is the namespace to connecting a database.

system.data.oledb: is the namespace that inform the database connection on

OLEDB Provider format. (Ifwe want to change the connection method, we

can change the namespace here).

(1) To employ the oledbconnection to link a database as:

dim myconn as new

oledbconnection (''Provider= Microsoft.Jet. 0 LED B. 4. O; _

DataSource=D:\a.mdb ')

(2) To employ SQL commands to select data from a database as:

dim myda as new oledbdataadapter(''Select

book_phone ''.myconn)

* From

Note oledbdataadapter is to determinethe data that is retrieved from a

database

by using SQL commands.

(3) To employ the data retrieved with Dataset object as:

dim ds as new datasetO

myda.fill(ds, "member")

mydatagrid.datasource=ds. Tables(''member ')

mydatagrid. databindO

<asp:datagrid id= "mydatagrid" runat = ''server"/>

(4) No close because Dataset has the close property, therefore the system

automatically close database connection.

Let see the example, there are 2 files as showdb.asp and showdb.aspx.

106

9.2.1 Creating the ASP Page

You can type the following code:

<HTML>

<HEAD>

<TITLE> To retrieve all Records to display on the web by Using ASP </TITLE>

</HEAD>

<BODY>

<%

Set Conn= Server.CreateObject("ADODB.Connection")

Conn= "Provider=Microsoft.Jet.OLEDB.4.0; Data_

Source=D: \Codes\IECASP\Phone books.mdb"

set RS= server.createobject("ADODB.Recordset")

sql ="select* from book_phone"

RS.open sql,Conn,1,3

response.write "<table border= 1 >"

response. write "<tr><td >ID :</td><td>Company</td><td> W eb</td><td>

Tel </td><td> F ax</td><td> N ame</td><td> Email</td><td> Posi tion</td><td>

Remark</td></tr>''

total RS.RecordCount

do while not RS.eof

response.write"<tr><td>"&rs.fields("ID")&"</td>

<td>"&rs.fields("Company")&"</td><td>"&rs.fields("Web")&"</td><td>"&rs.fields

("Tel")&"</td><td>"&rs.fields("Fax")&"</td><td>"&rs.fields("Name")&"</td>

<td>" &rs. fields(" Email")&" </td><td>" &rs. fi elds("Posi tion")&" </td><td>" &rs.fields

("Remark")&" </td></tr>"

107

rs.movenext

loop

response.write "</table>"

rs.close

set rs = nothing

%>

</BODY>

</HTML>

After you write the code above, save it as showdb.asp, and run it, the result is

shown on Figure 9.3:

anopi@yahoo.com

Figure 9.3. The Result from ASP.

108

9.2.2 Creating the ASP.NET Page

You can type the following code:

<%@import namespace="system.data"%>

<%@ import namespace="system.data.oledb"%>

<HTML>

<HEAD>

TITLE> To retrieve all Records to display on the web by Using ASP.NET </TITLE>

</HEAD>

<BODY>

<script language="VB" runat ="server">

sub page_load(Sender As Object, E As EventArgs)

dim myconn as new oledbconnection("Provider=Microsoft.Jet.OLEDB.4.0;Data_

Source=D: \Codes\IECASP\Phone _ books.mdb ")

dim myda as new oledbdataadapter("Select * From book_phone",myconn)

dim ds as new dataset()

myda.fill(ds,"showphone")

mydatagrid. datasource=ds. Tables(" showphone")

mydatagrid.databind()

end sub

</script>

<asp:datagrid id="mydatagrid" runat ="server" />

</BODY>

</HTML>

109

After you write the code above, save it as showdb.aspx, and run it, the result is

shown in Figure 9.4:

ro:company Web Tel fax Name Email Position Ren:

Thai Airways 0-
bu- Dire ct or -IT

IntemationaJP!c www.thaiair.com 2545_/0-2545- •Bunga Komvinai
Co., Ltd. J444 13796 nga.k@thaiaiiways.co. th Seivences

Thai Flim 0- ;

2 Industries www.thaifilmind.com
.2316)0-2316-

Manop J aisen manopi@yahoo.com MIS
9205-:9687

Public Co. ,Ltd
6

Liebert 0-
Sukawat

3 (Thailand) www.liebert.com 2559_;0-2559- .libsale@loxifo.com M.D.
Co.,LTD. 2080 3608 N achaiyasit

Tyco 0-
4 Electronics www.amp.com 2955_!0-2955- NIA NIA NIA NIA

'(Thailand) Ltd. io5oo !
0513

:Siamtec
'O-

Computer
www.siamweb.com 2204-~0-2258- Siriwan

info@siamweb.com Mkt. Mgr. NIA
'System '1173 •8168 :Prateeppong
Co.,LTD

Samart

Figure 9.4. The Result from ASP.NET.

You can see both files have the same result, but the difference is the code. ASP

connects the database by using:

But ASP.NET connects the database by using the new technology of .NET as:

110

(1) To bring Namespace to the code.

~%~ impod namespac~"s~stem.data"%!:t?i ' ,, ' , \ ',',

~~~import namespace="sMstem.data.oled6"%!:t?i , ',, , 
'- " "" "' " 

'v " " °"' '- "' ':'. "'-% ,;% " "' '- x'° :0 ;§~ 

(2) To determine Connection String for linking a database 

(3) To retrieve the data from a database 

dim mMfia as new oleaouataadapter~"Select ,;1; li!:rom : , : 
v '- '-" ~B"" 

) 'i': " 

'- ft "'° '- ><:'.:'-; oc/' :;:,>\« 

noOKJnlione ,m,MCOUltJ ' B ' ' ' ' ' ,~:_,;',~\'' 
% - ' ' ' ' '" / ' ' ' ' ' "' > ' ,,' ' '~ ''h: ' ~ 0 ' : ':~~~f~ 

If you need to adjust the page to be good looking you can add the following 

code: 

111 



ASP Code 

112 



ASP applies to HTML tags to modify the page format, and there is the add 

more one code: 

for num = 1 to total 

if num mod 2 = 0 then 

changecolor = "#eeeeee" 

else 

changecolor = "#ffffff'' 

endif 

next 

113 



This is the condition that checks the even record row and add the light grey 

color to that row (record), otherwise it will be white color. The result from this above 

code is shown in Figure 9.5. 

mJ~t!liili~·m!l!Elli~·H·~lllllll'Inl!lllllllllmimllrl!'lllll~~n~.1.ma!-1111111 Email 
Thai Airways D- , · 

1 InternationalPlc www.thaiair.com 2545.P-2545- Bunga Kornvinai 
Co., Ltd. 1444 3796 

ThaiFlim o-
2 lndus""ies www.tha1'filmind.com 2316- o-2315- M J · " 9205- 9687 . anop a1sen 

Public eo.,Ltd 
6 

Liebert 0- : 
3 (Thailand) www.liebert.com 2559-0-2559- Sukawat 

co.,L TD. 2080 ,3608 Nachaiyasit 

Tyco Electronics 
4 (Thailand) Ltd. www.amp.com 

Siamtec 
5 computer www.siamweb.com 

System Co.,L TD 

Sa mart 
6 Corporation www.svoa.com 

Public 

0-
2955- o-2955- N/ A 
0500 0513 

D-
2204- 0-2258- Sir iw an 

1173 
B168 Prateeppong 

o-
2502-N/A 
6000-
9 
.o-

Charoenrat 
Vilailak 

bu-
nga.k@thaiairways.co. th 

manopi@yahoo.com 

Jibsale@loxifo.com 

N/A 

info@siamweb.com 

charoenrat@smark.co. th 

2264- D-2264- Sajji · • .aarsirak@apcc.com 
2885- 2884 Fungkha jornk iat 7 APC Thailand www.apcc.com 

8 

Figure 9.5. A Page Modified by ASP. 

ASP .NET Code 

114 

DirecfDr-IT 
Server ices 

MIS 

M.D. 

N/A N/A 

Mkt. Mgr. N/A 

CEO N/A 

Tech. Mgr N/A 



You just add some attribute from Datagrid such as boderwidth, cellpadding, 

headerstyle-backcolor, headerstyle-font-name, itemstyle-font-name and etc. You can 

run it and see the result as Figure 9.6. 

IJD13·Jii!®JMM!ji fax Name Email umant.HM. ~ 
Thai Airways 
IntemationalPlc www.thaiair.com 
Co., Ltd. 

0-
0-2545- bu- Director-IT 

2545-
3796 

Bunga Komvinai 
nga.k@th.aiairways.co.th. Serverices 

1444 

Thai F!.im 
2 Industries Public www.th.aifilrnind.com 

Co.,Ltd 

0-
2316- 0-2316- · Menop J aisen menopi@yahoo.com MIS 
9205- 9687 
6 

Liebert(Thailend) 
www.liebett.com Co.,LTD. 

0-
0-2559- !Sukawat 

2559- 3608 N achaiyasit libs ale@loxifo. com M.D. 
2080 

4 
Tyco Electronics 

www.amp.com (fhailand) Ltd. 

0- 0-2955-
2955- 0513 NIA NIA NIA NIA 
0500 

Siamtec 
Computer www.siamweb.com 
SystemCo.,LTD 

0- 0-2258- Siriwan 
2204- 8168 . Prateeppong info@siamweb.com Mkt.Mgr. NIA 
1173 

Samett 
Corporation www.svoa.com 
Public 

0-
2502- NIA Charoenrat Vilailak charoenral@smark.co.th. CEO NIA 
6000-
9 

0-

APC Thailand www.apcc.com 2264- 0-2264- Sajji aarsirak@!apcc.com Tech. Mgr NIA 
2885- 2884 Fungkhajomkiat 
8 

Figure 9.6. A Page Modified by ASP.NET. 

115 



Again, both of result is the same but the difference is the code. ASP .NET 

applies to code is easy and short. But ASP has the complicated code. This causes to 

effect to the performance of the system. The shorter the code is, the better the 

execution is. 

116 



X. CASE STUDY 

10.1 Straight Ahead Ministries 

The implementation of controls to affect every component of this new site 

except for the actual content has taken development and maintenance to a whole new 

level. Every aspect of the dynamic features has been done in a way that reduced 

development cost and will continue to keep the cost of maintenance to a minimum. 

StraightAhead.org will be a pleasure to maintain. -- Dan Wallace (DSW Consulting, 

LLC). 

Straight Ahead Ministries approached DSW Consulting, LLC, an associate of 

ours to write a new web site for their organization. DSW Consulting approached us 

to handle the programming tasks that would be required of the web site. These tasks 

included login, bookstore, administration as well as a menu system that changes 

according to who is logged in. The problems are: 

(1) The ability for a user to Login and have the web site show and hide 

information based on who is logged in. 

(2) A bookstore that can list products and details of those products. 

(3) A shopping cart "swoosh" that is visible when there is something in the 

shopping cart but not visible when it is empty. 

( 4) The ability to add pages to the site and to add them to the menu as they 

become available. Some of these pages will be restricted based on who is 

logged in. 

The chief problem was to write the code in such as way as to only write it once 

but have it work through out the site in the same way. 

117 



' s 

There really are not many options given the requirements. They could write 

separate pages for each condition, write script in each page that handles all of the 

various conditions, or with the advent of user controls in ASP.NET, write a control 

for each major component and let it deal with the part of the site it is responsible for. 

The solution is ASP.NET and we opted to use the user controls. 

The first step was to write a simple menu control that was dynamically created 

based on the content of an XML file. This XML file's controls that can see the menu 

item, the text of the menu item, and the URL the menu item will link to. By changing 

the XML file, we can change the menu. To add a new page, they can now simply 

change the XML file and post the page and the XML file. 

Next they combined a series of menu controls into one main menu control 

which we dropped into each page. Because each section has a tree view, they created 

a tree control that also uses the same control as the menu control. This allows us to 

change one file and affect both areas. 

For the "swoosh'', we created a control that could display and hide itself based 

on the condition. We were then able to place that control on each page we needed it 

on. 

When they run this web site, it all worked. The site is very easy to maintain. 

In fact, Straight Ahead Ministries thought that adding another sub category to the site 

would be a new project when it is really just maintenance of the existing site. 

However, the only thing they should have improved is some way to create 

hyperlinks that were not dependent on a particular URL. Our next site will 

incorporate this. Their thought is to have all of the real URL references located in a 

file. This way, if a web designer needs to link to a page that does not exist he can 

create the link and add it to the file. When the page finally gets created, the reference 

118 



can be adjusted in the links file. Any references to it throughout the site will 

automatically be updated. 

With ASP.NET (and JSP too) a properly designed site can have a lower cost of 

ownership because the maintenance costs are significantly reduced. 

10.2 www.netballnorthharbour.co.nz 

How to tum a clunky, hard-to-find web site into a Force to be reckoned with? 

Netball North Harbour required a refreshed web site to promote their semi

professional team The Force and the use of their facilities on the North Shore. In 

particular they wanted to: 

(1) Improve web content and accessibility, 

(2) Improve interaction and communication with the target audience, 

(3) Increase membership and participation, and 

(4) Gain a website that is easy to use and maintain. 

To reach the Netball community and fans of The Force, (typically school-aged 

girls) they also wanted to: 

(1) Allow access to the site from mobile devices such as WAP phones and 

other small devices, 

(2) Provide an alert or broadcast service for news and results via email or 

mobile SMS text messaging, and 

(3) Use additional graphics and animation to make the site more entertaining. 

But there were some constraints: Netball North Harbour is a non-profit 

organization with limited resources to pay for hosting and maintenance. On the other 

hand they are users of Microsoft FrontPage. Because of these constraints it was clear 

that a packaged content management solution was not appropriate. 

119 



Synergy used its web creation process to produce an attractive, active site that is 

easy to use. Some key steps used in this process were: 

(1) Synergy Creative team produced several alternative conceptual designs 

that were presented to Netball North Harbour, and 

(2) Synergy worked closely with Netball North Harbour to design a simple, 

usable, and logical information model to build the site around. 

To allow Netball North Harbour to effectively manage the site and its content, 

an administration console was developed that included the following features: 

(1) Document publishing engine with submission fields for document title, 

keywords, description, and validity dates, 

(2) Content administration engine for publishing news, events, and managing 

advertising, Microsoft FrontPage templates that allowed Netball North 

Harbour to develop content off-line to a consistent style before publishing, 

and 

(3) Site membership administration. 

And though the site could have been developed usmg standard Microsoft 

architecture, Netball North Harbour agreed to allow Synergy to develop the website 

using Microsoft's new ASP.NET. 

A "Forceful" presence is on the web. The web site is interesting, easy to use and 

already pulling the traffic. The main pages show event and news summaries, plus the 

requested topic in a clear and interesting style. And the administration console allows 

Netball North Harbour to manage all their content and advertising for the whole site 

quickly and easily. 

The technology is pretty cool too. Combining Microsoft Visual Studio.NET's 

rapid application development environment, reuse, and VB.NET's object oriented 

120 



features have allowed Synergy to produce the site in less time than other technologies 

but without comprising on performance or quality. 

f""tha'\b.mit1 1r<hna" 
1u u ..... ~r, ~:v ... ~~..-.nu::t!l!tt 
R1: (oo'HUH?";i'\'I "~' -1 fl·2.f.'.l:t 

Figure 10.1. Original Site. 

Figure 10.2. New Site. 

The resulting site is hosted on a platform shared with other web sites and still 

performs quickly and reliably without affecting other systems on the server. .NET's 

simplified deployment model means site changes can be rapidly deployed without 

121 



shutting down the site or server. The old site was clunky and out of date as Figure 

10.1. The addition of flash animation brings the new site to life as Figure 10.2. It is 

cool and funky. 

Day to day monitoring and maintenance of an ASP.NET site uses the same 

Internet Service Manager as ASP on IIS 5. No new skills are required. ASP.NET also 

offers improved deployment and site management: 

(1) File copy deployment, 

(2) Simplified configuration using "web.config" files, 

(3) Declarative caching of web pages and controls for better performance, 

(4) Improved error handling, process isolation and system monitoring to allow 

the web site to recover from operational faults and even automatically 

restart when required, 

(5) Using XML Web Service across a firewall ensures that additional ports for 

handling DCOM and DTC calls do not need to be opened. 

Some messages from users on this web site as: 

(1) Synergy has developed a wonderful site and has exceeded our 

expectations. Even for a computer illiterate like me, they make the 

development process very user-friendly. People have already started to 

comment on how great the site is. We are ecstatic! said Teresa Tairi 

Netball North Harbour Communications Manager and "Force" player. 

(2) "I've signed up as a member and can't wait for the updates. With all the 

links I can print forms and email the necessary contact people." said Carol 

Agnew Force Fan. 

122 



(3) "I like the pictures and the colorful are really identifiable to Harbour. The 

layout is great and easy to get around, the site looks very professional" 

said D Hamilton Force FanNew Site Cool and funky. 

123 



XI. COMPARATIVE ANALYSIS: TOTAL COST OF ASP AND ASP.NET 

The cost of ASP and ASP.NET on this research report will concentrate on the 

performance, processing, programming model, and database connection, etc. These 

are the following: 

(1) Perfect Execution: ASP has the translation the code in the form of 

"Interpreter"- it means that it will work only the code line that it displays 

the result to a user on the screen. On the other hand, ASP .NET has the 

"Compiler" for the translation. It means that it will translate the whole 

code lines or a program. 

(2) Easy Programming Model: ASP.NET lets you build the great pages with 

far less code than with ASP. 

(3) Excellent components: The components will base on XML. The core thing 

is when we use ASP.NET's components, we can upload a file to the 

directory of the administrator that he determines it. After that component 

will be set up automatically. This can reduce the problem of ASP because 

only an administrator will set up the ASP version of components. It is not 

convenient for a program to wait for him to set up the component. 

(4) To request the data from server: On ASP, the server can request the data 

from only the client, but on ASP.NET, the server can request the data 

from another server such as we can code the program to retrieve the stock 

data from the Yahoo web site to display on our homepage. 

(5) Effectiveness on database connection: There is no ODBC for database 

connection, but it will employ OLEDB.NET Provider. Microsoft develop 

124 



commands for MS SOL SEVER because it is fast for connection to the 

database and easy to manage it. 

(6) Server Processing: One of the big problems with ASP is that pages simply 

define one big function, which started at the top of the page and finished at 

the bottom. The page content is rendered in the page order, whether it is 

straight HTML or ASP-generated HTML. Therefore, our logic was 

dependent upon its position in the page, and there is no way to target 

HTML controls except by rendering them as part of the stream. Anything 

we do requires us to write code, and that includes the output of HTML 

elements. ASP.NET solves this problem by introducing a declarative, 

server-based model for controls. This is where the concept may seem alien 

to ASP programmers, because the controls are declared on the server, can 

be programmed against on the server, but can be event driven from the 

client. This sounds pretty weird, but it is simple to use. 

(7) Database connection: ASP .NET can improve the connection on the 

database more than ASP. ASP.NET uses OLEDB (Object Link 

Embedding Database) for the database connection. It provides the 

excellence on the database connection effectiveness and efficiency 

because OLEDB has the capability to connect the database based on DSN 

(Data Source Name) and DSNless, but it has the "provider" that can 

connect the database high-speed and communicate with relational 

database. Therefore, it can reduce the processes of the database connection 

and creating the object and closing it. ASP uses ODBC (Open Database 

Connectivity) to connect the database. It takes up the time because when 

ASP connects to the database, ODBC has to search for the DNS name on 

125 



the server and if it is found, it will check what the driver is. When ODBC 

gets the driver, it will use this driver to connect the database and return to 

ADO (Active X Data Object) that transfers that result to ASP and display 

on the screen. 

126 



XII. CONCLUSIONS AND RECOMMENDATIONS 

12.1 The Conclusions 

The research result indicates that the capability between ASP and ASP .NET 

and also their difference. It shows that ASP.NET has more the capability and 

powerful than ASP. The connection to a database on ASP.NET has the less code than 

ASP's code. This brings to the good performance of system's execution on the code. 

The communication for static HTML works only one way. There is no way to 

send information back to a Web server. To fix this problem, forms were created 

Forms are HTML tags that allow Web page creators to include controls like check 

boxes, and radio buttons in their Web pages. That way, the user can enter 

information. It also provides a Submit button that sends the information off to the 

server. But according to Internet, the server has to be smarter now. It cannot just get 

requests for pages and send out pages. The server has to know what to do with this 

information when it gets it. That is where ASP comes in. 

An ASP is somewhat similar to a server-side. It can be put into an html page to 

make it responsed dynamically to user requests. ASP allows you to take advantage of 

server-side scripting. Moreover, it can provide an array of objects and components 

that manage the interaction between the browser and the web server. ASP makes it 

much quicker and easier to create highly interactive Web sites. It also makes your 

pages easier to maintain and update in the future. 

However, here are some problems of ASP such as: 

(1) It will process the connections all the time. This utilizes the resource of a 

server. 

(2) It can access only one database table at a time. 

127 



(3) It cannot transfer the data file over a firewall. 

(4) It has no error detection explanation, etc. 

Therefore, ASP.NET was developed to come to fix those problems. It is a new 

and extended technology to the earlier classic ASP. It can support, more languages 

than ASP such as XML, C#, etc. ASP.NET communicates with the database better 

than ASP and retrieves data faster than ASP because it can bring many benefits, 

especially improvements are needed most, namely, performance, power and 

flexibility, scalability, tool support, simplicity, and manageability. 

(1) Performance: when you apply to code by using ASP.NET is better 

performance than ASP because ASP.NET can execute only the code that it 

uses, not whole code like ASP does such as coding of connecting to a 

database to display on the web page. 

(2) Power and Flexibility: ASP.NET is language-independent, so you can 

choose across many languages to your web, but ASP has no capability. 

(3) Scalability: each programmer can use own language that he has the good 

skill and after that these code can be integrated to one web page. 

ASP.NET has the capability that can perform in clustered and multi

processor environments, but ASP has no those capability. 

(4) Tool Support; the tool supporting for ASP.NET is Visual Studio.NET. It 

is better than Inter Dev tool of ASP. 

(5) Simplicity: the employment of ASP.NET 1s easier than ASP because 

ASP .NET has the effectiveness tools. 

(6) Manageability: ASP.NET employs a text-based, a programmer can come 

to modify it without the aid of local administration, but ASP does not 

128 



support this. If you add the new components to a server, you do not restart 

it unlike ASP. 

12.2 Recommendations 

The research result indicates that ASP.NET has more capability than ASP. 

Both of them have the advantages and disadvantages. ADO.NET is much different 

than ADO. In order to achieve disconnected data access programmers have to use 

different techniques like disconnected recordsets such as ADO.NET. ADO object 

model is very small as compared to ADO.NET. ADO.NET provides number of 

specialized objects to handle very specific tasks. Microsoft has taken care to closely 

map properties and methods of ADO.NET objects with existing ADO counterparts. 

As per Microsoft ADO.NET is not a replacement for ADO but an enhancement in the 

overall data access technology. 

Table 12.1. ASP Hardware Specification. 

, < }~?!flaltl~aa;f.( ' > ' ',Minimum ,, 0 ,, "'0 ~ 1\ H ~ x " ~JI""""' Mi\f1,Ifi'.~;$~~'% , , ,, , , ecommeu~ , , ~';;'~"';;1111 
CPU Intel Pentium 90 MHz above Intel Pentium 166 Mhz better 
RAM 32MB More 64 MB is better. 

Hard Disk 250 MB is available. More available is better. 

Table 12.2. ASP.NET Hardware Specification. 

~N'":::i~f .0~! "'(I "''S iP :i"y 0""%L ' "" " ""'~ •• • D p 
'~"'"ii"" Iii ~calil,',, 0 w,c,,//'w0 °iii HllW m,, 

"' };(' <! "' " "'" ~ >. " !! "' 

"'~ ~~~,,Ji"' o~:zi%"'/ifffiLB"'t'~ '.V """" K'f@"""""' Droi;1/r:it?ffffffi¥;:IB;'$,~i[ 
", }$ '"~','N"''*"'~ ,~, 1cDmmen °iil-,,'":i'a11n'\WI:~ ' " "fl"-" ?io1J;fY&0~ ,,, 0 "'"'"' <>b"%i(g~~;;~>\O~ 

CPU Intel Pentium II 300 MHz Intel Pentium 600 MHz 
RAM 96MB 128MB 

Hard Disk 560-600 MB 1 GB. 

We can use both ADO and ADO.NET in our application. A user chooses either 

ASP or ASP.NET depending on the purpose, the task, the hardware and software 

specification. For an example, if he does not have many databases, he can apply to 

ASP to connect to the database, or the high-speed performance is needed, ASP.NET 

129 



can be applied. Other important point is the hardware specification, if we do not have 

enough hardware, we can not employ it. Their conclusions are shown on Table 12.1 

and Table 12.2. 

For the software, ASP.NET can be executed on Windows 2000 or Windows XP 

or more versions. On the other hand, ASP can be executed on Window 95 and 98 

with installed the Person Web Server program, Windows 2000 and Windows NT with 

installed Service Pack 3. 

130 



BIBLIOGRAPHY 

English References 

1. Ahmed, Mesbah, et al. ASP.NET: Web Developer's Guide. Rockland, MA: 
Syngress, 2002. 

2. Alexander, John and Billy Hollis. Developing Web application with Visual 
Basic.net and ASP.net. New York: J. Wiley, 2002. 

3. Anderson, Richard, et al. Professional ASP.NET. Birmingham: Wrox Pr., 2001. 

4. Birdwell, Rob, et al. Beginning ASP.NET: Using VB.NET. Bi1mingham: Wrox 
Pr., 2001. 

Thai References 

0 
Q) i ... I <I .::::!.::::! "' " QJ " 1. \llrtt:M fltf:J\91'ff1'11~. ASP.NET UUU rn'Hlfl'J:IJ!lJt:l'J. f)~~!'Vll"l"I: lfl'Vll"I flt:llJ'W !!tl'Uf! flt:l'UCJ!rt'Vl, 

2545 . 

2. 
.<::::5 Q.J cl o' QJ .:::::! ~Q ~ l.I] o' Q) o' 

'Vl1'1HJ mirqmmJ !!rt~ irnmm 'tl'1'J'Jlli'l51~fl''J. tl'U !CJl'Vl ASP !!rt~ ASP.NET UUUfflJUiru. 

f)~ ~!'Vll"l"I :u~'IJ'Vl 1 u11i'u ~lnf'I, 2545. 

" 3. fff\91U U'UcVl\?l~f)'f:llli~. lrl~ ASP.NET 1ttfl'J1Jff\91'J. f)'J~!'Vll"l"I: u~'IJ'Vl 1191~ f)~U ~lnf'I, 2544. 
q 'U q q 

4. 

131 




	Cover and Title Page
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter  I :  INTRODUCTION
	Chapter  II :  ASP OVERVIEW
	Chapter  III :  ASP HISTORY
	Chapter  IV :  ASP
	Chapter  V :  NET FRAMEWORK
	Chapter  VI :  ASP.NET
	Chapter  VII :  ASP VS ASP.NET
	Chapter  VIII :  COMPARATIVE ANALYSIS: ADO AND ADO.NET
	Chapter   IX :  COMPARATIVE DATABASE CONNECTION BETWEEN ASP AND ASP.NET
	Chapter    X :  CASE STUDY
	Chapter   XI :  COMPARATIVE ANALYSIS: TOTAL COST OF ASP AND ASP.NET
	Chapter  XII :  CONCLUSIONS AND RECOMMENDATIONS
	BIBLIOGRAPHY

