A Test Case Geperation Tecanigu

Based on User Szisfaction

)

By

Me, Nickz Xopindrsdscha

" - < - Tinwban ' p > LV L | PO 4

Submitted in Partial Pulfiliicent of t&
T b £ n) T
Reguirements for the Degree of

Doctor of Philosophy
in Information Technology

Assumption University

November, 2010

THE ASSUMITION UNIVERSITY LIBRARY

A Test Case Generation Technique
Based on User Satisfaction

Ms. Nicha Kosindrdecha

Submitted in Partial Fulfillment of the
Requirement for the Degree of
Doctor of Philosophy
in Information Technology
Assumption University

November, 2010

The Faculty of Science and Technology

Dissertation Approval

Dissertation Title A Test Case Generation Technique Based on User Satisfaction

By Ms. Nicha Kosindrdecha
Dissertation Advisor Asst. Prof. Dr. Jirapun Daengdej
Academic Year 2/2010

The Department of Information Technology, . Faculty of Science and Technology of
Assumption University has approved dissertation final report of the thirty six credits
course. IT9000 Dissertation, submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Technology.

Approval Committee:

Do P o Butt,

(Asst. PrgfDrJirapun Daengdej) (Professor/Dr. Graham Winley)
Advisor Committee Member

V st of g sinc =S AT

(Asst. Prof. Dr. Vichit Avatchanakom) (Assoec. Prof. Dr. Surapong Euwatanamongkol)
Committee Member Commission of Higher Education
University Affairs

Faculty Approval:
(Professot. Dr. Graham %inley) (Asst P’rof Dr, Supavadee Nomakao)
Program Director Dean

November / 2010

The Faculty of Science and Technology
Declaration
This is to certify that the work presented in this thesis was carried out by the author in the
Department of Information Technology at Assumption University, Thailand and is the
result of original research conducted by the author, except where formally acknowledged
and/or referenced, and has not been submitted for a degree to any other university or

institution.

N CodenS g

(Nicha Kosindrdecha)

ABSTRACT

Software testing phase has been proven that it is one of the most critical and important
phases in software development life cycle. In general, software testing phase takes around
40-70% of effort, time, and cost. Test case generation approaches are the most critical and
widely-researched activities over a long period of time in the software testing. Many
researchers propose effective test case generation techniques, such as specification-based,
model-based and source code-based test case generation techniques. Large amount of
attentions in literature has so far been given to model-based test cases generation. Despite
the size of these efforts invested, outstanding problems for methods that derive tests from
use cases are: lack of requirement prioritization before test “generation, unable to
systematically determine which test cases should be removed, and !a;"gc number of tests is
still generated due to size of alternate paths. Therefore, this dissertation proposes a
marketing-driven prioritization method, along with WOW factors and cost model to
classify and prioritize requirements. The study shows that there are a relationship between
a return on investment (ROI) and a requirement complexity. This dissertation discovers
that the high ROI requirements with less complexity are desirable. Furthermore, this
thesis introduces alternate path points and risk-driven formulas to minimize a number of
tests during a test generation process. The evaluation reveals that proposed methods can
lead to smaller number of tests while covering higher critical requirements. In brief, the
contributions of this dissertation are to: (a) propose a requirement prioritization based on
customer satisfaction during a test case generation process (b) introduce alternative path
point formula to minimize a number of test cases generated from UML use case diagram
(c) discover a correlation between ROI and a complexity of requirement and (d) enhance

the alternative path point formula by adding a retain score.

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my advisor, Dr. Jirapun Daengdej,
who gave me the valuable advice and support throughout the entire thesis process. He
provided the continuous encouragement, sound advice, good teaching, and lots of good
ideas. I have leamned various things, from him, such as the way of thinking, the way of
proceeding, and so on. With his enthusiasm, his inspiration, and his great efforts to
explain things clearly and simply, he helped me through many problems. This thesis
would never have succeeded without him.

I wish to express-sincere appreciation to Dr. Graham Winley, who is the director
of doctor of philosophy of information technology, for recommending the thesis guidance
and for support he has provided during the preparation of this thesis. His patience, despite
my many, many questions, is greatly appreciated. His suggestions'tegarding the choice of
the initial.conditions were truly invaluable.

However, it would have been simply impossible to start, continue, and complete
without the support of my family, both financially and emotionally throughout my degree.
I wish to thamk my parents who, wholeheartedly, made the resources of the family
available for me, | always consider myself extremely fortunateto have had the great
opportunity in my life. Thanks for providing a loving environment for me. Special thanks
go to my brother, for the computer problem solving and for everything he has done for
me. My thanks also go to other family members for always being my inspiration.

The most important, I wish to thank two people, my grandparents, without whom
none of this would have been even possible. Words cannot truly express my deepest
appreciation. I own the greatest debt of gratitude to them for grow me up, for their
compassion and understanding of the many turns my life has taken, and for the
unconditional freedom, support and love that they have given me as I pursue my dreams.
For all this and much more, I dedicate this thesis to them.

Lastly, I would like to express many thanks to my husband, Pol, who has been a
great source of strength all through this work. I would have been lost without him. Thank
you for the great encouragement, support, and helping me get through the difficult times,
I would like to thank him for his loves, and everything he has done for me and being
beside me always. In particular, his caring and understanding shown by are greatly

appreciated.

PUBLICATION

The followings are a list of my publications produced during my PhD study.
Nicha Kosindrdecha and Jirapun Daengdej, “A Black-Box Test Case Generation

Method”, International Journal of Computer Science and Information Security,

USA, October 2010.

Nicha Kosindrdecha and Jirapun Daengdej, “A Test Case Generation Process and
Technique”, Journal of Software Engineering,/USA, September 2010, Vol. 4.
Nicha Kosindrdecha and Jirapun Daengdej, “A Tem Case Generation Process and
Technique”, Proceeding of First International Workshopon Evolution Support for
Mbdel-Based Development and Testing (EMDT’s 2010), Ilmenau, Germany,
September 2010.

Nicha Kosindrdecha and Jirapun Daengdej, “A Test Genﬁmﬁon Method Based on
Stat’é. Diagram”, Journal of Theoretical and Applied-dnformation Technology,
August 2010, Vol. 18, No.2.

Nicha Kosindrdecha, - Siripong ~Roongruang§uwan and Jirapun Daengdej,
“Reducing Test | CaiSés Cru&tod by ".'P.éih Oriented Test Case Generation”,
Proceedings of the AIAA Conference and Exhibition, Rohnert Park, California,

USA: NASA AIAA, 2007.

vi

THEASSUMPTION UNIVERSITY LIBRARY

TABLE OF CONTENTS

ACKNOWLEDGMENTS
LIST OF FIGURES
LIST OF TABLES
ABSTRACT
PUBLICATION
CHAPTER 1: INTRODUCTION
1.1 Overview
1.2 Objectives of the Thesis
1.3 Principal Contributions
1.4 Definitions
1.5 Dissertation Organization
CHAPTER 2: LITERATURE REVIEW
2.1 Software Testing
2.2 Test Case Generation Technique
2.3 Test Data Generation Technique
2.4 Test Sequence Generation Technique
2.5 Test Case Generation Process |
2.6 Related Works
CHAPTER 3: RESEARCH PROBLEMS
3.1 Research Issues
3.2 Problem Statement
CHAPTER 4: PROPOSED TECHNIQUES
4.1 Overview
4.2 Assumptions
4.3 Test Case Generation Process
4.4 Requirement Prioritization Based On User Satisfaction
4.5 Example of Requirement Prioritization
4.6 Test Case Generation Technique

4.7 Limitations

ii

v

vi
1-14
1
6
7
7
14
15-90
17
22
51
61
72
75
91-100
a1
97
101-137
101
109
109
113
124
128
137

CHAPTER 5: EVALUATION
5.1 Experiments
5.2 Measurements
5.3 Results
5.4 Discussions
CHAPTER 6: CONCLUSION
6.1 Major Contributions
6.2 Discussion: The Most Suitable Approach
6.3 Future Research
REFERENCES

138-152
138
145
146
150
153-157
153
155
157
158-183

Figure 1-1
Figure 1-2
Figure 1-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

Figure 2-10

Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12

LIST OF FIGURES

A Common Failure Scenario of IT Projects

A Structure of UML 2.0 Diagrams

Example of UML Use Case Diagram

Software Development Life Cycle

Software Testing Process

A Classification of Test Case Generation Techniques
Specification-Based Test Cdse Generation Techniques
Sketch Diagram-Based Test Case Generation Technigues
Source Code-Based Test Case Generation Techniques

AClassification of Test Data Generation Techniques

Specification-Based Test Data Techniques

Source Code-Based Test Data Techniques

A Classification of Test Sequence Generation Techniques
Specification-Based Test Sequence Techniques

Sketch Diagram-Based Test Sequence Techniques

Test Case Generation Process

ISO/IEC 9126-1 Model for Internal and External Quality
A.Classification of Remaining Problems

Research Problems Motivated This Dissertation

Matrix Table between Test Case and Use Case

Overview of Proposed Test Case Generation Technique

Relationship for ROI, Req. Complexity and User Satisfaction
Relationship between Number of Test Cases and Complexity

Proposed Methods Relative to Research Problems
Traditional Test Case Generation Process

Compare Test Case Generation Process

Requirement Prioritization based on User Satisfaction
Overview of Requirement Prioritization

Kano Model Analysis

WOW Factors and Implementation Cost

Example of Requirement Prioritization

Overwhelm Alternative Paths

il

10
11
17
19
23
24
36
48
51
52
56

63
64
72
86
95
97
99
101
105
107
108
110
111
112
115
116
119
125
132

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9

LIST OF TABLES

Principle Contributions against Objectives

Specification-based Test Case Generation Techniques

Sketch Diagram-Based Test Case Generation Techniques
Source code-based Test Case Generation Techniques
Specification-Based Test Data Techniques

Source Code-Based Test Data Techniques

Activity Diagram-Based Test Sequence Generation Techniques
State Diagram-Based Test Sequence Generation Techniques
Sequence Diagram-Based Test Sequence Generation Techniques
First:Process in *“2D-4A-4D” Test Case Generation Process

Table 2-10 Second Process in “2D-4A-4D" Test Case Generation Process
Table 2-11TSO/IEC 9126-1 Characteristics
Table 2-12Testing Metrics

Table 3-1
Table 3-2
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9

Test Case Generation Techniques and Issues

Problem Statements and Objectives

Definitions of Factors Normally Considered in Literatures
Reasons Why Factors Are Selected in Dissertation
Measuring Requirement Complexity

Total Estimated Cost

Total Charges to Customer

ROI for Each Requirement

Ratio between ROI and Requirement Complexity
Example Fully Dressed Use Case

Extracted to Use Case Scenarios

Table 4-10 Extract to Test Scenarios

Table 4-11 Extract to Test Cases

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5

Generate Random Requirements

Generate Random Use Case Scenario

Generate Random Alternative Paths for Use Cases
Attributes of Test Cases

A Comparison Result for Test Case Generation Methods

v

33
44
50
55
60
67
70

73

74

86

89

96
100
102
104
123
125
126
127
127
129
129
130
130
140
142
144
144
150

Figure 4-13
Figure 4-14
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6

Matrix Table between Tests and Paths
Example of Test Steps Required for Path
Overview of Experiment

Comparison Result for a Number of Test Cases
Comparison Result for Requirement Coverage
Result of Test Case Generation Methods

A Comparison for a Nﬁmber of Test Cases

A Comparison for a Number of Test Cases and Coverage

iii

133
136
138
147
148
149
151
152

CHAPTER 1

INTRODUCTION

1.1 Overview

Many IT software projects fail to deliver the software product on time and
within budget. Those projects/fail when they are not managed well, insufficient
control is exercised, the appropriate skills are missing and the testing is inadequate. A

common failure scenario of IT software project can be shown as follows:

What the technican designed

S
}
i

i

% e, M e s
1%% what the user finally got
Why do projects fail? i it

e T — |

Figure 1-1 A Common Failure Scenario of IT Projects
From Figure 1-1, the primary reasons why IT software projects fail can be
addressed as follows [173]:
1. Miscommunication of requirements, resources and timescales.

2. Poor management, planning and control.

3. Poor software quality and inadequate testing.

4. Unrealistic timescales.

5. Failure to manage user expectations and changes required.

In fact, poor software quality and inadequate testing are one of five primary
causes of failure. In general, testing typically consumes 40 to 50 percent of
development efforts, which positions the software testing phase to be one of the most
important activities of deyelopment projects.

Testing.is the process of executing a program or system with the intent of
finding errors [120]. It involves any activities aimed at evaluating an attribute or
capability of a program or system and determining that it meets its required results
[68]. Software processes are not, unlike other physical processes, inputs that are
received and outputs that are produced. Where software differs is in the manner in
which it fails. Most physical systems fail in a fixed set of ways. However, software
can fail in‘many other peculiar ways. Detecting all of the différent failure modes in
software is generally infeasible.

There is a process. called “software development life cycle”, or SDLC, for
developing IT software proj.ect's. In"general, the waterfall software development life
cycle contains five phases as follows:

1. Requirements. This phase is to gather customers or users requirements.
Typically, customers have an abstract idea of what they want to do as an end
result. They have no idea what software should do or look like. Therefore, the
responsibilities of software engineers are: (a) gathering requirements and (b)

analyzing those requirements for the implementation.

Design. This phase is to design the system by following the requirements. The
main responsibility for software engineer is to ensure that the software system
will meet the user requirements.

Implementation. This is the part of SDLC where software engineers actually
write program or source code against the design.

Testing. This phase is an integral part of the SDLC. One of the main goals of
software testing is to recognize defects or software bugs as early as possible.
Maintenance. This phase is necessary when seftware engineers discover a
new requirement, fix bugs or changed requirements.

A lot of researchers [3][15][21][22][23][69][75](136}{156][159][161] have

proven that software testing is one of the most critical phases in software development

life cycle and that it takes approximately half of the time and effort from the SDLC.

Generally, software testing process contains the following steps [134][168]:

1.

Test Planning. This step is to establish test strategy, produce test plan and
define testing criteria.

Test Generation, This step is used to generate test cases including test steps
and prepare test data. |

Test Execution. This step is to execute the generated test cases along with the
prepared test data. Also verify actual and expected results.

Test Evaluation. This step is to evaluate test results and create test reports,

The studies [3][15][21][22][23]{69][75][136][156][159][161] present that test

case generation has been proven to be one of the most important phases in the

software testing process. This is because good test cases can help engineers to detect

defects, to maximize a number of faults, to block premature product release, to help

with the decision of releasing or not releasing the software, to minimize technical
support costs and to access conformance to specification [34].

In addition, the studies show that many test case generation techniques have
been proposed over a long period of time. Those techniques are developed to
effectively generate a set of test cases while minimizing a number of test cases and
maximizing requirements coverage. Unfortunately, none of existing test case
generation methods concentrates on-a userssatisfaction [4][14][123][178][197]. All of
the existing test«case generation methods are mainly developed to enhance the ability
to generate test cases based on software testing perspectives only, Those methods fail
to generate test cases that cover critical requirements, which have an impact on the
user satisfaction, These studies [99][100][114]{115][124] demonstrate that user
satisfaction is a key to a project success, long-term relationship and maximum profits.
Furthermore, the studies suggest that testing activities are one of the key factors to
satisfy users. This is due to the fact that none of the users expects low quality of
software.

The studies [4][14]{24][124](125][178][197] explain that there are two major
research problems in test case generation, (a) is being a large number of test cases and
(b) it is the inadequate coverage of critical requirements. Due to the complexity of
software development at present, software test engineers aim to generate a huge
number of test cases in order to be able to verify and validate all requirements. Large
number of test cases takes a greater amount of cost and effort. However, there are
many approaches that have been proposed to minimize the number of tests, such as
effective test case generation methods, [4][66][69][85][178], test case selection
techniques during test execution and test case reduction methods [125]. In addit-ion,

these studies [14][99] reveal not only that there is an inadequate coverage for those

critical requirements but also that generated test cases may explicitly ignore critical
requirements such as domain specific requirements and high return on investment
functional requirements.

These studies [23][76] illustrate that there are two types of testing techniques:

blaclc-l:w:m:1 and white-boxz. This thesis concentrates on the black-box testing only.
The reason for focusing on black-box testing only is based on the fact that earlier
reseﬁrch [18][35][124] has proved (a) that ‘testing-activities should start at the
beginning of the software development life cycle (b) one of the testing goals is to
verify and wyalidate requirements as early as possible [23] and (c)ithe cost of a defect
resolutiomat the beginning is significantly less than the cost of fixing defects in later
phases [35}[124].

There are two groups of test case generation methods for-black-box testing
[124]: one group is to generate test cases from requirement speeification document
and the other is to derive test cases from model diagrams such as data flow diagram
and UML (Unified Modelling Language) diagram [123]. The focus of this thesis is to
generate test cases from UML use case diagram. The reasons for concentrating on the
UML use case diagram is that it describes the behaviour of the system as well as

being the first high-level diagram for development [24].

Black box testing takes an external perspective of the test object to derive test cases. These tests can
be functional or non-functional, though usually functional. The test designer selects valid and invalid
inputs and determines the correct output. There is no knowledge of the test object's internal structure.
This method of test design is applicable to all levels of software testing: unit, integration, functional
testing, system and acceptance. The higher the level, and hence the bigger and more complex the box,
the more one is forced to use black box testing to simplify. While this method can uncover
unimplemented parts of the specification, one cannot be sure that all existent paths are tested.

2 White box testing {a.k.a. clear box testing, glass box testing, transparent box testing, translucent box
testing or structural testing) uses an internal perspective of the system to design test cases based on
internal structure. It requires programming skills to identify all paths through the software. The tester
chooses test case inputs to exercise paths through the code and determines the appropriate outputs.

There are many proposed techniques to generate test cases from UML use case
diagram [24][69][85][105]. However, these previous investigations [123][124][197]
seem to be insufficient. The outstanding problems are as follow: (a) lack of ability to
classify and prioritize requirements before test case generation process (b) unable to
determine which test cases should be removed during test case generation activities
and (c) large number of test cases due to large number of alternate paths described in
each use case. This thesis proposes the following to resolve these research issues: (a)
requirement prioritization based on user satisfaction [89][115] (b) classify
requirement from business’ perspective [100][114] (¢) remove test cases during test
case generation precess and (d) finally enhance ability to reduce.a number of test

cases.

1.2 Objecﬁves of the Thesis

This section describes objectives of this dissertation.” The dissertation
concentrates on:test case generation techniques, where the test cases are derived from
UML use case diagram. The following are the objectives.of this research:

1. Prioritize requirements based on‘user satisfaction prior to generate test cases in
order to infprove the ability to generate and select the most suitable test cases.

2. Propose an alternative path point formula in order to systematically select
which test cases could be removed during test case generation activities.

3. Enhance ability to minimize a number of test cases by adding a complexity

factor.

1.3 Principal Contributions

The following table shows all of the principle contributions of this dissertation

against the above three objectives:

Table 1-1 Principle Contributions against Objectives

Objective

Principle Contribution

Objective #1 - Prioritize requirements
based on user satisfaction prior to
generate test cases in order to improve
the ability to generate and select the most
suitable test cases.

Investigate and propose a marketing-
driven requirement prioritization
technique based on user satisfaction
during test ease generation process.
According to.this method, software test
engineers can classify and prioritize
requirements before generating test cases.

Objective #2 - Propose an altemative
path point formula in order to
systematically select which test cases
could be removed during test case
generation activities.

Introduce an alternative path point
formula along with a-correlation between
return on investment (ROI) and a
complexity of requirements. This method
is developed for selecting the test cases
that should be removed.

Objective - #3 - Enhance ability to
minimize a' number of test cases by
adding a complexity factor.

Propose a removable'score that combine
both of alternative path point formula and
a complexity factor to minimize a number
of test cases.

1.4 Definition

This section provides-definitions tsed in fhis dissertation. The following are the

definition of terminologies used in this thesis:

Cem [36] defined test scenario as follows:

“Test Scenario is a software testing activity that uses scenario tests, or simply

scenarios, which are based on a hypothetical story to help a person think

through a complex problem or system for a testing environment."”

Mealy [163] defined Mealy Machine diagram as follows:

“Mealy machine is a finite state transducer that generates an output based on

its current state and input. This means that the state diagram will include both

an input and output signal for each transition edge. In contrast, the output of a

Moore finite state machine depends only on the machine's current state;
transitions are nol directly dependent upon input. However, for each Mealy
machine there is an equivalent Moore machine. "
John [133] presented fest case as:
“Test case is a document that defines a test item and specifies a set of test
inputs or data, execution conditions, and expected results. The inputs/data
used by a test case -shéﬂfd' be bothwnormal and intended to produce a ‘good’
result and intentionally erroneous and intended ta produce an error. A test
case'is. gien;f:raﬂy executed manually but many test cases can be combined for
automated execution.”
Weyuker [157] defines test data as:

“Test Data are data which have been specifically identified for use in tests,
wpically of a computer program. Some data may be used in a confirmatory
way, typically to verify that a given set of inpul to a given function produces
some expected result. Other data may be used in orderto challenge the ability
of the progﬁm' 10 ‘respond to unusual, extreme, éxceprional. or unexpected
input. Test data may be produced in a focused or systematic way (as is
typically the case in domain lesting), or by using other, less-focused
approaches (as is typically the case in high-volume randomized automated
tests). Test data may be produced by the tester, or by a program or function
that aids the tester. Test data may be recorded for re-use, or used once and
then forgotten.”

Brucker [182] defines test sequence as:

“Test sequence can also be used for specifying the test of a transition function
under test, which takes some input of type and some state of type and can
produce a successor state. ”
Cem [158] defined test oracle as follows:
“An oracle is a mechanism used by software engineers for determining
whether that product has passed or failed a test. It is used by comparing the
output(s) of a product for a given lest case input to the outpuis that the o'mc!e
determines. that product should have. Oracles are always separate from the
product under test.”
Black [160] defined system testing as follows:
“System testing of software or hardware is testing conducted on a complete,
integrated system to evaluate the system's compliance with its specified
requirements, System testing falls within the scope of black box testing, and as
suchyshould require no knowledge of the inner design of the'code or logic.

As a rule, system testing takes, as its input, all of the "integrated” software

components that have successfully passed integration xest;‘ng3 and also the
software system itself integrated with any applicable hardware system(s). The
purpose of integration testing is to detect any inconsistencies between the
software units that are integrated together (called assemblages) or between
any of the assemblages and the hardware. System testing is a more limiting
type of testing; it seeks to detect defects both within the "inter-assemblages"
and also within the system as a whole,”

Grady [161] defined UML diagram as follows:

Integration testing is the activity of software testing in which individual software modules are
combined and tested as a group. It occurs after unit testing and before system testing.

“Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of software engineering. UML includes a set of
graphical notation techniques to create abstract models of specific systems.
UML offers a standard way to write a system's bluepvints, including
conceptual components such as actors, business processes, system's
components, activities, programming language statements, database schemas
and reusable software components.”
Armin [162] defined UML 2.0 diagrams as follows:

“WL 2.0 has 13 types of diagrams divided into three categories. Six diagram
types ‘represent the structure application, seven represent_general types of
behavior, including four that represent different aspects of interactions.”

Armin [200] classified UML 2.0 diagrams as follows:

Diagram
[
[]
Structure Behaviour
Diagram ’ Dragram
23)
I ! I £ 1 1
Component. || Object) Retivity Use Case State Machine
Clags Diagram Diagram Diagram h Diagram Dlagram Diagram
Csompulﬂ Deployment Package Interaction
el Diagram Diagram Diagram
Diagram 9 hd o
4
| !
Brsence Interaction
Ovepview
Diagram Diagram
Communicatien Timing
Diagram Clagram

Figure 1-2 A Structure of UML 2.0 Diagrams
Grady [60] defined UML use case diagram as follows:
“Use Case diagram in the Unified Modeling Language (UML) is a type of
behavioral diagram defined by and created from a Use-case analysis. Its

purpose is to present a graphical overview of the functionality provided by a

10

THE ASSUMPTION UNIVERSITY LIBRARY

A .
4465 e |
system in terms of actors, their goals (represented as use cases), and any

dependencies between those use cases.”

The example of UML use case diagram can be shown as follows:
e

I | o
o TecEpndn
miter 5 T

\‘ cenfirm or der
"\ wlace order
RSI =T

= Chef

.
westand» i winewms

arcarsa]
- -
o~ Ufwire-—
sal I
sarved]

sgximnds
- Jit vine_
4 W
eansured]

Figure 1-3 Example of UML Use Case Diagram

#atron

Ll

Lashier

Alistair [40][151] divided use case into three categories: (a) brief use case (b) casual

use case and (c¢) fully dressed use case, as follows:
“Brief use case contains the followings: use case name, use case number and
purpose of use case. Casual use case contains the followings: use case name,
use case number, purpose of use case and summary description. Fully dress
use case contains the followings: use case name, use case number, purpose of
use case, summary description, actors, stakeholder, pre-conditions, post-
conditions, basic event, alternative events, business rules, notes, version,

author and date.”

11

Percy [136] adapted the error terminology recommended by the IEEE Computer
Society as:

“An error is made by somebody. A good synonym is mistake. When people

make mistakes during coding, we call these mistakes bugsd. A fault is a
representation of an error. As such it is the result of an error. A failure is a
wrong behavior caused by a fault. A failure occurs when a fault executes”
Karthikeyan [177] defined traceability matrix-as follows:
“A traceability matrix is a table that correlates dny two baseline documents
that require a many to many relationship to determine the completeness of the
relationship. It is often used with high-level requirements. (sometimes known
as marketing requirements) and detailed requirements of theseftware product
to :he matching parts of high-level design, detailed design, test plan, and test
cases.”
Nicha [124] defined users as follows:
“A user is a person who uses a computer or Internet service. A user may have
a user account that fdentg'ies the user by a memamé (also user name), screen
name (also screen name). To log in to a.n account, a user is typically required
to authenticate himself/herselffitself with a password or other credentials for

the purposes of accounting, security, logging, and resource management.”

2 A software bug is an error, flaw, mistake, failure, or fault in a computer program that prevents it from
behaving as intended (e.g., producing an incorrect or unexpected result). Most bugs arise from mistakes
and errors made by people in either a program's source code or its design, and a few are caused by
compilers producing incorrect code. A program that contains a large number of bugs, and/or bugs that
seriously interfere with its functionality, is said to be buggy. Reports detailing bugs in a program are
commonly known as bug reports, fault reports, problem reports, trouble reports, change requests, and
so forth,

12

THE ASSUMPTION UNIVERSITY LIBRARY

Meuter [115] defined customer satisfaction as follows:

“Customer satisfaction, a business term, is a measure of how products and
services supplied by a company meet or surpass customer expectation. It is
seen as a key performance indicator within business and is part of the four of
a Balanced Scorecard. In a competitive marketplace where businesses
compete for customers, customer satisfaction is seen as a key differentiator
and increasingly has become a key element of business strategy.”

Nicha [124] defined market driven requirement prioritization as follows:
“Market-driven requirement prioritization is a requirement prioritization
based on user satisfaction.™

Tokman [100] defined WOW factors as follows:

“WOW factors contain three levels of user satisfaction, which are: basic,

surprise and extraordinary.”

13

1.5 Dissertation Organization

Chapter 1 introduces an overview of the dissertation along with objectives and
scope of research, contributions and definitions. This chapter discusses why this
dissertation is important together with the background of software testing. Research
problems are also given.

Chapter 2 discusses and includes a significant literature reviews in software
testing, test case gencradon. test data generation and test sequence generation area.
The literature survey includes problems and limitations of each technique. This
chapter is céncluded with a literature review that breaks down tasks in test case
generation techniques.

Chapter 3 discusses all research problems in software testing area. This
chapter also discusses the outstanding research problems which are-the motivation of
this dissertation.

Chapter 4.introduces a requirement prioritization based on user satisfaction.
Also, Chapter 4 introduces an effective model-based tést case generation method for
black-box testing along with alternate path points and retain score.

Chapter 5 presents an experiment design and measurement metrics in order to
determine the most recommended automated test case generation techniques. Also, it
discusses an evaluation result of the experiments.

Chapter 6 is the outcomes of this dissertation along with limitations of the
studied. Also, this chapter provides a direction of the future research info test case
generation techniques.

Finally, the last chapter contains all references used in this thesis.

14

CHAPER 2

LITERATURE REVIEW

This chapter discusses and includes the literature reviews for this research. It
describes the following topics:

1. Software Testing. John [22] clam:adlhat software testing is one of the most
critical and important phases in software testing. For instance, “/n June 1996
the first flight of the European Space Agency's Ariane 5 rocket failed shortly
after launching, resulting in an uninsured loss of 350(?;,000,000. The disaster
was. traced to the lack of exception handling for a floating-point error when a
64-bit integer was converted to a 16-bit signed integer | This has proven that
software testing is one of the most critical phases that cannot be ignored.

2. Test Case Generation. Bertolino [23] proved that “Test case generation is a
most challenging and an extensively researched activity”. Many test case
generation techniques have 'bcen propoesed in oﬂer to increase the ability to
generate and preparé test -u'::aées, sﬁch as Antonio [136], Offutt [3] and
Heumann [69]. In addition, Kaner [34] gave the purposes of test cases. For
instance, find defects, maximizing bug count and help managers make go / no-
go dccision.l This has proven that test cases and methods are one of the most
challenging processes during software testing phase. Also, those researches
presents that there are many methods to generate and prepare some parts in
each test case such as input data (also known as test data generation), output
data (also known as test data generation) and test steps (also known as test

sequence generation).

15

3. Test Data Generation. Beizer [21] mentioned that “Software testing accounts
for 50% of the total cost of software development”. Many researchers
[15][27][39](53][67][74][80][81][82][94][107][116][122][156][161]
mentioned that automated test data generation is one of the approaches to
reduce cost and prepare data values for each test case. In fact, test data is one
of the components for test case format. This is concluded that test data
generation is one of the interesting topics undersoftware testing field.

4. Test Sequence Generation. According to above Beizer’s statement, another
approach for reducing cost is to generate automatically test sequences that are
parts of'test cases. In fact, test sequences are steps described in each test case.
Many methods have been proposed to identify the sequence__"qf test case, such
as Rayadurgam’s work [159], Hyungchoul’s work [75] and. Frohlich’s work
[137].-This shows that test sequence generation is one of other interesting
topics.

5. Related Works. Apart from the above most challenging topics in software
testing, there are otlier interesting topics that have been investigated in this
study. For example, requirement prioritization field, how to design practical
test case format, the international quality standard and software testing
metrics.

Eventually, this chapter is concluded with an overall test case generation
process.

The following sections describe the above topics in details.

16

2.1 Software Testing

This section discusses and includes the software development life cycle,
software testing process including reasons why software testing is important and
example of test case and test data.

Typically, according to the waterfall software development life cycle below,
there are five phases in the life cycle, which are: (a) requirements (b) design (c)
implementation (also known as development) (d) verification (also known as software

testing) and (¢) maintenance.

Testing

iMaintenance
¥

Figure 2-1 Software Development Life Cycle

From Figure 2-1, software testing phase is the process of executing a program
or system with the intent of finding errors [120]. It involves any activity aimed at
evaluating an attribute or capability of a program or system and determining that it
meets its required results {68]. Software is not unlike other physical processes where
inputs are received and outputs are produced. Where software differs is in the manner
in which it fails. Most physical systems fail in a fixed (and reasonably small) set of
ways. By contrast, software can fail in many bizarre ways. Detecting all of the

different failure modes for software is generally infeasible.

17

Obviously, software testing is an essential activity in software development

life cycle. In the simplest terms, it amounts to observing the execution of a software

system to validate whether it behaves as intended and identify potential malfunctions.

Testing is widely used in industry for quality assurance: indeed, by directly

scrutinizing the software in execution, it provides a realistic feedback of its behavior

and as such it remains the inescapable complement to other analysis techniques.

Earlier studies estimated that testing can consume fifty percent, or even more, of the

development costs.[21], and a recent detailed survey in/'the United States [127]

quantifies the high'cconomjc impacts of an inadequate software testing infrastructure.

The following are the list of examples why software testing'is one of the most

critical and'important phases in software development life cycle [22].

3

4.

“In_February 2003 the U.S. Treasury Department mailed. 50,000 Social
Security. checks without a beneficiary name. A spokesperson said that the
missing names were due to a software program maintenance error.”

“In July 2001 a “serious flaw" was found in off-the-shelf software that had
long been used in systems for tracking U.S. nucléar materials. The software
had recently been donated to another c;Jun..fry and scientists in that country
discovered the problem and told U.S. officials about it.”

“In October 1999 the $125 million NASA Mars Climate Orbiter—an
interplanetary weather satellite—was lost in space due to a data conversion
error. Investigators discovered that software on the spacecraft performed
certain calculations in English units (vards) when it should have used metric
units (meters).”

“In June 1996 the first flight of the European Space Agency's Ariane 5 rocket

failed shortly after launching, resulting in an uninsured loss of $500,000,000.

18

The disaster was traced 1o the lack of exception handling for a floating-point

error when a 64-bit integer was converted to a 16-bit signed integer. ”

This is concluded that the impact of inadequate testing can be root-cause
problems of: (a) increasing failures due to a poor quality (b) increasing software
development costs (c) increasing time to market due to inefficient testing and (d)
increasing market transaction costs [127]. Due to the above examples, software
testing phase has proven that it is one of the most critical phases in SDLC.

Next paragraphs describe a general process of rumning software testing
activities. This study includes the software testing process provided by Ian [168], who
is the author of well-known software testing books, and Pan [134] from Carnegie
Mellon University, as follows.

lan [168] describes the software testing process as follows:

Rupiogam
. vithtest dita %,

to test cases

Figure 2-2 Software Testing Process

Figure 2-2 describes a general software testing process, which is consists of
four processes. Those processes are: (a) design test cases (b) prepare test data (c) run
program with test data and (d) compare results to test cases. Each process has its own
outcomes. There are four outcomes during these processes, which are: (a) a set of test
cases (b) a set of test data (c) test results and (d) test reports. More detailed

information in each process can be shown as follows:

19

l.

Design test cases. The purpose of this step is to generate and prepare a set of
test case. Therefore, the outcome of this step is a set of test cases. A set of test
cases may represent as excel format, words document or database,

Prepare test data. The purpose of this step is to generate and prepare test data
for each test case. The outcome of this step is a set of test data.

Run program with test data. This is an execution test step. Test case and test
data will be run in this step. The result.of this step is actual results.

Compare results to test cases. This step is used to compare the previous
actual results and expected results design in test case. The milestone of this
step.is a test report of running test case and test data.

In addition, Pan [134] defines the typical life cycle of testing as.follows:
Requirements analysis: Software testing should begin in ‘the requirements
phase of the SDLC. Software testing engineer should play a‘major role during
the requirement phase. During the design phase, software testing engineers
work with developers in determining what aspects of a ‘design are testable and

with what parameters.those tests work.
Test planning: Test strategyl, test plan, testbed creation. A testbed is a
platform for experimentation for large development projects. Testbeds allow

for rigorous, transparent and replicable testing of scientific theories,

i A test strategy is an ocutline that describes the testing portion of the software development cycle. It is
created to inform project managers, testers, and developers about some key issues of the testing
process. This includes the testing objective, methods of testing new functions, total time and resources
required for the project, and the testing environment. In the test strategy is described how the product
risks of the stakeholders are mitigated in the test levels, which test types are performed in the test
levels, and which entry and exit criteria apply. The test strategy is created based on development design
documents. The system design document is the main one used and occasionally, the conceptual design
document can be referred to. The design documents describe the functionalities of the software to be
enabled in the upcoming release. For every set of development design, a corresponding test strategy
should be created to test the new feature sets.

20

computational tools, and other new technologies. There are many activities
carried out during software testing process. Therefore, test planning is a must.

» Test development: In this step, it contains the following activities: develop
test procedures, design test scenarios, produce test cases, prepare test datasets,
and build test scripts to use in testing software.

e Test execution: Once test plan and test case, including test data, are already
generated and prepared, software testing enginéers can execute the software
based on the plans and tests and report any errors found to the development
team.

« Test reporting: When running test cases is completed, software testing

engineers generate metrics and make final reports on their-test c:ffortz and
whether or not the software tested is ready for release.

o Test result analysis (also known as defect analysis): This step-is done by the
testing team. It is usually done along with the client, in order to decide what
defects should be treated, fixed, rejected (i.e. found software working
properly) or deferred to be dealt with at.a later time.

* Retesting the resolved defects. When a defect has been resolved with by the
development team, re-testing those defects is a desirable,

» Regression testing: In general, it is commeon to have a small test program
built of a subset of tests, for each integration of new, modified or fixed
software, in order to ensure that the latest delivery has not ruined anything,
Additionally, this step ensures that the software product as a whole is still

working correctly.

2 .
In software development, test effort refers to the expenses for (still to come) tests. There is a relation

with test costs and failure costs (direct, indirect, costs for fault correction). Some factors which
influence test effort are: maturity of the software development process, quality and testability of the test
object, test infrastructure, skills of staff members, quality goals and test strategy.

21

e Test Closure: When the test meets the exit criteria, the activities such as
capturing the key outputs, lessons learned, results, logs, documents related to

the project are archived and used as a reference for future projects.

2.2 Test Case Generation Technique

This section describes test case generation techniques in details. Also, it
discusses a limitation of each ‘existing technique which has been researched in the
literature.

Test case, generation has always been fundamental to the testing process.
Bertolino [23] articulated that the test case generation step is oene of the most
challenging and extensively researched activities during software testing phases.
Many techniques have been proposed for test case generation, mainly random, source
code-based technique (also known as path-oriented technique), ‘goal-oriented and
sketch diagram=based methods (also known as model-based approaches).

Random techniques determine a set of test cases based on assumptions
concerning fault distribution. Path-oriented techniques'generally use control flow
graph to identify paths to be covered and generate the appropriate test cases for those
paths. Goal-oriented techniques identify test cases covering a selected goal such as a
statement or branch, irrespective of the path taken. There are many researchers and
practitioners who have been working in generating a set of test cases based on the
specifications. Modeling languages are used to get the specification and generate test
cases. Since UML is the most widely used language, many researchers are using
UML diagrams such as use case diagrams, activity diagram and sequence diagrams to
generate test cases and this is called model-based test case generation techniques.

Due to the fact that there are many test case generation techniques, the studies

and what have been found in the literature propose the following classification for
22

existing test case generation techniques. The study classifies those techniques based

on source information from where test cases can be derived.

- ASA05[137] S05714] o—
= CRIS]156) SAVEFMLOG [179) owess
- HLOO[113] HO1[68) MQSOS{[?;]
b OXLO9(3] EW01(76] :
L K97[86) RGOO (85]
b J5W07 4]

— T01[176] . W i A
— RHOL{55] =" = _ ROMOB
| NOMOS[15 | W%

o B, si¥s
-~ TWCPX05{183]) AL
— JLQO3[192) i 7{166
= | s

Figure 2-3 A Classification of Test Case Generation Techniques
Figure 2-3 presents that there are three categories, which are: (a) specification-
based test case generation techniques (b) sketch diagram-based test case generation
techniques and (c) source code-based test case generation techniques. There are three
sources from where test cases can be derived: (a) requirement specification (b) model
diagrams and (c) source code or program.

The following discusses the above techniques in details.

2.2.1 Specification-Based Test Case Generation Techniques

This section discusses an overview of how this technique works and provides
a comprehensive survey of existing specification-based techniques.

An overview of this technique can be found as follows:

Specification-Based TestCase
Generation Techniques

Fault-Based
i XML Format Technique ey
Requirement/ F
Algorithm TestC
Specification Or Form- ‘ 5““
Documents Based Graph TestCase ID
Document Approach Approach ~TastData

3w -Test Sequence
Model
-Expected Result
Checker
Model -Actual Result
-Pass/Fail Status
SpecificationDocumernts TestCase Generation Methods Results

Figure 2-4 Specification-Based Test Case Generation Techniques

Specification-based techniques are methods to generate'a set of test cases from
specification documents such as a formal requirements specification [150][156][160]
[176][183], Z-specification [113][191][192] and object constraint “language (OCL)
specification [137].

In fact, the specification precisely describes what the system is without
describing how to do it. Thus, the software test engineer has important information
about the software’s functionality without having to extract it from unnecessary
details. The advantages of this technique include that the specification document can
be used to derive expected results for test data, and that tests may be developed
concurrently with design and implementation. The latter is also useful for breaking
“Code now test later” practices in software engineering, and for helping develop
parallel testing activities for all phases [113].

The specification requirement document can be used as a basis for output
checking, significantly reducing one of the major costs of testing. Specifications can
also be analyzed with respect to their testability [15]. The process of generating tests
from the specifications will often help the test engineer discover problems with the
specifications themselves. If this step is done early, the problems can be eliminated
carly, saving time and resources. Generating tests during development also allows

24

testing activities to be shifted to an earlier part of the development process, allowing
for more effective planning and utilization of resources. Test generation can be
independent of any particular implementation of the specifications [3].

Furthermore, the specification-based technique offers a simpler, structured,
and more formal approach to the development of functional tests than non-
specification based testing techniques do. The strong relationship between
specification and tests helps find faults and can simplify regression testing. An
important application of specifications in testing is to provide test oracles’.

The drawbacks of the specification-based technique with formal methods are:
(a) the difficulty of conducting formal analysis and the perceived of actual payoff in
project budget. Testing is a substantial part of the software budget, and formal
methods offer an opportunity to significantly reduce testing costs, thereby making
formal methods more attractive from the budget perspective [39]-and (b) there is
greater manual effort or processes in generating test cases, compared with techniques
involving automatic-generation processes.

This research reveais that many techniques have been proposed such as
heuristics algorithms [86][156j, model checkers [39][150][155] and hierarchy
approaches [113][191][192]. The following paragraphs describe existing
specification-based techniques that have been proposed for traditional and web-based
application since 1997.

Percy Antonio [137] presented the underlying theory by providing a set of test
cases with formal semantics and translated this general testing theory to a constraint

satisfaction problem. A prototype test case generator serves to demonstrate the

3
A test oracle is a mechanism used by software engineers for determining whether the product has

passed or failed a test. It is used by comparing the output(s) of a product for a given test case input to
the outputs that the oracle determines that product should have. Oracles are always separate from the
product under test [87].

25

THE ASSUMPTION UNIVERSITY LIBRAKY

automation of the method. It works on Object Constraint Language (OCL)
specifications. The OCL is part of the UML' 2.0 standard. It is a language allowing
the specification of formal constraints in context of a UML model. Constraints are
primarily used to express invariants of classes, pre-conditions and post-conditions of
operations, These invariants become elements of test cases. In their work, they aimed
to generate test-cases focusing on possible errors during the design phase of software
development. Examples. of such errors might be a_missing or misunderstood
requirement, a wrongly implemented requirement, or a simple coding error. In order
to represent these errors, they introduced faults into formal specifications. The faults
are introduced by deliberately changing a design, resulting in wrong behavior possibly
causing a failure. They focused dedicatedly on the problem of gengrating test cases
from a formal specification. The problem can be represented ‘as a Constraint
Satisfaction Problem (CSP). A CSP consists of a finite set of variables and a set of
constraints. Each variable is associated with a set of possible values, known as its
domain. A constraint is a relation defined on some subset of these variables and
denotes valid combinations of their values. A solution to a constraint satisfaction
problem is an assignment of a value to each variable. from its domain, such that all the
constraints are satisfied. Formally, the conjunction of these constraints forms a
predicate for which a solution should be found. To resolve the above problem, they
proposed to embed the test generation problem modeled as a CSP into a specially

designed and implemented Constraint System. But this is not a novelty because this

4 Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field
of software engineering. UML includes a set of graphical notation techniques to create abstract models
of specific systems. UML offers a standard way to write a system's blueprints, including conceptual
components such as actors, business processes, system's components, activities, programming language
statements, database schemas and reusable software components.

26

approach has been widely explored and implemented. The novelty in their appro;ach is
the relation that they formalized between fault-based testing and constraint solving,

Huaikou [113] presented a framework based on Phil and David's work
[133][172]. They defined a test class using an object-oriented concept instead of Phil
Stock’s test template in the framework. Phil’s test template defines test data only. The
benefit of their test framework for Z specifications is that the test data and oracles are
defined in a test class which also contains the.information of before states and after
states for an operation. The test framework is therefore a dynamic system involving
state change, containing three components: (a) valid input space & .output space (b)
test class & test state space and (c) test class hierarchy & inStantiation. These
elements [[13] can be described shortly as follows:

First, the valid input space (VIS) is the subset of the input space for which the
operation 1S defined, and is also the subset of the input space satisfying the
precondition of the operation. The valid input space can be derived directly from the
formal specification- of an operation, and it can be an automated process. The valid
output space (VOS) can be'défined similarly to the-valid input space. It is the subset
of output space satisfying the post-condition of the operation. The post-condition in
VOS does not contain the predicate involving input variables. VOS is the source of all
expected expressions. Second, the central concept of the framework is the Test Class
(TC), which is the basic unit for defining a test case. A test case comprises test data
and a test oracle. In a formal specification, the relationship between input states and
output states is specified precisely. This means that the specification can serve as a
test oracle. The simplest oracle is a comparison of the actual output for some input
against a pre-calculated expected output for the same input. From the formal

specification, it is simple to derive the description of expected output for given input.

27

Third, the structure approach is used to build a hierarchy of test classes. The hierarchy
is similar to Phil’s test template hierarchy [94][148]. The difference is that the nodes
in Miao’s hierarchy graph are test classes, not test templates.

Offutt [3] presented a model for developing test inputs from state-based
specifications, and formal criteria for test case selection. For state-based specification
technique, their paper used the term specification-based testing in the narrow sense of
using specifications as a basis for deciding:what tests to run on software. The
proposed approach s related to Blackburn’s state-based functional specifications of
the software, expressed in the language, T-Vec [102]. It is used to derive disjunctive
normal form constraints, which are solved to generate tests. Also, the approach is
related to Weyuker [49] who presented a test case generation method from Boolean
logic specifications. Moreover, they introduced several criteria for system level
testing. These criteria are expected to be used both to guide the testers during system
testing and to help'the testers find rational, mathematical-based points at which to stop
testing. In those criferia, tests are generated as multi-part, multi-step and multi-level
artifacts. The multi-part aspect means that a test case is composed of several
components: test case values, prefix values, veriﬁ; values, exit commands, and
expected outputs. The multi-step aspect means that tests are generated in several steps
from the functional specifications by a refinement process. The functional
specifications are first refined into test specifications, which are then refined into test
scripts. The multi-level aspect means that tests are generated to test the software at
several levels of abstraction.

Prasad [86] used a form of specification-based testing that employs the use of
an automated theorem prover to generate test cases. A similar approach was

developed using a model checker on stat-intensive systems. The method applies to

28

systems with functional rather than stat-based behaviors. The approach allows for the
use of incomplete specifications to aid in generation of tests for potential failure cases.
He suggested a new method of testing software based on the formal specification. He
used the Prototype Verification System (PVS) and its in-built theorem prover to
derive test cases corresponding to the properties stated in the requirements.

Cunning [156] were interested in the model-based co-design of real-time
embedded systems. It reliesion system models at increasing levels of fidelity in order
to explore design alternatives and to evaluate the correctness of these designs. As a
result, the tests'that they desire should cover all system requirements in order to
determine if all requirements have been implemented in the design. The set of
generated tests is maintained and applied to system models of increasing fidelity and
to the system prototype in order to verify the consistency between models and
physical realizations. In the co-design method, test cases are used to-validate system
models and prototypes against the requirements specification. In“the paper, they
presented continuing research toward automatic generation of test cases from
requirements specifications for event-oriented, real-time embedded systems. They
used a heuristic algorithm to automatically generate test cases in their works. The
heuristic algorithm uses the greedy search method followed by a distance based
search if needed. The algorithm with pseudo code is addressed in their paper [156].

Tran [176] focused on existing research in using model checking to generation
test cases. He touched on several areas, like the methodology of properly testing
software, the use of model checking to generate tests suifs and specialization of
specification to suit the needs of test generation. A model checker is used to analyze a
finite-state representation of a system for property violations. If the model checker

analyzes all reachable states and detects no violations, then the property holds.

29

However, if the model checker finds a reachable state that violates the property, it
returns a counterexample — a sequence of reachable states beginning in a valid initial
state and ending with the property violation. In his technique, the model checker is
used as a test oracle to compute the expected outputs and the counterexamples it
generates are used as test sequences. In summary, his approach is used to generate test
cases by applying mutation analysis. Mutation analysis is a white-box method for
developing a set of test cases Which is sensitive to any small syntactic change to the
structure of a program.

Rayadurgam [155] presented a method for automatically generating test cases
to structural coverage criteria. They showed how, given any software development
artifact that ¢an be represented as a finite state model, a model checker can be used to
generate complete test cases that provide a predefined coverage of that artifact. He
provided a formal framework that is: (a) suitable for defining the test=case pgeneration
approach and«(b) easily used to capture finite state representations of software
artifacts such as program code, software specifications, and Tequirements models.
They showed how common Structural coverage criteria ¢an be formalized in their
framework and expressed as tc.mpora'l logic formulae used to challenge a model
checker to find test cases. Finally, they demonstrated how a model checker can be
used to generate test sequences for modified condition and decision (MC/DC)
coverage. Their approach to generating test cases involves using the model-checker as
the core engine. A set of properties called trap properties [2] is generated and the
model-checker is asked to verify the properties one by one. These properties are
constructed in such a way that they fail for the given system specification.

Nilsson [150] has proposed a model based method for generating test cases to

test timeliness by using heuristic driven simulation. Their approach is perfectly suited

30

to generating test cases for small real-time systems that contain shared resources,
precedence constraints and few sporadic tasks. Conversely, in dynamic real-time
systems there are many sporadic tasks, making model-checking impractical. For these
dynamic real-time systems, they proposed an approach where a simulation of each
mutant model is iteratively run and evaluated using genetic algorithn'tsS with
application specific heuristics. By using a simulation-based method instead of model-
checking for execution order analysis;-the combinatorial explosion of full state
exploration is avoided. Furthermore, they conjectured that it is easier to modify a
system simulation than a model-checker, to correspond to the architecture of the
system under test. In their paper, they focused on genetic algorithms. They included
three types of functions needed to solve the specific search problém, Those three
functions are:.(a) a genome mapping function (b) heuristic cross-over.functions and
(c) fitness functien.

Additionally, the literature shows that a few specification-based techniques for
web-based application have been proposed. Those techniques can be described below.

Tsai [183] presented a framework that assures:the trustworthiness of web
services. New assurance techniques are developed within the framework, including
specification verification via completeness and consistency checking, test case
generation, and automated web services testing. Traditional test case generation
methods only generate positive test cases that verify the functionality of software. The
proposed “Swiss Cheese” test case generation method is designed to generate both

positive and negative test cases that also reveal the vulnerability of web services. He

E Genetic algorithms are one of the best ways to solve a problem for which little is known. They are a
very general algorithm and so will work well in any search space. All you need to know is what you
need the solution to be able to do well, and a genetic algorithm will be able to create a high quality
solution. Genetic algorithms use the principles of selection and evolution to produce several solutions
to a given problem.

31

presented that the first step of the development process before testing is to create a
web service specification. The next step is to perform specification check. He focused
on the completeness and consistency analysis for the specification which is then
applied to their automated test cases generation technique. He also applied the
verification patterns technique to generate many test cases by recognizing patterns in
system behavior and generate the corresponding test cases by composition.

Jia [191][192] addressed limitations inweb application testing, especially in
testing the overall functionality of a web application. He beligved that web application
testing is a new. area. Therefore, he proposed a new approach for rigorous and
automatic testing of web applications using formal specifications. He applied Z
notation, one of the best known formal methods, in their approach. The formal
specification based approach is powerful, extensible, and versatile. It-aims to address
testing of various aspects of web applications, including functionalify, security, and
performance. He has developed a prototype tool based on the proposed approach,
which accepts formal specifications ‘in XML syntax. The" approach covers
functionality testing, page structure testing, security-testing and performance testing
(they classify performance testing. as non-functional testing in their paper.). He used
the formal specification language to specify the specification of functionality, security
and performance of web application.

In conclusion, the above specification-based techniques can be summarized as

the following table.

32

Table 2-1 Specification-based Test Case Generation Techniques

[137] Application Construint | Technique | case

CR99 Tradit Black Box | Formal H Their approach
[156) Ap@- Requirement | Algo is limited to

I
]

s
{l

H

(113] m ' s, | Specification S

& | tegies -
tasoR NiINgT i oot
* +mn ; * TCGS' can be

‘f/g’,?q_ SINCE1969 ,b@: mif:gb:i:;
L L i s <

OX1.99 Traditional | Black Box | State-based | Graph | 1. Their
[3) Application Specification | approach technique s

6
Negative test cnse is a test case that report when a test fails. Meanwhile, positive test case is a test
;nathnwwhmnmm

TOGS is a test case generation system, which is a sub system of Huaikou and Ling system, called Z
User Studio.
33

2. Their tool
contains
various
restrictions
on the form
of the
specifications

.

K97 [86]

Traditional

Applicatio(p

Black Box |

" Form-based

specification

o

Heuristic
Algorithm

Users can’t
select test
templates with a
specific
property.

TO1 [176]

Mnonal

qépphcanon

Black Box

Formal
Requirement
Specification

1. Model
checking
technology is
not fully
utilized in
software
testing. There
is a lot of
potential for
model
checking in
automated
test
generation.

. Model
checkers
have
gained
acceptance in
the software
industry.

not

RHO1
[155]

Traditional
Application

Black Box

Formal
Requirement
Specification

Model
Checker
Technique

1. The problem
of state space
explosion
affects the
search for
counter-
examples.

2. The
environment
specification
is always a
difficult issue

8
Mutation analysis is a white-box technique to develop test cases which are sensitive to any small
changes to the structure of a program.

34

NOMO6
[150]

Traditional
Application

Black Box

Formal
Requirement
Specification

Model
Checker by
using
mutation
analysis

Their
mapping
function in their
applied genetic
algorithm is
limited to small
class of Timed
Automata with
Tasks (TAT)
automata
templates.

genome

5[183]

TWCPX0

‘Web
“Application
T -

Black Box

Formal
Requirement
Specification

Their approach
is limited to two
parameters: the
Hamming

 distance and the
| boundary count,

JLQO3
[192]

= web
| Application

Black Box

~specification

"1. Their

simple web
applications,

2. There are
limitations to
their simple
complete test
specifications
to specify
functionality
security and
performance
of a web
application.

702
(191

Web
Application

Black Box

specification

Hierarchy
approach

1. Their
prototype
tool is
limited to
simple web
applications.

2. There are
limitations to
their simple
complete test
specifications
to specify

functionality,

35

performance
of a web
application.

2.2.2 Sketch Diagram-Based Test Case Generation Techniques
This section discusses an overview of how this technique works and provides
a comprehensive surveycimtmg sketch dzagrmabaﬁd techniques.

An overviag}.';gf the sketch diagram-based techniqué can.be found as follows:

i -c
g
_ __ba- SketchDiagram-Based TestCase
:: ” l_lr._lﬁ?l“ Generation Techniques
-y Wanual '
"~ xat Generation — TestCases
State Chart" /-'-_}_.o Methods _ L
. T = ~TestCaselD
== e g x
=) y pping w=TestData
S e A A& e
K __"": i nppmneh “<TestSequence
Batag SR | “~Expectod Result
Activity ; ;i. " -Actual Result
: q‘- | -Pass/Fail Status
UML Mode diagrains TestCase Generation Methods. Resufts

Figure 2-5 Sketch Diagmm-Based TcstCasc '.é;ﬁration Techniques
From Figure 2-5, sketch diagram-based techniques are methods to generate
test cases from model diagrams like UML Use Case diagram [69][85][105], UML
Sequence diagrams [4] and UML State diagrams [7][11][14][43] [66][76][104]{179].
The following paragraphs survey current sketch diagram-based test case generation
techniques that have been proposed for traditional and web-based application for a

long time.

36

A major advantage of model-based V&V is that it can be easily automated,
saving time and resources. Other advantages are shifting the testing activities to an
earlier part of the software development process and generating test cases that are
independent of any particular implementation of the design [4].

The following paragraphs describe existing specification-based techniques that
have been proposed for traditional and web-based application since 2000.

Heumann [69] presented how using use cases to. generate test cases can help
launch the testing process early in the development lifecycle and also help with
testing methodology. In a software development project, use cases define system
software requirements. Use case development begins early on, so real use cases for
key product:functionality are available in early iterations. According to the Rational
Unified Process (RUP), a use case is used to fully describe a sequence of actions
performed by a system to provide an observable result of value to a person or another
system using the-product under development. Use cases tell the customer what to
expect, the developer what to code, the technical writer what to- document, and the
tester what to test. He propesed three-step process to generate test cases from a fully
detailed use case: (a) for each usé case, generate a full set of use-case scenarios' (b)
for each scenario, identify at least one test case and the conditions that will make it
execute and (c) for each test case, identify the data values with which to test,

Ryser [85] raised the practical problems in software testing as follows: (a) lack
of planning/time and cost pressure, (b) lack of test documentation, (¢) lack of tool

support, (d) formal language/specific testing languages required, (¢) lack of measures,

V&YV stand for verification and validation. Verification and validation is the process of checking that
a Sroduct, service, or system meets specifications and that it fulfills its intended purpose
1

A use-case scenario is an instance of a use case, or a complete "path” through the use case. End

users of the completed system can go down many paths as they execute the functionality specified in
the use case.

37

measurements and data to quantify testing and evaluate test quality and (f) insufficient
test quality. Their proposed approach to resolve the above problems is to derive test
cases from scenarios or UML use cases and state diagrams. In their work, the
generation of test cases is done in three stages: (a) preliminary test case and test
preparation during scenario creation (b) test case generation from Statechart and
dependency charts and (c) test set refinement by application dependent strategies
(intuitive, experience-based testing).

Nilawar [105] was interested in testing web based applications. Web based
applications are 'of growing complexity and it is a serious business to test them
correctly. They focused on black box testing which enables the software testing
engineers to derive sets of input conditions that will fully exercise all functional
requirements. They believed that black box testing is more generally suitable and
more necessary.for web applications than other types of application. Furthermore,
they proposed four steps to generate test cases, based on J. Heumann’s four-steps
[69], as follows: (a) prioritize use cases based on the requirement traceability' ! matrix
(b) generate tentatively sufficient use cases and test/scenarios (c) for each scenario,
identify at least one test case and the conditions and (d) for each test case, identify test
data values. They also presented that the test cases contains: a set of test inputs,
execution conditions and expected results developed for a particular objective.

Sinha [14] described a new model based testing technique developed to

identify critical domain requirements. The new technique is based on modeling the

11
Requirements traceability is a sub-discipline of requirements management within software

development and systems engineering, Requirements traceability is concerned with documenting the
life of a requirement. It may be possible to find the origin of each requirement and track every change
which was made to this requirement. For this purpose, it may be necessary to document every change
made to the requirement.

38

system under test using a strongly typed domain specific language (DSL)"2. In the
new technique, information about domain specific requirements of an application are
captured automatically by exploiting properties of the DSL and are subsequently
introduced in the test model. The new technique is applied to generate test cases for
the applications interfacing with relational databases and the example DSL. Test
suites generated using the new techniques are enriched with tests addressing domain
specific implicit requirements:

Santiago [179] focused on test sequence generation from a specification of a
reactive system, space application software, in Statecharts [63] and the use of
PerformCharts [180]. In order to adapt PerformCharts to generate tést sequences, it
has been assaciated to a test case generation method, switch covef, mmplemented
within the Condado tool [9]. Condado is a test case generation tool for FSM. The
algorithm implemented in Condado is known as sequence of “de Bruijn®. The steps in
the algorithm are:.(a) a dual graph is created from the original one, by converting arcs
into nodes (b) by considering all nodes in the original graph, where there is an arc
arriving and another arc leaving; an arc is created in the dual graph (c) the dual graph
is transformed into a “Eulerized” graph by balancing the polarity of the nodes and (d)
finally, the nodes are traversed registering those that are visited.

El-Far [76] was interested in model-based testing and generating test cases
from finite state machines. The difficulty of generating test cases from a model
depends on the nature of the model. Models that are useful for testing usually possess

properties that make test generation effortless. Sometimes generation processes can be

A domain-specific language (DSL) is a small, usually declarative language that offers expressive
power focused on a particular problem domain [22], Through suvitable abstractions, through embedded
types and through specific library functions, the DSL imports domain knowledge into any application.
Information about domain specific requirements can be captured automatically by exploiting properties
of the DSL.

39

automated. For some models, one must go through combinations of conditions
described in the model. In the case of finite state machines, it is as simple as
implementing an algorithm that randomly traverses the state transition diagram. The
sequences of arc labels along the generated paths are, by definition, tests.

Cavarra [7] described a modeling architecture for the purposes of model based
verification and testing. Their architecture contains two components. The first
component of the architecture is the system model, jwritten in UML; this is a
collection of class, state, and object diagrams: the class diagram identifies the entities
in the system; the state diagrams explain how these entities may evolve; the object
diagram specifies an initial configuration. The second componentyagain written in
UML, is the test directive; this consists of particular object and state diagrams: the
object diagrams are used to express test constraints and coverage criteria; the state
diagrams specify test purposes. The system model and the test directives can be
constructed using any of the standard toolsets, like Rational Rose.

Reza [66] discussed a model-based testing method for web applications that
utilizes behavioral models -of the software under the test (SUT) from Statechart
models originally devised by Harel [62][63]. Statechart models can be used both for
modeling and generating test cases for a web application. The main focus of their
work is on the front end design and testing of a web application. As such, they utilize
the syntax of the web pages to guide the specification of the Statecharts. Their
approach is a systematic way to test the front-end functionality of a web application.
For the most parts, they are concerned with verifying that the links, forms, and images
in the web application under test function according to the specification documents.
Furthermore, they address how to model the web application with Statechart diagrams

in their work. To generate test cases from Statechart diagram, they defined 5 test

40

coverage criteria: (a) all-blobs, (b) all-transitions, (c) all-transition-pairs, (d) all-
conditions and (e) all-paths.

Kung [43] presented a methodology that uses an Object-Oriented Web Test
Model, called WTM, to support web application testing. The WIM captures test
related artifacts of a web application and represents the artifacts from three different
aspects: (a) the object aspect, which models the entities of a web application as
objects and describes their dependent relationships (b) the behavior aspect, which
depicts the navigation and state-dependent behaviors of a web application and (c) the
structure aspect, that describes the control flow and data flow information of a web
application.

From'the WTM, the structural and behavioral test cases can be derived
automatically to support the test processes. To facilitate web application testing, the
structural and behavioral test artifacts of a web application are represented in the
WTM from three aspects: the object, the behavior, and the structure perspectives. For
the object perspective, the entities of ‘a web application are depicted by an object
relation diagram in terms of objects and their dependent relationships. For the
behavior perspective, the navigation behavior of a web application is described using
a page navigation diagram, while the state-dependent behavior of interacting objects
is represented using a set of object state diagrams. For the structure perspective, a set
of flow graphs are used to describe the control flow and data flow information of the
scripts and functions in a web application. Furthermore, the WTM also employs
textual test constraints so that special testing concerns for objects can be expressed.

There are many limitations for performance testing in web application. Those
limitations are related to several requirements with respect to synthetic workloads.

Firstly, to reach reliable conclusions based on the results of a performance test, the

41

synthetic workloads used must be representative of real workloads. Secondly, since it
is very difficult to know precisely what a real workload’s characteristics will be, a
performance testing methodology must provide the flexibility to conduct a controlled
sensitivity analysis on the characterizations of the workload model’s attributes.
Furthermore, since the scripts developed are system-specific they need to be modified
when changes are made to a system (e.g., changes in inter-request dependency,
addition of new functionality). Shams [104] propesed a model-based approach that
addresses these limitations. Their approach uses an application model that captures
the application “logic of a session-based system under study. Essentially, the
application model can be used to obtain a large set of user request Sequences that
satisfy the correct inter request dependencies for the system under study. This set of
sequences i Used to automatically construct a synthetic workload with desired
characteristics.

Andrews [11] addressed the problem of test case generation for web
applications. They-were interested in proposing a new approach to improve the
effectiveness and efficiency. of test case generation for web applications. They
proposed a system-level testing approach to corﬁbine test generation based on finite
state machines with constraints in order to test the function of a web application. They
proposed to use a hierarchical approach to model potentially enterprise scale web
based applications. The approach builds Finite State Machines (FSMs) that model
subsystems of the web applications, and then generates test requirements as
subsequences of states in the FSMs. Their approach contains two phases: (a) to build
a model of the web application and (b) to generate test cases from the model defined

in the previous phase.

42

The model in the first phase can be done in four steps: (a) the web application
is partitioned into subsystems and components (b) logical web pages are defined (c) a
partition FSM is built for each subsystem or component and (d) an aggregation FSM
is built for the web application.

Traditional testing approaches are no longer adequate for web applications.
Although there is much established work in the validation and verification of
traditional software [17][31][39][43]{194][200], systematic as well as flexible and
extensible testing approaches and intelligent tools are in urgent demand. In addition,
software testing in general and web application testing in particular are knowledge-
driven, labor intensive activities, which require automatic software methods and
techniques. Brim [95] proposed a model of Component-Interaction automata to model
component “interactions. The model is designed to preserve all the interaction
properties to provide a rich base for their further research. In their paper, they
combine Logical Components (LCs) with component interaction and an agent to
assist automatically generating test cases to test web applications. Chen [72][166]
proposed to generating test-cases proceeds in four steps. Firstly, test sequences of
logical components (LC) are generated. Se'coﬁdly, each LC is modeled by an
automaton. Thirdly, a final automaton modeling each whole test sequence of LCs can
be achieved by iterative composition of automata of pair-wise LCs in sequence.
Lastly, after mapping actions of output and input into actual operations, and adding
test data to the final automaton, final test cases can be generated automatically.

Javed [4] proposed a model-driven approach to test software applications
using sequence diagrams. Sequence diagrams are behavioral elements of a UML
design that describe dynamic interactions among the components of a system. They

play an important role in the software development processes that are use-case driven,

43

such as the Rational Unified Process. Since these descriptions of behavior are
constructed at an early stage, testing based on them can start verification and
validation (V&V) activities early in the software life cycle. The model-driven
approach that they use for generating unit test cases consists of two steps. In the first
step, they modeled a sequence diagram as a sequence of methods calls (SMC) which
is then automatically transformed into an xUnit model by applying model-to-model
transformations using Tefkat; 'I_’e(_i.;at is ‘an eclipse modeling framework-based model
transformation engine which is available as an Eclipse plugsin: In the second step,
JUnit test cases are gcnerated from the xUnit model by applying model-to-text
transformations ‘using MOFScript. MOFScript is a model-to-text-transformation
language generating textual outpufs from models based on meta-models, and is
available as a1 Eclipse plug-in.

In coﬁclu_s__ion, the above sketch diagram-based techniques can be'summarized

as the followingtable.

Table 2-2 Sketch Diagram-Based Test Case Generation Techniques

e St

S05 [14] 1. The costs of

Application Finite State designing,

Machine implementin

Diagram g and
maintaining a
Domain
Specific
Language
(DSL).

2. The costs of
education of
DSL users.

3. The limited
availability
of DSL.

4. The
difficulty of

cing

between
domain
specificity
and general-
purpose
programming
language
constructs.

5. The potential
for a tower of
Babel, a
potential
language for
every other
‘domain.

SAVFFM | Traditional | Black Box | Statechart Function | 1. Their
L06 [179] Application diagram ‘approach is
- limited to
only one
component in
the system,
not entire

. software,

2. Their
technique is
not
applicable
and effective
for dynamic
behavior
modeling in
Statechart
diagrams.

HO1 [69] Traditional Black Box Use Case Function | Lack of the
Application Diagram integration of
UML 2.0
standard
specification,
EWO01 Traditional Black Box | Finite State Function | 1. Their
[76] Application Machines approach is
Diagram randomly
traversed in
the finite
state
machines
diagram.

2. Their

approach

45

P in

requires a lot
of skills for
testers (e.g.
formal
language,
automata
theory, graph
theory and
elementary
statistics.)

RGOO [85]

Traditional

Application

Black Box

“Use Case and
Statechart
diagram

Function

1. Need to
improve the
integration of
non-
functional
‘requirements
with
_scenarios and
‘Statechart
diagram.

2. Limit to the
data
-annotations
and
performance
requirements
in deriving
test cases
from
annotated
state-charts.

JSW07 [4]

Traditional
Application

Black Box

Sequence
diagram

Function

Lack of an
automated test
case generation
tool.

CCDHIM
00 [7]

Traditional
Application

Black Box

Class, Object
and State

diagram

Function

Limited to
branch coverage
only.

ROMO8
(66]

Web
Application

Black Box

Statechart
diagram

Function

Cannot support
tests involving
concurrent
access of web
application by
multiple users.

KLHO00
[43]

Web
Application

Black Box

Object
Relation
Diagram and
Object State
Diagram

Function

Limited to a few
test artifacts to
facilitate
regression
testing and
maintenance of

46

applications.

SKF06
[104]

Web
Application

Black Box

Extend Finite
State
Machine
(EFSM)

Non-
Function
(Performan
ce)

Lack of
flexibility for
varying
workload
characteristics in
a controlled
manner,

NDO3
[105]

Web

Application

Black Box |

Use Case

Function

1. Manual
process of
assigning
priorities test
cases.

2. Limit to the
\ functionality
‘of web
application.
Their
‘approach
“cannot
support the
_relationship

~ between the
-navigation
and
functionality
of web pages
(e.g. page
testing and
hyperlink
testing).

AOA04
(1]

Web
Application

Black Box

Finite State
Machine

Function

Test case
generation effort
is too manual.

CMQO7
[166]

Web
Application

Black Box

Page-Flow
diagram

Function

Limited to only
the interaction
of components
n web
application,

MCLQO?
[72]

Web
Application

Black Box

Page-Flow
diagram

Function

Limited to only
the interaction
of components
in web
application.

47

2.2.3 Source Code-Based Test Case Generation Techniques

This section discusses an overview of how this technique works and provides
a comprehensive survey of existing source code-based techniques.

An overview of this technique can be found as follows:

Source Code-Based Test Case
Generation Techniques

Saoutce Bi wﬂva

& Control - IET
o . Flow CWerago Tott(,:':nses
ogram {
or Saph rategy i
Softiware @ Manual -TestCaselD
Gm -TestData

under Test
-Test Sequence
-Expected Result
-Actual Result
-Pass/Fail Status
Control FlowGraph TestCase Generation Methods Results

Figure 2-6 Source Code-Based Test Case Generation Techniques

From Figure 2-6, source code-based techmiques generally use control flow
information to identify a set of paths to be covered and generate appropriate test cases
for these paths. The control flow graph can be derived from sousce code. The result is
a set of test cases with the following format: (a) test case ID (b) test data (c) test
sequence (also known as test steps) (d) expected result (e) actual result and (f) pass or
fail status.

The following paragraphs describe the source code-based techniques that have
been proposed for traditional and web-based applications.

Beydeda [158] presented a novel approach to automated test case generation.
Several approaches have been proposed for test case generation, mainly random,
source code-based, goal-oriented and intelligent approaches [151]. Random
techniques determine test cases based on assumptions concerning fault distribution,

e.g. [6]. Source code-based techniques generally use control flow information to

48

identify a set of paths to be covered and generate appropriate test cases for these
paths. These techniques can further be classified as static or dynamic. Static
techniques are often based on symbolic execution e.g. [29] whereas dynamic
techniques obtain the necessary data by executing the program under test e.g. [94].
Goal-oriented techniques identify test cases covering a selected goal such as a
statement or branch, irrespective of the path taken e.g. [151]. Intelligent techniques of
automated test case generation rely on complex computations to identify test cases
e.g. [127]. Another classification of automated test case generation techniques can be
found in [127]. Their algorithm proposed in this article can be classified as a dynamic
path-oriented oneé: Its basic idea is similar to that in [94]. The path*to_be covered is
considered step=by-step, i.e. the goal of covering a path is divided into sub-goals, test
cases are then searched to fulfill them. The search process, however, differs
substantially. In Bogdan’s work [94], the search process is conducted-according to a
specific error fumetion. In their approach, test cases are determined using binary
search, which requires certain assumptions but allows efficient test case generation.
Yang [84] presented-a ‘web application architecture {o support testing of the
web application. The architecture .covem application model extraction, test execution
automation, and test design automation. In addition, practitioners normally use a
graph-based application model to represent the behavior of web-based applications.
They are interested in extending the control flow graph (e.g. nodes, branches, and
edges) to model web applications. The nodes in the control flow graph represent a
programming module (e.g. single file such as .html, .cgi and .asp). The branch could
be the user branch and application branch. The user branch represents the user
selecting one of the hyperlinks from the browsed document in the browser. The

application branch represents the current programming module forwarding control to

49

other programming modules for further processing based on application logic. The
extended model is further used to generate test cases by applying the traditional flow-
based test cases generation technique. They adopt two path testing strategies:
statement and branch coverage for their environment. The IEEE software testing
standard regards statement coverage as the minimum testing requirement. Real world,
practical program testing requires both the statement and branch coverage. They
declared four major steps for their testing activitiés in their framework: (a) application
model construction (b) test'Case construction and composition'(¢) test case execution
and (d) test result validation and measurement.

Bad webvapplications can have far-ranging consequences~on businesses,
economies, scientific progress, health and so on. Web application testing will play a
more and more relevant part for ensuring requested software quality. Many aspects
regarding web application testing have not been sufficiently investigated yet, and
many open questions still need to be addressed, both in the technological and in the
methodological field. Miao [73] proposed an approach to generating test paths for
web applications. The 'inténtion is to help web applicationi testers to ensure a
reasonably comprehensive set of lésts‘. The overall approach is simple and convenient.
The main steps are: (a) construct a digraph from the web application schema (b) add
an imaginary sink node for the default pages or pages leading nowhere (c) build a
regular expression characterizing the digraph and (d) extract individual source-to-sink
sequences from the regular expression.

In conclusion, the above techniques can be summarized as the following table.

Table 2-3 Source code-based Test Case Generation Techniques

50

SruRLC

binary path.
YHWC99 | Web ‘White Box Branch Limited to statement
[84] Application Coverage and branch coverage.
Strategy
MQS08 Web White Box Control Flow | One of the most
[73] Application Graph important problems of
Approach test generation is

J adequacy criteria.

2.3 Test Data Generation Technique

This section descﬁbbs'. test data generat.ion techniques in details. Also, it
discusses a limitgtigh of each existing technique which has been researched in the
literature. .

Through the years a number of different methods for generating fest data have
been presented. such as Jon’s studies [50], Grindal’s work [107) and Hayes’s works
[67]. This dissertation classifies the existing test data generation 1echﬁiqu_es, based on

source information from where test data can be derived, as follows:

A099[15] —KA98 [27]
0LAAQ3 (81] L— K90(94]
BBHO2 (116] 1099 [80)

= BFSBTO6 [53]

= LKHHOO [39]

Figure 2-7 A Classification of Test Data Generation Techniques

51

Figure 2-7 presents that there are two groups of test data generation
techniques: (a) specification-based test data generation techniques and (b) source
code-based test data generation techniques. These techniques can be described in

details as follows:

2.3.1 Specification-Based Test Data Generation Techniques
This section discusses an overview of how this technique works and provides
a comprehensive survey of existing specification-based techniques.

An overall of this technique can be found as follows:

Specification-Based TestData
Generation Techniques
i . XMLF t
ReQEA’ - . " F;:a Graph + TestData
¥ Approach i
Documents Based i
Document -TestCase ID
-Input Data
-Output Data
SpecificationDocuments TestDataGeneration Methods Resuits

Figure 2-8 Specification-Based Test Data Techniques
From Figure 2-8, the specification-based techniques are methods to generate
test data from specification documents such as state-based specification [15][81],
OCL and test specification language (TSL) [116]. Eventually, those techniques
generate a set of test data with the following format: (a) test case ID (b) input data and
(c) output data.
The following paragraphs survey current specification-based test data

generation techniques that have been proposed for a long time.

52

Previous attempts to automate the test generation process have been limited,
having been constrained by the size and complexity of software, and the basic fact
that in general, test data generation is an un-decidable problem. Meta-heuristic search
techniques offer much promise in regard to these problems. Meta-heuristic search
techniques are high-level frameworks, which utilize heuristics to seek solutions for
combinatorial problems at a reasonable computational cost [111].

Abdurazik [15][81] defined the-following definition in their work: Test
requirements are speeific things that must be satisfied or covered during testing; e.g.,
reaching statements are the requirements for statement coverage. Test specifications
are specific descriptions of test cases including test data, often asseciated with test
requirements or criteria. For statement coverage, test specifications are the conditions
necessary to reach a statement. A testing criterion is a rule or collection of rules that
impose test requirements on a set of test cases. A testing technique guides the tester
through the testing process by including a testing criterion and a process for creating
test data values. A test case is a general software artifact that includes test data input
values, expected outputs, and any inputs that are necessary to put the software system
into the state that is appropriate for the test input values. A TSL is a language that can
be used to describe all components of a test case including input and output data. The
components that they consider are test data values, pre x values, verify values, exit
commands, and expected outputs. Test data values directly satisfy the test
requirements, and the other components supply supporting values. A test data value is
the essential part of a test case, the values that come from the test requirements. It
may be a command, user inputs, or software function and values for its parameters. In
state-based software, test data values are usually derived directly from triggering

events and preconditions for transitions. A test data prefix value includes all inputs

53

necessary to reach the pre-state and to give the triggering event variables their before-
values. Any inputs that are necessary to show the results are verify values, and exit
commands depend on the system being tested. Expected outputs are created from the
after-values of the triggering events and any post-conditions that are associated with
the transition. In fact, the papers [15][81] presented a technique, which use Offut’s
state-based specification test data generation model to generate test data from UML
state charts diagram.

Offutt [81] presented general criteria for generating test inputs from state-
based specifications; The criteria include techniques for generating tests at several
levels of abstraction for specifications (transition predicates, transitions, pairs of
transitions and sequences of transitions). These techniques provide coverage criteria
that are baséd on the specifications, and are made up of several parts, including test
prefixes that contain inputs necessary to put the software into the appropriate state for
the test values..The test generation process includes several steps for transforming
specifications to tests. These criteria have been applied to a case study to compare
their ability to detect seeded faults,

In object-oriented modeliﬁg, object constraint language (OCL) is used in the
UML Semantics document to specify the well-formedness rules of the UML meta-
model. OCL is a pure expression language and can be used to specify invariants,
precondition, post-condition, and other kind of constraint (when the expressive power
of the notation is not enough). The aim is often to constrain classes and types, to
define pre- and post- conditions on operations and methods, to describe guards, and
constraints on navigation. Despite its limitations, OCL seems to be now the main used
language to formally constrain object-oriented models. Benattou [116] presented

partition analysis concept, on which their approach for generating test data is based,

54

TR ASSUMPTION UNIVERSITY LIBRARY

and they show by an example how to generate data from an OCL specification. The
paper [116] had chosen to use the System Process Scheduler to illustrate partition
analysis from OCL specification for two reasons: First, the specification of the system
is very simple and second, they want to compare the results given in the context of the
Vienna Development Method (VDM) specification with the object context of OCL.

The above current techniques can be summarized as follows:

Table 2-4 Specification-Based Test Data Techniques

A099 Traditiona Black Box | State-based Graph | Their approach
[15] Application Specification | Approach [is® limited to
and TSL software cost
‘reduction (SCR)
specifications
that” have only
one mode class
and UML
-specifications
/'that have only
‘one class with a
statechart.
OLAAO3 Traditional Black Box | State-based Graph © | It is not clear
[81] Application Specification | Approach | that their
' ‘ approach 18
based on which
UML standard
specification.
BBH02 Traditional Black Box OCL Partial 1. Their

[116] Application specification | Analysis approach
Technique does not
support
inheritance
concept in
UML
diagram.

2. The
specification
of the
characteristic
s they are
using in their
approach is
not
completed.

55

2.3.2 Source Code-Based Test Data Generation Technigues

This section discusses an overview of how this technique works and provides
a comprehensive survey of existing source code-based techniques.

An overall of this technique can be found as follows:

Source Code-Based TestData
Generation Techniques

—_— . | Data
Source Metamodel / Algorithm

Algoritim
Code/ Control o wouth

i Flow a
Dr So:::.m Rach Metamodel ;
o ' Approach -TestCaselD
Under Tast sk e
-Output Data
Source Code /| Graph TestData Generation Methods Results

Figure 2-9 Source Code-Based Test Data Techniques

From TFigure 2-9, the source code-based test data generation. techniques are
techniques to generate and prepare test data from control flow graph. The control flow
graph can be derived from source or binary code. There are a few researchers who
have researched this technique: Eventually, those techniques generate a set of test data
with the following format: (a) test case ID (b) input data and (c) output data.

The following paragraphs survey current path-oriented test data generation
techniques that have been proposed for traditional and web-based application for a
long time,

Korel [27] presented a novel approach for automated regression testing. The
main goal of this approach is to generate test data for a modified program such that
each test data reveals a fault(s). The approach concentrates on testing automatically
the common functionality of the original program and its modified version, ie., it is
used for programs whose functionality is unchanged after modifications. This is

56

achieved by utilizing the original version of the program in the process of test data
generation. Specifically, this approach attempts to automatically generate an input
data on which the original program and its modified version yield a different result
(output). If such an input is found then an error(s) has been uncovered because both
versions are expected to produce the same result. This error might be in the original
program, the modified program, or in both programs. However, the error is most
likely located in the modified program because.the original program was well tested
and previously used without problems.

Additionally,) Korel [94] presented an alternative approach of test data
generation, referred to as a dynamic approach of test data generationy”Which is based
on actual execution of a program under test, dynamic data flow analysis, and function
minimization methods. Test data are developed using actual values of input variables.
When the program is executed on some input data, the program execution flow is
monitored. If, during program execution, an undesirable execution flow at some
branch is observed then a real-valued function is associated with this branch. This
function is positive when @'branch predicate is false.and negative when the branch
predicate is true. Function minimization search algorithms are used to automatically
locate values of input variables for which the function becomes negative. In addition,
dynamic data flow analysis is used to determine input variables which are responsible
for the undesirable program behavior, leading to significant speed-up of the search
process. In the paper’s approach [94], arrays and dynamic data structures can be
handled precisely because during program execution all variables values, including
array indexes and pointers, are known; as a result, the effectiveness of the process of

test data generation can be significantly improved.

57

Pringsulaka [140] proposed a technique called Coverall algorithm, which is
based on a conventional attempt to reduce cases that have to be tested for any given
software. The approach utilizes the advantage of Regression Testing where fewer test
data would lessen time consumption of the testing as a whole. The technique also
offers a means to perform test case generation automatically. Compared to most of the
techniques in the literature where the tester has no option but to perform the test case
generation manually, the proposed technique provides a better option. As for the test
data reduction, the technique uses simple algebraic conditions to assign fixed values
to variables (maximum, minimum and constant variables). By doing this, the variables
values would be"limited within a definite range, resulting in fewer numbers of
possible test ‘data to process. The technique can also be used in program loops and
arrays. After a comparative assessment of the technique, it has been confirmed that
the technique ‘could reduce number of test data by more than 99%. As for the other
features of the technique, automatic test data generation, all four step of test data
generation in the proposed technique have been converted imto an operational
program.

Pringsulaka [140] resolved the following problems in order to improve the test
performance: (a) reducing the number of test data (b) automatic test case generation
and (c) minimum number of test runs. The purposes of the technique are:

1. To reduce number of all test data. Generally, the larger the input domain,

the more exhaustive the testing would be. To avoid this problem, a
minimum set of test data needs to be created using an algorithm to select a
subset that represents the entire input domain. In addition, when test data
are larger, the testing itself would take longer to run, particularly for

regression testing where every change in the program demands repeat

58

testing. Therefore, reducing number of the test data does have advantage in
efficiency
2. To find the technique for automatic generation of test data. To reduce the
high cost of manual software testing while increasing reliability of the
testing processes, IT researchers and technicians have found methods to
automate the reduction process. With the automatic process, the cost of
software development could be significantly reduced.
3. To keep a minimum number of test runs. The best technique must be able
to generate
Hayes [80]'was interested in the input validation testing (IVT)technique. The
IVT technique has been developed to address the problem of statically analyzing input
command syntax as defined in English textual interface and requirements
specifications and then generating test data for input validation testing..The technique
does not require’design or code, so it can be applied early in the lifecycle Input
validation testing (IVT) focuses on the specified behavior of the system and uses a
graph of the syntax of user commands. IVT incorporates formal rules in a test
criterion that includes a mcasurenient and stopping rule. Several grammar analysis
techniques have been applied as part of the static analysis of the input specification.
This discusses the four major aspects of the IVT method:
1. How to specify the format of specifications
2. How to analyze a user command specification
3. How to generate valid test data for a specification
4. How to generate error test data for a specification.
Brottier [53] were interested in the automatic generation of test models, being

given a meta-model describing the input domain of a model transformation. An

39

algorithm is defined to automate test model generation. The algorithm takes a meta-
model and fragments of models as an input and produces a set of test models. The
model fragments are either provided by the tester or derived from the meta-model.
They specified parts of the meta-model that should be instantiated with particular
values that are interesting for testing. The algorithm then consists in combining model
fragments and completing them to build valid instances of the meta-model. The
various strategies used to combine -aﬁd:cémpleie amodel to make it conformant to its
meta-model are presented as well as the limitations of this algorithm.

Chien-Hung tSQj extended traditional data flow testing techniques to web
applications. Several data flow issues for analyzing HTML documents in web
applications are discussed A test model that captures data flow lest artifacts of web
applications iS presented In the test model, each component of a web.application is
modeled as aﬁ object. The dataflow information of the web application is captured
using flow graphs. From the test model, dataflow test data for lhe'&e’o application
then can be derived based on the intra-object, inter-object,” and inter-client
perspectives.

The above current techniqués can be 'Sunlinariz;td as follows:

Table 2-5 Source Code-Based Test Data Techniques

o

1. Limit to .‘ cuona]i
[27] Application Approach testing.
2. Their approach is used for

programs where functionality
is unchanged after

modifications, during
regression testing.
K90 [94] | Traditional White Box | Heuristics | Their approach is limited to local
Application Approach | optimization for test data
& Function | generation.

minimizati

60

Sl S
on search

algorithms
HO99 Traditional White Box Input Their approach is limited to
[80] Application Validation | statically analyzing input
Test command syntax as defined in
Method | English textual interface and
requirement specifications.
BFSBTO06 | Traditional White Box | Metamodel | Their approach can not deal with
[53] Application .t Transforma | static constraints associated to
_ < tion © - the input meta-model.
LKHHO00 Web _ 4| s/ | Lack of automated test data
[39] Application’ | Approach genemnon tool.
=N & Search ¢/
Algorithm

2.4 Test Seqngnce Generation Technique

This -gaeman describes test sequence generation techniques "m_delalls Also, it

discusses a Iﬂn;tauon of each existing techmque which has been T&Eeamhed in the

literature.

Several mroaches have been proposed to Idennfy the séqﬁeme of test case,

such as Sanjai’s wo,rk [159] Hyungchoul s work [75] and Frohhch’s work [137].

This dJSSCl't&th‘ﬂ nhssxﬁes the cJtlsting test seqwm: generation techniques,

based on source mformatmn froni %&d'ﬁesé d&tﬁ"tﬁn be derived, as follows:

61

[159] —— KKBKO7 [75)

LIXIXGO4
[184]

— FLLOB([176)

e FLO0{137]
—— SMBOS [131]
——" W192 [38]
—— GLMO4 [170]
— S508[167]
——— SMO07 [119]

b— 5J08[138]

Figure 2-10 A Classification of Test Sequence Generation Technigues

Figure 2-10 presents that there are two groups of test sequénce generation
techniques: (a).specification-based test sequence generation techniqués.and (b) sketch
diagram-based test sequence generation techniques. These techniques can be

described in details as follows:

2.4.1 Specification-Based Test Sequence Generation Techniques
This section discusses an overview of how this technique works and provides
a comprehensive survey of existing specification-based techniques.

An overall of this technique can be found as follows:

[Specification-Based |
Specification TestSequence Test ?Qqﬂ'ﬂw
Docunwnss Generation Techniques i
-TestCase D
-TestSteps
Specification Documents Test Sequence GenerationMethods Results

62

Figure 2-11 Specification-Based Test Sequence Techniques

From Figure 2-11, the specification-based techniques are methods to generate
test sequence from specification documents. A few researchers have researched this
area. Eventually, those techniques generate a set of test data with the following
format: (a) test case ID and (b) test steps.

The following paragraphs survey current specification-based test sequence
generation techniques that thave been-propoesed for /traditional and web-based
application for a long time.

Rayadurgam [159] outlined a specification-centered approach to testing where
they rely on a formal model of the required software behavior for test-case generation,
as well as, anoracle to determine if the implementation produced the correct output
during testing, Their work is based on the hypothesis that model checkers can be
effectively used to automatically generate test sequences that provide a predefined
structural coverage of a formal specification. Paper [154] defined formalism suitable
for representing software engineering artifacts in which vatious structural test
coverage criteria can be defined: Here, they show how this formal foundation can be
used to generate structural tests from a formal specification of the required software
behavior, using a small example from the avionics domain. To illustrate the approach,
they define a set of structural coverage criteria that are applicable to requirements
specified in RSML [186][199] or a similar formal language. While the specific
criteria are indeed dependent on the specification language, the formal foundation is
language independent and the underlying approach is equally applicable to any other
language that can be model-checked. They show how the model can be translated into
the input language of a model checker like SMV and how the coverage criteria can be

captured as CTL or LTL properties. Test sequences are then generated by challenging

63

a model checker to find counter examples to the coverage criteria - such a counter

example comprises a test sequence. This strategy has been used by [2] and [130].

2.4.2 Sketch Diagram-Based Test Sequence Generation Techniques

This section discusses an overview of how this technique works and provides
a comprehensive survey of existing sketch diagram-based techniques,

An overall of this technique can be found as follows:

Sketch Dlagram-Based Test
SequenceGeneration Technique

Depth
o = XML/ XMI First Search Test Sequence
Activity M 3

ethod
- PO Pa D HIb
Automated
Graph
roac
g Approach

=TestCase ID
-Test Steps

UML Model diagrams TestCase Generation Methods Results

Figure 2-12 Sketch Diagram-Based Test Sequence Techniques

From Figure 2-12, there are many types of diagram used to generate test
sequences, which are: 1) activity diagram 2) state diagram and 3) sequence diagram.
Each method can be described as below.
1. Activity Diagram Based Technique

The following describes a test sequence generation technique, which prepare
and generate test sequence from UML Activity diagram.

Kim (75] proposed a method to generate test sequence from UML activity
diagrams that minimizes the number of test steps generated while deriving all
practically useful tests. Their method first builds an input/output (I/O) explicit

Activity Diagram from an ordinary UML activity diagram and then transforms it to a

64

directed graph, from which test steps for the initial activity diagram are derived. Their
procedure for generating test sequences can be found as follows:
1. Derive a system of activity diagram from given specifications.
2. Derive IOAD Diagram Model Activity Diagram can be presented via
specification writers and implementers).
a) Delete data objects and use them as input data
b) Delete implicit operations (e.g. read action and write action)
¢) Leavesgend signal and accept event actions
3. Based on'two principles, construct a graph from IOAD. They focus on the
interrelation of subsystems from a stable state of a system to asstable state.
4. Traverse-nodes based on all-paths test coverage criterion.
5. Generate test sequences.
Linzhang [184] proposed an approach to generate test sequences directly from
UML activity diagram using gray-box method, where the design is reused to avoid the
cost of test model cteation. In their approach, test scenarios are directly derived from
the activity diagram mod'eli’ﬂg an.operation. Therefore, all.the information such as test
sequences or test data is extracted from each test scenario. At last, the possible values
of all the input/output parameters could be generated by applying category-partition

method, and test suite could be systematically generated to find the inconsistency

between the implementation and the design. Gray-box testing13 method, which was

13
Kaner defines gray box testing as involving inputs and outputs, but test design is educated by

information about the code or the program operation of a kind that would normally be out of view of
the tester. Gray box testing can be seen as the blending of structural and functional testing methods
throughout the entire testing procedure. Gray-box testing examines the activity of back-end
components during test case execution. There are two types of problems that can be encountered during
gray-box testing. The first is when a component encounters a failure of some kind, causing the
operation to be aborted. For example, an edit check to allow dollars does not accept dollar amounts, i.e.
"AAA". The second is when the test executes in full, but the content of the results is incorrect.
Example: calculations - produces a number but it is incorrect.

65

proposed in [141] in the designer’s viewpoint, generates test sequences based on high

level design models which represent the expected structure and behavior of the

software under test (SUT)M. The design specifications are the intermediate artifact
between requirement specification and final code. They preserved the essential
information from the requirement, and are the basis of the code implementation. Gray
box method combines the white box method and the black box method. It extends the
logiéal coverage criteria of white box method and finds all the possible paths from the
design model which: describes the expected behavior of ‘am operation. Then it
generates test sequences which can satisfy the path conditions by black-box method. It
can find problems which used to be ignored by both black and white method. Gray-
box method could systematically generate test sequences directly from. the activity
diagrams which can be used to test the system at code level. Firstly.it parses the
activity diagram-and derives the set of test scenarios to satisfy the basi¢ path coverage
criteria. Then, éach test scenario is processed. The input and output parameters are
extracted from the action sequence. The constraint conditions are extracted from the
guard conditions in each transition of the test scenario séquence. The object method
sequence which represents the internal behavior of the software in runtime is
extracted from activity states and corresponding objects. At last they use category
partition method [174] to generate proper combination of values of input and output
parameters to satisfy the condition constraints. So the input sequence, expected object
method call sequence and expected output. And they could also generate all test

sequences to form the test suite for the activity diagrams.

14
SUT refers to software that is being tested for correct operation. The term is used mostly in software

testing. A special case of a software is an application which, when tested, is called an application under
test. The term SUT means also a stage of maturity of the software; because a software test is the
successor of integration test in the testing cycle.

66

Farooq [176] presented a novel control-flow based test sequence generation
technique using UML 2.0 Activity Diagram, which is a behavioral type of UML
diagram. Like other model-based techniques, this technique can be used in the earlier
phases of the development process owing to the availability of the design models of
the system. The Activity Diagram model is seamlessly converted into a Colored Petni
Net. They proposed a technique that enables the automatic generation of test
sequences according to a given ooﬁrage criteria from the execution of the Colored
Petri Nets model.

The above current techniques can be summarized as follows:

Table 2-6 Activity Diagram-Based Test Sequence Generation Techniques

o AL LA uf yi i

KKBKO07 Black-box Graph Too many manual efforts left in their app
[75] Testing Approach
LIXJXGO | Gray-box Depth First | Their approach' ‘does not utilize UML 2.0

4 [184] Testing Search Activity diagram specification.” They do not
Method | mention any UML Activity diagram
specifications.
FLLOS Black-box Random- | 1. Their approach is limited to the intermediate
[176] Testing walk level of UML 2.0 Activity diagram.
’ algorithm

2. Their ‘approach ‘covers only control flow

Aied ¢n related aspeets of the activity diagram.

probability |

2. State Chart Diagram Based Technique

The following describes a test sequence generation technique, which prepare
and generate test sequence from UML State Chart diagram.

Frohlich [137] had recently shown how use cases can be systematically
transformed into UML state charts considering all relevant information from a use
case specification, including pre- and post conditions. The resulting state charts can
have transitions with conditions and actions, as well as nested states (sub and stub

states). The current paper outlines how test suites with a given coverage level can be

67

automatically generated from these state charts. They do so by mapping state chart
elements to the STRIPS planning language. The application of the state of the art
planning tool graph plan yields the different test sequences as solutions to a planning
problem. The test sequences and test data can be used for automated or manual
software testing on system level. Using state models to derive test sequences has been
common practice in the software testing world for some time [106]. One of the
model-based testing goals is to automate the. test sequence generation from test
models as much as possible. Their algorithm generates a set of valid test sequences,
where the preconditions of all transitions are established either by previous actions or
by properties of the test data. This is made possible by exploiting artifact intelligent
(AD) planning techniques, which allow us to systematically search for paths in the
state machin€, which satisfy all preconditions of the transitions. In particular, they
described the test generation problem as a STRIPS planning problem. [143] and solve
it with the graph plan tool [1]. The scope of their method is the generation of test
sequences supplemented by constraints on the test data, as far as these can be derived
from the information presentinthe state machine.

Samuel [131] proposed the automatic 'lc.st sequence generation from state
machine diagrams. In their approach there are three main steps in fest sequence
generation. The first step is to select a predicate. In this step, they select a predicate on
a transition from a UML state machine diagram. The next step is to transform the
selected predicate to a predicate function. In the third step, they generated test
sequence corresponding to the transformed predicate function. The generated test
sequences are stored for use with an automatic tester. Once the test sequences

corresponding to a particular predicate are determined, they repeated these steps by

68

selecting the next predicate on the state machine diagram. The process is repeated
until all predicates on the state machine diagram have been considered.

Wang [38] proposed an axiomatic test sequence generation method based on
the extended finite state machine (EFSM) model [61], which can be easily translated
from or to the normal specification form of Estelle. A program verification technique,
called axiomatic semantics [133], is applied to the conformance testing area. When a
protocol specification is verified, \observable event “sequences are recorded as
candidate test sequences. By traversing a carefully chosen path in the EFSM, one can
observe the effect.produced by the path and confirm the correctness of the transitions
in the path. No data flow graph is needed, and the test sequences are generated
mechanically from the specification.

Gnesi [170] proposed a formal conformance testing relation and a test
sequence generation algorithm for input enabled labeled transition systems over i/o-
pairs (IOLTSs); IOLTSs are LTSs where each state has (at least)”one outgoing
transition for each ¢lément of the input alphabet of the transition system. Intuitively,
such transition systems cannot refuse any of the specified input events, in the sense
that they cannot deadlock when .suc’:h events are offered to them by the external
environment. Whenever a machine, in a given state, does not react on a given input,
its modeling IOLTS has a specific loop-transition from the corresponding state to
itself, labeled by that input and a special “stuttering” output-label. IOLTSs have been
used as semantic model for a behavioral subset of UMLSCs [152].

Sokenou [167] presented an approach that combines UML components for
class and integration testing of object-oriented programs. The main information is
extracted from sequence diagrams, which is complemented by the use of state

diagrams. State diagrams have two functions: initialization of participating objects in

69

a scenario and —in combination with object constraint language (OCL) constraints—
serving as a test oracle (not shown in their work). Beyond the presented technique,
they have developed the integration of the derived test oracles into the program under
test using aspect-oriented programming techniques.

The above current techniques can be summarized as follows:

Table 2-7 State Diagram-Based Test Sequence Generation Techniques

.’"

=ansbrieshoabetone

; HH o AR = WLy
Black Bo Limit to weak coverage criteria.

[137] £

SMBO08 Black'Box Evolutionary algorithms like genetic algorithms can provide

[131] N, globally optimal solutions but are likely to be computationally
intensive.

WL92 Black Box There is an exhaustive search for suitable paths:

[38]

GLMO04 Black Box | Their approach does not cover UML 2.0 Statechart diagram
{170] specification.
S08 [167] Black Box | Lack of the interaction of UML diagrams.

3. Sequence Diagram Based Technique

The following:describes a test sequence generation technigue, which prepare
and generate test sequence fiom UML Sequence diagram.

Sarma [119] presented a novél. approach .o'f' generating test sequences from
UML design diagrams. They considered use case and sequence diagram in their test
sequence generation scheme. Their approach consists of transforming a UML use case
diagram into a graph called use case diagram graph (UDG) and sequence diagram into
a graph called the sequence diagram graph (SDG) and then integrating UDG and SDG
to form the System Testing Graph (STG). The STG is then traversed to generate test
sequences. The test sequences thus generated are suitable for system testing and to

detect operational, use case dependency, interaction and scenario faults.

70

Samuel [138] presented an approach to generate test sequences from UML 2.0
sequence diagrams. Sequence diagrams are one of the most widely used UML models
in the software industry. Although sequence diagrams are used for modeling the
dynamic aspects of the system, they can also be used for model based testing. Existing
work does not encompass certain important features of UML 2.0 sequence diagrams.
Their work considers many of the novel features of UML 2.0 sequence diagrams like
alt, loop opt and break to generate fest wqucmcs. These are important features as far
as testing are concgm_ed.. ' |

The above current techniques can be summarized as follows:

Table 2§”chucnce Diagram-Based Test Sequence Generation:Techniques

Black Box | 1, Lack of mtct:on of UML diagrams. J
i ‘2. Their approach does not cover UML 20 Sequence

4 dlagram specification.
SJos “Black Box | Their sppmach does not support fully UML 2.0 Sequence
[138] . | diagram specification. :

71

2.5 Test Case Generation Process

According to the literature review, the following shows the test case

ASet of Model Source Aset of]
Requirementd Diagrams Cade nput |

/ Test Case Genaration Process &

generation process:

Figure 2-13 Test Case Generation Process

Figure 2-13 presents that there are two processes in the test case generation
technique, which break down briefly as follows:
1. Define. This is a first process that allows software testing engineers to
gather, analyze and define all pre-requisite and required information, such as
requirements, constraints and type of testing. There are four sub-processes described

shortly as follows:

72

Table 2-9 First Process in “2D-4A-4D” Test Case Generation Process

Ve
Analyze To be able to | Software test Requirement | Understanding of
Requirem perform engineers need to | or Function requirements,
ents black-box walk through and | Specification | constraints and an
Specificati testing understand all Document. overview of how to
on activities. requirements or test in general.
To function in the
understand specification.
requirements
or function
specification
document.
To verify and
validate
between the
requirements
and system,
Analyze . To be able to | Software test Detailed Understanding of
Model perform engineers have to | design information in the
Diagrams black-box analyze the detail | diagrams. diagrams in order 1o
testing design diagrams, be able to derive tests
activities. such as UML Use from them.
To get better | Case diagram,
tnderstand | UML Activity
the design | diagram and
diagrams. State Chart
To verify that | diagram.
the - behavior
of system_is
match to the
design. K. ;
Analyze To be able to | Software test Available of | Understanding of the
Program / perform engineers have to | program or testing strategy /
Source white-box analyze and walk | source code. | approach for which
Code testing through program or how many line of
activities. / source code in code in the program
To be able to | order to run a should be tested. In
understand white-box testing addition, another
and help | activities. output should be a
software control flow graph
developer to transformed from
test program / source code.
source code.
Analyze To be able to | Software test Requirement | Understanding a type
Type of identify engineers need to | Specification | of testing in order to
Testing which type of | analyze and and prepare a proper
testing identify which Diagrams. testing strategy or
should be | type of testing plan.
executed, should be
To allow to | executed.
design test

73

strategy or
plan for each
testing type
(ie.
functionality,
performance
and security).

2. Design. This is a second process that aims to design, prepare and generate

all elements in a set of tests, stch as fest data, tést séq@ﬁnee-and dependencies of each

test case. This process.contains the following sub-processes:

Table 2-10 ':Stéond Process in “2D-4A-4D” Test Case Generation Process

Design To design a | Software test Requirement | A set of test
Test high level | engineers have to | Specification, | scenarios.
Scenario scenario for | design many Diagrams :

lesting. testing scenarios | and Source

To be able 10 | 46 cover all Code.

use as a i

seference 1o | paogen o

wverify the

requirements

and - testing

SCenario; . -
Design To design - a.| Software test » _Requirc | Many sets of input
Input Data set of input'| engineers have to°| « ~ment data.

data used | designmanysets /| -~ Specifica

during a test of input data that tion and

execution are used for Source

phase. . Code.

To design a ne: e A set of

realistic input test

data, both of scenarios

positive and

negative data.

To design a

special case

of input data

(e.g. special

characters or

special

combination

of symbols

and

characters)
Design To design a | Software testing | ® Require | Many set of test
Test sequence of | engineers have to ment sequences.

74

testing

design a set of

Specifica

elements, such as
actual results,
dependencies,
business impact
and defect id,

activities. test sequence or tion and
*+ To steps for each test Detailed
understand scenarios Diagrams
test steps of i
each test e A set of
scenario test
scenarios
Design To complete | Software test A setoftest | A complete set of test
Other designing a set of | engineers must scenarios. case.
Elements | test cases complete aset of
test cases by
adding additional
required

The above process can help software test engineers to design, prepare and

generate all elements in a set of test cases. It can ensure that all elements are well-

prepared. In addition, this process contains all required important or critical elements

that can be used in the general commereial industry, such as test scenario, test case,

test data, test sequence and dependencies of each test case.

2.6 Related Works

This study reveals that there are additional topics related to test generation

techniques, which are used in this research [8][54][88][93][144][192]. The following

lists those related works.

1. Prioritize Requirement. Donald [54] argued that IT software projects cannot

avoid the following facts during SDLC process:

i

a. All requirements are not equally important.

c. Most project schedule is very tight and long

b. All projects have limited resources such as effort, time and cost.

The above facts have proven that prioritizing requirements is a critical
important part during SDLC process.

2. 1ISO 9126 Standard. ISO9126 standard is an international standard and well-
known for the evaluation of software quality. Kilidar [8] used this standard to
evaluate the quality of safety-critical systems where lives are at risk if
software fails. This has proven that this standard is one of the most important
standards for evaluating the software quality.

3. Testing Metrics. In addition to the above standard, many testing metrics have
been proposed [88][93][144] to measure the quality of software. This has
proven that metrics are one of the most interesting parts in software testing
area.

Next sections described in detail the above related works for this study.

2.6.1 Prioritize Requirement

Donald [54] addressed the purpose of requirement prioritization as follows:

8 Dcllermine the_relative _necessity of the requirements. Whereas all
requirements are mandatory; some- are more critical than others. For
example, failure to implement certain requirements may have grave
business ramifications that would make the system a failure, while others
although contractually binding would have far less serious business
consequences if they were not implemented or not implemented correctly.

2. Help programs through negotiation and consensus building to eliminate
unnecessary potential “requirements” (i.e., goals, desires, and “nice-to-
haves” that do not merit the mandatory nature of true requirements).

3. Schedule the implementation of requirements (i.e., help determine what
capabilities are implemented in what increment).

76

Also, Donald [54] showed the significant benefits of requirement prioritization

as below:

Modify schedule. When using an iterative incremental development cycle,
it enables the project manager and customer to modify the project schedule
to deal with the project realities of limited resources and fixed deadlines.
Improved user satisfaction. It improves user satisfaction by increasing
the likelihood that the ¢ustemer’s. most important requirements are
implemented and delivered first.

Lower risk of cancellation. The project is less likely to be cancelled
during “SDLC. This is because valuable progress is being demonstrated
with-each increment. Even if the project must be cancelled before the
delivery of the final increment, it is not a total loss because some important
functionality has been implemented and delivered.

Address all requirements. Prioritizing requirements is a good approach to
force stakeholders to address all requirements, particularly critical
requirement.

Estimate benefits. Priorities provide management and engineering with a
rough estimate of the benefit of the different requirements, which is useful
when performing cost/benefit analyses of the requirements to determine
where best to expend limited project resources in preparation for
requirements negotiation.

Prioritize investments. The requirements prioritization techniques can
help determine how to prioritize the investment of limited project

resources. For example, the project can allocate most of its limited

17

resources for quality assurance and system testing according to the highest

priority requirements.

Additionally, these researches [5][19][25][45][46][90][92][96][112][117]

[118][135][157][187] reveal that there are many requirement prioritization methods

such as Binary Search Tree (BST), 100-point method and Analytic Hierarchy Process

(AHP). Next paragraphs describe the existing methods as follows:

1. Bihary Search Tree

Binary Search Tree is an algorithm that is typically used in a search for

information and can easily be scaled to be used in prioritizing many requirements [5].

The basic approach for requirements is as follows:

1.

2

Putall requirements in one pile.

Take one requirement and put it as root node.

Take another requirement and compare it to the root node.

If the requirement is less important than the root node, compare it to the
left child node. If the requirement is more important-than the root node,
compare it to the, right child node. If .the node does not have any
appropriate child nodes, insert the new requirement as the new child node
to the right or left, depending on whether the requirement is more or less
important.

Repeat steps 3-4 until all requirements have been compared and inserted
into the BST.

For presentation purposes, traverse through the entire BST in order and put
the requirements in a list, with the least important requirement at the end

of the list and the most important requirement at the start of the list.

78

The major advantage of binary search trees over other data structures is that
the related sorting algorithms and search algorithms such as in-order traversal can be
very efficient. Binary search trees can choose to allow or disallow duplicate values,
depending on the implementation. Binary search trees are a fundamental data
structure used to construct more abstract data structures such as sets, multi-sets, and
associative arrays.

2. Numeral Assignment Technique

The Numeral Assignment Technique provides a scale for each requirement.
Brackett proposed dividing the requirements into three groups: mandatory, desirable,
and unessential. Participants assign each requirement a number on a seale of 1 to 5 to
indicate its importance. The numbers carry the following meaning:

1. Dogs not matter (the customer does not need it)

2. Notimportant (the customer would accept its absence)

3. Ratherimportant (the customer would appreciate it)

4. Very important (the customerdoes not want to be without it)

5. Mandatory (the customer cannot do without.it)

The final ranking is the Iavera'ge' of all participants’ rankings for each
requirement.

3. Planning Game

The planning game is a feature of extreme programming [19] and is used with
customers to prioritize features based on stories. This is a variation of the Numeral
Assignment Technique, where the customer distributes the requirements into three
groups, “those without which the system will not function,” “those that are less
essential but provide significant business value,” and “those that would be nice to

have.”

79

4. 100-Point Method

The 100-Point Method [96] is basically a voting scheme of the type that is
used in brainstorming exercises. Each stakeholder is given 100 points that he or she
can use for voting in favor of the most important requirements. The 100 points can be
distributed in any way that the stakeholder desires. For example, if there are four
requirements that the stakeholder views as equal priority, he or she can put 25 points
on each. If there is one requirement that the stakeholder views as having overarching
importance, he or she can put 100 points on that requirement, However, this type of
scheme only works for an initial vote, If a second vote is taken, people are likely to
redistribute their votes to get their favorites moved up in the priority schéme.

5. Theory-W

Theory“W was initially developed at the University of Southern California in
1989 [25][135]. It is also known as "Win-Win." An important point is that it supports
negotiation to solve-disagreements about requirements, so that each stakeholder has a
"win." It has two prineiples:

1. Plan the flight and flythe plan.

2. Identify and manage risks.

The first principle seeks to build well-structured plans that meet predefined
standards for easy development, classification, and query. “Fly the plan” ensures that
the progress follows the original plan. The second principle, “Identify and manage
risks,” involves risk assessment and risk handling. It is used to guard the stakeholders’
“win-win” conditions from infringement. In win-win negotiations, each user should
rank the requirements privately before negotiations start. In the individual ranking

process, the user considers whether there are requirements that he or she is willing to

80

give up on, so that individual winning and losing conditions are fully understood.
Theory-W has four steps:

1. Separate the people from the problem.

2. Focus on interests, not positions,

3. Invest options for mutual gain.

4, Insist on using objective criteria.
6. R;aquirements Triage

RequirementsTriage [46] is a multistep process that includes establishing
relative priorities for requirements, estimating resources necessary to satisfy each
requirement, and Selecting a subset of requirements to optimize probability of the
product’s suceess in the intended market. This is clearly aimed at developers of
software products in the commercial marketplace. Davis’s more recent book [45]
expands on the. synergy between software development and .marketing; he
recommends that you read it if you are considering this approach. Tt is a unique
approach that is worth reviewing, although it clearly goes “beyond ftraditional
requirements prioritization; considering business factors as well.
7. Wiegers' Method

This method relates directly to the value of each requirement to a customer
[187]. The priority is calculated by dividing the value of a requirement by the sum of
the costs and technical risks associated with its implementation [187]. The value of a
requirement is viewed as depending on both the value provided by the client to the
customer and the penalty that occurs if the requirement is missing. This means that
developers should evaluate the cost of the requirement and its implementation risks,
as well as the penalty incurred if the requirement is missing. Attributes are evaluated

onascale of 1 to 9.

81

8. Requirements Prioritization Framework
The requirements prioritization framework and its associated tool [117][118]
includes both elicitation and prioritization activities. This framework is intended to
address the following:
1. Elicitation of stakeholders' business goals for the project
2. Rating the stakeholders using stakeholder profile models
3. Allowing the stakeholders to rate the importance of the requirements and
the business goals using a fuzzy graphic rating scale
4. Ratingtherequirements based on objective measure
5. Finding the dependencies between the requirements «and clustering
requirements so as to prioritize them more effectively
6. Using risk analysis techniques to detect cliques among the stakeholders,
deviations among the stakeholders for the subjective ratings, and the
associdtion between the stakeholders’ inputs and the final ratings
9. Cost-Value Approach
A good and relatively easy to use method for prioritizing software product
requirements is the cost-value approach. This approach was created by Joachim
Karlsson and Kevin Ryan. The approach was then further developed and
commercialized in the company Focal Point (that was acquired by Telelogic in 2005).
Their basic idea was to determine for each individual candidate requirement what the
cost of implementing the requirement would be and how much value the requirement
has. The assessment of values and costs for the requirements was performed using the
Analytic Hierarchy Process (AHP). This method was created by Thomas Saaty. Its
basic idea is that for all pairs of (candidate) requirements a person assesses a value or

a cost comparing the one requirement of a pair with the other. For example, a value of

82

3 for (Reql, Req2) indicates that requirement 1 is valued three times as high as

requirement 2. Trivially, this indicates that (Req2, Reql) has value %. In the approach

of Karlsson and Ryan, five steps for reviewing candidate requirements and

determining a priority among them are identified. These are summed up below [90].

I

Requirement engineers carefully review candidate requirements for
completeness and to ensure that they are stated in an unambiguous way.
Customers and user§ (or suitable substitutes) apply AHP’s pair-wise
comparison method to assess the relative value of the candidate
requirements.

Experienced sofiware engineers use AHP’s pair-wise eomparison to
estimate the relative cost of implementing each candidate requirement.
A'software engineer uses AHP to calculate each candidate requirement’s
relative value and implementation cost, and plots these on.a cost-value
diagram.-Value is depicted on the y axis of this diagram and estimated
cost on the x-axis.

The stakeholders use. the cost-value diagram.as a conceptual map for
analyzing and discussing the candidate requirements. Now software
managers prioritize the requirements and decide which will be

implemented.

10. Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a structured technique for dealing

with complex decisions. Rather than prescribing a "correct” decision, the AHP helps

the decision makers determine one that suits their needs, wants, and understanding of

the problem. Based on mathematics and psychology, it was developed by Thomas L.

Saaty in the 1970s and has been extensively studied and refined since then. The AHP

33

provides a comprehensive and rational framework for structuring a problem, for
representing and quantifying its elements, for relating those elements to overall goals,
and for evaluating alternative solutions. It is used in a wide variety of decision
sitnations, in fields such as government, business, industry, healthcare, and education.
In other words, AHP is a method for decision making in situations where
multiple objectives are present [90][92][157]. This method uses a *“pair-wise”
comparison matrix to calculate the relative valué and costs of individual security
requirements to one another. By using AHP, the requirements‘engineer can confirm
the consistency of the result. AHP can prevent subjective judgment errors and
increase the likelihood that the results are reliable. AHP is supported by a standalone
tool, as well astby a computational aid within the SQUARE tool. Thereare five steps
in the AHP method:
1. Review-candidate requirements for completeness.
2. Apply the pair-wise comparison method to assess the relative value of each of
the candidate requirements.
3. Apply the pair-wise comparison miethod to assess the ‘relative cost of the
candidate requirements.
4. Calculate each candidate requirement's relative value and implementation cost,
and plots each on a cost-value diagram.

5. Use the cost-value diagram as a map for analyzing the candidate requirement.

2.6.2 ISO 9126 Standard

Software quality is fundamental to software product success [147]. Yet quality
as a concept is difficult to define, describe and understand [140]. Quality has a strong
subjective element. For example, a factor one person identifies as indicating good
quality (e.g. interface simplicity and elegance), another person may regard as an

84

indicator of poor quality (e.g. lack of help for novice users). Examination of quality
definitions, meanings and views in [147] describes quality as hard to define and
measure but easy to recognize. However, quality experts including some with a
software background have proposed models e.g. [81][116][162] not to measure
quality itself but to measure surrogate attributes such that when combined can provide
some notion of the quality of the product.

Many definitions have been introduced to define quality [67][74][80](81]
[104][116][140][147][162]. The International Standards Organization (ISO) defines
quality as: “the totality of features and characteristics of a product or service that
bear on its ability to satisfy specified or implied needs” [107). The IEEE defines
quality as “the-degree to which a system, component, or process meets specified
requirements and customer or user needs or expectations’’ [80]. Essentially, both
definitions are focused on satisfying the customer’s need for the sofiware product.
Fifteen different quality definitions are defined and views of quality models. This
shows that there is n6 one encompassing definition or view of quality. The a-:guality
view taken in any given situation depends upon the context, the meaning assigned to
the quality attributes and the relationships between those attributes within that
context.

ISO and the International Electrical technical Commission (IEC) have
developed the ISO/IEC 9126 Standards for Software Engineering — Product Quality
[53][82][111][122] to provide a comprehensive specification and evaluation model
for the quality of software products [67].

Part 1 of ISO/IEC 9126 contains a two-part quality model: one part of the
quality model is applicable for modeling the internal and external quality of a

software product, whereas the other part is intended to model the quality in use of a

85

software product. These different quality models are needed to be able to model the
quality of a software product at different stages of the software lifecycle. Typically,
internal quality is obtained by reviews of specification documents, checking models,
or by static analysis of source code. External quality refers to properties of software
interacting with its environment. In contrast, quality in use refers to the quality
perceived by an end user who executes a software product in a specific context. These
product qualities at the different stages of') development are not completely
independent, but influenceeach other. Thus, internal metrics may be used to predict
the quality of the final product — also in early development stages.

For modeling internal quality and external quality, ISO/IEC-9126 defines the
same model. This generic quality model can then be instantiated :as a model for
internal quality or for external quality by using different sets of metrics. The model
itself is based on the six characteristics functionality, reliability, usability, efficiency,

maintainability; and portability, as follows [172]:

External and
Internal Quality
| Functionality | I Aaliability | | Ueability —| I Etficiancy] Iu-muunuuyl I Partabiity I
{
suitabiity | | _ Wodaatyms: Ansiysability Adnptasitity
Accuracy j e A Time Bohaviour | | op angoability instalisbility
Intetope ability ;FMT Hasuinos Stability Co-Existsnce
| Recoverability Opesability Utiliaation
Secuslty { e Attracliveness Efficioncy Tomiullity Haptmeahility
| Ratisbility st o _
Functionality i Compliance Ussbility Haintainability Portability
Complisnoe t Compfiance Compliance Compiiance

Figure 2-14 ISO/IEC 9126-1 Model for Internal and External Quality
The above characteristics in many papers [16][20][71][128][129][148] can be
defined as follows:

Table 2-11 ISO/IEC 9126-1 Characteristics

86

TR

The capability of the software product to proldc functions
which meet stated and implied needs when the software is used

under specified conditions [16][20][71][128][129][148].

Suitability The capability of the software
product to provide an appropriate set
of functions for specified tasks and
user objectives.

Accuracy The capability of the software
product to provide the right or
agreed results or effects with the

- . needed degree of precision.

: Interoperability The capability of the software
product to interact with one or more
specified systems.

‘| Security The capability of the software

product to protect information and
data so that unauthorized persons or
systems cannot read or-modify them
and authorized persons or systems
are not denied access to them.
Functionality The capability of the software
Compliance product to adhere t0 Standards,
conventions or regulations in laws
and similar prescriptions. relating to
functionality.

Reliability The capability of the software product to maintain a specified
level of performance when used under specified conditions

[16J[20]{71][128][129][148]..

Maturity The capability of the software
product to avoid failure as a result of
faults in the software.

Fault Tolerance The capability of the software

product to maintain a specified level
of performance in cases of software
faults or of infringement of its
specified interface.

Recoverability The capability of the software
product to re-establish a specified
level of performance and recover the
data directly affected in the case of a
failure.

Reliability Compliance | The capability of the software
product to adhere to standards,
conventions or regulations relating
L to reliability.

Usability The capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions [16][20][71][128][129][148].

87

& Sy
Understandability

S A
The capability of the software
product to enable the user to
understand whether the software is
suitable, and how it can be used for
particular tasks and conditions of
use.

Learnability

The capability of the software
product to enable the user to leamn its
application.

Operability

The capability of the software
product to enable the user to operate
and control it.

Attractiveness

The capability’ of the software
product to be attractive to the user.

Usability Compliance

The capability of the software
product to adhere” to standards,
conventions, style” guides or
regulations relating to usability.

Efficiency

Time Behavior

The capability of the software product to provide appropriate
performance, relative to the amount of resources.used, under
stated conditions [16][20][71][128][129][148].

The capability of “the software
product to provide appropriate
response and processing times and
throughput rates when performing
its function, under stated conditions.

Resource Utilization

The capability” of the software
product to_ use appropriate amounts
and -types of resources when the
software performs its function under
stated conditions.

Efficiency Compliance

The capability of the software
product to adhere to standards or
conventions relating to efficiency.

Maintainability

The capability of the software product to be modified.
Modifications may include corrections, improvements, or
adaptation of the software to changes in environment, and in
requirements and functional specifications
[16][20](71][128][129][148].

Analyzability The capability of the software
product to be diagnosed for
deficiencies or causes of failures in
the software, or for the parts to be
modified to be identified.

Changeability The capability of the software
product to enable a specified

modification to be implemented.

88

Stability

The capability of the software
product to avoid unexpected effects
from modifications of the software.

Testability

The capability of the software
product to enable modified software
to be validated.

Maintainability

Compliance

The capability of the software
product to adhere to standards or
conventions relating to
maintainability.

Portability The capability of the- software. product to be transferred from
one énvironment to another [16][20]{71][128][129][148].

Adaptability

The capability - of the software
product to be adapted for different
specified environments without
applying actions or means other than
those provided for this purpose for
the software considered,

Installability

The capability of the software
product to be installed in-a specified

_environment,

Co-existence

‘The capability of the software

product to co-exist« with other
independent software in.a common
environment sharing common
resources.

‘Replaceability

‘The capability of the software

product to’ be used in place of
another specified software product

| for the same purpose in the same

environment.

Portability Compliance

The capability of the software
product to adhere to standards or
conventions relating to portability.

2.6.3 Testing Metrics

The literature reviews show that testing metrics are an important indicator of

the effectiveness of a software testing process. The examples of current testing

metrics can be found as follows [93]:

Table 2-12 Testing Metrics

89

Timeto | The effort | Shows how fast [Divide the cumulative hours spent
find a required to | the defects are on test execution and logging
defect find a defect. | being found. defects by the number of defects
This metric entered during the same period.
indicates the
correlation
between the test
effort and the
number of
defects found. _
Test Defined as the | This metriciis an' | Coverage could be with respect to
coverage | extent to | indication of the | requirements (also known as
which testing | completeness of | requirement goverage), functional
covers . 'the | the testing. It topic list, business flows, use cases,
product’s does not indicate | etc. It can be calculated based on the
complete anything about | number of items that'wWere covered
functionality. | the effectiveness | vs. the total numberof items.
of the testing.
This can be used
as a criterion to
: stop testing, _
Test case | The extent to | This metric Ratio of the number of test cases
effective | which test | provides an that resulted in logging remarks vs.
ness cases are able | indication of the | the total number of tést cases.
to find | effectiveness of
defects. the test cases and
the stability of
the software. _
Number | The total | "A’more Only remarks that resulted in
of defects | number of | meaningful way | | modifying the software or the
remarks found | of assessing the | documentation are counted.
in a given | stability and
time reliability of the
period/phase/t | software than
est type that | number of
resulted in | remarks.
software or | Duplicate
documentatio | remarks have
n been eliminated;
modifications. | rejected remarks
have been done.

90

CHAPER 3

RESEARCH PROBLEMS

This chapter discusses outstanding research problems relative to test
generation techniques. Also, this chapter is concluded with a discussion on problems

addressed in this dissertation.

3.1 Research Issues

Every test case generation technique has its own weak and strong points, as
addressed in the literature survey. In regard to using the test case generation
techniques, there are a significant number of issues that need to be addressed (e.g.
design test scenario, design test case format, generate test cases from model diagrams,
etc). In general, referring to the literature review, the following lists are the main
issues in test case generation, test data generation and test sequence generation area:

1. Problem of detecting bug delay [3][53][69][80][81][119][136][158]{159]:
The process of generating tests from the requirement specifications will often
help the test engineer discover problems with the specifications themselves; if
this step is done early, the problems can be eliminated early, saving time and
resources. Launch the testing process early in the development lifecycle and
also help with testing methodology.

2. Inefficient requirement specification for functionality testing
[38][391[531[731[741[82][85][86][105][113][116][122][131][137][155][159]
[160][170][172][182][190][191]: Inefficient requirement specification can
lead to the problem of verify and validate the proposed system design against
the functional requirements and to provide automatically measurable test case

to support design alternative analysis.

91

3.

5.

Inefficient test data [15][49][81]{116][160][175]: Many researchers are
interested in identifying a collection of test data, such as input and output data,
from state-based specification.

Lack of ability to identify critical requirements [14][149]: The current
existing technique is lack of the capability to critical requirements, because
those requirements are not explicitly discussed in the specification document.
For example, Nilsson [149] proposed the fechnique to generate test cases for
real-time system.

Lack of a standard and formal specification [178]: Incorrect interpretations
of complex software from non-formal specification can resulf in incorrect
implementations leading to testing them for conformance to its specification
standard.

Inefficient automated test case generation techniques
[41071(113(13][27][38][43][51][72][74][76][83][84][94][97][98][116][119]
[131][137])[138][140][147][156][161][162][165][167][170][176][181][182]
[184][190][191][1987: Improving the ability .to_automatically generate test
cases, for example, enhancing the capability of automation tools, can be
reduces time and cost for testing. Most of the time, testers perform the manual
testing in the development life cycle.

Lack of re-uses systematically of test case [198]: Reusing test cases can
reduce time and cost in software testing phase. Software test engineers do not
need to generate a new set of test case every time they perform testing.
Inefficient requirement specification for GUI testing [12][13][83]: Improve
the formal requirement specification in order to increase the capability of

verify and validate user interactions against the system and to provide

92

10.

11.

12.

automatically measurable test case to support design alternative analysis.
Systematically test cases can reduce cost and time of development.

Ignore unspecified input data [182]: Current test case generation techniques
ignore generating unspecified inputs or attacks in order to test the robustness
of web application.

Inefficient requirement specification for security testing [191]: Improve the
formal requirement spegification in order to increase the capability of verify
and validate the proposed system design against the secutity requirements and
to provide automatically measurable test case to support design alternative
analysis. Systematically test cases can reduce cost and time of dévelopment.
Inefficient requirement specification for performance testing [104]:
Improve: the formal requirement specification in order to increase the
capability of verify and validate the proposed system design-against the
performance requirements and to provide automatically measurable test case
to support design alternative analysis. Systematically teést cases can reduce
cost and time of development.

Unable to select suitable test cases dué to a large number of test cases
[4)(7)[11](13][27)[38][43][511[72][74][76](83][841[94][97)(98][116][119]
[131][137][138][140][147][156][161][162][165][167][170][176][181][182]
[184][190][191][196][198]: Software testing is one of the most forgettable.
Typically, software testing engineers have a few amounts of time, effort and
cost to plan, design test case, run test cases and evaluate test cases
respectively. Existing techniques are not effective for complex application
with limited resources (¢.g. time, effort, and cost) both of traditional and web

application. The example of complex web application is the application with

93

THE ASSUMPTION UNIVERSITY LIBRARY

dynamic behaviors, heterogencous representations, novel control flow, and
data flow mechanisms.

13. Lack of supporting multi-user interactions for web application [161]: An
existing approach to using field data in testing web applications is user-
session-based testing. Previous user-session-based testing approaches ignore
state dependences from multi-user interactions. Current techniques are not
effective, because they.are lack of multi-user interaction issue.

14, Inefficient requirement specification for reliabilify testing [83][170]:
Reliability 15 defined to be the probability of failure-free operations for web-
based applications. There are many root-causes of problems-in testing web
application such as user interaction, information delivery between client and
server (e.g. host, network or browser failures) and the correctness of
functionality of web application. Communication protocols thus play a major
role in today's distributed computing environments. To “guarantee the
reliability of a network, it is essential to ensure that protocol implementations
are consistent with ‘their. specifications in various ‘hardware and software
environments.

15. Large number of test cases [51][75][140]: Most test case generation
techniques are aiming to generate test cases in order to cover scenario as much
as possible. Sometimes, they generate too big size of test cases and it is
impossible to execute those cases with limited time and resources.

16. Lack of important information from diagrams [138][167]: It is difficult to
generate automatically test cases from model diagrams (e.g. use case diagram,

activity diagram and state diagram) if those diagrams are not completed.

94

17. Ignore concurrent program factor [181]: Test sequence generation for
sequential program can be applied to concurrent programs, but they may not
be efficient.

18. Ignore a modification of programs [27]: There are a lot of changes and
modification during a regression testing phase. Most of existing test data
generation techniques ignores the modification occurred during regression
testing phase.

The above remaining problems can be classified aligned with the test case

generation process'mentioned in the Chapter 2 as follows:

/’_

Test Case Generation

Tl
iaid

Figure 3-1 A Classification of Remaining Problems
Figure 3-1 represents a classification of remaining problems based on test case
generation process. There are outstanding problems aligned with each sub-process.
This dissertation does not aim to resolve all the above problems. It is nearly
impossible to tackle with all problems within this study.
However, the study and what have been discovered present the following

researchers who have investigated and proposed methods to resolve each problem.

95

Table 3-1 Test Case Generation Techniques and Issues

Authors Issues

1J2][3Ja]s5 678w n[2ln3][1a]15]16[17]18

1. Test Cases Generation Techniques

ASAO05 [137] X

CR99 [156] X

HLOO {113) X

OXL99 [3] X

K97 (86 X

TO1 (176] X

RHOI [55] XX

NOMO6 [150] X

TWCPX05 -l
[183] X X

JLQO3 [192) X T 1 1 X

JL[191] X X

505 [14] N E

SAVFFMLO6
[179]

HO1 [69] o

EWOI [76] : [X

RGOO [85] N | X

JSW07[4] X

CCDHIMO0 [7) X

ROMOS [66]

KLH00 [43] X

SKF06 [104] X

NDO03[105) | X

AOA04 [11] - ' X

CMQO7[166]

Pl

MCLQO7[72]

BGO3 [158) X X

YHWC99 [84] . X

MQS08 [73] x| ¢

2. Test Data Generation Techniqu

AO99 [15] X

OLAAO3 [81] | X X

BBHO02 [116] X | X

X
KA98 [27] 0 X
K90 [94] X

HO99 [80] X

BFSBT06 [53] X

LKHH00 [39) X

3. Test Sequence Generation Techniques

RHOI [159] X[x

KKBKO7 [75] X

LIXIXGO4
[184]

FLLOS [176]_

FLOO[137]

SMBOS [131]

WL92 [38]

S
ES A Ed

GLMO4 [170]

S08[167] X

SMO7[119] X

S
b

S108 [138]

96

3.2 Problem Statement

Due to the fact that there are many challenges in software testing area,
especially during test case genecration step [123], the most challenges and interesting
issues are: (a) large number of test cases and (b) lack of ability to cover critical

requirements. These two problems can be presented based on Figure 3-1 as follows:

Tex Case Generabon
Frocess

Problems e (s | 3ty

Il Resoocch problems motivarad this study
Figure 3-2 Research Problems Motivated This Dissertation
Figure 3-2 shows that there are two major research problems motivated this
dissertation, which are: {a) large number of test cases (also réferred as #15) and (b)
lack of ability to cover critical requirements (also referred as #4). The literature shows
that there are many test case generation methods proposed io resolve the above two
problems. It discovers that there are two types of methods: (a) test case generation for
black-box testing and (b) test case generation for white-box testing. This dissertation
concentrates on the methods for black-box testing only. This is because:
1. The study shows that testing activities must be started at the beginning of
software development life cycle.
2. (b) One of the testing goals is to verify and validate software with customer

requirements.

97

3. The research discovers that cost to resolve defects in the later phase is by far
greater than resolving at the earlier phase.

Furthermore, the study presents that there are two sources for test case
generation techniques for black-box testing: (a) derive test cases from requirement
documents and (b) derive test cases from model diagrams. This dissertation
concentrates on an approach to generate test cases from UML use case diagram
(which is part of the UML model diagram)--This is.due to the fact that:

1. UML use case diagram is used to describe a behavior orfunctions of systems.
2. One of important testing goals is to verify and validate function system with
the customer requirements.

The following discusses outstanding research problems remaining. from test
case generation methods based on the UML use case diagram [57][69][85][105][197]:
The following list three problems motivated this study:

1. Lack of requirement prioritization before test case generation

2. Unable to identify which test cases can be removed during a test case
generation process

3. Large number of test cases due to large number of alternative paths in each use

case [197].

The following describes these problems in details.

The first problem reveals that existing test case generation methods ignore a
requirement prioritization before generating test cases. Those methods explicitly
assume that there are unlimited resources and cost to execute tests. Therefore, this
thesis proposes the requirement prioritization activities during a test case generation

process.

98

The second problem is to unable to identify how many and which test cases
should be removed in order to generate and minimize a number of test cases. The
following describes a tfesting matrix table between test cases and use cases. This
matrix is developed to cross check whether test cases are generated and tested against

all use cases.

Testing Matrix Table

i UseCase 1 |UseCase 2 |UseCase 3

] "

Figure 3-3 Matrix Table between Test Case and Use Case

Figure 3-3 shows that there are four test cases generated to be tested against
four use cases. Tn represent as a test case. It also shows that 77 cover 72, 73 and 74.
The problem here is that there are many choices to minimize a number of test cases.
For example, the first choice is to remove only T/ or the second choice is to remove
72, T3 and 74. This is ambiguous which test cases should be removed.

The last problem is that there are a large number of test cases due to a large
number of alternative paths or events in each use case. The study [197] shows that
each use case can have overwhelm alternative paths. Therefore, if we can reduce
those paths, a number of test cases should be reduced as well.

The following table shows the relationship between the problem statements in

this section and the objectives of the thesis.

99

Table 3-2 Problem Statements and Objectives

Objective of the Thesis

Problem #1

Problem #2

Problem #3

Objective #1 - Prioritize requirements based on user
satisfaction prior to generate test cases in order to improve the
ability to generate and select the most suitable test cases.

>

Objective #2 - Propose an alternative path point formula to be
able to systematically determine.which test cases. could be
removed during test case generation activities.

Objective #3 - Enhance ability o minimize a number of test
cases by adding a complexity factor.

100

CHAPTER 4

PROPOSED TECHNIQUES
This chapter introduces test case generation methods 1o resolve the research
problems mentioned in the previous chapter. It is structured into five sections: (a)
overview (b) assumption (¢) requirement prioritization based on user satisfaction (d)

test case generation lcchniqueﬁ‘%tasg l’c)vrmed method.
The followin cscﬁs each section in details.
S .

O

4.1 Overview,

A, =T
The ﬁﬂwmg describes an. Evuﬁ?iw of our proposed met o resolve

outstanding rgch problem mentioned in the ious chapter.
= D|S

)

.
et S ——

Figure 4-1 Overview of Proposed Test Case Generation Technique

Figure 4-1 describes that there are many factors considered normally while

generating test cases from UML use case diagram. The following shows definitions of

each factor.

101

Table 4-1 Definitions of Factors Normally Considered in Literatures

Return Retum on mvestmcut (a s0 Imown as ROI) is
Investment | money gained or lost (whether realized or unrealized) on
an investment relative to the amount of money invested
[201][202]
B User User / Customer satisfaction, a business term, is a
Satisfaction | measure of how products and services supplied by a
company meet or surpass customer expectation. It is seen
as a key | p«fo;mance indicator within business and is
_|ypart of the fotir of a Balanced Scorecard. In a competitive
marketplace where businesses compete for customers,
customer satisfaction is seen asa key differentiator and
increasingly has become a key ---élémmt of business

- strategy [115]
C Time-to- Time-to-market (also known as 'I'TM) 1§ the length of
Market time it takes from a product being coneeived until its

being available for sale. TTM is important in industries
o where products are outmoded quickly [1 63_L
D Test Case | A total number of test steps presented in-each test case

Complexity | that are required to be executed [163].

E A’ 'Number [A number of test cases can be represents as a total
of /1 Test | number of test cases in each test suite [69][85][105]
Cases_

F Requiremen | Holly defines a meaning of complemty as follows: “(a)
t consisting of many different and connected parts and (b)
Complcxng not easy to analyze; complicated or mtricate” [70].

G Risk “|-A risk is 'a ‘measurément that contains two metrics: (a)

level, of damage and (b). probability of failure [163].
H Quality Quality measures how well software is designed (quality

of design), and how well the software conforms to that
design (quality of conformance), although there are
several different definitions [8].

This dissertation concentrates on the following factors in the proposed
techniques:

1. A Number of Test Cases — This thesis proposes an effective test cases
generation method to minimize a number of test cases. This is for the reason
that large number of test cases consumes a great deal of effort, time and cost.

2. Test Case Complexity — This dissertation proposes to consider a complexity

of test cases to remove test cases during a test case generation process. This is

102

due to the fact that the proposed method aims to reduce to a minimum the
number of test cases.

Requirement Complexity — This study includes a requirement complexity to
the proposed method in order to effectively prioritize requirements before
generating test cases. Also, the study presents a correlation between
requirement complexity and ROI The ratio between these factors is applicable
for requirement prioritization.

User Satisfaction — This study concentrates on gcneraﬁng_tcst cases based on
user satisfaction. It has been proven that user satisfaction is the most important
factor ‘for long-term project success and large profit. Curréntly, none of
existing test case generation methods considers this factor during generation
activifies. This dissertation applies this factor to classify requirements during a
test case generation process. Customers expect high quality sysiems, therefore,
test cases should be generated to cover customer requirements; as it will have
a significantimpact on user satisfaction.

Return on Investment (ROI) — This study uses the ROI value for prioritizing
requirements. ROI is the most important 'factor from business” perspective. It
is a critical factor for project success and profitability.

The following shows reasons why the above five factors are selected:

103

Table 4-2

Return on
Investment

Reasons Why Factors Are Selected in Dissertation

Return on investment (also known as
ROI) is the ratio of money gained or
lost (whether realized or unrealized)
on an investment relative to the
amount of money invested
[201][202]

User
Satisfaction

User ¢ /1 Ensmm ‘satisfaction, a

bﬂsﬁ;ﬂs ‘term, is a measure of -how

products and services supplied by a

-, | company meet or surpass custorfer |,

expectation. It is seen as a key'|

performance indicator within
business and is part of the four of a
Balanced Scorecard. In a competitive
marketplace where businesses
compete for customers, customer
satisfaction is seen as a key
differentiator and increasingly has
become a key element of business

strategy [115]

Time-io-
Market

“#mportant

Time-to-market (also known as
TIM) is the length of time it takes
from a product being conceived until {.
its being available for sale. TTM is |
rin | industries w!;m

proﬂun;s are outmodgd quickly
[163]."

Test Case
Complexity

A to!al number of test steps
presented in each test case that are
required to be executed [163].

A Number
of Test
Cases

A number of test cases can be
represents as a total number of test

cases in each test suite [69][85][105].

Requireme
Complexity

Holly defines a meaning of
complexity as follows: “(a)
consisting of many different and
connected parts and (b) not easy to
analyze; complicated or intricate”
[70].

A risk is a measurement that contains
two metrics: (a) level of damage and
(b) probability of failure [163].

Quality

Quality measures how well software

is designed (quality of design), and
how well the software conforms to

104

that design (quality of conformance),
although there are several different
| definitions [8].

Table 4-2 shows that there are many factors for the requirement prioritization

from both, the business perspective an software testing perspective this includes

RO, requirement mmp““ ?Fm:m and user satisfaction

[124]. The l'ollowl@mtm A, B, D, EandF are sclccl%use‘ (A)A,Band F
are relative to Qsl oulsundmg pmblm that is mentioned in %‘hapta 3 and (b)

D and E are gfated to the second mgimgpmblm mestioned BSie Chapter 3.

Furthémore, previous s [123][124]dhat there is a
relanondupamg ROL, requirement diﬂy and user murEm as shown

URDrHS GRLEL
below: w

’ABD

L
#5
-

P

M e, OO By o ol 2000, Wil o ol P00 AL daved o o, 3007}
P wb VIR Ml S OB Yukoeen o o D007 Scam MO Bemen Chassan. J08; Andrss Wovisasn, 7008)
~Piadly, 2005)

Figure 4-2 Relationship for ROL, Req. Complexity and User Satisfaction

105

Figure 4-2 shows that there is a relationship among ROI, a complexity of

requirement and user satisfaction. There are seven areas in the relationship.

1.

2.

5.
6.

7.

Return on investment

User satisfaction

. Requirement complexity

Return on investment and requirement complexity
Return on invéstment and user saliifamiqn
Requirement complexity and user satisfaction.”

Allthree factors

The first proposed method is in area 7. This is because the proposed method

meets all the following criteria:

5

Problem 1 related - It is relative to the first outstanding problem that is

.~ mentioned in the Chapter 3.

User satisfaction is a key to success ~ It is to prioﬁtize requirements

based on user satisfaction that is a key to success.

. High ROI s desirable — It is targeted to reserve high priority

requirements with high retumn on investment.
Low requirement complexity is desirable — It aims to reserve low

complexity of requirements as priority.

Additionally, previous research has proved [123][124] that there is a

relationship between test case complexity and a number of test cases, as shown below:

106

Wz Altmmate
Path Foints ~
This is because our proposed -

method aims to L]
TS e T S
process. “M " w
Ww“mz atornative path (Hans, 2005).
casan 1 be removed. Javed tesclve the problem of lage
Vadivino ot , 2006; oranim et S P G .
al. 2001; Alessancra et ol 2000, e T ey bl
Hassan Reza et al, 2004; David Joharmnes mual. mm'
et al, 2000; Mahnaz et al, 2006; Aok Niewoer "
Annelises et al, 2004) i I

KN
Fi %4-3 Relationship between of Test Cases anmmplcxlty
DIS

Fi 3 shows that there is a tphmwenumhr of test cases
gROT,,E %Emﬂ
and test case L&luuty There ar€ three areas ifi thc relationship Jag follows:
! AnTbcr oPPmﬁ T
OMNLIA

2. Test “‘T’“’”‘f’? NCE1969 @
3. Both of two ?’a a‘b}ﬂs u;
B 1audd

The second proposed method is in the area 1. This is due to the fact that it
aims 10 minimize a number of test cases during a test case generation process.
Meanwhile, the last proposed method is in the area 3. This is because it included a test
case complexity factor in the algorithm in order to reduce a large number of test cases.
Both of these methods are relative to the outstanding problems mentioned in the
Chapter 3.

The following presents an overview of our proposed techniques associated

with resolving the above outstanding issues in previous section.

107

Problem #1: Lack of Requirement Prioritization

Before Test Case Generation Process

Propose #1 — Test Case = Use Case + WOW Factors +
Marketing Driven Requirement Prioritization

Problem #2.1: Unable to identify which test cases
can be removed during a test case generation
process.

Propose #2 - Test Case = Use Case + WOW Factors
& + Marketing Driven Requirement Prioritization +
Altarnate Path Points

Problem #2.2: Large number of test cases due
to large number of alternate paths / events.

Propose #3 — Test Case = Use Case + WOW Factors +
Marketing Driven Requirement Prioritization +
Alternate Path Points + Retain Score

Figure 4-4 Proposed Methods Relative to Research Problems
Figure 4-4 shows that there are three proposes in this thesis. The first proposed
method is to add the requirément priorifization process before a test case generation
process. The second proposed method is developed to be able to identify how many
and which test cases can be removed. The last method aims to remove test cases after
the test case generation by using risk factors [10][139][163]. The objective of these
methods is to minimize a number of test cases after test case generation process, while

preserving critical higher priority requirements.

108

4.2 Assumptions

The following lists assumptions in this thesis:

1. In this dissertation, we assume that customers are the same people or users
who can provide requirements.

2. Testing activity, which is to prioritize the requirement, is required to start in
the requirement phasé. Software test.enginéers play a major role as early as
possible in SDLC.

3. Requirements are not prioritized before test case generation process.

4. UML use case diagram must be completed and must fully.eontain all required
information (e.g. purpose, basic flow and alternative flow). No methods in this
thesis are used to verify and qualify the completeness of diagrams.

5. Prioritizing requirements by test engineers are not required:if there are a few
requirements. For example, if there are 1-3 requirements to develop and
implement software, there is no need to prioritize those requirements.

6. In order to generate test scenarios and test cases from UML use case diagram
and respectively, the diagram w:th i-eiquiréd information must be available.

7. Approaches to estimate cost for development and testing activities proposed in

this dissertation such as COCOMO and Function Analysis, are out of scope.

4.3 Test Case Generation Process

This section introduces a recommended test case generation process by
inserting a requirement prioritization based on user satisfaction. This dissertation
proposes to prioritize requirements from business’ perspective, prior to generate test

cases, in order to maintain and increase user satisfaction [100][114].

109

Before discussing our proposed process, we would like to discuss existing test
case generation process and point out exactly what is different between traditional and

proposed process.

The following presents three types of test case generation process.

Mmll*i.:';l.f”;"ml"'\ 2001: st (i Hewmann, 2001% lehannes Rysar atal,

Eayadurgam et o, 2001 Robert Nilsson et 2000*; Manish Wilawar ot al, 2000%, 4.7 Javid. nmq”q'-un:mmuu. 1995:C
ﬂ“ﬁwﬂﬂz‘mﬂ % atl, mr;uumad.mm Ramamoorthy et al, 1976}
Black-Box g . (White-Box
(6t) (Black-Box) S L)

Figﬁ'r‘ed—__ﬁ_, Traditional Test Case Gcnqauon Process

Figure 4-5 present.ls' thrﬁe test’ ;ase ;géﬁérétion processes. The first two
processes are used for black-box testing. The last process is used for white-box
testing. First, a test case generation process is occurred during a requirement phase.
Second, the test case generation process is occurred during a design phase. Last, the
test case generation process is happened during a development phase. Due to the fact
that this dissertation concentrates on black-box testing and test cases derived from
diagrams, therefore, the first and last process is ignored.

The following compares the second process and our proposed process.

110

Existing Test Case Generation Process Proposed Test Case Generation Process

Figure 4-6 Compare Test Case Generation Process
Figtire 4-6 compares test case generation process between traditional process
that derive test cases from diagrams and our proposed process. The only different is
that there is additional process, called “requirement prioritization”, in the test case
generation process.
The following depicts chow the requirement pﬁoritization activities can be

aligned with the test case generation process.

111

11
Requirement
izatio

2. s 21 i 2.1.2 Extract
S FEeh e*n < Generati Use C;
i D e i T“tcase auon Jf“ o o Test Scenario
Diagram

3. Development) L4 2.1.3 Generate
2.1.4 Minimize Test Data and
Test Cases Expected Result |
)
4. Testing
5.
Maintenance

Figure 4-7 Requirement Prioritization based on User Satisfaction

Figure 4-7 shows that there are two test case generation processes: existing
process and proposed process. Proposes shown on the right-hand sidewof Figure 4-7
add an additional requirement prioritization process before generating test cases.
Traditional test case generation process does not include a requirement prioritization
process. In fact, the requirement prioritization; process aims to be able to effectively
handle a large number of requirements. The objective of this process is to prioritize
and organize requirements in an appropriate way in order to effectively design and
prepare test cases [54][112][188]. There are two sub-processes: (a) classify
requirements and (b) prioritize requirements.

In Figure 4-7, there are four sub-processes in the test case generation process:
(a) extract use case diagram (b) extract test scenario (c) generate test data & expected
result and (d) minimize test cases after generating.

Both of requirement prioritization (Refer to 1.1 in Figure 4-7) and test case

generation (Refer to 2.1 in Figure 4-7) can be illustrated in details as follows:

112

4.4 Requirement Prioritization Based On User Satisfaction

Before discussing the procedure of the proposed requirement classification
and prioritization technique, this dissertation begins a discussion with reasons why
requirement prioritization and user satisfaction are important.

The explanations why requirement prioritization is important can be found as
follows:

One of the most important testing goals is to generate a large number of test
cases, in fact as many as possible, in order to cover and wverify all customer
requirements. At the present, requirements become more complex and difficult,
particularly in the high competitive markets. Large number of complex requirements
can lead to a huge number of test cases. Consequently, it takes longer-and the project
budget may be'overrun due to those test cases.

A topic/of many interesting researches has been prioritizing requirements.
There are many techniques that have been proposed over a long period of time (as
mentioned in Chapter 2). Donald [54] provides primarily benefits of requirement
prioritization as follows:

1. Modify schedule. When using an iterative incremental development cycle, it
enables the project manager and customer to modify the project schedule, to
deal with the project realities of limited resources and to fix deadlines.

2. Improved user satisfaction. It improves user satisfaction by increasing the
likelihood that the customer’s most important requirements are implemented
and delivered first.

3. Lower risk of cancellation. The project is less likely to be cancelled during
SDLC. This is because valuable progress is being demonstrated with each

increment. Even if the project must be cancelled before the delivery of the

113

final increment, it is not a total loss as some important functionality has been
already implemented and delivered.

4. Address all requirements. Prioritizing requirements is a good approach to
force stakeholders to address all requirements, particularly critical
requirement.

5. Estimate benefits. Priorities provide management and engineering with a
rough estimate of the benefit of the ‘different requirements, which is useful
when performing cost/benefit analyses of the requirements to determine where
would be fhe best to expend limited project resources in preparation for
requirements negotiation.

6. Prioritize investments. The requirements prioritization techniques can help
determine how to prioritize the investment of limited project resources. For
example, the project can allocate most of its resources for quality assurance
and system.iesting according to the highest priority requirements.

The following shows a survey result why user satisfaction is important and

matter to the business.

114

A Survey Result of Customer Satisfaction

= Susiness leaders
strongly bekeve that
customar satisfaction ks
ey 10 success

® Business leaders focus
on price, product and
Benice

*Sourca; Millard, 2006

Requirement Classification

(Kano et al,1984; Harkiranpal S., 2006, Herzberg ot al, 1959; Cadotte ot al, 1988; Brandt et al, 1988)
(Tukman Mert et al, 2007; Scott Mccartney, 2007;James Clausen, 2009)

. s

Req ment
Complexity

{Andrea Herrmann, 2008) {Holly-Parsons, 2005)

Requirement Prioritization

G Business @ el
Figure 4-8 Overview of Requirement Prioritization

Figure 4-8 shows that 85 percent of business leader organizations focus on
customer satisfaction (also known as “user satisfaction™ in this dissertation) [114].
High user satisfaction can give a long-term success with the customer as well as
higher profits. Therefore, this dissertation proposes to classify requirements based on
business’ perspective [115]./Ounr_proposed method is supported by using WOW
factors [100][114].

This dissertation realizes that user satisfaction is the key to success. That is
another reason why we propose a test case generation method based on user
satisfaction. Our customers are a people who use the system that we develop and test.
They expect high quality software that makes their life easier {45][115]. In order to
achieve this, software testing can play a major role to ensure that software can meet
their expectation and eventually satisfy them. Recall that test case generation activity
is one of the most important and widely-researched activities in the software testing

process. Finally, this dissertation proposes to classify and prioritize requirements

115

based on user satisfaction prior to generate test cases. The requirements classification
and prioritization are to ensure that all requirements, that are able to highly satisfy
customers, are addressed as priority.

These studies [28][32][57][89] show that a marketing perspective concentrates
on two factors: customer’s needs and customer satisfaction. We apply that perspective

to the requirement prioritization and propose to build user satisfaction as shown

below:
Customer Satisfaction
Very satistied

Delight Attractive
(Nice toHave) (Surprise) g’,
3
(4]
NotFulfilied WellFulfiled o
>
[11]
@
(o %

Indifferent Basic

(DontCare) (Must be)
Dissatisfied
Figure 4-9 Kano Model Analysis
Figure 4-9 represents a KANO model proposed by Noriaki [89] to classify
requirements based on customer’s need and customer’s satisfaction. The horizontal
axis presents a customer’s need while the vertical axis represents a customer
satisfaction [89]. There are four groups of requirements based on those two factors:

delight, attractive, indifferent and basic. First, the delight requirement is known as

‘nice-to-have’ requirement. If this requirement is well fulfilled, it will increase the

116

user satisfaction. Otherwise, it will not decrease the satisfaction. Second, the attractive
requirement is called as ‘surprise’ or ‘know your customer’ requirement. This
requirement can directly increase the user satisfaction if it is fulfilled. Marketers and
sales [28] believe that if we can deliver this kind of requirement, it will impress
customers and significantly improve the user satisfaction. Third, the indifferent
requirement is the requirement that customer does not concentrate and it will not
impress customers at all. In the competitive industry, this requirement may be fulfilled
but there is not any impact to the user satisfaction. Last, the basic requirement is a
mandatory requirement that customers basically expect. Therefore, if this requirement
is well delivered, it will not increase the user satisfaction.

Our comprehensive of literature review shows that KANO model {89] is one of
the best and highly recommended models to classify and prioritize requirements based
on user satisfaction. In fact, it is a widely-used in the marketing and business sides.
KANO model contains four types of requirements:

1. Basic. This is:a basic requirement that customers expect-to have. Customers
are not surprised when this requirement is implemented, as they it is assumed
that all basic requirements must be implemented. On the other hand,
customers might be surprised if this requirement is not implemented. It can
therefore be concluded that this requirement does not effect to the user
satisfaction. For example, in the ATM system, the basic functionalities are
withdraw, inquiry and transfer money.

2. Indifferent. This is an indifferent requirement that we may implement in
order to be different from our competitors. Unfortunately, Noriaki claimed that
this requirement does not satisfy customers at all. In fact, they do not care or

acknowledge if this requirement is implemented. For example, in the ATM

117

system, the indifferent functionality is to book airline tickets from the
machine. This type of requirement is excluded in the proposed method
because this dissertation uses WOW factors, mentioned in Figure 4-10, to
prioritize requirements based on user satisfaction. Our study [124] compares
both of KANO model and WOW factors and we discover that the “indifferent”
requirements are excluded in the WOW factors,

3. Delight. This is likely.a nice-to-have requirement that can satisfy customers,
Noriaki mentioned that the more nice-to-have requirements are included the
higher thewuser satisfaction will be. ROI is one of the most important factors to
determine‘to implement this requirement. Typically, high ROI requirements
should have higher priority when it comes to implementation. For example, in
the ATM system, nice-to-have requirements could be transferring money to
other countries and mutual fund investment.

4. Attractive. This is beyond customer’s expectation. This requirement highly
increases user- satisfaction. Noriaki ¢laimed that the more this requirement is
implemented, the ‘more project success can-be, For example, in the ATM
system, a surprise or attractive requiremerﬁt cﬁuld be withdraw, inquiry and
transfer from multiple own accounts.

The literature review shows that the KANO model is widely-used in several of
industries to classify and prioritize based on user satisfaction.

Apart from KANO model, this dissertation proposes to use WOW factors
[100][114] to support an idea of classifying and prioritizing requirements based on
user satisfaction. These factors and their implementation cost can be shown as

follows:

118

L e i sl Bllais sl bt BT
WOW FactorsSuppornted Marketing's View Implementation Cost
(Tukman Mert et al, 2007; ScottMceartnay, 2007; James Clausen, 2009)

Figure 4<10. WOW Factors and Implementation Cost
Figure 4-10 shows that there are three groups of requirements from
marketing’s p_ersﬁective: (a) basic (b) surprise and (¢) WOW (or also known as
extraordinary). These factors can be discussed in details as follows:

1. Basie. This is the same as a basic requirement introduced by Noriaki [89]. It is
likely to be a must-have requirement. Tokman [100] and“Milliard [114]
studied and found that this requirement requires a small amount of cost to
implement. .

2. Surprise. This'is a surprise requirement that has-ap impact on the user
satisfaction factof. This i§ similar to. a surprise requirement proposed by
KANO model. This requirement requires higher cost than basic requirements.

3. Extraordinary (also called “WOW?”), This is by far beyond user’s
expectation. It takes a large amount of cost to implement this requirement.
Tokmann [100] claimed that these factors are perfectly suitable to reacquire

lost customers. In the business’ perspective, acquiring a new customer requires a

significant amount of cost and time. Reacquiring lost existing customers is cheaper.
Additionally, the study shows that the implementation cost for a set of

extraordinary requirements is the highest while the cost for basic requirements is the

lowest.

119

When the requirements are classified, the next step is to prioritize requirement
based on return on investment (ROI) and requirement complexity [70]. The proposed
requirement prioritization method is built on the benefit and cost estimation [52][109].

The literature review shows that there are many techniques to calculate
estimated efforts and cost for coding and testing (See Eff in (1)), such as COCOMO,
Function Analysis and Cost-Value approach. Our previous work [124] discovers that
one of the most widely-used techniques to.estimate efforts and cost is the “benefit and
cost prediction and estimation” approach introduced by Andrea [202].

Andrea and Maya [202] argue that “Requirements prioritization based on
importance has been a popular concept in software engineering for more than 30
years.” They-investigate and research how existing estimation approaches (e.g.
COCOMO, Functional Analysis, Analytic Hierarchy Process, Planning Game, Binary
Search Tree and traditional cost-value approach) are suitable for the Tequirement
prioritization based on benefit and cost. They compare 15 requiremént prioritization
approaches in order: to systematically determine which method is the highest
recommended technique. Their evaluation result indicates that the most recommended
prioritization technique based on importance is to simply calculate by using ROL

Additionally, Richard [201] supports Andrea’s statement that requirement
prioritization based on ROI is the most effective approach to prioritize requirements.
He [201] claims that “ROI is an effective approach for arguing the need for, or
demonstrating the success of, process improvements and IT investments.”

Therefore, this dissertation is built on Andrea’s experiment. We use the simple
benefit and cost model in the proposed method. The following paragraphs describe a
simple method to calculate ROI based on benefit and cost.

The following paragraphs describe the procedure step-by-step.

120

The first step is to compute a total estimated cost. The formula can be found as
follows:

Cst = Eff * Cph (4]
Where:

e Cstis a total estimated cost.

e FEff'is a total number of efforts estimated for coding and testing,

e (ph is an employee cost per hour for'coding and testing.

In order to compute Cph, we propose a cost-value approach based on WOW
factors. For example, a cost of implementing “surprise” requirements.is three times
greater than the cost of “basic” requirements. It is assumed that the employee cost per
hour is $65 [201]. Richard [201] suggests that the average cost per employee per year
is $120,000 (Assumed that a number of working days are 230). This is-equal to $522
employee cost per day, which is equal to $65 per hour. This dissertation use
Richard’s average-cost per employee per year in the example described in section 4.5.
Therefore, the employee cost per hour for “surprise” requirements is equal to $195
while the cost for “basic™ requiréments is $65.

The second step is to compute the total cost for .the customer. The formula can

be found as follows:

Chg = Eff * Cgh (2)
Where:

e Chg is a total number of fees that are charged to.

o FEffis a total number of efforts estimated for coding and testing.

o Cgh is the fee per hour charged for customers.

Richard [201] suggests that an average fee per hour charged for customers is

$100 for “Basic”, $300 for “Surprise” and $500 for ‘Extraordinary” requirements. In

121

order to compute Cgh, this dissertation use Richard’s average fee per hour in the
example described in section 4.5.
The third step is to simply calculate ROI, as follows:

{Chg —Cst) i (3)

ROI! = 00
% Cst

Where:

s %ROI is a percentage of return on investment,

e Chg is a total number of fees that are.charged to customers.

o (st is a total estimated cost.

In general; ROI is used to systematically determine which requirements (under
surprise and extraordinary introduced by WOW concept) should be.implemented.
However, this dissertation discovers that ROL is not the only factor to estimate and
determine which requirements could be developed and tested [109]. We find that a
complexity of requirements is another factor needed to be taken into the account.

In fact, requirements with high ROI and less complexity are desirable. Our
study [124] proposes-to divide ROI by requirement complexity. This is because we
want to prioritize high ROLand less complex requirements as top priority.

ROI is based on the estimation of developmen.t and testing. There is a chance
that the estimation may be under estimated and cost is overrun when implementing
high complex requirements.

In 2005, Hans [163] supported that the requirement complexity plays a major
role for the requirement prioritization. He supported that “complexity is the most
important factor.” He said that there are over 200 different complexity measurements
to determine a complex of requirements. However, he suggested that ‘a number of

hours’ is the simple and effective measurement to determine a complexity.

122

Additionally, Holly [70] argues that “the number one reason for inability to
complete a project as ‘incomplete requirements ™ The survey report in [70] confirmed
that the above statement is true. Holly also claims that “requirement complexity is
well known paradigm within the software engineering domain”. Holly defines a
meaning of complexity as follows: “(a) consisting of many different and connected
parts and (b) not easy to analyze; complicated or intricate”. In [70] there are many
measurements defined to identify a complexity ef requirements, such as time spent on
project, a number and location of stakeholders and project resources. Eventually, the
research [70] suggests to determine a requirement complexity based on a number of
hours to implement the requirements. In fact, Holly proposes the following simple
table to measure a requirement complexity.

Table 4-3 Measuring Requirement Complexity

Number of Hours 0-8 9-40 41-160 161320 | 321-480

Complexity Number 1 2 3 4 5

*Note: 1 is very low, 2 is low, 3 is medium, 4 is high and 5 is very high.

Table 4-3 guides a simple scale to ‘measure requirement complexity. It
defines! is very low, 2 is low, 3 is' medium, 4 is high and 5 is very high complexity.
This dissertation uses the above guideline to simply measure a requirement
complexity. This is corresponding with we propose in (1), (2) and (3). In [70], the
research claims that a complex of requirements is one of the most important factors
we need to consider for prioritization. Our study [124] discovers that traditional
requirement prioritization, based on benefit and cost, does not concentrate on the
requirement complexity. Consequently, this can lead to a poor performance of
prioritization. Highly complex requirements with high ROI may be prioritized as top

priority. This can also lead to questions that “What about requirements that have the

123

same high ROI, but less complexity? Why don’t we consider requirement complexity
as well during prioritization process?”

To answer these questions, this dissertation proposes the following formula (4)
in order to determine highly recommended priorities for each requirement. We
normally prefer less complex requirements that have a high ROIL For example, there
are two requirements that have the same ROI. The requirements with less complexity

to implement and test should have higher priority.

%ROI 4)

Where:

s (Coris a percentage ratio between ROI and a complexity of requirement.

e (pxis a complexity of requirement.

The last step is to prioritize requirements based on the correldtion ratio. Our
study [124] reveals that the requirements with high ROI and high complexity are not
desirable. From marketing’s perspective, the complex requirements with high ROI
may not be able to becimplemented on time. Therefore, the ¥équirements with high

ROI and less complexity are preferred:

4.5 Example of Requirement Prioritization

This section provides an example of the above approach to classify and
prioritize requirements. The following shows the example of 10 requirements, aligned

with WOW factors, and implementation cost of each requirement.

124

Surprise

Flgu,re 41 Example of Requirement Pnormzaho;l

Figure 4 ll shows that there are 10 requirements, clasmﬁed with WOW
factors, as follow |
L. Basic}?i‘equirements — R, Ry, R; and Rio.
2. Surprtsaa'equ:rements — Ry, Rs, Rs ant;i“ﬁg.-
3. WOW’re@nrements —R7and R;.
The unpmtantanon cost of each requirement is asmgned ‘by weights as
follows: R; =1, R3=‘I 1 R3—12 Rip=13,R;=3,Rs= 31 R§ 3.2, Ro=33, Ry =

S5and Rg=5.1.

In order to prioritize abovc requlrements, tixe proposed method can be
explained as follows:

The first step is to compute total estimated cost for each requirement, which
can be shown as follows:

Table 4-4 Total Estimated Cost

125

1 Basic 32 $65.00 | $3,640
2 | Basic 24 C 0 110 | $71.50 | $2,860
3 | Basic 32 4A Y 40 17120 | $78.00 | $3,120
T, I ':__.\T- " 332,76

4 | Surprise | 488 80 168 3.00].$195.00 0
N .| #1773

5 | Surprisé+| 48 40 88 310 | $20#50 [2
| o, | §3827

6 | Surprise | 96 88 184 320 | $20800| 2
Ordinar. _ .| $71,50

7 y== | 120 100 220 500 | $32500| 0

Exira . i =

Ordinar_ JoseR" | $1359

8 y 9, 220 190 410 | 510 [$33050 | 15
- = , | 827,88

9 | Surprise | 90 | 40 130 330 | $21450 5
10 | Basic "-‘3"87(? 8 —1t | $84.50 | $1,352

Table 4-4 presents :otai. esﬁm&tedcastﬁélﬂeﬂed i:y using formula (1). In this
example, the employee cost per hour is equal to $65 [201]. Each requirement requires
different cost per hour based on assigned weights. For example, R; requires $65
(=65*1), R, requires $195 (=65*3) and R; requires $325 (=65*5).

Next, the second step is to calculate total charges to customer. This example
assumes that charge per hour is $100. Therefore, total charges for each requirement
can be shown as follows:

Table 4-5 Total Charges to Customer

126

1 Basic 56 1.00 | $3,640 | $100 $5,600
2 Basic 40 1.10 | $2,860 | $100 $4,000
3 Basic 40 1.20 $3,120 $100 $4,000
4 Surprise 168 300 | $32,760 | $300 | $50,400
s | suprise | 880 [\ 3107 [)81773 | $300 | $26.400
6 Surprise | 1.184 320 | $38272 | 8300 | $55200
7 Ordingry * | 220 500 | $71,500 | $500 | $110,000
Extra ~ $135,91 A
8 Ordinary 410 5.10 5 $500_| $205,000
9 Stirprise 130 330 | $27,885 | $300 “r-fs $39,000
10 Basic 16 130 | $1,352 | $100 =" $1,600

Table4¢5 presents total charges per requirement for customer by using

formula (2). For/example, the total charges for R, is equal to $5,600°(=56*100), R, is

equal to $50,400 (=168*300) and R; is equal to $110,000 (=220*500).

and total charges. The followiﬂg élli'dws: RE)I forEach fequiremcnl.

Table 4-6 ROI for Each Requirement

Afterward, the next'step.is to compute ROI u,smgbgﬂxof total estimated cost

1 Basic $3,640 | $5,600 $1,960 53.85%
2 Basic $2,860 | $4,000 $1,140 39.86%
3 Basic $3,120 | $4,000 $880 28.21%
4 Surprise | $32,760 | $50,400 $17.640 53.85%
5 Surprise | $17,732 | $26,400 $8,668 48.88%
6 Surprise | $38,272 | $55,200 $16,928 44.23%

127

7 Ordinary | $71,500 | $110,000 | $38,500 53.85%

Extra $135,91

8 Ordinary 5 $205,000 $69,085 50.83%
9 Surprisc $27,885 | $39,000 $11,115 39.86%
10 Basic $1,352 $1,600 5248 18.34%

STy

Table 4-6 mn»»or each reguirement usifig fi a (3). However, we
discover that r@nmm with high ROI and less comﬁry are desirable

[70][124]{163}, Recall that there are some arguments that complexity
factor is o&f the most m@@cm for prioritization. wforc. this
dissertation to use both of ROT audD t complexity. |—

The m step w a cmclaum maﬁyﬁ ROI greqnmmt

complexity, %ws

Table 4-7 Ratlo between ROI and Ruirement Camplexit
a§l< 10 bety omumm QQP y

1 Basic 56 53.85% 3 17.95%
2 Basic 40 39.86% 2 19.93%
3 Basic 40 28.21% 2 14.10%
4 Surprise 168 53.85% 5 13.46%
5 Surprise 88 48.88% 3 16.29%
6 Surprise 184 44.23% 4 11.06%
7 Extra Ordinary 220 53.85% 4 13.46%
& Extra Ordinary 410 50.83% 5 10.17%
9 Surprise 130 39.86% 3 13.29%
10 Basic 16 18.34% | 18.34%

128

Table 4-7 shows a correlation ratio for each requirement. Our proposed
method is to prioritize requirements based on the above ratio. Therefore, the

prioritized requirements are: R;, Ryp, Ry, Rs, R3, R4, R7, Ro, R and Ry.

4.6 Test Case Generation Technique

This section presents a test case generation method derived from fully dresses
use case. After the requirements.are ¢lassified and prioritized, we propose to generate
test cases from those prioritized requirements that can be represented in the UML use
case diagram. Alistair [40][151] classified the UML use case diagram into three
categories: brief use case, casual use case and fully dressed use case:

The first category contains the following elements: use case'name, use case
number and goal. The second category is consists of: use case name, use-case number,
goal / purpose and summary. The last category is composed of all information, such
as use case mame, summary, conditions, basic path, alternative path and business
rules. The proposed method concentrates on the last type only.

Our proposed-method contains four steps, as follows: (a) extract use case
diagram (b) extract test scenario (c) generate test data and expected result and (d)
minimize test cases. These steps can be shortly described as follows:

The first step is to extract the following information from fully dressed use
cases: (a) use case number (b) purpose (c) summary (d) pre-condition (e) post-
condition (f) basic event and (g) alternative events. This information is called use case
scenario in this thesis. The example fully dressed use cases of ATM withdraw
functionality can be found as follows [151]:

Table 4-8 Example Fully Dressed Use Case

129

To allow bank's | 1. (a) Input amount
001 |aw customers to Card lnqmry <= Qutstanding
withdraw 2. Input 2. Select Balance
money from PIN A/C Type | (b) Fee charge if
ATM machines | 3. Select 3. Check using different
anywhere in Withdraw | Balance ATM machines
Thailand. 4. Select
N\ e L 2
o e G
7. Get Card
The above

ses can be cxtm:indnﬂc the following use case yﬁuaﬂos:

Table 4-9 Ex:m Use Case S¢enarios

Scenario-002

To allow c,u;m
from ATM m

. Select Inquiry
. Select A/C Type
:5 Check Balance

. Select Withdraw

. Select A/C Type
. Input Balance
. Get Money

10. Get Card

The second step is to automatically extract test scenarios from the previous use

case scenarios [69]. From the above table, the following test scenarios can be

extracted.

Table 4-10 Extract to Test Scenarios

130

To allow bank's customers to withdraw money |1. Insert Card
from ATM machines anywhere in Thailand.

TS-002 'To allow bank's customers to withdraw money [l. Insert Card
ffrom ATM machmtaqytnwnnd.
N e put B
The step is to mamuﬂ?# data, expected ﬁml result

and “pass ml“ status for cach test

clements can:begreatcd ds fo
%’s ows,

(» Xahle 4-11 Extract o Test Cases

This example nsngq that these

s

GD‘ERIE‘{ y

~
S

. Input PIN
. Select Withdraw | Balance | the balance
. Select A/C Type is calculated
. Input Balance successfully.
. Get Money
. Get Card
TC-002 . Insert Card PIN, The
Input PIN Amount,| outstanding

. Select Inquiry | Balance| balance is
. Select A/C Type displayed.
. Check Balance User gets
. Select Withdraw money and
. Select A/C Type the balance
. Input Balance is calculated
. Get Money successfully.

10. Get Card

131

*Actual result and “pass/ fail " status can be fulfilled when test cases are executed.

The last step is to minimize a number of test cases. The outstanding problem
for reducing black-box tests is to unable to identify which test cases should be
removed, as mentioned in Figure 4-1. Therefore, we propose to reduce a number of
test cases based on alternative paths of use cases, called “ALT”. The study shows that
there are many alternative paths in each use case [69][197].

Peter [197] argued that'one requirement éan have multiple use cases. Each use
case must have basic path and has at least one alternative'path. The relationship
among requirements, use cases, basic paths, alternative paths and test cases can be

shown as follows:

Requirement K
S RE < A N

(Potor ot al, 2006 ; Heumann
HMNilawar ot al, 2003)

Figure 4-12 Overwhelm Alternative Paths
The studies [24][52][69][85][96][105][197] prove that both of basic and
alternative paths, described in fully dressed use cases, play a major role to generate
tests. In fact, each use case can have overwhelmed of those paths [197]. This means
that some of duplicated or unnecessary paths could be removed. This is because
duplicated paths can lead to larger number of test cases. One of our objectives is to
minimize a number of test cases during test case generation process. Therefore, this

dissertation proposes a formula, associated with alternative paths, to preserve high

132

coverage alternative paths. Note that the large number of unnecessary alternative
paths can lead to greater deal amount of cost and time to generate and execute tests.

Therefore, we propose the following formula to identify which test cases
should be removed.

AIYTC,) = Wgh(TC,) * Pth(TC,) (5)
Where:

e Alt (TC,) is an alternate pathipoint foreach test case, 7C,.
e Wgh (TC,) is a weight factor that is calculated by using a number of paths
in each use case, for each test case, T'C,, where:
o “Weight = 1 when a number of paths is less than oréqual to 3.
o Weight = 2 when a number of paths is greater than.or equal to 4
and less than or equal to 7.
6 Weight =3 when a number of paths is greater than 7.
e Pth(TC,) is a number of covered paths for each test case, TCn.

The following shows an example of how to calculate the alternate path points.

Path 1 of | Path2of Path 1 of Path 2 of Path 3 of
Use Case 1 | Use Case 1 Use Case 2 Use Case2 | Use Case 2

Figure 4-13 Matrix Table between Tests and Paths

133

Figure 4-13 presents a testing matrix table described a relationship between
test cases and alternate paths of use cases. There are seven test cases and two use
cases. The first use case contains two alternate paths. The second use case consists of
three paths.

The weight and value of the above test cases can be described as follows:

Wgh (T1) =2, Pth (T7) = 4

Wgh (T3) =1, Pth (T3).= |

Wgh (T3)=1, Pth (T3) =2

Weh (T4)=2, Pth(T)=4

Wgh (T5)= 1, Pth (T5) =2

WghiTe) = 1, Pth (Tg) = 1

Weh{T7) = 1, Pth(17) = 1

The above test cases can be calculated the alternate path points asfollows:

Alt(T)=2*4=38

Alt(T))=1*%1=1

Alt(T5)=1*2=2

Alt (T)=2%4=8

Alt(Ts)=1%2=2

Alt(Tg)=1*1=1

Alt(T)=1%1=1

With the above alternate path points, 73, T and 77 are removed due to
minimum points.

However, the further study [124][125][197] shows that alternate path points
are not enough to reduce a number of black box tests. The above method ignores a

risk of each test case. Risk contains two major factors [10][139][163]: (a) level of

134

damage and (b) probability of failure. In September of 2010, our previous work [124]
proposed a risk-driven factor that contains both of:

1. Level of Damage. This factor indicates a level of damage if test cases are

removed. There is a simple guideline to determine a level of damage proposed

by Praveen [139].

2. Probability of Failure. This factor indicates a probability that test cases can

be failed during a test execution.process. Hans [163] and his work in 2005

presented that this factor can be represents as a complexity of test cases.

Fortunately, there was a suggestion during EMDT conference where our
previous work is published [124] that a level of damage should beremoved. This is
because it is'difficult to systematically determine a level of damageif test cases are
removed. The simple guideline is ambiguous and inadequate. This is the first reason
why we propose only a probability of failure.

Another reason why we propose to use a retain score associated with a
complexity of test Cases is that less complex test cases that are generated from
alternative paths should be reserved. This is because less complex test cases can lead
to a low probability of failure during the test execution [124]{125][163]. The retain
score allows to reduce a number of high complex test cases.

Eventually, we propose the following formula, called “RET”, to reduce a
number of test cases by considering risk factor and alternate path points together.

Ret (T,) = Cpx* Alt (6)
Where:

e Ret is a retain score for each test case, T,. Test cases with low score must

be removed.

e Cpx represents as a total number of test steps in each test case.

135

e Alt (TC,) is an alternate path point for each test case, 7C,.

The following describes an example of how to compute retain scores.

Alternate Paths in Use Case A Number of Test Steps in Test Case

T-Fig-ure'zl'-‘l'quxam;'ai.e of Test Stéps Requlrcdfor Path

Figure 4-14 shows that each alternate path of each use case requires a number
of test steps in-the test case. For example, path 1 of use case 1 requires:3 steps in the
test case.

In Figure 4-13 and 4-14, the complexity of each test case can be computed as
follows:

Cpx (T7) =3¥3+4+2 =12

Cpx(T»)=3

Cpx(T3)=3+3=6

Cpx (Ty) =3+4+2+3 =12

Cpx (Ts)=4+2=6

Cpx (Tg)=3

Cpx(T7)=3

Afterward, the retain score for each test case can be computed as follows:

Ret (T)) = 12*8 =96

Ret (T5)=3*1=3

Ret (T))=6*2=12

136

Ret (T4)=12*8=96

Ret (T5)=6*2=12

Ret (Ts)=3*1=3

Ret (T;)=3*1=3

Finally, all test cases with a minimum retain score are removed. Thus, T, Tk

and T are removed.

4.7 Limitations

The following lists limitations of the proposed techniques.’

1. The limifation of the proposed techniques is that both of input data and
expected results require manual efforts to generate duringra test case
generation process.

2. In addition, the proposed techniques can generate test cases from fully dressed
use case, which fully contains all required information only. The techniques
are limited to brief and casual use case.

3. Altemative path-points in the proposed method ate not applicable when use
cases have only basic path.

4. Our proposed method is limited to only fully dressed use case effectively
written based on guidelines in [40][151]. In the commercial industry, it may be
difficult to allow analysts to effectively write comprehensive information for

_use cases.

137

CHAPTER 5

EVALUATION

The chapter explains how the experiment has been designed, its measurements
and the evaluation result, with the aim of determining which test generation method is
the most recommended in terms of customer satisfaction. Also, this chapter discusses
and compares the result. ifi-detail. The evaluation aims to proof that the proposed
techniques can wotk well under circumstance. This dissertation does not argue that

other test case generation techniques have poor performance.

5.1 Experiments

The.section describes the ecxperiment in details. The “objective of the
experiment is to provide an empirical support for our contributions mentioned in the
Chapter 4. Wedesign the experiment into three parts: (a) prepare data (b) generate

test case and (c¢) evaluate a result, The following shows an overview of experiments.

1
: Heumann's
Generation : TestCases
e !
g <]
!

L]
1
Requirement/Use Caseé [TestCase
7Y
i
E Ryser's TestCases

Requirement
R1,R2,.... RS0
llawar's Test Cases

e R P
Usa Case Scenario
uci.uez..... ucso

i |
i i
[} ¥
]]
| !
: !

Figure 5-1 Overview of Experiment
Figure 5-1 can be explained in details, as follows:
1. Prepare Experiment Data. Before evaluating the proposed methods and
other methods, preparing the experiment data is required. In this step, 50 requirements

and 50 use case scenarios, associated with those requirements, are randomly

138

generated. The “dataset” term is used in the rest of this dissertation to represent the
experiment data. This experiment is designed to randomly generate 10 datasets in
order to determine an average value for each measurement.

2. Generate Test Case. A comparative evaluation method has been made
among the proposed test generation algorithm, Heumann’s technique [69], Ryser’s
method [85], Nilawar’s algorithm [105] and the proposed methods presented in the
Chapter 4. This experiment aims to compare a performance of ALT and RET
methods. This is begause it is included a prioritization requirement algorithm prior to
generate a set of test cases. The experiment includes a requirement prioritization
based on user satisfaction steps in the ALT and RET methods respectively. Also,
there is a link-relationship between requirements that have been prioritized and use
cases for those two proposed methods. There are 10 datasets randomly generated for
requirements and use case scenarios. Therefore, this part aims to generate 10 sets of
test cases as well.

3. Evaluate: Results. In this part, comparative generation methods are
executed by using 50 requirements and 50 use case scenarios. These methods are also
executed for 10 datasets in order to find out the average percentage of a number of
test cases and requirement coverage. In total, there are 500 requirements and 500 use
case scenarios executed in this experiment. This part evaluates and compares results
based on datasets and proposed measurements.

The following tables present how to randomly generate requirements and use

case scenarios for each dataset respectively.

139

Table 5-1 Generate Random Requirements

of requirement.

D Supported protocols that
“are| allowed via the
access layer, service
cells and core'cells

2. Platform services should
not require a specified
start-up order in order to
function properly =

3. Platform Services !{n].l‘

adhere to the ITIL based
management.

release
process and must issue a
Release schedule which
defines the frequency-of
major and __a'ﬁnor
releases. o
4. Any release/change
must adhere “to the
following gmidelines for
maintenance windows

N g;,.iﬁmmes should use the

‘Standard OS Builds
provided by Shared
Infrastructure Group

6. Automated installation
procedures and
automated software
builds must be provided
for servers via the
automated scripts

7. Releases should be
stored, packaged and
delivered using
Operations Management
Infrastructure approved

technology

8. Platform services must
document their data
retention times and

Requirement | A unique Randomiy gencratcd from the
ID number to following combination: Reg +
reference Sequence Number. For
requirement. example, Reql, Req2, Req3, ...,
RegN.
Description A description | Randomly generated from the String
followmgs

140

ensure the supporting

processes are in place to
meet them

9. Allregular activities that
occur on platform must
be scheduled via one of
the Management
Infrastructure job
scheduling tools

mcmm and data related
" changes 'on platform
should ‘e seamless,
reliable, transpatem and

. auditable
Type of WA type of Randomly selected from the String
Requirement._ | requirement following values: :
/| that contains 1. Functional
four groups: - 2. Performance
Function, 3. Security
Performance, 4. Operational
Security and '
Classification), | A ' Randomly generated from: : String
© 0 | classification | Basic, Surprise and Extra-
of requirement | ordinary. - -
' based on
1 WOW factors.
Estimated Ancestimated - -Randomly gcnerated,ﬁi:m 1 to Numeric
Efforts for effort for . 480 hours AT\Y
Coding coding. "2 o
Estimated An estimated Randomly gcnerated from 1 to Numeric
Efforts for effort for 480 hours.
Testing testing.
Cost-Value A cost-value Randomly generated from 1 to Numeric
Assignment assigned for Ssuchasl,1.1,1.2,1.3,3,3.1,
each 3.2 33.:551.52md 53
requirement.
ReqComplex A complexity | Apply Holly’s guideline in Numeric
of Holly’s work [70].
requirements.
Correlation A correlation This attribute is calculated by Numeric
ratio between | using ROI and requirement
ROI and complexity as mentioned in the
requirement proposed method.
complexity.

141

Num Use Case

Randomly generate from 1 to
10.

.- Use case ID

Table 5-2 Generate Random Use Case Scenario

A unique
number to

refererice use

case.

_| Randomly generated from the
| following combination: uCase

+ Sequence Number, For
example, uCase;, uCasey, ..,
uCase,.

Purpose

A detail to
| explain a

purpose of use
case.

Randomly generated from the
followings
1. Remote Procedure Calls

through firewalls

that dynamically
allocates ports, rather
than operating through

permitted

3. As part of Management
Infrastructure the patch
management solution
has been chosen‘as the
produerfor security

- 'patch management

4. The Network
Infrastructure
Components used in
platform must adhere to
the management team's
recommended technical
standard

5. Applications statistics
must be created in line
with the formatting
standards specified by
the global management
tool and transferred to
the PAWZ Server on a
daily basis

6. Each service/capability
must have an associated

(RPC) are not permitted ™|

2. The use of any protocol |

set, known ports, is not .|

String

142

i 2 YN o
Site Failover (SFO)
recovery plan

7. The table below
describes the baseline
standard password
security controls for
internal applications and
products

8. Services should be built

- emapproved technology

'\ platforms(hardware and

9. Events shouldbe sent
and formatted using the
standards specified by
Management SN
Infrastructure ot

10. The BSV should ©___
represent the status of
‘the service/capability

from an end-user chem.

perspective

Pre-condftr;igig_

A pre-requisite
condition that
must be done

| before
“{"executing use

Randomly generated from m
following combination: pCon. +
Sequence Number same as Use
case ID. For example, pCon;,

-pCony, ..., pCon,. i

String

Basic Path

A ba-sic} pa&aﬁ

use case.

B’.mdomly@nerated from the
‘following combination: uCase
+ Sequence Number. For
example, basicy, basicy, ...,
basic,,.

String

No_Alternate
Paths

A number of
alternative
paths in use
case.

Random a number of paths
from 1 to 10

Numeric

143

Table 5-3 Generate Random Alternative Paths for Use Cases

Randomly erated from the

Use case ID A unique
number to following combination: uCase
reference use | + Sequence Number. For
case. example, uCase;, uCase;, ...,
uCase,.
AltID A unique Randomly generated from the Numeric
number to following combination:
reference an ¥, | :vISegubnee Number For
alternative © * |‘example; £ 2, .
path, |
No_Steps «1A number of Randomly gcnerated ﬁ!}m 1to Numeric
7,]'steps in each 10.
/| alternative
__| path. il
Steps Details of steps | Randomly generated from the- String
in each following combination: Stepy+
alternative "4+ Stepy + "+ +.. Step,,H
path. n is a No_Steps number s
For example, Stepl + Step2 or
Step 1+ Stepz + Step3 5

The Tbﬂowmg presents an example of test cases used in the experiment.

Table 5-4 Attributes of Test Qases
unique number of test cases.
Purpose Detail information describing what the purpose of String
test case is.
Pre-Conditions | Pre-requisite conditions that must be done before String
executing test cases.
Test Steps A detail information describing steps to execute String
test case.
Input Data An input data using during a test execution String
Expected An expected result of test case that describes String
Result what the result should be.
Actual Result | An actual result of test case that describes what String
the result is after execution.
Status A status of test case that contains “pass’ or “fail” Boolean

The following presents an example of data used in the experiment.

144

Liz) Description » | Typefay | Classticatio « | (510N Code » | Em@ffTost «, Con value « RogCompiar »
1 Swupporied pro Funmmon g 10 -] 11 4

< |Pre-Conditi - | BasicPath « Num AltPat -
ltmﬂmmmw fraConl Basicl 2

: nm -sm: Step) 1 2
A Stepl » Hepl« Stepl « tepd 1 i

— T P
YL S ——— g
a

T4 Ths Maowey bt m-p.hpow
2.4 T Katiors ey apl « Thon = Soepd ¢ Siaet ingat

@im 53 Example of Generated Randoff Data

S A
5.2 Measuremen 4
nipynents =

Th mlmwcmmdﬁi L'I‘hasthﬂpropomm

mmcfouagmcuim.wmchw(a)a oftcﬂmumdth:mmbgeof
JBROTY hﬁRlEt

critical ¢ coverage. This is because Hese selected to

nyj

fémhiiiH

proof that the pmposaﬁm ‘can generate ﬁiﬂcﬂhﬂb« of test cases while
Y omMNIA

e 6 SINC"FQO‘? %@‘
The followings dmkmw

1. A Number of Test Cases: This is the total number of generated test cases,

expressed as a percentage, as follows:

#Size M
Size=———+ 100
e #of Totni.

Where:
* % Size is a percentage of the number of test cases.
o # of Size is a number of lest cases,
o # of Total is the maximum number of test cases in the experiment,
which is assigned 1,000.

145

2. Requirement Coverage: This is an indicator to identify the number of
requirements covered in the system [14]. Due to the fact that one of the goals of
software testing is to verify and validate requirements covered by the system, this
metric is a must. Therefore, a high percentage of critical requirement coverage is
desirable.

It can be calculated using the following formula:

Critical (8)

fG=———7—"7"7100
‘8] # of Total

Where:

e % CRC is the percentage of critical requirement coverage.

e # of Critical is a number of critical requirements covered.

o - # of Total is the total number of requirements.

In 2005, Avik [14] used the following guideline in the experiment.
e If correlation ratio of requirement is greater than 80%, it shows that
requirement is one of top priority requirements.
e If it 1s greater than 50%, it shows that requirement is one of medium

priority requiréments.

5.3 Results

This section shows comparison results of the above experiment. There are two
types of comparison graph results:
1. Comparison based on each dataset randomly generated in each round by the
approach in section 5.1.
2. Comparison of all measurements mentioned in section 5.2 among test case

generation techniques.

146

B |

5.3.1 Compare based on Dataset

This section presents three graphs that compare the latest proposed method

against other three existing test case generation techniques, based on dataset generated

randomly. Those three techniques are: (a) Heumman’s method [69] (b) Ryser’s work

[85] and (c) Nilawar’s approach [105]. There are two dimensions in the following

graph, (a) horizontal and (b) vertical axis. The horizontal represents a percentage value

whereas the vertical axis represents a number of dataset.

The following graph compares a number of test cases based on each dataset

generated as explained above.

Compare A Percentage of A Number of Test Cases Based on

Each Dataset

120% — _—

100%
o B0%
g
s
§ 60%
a

0%

20% +

0% - i
{MHeumann! 97% | 100% | 97% | 99% | 100% | 97% | 96% | 99% | 95% | 98% | |
@ Ryser 97% | 97% | 100% | 100% | 100% | 98% | 98% | O7% | 98% | 95%
|mNilowar | 99% | 98% | 97% | 98% | 98% | 95% | 95% | 96% | 96% | 98%
WALT 90% | 80% | 80% | 80% | 95% | 9% | 9?%_'@ 88% | 79% | 82%
LS RET B4% | 70% | 7% | 72% | 86% | 96% | 96% | 78% | 77% | 72%

Figure 5-3 Comparison Result for a Number of Test Cases

Figure 5-3 presents that the proposed methods generate a number of test cases

slightly smaller than other methods. Meanwhile, other three methods have a similar

number of test cases. This is because the propose method has reduced a number of test

cases during a test case generation process.

147

Secondly, the following compares requirement coverage based on each dataset

generated as explain above.

Compare A Percentage of Requirement Coverage Based on
Each Dataset
9000% - S —— Sp— = - ——
80.00%
] e I, e -
50.00% P B o s s s o s A LR r— PN, -
50.00% * :
4000%
30.00%
20.00%
10.00% |
0.00% +

Percentage

4i55 7

|Ichm-‘!m‘-~22.00% 18.00% 22‘00% 18.00% 2400% 2000% 18.00%

'IRvser £20.00% | 20.00% | 20.00% | 20.00% | 18.00% 20.00% 20.00% | znoamzom zom__
ol £

lNl!awar : 2200% 20.00% 18, 00% 1600'% 2000% 2000% 1400%|
IALT GB UO% |5000% 66 00% }'E 00% 58 EID% % } 4600%1
i WRET 72.00% | 26.00% 46.00% 70. DG% 48 00% 82 00% | 82} UU% 30 00%1 36 00% 50 00% i

Figure 5-4 Comparison Result for Requirement Coverage
Figure 5-4 shows that the proposed methods have a high percentage of critical
requirement coverage and it is by far greater than other methods. This is because the

proposed method classifies and prieritizes réquirements before generating test cases.

5.3.2 Compare based on Measurements

This section presents a graph that compares the latest proposed method against
other three existing test case generation techniques, based on the following
measurements: (a) an average of number of test cases and (b) an average of critical
requirements coverage. Those three techniques are: (a) Heumman’s method [69] (b)
Ryser’s work [85] and (c) Nilawar’s approach [105]. There are two dimensions in the
following graph: (a) horizontal and (b) vertical axis. The horizontal represents two

measurements whereas the vertical axis represents the percentage value.

148

Compare Average Percentage of A Number of Test
Cases and Requirement Coverage
12000% [i T il o kit . i PR RO O ———
:; | Heumann
100.00% | STBUOBO0%TO0s . wRyser
i m Nilawar
80.00% | 2 ALT
@ = RET
ga,omﬁ
g
E "
40.00%
20.00%
0.00% |-- T
A Number of Test Cases Critical Requirement Coverage
Measurements

Figure 5-5 Result of Test Case Generation Methods

Figure 5-5 shows that the above proposed method generates the smallest set of
test cases. It is calculated as 80.80% where as the other techniques is'computed over
97%. Those techniques generated a bigger set of test cases, than a set generated by the
proposed method. The literature review reveals that the smaller set of test cases is
desirable. Finally, the graph presents_that. the proposed methods are the most
recommended techniques to coverage high priority requirements. Its percentage is
much greater than other techniques” percentage, more than 30%.

From Figure 5-5, this study determines and ranks the above comparative
methods into five ranking: 5-Excellent, 4-Very good, 3-Good, 2-Normal and 1-Poer.
This study uses a maximum and minimum value to find an interval value for ranking
those methods.

For a number of test cases, the maximum and minimum percentage is 98% and
80.80%. The different between maximum and minimum value is 17.2%. An interval

value is equal to a result of dividing the different values by 5. As a result, the interval

149

value is approximately 3.4. Thus, it can be determined as follows: 5-Excellent (since
80.80% to 84.2%), 4-Very good (between 84.2% and 87.6%), 3-Good (between 87.6%
and 91%), 2-Normal (between 91% and 94.4%) and 1-Poor (from 94.4% to 97.8%).

To cover requirement, the maximum and minimum percentage is 53.20% and
19%. The different value is 34.2%. The interval value is 6.84. Therefore, it can be
determined as follows: 5-Excellent (since 46.36% to 53.2%), 4-Very good (between
39.52% and 46.36%), 3 \M«:EB&I wt B952%), 2 Nocaal it
25.84% and 32.6 m» Poor (from [9%to 25.84%). ¢

'l‘hcmﬁ%he experiment result of those comparative me can be shown
below: E :___-.__';d_; $
2&: 5.5 A Comparisén Result for Test Case Gmcraho&thods

) 1
o Tl 1
IIJ_\’EQFF_ l ST]
ALT . SN R 5
RET~ UMNIA § ™ 5
u?? . [NC 1969 "'
In conclusion, &eaﬂi recommended technique to
1@21@,

generate the smallest size of test cases with the maximum requirement coverage.

However, this dissertation does not claim that other techniques are poor.

5.4 Discussions

This section discusses the above evaluation results. This dissertation does not
claim that other comparative test case generation methods are worst or have a poor
performance during test case generation activities. In fact, the evaluation aims to prove

that the proposed methods in this dissertation work as expected.

150

Our experiment found that our proposed method is the most recommended test
case generation technique to minimize a number of test cases. Also, our experiment
showed that our method is the best method comparing to other methods, like
Heumann, Ryser and Nilawar. Those methods generate larger number of test cases.

The following shows a comparison result in terms of numbers of test cases:

ALTandRET

e

Smaller ANumberof TestCases

| . Existing Test Case Generation Methods ° Proposed TestCase GenerationMethods

Figure 5-6 A Comparisoﬁ for a Number of Test Cases
Figure 5-6 compares four test case generation techniques in terms of numbers
of test cases. The horizon axis represents a number of test cases. The proposed
methods are by far better than the other three methods. Generally, test case generation
methods with the smallest number of test cases are desirable.
The following represents a comparison between a number of test cases and
coverage of high priority requirements. The horizon axis presents a number of test

cases while the vertical gives a percentage of requirement coverage.

151

ALT

p ! ; : '

| A i ; ! ;

= RET % i
) : o [| i
= ' i i
= $ H i
e ; i !
3 : DR, AR | R b e
b : E |
§ : z
£ : ; !
= i i i
5 $! i
o 3 him m=E R R T
© i ¥
o : |

8 |

Smaller ? : Larger
ANumberof Test Cases

' Existing Test Case Generation Methods

¢ Proposed Test Case Generation Methods

Figure 5-7 A Comparison for a Number of Test Cases and.Coverage

Figure 5-7 shows that our proposed methods generate and minimize a number

of test cases while preserving high capability to cover high priority requirements. Also,

it shows that our methods are by far better than other existing test case generation

methods in terms of number of tests and coverage.

152

CHAPER 6

CONCLUSION

This chapter provides three sections. The first section concludes major
contribution of this dissertation. The second section discusses the most suitable test
case generation to tackle with research problems. The last section describes future

resedrches.

6.1 Major Contributions

In the.conclusion, software testing phase has been proven.that it is one of the
most critical.phases in software development life cycle. Typically,it takes around 40-
50% of=effort and cost of developing software [2]1]. Mafiy researchers have
investigated to reduce time, effort and cost of testing activities. The literature reviews
reveal that test case generation is one of the most important phases in software testing
phase. Therefore, this proposal concentrates on test case generation techniques.

The outstanding research ' problems remaining from test case generation
methods based on UML- use case dmgram, which motivated this study, are: lack of
requirement prioritization before test case generation, unable to identify which test
cases can be removed during a test case generation process and large number of test
cases due to large number of alternative paths in each use case.

In order to resolve the above problems, this dissertation proposes an effective
test case generation method, derived from UML Use Case diagram, along with
marketing-driven requirement prioritization for black-box testing [89][115]. This
dissertation introduces WOW factors based on user satisfaction to support the
requirement classification and prioritization [100][114]). This is because critical

requirements must have higher priority. Typically, a general requirement

153

prioritization uses only retum on investment (ROI) to prioritize requirements.
Unfortunately, our study reveals that ROI is not the only factor for a requirement
prioritization. The research presents that a complexity of requirement is one of the
critical factors to give a priority, This thesis introduces a relationship between ROI
and the requirement complexity [70]. The high ROI requirements with less
complexity are desirable.

In addition, this dissertation -improves a sketch diagram-based test case
generation method, by minimizing a number of test cases during the process. The
proposed method aims to reduce a number of test cases derived from UML use case
diagram by considering alternate paths of use cases. It introduces alternate path points
for removing unnecessary test cases. Unfortunately, the research shows that the
remaining problem of considering only paths is that a number of test cases are still
large due to overwhelm altermate paths.

Eventually, the dissertation proposes a retain score in order to enhance ability
to remove test cases. It introduces a probability of failure, as a part of risk value,
represented as a complexity of test case. The complexity factor is a total number of
test steps in each test case. The high complex test cases generally have a lot of test
steps. Consequently, these high complex test cases can lead to high probability to
failure.

Furthermore, the research conducts an evaluation experiment with a random
requirements and fully described use cases. The evaluation result reveals that the
proposed method is the most recommended test case generation methods for
maximizing critical requirement coverage. Also, the result presents that the proposed
method is one of the most recommended test case generation methods to minimize a

number of test cases and cover critical requirements based on user satisfaction.

154

6.2 Discussion: The Most Suitable Approach

This section provides a discussion on which test case generation method is
best suited to the following problems: (a) lack of requirement prioritization during test
case generation process that can lead to low rate of critical requirement coverage and
poor user satisfaction (b) unable to systematically determine, which test cases for
black-box testing should be removed, that can lead to a large number of test cases and
(c) still large number of'test cases due to large number of alternative paths described
in use cases, thatds resulted in consuming a greater amount of time and cost.

In this«dissertation, we consider the following:

6.2.1 Requirement Prioritization based on Customer Satisfaction

This~ dissertation proposes a marketing-driven requirement prioritization
technique 'with WOW factors to classify requirement. This is ‘likely to classify
requirements ‘based on user satisfaction, along with the implementation cost.
Additionally, the research introduces a cormrelation between:ROI and requirement
complexity to effectively prioritize requirements. In faet, this dissertation inserts the
requirement prioritization process prior to- generate test case. We conduct the
experiment to determine which test case generation is best suited to resolve the above
research problems. Our evaluation result shows that the proposed technique can
increase the ability of requirement coverage based on user satisfaction during test case
generation activities.

The following lists advantages and disadvantages when using the requirement
prioritization technique prior to test case generation activities.

Advantages:

1. Increase requirement coverage based on user satisfaction.

155

2. Provide an easy method in prioritizing large number of requirements based on
user satisfaction.

3. Indirectly reduce a number of test cases to be generated for low priority
requirements that are not relatively to the satisfaction factor.

4. Raise high priority for requirements with high ROI and less complexity.
Disadvantages:

1. Requires several dnvolvements with’ customers to identify and classify
requirements.

2. Requires large number of requirements in order to classify and prioritize.

3. Difficult to systematically identify which requirements-«¢an extraordinary
inerease the user satisfaction.

4. Difficult to systematically determine a complexity of requirements.

6.2.2 Test Case Generation Technique

This dissertation proposes to reduce a number of test cases during a test case
generation technique, which derive tests from fully dressed use cases. There are two
major proposes: (a) alternative path point. formula and (b) a retain score. They are
important and be part of our proposed methods to remove test cases. This is due to
that use cases have overwhelm alternative paths and it can eventually lead to large
number of test cases. None of existing sketch diagram based generation techniques,
derived from UML use case diagram, removes test cases and concentrates on
alternative paths. In case that there are a large number of alternative paths that can be
optimized for generating test cases, this dissertation suggests our proposed method.

The following lists advantages and disadvantages when reducing test cases

during test case generation activities.

156

Advantages:

1. Reduce a number of test cases during test case generation process.

2. Reserve test cases with less complexity and a few steps in the test case.

3. Able to systematically determine which test cases should be removed during
test case generation process.
Disadvantages:

1. Not applicable for usé cases that have.only basic paths.

2. Requires fully dressed use cases only.

3. Manually generate test data and expected result.

6.3 Future Research

The problems that occur when using the above approach need future
investigation. In brief, they are:

1. Difficult to systematically determine and classify requirements
Recall that one of the weaknesses of the proposed method is to difficult to
systematically determine and classify requirements based on user satisfaction
prior test case generation process. One of the interesting areas for future
research is finding a systematic approach to identify user satisfaction and
relative to a requirement engineering field.

2. Manual generate test data and expected result
The proposed technique manually generates test data and expected result that
cannot reduce time and cost as much as expected. The future research should
concentrate on incorporating other diagrams or techniques to automatically

generate both of test data and expected result.

157

(1]

[2]

(3]

(4]

[5]

(6]

[7]

(8]

REFERENCES

A. Blum and M. Furst. "Fast Planning Through Planning Graph Analysis."
Artificial Intelligence 90 (1997): 281-300.

A. Gargantini and C. Heitmeyer. "Using model checking to generate tests
from requirements specifications." Software Engineering Notes 24, no. 6
(November 1999): 146-162.

A. Jefferson Offutt, Yiwei Xiong and Shaoying Liu.."Criteria for Generating
Specification-based Tests." Proceedings of the Sth IEEE Internation
Conference on Engineering of Complex Computer Systems; 1999 (ICECCS
'99). Las Vegas, NV, USA: IEEE Computer Society, 1999. 119-129.

A.Z. Javed, P.A. Strooper and G.N. Watson. "Automated Generation of Test
Cases Using Model-Driven Architecture." Second International Workshop on
Automation of Software Test (AST’07). Minneapolis, USA. TEEE Computer
Society, 2007, 3.

Ahl, V. An Experimental Comparison of Five Prieritization Methods. Master's
Thesis, Ronneby, Sweden: Blekinge Institute of Technology, 2005.

Alberto Avritzer and Elaine J. Weyuker. "The automatic generation of load
test suites and the assessment of the resulting software." IEEE Transactions on
Software Engineering 21, no. 9 (1995): 705-716.

Alessandra Cavarra, Charles Crichton, Jim Davies, Alan Hartman, Thierry
Jeron and Laurent Mounier. "Using UML for Automatic Test Generation."
Proceedings of the Tools and Algorithms for the Construction and Analysis of
Systems (TACAS"2000). Oxford University Computing Laboratory, 2000.
Al-Kilidar, H., Cox, K. and Kitchenham, B. "The use and usefulness of the

ISO/IEC 9126 quality standard.” Proceedings of the International Symposium

158

(9]

[10]

[11]

[12]

[13]

(14]

(15]

TEEASSUMPTION UNIVERSITY LIBRARY

on Empirical Software Engineering. Noosa Heads, Australia: IEEE Computer
Society, 2005. 7.

Amaral. A.S.M.S. Test case generation of systems specified in Statecharts.
M.S. thesis , Laboratory of Computing and Applied Mathematics, INPE,
Brazil: Laboratory of Computing and Applied Mathematics, 2006.

Andrea Hermann and Barbara Paech. "Practical Challenges of Requirements
Prioritization Based on Risk -Estimation." Joumnal of Empirical Software
Engineering (Kluwer Academic Publishers) 14, no. 6 (2009): 644 - 684.
Annelises A. Andrews, Jeff Offutt and Roger T. Alexander. "Testing Web
Applications." Software and Systems Modeling 4, no. 1 (2005):326--345.
Atif M. Memon, Martha E. Pollack and Mary Lou Soffa. "Hierarchical GUI
Test Case Generation Using Automated Planning." IEEE' Transactions on
Software Engineer (IEEE Press) 27, no. 2 (February 2001): 144-155.

Atif M. Memon, Martha E. Pollack and Mary Lou Soffa. "Using a Goal-driven
Approach-to Generate Test Cases for GUIs." Proceedings of the 2lst
international conference on Software engine¢ring (ICSE’1999). Los Angeles,
CA, USA: ACM, 1999. 257-266. |

Avik Sinha. Domain Specific Test Case Generation Using Higher Ordered
Typed Languages for Specification. Ph. D. Dissertation, College Park, MD,
USA : University of Maryland , 2005,

Aynur Abdurazik and Jeff Offutt. "Generating Test Cases from UML
Specifications." Proceedings of the 2nd International Conference on the

Unified Modeling Language (UML'99). Fort Collins, CO, USA, 1999.

159

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

AZUMA, Motoei. Applying ISO/IEC 9126-1 Quality Model to Quality
Requirements Engineering on Critical Software. Waseda University, USA:
Waseda University, 2004.

B.M. Subraya and S.V. Subrahmanya. "Object driven performance testing in
Web applications.” Proceedings of the First Asia-Pacific Conference on
Quality Software (APAQS'00). Hong Kong: IEEE Computer Society, 2000.
17-26.

Barry Boehm and Victor R. Basili. "Software Defe¢t Reduction Top 10 List."
Computer(IEEE Computer Society Press) 34, no. 1 (January 2001): 135-137.
Beck, K. and Andres, C. Extreme Programming Explained: Embrace Change.
Boston, MA: Addison-Wesley, 2004.

Beée Bee Chua and Laurel Evelyn Dyson. Applying the ISO 9126 model to the
evaluation of an e-learning system. Sydney, Australia: * University of
Technology, 2004.

Beizer, B. Software Testing Techniques. New York, ‘USA: Van Nostrand
Reinhold, Inc, 1990.

Bentley, John E. Software Testing Fm&mmtals — Concepts, Roles and
Terminology. USA: SAS Institute, TechRepulic, 2005.

Bertolino, A. "Software Testing Research and Practice.” Proceedings of the
10th International Workshop on Abstract State Machines (ASM'03).
Taormina, Italy: Springer-Verlag Berlin, Heidelberg, 2003. 1-21.

Bill Hasling, Helmut Goetz and Klaus Beetz. "Model Based Testing of System
Requirements using UML Use Case Models." Proceedings of International
Conference on Software Testing Verification and Validation (ICST'08).

Lillehammer, Norway: IEEE Computer Society, 2008. 367-376 .

160

[25]

[26]
[27]

[28]

[29]

(30]

(31]

(32]

Boehm, B. and Ross, R. "Theory-W Software Project Management: Principles
and Examples." IEEE Transactions on Software Engineering 15, no. 4 (July
1989): 902-916.

Boehm, B. "Industrial Metrics Top 10 List." IEEE Softwar, 1987: 84-85.
Bogdan Korel and Ali M. Al-Yami. "Automated Regression Test Generation."
Proceedings of the 1998 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA'98). Clearwater Beach, FL, United
States: ACM, 1998. 143-152.

Brandt, D; Randall. "How service marketers can identify value-enhancing
service elements." Journal of Services Marketing 2, no. 3 (1988): 35-41.
C.*Ramamoorthy, S. Ho, and W. Chen. "On the automated generation of
program test data.” IEEE Transactions on Software Engineering 2, no. 4
(1976): 293-300.

C.-H.Lim, D. C. Kung, P. Hsia, and C.-T. Hsu. "An object based data flow
testing approach for web applications." International Journal of Software
Engineering and Knowledge Engineering 11, no. 2 (April 2001): 157-179.
CH. Liuy, D.C. Kung, P. Hsia and C.T. Hsu. "Structural testing of Web
applications." Proceedings of the 11th International Symposium on Software
Reliability Engineering (ISSRE'00). San Jose, USA: IEEE Computer Society,
2000. 84-96.

Cadotte, Ermest R. and Turgeon, Normand. "Dissatisfiers and Satisfiers:
Suggestions from Consumer Complaints and Compliments." Journal of
Consumer Satisfaction, Dissatisfactions and Complaining Behavior 1 (1988):

74-79.

161

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Carl Adam Petri and Wolfgang Reisig. Petri net. USA: Scholarpedia
Publisher, 2008.

Cem Kaner, J.D., Ph.D. "What Is a Good Test Case?" Proceeding of Software
Testing Analysis & Review. Florida, USA: STAR East, 2003.

Cem Kaner, James Bach and Bret Pettichord. Lessons Leamned in Software
Testing: A Context-Driven Approach. New York: Wiley, 2002.

Cem, Kaner. An Introduction to-Scenario Testing, Florida, USA: Florida Tech,
2003.

Chaffee; Alex. "What is a web application (or “webapp™)?" 2008.

Chang-Jia Wang and Ming T. Liu. "Axiomatic Test Sequence Generation for
Extended Finite State Machines." Yokohama , JapanProceedings of the 12th
International Conference on Distributed Computing Systems, 1992,
Yokohama , Japan: IEEE Computer Society, 1992. 252 - 259;

ChiensHung Liu, David C. Kung, Pei Hsia and Chih-Tung Hsu. "Object-Based
Data Flow Testing of Web Applications." Proceedings of the First Asia-
Pacific Conference; on Quality Software (APAQS'00). Hong Kong: IEEE
Computer Society, 2000. 7-16.

Cockburn, Alistair. Writing Effective Use Cases. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc, 2001.

DM. Cohen, and M.L. Fredman. "New Techniques for Design-ing
Qualitatively Independent Systems." Journal of Combinational De-signs 6, no.
6 (1998): 411-416.

D.M. Cohen, S.R. Dalal, and M.L. Fredman. "The AETG System: An
Approach to Testing Based on Combinatorial Design." IEEE Trans on

Software Engineering 23, no. 7 (1997): 437-444,

162

(43]

[44]

(45]

[46]

[47]

[48]

[49]

[50]

David C. Kung, Chien-Hung Liu and Pei Hsia. "An Object-Oriented Web Test
Model for Testing Web Applications." Proceedings of the First Asia-Pacific
Conference on Quality Software (APAQS’00). Los Alamitos, CA, USA: IEEE
Computer Society, 2000. 111.

David Turner, Moonju Park, Jaechwan Kim and Jinseok Chae. "An Automated
Test Code Generation Method for Web Applications using Activity Oriented
Approach." Proceedings ' of ~the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering . L'Aquila, Italy: IEEE
Computer Society, 2008. 411-414.

Davis, " A. Just Enough Requirements Management: Where Software
Deévelopment Meets Marketing. New York: Dorset House, 2005.

Dayis, A. "The Art of Requirements Triage." IEEE Computer 36, no. 3
(March 2003): 42-49.

Deursen; P. Klint and J. Visser. "Domain-specific Languages: An annotated
bibliography." ACM SIGPLAN Notices 35, no. 6 (2000): 26-36.

E. Hieatt, R. Mee; and G. Faster. "Testing the web application engineering
internet." IEEE Software 19, no. 2 (April 60-65): 2002.

E. Weyuker, T. Goradia, and A. Singh. "Automatically generating test data
from a boolean specification." IEEE Transactions on Software Engineering 20,
no. 5 (1994): 353-363.

Edvardsson, Jon. "A Survey on Automatic Test Data Generation." Proceedings
of the 2nd Conference on Computer Science and Engineering. LinkGping,

Sweden, 1999. 21-28.

163

[51]

[52]

[53]

[54]

(55]

[56]

[57]

Elizabeth M. Rudnick and Janak H. Patel. "Efficient Techniques for Dynamic
Test Sequence Compaction." IEEE Transactions on Computers, Marh 1999:
323 -330.

Erika Regina Campos de Almeida, Bruno Teixeira de Abreu and Regina
Moraes. "An Altemative Approach to Test Effort Estimation Based on Use
Cases." Proceedings of the 2009 International Conference on Software Testing
Verification and Validation (IEST'09). Denver, CO, USA: IEEE Computer
Society, 2009. 279-288.

Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry and Yves Le Traon.
"Metamodel-based Test Generation for Model Transformations: an Algorithm
and a Tool." Proceedings of the 17th International Symposium on Software
Reliability Engineering (ISSRE’06). Raleigh, NC, USA: IEEE Computer
Society, 2006. 85-94.

Firesmath, Donald, "Prioritizing Requirements." Journal of Object Technology
3, no. 8 (2004).

Flippo Ricca and Paolo Tonella. "Analysis-and: Testing of Web Applications."
Proceedings of the 23rd International Conference on Software Engineering
(ICSE'O1). Toronto, Ontario, Canada: IEEE Computer Society, 2001. 25-34,
Flippo Ricca and Paolo Tonella. "Web Testing: a Roadmap for the Empirical
Research." Proceedings of the 2005 Seventh IEEE International Symposium
on Web Site Evolution (WSE'05). Budapest, Hungary: IEEE Computer
Society, 2005. 63-70.

Frederick Herzberg, Bemard Mausner and Barbara Bloch Snyderman. The

motivation to work. 2nd edition. New York: Wiley, 1959.

164

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

George, Mealy H. "A Method for Synthesizing Sequential Circuils.“ Bell
Systems Technical Journal 34 (September 1995): 1045-1079.

Geraci, Anne. Compilation of IEEE standard computer glossaries. NJ, USA:
IEEE Press Piscataway, 1991.

Grady Booch, Ivar Jacobson and Jim Rumbaugh. OMG Unified Modeling
Language Specification. USA: OMG Organization, 2000.

Gregor V. Bochmannand and Jan«Gecsei » "A unified method for the
specification and verification of protocols." Proceedings of the IFIP
Congress'77. Toronto, Canada: North-Holland Publishing. Company, 1977.
229-234.

Harel; D. "On visual formalisms." Communications of the ACM 31, no. 5
(1988): 514-530.

Harel, D. "Statecharts: A visual formalism for complex system.” Journal of
ACM (Elsevier North-Holland, Inc. Amsterdam, The Netherlands), June 1987:
231-274.

Harrold, M. J. "Testing: A Roadmap.". Proceedings of the International
Conference on Software Engineering. Limerick, Ireland: ACM, 2000. 61-72.
Hasan Ural and Keqin Zhu. "Optimal Length Test Sequence Generation Using
Distinguishing Sequences.” IEEE Transaction on Networking, 1993: 358 -
.

Hassan Reza, Kirk Ogaard and Amamath Malge. "A Model Based Testing
Technique to Test Web Applications Using Statecharts." Proceedings of the
Fifth International Conference on Information Technology. Las Vegas, NV,

USA: IEEE Computer Society, 2008. 183-188.

165

[67]

[68]

[69]

(70]

(71]

[72]

[73]

Hayes, Jane Huffman. Input Validation Testing: A Requirements-Driven,
System Level, Early Lifecycle Technique. Ph.D. Thesis, George Mason
University, Fairfax, VA, USA: George Mason University, 1999.

Hetzel, William C. The Complete Guide to Software Testing. MA, USA: QED
Information Sciences, Inc. Wellesley, MA, USA , 1988.

Heumann, Jim. Generating Test Cases From Use Cases. IBM Rational
Software, 2001,

Holly Parsons-Hann and Kecheng Liu. "Measuring Requirements Complexity
to Increase the Probability of Project Success.” Proceedings of International
Conference on Enterprise Information Systems (ICEIS'05). Miami, USA,
2003:

Ho-Won Jung, Seung-Gweon Kim and Chang-Shin Chung. "Measuring
Software Product Quality: A Survey of ISO/IEC 9126:" Journal of IEEE
Software (IEEE Computer Society) 21, no. 5 (September 2004): 88-92.
Huaikou-Miao, Shengbo Chen, Huanzhou Liu and Zhongsheng Qian. "An
Approach to Generating Test Cases for Testing Component-based Web
Applications." Proceedings of the WorkshOp on Intelligent Information
Technology Application (IITA'07). Zhang Jiajie, China: IEEE Computer
Society, 2007. 264-269.

Huaikou Miao, Zhongsheng Qian and Bo Song. "Towards Automatically
Generating Test Paths for Web Application Testing." Proceedings of the 2nd
[FIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE'08). Nanjing, China: IEEE Computer Society, 2008, 211-

218.

166

[74]

[75]

[76]

(771

[78]

[79]

[80]

Hui Liu and Hee Beng Kuan Tan. "Automated Verification and Test Case
Generation for Input Validation." Proceedings of the 2006 international
workshop on Automation of software test, International Conference on
Software Engineering. Shanghai, China: ACM, 2006. 29-35.

Hyungchoul Kim, Sungwon Kang, Jongmoon Baik and Inyoung Ko. "Test
Cases Generation from UML Activity Diagrams.” Proceedings of the Eighth
ACIS International Conference “on Software Engineering , Artificial
Intelligence, Networking, and Parallel/Distributed Computing. Qingdao,
China: Haier International Training Center, Qingdao, China , 2007. 556-561.
Ibrahim K. El-Far and James A. Whittaker. Model-based Software Testing.
Publication Report, Encyclopedia of Software Engineering, Wiley, 2001.

Irith Pomeranz, Praveen K. Parvathala and Srinivas Patil. "Estimating the
Fault Coverage of Functional Test Sequences Without Fault Simulation."
Proceedings of the 16th IEEE Asian Test Symposium. San Francisco,
California, USA: IEEE Computer Society, 2007. 25-32".

J. Dick and A.‘Faivre. "Automating the Generation and Sequencing of Test
Cases from Model based specification." Proceedings of the First International
Symposium of Formal Methods Europe on Industrial-Strength Formal
Methods . Odense, Germany: Springer-Verlag London, UK , 1993. 268-284.
Jalote, Pankaj. "An Integrated Approach to Software Engineer." 2005.

Jane Huffman Hayes and A. Jefferson Offutt. "Increased Software Reliability
through Input Validation Analysis and Testing." Proceedings of the 10th
International Symposium on Software Reliability Engineering (ISSRE '99).

Boca Raton, FL, USA : IEEE Computer Society, 1999. 199,

167

81

[82]

(83]

[84])

[85]

(86]

[87]

Jeff Offutt, Shaoying Liu, Aynur Abdurazik and Paul Ammann. "Generating
Test Data from State-based Specifications." The Journal of Software Testing,
Verification and Reliability 13, no. 1 (March 2003): 25-53.

Jeff Offutt, Ye Wu, Xiaochen Du and Hong Huang. "Bypass Testing of Web
Applications." Proceedings of 15th International Symposium on Software
Reliability Engineering, 2004, ISSRE 2004. Fairfax, VA, USA: IEEE
Computer Society;2004. 187=197.

Jeff TianyLi Ma, Zhao Li and A. Gunes Koru. "A Hierarchical Strategy for
Testin_g Web-Based Applications and Ensuring Their Reliability." Proceedings
of .the 27th Annual International Computer Software and Applications
Conference (COMPSAC®03). Dallas, Texas, USA: IEEE ‘Computer Society,
2003. 702.

Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang and: William C. Chu.
"Constructing Control-Flow-Based Testing Tools for Web Application."
Proceedings of the 11th Software Engineering and Knowledge Engineering
Conference (SEKE'99). Kaiserslautern, Germany, 1999.

Johannes Ryser and Martin Glinz. SCENT: A Method Employing Scenarios to
Systematically Derive Test Cases for System Test. Technical Report: ifi-
2000.03 , Zurich, Switzerland: University of Zurich , 2000.

Kancherla, Mani Prasad. Generating Test Templates via Automated Theorem
Proving. Technical Report: NASA CR-207042, NASA, Washington, DC,
USA: NASA Ames Research Center, 1997.

Kaner, Cem. "A Course in Black Box Software Testing." 2004.

168

(88]

(89]

[90]

1]

[92]

(93]

[94]

[95]

[96]

Kaner, Cem. "Software Engineering Metrics: What Do They Measure and
How Do We Know?" Proceedings of the 10th Intemational Software Metrics
Symposium. Chicago, IL, USA: IEEE Press, 2004.

Kano Noriaki, Nobuhiku Seraku, Fumio Takahashi and Shinichi Tsuji.
"Attractive Quality and Must-Be Quality." Journal of the Japanese Society for
Quality Control 14, no. 2 (1984): 39-48.

Karlsson, J. "A Cost-Value Approach for Prioritizing Requirements." Journal
of IEEE SQftware, 1997: 67-74.

Karlsson, J. and Ryan, K. "A Cost-Value Approach for Prioritizing
Requiréments." IEEE Software (IEEE Computer Society) 14, no. 5
(September/October 1997): 67 - 75.

Karlsson, J. "Software Requirements Prioritizing." Proceedings of the Second
International Conference on Requirements Engineering (ICRE'96). Colorado :
IEEE Computer Society, 1996. 110-116.

Konda, Kalyana Rao. Measuring Defect Removal Accurately. USA: Software
Testing PRo, 2005.

Korel, Bogdan. "Aufomatcd Software Test Data Generation." IEEE
Transaction on Software Engineering (IEEE Press) 16, no. 8 (August 1990):
870-879.

L. Brim, I. Cerna, P. Varekova, and B. Zimmerova. "Component-interaction
automata as a verification oriented component-based system specification.”
ACM SIGSOFT Software Engineering Notes (ACM) 31, no. 2 (March 2006):
31-38.

Leffingwell, D. and Widrig, D. Managing Software Requirements: A Use

Case Approach. Boston, MA: Addison-Wesley, 2003.

169

[97]

(98]

[99]

[100]

[101]

[102]

[103]

Lei Xu and Baowen Xu. "Applying Agent into Intelligent Web Application
Testing." Proceedings of the International Conference on Cyberworlds.
Hannover, Germany: IEEE Computer Society, 2007, 61-65 .

Lei Xu, Baowen Xu and Jixiang Jiang. "Testing Web Applications Focusing
on Their Specialties." ACM SIGSOFT Software Engineering (ACM) 30, no. 1
(January 2005): 10.

Lena Karlsson, Asa G, Dahlstedt, Johan Naft och Dag, Bjorn Regnell and
Anne Persson. "Challenges in Market-Driven Requirements Engineering - an
Industrial Interview Study." Proceedings of Eighth International Workshop on
Requirements Engineering: Foundation for Software Quality. Essen, Germany,
September 2002. 37-49.

M Tokman, LM Davis and KN Lemon. "The WOW factor; Creating value
through win-back offers to reacquire lost customers." Journal of Retailing 83,
no. 1(2007): 47-64.

M. Bamett, W. Grieskamp, E. Nachmanson, W. Schulte, N. Tillmann, and M.
Veanes. "Model-Based Testing with AsmL.NBT." Proceedings of the Ist
European Conference on Model-Driveh Soﬂware Engineering. Nuremberg,
Germany: Microsoft Press, 2003, 11-12,

M. Blackburn and R. Busser. "T-VEC: A tool for developing critical systems."
Proceedings of the 1996 Annual Conference on Computer Assurance
(COMPASS'96). Gaithersburg, MD: IEEE Computer Society Press, 1996.
237-249.

M. Prasanna S.N. Sivanandam R.Venkatesan R.Sundarrajan. "A Survey on

Automatic Test Case Generation." Academic Open Internet Journal 15 (2005).

170

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Mahnaz Shams, Diwakar Krishnamurthy and Behrouz Far. "A Model-Based
Approach for Testing the Performance of Web Applications." Proceedings of
the Third International Workshop on Software Quality Assurance
(SOQUA’06). Portland, Oregon, USA: ACM, 2006, 54-61.

Manish Nilawar and Dr. Sergiu Dascalu. A UML-Based Approach for Testing
Web Applications. Master Thesis, Master of Science with major in Computer
Science, University of Nevada, Reno, Nevada, USA: University of Nevada,
2003.

Marick;. Brian. The Craft of Software Testing: Subsystem.Testing Including
Object-Based and Object-Oriented Testing. USA: Prentice’Hall, 1995.

Mats~ Grindal, Jeff Offuit and Sten F. Andler. "Combination Testing
Strategies: A Survey." The Joumal of Software Testing; Verification and
Reliability 15 (2005): 167-199.

Mats/P.E. Heimdahl, Sanjai Rayadurgam, Willem Visser, Devaraj George and
Jimin Gao- Auto-generating Test Sequences using Model Checkers: A Case
Study. NASA Ames Research Center, USA; NASA Ames Research Center,
2003. |

Maya Daneva and Andea Hermann. "Requirements Prioritization Based on
Benefit and Cost Prediction: A Method Classification Framework."
Proceedings of the 2008 34th Euromicro Conference Software Engineering
and Advanced Applications. Parma, Italy: IEEE Computer Society, 2008. 240-
247.

McConnell, Steve. Code Complete. California, USA: Microsoft Press, 2004.
McMinn, Phil. "Search-based Software Test Data Generation: A Survey."

Software Testing, Verification & Reliability 14, no. 2 (June 2004): 105-156.

171

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

Mead, Nancy R. Requirements Prioritization Introduction. Software
Engineering Institute, Carnegie Mellon University, USA: Carnegie Mellon
University, 2008.

Miao Huaikou and Liu Ling. "A Test Class Framework for Generating Test
Cases from Z Specifications." Proceedings of the 6th IEEE International
Conference on Complex Computer Systems (ICECCS'00). Tokyo, Japan:
IEEE Computer. Society, 2000:-164.

Millard, N. "Learning from the ‘wow’ factor -« how to engage customers
through the design of effective affective customer experiences." Journal of BT
Technology 24, no. 1 (2006): 11-16.

ML "Meuter, AL Ostrom, RI Roundtree and MJ Bitner. "Self-service
technologies: understanding customer satisfaction with technology-based
service encounters." Journal of Marketing 64 (2000): 50-64:

Mohammed Benattou, Jean-Michel Bruel and Nabil Hameurlain. "Generating
Test Data from OCL Specification." 2002.

Moisiadis, F. "A“Requirements Prioritisationt Tool." Proceedings of the 6th
Australian Workshop on Requirements Engineering (AWRE'Q1). Sydney,
Australia, 2001.

Moisiadis, F. "Prioritising Scenario Evolution." Proceedings of the
International Conference on Requirements Engineering (ICRE'00).
Schaumburg, IL , USA : IEEE Computer Society, 2000. 85-94.

Monalisa Sarma and Rajib Mall. "Automatic Test Case Generation from

UML Models." Proceedings of the 10th International Conference on
Information Technology. Rourkela, India: IEEE Computer Society, 2007. 196-

201.

172

[120]

[121]

[122]

[123]

[124]

[125]

[126]

(127]

Myers, Glenford J. The art of software testing. New York, USA: Wiley, 1979,
N. Kobayashi, T. Tsuchiya, and T. Kikuno. "A New Method for Constructing
Pair-wise Covering Designs for Software Testing." Infor-mation Processing
Letters (Elsevier North-Holland, Inc. Amsterdam, The Netherlands, The
Netherlands) 81, no. 2 (January 2002): 85-91.

Neelam Gupta, Aditya P. Mathur and Mary Lou Soffa. "Automated Test Data
Generation Using'An [terative Relaxation Method." ACM SIGSOFT Software
Engineering Notes (ACM) 23, no. 6 (November 1998): 231-244.

Nicha Kosindrdecha and Jirapun Daengdej. "A Test Generation Method Based
on. State Diagram." Journal of Theoretical and Applied Information
Technology, 2010.

Nicha Kosindrdecha and Jirapund Daengdej. "Test .Case Generation
Technique and Process.”" Proceedings of First International Workshop on
Evolution Support for Model-Based Development and Testing (EMDT2010).
Ilmenau, German, 2010.

Nicha Kosindrdecha, Siripong Roongruangsuwan and Jirapun Daengdej.
"Reducing Test Cases Created by Path Oriented Test Case Generation."
Proceedings of the AIAA Conference and Exhibition (AIAA'07). Rohnert
Park, California, USA: American Institute of Aeronautics and Astronautics,
Inc., 2007.

Nigel Tracey, John Clark, and Keith Mander. "Automated program flaw
finding using simulated annealing." ACM SIGSOFT Software Engineering
Notes (ACM) 23 (1998): 73-81.

NIST. The economic impacts of inadequate infrastructure for software testing.

USA: National Institute of Standards and Technology, 2002.

173

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Nyman, Matias. "Software Component Quality." 2004.

P. Botella, X. Burgués, J.P. Carvallo, X, Franch, G. Grau, J. Marco and C.
Quer. "ISO/IEC 9126 in practice: what do we need to know?" Rome, Italy,
2004.

P. E. Ammann, P. E. Black, and W. Majurski. "Using model checking to
generate tests from specifications." Proceedings of the Second IEEE
International Conference om Formal Engineering Methods (ICFEM’98).
Brisbaney Australia: IEEE Computer Society, 1998. 4654,

P. Samuel, R. Mall and A.K. Bothra. "Automatic Test Case Generation Using
Unified Modeling Language (UML) State Diagrams." Jouirnal of IET Software
2,16. 2 (April 2008): 79 - 93.

P. Stocks and David Carrington. "A Framework for Specification-Based
Testing." IEEE Transaction on Software Engineering (IEEE Press Piscataway,
NJ,USA) 22, no. 11 (November 1996): 777-793.

Paga, F. G. Formal Specification of Programming Languages: A Panoramic
Primer. Australia;Rentice-Hall, Inc., 1981,

Pan, Jiantao. Software Testing (18-849b Dependable Embedded Systems).
Electrical and Computer Engineering Department, Camegie Mellon
University, USA: Camegie Mellon University, 1999.

Park, J.; Port, D.; and Boehm B. "Supporting Distributed Collaborative
Prioritization for Win-Win Requirements Capture and Negotiation."”
Proceedings of the International Third World Multi-conference on Systemics,
Cybemetics and Informatics (SCI'99). Orlando, FL: International Institute of

Informatics and Systemic (IIIS), 1999. 578-584.

174

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Percy Antonio, Pari Salas and Bernhard K. Aichernig. Automatic Test Case
Generation for OCL: a Mutation Approach. Technical Report UNU-IIST
Report No. 321, Tokyo, Japan: United Nations University, 2005.

Peter Frohlich and Johannes Link. "Automated Test Case Generation from
Dynamic Models." Proceedings of the 14th European Conference on Object-
Oriented Programming. Nottingham, UK: Springer-Verlag London, UK, 2000.
472 - 492.

Philip Samuel and Anju Teresa Joseph. "Test Sequence Generation from UML
Sequence Diagrams." Proceedings of the Ninth ACIS International Conference
on, Software Engineering, Artificial Intelligence;” Networking and
Parallel/Distributed Computing, Phuket, Thailand: IEEE*Computer Society,
2008. 879 - 887.

Prayeen Ranjan Srivastva, Krishan Kumar and G Raghurima. "Test Case
Prioritization Based on Requirements and Risk Factors.” Journal of ACM
SIGSOFT Software Engineer Notes (ACM) 34, no. 4(2008): 1-5.

Preeyavis Pringsulaka and Jirapun Daengdej. "Coverall Algorithm for Test
Case Reduction." Aurospace Conference. Big Sky, MT, USA: IEEE Computer
Society, 2006. 8.

Q.Nguyen, Hung. Testing Application on the Web: Test Planning for Internet-
Based Systems. USA: John Wiley & Sons, 2003.

R. A DeMillo and E. H. Spafford. "The Mothra software testing
environment." Proceedings of the 11th Nasa Software Engineering Laboratory

Workshop. Dayton, OH : Goddard Space Center, 1989. 1555 - 1561.

175

[143]

[144]

[145]

[146]

[147)

[148)

[149]

[150]

[151]

R.E. Fikes and N.J. Nilsson. "STRIPS: a new approach to the application of
theorem proving to problem solving." Artificial Intelligence 2 (ACM) 2
(1971): 189-208.

Rajib. "Software Test Metric." QCON. USA: QCON Corporation Training
Services, 2006,

Ramesh, B. and Jarke, M. "Toward Reference Models for Requirements
Traceability." IEEE Transactions on. Software Engineering 27, no. 1 (January
2001): 58.- 93.

Rex, ‘Black. Managing the Testing Process (2nd Edition). USA: Wiley
Publishing, 2002.

Richard A. DeMillo and A. Jefferson Offutt. "Constraint-Based Automatic
Test Data Generation." IEEE Transaction on Software Engineering (IEEE
Press) 17, no. 9 (September 1991): 900-910.

Rob Hendriks and Robert van Vonderen. "Measuring software product quality
during testing." Proceedings of the European Software Quality Week. San
Francisco, California, USA: Software Magazine, 2000.

Robert Nilsson, Jeff Offutt and Jonas Mellin. "Test Case Generation for
Mutation-based Testing of Timeliness." Proceedings of the 2nd International
Workshop on Model Based Testing (MBT'06). Vienna, Austria, 2006.

Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. "Test-data generation
using genetic algorithms." Journal of Wiley Software Testing, Verification
And Reliability 9, no. 4 (1999): 263-282.

S. Adolph, A. Cockburn and P. Bramble. Patterns for Effective Use Cases.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc, 002.

176

[152]

[153]

[154]

[155]

[156]

[157)

[158]

[159]

S. Gnesi, D. Latella, and M. Massink. "Formal conformance testing UML
Statechart Diagrams Behaviours: From theory to automatic test generation.”
ACM SIGSOFT Software Engineering Notes (Consiglio Nazionale delle
Ricerche, Istituto CNUCE), 2002: 144-153.

S. R. Dalal and C. L. Mallows. "Factor-covering designs for testing software."
Technometrics 40, no. 3 (August 1998): 234-243,

S. Rayadurgam and M. P. Heimdahl. "Coverage based test case generation
using meodel checkers." Proceedings of the 8th Annual IEEE International
anfurencc and Workshop on the Engineering of Computer Based Systems
(ECBS 2001). Washington, DC, USA: IEEE Computer SoGiety, 2001. 83-91.
8.J, Cunning and J.W. Rozenblit. "Automatic Test Case Generation from
Requirements Specifications for Real-time Embedded Systems." Proceedings
of the IEEE International Conference on Systems, Man, and Cybemetics, 1999
(SMC'99). Tokyo, Japan: IEEE Computer Society, 1999. 784-789.

S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton and
B.M. Horowitz- "Model-Based Testing in\ Practice." Proceedings of the
International Cmfereﬁce on Software Engineering (ICSE'99). Los Angeles,
CA, USA: ACM, 1999. 285-294 .

Saaty, T. L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.
Sami Beydeda and Volker Gruhn. "BINTEST - binary search-based test case
generation." Proceedings of the Computer Software and Applications
Conference (COMPSAC'03). Dallas, TX, USA: IEEE Computer Society,
2003. 28.

Sanjai Rayadurgam and Mats P. E. Heimdahl. "Test-Sequence Generation

from Formal Requirement Models." Proceedings of the 6th IEEE International

177

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Symposium on HighAssurance Systems Engineering (HASE’01). Boco Raton,
FL , USA : IEEE Computer Society, 2001. 23-31.

Sanjai Rayadurgam and Mats P.E. Heimdahl. "Coverage Based Test-Case
Generation using Model Checkers." Proceedings of the 8th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS'01). IEEE Computer Society, 2001. 83-91.

Sara Sprenkle, Emily Gibson; Sreedevi Sanipath and Lori Pollock. "A Case
Study of Automatically Creating Test Suites from Web Application Field
Data.™. Proceedings of the 2006 workshop on Testing, analysis, and
verification of web services and applications (TAV-WEB’06). Portland,
Maine, USA: ACM, 2006. 1-9.

Sasa Misailovic, Alekasandar Milicevic, Sarfraz Khurshid and Darko
Marinov. "Generating Test Inputs for Fault-Tree Analyzers using Imperative
Predicates." Proceedings of the Workshop on Advances and Innovations in
Systems Testing (STEP'07). Memphis, TN, USA, 2007:

Scahefer, Hans, "Risk-based Testing." Proceedings of STAR WEST’ 98, USA,
1998.

Shammi, Marjana. "How can a QA help prevent rather than cure?" 2008,
Shengbo Chen, Huaikou Miao and Zhongsheng Qian. "Automatic Generating
Test Cases for Testing Web Applications." Proceedings of the International
Conference on Computational Intelligence and Security Workshops
(CISW'07). Heilongjiang, China: IEEE Computer Society , 2007. 881-885.
Silktest User’s Guide, Version 6.5. Lexington, MA: Segue Software Inc.,

2002.

178

[167]

[168)

[169]

[170]

(71

[172]

[173]

Sokenou, Dehla. "Generating Test Sequences from UML Sequence Diagrams
and State Diagrams." Proceedings of Ninth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, Phuket, Thailand: IEEE Computer Society,
2008. 879-887.

Sommerville, Ian. Software Engineering 6th edition Chapter 20. USA: Powell,
2000.

StClair, «Bill. "Efficient Testing Ensures Requirements Traceability and
Verification." 2006.

Stefinia Gnesi, Diego Latella and Micke Massink: "Formal Test-case
Generation for UML Statecharts." Proceedings of the Ninth IEEE
International Conference on Engineering Complex Computer Systems
Nayigating Complexity in the e-Enginerring Age. Florence, Italy: IEEE
Computer Society, 2004. 75 - 84 .

Stocks; P. Applying Formal Methods to Software Testing. PhD thesis,
University of Queensland, Queensland, -Australia: University of Queensland,
1993.

Suet Chun Lee and Jeff Offutt. "Generating Test Cases for XML-based Web
Component Interactions Using Mutation Analysis." Proceedings of the 12th
International Symposium on Software Reliability Engineering . Washington,
DC, USA : IEEE Computer Society, 2001. 200.

The Standish Group. Chaos Report: Why IT Project Fail. USA: Standish

Group, 1994.

179

[174]

[175]

[176]

[177]

[178]

[179]

[180]

Thoms J. Ostrand and Marc J. Balcer. "The Category-Partition Method for
Specifying and Generating Functional Tests." Communication of ACM 31, no.
6 (1988): 676 - 686.

Tran, Hung. "Test Generation using Model Checking." Proceedings of the
Conference on Software Maintenance and Reengineering (CSMR'01). Lisbon,
Portugal: IEEE Computer Society, 2001.

U. Farooq, C,Py Lam ‘and. H. Li. "Towards Automated Test Sequence
Generation.” Proceedings of the 19th Australian Conference on Software
Enginecring. Perth, WA, Australia: IEEE Computer Society, 2008. 441 - 450 .
V., Karthikeyan. StickyMinds article: Traceability Matrix: USA: StickyMinds
Website.

Valdivino Santiago, Ana Silvia Martins do Amaral, N.L. Vijaykumar, Maria
de Fatima, Mattiello-Francisco, Eliane Martins and Odnei Cuesta Lopes. "A
Practical Approach for Automated Test Case Generation using Statecharts."
Proceedmgs of the 30th- Amnual International Computer Software and
Applications Conference (COMPSAC'06). Chicago, IL, USA: IEEE Computer
Society, 2006. 183-188. |

Vijaykumar, N. L.; Carvalho, S. V. and Abdurahiman, V. "On proposing
Statecharts to specify performance models." International Transactions in
Operational Research, 2002; 321-336,

von Knethen, A. "Change-Oriented Requirements Traceability. Support for
Evolution of Embedded Systems." Proceedings of the International
Conference on Software Maintenance. Montreal, Canada: IEEE Computer

Society, 2002. 482-485.

180

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

W. Eric Wong, Yu Lei and Xiao Ma. "Effective Generation of Test Sequences
for Structural Testing of Concurrent Programs." Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS’05). Shanghai, China: IEEE Computer Society , 2005. 539 - 548.
W.T. Tsai, X. Wei, Y. Chen, R. Paul and B. Xiao. "Swiss Cheese Test Case
Generation for Web Services Testing." IEICE Transactions (IEICET) 88, no.
D(12) (2005): 2691-2698.

Wagner,. F. Modeling Software with Finite State Machines: A Practical
Approach. USA: Auerbach Publications, 2006.

Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jum, Li Xuvandong and
Zheng Guoliang. "Generating Test Cases from UML Activity Diagram based
on Gray-Box Method." Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04). Busan, Korea: [EEE Computer Society,
2004.284 - 291 .

Weyuker, E.J. "The evaluation of program-based software test data adequacy
criteria." ACM, 1998: 668-675.

Whalen, M. W. A foﬁnal semantics for RSML. Master’s thesis, University of
Minnesota, USA: University of Minnesota, 2000.

Wiegers, K. E. Software Requirements. Redmond, WA: Microsoft Press,
2003.

Wiegers, Karl E. "First Things First: Prioritizing Requirements." Journal of
Object Technology, 1999.

Wolff, Achim D. Brucker and Burkhat. "Test-Sequence Generation with

HOL-TestGen With an Application to Firewall Testing." Proceedings of the

181

[190]

[191]

[192]

[193]

[194]

[195]

[196]

Ist international conference on Tests and proofs . Zurich, Switzerland :
Springer-Verlag Berlin, Heidelberg , 2007. 149-168.

Xiaoping Jia and Hongming Liu. "Rigorous and Automatic Testing of Web
Applications." Proceedings in the 6th IASTED International Conference on
Software Engineering and Applications (SEA'02). Cambridge, MA, USA,
2002. 280-285.

Xiaoping Jia,. Hongming Liu and Lizhang Qin. "Formal Structured
Specification for Web Application Testing." Proceedings of the 2003 Midwest
Software Engineering Conference (MSEC'03). Chicago, IL, USA, 2003. 88-
97,

Yamaura, Tsuneo. "How to Design Practical Test Cases." Journal of IEEE
Software (IEEE Computer Society) 15, no. 6 (November 1998): 30-36.

Yang, J.T., Huang, J.L., Wang, F.J. and Chu, W.C. "Constructing an object-
oriented architecture for Web application testing." Journal of Information
Scienceand Engineering 18, 2002! 59-84.

Ye Wu and Jeff ‘Offutt. Modeling and Testing Web-based Applications.
Technical Report, Information and Software Engineering Department, George
Mason University, Fairfax, VA, USA: George Mason University, 2002.

Ye Wu, Jeff Offutt and Xiaochen. Modeling and Testing of Dynamic Aspects
of Web Applications. Technical Report ISE-TR-04-01, Information and
Software Engineering Department, George Mason University, Fairfax, VA,
USA: George Mason University, 2004.

Yu Qi, David Kung and Eric Wong. "An Agent-based Testing Approach for

Web Applications." Proceedings of the 29th Annual International Computer

182

[197]

[198]

[199]

[200]

[201]

[202]

Software and Applications Conference (COMPSAC’05). Edinburgh, Scotland:
IEEE Computer Society, 2005. 45-50.

Zeilcynski, Peter, Traceability from Use Cases to Test Cases. IBM Research,
2006.

Zhenyu Liu, Ning Gu and Genxing Yang. "An Automated Test Cases
Generation Approach Using Match Technique." Proceedings of the 5th
International Conference on-Computer and Information Technology (CIT 05).
Shanghai, China: IEEE Computer Society, 2005.922-926.

Zhu, H., Hall, P. and May, J. "Sofiware Unit Test Coverage and Adequacy."
ACM Comp. Survey 29, no. 4 (1997): 366-427.

Zimmermann, Armin. Stochastic Discrete Event Systems: Modeling,
Evaluation, Applications. USA: Springer, 2007.

Richard Denney. Calculating ROI On Your Investment. USA: August, 2006.
Andrea Herrmann and Maya Daneva. Requirement Prioritization Based on
Benefit and Cost Prediction: An Agenda for Future Research. Proceedins of
16™ IEEE' “hiternational ~ Requirements Engincering Conference.

Kaiserslautern, Germany: December, 2008.

TRE AssUMPTION UNIVERSTTY L1mg

183

e o e

A

Eha e

St

e Al LT
gl

A

T I
MRS

Fhstea Ry
T

g
Eesi

A

2 e 0

	Cover and Title Page
	Abstract
	Acknowledgements
	Publication
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Literature Review
	Chapter 3 : Research Problems
	Chapter 4 : Proposed Techniques
	Chapter 5 : Evaluation
	Chapter 6 : Conclusion
	References

