

A Test Case Generation Technique
Based on User Satisfaction

Ms. Nicha Kosindrdecha

A

* * c(f9.A ~ SIN C = 1969 ~o)
-7'>- ol ~p

Submitted in Partial Fulfillment of the
Requirement for the Degree of

Doctor of Philosophy
in Information Technology

Assumption University

November, 2010

The Faculty of Science and Technology

Dissertation Approval

Dissertation Title A Test Case Generation Technique Based on User Satisfaction

By Ms. Nicha Kosindrdecha
Dissertation Advisor Asst. Prof. Dr. Jirapun Daengdej
Academic Year 2/2010

The Department of Information Technology Facu~ty of Science and Technology of
Assumption University Bas approved dissertation final report of the thirty six credits
course. IT9000 Dissertation, submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Information Technology.

Approval Co.mpJ.ittee:

(Professo~G~)
Committee Member

v <AJ L L-l ___ ;:1_96_9 _cl. ___;:~;;____,.~~--
(Asst. Prof. Dr. Vichit Avatchanakorn) (A!ssoc. Prof. Dr. Surapong Euwatanamongkol)

Committee Member Commission of Higher Education

Faculty Approval:

(Profe;J:. ~nley)
Program Director

November I 2010

University Affairs

of. Dr. Supavadee Nontakao)
Dean

The Faculty of Science and Technology

Declaration

This is to certify that the work presented in this thesis was carried out by the author in the

Department of Information Technology at Assumption University, Thailand and is the

result of original research conducted by the author, except where formally acknowledged

and/or referenced, and bas not been submitted for a degree to any other university or

institution.

(Nicha Kosindrdecha)

ABSTRACT

Software testing phase has been proven that it is one of the most critical and important

phases in software development life cycle. In general, software testing phase takes aroun!i

40-70% of effort, time, and cost. Test case generation approaches are the most critical and

widely-researched activities over a long period of time in the software testing. Many

researchers propose effective test case generation techniques, such as specification-based,

model-based and source code-based test case generation techniques. Large amount of

attentions in literature has so far been given to model-based test cases generation. Despite

the size of these efforts invested, outstanding problems for methods that derive tests from

use cases are: lack of requirement prioritization before test generation, unable to

systematically determine which test cases should be removed, and large number of tests is

still generated due to size of alternate paths. Therefore, this dissertation proposes a

marketing-driven prioritization method, along with WOW factors and cost model to

classify and prioritize requirements. The study shows that there are a relationship between

a return on investment (ROI) and a requirement complexity. This dissertation discovers

that the high ROI requirements with less complexity are desirable. Furthermore, this

thesis introduces alternate path points and risk-driven formulas to minimize a number of

tests during a test generation process. The evaluation reveals that proposed methods can

lead to smaller number of tests while covering higher critical requirements. In brief, the

contributions of this dissertation are to: (a) propose a requirement prioritization based on

customer satisfaction during a test case generation process (b) introduce alternative path

point fonnula to minimize a number of test cases generated from UML use case diagram

(c) discover a correlation between ROI and a complexity of requirement and (d} enhance

the alternative path point fonnula by adding a retain score.

v

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my advisor, Dr. Jirapun Daengdej,

who gave me the valuable advice and support throughout the entire thesis process. He

provided the continuous encouragement, sound advice, good teaching, and lots of good

ideas. I have learned various things, from him, such as the way of thinking, the way of

proceeding, and so on. With bis enthusiasm, his inspiration, and his great efforts to

explain things clearly and simply, he- helped me through many problems. This thesis

would never have succeeded Without him.

I wish to express sincere appreciation to Dr. Graham Winley, who is the director

of doctor of philosophy of information technology, for recommending the thesis guidance

and for support be has provided during the preparation of this thesis. His patience, despite

my many, many questions, is greatly appreciated. His suggestions .regarding the choice of

the initial conditions were truly invaluable.

However, it would have been simply impossible to start, continue, and complete

without the support of my family, both financially and emotionally throughout my degree.

I wish to thank my parents who, wholeheartedly, made the resources of the family

available for me, I always consider myself extremely fortunate to have had the great

opportunity in my life. Thanks for providing a loving environment for me. Special thanks

go to my brother, for the computer problem solving and for everything he has done for

me. My thanks also go to other family members for always being my inspiration.

The most important, I wish to thri two people, my grandparents, without whom

none of this would have been even possible. Words cannot truly express my deepest

appreciation. I own the greatest debt of gratitude to them for grow me up, for their

compassion and understanding of the many turns my life has taken, and for the

unconditional freedom, support and love that they have given me as I pursue my dreams.

For all this and much more, I dedicate this thesis to them.

Lastly, I would like to express many thanks to my husband, Pol, who has been a

great source of strength all through this work. I would have been lost without him. Thank

you for the great encouragement, support, and helping me get through the difficult times.

I would like to thank him for his loves, and everything he has done for me and being

beside me always. In particular, his caring and understanding shown by are greatly

appreciated.

1

PUBLICATION

The followings are a list of my publications produced during my PhD study.

• Nicha Kosindrdecha and Jirapun Daengdej, "A Black-Box Test Case Generation

Method", International Journal of Computer Science and Information Security,

USA, October 2010.

• Nicha Kosindrdecha and Jirapul:) Daengdej, "A Test Case Generation Process and

Technique'', Journal of Software Engineering, USA. September 2010, Vol. 4.

• Nicha Kosindrdecha and Jirapun Daengdej, "A fest Case Generation Process and

Technique", Proceeding of First International Workshop on Evolution Support for

Model-Based Development and Testing (EMDT's 2010), Ilmenau, Germany,

September 2010.

• Nicha Kosindrdecha and Jirapun Daengdej, "A Test Generation Method Based on

State Diagram", Journal of Theoretical and Applied Information Technology,

August 2010, Vol. 18, No.2.

• Nicha Kosindrdecha, SiriQong Roongruangsuwan and Jirapun Daengdej ,

"Reducing Test Cases Cr~ate<;l by Path Oriented Test Case Generation",

Proceedings of the AIAA Conference and Exhibition, Rohnert Park, California,

USA: NASA AIAA, 2007.

Vl

ACKNOWLEDGMENTS

LIST OF FIGURES

LIST OFT ABLES

ABSTRACT

PUBLICATION

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
'

1.1 Overview ERs1,_y
1.2 Objectives of the Thesis ()A\
1.3 Principal Contributions

l .4 Definitions ~-
1.5 Dissertation Organization ~

CHAPTER 2: LITERATURE REVIEW

2.1 Software Testing

2.2 Test Case Generation Technique

2.3 Test Data Generation Technique
IE{

2A Test Sequence Generation Technique

2.5 Test Case Generation Process

2.6 Related Works

CHAPTER 3: RESEARCH PROBLEMS

3.1 Research Issues

3.2 Problem Statement

CHAPTER 4: PROPOSED TECHNIQUES

4.1 Overview

4.2 Assumptions

4.3 Test Case Generation Process

~ -,....
l:=lt

~

4.4 Requirement Prioritization Based On User Satisfaction

4.5 Example of Requirement Prioritization

4.6 Test Case Generation Technique

4. 7 Limitations

11

lV

v

vi

1-14

6

7

7

14

15-90

17

22

51

61

72

75

91-100

91

97

101-137

101

109

109

113

124

128

137

CHAPTER 5: EVALUATION

5.1 Experiments

5.2 Measurements

5.3 Results

5.4 Discussions

CHAPTER 6: CONCLUSION

6. 1 Major Contributions

6.2 Discussion: The Most Suitable Approach

6.3 Future Research

REFERENCES

o~
~ ~ I-;;,

Q..
:e ~ -= r-

l:=a
(/)

~ ~
A rt

138-152

138

145

146

150

153-157

153

155

157

158-183

LIST OF FIGURES

Figure 1-1 A Common Failure Scenario of IT Projects l

Figure 1-2 A Structure ofUML 2.0 Diagrams 10

Figure 1-3 Example of UML Use Case Diagram 11

Figure 2-1 Software Development Life Cycle 17

Figure 2-2 Software Testing Process 19

Figure 2-3 A Classification of Test Case Generation Techniques 23

Figure 2~4 Specification-Based Test Case Generation Techniques 24

Figure 2-5 Sketch Diagram-Based Test Case Generation Techniques 36

Figure 2-6 Source Code-Based Test Case Generation Techniques 48

Figure 2-7 A Classification of Test Data Generation Techniques 51

Figure 2-8 Specification-Based Test Data Techniques 52

Figure 2-9 Source Code-Based Test Data Techniques 56

Figure 2-10 A Classification of Test Sequence Generation Techniques 62

Figure 2-11 Specification-Based Test Sequence Techniques 63

Figure 2-12 Sketch Diagram-Based Test Sequence Techniques 64

Figure 2-13 Test Case Generation Process 72

Figure 2-14 ISOIIEC 9126-1 Model for Internal and External Quality 86

Figure 3-1 A Classification of Remaining Problems 95

Figure 3-2 Research Problems Motivated This Dissertation 97

Figure 3-3 Matrix Table between Test Case and Use Case 99

Figure 4-1 Overview of Proposed Test Case Generation Technique 101

Figure 4-2 Relationship for ROI, Req. Complexity and User Satisfaction 105

Figure 4-3 Relationship between Number of Test Cases and Complexity 107

Figure 4-4 Proposed Methods Relative to Research Problems 108

Figure 4-5 Traditional Test Case Generation Process 110

Figure 4-6 Compare Test Case Generation Process 111

Figure 4-7 Requirement Prioritization based on User Satisfaction 112

Figure 4-8 Overview of Requirement Prioritization 115

Figure 4-9 Kano Model Analysis 116

Figure 4-10 WOW Factors and Implementation Cost 119

Figure 4-11 Example of Requirement Prioritization 125

Figure 4-12 Overwhelm Alternative Paths 132

11

LIST OF TABLES

Table 1-1 Principle Contributions against Objectives

Table 2-1 Specificati?n-based Test Case Generation Techniques

Table 2-2 Sketch Diagram-Based Test Case Generation Techniques

Table 2-3 Source code-based Test Case Generation Techniques

Table 2-4 Specification-Based Test Data Techniques

Table 2-5 Source Code-Based Test Data Techniques

Table 2-6 Activity Diagram-Based Test Sequence Generation Techniques

Table 2-7 State Diagram-Based Test Sequence Generation Techniques

Table 2-8 Sequence Diagram-Based Test Sequence Generation Techniques

Table 2-9 First Process in "2D-4A-4D" Test Case Generation Process

Table 2-10 Second Process in "2D-4A-4D" Test Case Generation Process

Table 2-11 ISO/JEC 9126-1 Characteristics -r-
l:=a

Table 2-12 Testing Metrics

Table 3-1 Test Case Generation Techniques and Issues

Table 3-2 Problem Statements and Objectives

Table 4-1 Defi}'litions of Factors Normally Considered in Literatures

Table 4-2 Reasons Why Factors Are Selected in Dissertation

Table 4-3 Measuring Requirement Complexity

Table 4-4 Total Estimated Cost

Table 4-5 Total Charges to Customer

Table 4-6 ROI for Each Requirement

Table 4-7 Ratio between ROI and Requirement Complexity

Table 4-8 Example Fully Dressed Use Case

Table 4-9 Extracted to Use Case Scenarios

Table 4-lOExtract to Test Scenarios

Table 4-11 Extract to Test Cases

Table 5-1 Generate Random Requirements

Table 5-2 Generate Random Use Case Scenario

Table 5-3 Generate Random Alternative Paths for Use Cases

Table 5-4 Attributes of Test Cases

Table 5-5 A Comparison Result for Test Case Generation Methods

iv

7

33

44

50

55

60

67

70

71

73

74

86

89

96

100

102

104

123

125

126

127

127

129

129

130

130

140

142

144

144

150

Figure 4-13 Matrix Table between Tests and Paths 133

Figure 4-14 Example of Test Steps Required for Path 136

Figure 5-1 Overview of Experiment 138

Figure 5-2 Comparison Result for a Number of Test Cases 147

Figure 5-3 Comparison Result for Requirement Coverage 148

Figure 5-4 Result of Test Case Generation Methods 149

Figure 5-5 A Comparison for a Number of Test Cases 151

Figure 5-6 A Comparison for a Number of Test Cases and Coverage 152

~\\ o~
~ ~ I-;;,

Q..
:e ~ -= r-

l:=a
(/)

~ ~
A rt

iii

CHAPTER I

INTRODUCTION

1.1 Overview

Many IT software projects fail to deliver the software product on time and

within budget. Those projects fail when they are not managed well, insufficient

control is exercised, the appropriate skills are missing and the testing is inadequate. A

common failure scenario of IT software project can be shown as follows:

l.:J What the user wanted

What the budget allowed for

* What the timescale allowed for

,• ~ What the technican designed
. ' .

Why do projects fail?
~ What the user finally got

Figure 1-1 A Common Failure Scenario of IT Projects

From Figure 1-1, the primary reasons why IT software projects fail can be

addressed as follows (173]:

l. Miscommunication ofrequirements, resources and timescales.

2. Poor management, planning and control.

3. Poor software quality and inadequate testing.

4. Unrealistic timescales.

5. Failure to manage user expectations and changes required.

In fact, poor software quality and inadequate testing are one of five primary

causes of failure. In general, testing typically consumes 40 to 50 percent of

development efforts, which positions the software testing phase to be one of the most

important activities of development projects.

Testing is the process of executing a program or system with the intent of

finding errors [120). It involves any activities aimed at evaluating an attribute or

capability of a program or system and determining that it meets its required results

[68). Software processes are not, unlike other physical processes1 inputs that are

received and outputs that are produced. Where software differs is in the manner in

which it fails. Most physical systems fail in a fixed set of ways-. However, software

can fail in many other peculiar ways. Detecting all of the different failure modes in

software is generally infeasible.

There is a process called "software development life cycle", or SDLC, for

developing IT software projects. fu general, the waterfall software development life

cycle contains five phases as follows:

I. Requirements. This phase is to gather customers or users requirements.

Typically, customers have an abstract idea of what they want to do as an end

result. They have no idea what software should do or look like. Therefore, the

responsibilities of software engineers are: (a) gathering requirements and (b)

analyzing those requirements for the implementation.

2

2. Design. This phase is to design the system by following the requirements. The

main responsibility for software engineer is to ensure that the software system

will meet the user requirements.

3. Implementation. This is the part of SDLC where software engineers actually

write program or source code against the design.

4. Testing. This phase is an integral part of the SDLC. One of the main goals of

software testing is to recognize defects or software bugs as early as possible.

5. Maintenance. This phase is necessary when software engineers discover a

new requirement, fix bugs or changed requirements.

A lot of researchers [3][15][21)(22][23][69][75][136]{156][159)[161] have

proven that software testing is one of the most critical phases in software development

life cycle and that it takes approximately half of the time and effort from the SDLC.

Generally, software testing process contains the following steps [134][168]:

1. Test Planning. This step is to establish test strategy, produce test plan and

define testing criteria.

2. Test Generation. This step is used to generate test cases including test steps

and prepare test data.

3. Test Execution. This step is to execute the generated test cases along with the

prepared test data. Also verify actual and expected results.

4. Test Evaluation. This step is to evaluate test results and create test reports.

The studies [3][15][21][22][23][69][75](136][156][159][161] present that test

case generation has been proven to be one of the most important phases in the

software testing process. This is because good test cases can help engineers to detect

defects, to maximize a number of faults, to block premature product release, to help

3

with the decision of releasing or not releasing the software, to minimize technical

support costs and to access conformance to specification (34].

In addition, the studies show that many test case generation techniques have

been proposed over a long period of time. Those techniques are developed to

effectively generate a set of test cases while minimizing a number of test cases and

maximizing requirements coverage. Unfortunately, none of existing test case

generation methods concentrates on a usersatisfaction [4][14][123][178][197]. All of

the existing test case generation methods are mainly developed to enhance the ability

to generate test cases based on software testing perspectives only. Those methods fail

to generate test cases that cover critical requirements, which have an impact on the

user satisfaction. These studies [99][100][114)(115][124] demonstrate that user

satisfaction is a key to a project success, long-term relationship and maximum profits.

Furthermore, the studies suggest that testing activities are one of the key factors to

satisfy users. This is due to the fact that none of the users expects low quality of

software. ~

The studies [4J[l4)[24)[124](125](178][197] explain that there are two major

research problems in test case generation, (a) is being a large number oftest cases and

(b) it is the inadequate coverage of critical requirements. Due to the complexity of

software development at present, software test engineers aim to generate a huge

number of test cases in order to be able to verify and validate all requirements. Large

number of test cases takes a greater amount of cost and effort. However, there are

many approaches that have been proposed to minimize the number of tests, such as

effective test case generation methods, [4][66][69][85)(178], test case selection

techniques during test execution and test case reduction methods [125]. In addition,

these studies [14)(99] reveal not only that there is an inadequate coverage for those

4

critical requirements but also that generated test cases may explicitly ignore critical

requirements such as domain specific requirements and high return on investment

functional requirements.

These studies [23][76] illustrate that there are two types of testing techniques:

black-box
1

and white-box
2

. This thesis concentrates on the black-box testing only.

The reason for focusing on black-box testing only is based on the fact that earlier

research [l 8][35][124] has proved (a) that testing activities should start at the

beginning of the software development life cycle (b) one of the testing goals is to

verify and validate requirements as early as possible [23] and (c) the cost of a defect

resolution at the beginning is significantly less than the cost of fixing defects in later

phases [35]I124]. -
There are two groups of test case generation methods for black-box testing

(124]: one group is to generate test cases from requirement specification document

and the other is to derive test cases from model diagrams such as data flow diagram

and UML (Unified Modelling Language) diagram [123]. The focus of this thesis is to

generate test cases from UML use case diagram. The reasons for concentrating on the

UML use case diagram is that it describes the behaviour of the system as well as

being the first high-level diagram for development [24].

I
Black box testing takes an external perspective of the test object to derive test cases. These tests can

be functional or non-functional, though usually functional. The test designer selects valid and invalid
inputs and detennines the correct output. There is no knowledge of the test object's internal structure.
This method of test design is applicable to all levels of software testing: unit, integration, functional
testing, system and acceptance. The higher the level, and hence the bigger and more complex the box,
the more one is forced to use black box testing to simplify. While this method can uncover
unimplemented parts of the specification, one cannot be sure that all existent paths are tested.

2
White box testing {a.k.a. clear box testing, glass box testing, transparent box testing, translucent box

testing or structural testing) uses an internal perspective of the system to design test cases based on
internal structure. It requires programming skills to identify all paths through the software. The tester
chooses test case inputs to exercise paths through the code and detennines the appropriate outputs.

5

There are many proposed techniques to generate test cases from UML use case

diagram [24)[69][85][105). However, these previous investigations [123)(124)[197]

seem to be insufficient. The outstanding problems are as follow: (a) lack of ability to

classify and prioritize requirements before test case generation process (b) unable to

determine which test cases should be removed during test case generation activities

and (c) large number of test cases due to large number of alternate paths described in

each use case. This thesis proposes the following to resolve these research issues: (a)

requirement prioritization based on user satisfaction [89][115] (b) classify

requirement from business' perspective [100][114) (c) remove test cases during test

case generation process and (d) finally enhance ability to reduce a number of test

cases. -r-
1.2 Objectives of the Thesis l:=a

This section describes objectives of this dissertation. The dissertation

concentrates on test case generation techniques, where the test cases are derived from

UML use case diagram. The followin_g are the objectives of this research:

1. Prioritize requirements basecl op user satisfaction prior to generate test cases in

order to ~prove the ability to generate and select the most suitable test cases.

2. Propose an alternative path point formula in order to systematically select

which test cases could be removed during test case generation activities.

3. Enhance ability to minimize a number of test cases by adding a complexity

factor.

6

1.3 Principal Contributions

The following table shows all of the principle contributions of this dissertation

against the above three objectives:

Table 1-1 Principle Contributions against Objectives

Obiective Principle Contribution
Objective #1 - Prioritize requirements Investigate and propose a marketing-
based on user satisfaction prior to driven requirement prioritization
generate test cases in order to improve technique based on user satisfaction
the ability to generate and select the most during test case generation process.
suitable test cases. According to this method, software test

engineers can classify and prioritize
requirements before generating test cases.

Objective #2 - Propose an alternative Introduce an alternative path point
path point formula in order to formula along with a correlation between
systematically select which test cases return on investment (ROI) and a
could be removed during test case complexity of requirements. This method
generation activities. is developed for selecting the test cases

that should be removed.
Objective #3 - Enhance ability to Propose a removable score that combine
minimize a number of test cases by both of alternative path point formula and
adding a complexity factor. a complexity factor to minimize a number

of test cases.

1.4 Definition *
" Pi.I"' 1 n I"\

This section provides definitions used in this dissertation. The following are the

definition of terminologies used in this thesis:

Cem [36] defined test scenario as follows:

"Test Scenario is a software testing activity that uses scenario tests, or simply

scenarios, which are based on a hypothetical story to help a person think

through a complex problem or system for a testing environment. "

Mealy [163J defined Mealy Machine diagram as follows:

"Mealy machine is a finite state transducer that generates an output based on

its current state and input. This means that the state diagram will include both

an input and output signal for each transition edge. In contrast, the output of a

7

Moore finite state machine depends only on the machine's current state;

transitions are not directly dependent upon input. However, for each Mealy

machine there is an equivalent Moore machine. "

John (133) presented test case as:

"Test case is a document that defines a test item and specifies a set of test

inputs or data, execution conditions, and expected results. The inputs/data

used by a test case should be both normal and intended to produce a 'good'

result and interztionally erroneous and intended to produce an error. A test

case is generally executed manually but many test cases can be combined for

automated execution. "

Weytiker [1 57) defines test data as:

"Test Data are data which have been specifically identified for use in tests,

typically of a computer program. Some data may be used in a confirmatory

way, typically to verify that a given set of input to a given function produces

some expected result. Other data may be used in order to challenge the ability

of the program to respond to unusual, extre'!le, exceptional, or unexpected

input. Test data may be produced in a focused or' systematic way {as is

typically the case in domain testing), or by using other, less-focused

approaches (as is typically the case in high-volume randomized automated

tests). Test data may be produced by the tester, or by a program or function

that aids the tester. Test data may be recorded for re-use, or used once and

then forgotten. "

Brucker [182] defines test sequence as:

8

"Test sequence can also be used for specifying the test of a transition function

under test, which takes some input of type and some state of type and can

produce a successor state. "

Cem (158] defmed test oracle as follows:

"An oracle is a mechanism used by software engineers for determining

whether that product has passed or failed a test. It is used by comparing the

output(s) of a product for a given test case input to the outputs that the oracle
I

determines that··product should have. Oracles ar~ always separate from the

product under test. "

Black [160] defined system testing as follows:

"System testing of software or hardware is testing conductea on a complete,

integrated system to evaluate the system's compliance with its specified

requirements. System testing falls within the scope of black box testing, and as

such, should require no knowledge of the inner design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated" software

components that have successfully passed integration testing
3

and also the

software system itself integrated with any applicable hardware system(s). The

purpose of integration testing is to detect any inconsistencies between the

software units that are integrated together (called assemblages) or between

any of the assemblages and the hardware. System testing is a more limiting

type of testing; it seeks to detect defects both within the "inter-assemblages"

and also within the system as a whole. "

Grady [161] defined UML diagram as follows:

3
Integration testing is the activity of software testing in which individual software modules are

combined and tested as a group. It occurs after unit testing and before system testing.

9

"Unified Modeling Language (UML) is a standardized general-purpose

modeling language in the field of software engineering. UML includes a set of

graphical notation techniques to create abstract models of specific systems.

UML offers a standard way to write a system's blueprints, including

conceptual components such as actors, business processes, system's

components, activities, programming language statements, database schemas

and reusable software compo_nents. "

Annin [162] defined UML 2. 0 diagrams as follows:

"UML 2. 0 has 13 types of diagrams divided into three categories. Six diagram

types represent the structure application, seven represent general types of

behavior, including/our that represent different aspects of inferactions. "

Annin [200] classified UML 2.0 diagrams as follows:

Compostt•
Sttvctur·e
Oi• u m

Structur•
Oi'~ram

Component
Di•gr•m

Deployment
OJ19ram

6S ,

lntt r• ction
Ol•tr•m

B•h11viour
Di•gtvn

Un CHe
Dl.agr.im

tnttuctlon
OveJView
Di• r•rn

Communlc1don Timlnt

Sute H•c-hint
Oia9r.i1m

01a9r.1m Ola9nm

Figure 1-2 A Structure ofUML 2.0 Diagrams

Grady [60] defined UML use case diagram as follows:

"Use Case diagram in the Unified Modeling Language (UML) is a type of

behavioral diagram defined by and created from a Use-case analysis. Its

purpose is to present a graphical overview of the functionality provided by a

10

~46 5 e ·1
system in terms of actors, their goals (represented as use cases), and any

dependencies between those use cases. "

The example ofUML use case diagram can be shown as follows:

·~~d·
_ _ f• f v.in.e._ - t>ev for V11ne

\'1•~

CO-t>JUn->4(1}

Figure 1-3 Example ofUML Use Case Diagram

Alistair [40][151] divided use case into three categories: (a) brief use case (b) casual

use case and (c) fully dressed use case, as follows:

''Brief use case contains the follqwings~· use case name, use case number and

purpose of use case. Casual use case contains the followings: use case name,

use case number, purpose of use case and summary description. Fully dress

use case contains the followings: use case name, use case number, purpose of

use case, summary description, actors, stakeholder, pre-conditions, post-

conditions, basic event, alternative events, business rules, notes, version,

author and date. "

11

Percy [136] adapted the error terminology recommended by the IEEE Computer

Society as:

"An error is made by somebody. A good synonym is mistake. When people

make mistakes during coding, we call these mistakes bugs
4
. A fault is a

representation of an error. As such it is the result of an error. A failure is a

wrong behavior caused by a fault. A failure occurs when a fault executes"

Karthikeyan [177] defined traceability matrix as follows:

"A traceability matrix is a table that correlates any two baseline documents

that rerJ::!ire a many to many relationship to determine the completeness of the

relationship. It is often used with high-level requirements (sometimes known

as marketing requirements) and detailed requirements of the software product

to the matching parts of high-level design, detailed design, test plan, and test

cases. I.'

Nicha [124] dermed users as follows:

"A user is a person who uses a computer or Internet service. A user may have

a user account that identifies the user by a username (also user name), screen

name (also screen name). To log in to an account, a user is typically required

to authenticate himself/herself/itself with a password or other credentials for

the purposes of accounting, security, logging, and resource management. "

4
A software bug is an error, flaw, mistake, failure, or fault in a computer program that prevents it from

behaving as intended (e.g., producing an incorrect or unexpected result). Most bugs arise from mistakes
and errors made by people in either a program's source code or its design, and a few are caused by
compilers producing incorrect code. A program that contains a large number of bugs, and/or bugs that
seriously interfere with its functionality, is said to be buggy. Reports detailing bugs in a program are
commonly known as bug reports, fault reports, problem reports, trouble reports, change requests, and
so forth.

12

Meuter [115] defined customer satisfaction as follows:

"Customer satisfaction, a business term, is a measure of how products and

services supplied by a company meet or surpass customer expectation. It is

seen as a key performance indicator within business and is part of the four of

a Balanced Scorecard. In a competitive marketplace where businesses

compete for customers, customer satfafaction is seen as a key differentiator

and increasingly has become a.key element of business strategy. "

Nicha [124] defined market driven requirement prioritization as follows:

"Market-driven requirement prioritization is a requirement prioritization

based on user satisfaction. "

Tokmao (100) defined WOW factors as follows:

"WOW factors contain three levels of user satisfaction, which are: basic,

surprise and extraordinary. "

13

1.5 Dissertation Organization

Chapter l introduces an overview of the dissertation along with objectives and

scope of research, contributions and definitions. This chapter discusses why this

dissertation is important together with the background of software testing. Research

problems are also given.

Chapter 2 discusses and includes a significant literature reviews in software

testing, test case generation, test data generation and test sequence generation area.

The literature survey includes problems and limitations of each technique. This

chapter is concluded with a literature review that breaks down tasks in test case

generation techniques.

Ch'!]lter 3 discusses all research problems in software testing area. This

chapter also discusses the outstanding research problems which are the motivation of

this dissertation.

Chapter 4 introduces a requirement prioritization based on user satisfaction.

Also, Chapter 4 introduces an effective model-based test case generation method for

black-box testing along with alternate paVt points and retain score.

Chapter 5 presents an experiment design and measurement metrics in order to

determine the most recommended automated test case generation techniques. Also, it

discusses an evaluation result of the experiments.

Chapter 6 is the outcomes of this dissertation along with limitations of the

studied. Also, this chapter provides a direction of the future research into test case

generation techniques.

Finally, the last chapter contains all references used in this thesis.

14

CHAPER2

LITERATURE REVIEW

This chapter discusses and includes the literature reviews for this research. It

describes the following topics:

r. Software Testing. John [22) claimed that software testing is one of the most

critical and important phases in software testing. For instance, "In June 1996

the first flight of the European Space Agency's Ariane 5 rocket failed shortly

after launching, resulting in an uninsured loss of $500,000,000. The disaster

was traced to the lack of exception handling for a floating-point error when a

64-bit integer was converted to a 16-bit signed integer" . .This bas proven that

software testing is one of the most critical phases that cannot be ignored.

2. Test Case Generation. Bertolino (23] proved that "Test case generation is a

most challenging and an extensively researched activity". Many test case

generation techrµques have been proposed in order to increase the ability to

generate and prepare test cases, such as Antonio (136], Offutt [3] and

Heumann [69). In addition, Kaner (34] gave the purposes of test cases. For

instance, find defects, maximizing bug count and help managers make go I no­

go decision. This bas proven that test cases and methods are one of the most

challenging processes during software testing phase. Also, those researches

presents that there are many methods to generate and prepare some parts in

each test case such as input data (also known as test data generation), output

data (also known as test data generation) and test steps (also known as test

sequence generation).

15

3. Test Data Generation. Beizer [21] mentioned that "Software testing accounts

for 50% of the total cost of software development". Many researchers

[15][27][39][53][67][74][80][81][82)(94][107)[116)[122][156][161)

mentioned that automated test data generation is one of the approaches to

reduce cost and prepare data values for each test case. In fact, test data is one

of the components for test case format. This is concluded that test data

generation is one of the interesting topics under software testing field.

4. Test Sequence Generation. According to above Beizer's statement, another

approach for reducing cost is to generate automatically test sequences that are

parts of test cases. In fact, test sequences are steps described in each test case.

Many methods have been proposed to identify the sequence of test case, such

as Rayadurgam's work [159), Hyungchoul's work [75) and Frohlich's work

[137). This shows that test sequence generation is one of other interesting

topics.

5. Related Works. Apart from the above most challenging topics in software

testing, there are o~er interesting topics that have been investigated in this

study. For example, requirement prioritization field, how to design practical

test case format, the international quality standard and software testing

metrics.

Eventually, this chapter is concluded with an overall test case generation

process.

The following sections describe the above topics in details.

16

2.1 Software Testing

This section discusses and includes the software development life cycle,

software testing process including reasons why software testing is important and

example of test case and test data.

Typically, according to the waterfall software development life cycle below,

there are five phases in the life cycle, which are: (a) requirements (b) design (c)

implementation (also known as development) (d) verification (also known as software

testing) and (e) maintenance.

A

Figure 2-1 Software Development Life Cycle

From Figure 2-1, software testing phase is the process of executing a program

or system with the intent of finding errors [120J. It involves any activity aimed at

evaluating an attribute or capability of a program or system and determining that it

meets its required results [68]. Software is not unlike other physical processes where

inputs are received and outputs are produced. Where software differs is in the manner

in which it fails. Most physical systems fail in a fixed (and reasonably small) set of

ways. By contrast, software can fail in many bizarre ways. Detecting all of the

different failure modes for software is generally infeasible.

17

Obviously, software testing is an essential activity in software development

life cycle. In the simplest tenns, it amounts to observing the execution of a software

system to validate whether it behaves as intended and identify potential malfunctions.

Testing is widely used in industry for quality assurance: indeed, by directly

scrutinizing the software in execution, it provides a realistic feedback of its behavior

and as such it remains the inescapable complement to other analysis techniques.

Earlier studies estimated that testing can consume fifty percent, or even more, of the

development costs [21], and a recent detailed survey in the United States (127}

quantifies the hlgh economic impacts of an inadequate software testing infrastructure.

The following are the list of examples why software testing is one of the most

critical and important phases in software development life cycle [22].

1. "In February 2003 the U.S. Treasury Department mailed 50,000 Social

Security checks without a beneficiary name. A spokesperson said that the

missing names were due to a software program maintenance error. "

2. "Jn July 2001 a "serious flaw" was found in off-the-shelf software that had

long been used in systems for tracking U.S. nuclear materials. The software

had recently been donated to another country and scientists in that country

discovered the problem and told U.S. officials about it. "

3. "In October 1999 the $125 million NASA Mars Climate Orbiter- an

interplanetary weather satellite-was lost in space due to a data conversion

error. Investigators discovered that software on the spacecraft peiformed

certain calculations in English units (yards) when it should have used metric

units (meters). "

4. "In June 1996 the first flight of the European Space Agency's Ariane 5 rocket

failed shortly after launching, resulting in an uninsured loss of $500,000,000.

18

The disaster was traced to the lack of exception handling for a floating-point

error when a 64-bit integer was converted to a 16-bit signed integer. "

This is concluded that the impact of inadequate testing can be root-cause

problems of: (a) increasing failures due to a poor quality (b) increasing software

development costs (c) increasing time to market due to inefficient testing and (d)

increasing market transaction costs [1 27]. Due to the above examples, software

testing phase has proven that it is one of the most critical phases in SDLC.

Next paragraphs Clescribe a general process of running software testing

activities. This study includes the software testing process provided by Ian [168], who

is the author of well-known software testing books, and Pan [134} from Carnegie

Mellon University, as follows. -
Ian [168] describes the software testing process as follows:

Figure 2-2 Software Testing Process

.~ Con:ine re9.ils
tote~ cases

Figure 2-2 describes a general software testing process, which is consists of

four processes. Those processes are: (a) design test cases (b) prepare test data (c) run

program with test data and (d) compare results to test cases. Each process has its own

outcomes. There are four outcomes during these processes, which are: (a) a set of test

cases (b) a set of test data (c) test results and (d) test reports. More detailed

information in each process can be shown as follows:

19

1. Design test cases. The purpose of this step is to generate and prepare a set of

test case. Therefore, the outcome of this step is a set of test cases. A set of test

cases may represent as excel format, words document or database.

2. Prepare test data. The purpose of this step is to generate and prepare test data

for each test case. The outcome of this step is a set oftest data.

3. Run program with test data. This is an execution test step. Test case and test

data will be run in this step. The result of this s\ep is actual results.

4. Compare results to test cases. This step is used to compare the previous

actual results and expected results design in test case. The milestone of this

step is a test report of running test case and test data.

In addition, Pan [134] defines the typical life cycle of testing as follows:

• Requirements analysis: Software testing should begin in the requirements

phase of the SDLC. Software testing engineer should play a major role during

the requirement phase. During the design phase, software testing engineers

work with developers in determining what aspects of a design are testable and

with what parameters those tests work.

• Test planning: Test strateg/, test plan, testbed creation. A testbed is a

platform for experimentation for large development projects. Testbeds allow

for rigorous, transparent and replicable testing of scientific theories,

I
A test strategy is an outline that describes the testing portion of the software development cycle. It is

created to inform project managers, testers, and developers about some key issues of the testing
process. This includes the testing objective, methods of testing new functions, total time and resources
required for the project, and the testing environment In the test strategy is described bow the product
risks of the stakeholders are mitigated in the test levels, which test types are performed in the test
levels, and which entry and exit criteria apply. The test strategy is created based on development design
documents. The system design document is the main one used and occasionally, the conceptual design
document can be referred to. The design documents describe the functionalities of the software to be
enabled in the upcoming release. For every set of development design, a corresponding test strategy
should be created to test the new feature sets.

20

computational tools, and other new technologies. There are many activities

carried out during software testing process. Therefore, test planning is a must.

• Test development: In this step, it contains the following activities: develop

test procedures, design test scenarios, produce test cases, prepare test datasets,

and build test scripts to use in testing software.

• Test execution: Once test plan and test case, including test data, are already

generated and prepared, software testing engineers can execute the software

based on the plans and tests and report any errors found to the development

team.

• Test reporting: When running test cases is completed, software testing

engineers generate metrics and make fmal reports on thew test effort 2 and

whether or not the software tested is ready for release.

• Test result analysis (also known as defect analysis): This step is done by the

testing team. It is usually done along with the client, in order to decide what

defects should be treated, fixed, rejected (i.e. found software working

properly) or deferred to be dealt with at a later time.

• Retesting the r esolved defects. When a defect has been resolved with by the

development team, re-testing those defects is a desirable.

• Regression testing: In general, it is common to have a small test program

built of a subset of tests, for each integration of new, modified or fixed

software, in order to ensure that the latest delivery has not ruined anything.

Additionally, this step ensures that the software product as a whole is still

working correctly.

2
In software development, test effort refers to the expenses for (still to come) tests. There is a relation

with test costs and failure costs (direct, indirect, costs for fault correction). Some factors which
influence test effort are: maturity of the software development process, quality and testability of the test
object, test infrastructure, skills of staff members, quality goals and test strategy.

21

• Test Closure: When the test meets the exit criteria, the activities such as

capturing the key outputs, lessons learned, results, logs, documents related to

the project are archived and used as a reference for future projects.

2.2 Test Case Generation Technique

This section describes test case generation techniques in details. Also, it

discusses a limitation of each existing technique which has been researched in the

literature.

Test case- generation has always been fundamental to the testing process.

Bertolino [23) articulated that the test case generation step is one of the most

challenging and extensively researched activities during software testing phases.

Many techniques have been proposed for test case generation, mainly random, source

code-based technique (also known as path-oriented technique), goal-oriented and

sketch diagram-based methods (also known as model-based approaches).

Random techniques determine a set of test cases based on assumptions

concerning fault distribution. Path-oriented techniques generally use control flow

graph to identify paths to be covered and generate the appropriate test cases for those

paths. Goal-oriented techniques identify test cases covering a selected goal such as a

statement or branch, irrespective of the path taken. There are many researchers and

practitioners who have been working in generating a set of test cases based on the

specifications. Modeling languages are used to get the specification and generate test

cases. Since UML is the most widely used language, many researchers are using

UML diagrams such as use case diagrams, activity diagram and sequence diagrams to

generate test cases and this is called model-based test case generation techniques.

Due to the fact that there are many test case generation techniques, the studies

and what have been found in the literature propose the following classification for

22

existing test case generation techniques. The study classifies those techniques based

on source information from where test cases can be derived.

ASAOS(137) 505(~4! BGQ3(~58]
CR99(156) SAVff~L09 (179) VHWql9

(84)
Hl00[113} HQq§~j

MQS08J73J
OXL99[3) EW,Q~(7(i]

K97[86) RG0{) [85l

T01(176)
J$W!Pl4)

~ (;QPHJMl;IO (7)

RH0;!.(55} R()i\110~

·llJOM06(l5 J.™1
~ OJ ~

lWCPX!)S H83J) ~~ -r-
dlbb1[166~ JLQ03 ~19iJ ~ Jl-071~ ii l\4CLq07fY2

Figure 2-3 A Classification of Test Case Generation Techniques

Figure 2-3 presents that there are three categories, which are: (a) specification-

based test case generation techniques (b) sketch diagram-based test case generation

techniques and (c) source code-based test case generation techniques. There are three

sources from where test cases can be derived: (a) requirement specification (b) model

diagrams and (c) source code or program.

The following discusses the above techniques in details.

2.2.1 Specification-Based Test Case Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing specification-based techniques.

An overview ofthis technique can be found as follows:

23

Requirertl«lt/ XML Format

Specification - Or Form-

Oocuments Based

Document

Speclftcattonoocumeras

Speclftcatfon-Based Test case
Generation Techniques

Test case Generation Mettlods

-TestCaselD

-Test Data

-Test Sequence

-Expected Result

-Actual Result

-Pass/Fail Status
Results

Figure 2-4 Specification-Based Test Case Generation Techniques

Specification-based techniques are methods to generate a set of test cases from

specification documents such as a formal requirements specification [150)[156][160]

[176)(183), Z-specification (113)[191][192] and object constraint language (OCL)

specification [13 7].

In fact, the specification precisely describes what the system is without

describing how to do it. Thus, the software test engineer has important information

about the software's functionality without having to extract it from unnecessary

details. The advantages of this technique include that the specification document can

be used to derive expected results for test data, and that tests may be developed

concurrently with design and implementation. The latter is also useful for breaking

"Code now test later" practices in software engineering, and for helping develop

parallel testing activities for all phases [113].

The specification requirement document can be used as a basis for output

checking, significantly reducing one of the major costs of testing. Specifications can

also be analyzed with respect to their testability [15]. The process of generating tests

from the specifications will often help the test engineer discover problems with the

specifications themselves. If this step is done early, the problems can be eliminated

early, saving time and resources. Generating tests during development also allows

24

testing activities to be shifted to an earlier part of the development process, allowing

for more effective planning and utilization of resources. Test generation can be

independent of any particular implementation of the specifications (3).

Furthermore, the specification-based technique offers a simpler, structured,

and more formal approach to the development of functional tests than non-

specification based testing techniques do. The strong relationship between

specification and tests helps find faults and can simplify regression testing. An

important application of specifications in testing is to provide test oracles3
•

The drawbacks of the specification-based technique with formal methods are:

(a) the difficulty of conducting formal analysis and the perceived or actual payoff in

project budget. Testing is a substantial part of the software budget, and foimal

methods offer an opportunity to significantly reduce testing costs, thereby making

formal methods more attractive from the budget perspective (39) and (b) there is

greater manual effort or processes in generating test cases, compared with techniques

involving automatic generation processes.

This research reveals that many techniques have been proposed such as

heuristics algorithms [86](156), model checkers [39)(150)(155) and hierarchy

approaches (113)(191)(192]. The following paragraphs describe existing

specification-based techniques that have been proposed for traditional and web-based

application since 1997.

Percy Antonio (137] presented the underlying theory by providing a set of test

cases with fonnal semantics and translated this general testing theory to a constraint

satisfaction problem. A prototype test case generator serves to demonstrate the

3
A test oracle is a mechanism used by software engineers for determining whether the product has

passed or failed a test. It is used by comparing the output(s) of a product for a given test case input to
the outputs that the oracle determines that product should have. Oracles are always separate from the
product under test (87).

25

~IONVNlVDlllTl'llBld'f

automation of the method. It works on Object Constraint Language (OCL)

specifications. The OCL is part of the UML 4 2.0 standard. It is a language allowing

the specification of formal constraints in context of a UML model. Constraints are

primarily used to express invariants of classes, pre-conditions and post-conditions of

operations. These invariants become elements of test cases. In their work, they aimed

to generate test-cases focusing on possible errors during the design phase of software

development. Examples of such errors might be a ,missing or misunderstood

requirement, a wrongly implemented requirement, or a simple coding error. In order

to represent these errors, they introduced faults into formal specifications. The faults

are introduced by deliberately changing a design, resulting in wrong behavior possibly

causing a failure. They focused dedicatedly on the problem of generating test cases

from a formal specification. The problem can be represented as a Constraint

Satisfaction Problem (CSP). A CSP consists of a finite set of variables and a set of

constraints. Eacn variable is associated with a set of possible values, known as its

domain. A constraint is a relation defined on some subset of these variables and

denotes valid combinations of their values. A solution to a constraint satisfaction

problem is an assignment of a value to each variable from its domain, such that all the

constraints are satisfied. Formally, the conjunction of these constraints forms a

predicate for which a solution should be found. To resolve the above problem, they

proposed to embed the test generation problem modeled as a CSP into a specially

designed and implemented Constraint System. But this is not a novelty because this

4
Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field

of software engineering. UML includes a set of graphical notation techniques to create abstract models
of specific systems. UML offers a standard way to write a system's blueprints, including conceptual
components such as actors, business processes, system's components, activities, programming language
statements, database schemas and reusable software components.

26

approach has been widely explored and implemented. The novelty in their approach is

the relation that they formalized between fault-based testing and constraint solving.

Huaikou [113] presented a framework based on Phil and David's work

[133][172). They defined a test class using an object-oriented concept instead of Phil

Stock's test template in the framework. Phil's test template defines test data only. The

benefit of their test framework for Z specifications is that the test data and oracles are

defined in a test class which also contains the information of before states and after

states for an operation. The test framework is therefore a dynamic system involving

state change, containing three components: (a) valid input space & output space (b)

test class & test state space and (c) test class hierarchy & instantiation. These

elements [113] can be described shortly as follows:

First;"the valid input space (VIS) is the subset of the input space for which the

operation is defined, and is also the subset of the input space satisfying the

precondition of the operation. The valid input space can be derived directly from the

fonnal specification of an operation, and it can be an automated process. The valid

output space (VOS) can be defined similarly to the valid foput space. It is the subset

of output space satisfying the post-condition of the operation. The post-condition in

VOS does not contain the predicate involving input variables. VOS is the source of all

expected expressions. Second, the central concept of the framework is the Test Class

(TC), which is the basic unit for defining a test case. A test case comprises test data

and a test oracle. In a formal specification, the relationship between input states and

output states is specified precisely. This means that the specification can serve as a

test oracle. The simplest oracle is a comparison of the actual output for some input

against a pre-calculated expected output for the same input. From the formal

specification, it is simple to derive the description of expected output for given input.

27

Third, the structure approach is used to build a hierarchy of test classes. The hierarchy

is similar to Phil's test template hierarchy [94](148). The difference is that the nodes

in Miao's hierarchy graph are test classes, not test templates.

Offutt [3] presented a model for developing test inputs from state-based

specifications, and formal criteria for test case selection. For state-based specification

technique, their paper used the term specification-based testing in the narrow sense of

using specifications as a basis for deciding what tests to run on software. The

proposed approach is related to Blackburn's state-based functional specifications of

the software, expressed in the language, T-Vec [102). It is used to derive disjunctive

normal form constraints, which are solved to generate tests. Also, the approach is

related to Weyuker [49) who presented a test case generation method f~om Boolean

logic specifications. Moreover, they introduced several criteria for system level

testing. These criteria are expected to be used both to guide the testers (luring system

testing and to help the testers find rational, mathematical-based points at which to stop

testing. In those criteria, tests are generated as multi-part, multi-step and multi-level

artifacts. The multi-part aspect means that a test case is composed of several

components: test case values, prefix values, verify values, exit commands, and

expected outputs. The multi-step aspect means that tests are generated in several steps

from the functional specifications by a refinement process. The functional

specifications are first refined into test specifications, which are then refined into test

scripts. The multi-level aspect means that tests are generated to test the software at

several levels of abstraction.

Prasad [86) used a form of specification-based testing that employs the use of

an automated theorem prover to generate test cases. A similar approach was

developed using a model checker on stat-intensive systems. The method applies to

28

systems with functional rather than stat-based behaviors. The approach allows for the

use of incomplete specifications to aid in generation of tests for potential failure cases.

He suggested a new method of testing software based on the formal specification. He

used the Prototype Verification System (PVS) and its in-built theorem prover to

derive test cases corresponding to the properties stated in the requirements.

Curming [156] were interested in the model-based co-design of real-time

embedded systems. It relies on system models at increasing levels of fidelity in order

to explore design a tematives and to evaluate the correctn(fSS of these designs. As a

result, the tests that they desire should cover all system requirements in order to

determine if all requirements have been implemented in the design. The set of

generated tests is maintained and applied to system models of increasing fidelity and

to the system prototype in order to verify the consistency between models and

physical realizations. In the co-design method, test cases are used to va1idate system

models and prototypes against the requirements specification. In the paper, they

presented continuing research toward automatic generation of test cases from

requirements specifications for event-oriented, real-time embedded systems. They

used a heuristic algorithm to automatically generate test cases in their works. The

heuristic algorithm uses the greedy search method followed by a distance based

search if needed. The algorithm with pseudo code is addressed in their paper [156].

Tran [176] focused on existing research in using model checking to generation

test cases. He touched on several areas, like the methodology of properly testing

software, the use of model checking to generate tests suits and specialization of

specification to suit the needs of test generation. A model checker is used to analyze a

finite-state representation of a system for property violations. If the model checker

analyzes all reachable states and detects no violations, then the property holds.

29

However, if the model checker finds a reachable state that violates the property, it

returns a counterexample - a sequence of reachable states beginning in a valid initial

state and ending with the property violation. In his technique, the model checker is

used as a test oracle to compute the expected outputs and the counterexamples it

generates are used as test sequences. In summary, his approach is used to generate test

cases by applying mutation analysis. Mutation analysis is a white-box method for

developing a set of test cases which is sensitive to any small syntactic change to the

structure of a program.

Rayadurgam [155] presented a method for automatically generating test cases

to structural coverage criteria. They showed how, given any software development

artifact that can be represented as a finite state model, a model checker can be used to

generate complete test cases that provide a predefined coverage of that artifact. He

provided a formal framework that is: (a) suitable for defining the test-case generation

approach and (b) easily used to capture finite state representations of software

artifacts such as program code, software specifications, and requirements models.

They showed how common structural coverage crite~ can be formalized in their

framework and expressed as temporal logic formulae used to challenge a model

checker to find test cases. Finally, they demonstrated how a model checker can be

used to generate test sequences for modified condition and decision (MC/DC)

coverage. Their approach to generating test cases involves using ~e model-checker as

the core engine. A set of properties called trap properties [2] is generated and the

model-checker is asked to verify the properties one by one. These properties are

constructed in such a way that they fail for the given system specification.

Nilsson [150] has proposed a model based method for generating test cases to

test timeliness by using heuristic driven simulation. Their approach is perfectly suited

30

to generating test cases for small real-time systems that contain shared resources,

precedence constraints and few sporadic tasks. Conversely, in dynamic real-time

systems there are many sporadic t.asks, making model-checking impractical. For these

dynamic real-time systems, they proposed an approach where a simulation of each

mutant model is iteratively run and evaluated using genetic algoritbms5 with

application specific heuristics. By using a simulation-based method instead of model-

checking for execution order analysis, the combinatorial explosion of full state

exploration is avoided. Furthennore, they conjectured thatli(is easier to modify a

system simulation than a model-checker, to correspond to the architecture of the

system under test. In their paper, they focused on genetic algorithms. They included

three types of functions needed to solve the specific search problem. Those three

functions are: (a) a genome mapping function (b) heuristic cross-over functions and

(c) fitness function.

Additionally, the literature shows that a few specification-based techniques for

web-based application have been proposed. Those techniques can be described below.

Tsai [183) presented a framework that assures the trustworthiness of web

services. New assurance techniques are developed within the framework, including

specification verification via completeness and consistency checking, test case

generation, and automated web services testing. Traditional test case generation

methods only generate positive test cases that verify the functionality of software. The

proposed "Swiss Cheese" test case generation method is designed to generate both

positive and negative test cases that also reveal the vulnerability of web services. He

5
Genetic algorithms are one of the best ways to solve a problem for which little is known. They are a

very general algorithm and so will work well in any search space. All you need to know is what you
need the solution to be able to do well, and a genetic algorithm will be able to create a high quality
solution. Genetic algorithms use the principles of selection and evolution to produce several solutions
to a given problem.

31

presented that the first step of the development process before testing is to create a

web setvice specification. The next step is to perform specification check. He focused

on the completeness and consistency analysis for the specification which is then

applied to their automated test cases generation technique. He also applied the

verification patterns technique to generate many test cases by recognizing patterns in

system behavior and generate the corresponding test cases by composition.

Jia (191][192] addressed limitations in web application testing, especially in

testing the overall functionality of a web application. He believed that web application

testing is a new area. Therefore, he proposed a new approach for rigorous and

automatic testing of web applications using formal specifications. He applied Z

notation, one of the best known formal methods, in their approach. The formal

specification based approach is powerful, extensible, and versatile. It aims to address

testing of various aspects of web applications, including functionality, security, and

performance. I:le has developed a prototype tool based on the proposed approach,

which accepts formal specifications in XML syntax. The approach covers

functionality testing, page structure testing, security testing and performance testing

(they classify performance testing as non-funciional testing in their paper.). He used

the fonnal specification language to specify the specification of functionality, security

and performance of web application.

In conclusion, the above specification-based techniques can be sununarized as

the following table.

32

(1

Audlor /
Referenc:r

I\ '-AOS
(137[

CR99
1156)

HLOO
(113}

OXl.99
(3)

'l'nblc :!- 1 Spcci1ic~1tion-based Tc~l Case Generation Technique.<;

Type of
A pplication

1 rndilii:>nal
Application

T raJ11ion.a I
1\pphc:irion

Tnwof
Tesdag

THhnl~e
Ulnck. Box

Bbi,;kBox

Type of
Sptdfkarion

ObJ~I
Ccio.,lrninl
Linguage

RS/
Form~I

R1:,1uin:mem
Sp('c11it.:atfon

z
Sp1:c1ficouon

Hlacl.: Bo." Statc-ba~ed
Spec11ica1ion

Mdbod

F:iull-bnst.-d
Technique

GrJph
npproach

1.imilation

I. l.ack of lc!sl
C.:il'IC

sa1u1:11cing
gencr:mon.

2. Ibo mput
mo«) cl Cllll

be extended .
3. l~nun: I.be

ncgnti' e test
ca-ic6 .

TI1c1r appmach
LI\ ltm1tcd 10

cru~-ddoo

tcsung
. tratc~ies nnd
thc11 tool.
·1 CG)· can be
enhanced The
a.,-.c,sing le~mng
SlTUlt:gjC" 1D

the it fi a1m.·work
is 11ery difficult
and uncl~3r.
I TI1c1r

technique IS

hn11ted o.nd
they ~

looking
forward to
c\·a.Juating
their
technique fur
induqtrilll
applic11tioa ...

Ncga11vc test cns~\ is a ccs1 CJl~c 11lm rept1rt when n h:\I 1.111~ MC.t11\\hih.', ~irh:e tt''t c.1s1.1 is za usc
c.1$1! 1h11t rqxin WhC'll ll ICSt SUCC1.'SSCS,
7

TCGS is a 1~1 case generation S,Y)tCm. wbich li a ~uh "')'item of H1Uikw :tnd Li~ system, cllll!\I 7.
l fo~r Shnlio.

· Audi.hr t:
R~.

' "' -.;>

K97 [86]

TOI (176]

RHO!
[155)

Traditional
Application

Traditional
Al'J>lication

Traditional
Application

Black-Box

Black Box

Black Box

Form-based Heuristic
specification Algorithm

Formal Model
Requirement Checker by
Specification us in

mutation
analysi"s8

Formal Model
Requirement Checker
Specification Technique

2. Their tool
contains
various
restrictions
on the form
of the
specifications

Users can't
select test
templates with a
specific

ro e
1. Model

checking
technology is
not fully
utilized in
software
testing. There
is a lot of
potential for
model
checking in
automated
test
generation.

2. Model
checkers
have not
gained
acceptance in
the software
industry.

1. The problem
of state space
explosion
affects the
search for
counter­
examples.

2. The
environment
specification
is always a
difficult issue

8
Mutation analysis is a white-box technique to develop test cases which are sensitive to any small

changes to the structure of a program.

34

~ ' .

NOM06
[150)

TWCPXO
5 [183]

JLQ03
[192)

JL02
[191]

Traditional
Application

Web
Application

Web

A

Web
Application

Black Box

Black Box

Black Box

Black Box

Formal
Requirement
Specification

SJ

Formal
Requirement
Specification

z
specification

Cl1'

z
specification

35

Model
Checker by

using
mutation
analysis

Swiss
Cheese
Model

Hierarchy
approacl,l

Hierarchy
approach

in modeling
systems.

Their genome
mapping
function in their
applied genetic
algorithm is
limited to small
class of Timed
Automata with
Tasks {TAT)
automata
tern !ates.
Their approach
is limited to two
parameters: the
Hamming
distance and the
bounda count.
I . Their

prototype
tool is
limited to
simple web
applications.

2. There are
limitations to
their simple
complete test
specifications
to specify
functionality
security and
performance
of a web
application.

1. Their
prototype
tool is
limited to
simple web
applications.

2. There are
limitations to
their simple
complete test
specifications
to specify
functionali

AU:thot h
Refei;e~

~.

2.2.2 Sketch Diagram-Based Test Case Generation Techniques

security and
performance
of a web
application.

This section discusses an overvief of how this technique works and provides

a comprehensive survey of existing sketch diagram-based techniques.

An overview of the sketch diagram-based technique can be found as follows:

. Use Case

u,._ Model diagrams

Sketch Diagram.eased Tesc Case

Generation Techniques

1--+- TestCases

-TestCaaelD

-Test Data

-Test Sequence

-Expect..i Result

-Actual Result

-Pass/Feil Status

Test Case Generation Methods Results

Figure 2-5 Sketch Diagram-Based Te~t Case Generation Techniques

From Figure 2-5, sketch diagram-based techniques are methods to generate

test cases from model diagrams like UML Use Case diagram [69][85][105], UML

Sequence diagrams [4] and UML State diagrams [7](11)(14][43] [66][76)[104][179].

The following paragraphs survey current sketch diagram-based test case generation

techniques that have been proposed for traditional and web-based application for a

long time.

36

A major advantage of model-based V&V9 is that it can be easily automated,

saving time and resources. Other advantages are shifting the testing activities to an

earlier part of the software development process and generating test cases that are

independent of any particular implementation of the design [4].

The following paragraphs describe existing specification-based techniques that

have been proposed for traditional and web-based application since 2000.

Heumann [69) presented how using use cases to generate test cases can help

launch the testing process early in the development lifecycle and also help with

testing methodology. In a software development project, use cases define system

software requirements. Use case development begins early on, so real use cases for

key product functionality are available in early iterations. According to the Rational

Unified Process (RUP), a use case is used to fully describe a sequence of actions

perfonned by a system to provide an observable result of value to a person or another

system using the product under development. Use cases tell the customer what to

expect, the developer what to code, the technical writer what to document, and the

tester what to test. He proposed three-step process to generate test cases from a fully

detailed use case: (a) for each use case, generate a full set of use-case scenarios10 (b)

for each scenario, identify at least one test case and the conditions that will make it

execute and (c) for each test case, identify the data values with which to test.

Ryser (85) raised the practical problems in software testing as follows: (a) lack

of planning/time and cost pressure, (b) lack of test documentation, (c) lack of tool

support, (d) formal language/specific testing languages required, (e) lack of measures,

9
V&V stand for verification and validation. Verification and validation is the process of checking that

a8roduct, service, or system meets specifications and that it fulfills its intended purpose
I .

A use-case scenario is an instance of a use case, or a complete "path" through the use case. End
users of the completed system can go down many paths as they execute the functionality specified in
the use case.

37

measurements and data to quantify testing and evaluate test quality and (f) insufficient

test quality. Their proposed approach to resolve the above problems is to derive test

cases from scenarios or UML use cases and state diagrams. In their work, the

generation of test cases is done in three stages: (a) preliminary test case and test

preparation during scenario creation (b) test case generation from Statechart and

dependency charts and (c) test set refinement by application dependent strategies

(intu'itive, experience-based testing).

Nilawar [105] was"'interested in testing web based applications. Web based

applications are of growing complexity and it is a serious business to test them

correctly. They focused on black box testing which enables the software testing

engineers to derive sets of input conditions that will fully exercise all functional

requirements. They believed that black box testing is more generally suitable and

more necessary for web applications than other types of application. Furthennore,

they proposed four steps to generate test cases, based on J. Heumann's four-steps

[69], as follows: (a) prioritize use cases based on the requirement traceability11 matrix

(b) generate tentatively sufficient use cases and test scenarios (c) for each scenario,

identify at least one test case and the conditions and (d) for each test case, identify test

data values. They also presented that the test cases contains: a set of test inputs,

execution conditions and expected results developed for a particular objective.

Sinha [14] described a new model based testing technique developed to

identify critical domain requirements. The new technique is based on modeling the

11
Requirements traceability is a sub-discipline of requirements management within software

development and systems engineering. Requirements traceability is concerned with documenting the
life of a requirement. It may be possible to find the origin of each requirement and track every change
which was made to this requirement. For this purpose, it may be necessary to document every change
made to the requirement.

38

system under test using a strongly typed domain specific language (DSL)12
• In the

new technique, information about domain specific requirements of an application are

captured automatically by exploiting properties of the DSL and are subsequently

introduced in the test model. The new technique is applied to generate test cases for

the applications interfacing with relational databases and the example DSL. Test

suites generated using the new techniques are enriched with tests addressing domain

specific implicit requirements.

Santiago [179] focused on test sequence generation from a specification of a

reactive system, space application software, in Statecharts [63) and the use of

PerformCharts [180]. In order to adapt PerformCharts to generate test sequences, it

has been associated to a test case generation method, switch cover, _implemented

within the Condado tool [9]. Condado is a test case generation tool for FSM. The

algorithm implemented in Condado is known as sequence of "de Bruijn". The steps in

the algorithm are: (a) a dual graph is created from the original one, by converting arcs

into nodes (b) by co,nsidering all nodes in the original graph, where there is an arc

arriving and another arc leaving, an arc is created in the dual graph (c) the dual graph

is transformed into a "Eulerized" graph by balancing the polarity of the nodes and (d)

finally, the nodes are traversed registering those that are visited.

El-Far [76] was interested in model-based testing and generating test cases

from finite state machines. The difficulty of generating test cases from a model

depends on the nature of the model. Models that are useful for testing usually possess

properties that make test generation effortless. Sometimes generation processes can be

12 .
A domain-specific language (DSL) is a small, usually declarative language that offers expressive

power focused on a particular problem domain [22). Through suitable abstractions, through embedded
types and through specific library functions, the DSL imports domain knowledge into any application.
Information about domain specific requirements can be captured automatically by exploiting properties
of the DSL.

39

automated. For some models, one must go through combinations of conditions

described in the model. In the case of finite state machines, it is as simple as

implementing an algorithm that randomly traverses the state transition diagram. The

sequences of arc labels along the generated paths are, by definition, tests.

Cavarra [7] described a modeling architecture for the purposes of model based

verification and testing. Their architecture contains two components. The first

component of the architecture is the system model, written in UML; this is a

collection of class, state, and object diagrams: the class diagram identifies the entities

in the system; the state diagrams explain how these entities may evolve; the object

diagram specifies an initial configuration. The second component, again written in

UML, is the test directive; this consists of particular object and state diagrams: the

object diagrams are used to express test constraints and coverage criteria; the state

diagrams specify test purposes. The system model and the test directives can be

constructed using any of the standard toolsets, like Rational Rose.

Reza [66] discussed a model-based testing method for web applications that

utilizes behavioral models of the software under the test (SUT) from Statechart

models originally devised by Harel (62)(63]. Statechart models can be used both for

modeling and generating test cases for a web application. The main focus of their

work is on the front end design and testing of a web application. As such, they utilize

the syntax of the web pages to guide the specification of the Statecharts. Their

approach is a systematic way to test the front-end functionality of a web application.

For the most parts, they are concerned with verifying that the links, fonns, and images

in the web application under test function according to the specification documents.

Furthermore, they address how to model the web application with Statechart diagrams

in their work. To generate test cases from Statechart diagram, they defined 5 test

40

coverage criteria: (a) all-blobs, (b) all-transitions, (c) all-transition-pairs, (d) all­

conditions and (e) all-paths.

Kung [43) presented a methodology that uses an Object-Oriented Web Test

Model, called WTM, to support web application testing. The WTM captures test

related artifacts of a web application and represents the artifacts from three different

aspects: (a) the object aspect, which models the entities of a web application as

objects and describes their dependent relationships (b) the behavior aspect, which

depicts the navigation and state-dependent behaviors of a web application and (c) the

structure aspect, that describes the control flow and data flow information of a web

application.

From the WTM, the structural and behavioral test cases can be derived

automatically to support the test processes. To facilitate web application testing, the

structural and behavioral test artifacts of a web application are represented in the

WTM from three aspects: the object, the behavior, and the structure perspectives. For

the object perspective, the entities of a web application are depicted by an object

relation diagram in terms of objects and their dependent relationships. For the

behavior perspective, the navigation behavior of a web application is described using

a page navigation diagram, while the state-dependent behavior of interacting objects

is represented using a set of object state diagrams. For the structure perspective, a set

of flow graphs are used to describe the control flow and data flow information of the

scripts and functions in a web application. Furthermore, the WTM also employs

textual test constraints so that special testing concerns for objects can be expressed.

There are many limitations for performance testing in web application. Those

limitations are related to several requirements with respect to synthetic workloads.

Firstly, to reach reliable conclusions based on the results of a performance test, the

41

synthetic workloads used must be representative of real workloads. Secondly, since it

is very difficult to know precisely what a real workload's characteristics will be, a

performance testing methodology must provide the flexibility to conduct a controlled

sensitivity analysis on the characterizations of the workload model's attributes.

Furthermore, since the scripts developed are system-specific they need to be modified

when changes are made to a system (e.g., changes in inter-request dependency,

addition of new functionality). Shams [104] proposed a model-based approach that

addresses these limitations. Their approach uses an application model that captures

the application logic of a session-based system under study. Essentially, the

application model can be used to obtain a large set of user request sequences that

satisfy the correct inter request dependencies for the system under study. This set of

sequences is used to automatically construct a synthetic workload with desired

characteristics. I I.

Andrews rl 1) addressed the problem of test case generation for web

applications. They were interested in proposing a new approach to improve the

effectiveness and efficiency of test case generatio,n for web applications. They

proposed a system-level testing approach to combine test generation based on finite

state machines with constraints in order to test the function of a web application. They

proposed to use a hierarchical approach to model potentially enterprise scale web

based applications. The approach builds Finite State Machines (FSMs) that model

subsystems of the web applications, and then generates test requirements as

subsequences of states in the FSMs. Their approach contains two phases: (a) to build

a model of the web application and (b) to generate test cases from the model defined

in the previous phase.

42

The model in the first phase can be done in four steps: (a) the web application

is partitioned into subsystems and components (b) logical web pages are defined (c) a

partition FSM is built for each subsystem or component and (d) an aggregation FSM

is built for the web application.

Traditional testing approaches are no longer adequate for web applications.

Although there is much established work in the validation and verification of

traditional software [17][31][39][43](194][200], systematic as well as flexible and

extensible testing approaches and intelligent tools are in urgent demand. In addition,

software testing in general and web application testing in particular are knowledge­

driven, labor intensive activities, which require automatic software methods and

techniques. Brim [95) proposed a model of Component-Interaction automata to model

component interactions. The model is designed to preserve all the interaction

properties to provide a rich base for their further research. In their paper, they

combine Logical Components (LCs) with component interaction and an agent to

assist automatically generating test cases to test web applications. Chen (72)(166]

proposed to generating test cases proceeds in four steps. Firstly, test sequences of

logical components (LC) are generated. Secondly, each LC is modeled by an

automaton. Thirdly, a final automaton modeling each whole test sequence of LCs can

be achieved by iterative composition of automata of pair-wise LCs in sequence.

Lastly, after mapping actions of output and input into actual operations, and adding

test data to the final automaton, final test cases can be generated automatically.

Javed [4] proposed a model-driven approach to test software applications

using sequence diagrams. Sequence diagrams are behavioral elements of a UML

design that describe dynamic interactions among the components of a system. They

play an important role in the software development processes that are use-case driven,

43

such as the Rational Unified Process. Since these descriptions of behavior are

constructed at an early stage, testing based on them can start verification and

validation (V&V) activities early in the software life cycle. The model-driven

approach that they use for generating unit test cases consists of two steps. In the first

step, they modeled a sequence diagram as a sequence of methods calls (SMC) which

is then automatically transformed into an xUnit model by applying model-to-model

transformations using Tefkat. Tefkat is an eclipse modeling framework-based model

transformation engine which is available as an Eclipse plug-in. In the second step,

JUnit test cases are generated from the xUnit model by applying model-to-text

transformations using MOFScript. MOFScript is a model-to-text transformation

language generating textual outputs from models based on meta-models, and is

available as an Eclipse plug-in.

In conclusion, the above sketch diagram-based techniques can be sununarized

as the following table.

Table 2-2 Sketch Diagram-Based Test Case Generation Techniques

sos [14] Traditional
Application

Black Box Extended
Finite State

Machine
Diagram

44

Function I. The costs of
designing,
implementin
g and
maintaining a
Domain
Specific
Language
(DSL).

2. The costs of
education of
DSLusers.

3. The limited
availability
ofDSL.

4. The
difficul of

SAVFFM
L06 [179)

HOl [69)

EWOl
[76]

~
Traditional
Application

::>

~
4d-

Traditional
Application

Traditional
Application

~'"
Black Box

A

Black Box

RS

Statechart
diagram

Use Case
Diagram

Black Box Finite State
Machines
Diagram

45

Function

balancing
between
domain
specificity
and general­
purpose
programming
language
constructs.

S. The potential
for a tower of
Babel, a
potential
language for
every other
domain.

I. Their
approach is
limited to
only one
component in
the system,
not entire
software.

2. Their
technique is
not
applicable
and effective
for dynamic
behavior
modeling in
Statechart
diagrams.

Function Lack of the
integration of
UML 2.0
standard
s ecification.

Function 1. Their
approach is
randomly
traversed in
the finite
state
machines
diagram.

2. Their
a roach

RGOO [85] Traditional
Application

*

Black Box Use Case and
Sta tee hart
diagram

A

~ ~~ Slf\C
,~ ...

JSW07 [4] Traditional Black Box
Application

CCDHJM Traditional Black Box
00 [7] Application

ROMOS Web Black Box
[66] Application

K.LHOO Web Black Box
(43] Application

Sequence
diagram

Class, Object
and State
dia am

Statechart
diagram

Object
Relation

Diagram and
Object State

Diagram

46

Function

requires a lot
of skills for
testers (e.g.
formal
language,
automata
theory, graph
theory and
elementary
statistics.)

1. Need to
improve the
integration of
non­
functional
requirements
with
scenarios and
Statechart
diagram.

2. Limit to the
data
annotations
and
performance
requirements
in deriving
test cases
from
annotated
state-charts.

Function Lack of an
automated test

Function

Function

Function

case generation
tool.
Limited to
branch coverage
on! .
Cannot support
tests involving
concurrent
access of web
application by
multi le users.
Limited to a few
test artifacts to
facilitate
regression
testing and
maintenance of

web
a lications.

SKF06 Web Black Box Extend Finite Non- Lack of
(!04] Application State Function flexibility for

Machine (Perfonnan varying
(EFSM) ce) workload

characteristics in
a controlled
manner.

ND03 Web Black Box Use Case Function 1. Manual
[lOS] Application Diagram process of

assigning

~
0 priorities test

cases.

2. Limit to the
functionality
of web
application.
Their
approach
cannot
support the
relationship

~
between the
navigation
and

* *
functionality
of web pages

~j ~ SIN ::1969o'- ~~~
(e.g. page
testing and

?~jl/ D' °"o hyper link
-:\

testing).

AOA04 Web Black Box Finite State Function Test case
(11] Application Machine generation effort

is too manual.
CMQ07 Web Black Box Page-Flow Function Limited to only
(166] Application diagram the interaction

of components
in web
a lication.

MCLQ07 Web Black Box Page-Flow Function Limited to only
[72] Application diagram the interaction

of components
in web
a lication.

47

2.2.3 Source Code-Based Test Case Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing source code-based techniques.

An overview of this technique can be found as follows:

Source
Control

Code. --+ Flow --+---i
Program

or

Software

under Test

Graph

Control F low Graph

Sou.-ce Code-Based Tesc Case

Generation Techniques

Test case Generation Methods

Test Cases

· Test Case ID

-Test Data

·Test Sequence

·Expected Result

·AclU•I Result

·Pll$$/Fail Status

Resutts

Figure 2-6 Source Code-Based Test Case Generation Techniques

From Figure 2-6, source code-based techniques generally use control flow

information to identify a set of paths to be covered and generate appropriate test cases

for these paths. The control flow graph can be derived from source code. The result is

a set of test cases with the following format: (a) test case ID (b) test data (c) test

sequence (also known as test steps) (d) expected result (e) actual result and (f) pass or

fail status.

The following paragraphs describe the source code-based techniques that have

been proposed for traditional and web-based applications.

Beydeda [158] presented a novel approach to automated test case generation.

Several approaches have been proposed for test case generation, mainly random,

source code-based, goal-oriented and intelligent approaches (151]. Random

techniques detennine test cases based on assumptions concerning fault distribution,

e.g. [6]. Source code-based techniques generally use control flow information to

48

identify a set of paths to be covered and generate appropriate test cases for these

paths. These techniques can further be classified as static or dynamic. Static

techniques are often based on symbolic execution e.g. [29] whereas dynamic

techniques obtain the necessary data by executing the program under test e.g. [94].

Goal-oriented techniques identify test cases covering a selected goal such as a

statement or branch, irrespective of the path taken e.g. [151). Intelligent techniques of

automated test case generation rely on complex computations to identify test cases

e.g. [127]. Another classification of automated test case generation techniques can be

found in (127). Their algorithm proposed in this article can be classified as a dynamic

path-oriented one. Its basic idea is similar to that in [94). The path to be covered is

considered step-by-step, i.e. the goal of covering a path is divided into sub-goals, test

cases are then searched to fulfill them. The search process, however, differs

substantially. In Bogdan's work [94], the search process is conducted according to a

specific error function. In their approach, test cases are determined using binary

search, which requires certain assumptions but allows efficient test case generation.

Yang [84] presented a web application architecture to support testing of the

web application. The architecture covers application model extraction, test execution

automation, and test design automation. In addition, practitioners normally use a

graph-based application model to represent the behavior of web-based applications.

They are interested in extending the control flow graph (e.g. nodes, branches, and

edges) to model web applications. The nodes in the control flow graph represent a

programming module (e.g. single file such as .html, .cgi and .asp). The branch could

be the user branch and application branch. The user branch represents the user

selecting one of the hyperlinks from the browsed document in the browser. The

application branch represents the current programming module foxwarding control to

49

other programming modu)es for further processing based on application logic. The

extended model is further used to generate test cases by applying the traditional flow­

based test cases generation technique. They adopt two path testing strategies:

statement and branch coverage for their environment. The IEEE software testing

standard regards statement coverage as the minimum testing requirement. Real world,

practical program testing requires both the statement and branch coverage. They

declared four major steps for their test ing activjties in their framework: (a) application

model construction (b) test case construction and composition (c) test case execution

and (d) test result valjdation and measurement.

Bad web applications can have far-ranging consequences on businesses,

economies, scientific progress, health and so on. Web application testing will play a

more and more relevant part for ensuring requested software quality. Many aspects

regarding web application testing have not been sufficiently invesfigated yet, and

many open questions still need to be addressed, both in the technological and in the

methodological field. Miao [73] proposed an approach to generating test paths for

web applications. The intention is fo help web application testers to ensure a

reasonably comprehensive set of tests. The overall approach is simple and convenient.

The main steps are: (a) construct a digraph from the web application schema (b) add

an imaginary sink node for the default pages or pages leading nowhere (c) build a

regular expression characterizing the digraph and (d) extract individual source-to-sink

sequences from the regular expression.

In conclusion, the above techniques can be summarized as the following table.

Table 2-3 Source code-based Test Case Generation Techniques

order existin

50

·· .Author I
Utef'ereoce. ,, '

YHWC99
(84)

MQS08
(73]

Web
Application

Web
Application

White Box

White Box

2.3 ';fest Data Generation Technique

Branch
Coverage
Strate
Control
Graph
Approach

binary path.

Limited to statement
and branch coverage.

Flow One of the most
important problems of
test generation is
ade uac criteria.

This section describes test data generation techniques in details. Also, it

discusses a limitation of each existing technique which has been researched in the

literature.

Through the years a number of different methods for generating test data have

been presented such as Jon's studies [50], Grindal's work [107) and Hayes's works

(67). This dissertation classifies the existing test data generation techniques, based on

source information from where test data can be derived, as follows:

A0~9(15] KA98 l27l

H09~ [SQJ

Figure 2-7 A Classification of Test Data Generation Techniques

51

Figure 2-7 presents that there are two groups of test data generation

techniques: (a) specification-based test data generation techniques and (b) source

code-based test data generation techniques. These techniques can be described in

details as follows:

2.3.1 Specification-Based Test Data Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing specification-based techniques.

An overall of this technique can be found as follows:

XML Format

Speclficatlon-Based Test Data

GeneraUon Techniques

Requirement/ -Specification Or For~
!---!--+ TestData

Documents Based

Document -Test Case ID

-Input Data

·Output Data

Specmcatton Documents s Test Data Generauon Methods Results

Figure 2-8 Specification-Based Test Data Techniques

From Figure 2-8, the specification-based techniques are methods to generate

test data from specification docwnents such as state-based specification [15)(81),

OCL and test specification language (TSL) [116). Eventually, those techniques

generate a set oftest data with the following format: (a) test case ID (b) input data and

(c) output data.

The following paragraphs survey current specification-based test data

generation techniques that have been proposed for a long time.

52

Previous attempts to automate the test generation process have been limited,

having been constrained by the size and complexity of software, and the basic fact

that in general, test data generation is an un-decidable problem. Meta-heuristic search

techniques offer much promise in regard to these problems. Meta-heuristic search

techniques are high-level frameworks, which utilize heuristics to seek solutions for

combinatorial problems at a reasonable computational cost (111).

Abdurazik (15](81] defined the- following defU)ition in their work: Test

requirements are specific things that must be satisfied or covered during testing; e.g.,

reaching statements are the requirements for statement coverage. Test specifications

are specific descriptions of test cases including test data, often associated with test

requirements or criteria. For statement coverage, test specifications are the conditions

necessary to reach a statement. A testing criterion is a rule or collection of rules that

impose test requirements on a set of test cases. A testing technique guides the tester

through the testing process by including a testing criterion and a process for creating

test data values. A test case is a general software artifact that includes test data input

values, expected outputs, al)d ap.y inputs that are necessary to put the software system

into the state that is appropriate for the test mput values. A TSL is a language that can

be used to describe all components of a test case including input and output data The

components that they consider are test data values, pre x values, verify values, exit

commands, and expected outputs. Test data values directly satisfy the test

requirements, and the other components supply supporting values. A test data value is

the essential part of a test case, the values that come from the test requirements. It

may be a command, user inputs, or software function and values for its parameters. In

state-based software, test data values are usually derived directly from triggering

events and preconditions for transitions. A test data prefix value includes all inputs

53

necessary to reach the pre-state and to give the triggering event variables their before­

values. Any inputs that are necessary to show the results are verify values, and ex.it

commands depend on the system being tested. Expected outputs are created from the

after-values of the triggering events and any post-conditions that are associated with

the transition. In fact, the papers [15)(81) presented a technique, which use Offut's

state-based specification test data generation model to generate test data from UML

state charts diagram.

Offutt [81] presented general criteria for generating test inputs from state­

based specifications. The criteria include techniques for generating tests at several

levels of abstraction for specifications (transition predicates, transitions, pairs of

transitions and sequences of transitions). These techniques provide coverage criteria

that are based on the specifications, and are made up of several parts,, including test

prefixes that contain inputs necessary to put the software into the appropriate state for

the test values. The test generation process includes several steps for transforming

specifications to tests. These criteria have been applied to a case study to compare

their ability to detect seeded faults. '" '-' - ' · - · o'- ~ "'

In object-oriented modeling, object constraint language (OCL) is used in the

UML Semantics document to specify the well-formedness rules of the UML meta­

model. OCL is a pure expression language and can be used to specify invariants,

precondition, post-condition, and other kind of constraint (when the expressive power

of the notation is not enough). The aim is often to constrain classes and types, to

define pre- and post- conditions on operations and methods, to describe guards, and

constraints on navigation. Despite its limitations, OCL seems to be now the main used

language to formally constrain object-oriented models. Benattou [116] presented

partition analysis concept, on which their approach for generating test data is based,

54

W~lONUNIVDSltYl·mapy

and they show by an example how to generate data from an OCL specification. The

paper (116] had chosen to use the System Process Scheduler to illustrate partition

analysis from OCL specification for two reasons: First, the specification of the system

is very simple and second, they want to compare the results given in the context of the

Vienna Development Method (VDM) specification with the object context of OCL.

The above current techniques can be summarized as follows:

0LAA03
(81]

BBH02
(116)

Table 2-4 Specification~ased Test Data Techniques

Traditional Black Box State-based
Application Specification

Traditional
Application

~ ~II

~ '}'J9Ao•- D' °" ~i:!!l'
'I 1:. 11•• ··~hitb'

Black Box OCL
specification

55

Graph
Approach

Partial
Analysis

Technique

is
software cost
reduction (SCR)
specifications
that have only
one mode class
and UML
specifications
that have only
one class with a
statechart.
It is not clear
that their
approach is
based on which
UML standard

cification.
l. Their

approach
does not
support
inheritance
concept in
UML
diagram.

2. The
specification
of the
characteristic
s they are
using in their
approach is
not
completed.

2.3.2 Source Code-Based Test Data Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing source code-based techniques.

An overall of this technique can be found as follows:

Source Metamodel/

Source Code-Based Test Data

Generation Techniques

Code/-- Control--+-- 1----+--TestOata

Progrem Flow

Software

Under Test
Graph

Source Code I Graph Test Data Generation Methods

Figure 2-9 Source Code-Based Test Data Techniques

-Test Case ID

-Input Data

-Output Data

Results

From Figure 2-9, the source code-based test data generation techniques are

techniques to generate and prepare test data from control flow graph. The control flow

graph can be derived from source or binary code. There are a few researchers who

have researched this technique. Eventually, those techpiques generate a set of test data

with the following fonnat: (a) test case ID (b) input data and (c) output data.

The following paragraphs survey current path-oriented test data generation

techniques that have been proposed for traditional and web-based application for a

long time.

Korel [27] presented a novel approach for automated regression testing. The

main goal of this approach is to generate test data for a modified program such that

each test data reveals a fault(s). The approach concentrates on testing automaticaJly

the common functionality of the original program and its modified version, i.e., it is

used for programs whose functionality is unchanged after modifications. This is

56

achieved by utilizing the original version of the program in the process of test data

generation. Specifically, this approach attempts to automatically generate an input

data on which the original program and its modified version yield a different result

(output). If such an input is found then an error(s) has been uncovered because both

versions are expected to produce the same result. This error might be in the original

program, the modified program, or in both programs. However, the error is most

likely located in the modified program because the original program was well tested

and previously used without problems.

Additionally, Kore! [94] presented an alternative approach of test data

generation, referred to as a dynamic approach of test data generatio~ which is based

on actual execution of a program under test, dynamic data flow analysis, and function

minimization methods. Test data are developed using actual values of input variables.

When the program is executed on some input data, the program execution flow is

monitored. If, during program execution, an Wldesirable execution flow at some

branch is observed tlten a real-valued function is associated with this branch. This

function is positive when a branch predicate is false,and negative when the branch

predicate is true. Function minimizalion search algorithms are used to automatically

locate values of input variables for which the function becomes negative. In addition,

dynamic data flow analysis is used to determine input variables which are responsible

for the undesirable program behavior, leading to significant speed-up of the search

process. In the paper's approach [94], arrays and dynamic data structures can be

bandied precisely because during program execution all variables values, including

array indexes and pointers, are known; as a result, the effectiveness of the process of

test data generation can be significantly improved.

57

Pringsulaka [140] proposed a technique called Coverall algorithm, which is

based on a conventional attempt to reduce cases that have to be tested for any given

software. The approach utilizes the advantage of Regression Testing where fewer test

data would lessen time consumption of the testing as a whole. The technique also

offers a means to perfonn test case generation automatically. Compared to most of the

techniques in the literature where the tester has no option but to perfoxm the test case

gen~ration manually, the proposed technique provides a better option. As for the test

data reduction, the technique uses simple algebraic conditionsrto assign fixed values

to variables (maximum, minimum and constant variables). By doing this, the variables

values would be limited within a definite range, resulting in fewer numbers of

possible test data to process. The technique can also be used in program loops and

arrays. After a comparative assessment of the technique, it has been confirmed that

the technique could reduce number of test data by more than 99%. As for the other

features of the technique, automatic test data generation, all four step of test data

generation in the proposed technique have been converted into an operational

program.

Pringsulaka [140) resolved the following problems in order to improve the test

perfonnance: (a) reducing the number of test data (b) automatic test case generation

and (c) minimum number of test runs. The purposes of the technique are:

1. To reduce number of all test data. Generally, the larger the input domain,

the more exhaustive the testing would be. To avoid this problem, a

minimum set of test data needs to be created using an algorithm to select a

subset that represents the entire input domain. In addition, when test data

are larger, the testing itself would take longer to run, particularly for

regression testing where every change in the program demands repeat

58

testing. Therefore, reducing number of the test data does have advantage in

efficiency

2. To find the technique for automatic generation of test data. To reduce the

high cost of manual software testing while increasing reliability of the

testing processes, IT researchers and technicians have found methods to

automate the reduction process. With the automatic process, the cost of

software development could be significantly reduced.

3. To keep a minimum number of test runs. The best technique must be able

to generate

Hayes [80] was interested in the input validation testing (IVT) technique. The

IVT technique has been developed to address the problem of statically analyzing input

command syntax as defined in English textual interface and requirements

specifications and then generating test data for input validation testing. The technique

does not require design or code, so it can be applied early in the lifecycle Input

validation testing (IVT) focuses on the specified behavior of the system and uses a

graph of the syntax of user commands. IVT incorporates formal rules in a test

criterion that includes a measurement and stopping rule. Several grammar analysis

techniques have been applied as part of the static analysis of the input specification.

This discusses the four major aspects of the IVT method:

1. How to specify the format of specifications

2. How to analyze a user command specification

3. How to generate valid test data for a specification

4. How to generate error test data for a specification.

Brottier (53] were interested in the automatic generation of test models, being

given a meta-model describing the input domain of a model transfonnation. An

59

algorithm is defined to automate test model generation. The algorithm takes a meta-

model and fragments of models as an input and produces a set of test models. The

model fragments are either provided by the tester or derived from the meta-model.

They specified parts of the meta-model that should be instantiated with particular

values that are interesting for testing. The algorithm then consists in combining model

fragments and completing them to build valid instances of the meta-model. The

various strategies used to combine and complete a model to make it conformant to its

meta-model are presented as well as the limitations of this algqrithm.

Chien-Hung [39] extended traditional data flow testing techniques to web

applications. Several data flow issues for analyzing HTML documents in web

applications are discussed A test model that captures data flow lest artifacts of web

applications is presented In the test model, each component of a web application is

modeled as an object. The dataflow information of the web application is captured

using flow graphs. From the test model, dataflow test data for the web application

then can be derived based on the intra-object, inter-object. and inter-client

perspectives. VII~'"'-

The above current techniques can be summarized as follows:

Table 2-5 Source Code-Based Test Data Techniques

!4
KA98 Traditional White Box Heuristics 1. Limit to the functionality
(27] Application Approach testing.

2. Their approach is used for
programs where functionality
is unchanged after
modifications, during
regression testing.

K90 [94) Traditional White Box Heuristics Their approach is limited to local
Application Approach optimization for test data

&Function generation.
minimizati

60

H099
[80]

BFSBT06
[53)

LKHHOO
(39)

Traditional
Application

Traditional
Application

Web
Application

White Box

White Box

White Box

on search
al orithms

Input
Validation

Test
Method

Metamodel
Transforma

ti on
Heuristics
Approach
& Search
Al orithm

2.4 Test Sequence Generation Technique

Their approach is limited to
statically analyzing input
conunand syntax as defined in
English textual interface and
re uirement ecifications.
Their approach can not deal with
static constraints associated to
the in ut meta-model.
Lack of automated test data
generation tool.

This section describes test sequence generation techniques in details. Also, it

discusses a limitation of each existing technique which has been researched in the

literature. R

Several approaches have been proposed to identify the sequence of test case,

such as Sanjai 's work (159), Hyungchoul's work [75) and Frohlich's work [137].

This dissertation classifies the existing test sequence generation techniques,

based on source information from where tes~ data can be derived, as follows:

61

FJ..9Pa37)

SM!;l(l~[Pl}

w~~i 1~s1

GLM04 (l]O)

SQ~Wm

SM07n19)

SJ0-8 [138)

Figure 2-10 A Classification of Test Sequence Generation Techniques

Figure 2-10 presents that there are two groups of test sequence generation

techniques: (a) specification-based test sequence generation techniques and (b) sketch

diagram-based test sequence generation techniques. These techniques can be

described in details as follows:
SINC .. 1969 ~ ~Q)

2.4.1 Specification-Based Test Sequence Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing sp~ification-based techniques.

An overall of this technique can be found as follows:

Specification
Specification· Bas.d

Test Sequence Test Sequence
Documents

Generation Techniques

:
·Test Case ID

-TestSt.ps

SpeclftcaUon Documents Test Sequence GeneraUonftllelhods Result$

62

Figure 2-11 Specification-Based Test Sequence Techniques

From Figure 2-11, the specification-based techniques are methods to generate

test sequence from specification documents. A few researchers have researched this

area. Eventually, those techniques generate a set of test data with the following

format: (a) test case ID and (b) test steps.

The following paragraphs survey current specification-based test sequence

generation techniques that have been proposed for traditional and web-based

application for a long time.

Rayadurgam (159) outlined a specification-centered approach to testing where

they rely on a formal model of the required software behavior for test-case generation,

as well as, an oracle to determine if the implementation produced the correct output

during testing; Their work is based on the hypothesis that model checkers can be

effectively used to automatically generate test sequences that provide a predefined

structural coverage of a formal specification. Paper [154) defined formalism suitable

for representing software engineering artifacts in which various structural test

coverage criteria can be defined. Here, they show how this formal foundation can be

used to generate structural tests from a formal specification of the required software

behavior, using a small example from the avionics domain. To illustrate the approach,

they define a set of structural coverage criteria that are applicable to requirements

specified in RSML [186][199) or a similar formal language. While the specific

criteria are indeed dependent on the specification language, the formal foundation is

language independent and the underlying approach is equally applicable to any other

language that can be model-checked. They show how the model can be translated into

the input language of a model checker like SMV and how the coverage criteria can be

captured as CTL or LTL properties. Test sequences are then generated by challenging

63

a model checker to find counter examples to the coverage criteria - such a counter

example comprises a test sequence. This strategy has been used by [2] and [130].

2.4.2 Sketch Diagram-Based Test Sequence Generation Techniques

This section discusses an overview of how this technique works and provides

a comprehensive survey of existing sketch diagram-based techniques.

An overall of this technique can be found as follows:

Sketch Diagram-Based Test

TestSe juence

:
j

·THI Case ID

-Test Steps
Sequence

UML Model diagrams Test Case Gen eration Methods Results

Figure 2-12 Sketch Diagram-Based Test Sequence Techniques

From Figure 2-12, there are many types of diagram used to generate test

sequences, which are: 1) activity diagram 2) state diagram and 3) sequence diagram.

Each method can be described as below.

1. Activity Diagram Based Technique

The following describes a test sequence generation technique, which prepare

and generate test sequence from UML Activity diagram.

Kim (75] proposed a method to generate test sequence from UML activity

diagrams that minimizes the number of test steps generated while deriving all

practically useful tests. Their method first builds an input/output (I/O) explicit

Activity Diagram from an ordinary UML activity diagram and then transforms it to a

64

directed graph, from which test steps for the initial activity diagram are derived. Their

procedure for generating test sequences can be found as follows:

1. Derive a system of activity diagram from given specifications.

2. Derive IOAD Diagram Model Activity Diagram can be presented via

specification writers and implementers).

a) Delete data objects and use them as input data

b) Delete implicit operations (e.g. read action and write action)

c) Leave send signal and accept event actions

3. Based on two principles, construct a graph from IOAD. They focus on the

interrelation of subsystems from a stable state of a system to a stable state.

4. Traverse nodes based on all-paths test coverage criterion. -5. Generate test sequences. r-
Linzhang [184) proposed an approach to generate test sequences directly from

UML activity diagram using gray-box method, where the design is reused to avoid the

cost of test model creation. In their approach, test scenarios are directly derived from

the activity diagram modeling an operation. Therefore, all tl_te information such as test

sequences or test data is extracted from each test scenario. At last, the possible values

of all the input/output parameters could be generated by applying category-partition

method, and test suite could be systematically generated to find the inconsistency

between the implementation and the design. Gray-box testing
13

method, which was

13
Kaner defines gray box testing as involving inputs and outputs, but test design is educated by

infonnation about the code or the program operation of a kind that would normally be out of view of
the tester. Gray box testing can be seen as the blending of structural and functional testing methods
throughout the entire testing procedure. Gray-box testing examines the activity of back-end
components during test case execution. There are two types of problems that can be encountered during
gray-box testing. The first is when a component encounters a failure of some kind, causing the
operation to be aborted. For example, an edit check to allow dollars does not accept dollar amounts, i.e.
"AAA". The second is when the test executes in full, but the content of the results is incorrect.
Example: calculations - produces a number but it is incorrect.

65

proposed in [141) in the designer's viewpoint, generates test sequences based on high

level design models which represent the expected structure and behavior of the

software under test (SUT)
14

. The design specifications are the intermediate artifact

between requirement specification and final code. They preserved the essential

information from the requirement, and are the basis of the code implementation. Gray

box method combines the white box method and the black box method. It extends the

logical coverage criteria of white box method and finds all the possible paths from the

design model which describes the expected behavior of an operation. Then it

generates test sequences which can satisfy the path conditions by black box method. It

can find problems which used to be ignored by both black and white method. Gray-

box method could systematically generate test sequences directly from the activity

diagrams which can be used to test the system at code level. Firstly, it parses the

activity diagram and derives the set of test scenarios to satisfy the basic path coverage

criteria. Then, each test scenario is processed. The input and output parameters are

extracted from the action sequence. The constraint conditions are extracted from the

guard conditions in each transition of the test scenario sequence. The object method

sequence which represents the internal behavior of the software in runtime is

extracted from activity states and corresponding objects. At last they use category

partition method [174) to generate proper combination of values of input and output

parameters to satisfy the condition constraints. So the input sequence, expected object

method call sequence and expected output. And they could also generate all test

sequences to form the test suite for the activity diagrams.

14
SUT refers to software that is being tested for correct operation. The term is used mostly in software

testing. A special case of a software is an application which, when tested, is called an application under
test. The term SUT means also a stage of maturity of the software; because a software test is the
successor of integration test in the testing cycle.

66

Farooq (176] presented a novel control-flow based test sequence generation

technique using UML 2.0 Activity Diagram, which is a behavioral type of UML

diagram. Like other model-based techniques, this technique can be used in the earlier

phases of the development process owing to the availability of the design models of

the system. The Activity Diagram model is seamlessly converted into a Colored Petri

Net. They proposed a technique that enables the automatic generation of test

sequences according to a given coverage criteria from the execution of the Colored

Petri Nets model.

The above current techniques can be summarized as follows:

Table 2-6 Activity Diagram-Based Test Sequence Generation Techniques

UXJXGO
4[184)

FLL08
(176]

Black-box
Testin

Gray-box
Testing

Black-box
Testing

Graph
A roach

Depth First
Search
Method

Random-

Too many manual efforts left in their approach.

Their approach does not utilize UML 2.0
Activity diagram specification. They do not
mention any UML Activity diagram
s ecifications.
l. Their approach is limited to the intermediate

level ofUML 2.0 Activity diagram.

2. Their approach covers only control flow
related aspects of the activity diagram.

2. State Chart Diagram Based Technique

The following describes a test sequence generation technique, which prepare

and generate test sequence from UML State Chart diagram.

Frohlich (137] had recently shown how use cases can be systematically

transformed into UML state charts considering all relevant information from a use

case specification, including pre- and post conditions. The resulting state charts can

have transitions with conditions and actions, as well as nested states (sub and stub

states). The current paper outlines how test suites with a given coverage level can be

67

automatically generated from these state charts. They do so by mapping state chart

elements to the STRIPS planning language. The application of the state of the art

planning tool graph plan yields the different test sequences as solutions to a planning

problem. The test sequences and test data can be used for automated or manual

software testing on system level. Using state models to derive test sequences has been

common practice in the software testing world for some time [106). One of the

model-based testing goals is to automate the test sequence generation from test

models as much as possible. Their algorithm generates a set of valid test sequences,

where the preconditions of all transitions are established either by previous actions or

by properties of the test data. This is made possible by exploiting artifact intelligent

(AI) planning techniques, which allow us to systematically search for paths in the

state machine, which satisfy all preconditions of the transitions. In particular, they

described the test generation problem as a STRIPS planning problem [143] and solve

it with the graph plan tool [1]. The scope of their method is the generation of test

sequences supplemented by constraints on the test data, as far as these can be derived

from the information present i.1). the state machine. ~ ~ ""

Samuel (131] proposed the automatic test sequence generation from state

machine diagrams. In their approach there are three main steps in test sequence

generation. The first step is to select a predicate. In this step, they select a predicate on

a transition from a UML state machine diagram. The next step is to transform the

selected predicate to a predicate function. In the third step, they generated test

sequence corresponding to the transformed predicate function. The generated test

sequences are stored for use with an automatic tester. Once the test sequences

corresponding to a particular predicate are determined, they repeated these steps by

68

selecting the next predicate on the state machine diagram. The process is repeated

until all predicates on the state machine diagram have been considered.

Wang [38) proposed an axiomatic test sequence generation method based on

the extended finite state machine (EFSM) model (61], which can be easily translated

from or to the normal specification form of Estelle. A program verification technique,

called axiomatic semantics [133), is applied to the conformance testing area. When a

protocol specification is verified, observable event sequences are recorded as

candidate test sequences. By traversing a carefully chosen path in the EFSM, one can

observe the effect produced by the path and confirm the correctness of the transitions

in the path. No data flow graph is needed, and the test sequences are generated

mechanically from the specification.

Gnesi (170) proposed a formal conformance testing relation and a test

sequence generation algoritlun for input enabled labeled transition systems over i/o­

pairs (IOLTSs). fOLTSs are LTSs where each state has (at least) one outgoing

transition for each element of the input alphabet of the transition system. Intuitively,

such transition systems cannot refuse any of the specified input events, in the sense

that they cannot deadlock when such events are offered to them by the external

environment. Whenever a machine, in a given state, does not react on a given input,

its modeling IOLTS has a specific loop-transition from the corresponding state to

itself, labeled by that input and a special "stuttering" output-label. IOLTSs have been

used as semantic model for a behavioral subset ofUMLSCs [152].

Sokenou [167] presented an approach that combines UML components for

class and integration testing of object-oriented programs. The main information is

extracted from sequence diagrams, which is complemented by the use of state

diagrams. State diagrams have two functions: initialization of participating objects in

69

a scenario and -in combination with object constraint language (OCL) constraints-

serving as a test oracle (not shown in their work). Beyond the presented technique,

they have developed the integration of the derived test oracles into the program under

test using aspect-oriented programming techniques.

WL92
38

The above current techniques can be summarized as follows:

Table 2-7 State Diagram-Based Test Sequence Generation Techniques

Black Box

Black Box

Evolutionary algoritluns like genetic algoriilims can provide
globally optimal solutions but are likely to be computationally
intensive.
There is an exhaustive search for suitable patl1s.

GLM04
170

Black Box Their approach does not cover UML 2.0 Statechart diagram
s cification.

S08 [167) Black Box Lack of the interaction ofUML diagrams. l:=llt

3. Sequence Diagi:am Based Technique

The following describes a test sequence generation technique, which prepare

and generate test sequence froro UML Sequence diagram.

Sanna [119] presented a novel approach of generating test sequences from

UML design diagrams. They considered use case and sequence diagram in their test

sequence generation scheme. Their approach consists of transforming a UML use case

diagram into a graph called use case diagram graph (UDG) and sequence diagram into

a graph called the sequence diagram graph (SDG) and then integrating UDG and SDG

to form the System Testing Graph (STG). The STG is then traversed to generate test

sequences. The test sequences thus generated are suitable for system testing and to

detect operational, use case dependency, interaction and scenario faults.

70

Samuel [138) presented an approach to generate test sequences from UML 2.0

sequence diagrams. Sequence diagrams are one of the most widely used UML models

in the software industry. Although sequence diagrams are used for modeling the

dynamic aspects of the system, they can also be used for model based testing. Existing

work does not encompass certain important features of UML 2.0 sequence diagrams.

Their work considers many of the novel features of UML 2.0 sequence diagrams like

alt, ioop opt and break to generate test sequences. These are important features as far

as testing are concerned.

The above current techniques can be summarized as follows:

Table 2-8 Sequence Diagram-Based Test Sequence Generation Techniques

SM07
[119]

SJ08
138

Black Box

2 . Their approach does not cover UML 2.0 Sequence
diagram specification.

Their approach does not support fully UML 2.0 Sequence
dia ram s ecification.

71

2.5 Test Case Generation Process

According to the literature review, the following shows the test case

generation process:

(·-·--·---
. 1.

••...... , . ~

Test Case Genet'ation Process

Asel ol

Input

------·- ·-·--- ·-- --.--- -·----·--- ------·' • [TestCases J
Figure 2-13 Test Case Generation Process

' \

/ '

Figure 2-13 presents that there are two processes in the test case generation

technique, which break down briefly as fol1ows:

1. Define. This is a first process that allows software testing engineers to

gather, analyze and define all pre-requisite and required information, such as

requirements, constraints and type of testing. There are four sub-processes described

shortly as follows:

72

Table 2-9 First Process in "2D-4A-4D" Test Case Generation Process

• Requirement
perform or Function requirements,
black-box Specification constraints and an
testing Document. overview of how to

on activities. requirements or test in general.

• To function in the
understand specification.
requirements
or function ,,..y specification
document.

• To verify and
It' validate

between the
requirements
ands stem.

Analyze • To be able to Software test Detailed Understanding of
Model perform engineers have to design information in the
Diagrams black-box analyze the detail diagrams. diagramS'in order to

testing design diagrams, be able to derive tests
activities. such as UML Use from them.

• To get better Case diagram,
understand UML Activity

C) the design diagram and
diagrams. State Chart

• To verify that diagram.

the behavior A

of system is SINC 19 69 ti.
match to the ot-
desi

Analyze • To be able to Software test Available of Understanding of the
Program / perform engineers have to program or testing strategy I
Source white-box analyze and walk source code. approach for which
Code testing through program or how many line of

activities. I source code in code in the program

• To be able to order to run a should be tested. In
understand white-box testing addition, another
and help activities. output should be a
software control flow graph

developer to transformed from

test program I source code.

source code.
Analyze • To be able to Software test Requirement Understanding a type
Type of identify engineers need to Specification of testing in order to
Testing which type of analyze and and prepare a proper

testing identify which Diagrams. testing strategy or
should be type of testing plan.
executed. should be

• To allow to executed.
desi test

73

strategy or
plan for each
testing type
(i.e.
functionality,
perfonnance
and securi

2. Design. This is a second process that aims to design, prepare and generate

all elements in a set of tests, such as test data, test sequence and dependencies of each

test case. This process contains the following sub-processes:

Table 2-10 Second Process in "2D-4A-4D" Test Case Generation Process

Requirement
engineers have to Specification, scenarios.

Scenario scenario design many Diagrams
testing. testing scenarios and Source
To be able to to cover all Code. ~ use as a requirements or
reference to function. (:)
verify the rt
requirements

~ and testing
scenario.

Design • To design a Software test • Req_uire Many sets of input
Input Data set of input engineers have to ment data.

data used design many sets Specifica
during a test of input data that ti on and
execution are used for Source
phase. testing. Code.

• To design a • A set of
realistic input test
data, both of scenarios
positive and
negative data.

• To design a
special case
of input data
(e.g. special
characters or
special
combination
of symbols
and
characters

Design • To design a Software testing • Require Many set of test
Test sequence of en ineers have to ment uences.

74

Sequence testing design a set of Specifica
activities. test sequence or ti on and

• To steps for each test Detailed
understand scenarios Diagrams
test steps of
each test • A set of
scenario test

scenarios

Design To complete Software test A set oftest A complete set oftest
Other designing a set of engineers mµst scenarios. case.
Elements test cases complete a set of

test cases by
adding additional

~
required

~ elements, such as
actual results,

~ ~ dependencies,
business impact
and defect id.

The above process can help software test engineers to design, prepare and

generate all elements in a set of test cases. It can ensure that all elements are well-

prepared. In addition, this process contains all required important or critical elements

that can be used in the general conunercial industry, such as test scenario, test case,

test data, test sequence and dependencies of each test case .

•
2.6 Related Works

This study reveals that there are additional topics related to test generation

techniques, which are used in this research [8](54][88][93][144][192]. The following

lists those related works.

1. Prioritize Requirement. Donald [54] argued that IT software projects cannot

avoid the following facts during SDLC process:

a. All requirements are not equally important.

b. All projects have limited resources such as effort, time and cost.

c. Most project schedule is very tight and long

75

The above facts have proven that prioritizing requirements is a critical

important part during SDLC process.

2. ISO 9126 Standard. 1809126 standard is an international standard and well­

known for the evaluation of software quality. Kilidar [8] used this standard to

evaluate the quality of safety-critical systems where lives are at risk if

software fails. This has proven that this standard is one of the most important

standards for evaluating the software quality.

3. Testing Metrics. In addition to the above standard, many testing metrics have

been proposed [88][93][1 44) to measure the quality of software. This bas

proven that metrics are one of the most interesting parts in software testing

area.

Next sections described in detail the above related works for this study.

2.6.1 Prioritize Requirement

Donald [54] addressed the purpose of requirement prioritization as follows:

1. Determine the relative necessity of the requirements. Whereas all

requirements are mandatory, some are m6re critical than others. For

example, failure to implement certain requirements may have grave

business ramifications that would make the system a failure, while others

although contractually binding would have far less serious business

consequences if they were not implemented or not implemented correctly.

2. Help programs through negotiation and consensus building to eliminate

unnecessary potential "requirements" (i.e., goals, desires, and "nice-to­

haves" that do not merit the mandatory nature of true requirements).

3. Schedule the implementation of requirements (i.e., help determine what

capabilities are implemented in what increment).

76

Also, Donald [54] showed the significant benefits of requirement prioritization

as below:

1. Modify schedule. When using an iterative incremental development cycle,

it enables the project manager and customer to modify the project schedule

to deal with the project realities of limited resources and fixed deadlines.

2. Improved user satisfaction. It improves user satisfaction by increasing

the likelihood that the customer's most important requirements are

implemented and delivered first.

3. Lower risk of cancellation. The project is less likely to be cancelled

during SDLC. This is because valuable progress is being demonstrated

with. each increment. Even if the project must be cancelled before the

delivery of the final increment, it is not a total loss because some important

functionality has been implemented and delivered.

4. Address all requirements. Prioritizing requirements is a good approach to

force stakeholders to address all requirements, particularly critical

requirement.

5. Estimate benefits. Priorities provide management and engineering with a

rough estimate of the benefit of the different requirements, which is useful

when performing cost/benefit analyses of the requirements to determine

where best to expend limited project resources in preparation for

requirements negotiation.

6. Prioritize investments. The requirements prioritization techniques can

help determine how to prioritize the investment of limited project

resources. For example, the project can allocate most of its limited

77

resources for quality assurance and system testing according to the highest

priority requirements.

Additionally, these researches [5] [19][25] [45] [46][90][92][96][112][117]

(118)(135)(157][187] reveal that there are many requirement prioritization methods

such as Binary Search Tree (BST), l 00-point method and Analytic Hierarchy Process

(AHP). Next paragraphs describe the existing methods as follows:

1. Binary Search Tree

Binary Search Tree is an algorithm that is typically used in a search for

information and can easily be scaled to be used in prioritizing many requirements [5].

The basic approach for requirements is as follows:

l. Put all requirements in one pile.

2. Take one requirement and put it as root node.

3. Take another requirement and compare it to the root node.

4. If the requirement is less important than the root node, compare it to the

left child node. If the requirement is more important than the root node,

compare it to the right child node. If ~he qode does not have any

appropriate child nodes, insert the new requirement as the new child node

to the right or left, depending on whether the requirement is more or less

important.

5. Repeat steps 3-4 until all requirements have been compared and inserted

into the BST.

6. For presentation purposes, traverse through the entire BST in order and put

the requirements in a list, with the least important requirement at the end

of the list and the most important requirement at the start of the list.

78

The major advantage of binary search trees over other data structures is that

the related sorting algorithms and search algorithms such as in-order traversal can be

very efficient. Binary search trees can choose to allow or disallow duplicate values,

depending on the implementation. Binary search trees are a fundamental data

structure used to construct more abstract data structures such as sets, multi-sets, and

associative arrays.

2. N~meral Assignment Technique ER
The Numeral Assignment Technique provides a scale for each requirement.

Brackett proposed dividing the requirements into three groups: mandatory, desirable,

and unessential. Participants assign each requirement a number on a scale of 1 to 5 to

indicate its importance. The numbers carry the following meaning:

I. Does not matter (the customer does not need it)

2. Not important (the customer would accept its absence)

3. Rather important (the customer would appreciate it)

4. Very important (the customer does not want to be without it)

5. Mandatory (the customer cannot do without it)

The final ranking is the average of all participants' rankings for each

requirement.

3. Planning Game

The planning game is a feature of extreme programming [19] and is used with

customers to prioritize features based on stories. This is a variation of the Numeral

Assignment Teclmique, where the customer distributes the requirements into three

groups, "those without which the system will not function," "those that are less

essential but provide significant business value," and "those that would be nice to

have."

79

4. 100-Point Method

The 100-Point Method [96] is basically a voting scheme of the type that is

used in brainstorming exercises. Each stakeholder is given 100 points that he or she

can use for voting in favor of the most important requirements. The 100 points can be

distributed in any way that the stakeholder desires. For example, if there are four

requirements that the stakeholder views as equal priority, he or she can put 25 points

on each. If there is one requirement that the stakeholder views as having overarching

importance, he or she can put 100 points on that requirement. However, this type of

scheme only works for an initial vote. If a second vote is taken, people are likely to

redistribute their votes to get their favorites moved up in the priority scheme.

5. Tbeory-W

Theory-W was initially developed at the University of Southern California in

1989 [25][135]. It is also known as "Win-Win." An important point is that it supports

negotiation to solve-disagreements about requirements, so that each stakeholder has a

"win." It has two principles:

1. Plan the flight and fly the plan.

2. Identify and manage risks. I

The first principle seeks to build well-structured plans that meet predefined

standards for easy development, classification, and query. "Fly the plan" ensures that

the progress follows the original plan. The second principle, "Identify and manage

risks," involves risk assessment and risk handling. It is used to guard the stakeholders'

"win-win" conditions from infringement. In win-win negotiations, each user should

rank the requirements privately before negotiations start. In the individual ranking

process, the user considers whether there are requirements that he or she is willing to

80

give up on, so that individual winning and losing conditions are fully understood.

Theory-W has four steps:

1. Separate the people from the problem.

2. Focus on interests, not positions.

3. Invest options for mutual gain.

4. Insist on using objective criteria.

6. Requirements Triage S /
Requirements Triage [46] is a multistep process that ihcludes establishing

relative priorities for requirements, estimating resources necessary to satisfy each

requirement, ano selecting a subset of requirements to optimize probability of the

product's success in the intended market. This is clearly aimed at developers of

software product~ in the commercial marketplace. Davis's more recent book [45]

expands on the synergy between software development and marketing; he

recommends that you read it if you are considering this approach. ft is a unique

approach that is worth reviewing, although it clearly goes beyond traditional

requirements prioritization, considering business factors as well.

7. Wiegers' Method

This method relates directly to the value of each requirement to a customer

[187). The priority is calculated by dividing the value of a requirement by the sum of

the costs and technical risks associated with its implementation [187). The value of a

requirement is viewed as depending on both the value provided by the client to the

customer and the penalty that occurs if the requirement is missing. This means that

developers should evaluate the cost of the requirement and its implementation risks,

as well as the penalty incurred if the requirement is missing. Attributes are evaluated

on a scale of 1 to 9.

81

8. Requirements Prioritization Framework

The requirements prioritization framework and its associated tool [l 17](118]

includes both elicitation and prioritization activities. This framework is intended to

address the following:

1. Elicitation of stakeholders' business goals for the project

2. Rating the stakeholders using stakeholder profile models

3. Allowing the stakeholders to rate the importance of the requirements and

the business goals using a fuzzy graphic rating scale

4. Rating the requirements based on objective measure

5. Finding the dependencies between the requirements and clustering

requirements so as to prioritize them more effectively

6. Using risk analysis techniques to detect cliques among the stakeholders,

deviations among the stakeholders for the subjective ratings, and the

association between the stakeholders' inputs and the final ratings

9. Cost-Value Approach

A good and relatively easy to use method for prioritizing software product

requirements is the cost-value approach. This approach was created by Joachim

Karlsson and Kevin Ryan. The approach was then further developed and

commercialized in the company Focal Point (that was acquired by Telelogic in 2005).

Their basic idea was to determine for each individual candidate requirement what the

cost of implementing the requirement would be and how much value the requirement

has. The assessment of values and costs for the requirements was performed using the

Analytic Hierarchy Process (AHP). This method was created by Thomas Saaty. Its

basic idea is that for all pairs of (candidate) requirements a person assesses a value or

a cost comparing the one requirement of a pair with the other. For example, a value of

82

3 for (Reql, Req2) indicates that requirement 1 is valued three times as high as

requirement 2. Trivially, this indicates that (Req2, Reql) has value 1h. In the approach

of Karlsson and Ryan, five steps for reviewing candidate requirements and

detennining a priority among them are identified. These are summed up below [90).

1. Requirement engineers carefully review candidate requirements for

completeness and to ensure that they are stated in an unambiguous way.

2. Customers and users (or suitable substitutes) apply AHP's pair-wise

comparison method to assess the relative value of the candidate

requirements.

3. Experienced software engineers use AHP's pair-wise comparison to

estimate the relative cost of implementing each candidate requirement.

4. A software engineer uses AHP to calculate each candidate requirement's

relative value and implementation cost, and plots these on a cost-value

diagram. Value is depicted on the y axis of this diagram and estimated

cost on the x-axis.

5. The stakeholders use the cost-value diagram as a conceptual map for

analyzing and discussing the candidate requirements. Now software

managers prioritize the requirements and decide which will be

implemented.

10. Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a structured technique for dealing

with complex decisions. Rather than prescribing a "correct" decision, the AHP helps

the decision makers determine one that suits their needs, wants, and understanding of

the problem. Based on mathematics and psychology, it was developed by Thomas L.

Saaty in the 1970s and has been extensively studied and refined since then. The AHP

83

provides a comprehensive and rational framework for structuring a problem, for

representing and quantifying its elements, for relating those elements to overall goals,

and for evaluating alternative solutions. It is used in a wide variety of decision

situations, in fields such as government, business, industry, healthcare, and education.

In other words, AHP is a method for decision making in situations where

multiple objectives are present [90][92)[157). This method uses a "pair-wise"

comparison matrix to calculate the relative value and costs of individual security

requirements to one another. By using AI-IP, the requirements engineer can confirm

the consistency of the result. AHP can prevent subjective judgment errors and

increase the likelihood that the results are reliable. AHP is supported by a standalone

tool, as well as by a computational aid witltin the SQUARE tool. There are five steps

in the AHP method:

1. Review-eandidate requirements for completeness.

2. Apply the pair-wise comparison method to assess the relative value of each of

the candidate requirements.

3. Apply the pair-wise comparison method to assess the relative cost of the

candidate requirements. I

4. Calculate each candidate requirement's relative value and implementation cost,

and plots each on a cost-value diagram.

5. Use the cost-value diagram as a map for analyzing the candidate requirement.

2.6.2 ISO 9126 Standard

Software quality is fundamental to software product success [147]. Yet quality

as a concept is difficult to define, describe and understand [140]. Quality has a strong

subjective element. For example, a factor one person identifies as indicating good

quality (e.g. interface simplicity and elegance), another person may regard as an

84

indicator of poor quality (e.g. lack of help for novice users). Examination of quality

definitions, meanings and views in [147) describes quality as hard to define and

measure but easy to recognize. However, quality experts including some with a

software background have proposed models e.g. [81][116)(162) not to measure

quality itself but to measure surrogate attributes such that when combined can provide

some notion of the quality of the product.

Many definitions have been introduced to defme quality [67][74][80][81]

[104)[116)[140][147] l162]. The International Standards Organization (ISO) defines

quality as: "the totality of features and characteristics of a product or service that

bear on its ability to satisfy specified or implied needs" (107] . The IEEE defines

quality as "the degree to which a system, component, or process meets specified

requirements and customer or user needs or expectations" [80]. Essentially, both

defmitions are-- focused on satisfying the customer' s need for the software product.

Fifteen different quality defmitions are defined and views of quality models. This

shows that there is no one encompassing definition or view of quality. The quality

view taken in any given situation depends upon the co,ntext, the meaning assigned to

the quality attributes and the relationships between those attributes within that

context.

ISO and the International Electrical technical Commission (IEC) have

developed the ISO/IEC 9126 Standards for Software Engineering - Product Quality

[53][82)(111)(122] to provide a comprehensive specification and evaluation model

for the quality of software products [67].

Part I of ISO/IEC 9126 contains a two-part quality model: one part of the

quality model is applicable for modeling the internal and external quality of a

software product, whereas the other part is intended to model the quality in use of a

85

software product. These different quality models are needed to be able to model the

quality of a software product at different stages of the software lifecycle. Typically,

internal quality is obtained by reviews of specification documents, checking models,

or by static analysis of source code. External quality refers to properties of software

interacting with its environment. In contrast, quality in use refers to the quality

perceived by an end user who executes a software product in a specific context. These

prod~ct qualities at the different stages of development are not completely

independent, but influence each other. Thus, internal metrics may be used to predict

the quality of the final product - also in early development stages.

For modeling internal quality and external quality, ISO/IEC 9126 defines the

same model. This generic quality model can then be instantiated as a model for

internal quality or for external quality by using different sets of metrics. The model

itself is based on the six characteristics functionality, reliability, usability, efficiency,

maintainability, and portability, as follows [172):
rT

~ * External and
Internal ouallly

F"""lion1llty Po!UWily

Suabllity I ~ AnelyMl>iily ~

f -..;cy
ebility

Accunocy r Beh..naur cttangeebaily lnlCalllrbirlt)' l..Mmlll>irJty

"'*"'*obaity
I FllUll Tol&rlll!C9 RMout ..

Sttibllity Co-Exi......,. , ()pe<-ity Ulill .. lion I ftaeo-lbility
S.Ourfty I !Wiebilily

A1111.UV- Elfici.ntr
THlability ~ility

FunctlOMlity Compll.,09 lrleintain1bUlty Porllbility
Comp II""""'

I Complien09 UuDUl!y
CompliMCe Compliance Compll,_. ---- \...

Figure 2-14 ISO/IEC 9126-1 Model for Internal and External Quality

The above characteristics in many papers [16][20][71][128)(129)[148] can be

defined as follows:

Table 2-11 ISO/IEC 9126-1 Characteristics

86

Functionality

Reliability

Usability

The capability of the software product to provide functions
which meet stated and implied needs when the software is used
under ecified conditions 16][20 71][128 129][148 .
Suitability The capability of the software

product to provide an appropriate set
of functions for specified tasks and
user ob'ectives.

Accuracy

Interoperability

Security

Functionality
Compliance

The capability of the
product to provide the
agreed results or effects
needed de ee of recision.

software
right or
with the

The capability of the software
product to interact with one or more
s ecified s stems.
The capability of the software
product to protect information and
data so that unauthorized persons or
systems cannot read or modify them
and authorized persons or systems
are not denied access to them.
The capability of the software
product to adhere to standards,
conventions or regulations in laws
and similar prescriptions relating to
functionality.

The capability of the software product to maintain a specified
level of performance when used under specified conditions
16 20)(71 128] 129 148 .

Maturity The capability of the software
llJ'),.. product to avoid failure as a result of

faults in the software.
Fault Tolerance

Recoverability

The capability of the software
product to maintain a specified level
of performance in cases of software
faults or of infringement of its
s ecified interface.
The capability of the software
product to re-establish a specified
level of performance and recover the
data directly affected in the case of a
failure.

Reliability Compliance The capability of the software
product to adhere to standards,
conventions or regulations relating

·to reliabili .
The capability of the software product to be understood,
learned, used and attractive to the user, when used under
s citied conditions 16 20) 71 128 (129 148).

87

Efficiency

Maintainability

Learnability

Operability

Attractiveness

Usability Compliance

The capability of the
product to enable the user to
understand whether the software is
suitable, and how it can be used for
particular tasks and conditions of
use.
The capability of the software
product to enable the user to learn its
a lication.
The capability of the software
product to enable the user to operate
and control it.
The capab\lity of the software

roduct to be attractive to the user.
The capability of the software
product to adhere to standards,
conventions, style guides or
re ulations relatin to usabili .

The capability of the software product to provide ?ppropriate
performance, relative to the amount of resources used, under
stated conditions [16 20 71][128 129 148 .
Time Behavior The capability of the software

product to provide appropriate
response and processing times and
throughput rates when performing
its function, under stated conditions.

Resource Utilization The capability of the software
product to use appropriate amounts
and types of resources when the
software performs its function under
stated conditions.

Efficiency Compliance The capability of the software
product to adhere to standards or
conventions relatin to efficienc .

The capability of the software product to be modified.
Modifications may include corrections, improvements, or
adaptation of the software to changes in envirorunent, and in
requirements and functional specifications
16 20 71 128 129] 148.

Analyzability The capability of the software
product to be diagnosed for
deficiencies or causes of failures in
the software, or for the parts to be
modified to be identified.

Changeability

88

The capability of the software
product to enable a specified
modification to be im lemented.

Portability

Stability

Testability

Maintainability
Compliance

The capability of the software
product to avoid unexpected effects
from modifications of the software.
The capability of the software
product to enable modified software
to be validated.
The capability of the software
product to adhere to standards or
conventions relating to
maintainabilit .

The capability of the software product to be transferred from
one environment to another (16 20 71)(128 129)(148 .
4daptability The capabilitY of the software

lnstallability

Co-existence

Replaceability

Portability Compliance

product to be adapted for different
specified environments without
applying actions or means other than
those provided for this purpose for
the software considered.
The capability of the.. software
product to be installed in a specified
environment.
The capability of the software
product to co-exist with other
independent software in a common
environment sharing common
resources.
The capability of the software
product to be used in place of
another specified software product
for ihe same purpose in the same
environment.
The capability of the software
product to adhere to standards or
conventions relatin to ortabilit .

2.6.3 Testing Metrics

The literature reviews show that testing metrics are an important indicator of

the effectiveness of a software testing process. The examples of current testing

metrics can be found as follows (93]:

Table 2-12 Testing Metrics

89

Test
coverage

Test case
effective
ness

Number
of defects

required to
find a defect.

indicates the
correlation
between the test
effort and the
number of
defects found.

Defined as the !his metric is an
extent to indication of the
which testing- completeness of
covers the the testing. It
product's does not indicate
complete anything about
functionality. the effectiveness

of the testing.
This can be used
as a criterion to
sto testin .

The extent to This metric
which test provides an
cases are able indication of the
to find effectiveness of
defects. the test cases and

the stability of
the software.

The total Amore
number of meanjngful way
remarks found of assessing the
in a given stability and
time reliability of the
period/phase/t software than
est type that number of
resulted in remarks.
software or Duplicate
documentatio remarks have
n been eliminated;
modifications. rejected remarks

have been done.

90

,\~, ~~
Divide the cumulative hours spent
on test execution and logging
defects by the number of defects
entered during the same period.

Coverage could be with respect to
requirements (also known as
requirement coverage), functional
topic list, business flows, use cases,
etc. It can be calculated based on the
number of items that were covered
vs. the total number of items.

-.....
Ratio of the number oftest cases
that resulted in logging remarks vs.
the total number of test cases.

*
Only remarks that resulted in
modifying the software or the
documentation are counted.

CHAPER3

RESEARCH PROBLEMS

This chapter discusses outstanding research problems relative to test

generation techniques. Also, this chapter is concluded with a discussion on problems

addressed in this dissertation.

3.1 Research Issues

Every test case generation technique has its own weak and strong points, as

addressed in the literature survey. In regard to using the test case generation

techniques, there are a significant number of issues that need to be addressed (e.g.

design test scenario, design test case format, generate test cases from model diagrams,

etc). In general, referring to the literature review, the following lists are the main

issues in test case generation, test data generation and test sequence generation area:

1. Problem of detecting bug delay [3][53][69][80][81}[119][136][158][159]:

The process of generating tests from the requirement specifications will often

help the test engineer discover problems wi~ the specifications themselves; if

this step is done early, the problems can be eliminated early, saving time and

resources. Launch the testing process early in the development lifecycle and

also help with testing methodology.

2. Inefficient requirement specification for functionality testing

[38][39][53][73][74][82][85)(86][105][113)(116][122][131][137][155][159]

[160)(170][172][182][190][191): Inefficient requirement specification can

lead to the problem of verify and validate the proposed system design against

the functional requirements and to provide automatically measurable test case

to support design alternative analysis.

91

3. Inefficient test data (15)[49][81](116](160)(175): Many researchers are

interested in identifying a collection of test data, such as input and output data,

from state-based specification.

4. Lack of ability to identify critical requirements (14](149): The current

existing technique is lack of the capability to critical requirements, because

those requirements are not explicitly discussed in the specification document.

For example, Nilsson [149] proposed the technique to generate test cases for

real-time system.

5. Lack of a standard and formal specification [178): Incorrect interpretations

of complex software from non-formal specification can result in incorrect

implementations leading to testing them for conformance to its specification

standard.

6. Inefficient automated test case generation techniques

[4)(7)[11][13)(27)(38][43][5l][72][74][76][83][84](94][97][98)(116][119)

(131][137)(138)(140)(147](156][161][162](165](167)[170)(176)[181][182)

[184][190][191][198f Improving the ability to automatically generate test

cases, for example, enhancing the capability of automation tools, can be

reduces time and cost for testing. Most of the time, testers perform the manual

testing in the development life cycle.

7. Lack of re-uses systematically of test case [198): Reusing test cases can

reduce time and cost in software testing phase. Software test engineers do not

need to generate a new set of test case every time they perform testing.

8. Inefficient requirement specification for GUI testing [12)(13][83]: hnprove

the formal requirement specification in order to increase the capability of

verify and validate user interactions against the system and to provide

92

automatically measurable test case to support design alternative analysis.

Systematically test cases can reduce cost and time of development.

9. Ignore unspedfied Jnput data [182]: Current test case generation techniques

ignore generating unspecified inputs or attacks in order to test the robustness

of web application.

IO. Inefficient requirement specification for security testing [191): Improve the

formal requirement specification in order to increase the capability of verify

and validate the proposed system design against the security requirements and

to provide automatically measurable test case to support design alternative

analysis. Systematically test cases can reduce cost and time of development.

II. Inefficient requirement specification for performance testing [104]:

Improve the formal requirement specification in order to increase the

capability of verify and validate the proposed system design against the

performance requirements and to provide automatically measurable test case

to support design alternative analysis. Systematically test cases can reduce

cost and time of develqpll,lent. '"' 1... • "' ~ ~ .,,

12. Unable to select suitable test cases due to a large number of test cases

[4][7][11][13][27][38][43][51][72][74][76][83][84][94][97][98][116][119]

[131][137][138][140] [147)[156][161][162][165][167][170][176][18 l][182]

[184](190](191)(196)[198]: Software testing is one of the most forgettable.

Typically, software testing engineers have a few amounts of time, effort and

cost to plan, design test case, run test cases and evaluate test cases

respectively. Existing techniques are not effective for complex application

with limited resources (e.g. time, effort, and cost) both of traditional and web

application. The example of complex web application is the application with

93

'DllAallJMFl'ION 1JNIVDSlTYl.DQldJ

dynamic behaviors, heterogeneous representations, novel control flow, and

data flow mechanisms.

13. Lack of supporting multi-user interactions for web application [161]: An

existing approach to using field data in testing web applications is user­

session-based testing. Previous user-session-based testing approaches ignore

state dependences from multi-user interactions. Current techniques are not

effective, because they are lack of multi-user interaction issue.

14. Inefficient requirement specification for reliability testing [83][170]:

Reliability is defined to be the probability of failure-free operations for web­

based applications. There are many root-causes of problems in testing web

application such as user interaction, information delivery between client and

server (e.g. host, network or browser failures) and the correctness of

functionality of web application. Communication protocols thus play a major

role in today's distributed computing environments. To guarantee the

reliability of a network, it is essential to ensure that protocol implementations

are consistent withr their specifications in various hardware and software

environments. I ti

15. Large number of test cases [51](75)(140): Most test case generation

techniques are aiming to generate test cases in order to cover scenario as much

as possible. Sometimes, they generate too big size of test cases and it is

impossible to execute those cases with limited time and resources.

16. Lack of important information from diagrams [138][167]: It is difficult to

generate automatically test cases from model diagrams (e.g. use case diagram,

activity diagram and state diagram) if those diagrams are not completed.

94

17. Ignore concurrent program factor [181]: Test sequence generation for

sequential program can be applied to concurrent programs, but they may not

be efficient.

18. Ignore a modification of programs [27]: There are a lot of changes and

modification during a regression testing phase. Most of existing test data

generation techniques ignores the modification occurred during regression

testing phase.

The above remaining problems can be classified aligned with the test case

generation process mentioned in the Chapter 2 as follows:
'

Test C~se Genereuon

Pr<K~S

Figure 3-1 A Class~fjcation of Remaining Problems

Figure 3-1 represents a classification of remaining problems based on test case

generation process. There are outstanding problems aligned with each sub-process.

This dissertation does not aim to resolve all the above problems. It is nearly

impossible to tackle with all problems within this study.

However, the study and what have been discovered present the following

researchers who have investigated and proposed methods to resolve each problem.

95

Table 3-l Test Case Generation Techniques and Issues

Authors Issues
l 2 3 4 5 6 7 8 9 10 11 1Z 13 14 15 16 17 18

J. Test Cases Generation Techniaues

ASA05I1371 x
CR99 [156] x
HLOO 111 31 x
OXL99 f3l x
K971861 x
TOI fl761 x
RHO! [55] x x
NOM06 fl50l x
TWCPX05 x x x [1831
JLQ03 [1921 x x x
JL [191] x x
$05 [14] x
SAVFFML06 x fl 791
HOI [691 x I"-- '
EWOI [76] x
RGOO (851 x
JSW07 [4] x
CCDHJMOOf71 x
ROMOS 1661
KLHOOl43l x
SKF06 11041 x
ND03 [1 051 x

-. --
AOA04 [II] x
CMQ07[166] x
MCLQ07172) x
BG03 fl 581 x x
YHWC99[84] x
MQS08 1731 x
2. Test Data Generation Techniques
A099 [151 x , --OLAA03 (81) x x
BBH02 [1161 x x x
KA98[27) x x
K90 [941 x x
H099 [80) x
BFSBT06 [53) x
LKHH00 [39) x
3. Test Seauence Generation Techniques --RHO! fl 59] x x
KKBK07[75] x
UXJXG04 x fl841
FLLOS (1 76] x
FLOO [137] x x
SMB08 [131) x x
WL92[38] x x x
GLM04 (170] x x
$08 [167] x
SM07 (119] x x
SJ08f 1381 x x

96

3.2 Problem Statement

Due to the fact that there are many challenges in software testing area,

especially during test case generation step [123), the most challenges and interesting

issues are: (a) large number of test cases and (b) lack of ability to cover critical

requirements. These two problems can be presented based on Figure 3-1 as follows:

Tesi Case Gen e<al!on

Process

R&Searcn

Problems

- Research problems modveted lhis stud';

Figure 3-2 Research Problems Motivated This Dissertation

Figure 3-2 shows that there are two major research problems motivated this

dissertation, which are: (a) large number of test cases (also referred as #15) and (b)

lack of ability to cover critical requirements \also referred as #4). The literature shows

that there are many test case generation methods proposed to resolve the above two

problems. It discovers that there are two types of methods: (a) test case generation for

black-box testing and (b) test case generation for white-box testing. This dissertation

concentrates on the methods for black-box testing only. This is because:

1. The study shows that testing activities must be started at the beginning of

software development life cycle.

2. (b) One of the testing goals is to verify and validate software with customer

requirements.

97

3. The research discovers that cost to resolve defects in the later phase is by far

greater than resolving at the earlier phase.

Furthermore, the study presents that there are two sources for test case

generation techniques for black-box testing: (a) derive test cases from requirement

documents and (b) derive test cases from model diagrams. This dissertation

concentrates on an approach to generate test cases from UML use case diagram

(which is part of the UML model diagram). This is due to the fact that:

l. UML use case diagram is used to describe a behavior or functions of systems.

2. One of important testing goals is to verify and validate function system with

the custorrier requirements.

The following discusses outstanding research problems remaining from test

case generation methods based on the UML use case diagram [57][69)[85][105)(197]:

The following list three problems motivated this study:

1. Lack of requirement prioritization before test case generation

2. Unable to identify which test cases can be removed during a test case

generation process

3. Large number of test cases due to large number of alternative paths in each use

case (197).

The following describes these problems in details.

The first problem reveals that existing test case generation methods ignore a

requirement prioritization before generating test cases. Those methods explicitly

assume that there are unlimited resources and cost to execute tests. Therefore, this

thesis proposes the requirement prioritization activities during a test case generation

process.

98

The second problem is to unable to identify how many and which test cases

should be removed in order to generate and minimize a number of test cases. The

following describes a testing matrix table between test cases and use cases. This

matrix is developed to cross check whether test cases are generated and tested against

all use cases.

Testing Matrix Table

Use Case 1 Use Case 2 Use Case 3 Use Case 4

T4

Figure 3-3 Matrix Table between Test Case and Use Case

Figure 3-3 shows that there are four test cases generated to be tested against

four use cases. Tn represent as a test case. It also shows that Tl cover T2, T3 and T4.

The problem here Is that there are many choices to minimize a number of test cases.

For example, the first choice is to remove only Tl or the second choice is to remove

T2, T3 and T4. This is ambiguous which test cases should be removed.

The last problem is that there are a large number of test cases due to a large

number of alternative paths or events in each use case. The study [197] shows that

each use case can have overwhelm alternative paths. Therefore, if we can reduce

those paths, a number of test cases should be reduced as well.

The following table shows the relationship between the problem statements in

this section and the objectives of the thesis.

99

Table 3-2 Problem Statements and Objectives

.... N M
'II: 'II: 'II:

Objective of the Thesis e .. E .. E ..
:;:; :;:; :;:;
Q Q Q
"" "" ""

Objective #1 - Prioritize requirements based on user x
satisfaction prior to generate test cases in order to improve the
ability to generate and select the most suitable test cases.
Objective #2 - Propose an alternative path point formula to be x
able , to systematically detennine which test< cases could be

. removed during test case generation activities.
Objective #3 - Enhance ability to minimize a number of test x
cases by adding a complexity factor.

~#i'

100

CHAPTER4

PROPOSED Tl£CUN1QUES

This chaptl..'r introduces test case genuratton method~ to rcsohe the rcS4:arch

problems mentioned in the prc""fous chapter. It is strucrured into li"e sectmns: (a)

ovcrv1e\\ (b) assumption (c) rcqu11c1m:nr prioriti1.J1ion brual ort w;~.,. s.1t1sfact1on (d)

test ca~ g~'flc:ration rcchniqu oscd m1:U1o<l.

4.l o,·ervie~
()~

~

Jne f11llowin 1.kscnbcs Cil\<h section in dcL1 i l~ .

•mg dc crihcs :m of our proposed m<.1h 10 -out~landmg rc~rch problem mentioned in the previous cluplc.:r. r--
:::» ~

I
;

' I i
I

I
\
\

.. .__, ____ ,,,

~-"i----- ·-
>
' ,

;
f

I
I

\
•
' ' ,-

....... ---- -------
,-'

resolve

,

. .

.
I

I

' ' .
I
I

• I
I

I
I
I

I
I

' • I
I

I ,
I

I
I

I

I

figure 4-1 Oveniew Clf PropoSl."tl 'I est C~c Generation l'echnique

figure ~1 describes that there are mnny factors considt:rcd normally while

generating •~sl cases from UML u.11c case diagram. 111e following shows definitions of

each factor.

IOI

Table 4-1 Defmitions of Factors Normally Considered in Literatures

B User User I Customer satisfaction, a business term, is a

c

D

E

F

G

H

Satisfaction measure of how products and services supplied by a
company meet or surpass customer expectation. It is seen
as a key perfoJµlance indicator within business and is
part of the four of a Balanced Scorecard. In a competitive

~
Time-to-
Market

Test Case
Com
~ Number
of Test
Cases
Requiremen
t
Com
Risk

Quality

marketplace where businesses compete for customers,
customer satisfaction is seen as a key differentiator and
increasingly has become a key element of business
strate (115)
Time-to-market (also known as TIM) is the length of
time it takes from a product being conceived until its
being available for sale. TIM is important in industries
where roducts are outmoded uickl 163 .
A total number of test steps presented in each test case
that are r uired to be executed 163 .
A number of test cases can be represents as a total
number of test cases in each test suite (69][85][105].

Holly defines a meaning of complexity as follows: "(a)
consisting of many different and connected parts and (b)
not eas to analyze; com licated or intricate" 70 .
A risk is a measurement that contains two metrics: (a)
level of dama e and b robabili of failure 163].
Quality measures now well software is designed (quality
of design), and how well the software conforms to that
design (quality of conformance), although there are
several different defmitions 8 .

This dissertation concentrates on the following factors in the proposed

techniques:

1. A Number of Test Cases - This thesis proposes an effective test cases

generation method to minimize a number of test cases. This is for the reason

that large nwnber of test cases conswnes a great deal of effort, time and cost.

2. Test Case Complexity - This dissertation proposes to consider a complexity

of test cases to remove test cases during a test case generation process. This is

102

due to the fact that the proposed method aims to reduce to a minimum the

number oftest cases.

3. Requirement Complexity - This study includes a requirement complexity to

the proposed method in order to effectively prioritize requirements before

generating test cases. Also, the study presents a correlation between

requirement complexity and ROI. The ratio between these factors is applicable

for requirement prioritization.

4. User Satisfaction - This study concentrates on generating test cases based on

user satisf~ction. It has been proven that user satisfaction is the most important

factor for long-tenn project success and large profit. Currently, none of

existing test case generation methods considers this factor during generation

activities. This dissertation applies this factor to classify requirements during a

test case generation process. Customers expect high quality systems, therefore,

test cases should be generated to cover customer requirements, as it will have

a significant impact on user satisfaction. ~

5. Return on Investment (ROI) - This study uses the:RO! value for prioritizing

requirements. ROI is the most important factor from business' perspective. It

is a critical factor for project success and profitability.

The following shows reasons why the above five factors are selected:

103

B

c

D

E

F

G

H

Table 4-2 Reasons Why Factors Axe Selected in Dissertation

User
Satisfaction

Time-\o­
Marf<et

Return on investment (also known as
ROI) is the ratio of money gained or
lost (whether realized or unrealized)
on an investment relative to the
amount of money invested
201 202

User I Customer satisfaction, a
business term, is a measure of how
products and services supplied by a
company meet or surpass customer
expectation. It is seen as a key
performance indicator within
business and is part of the four of a
Balanced Scorecard. In a competitive
marketplace where businesses
compete for customers, customer
satisfaction is seen as a key
differentiator and increasingly has
become a key element of business
strate 1l5]
Time-to-market (also known as
TTM) is the length of time it takes
from a product being conceived until
its being available for sale. TIM is
important ill industries where
products are outmoded quickly
163 .

Test Case A total number of test steps
Complexity presented in each test case that are

r uired to be executed 163 .
A Number

of Test
Cases

Requireme
nt

Complexity

Risk

Quality

A number of test cases can be
represents as a total number of test
cases in each test suite [69 85][105 .
Holly defines a meaning of
complexity as follows: "(a)
consisting of many different and
connected parts and {b) not easy to
analyze; complicated or intricate"
70.

A risk is a measurement that contains
two metrics: (a) level of damage and
b robabili of failure 163].

Quality measures how well software
is designed (quality of design), and
how well the software conforms to

104

x

x

x

x

x

Factor Name Description Problem Pro hi em
' 1 z '

Related "Rebitftl
that dc..-.itn (quality o f confomtrincc),
although there are SC\lcral diffc11..'tlt
definition.c; [Sl.

Table 4-2 hows that there nrc many loctor~ for the requirement prioriti1.uion

from hnth, the businc~s pcrspecti\lc and the solh\iarc tt.:sttnu perspective thi!. in..; luJes

ROI. recp1in.'1llent comp fac tors and u~cr ati llfac: tiun

• fiictors: A, B. D. E and 1: are select

st outstnndmg prooh:m thnt is me;utioucd in th

·Chapter 1.

lore. prcvi\1uS ri:scatcll l11s prll\~d (123J[124 1t there is a

rdaLion~hi on~ ROI. 1-c4uirement complexity and user

below:
R RI {

~fl; Acqul~r ~rhauon tureo on UM!f llltlsfKJIOft

'

·II'- ."''•"'"· "'°' .. _ .. "" - A. l JM7)
,.,._ Olflll,tlM II•\!<~ \ . 1* 1-e0(.1111: SU.,-J -"-t• '°":-.. _ l19111
~11111

Figure 4<~ RclJ1ton. hip fur ROI, Rcq. Complc:my and Use~ <\.1t1-.fu\!lion

105

Figure 4-2 shows that there is a relationship among ROI, a complexity of

requirement and user satisfaction. There are seven areas in the relationship.

l . Return on investment

2. User satisfaction

3. Requirement complexity

4. Return on investment and requirement complexity

5. Retwn on investment and user satisfaction

6. Requirement complexity and user satisfaction

7. All three factors

The first proposed method is in area 7. This is because the proposed method

meets all the following criteria: -
1. Problem 1 related - It is relative to the first outstanding problem that is

mentioned in the Chapter 3.

2. User satisfaction is a key to success - It is to prioritize requirements

based on user satisfaction that is a key to success.

3. High ROI is desirable - It is targeted to reserve high priority

requirements with high return on investment.

4. Low requirement complexity is desirable - It aims to reserve low

complexity ofrequirements as priority.

Additionally, previous research has proved [123][124] that there is a

relationship between test case complexity and a number oftest cases, as shown below:

106

This Is ti.c:.&1se our Pf'opOMd ,,.,."od .~ to miMnl.- rrll.r
of titst cnu 0..WIG • test cu.
~er1tlon p<-. Aho, dlis
piopouri rnMhod Is ~•loped lo
, • .,..,. lh• problem of 11nllbl• to
sy11 11eaty ldontify whidl tHt
c-• lhould t.. ,..,l(),led Jawd
e l al, 2007; Avtle et al, 2005;
V•ldr"'no tt al. 2006: lbl'llhlm et
Ill, 2001; AIHAllc:tf'a ef al, 2000,
Hassan Reza tt al, 2001; Dallld
..... 2000: Matw'llU: 2006:

I Propo5e # 3: Retain Sain: I
This h becatJM fib pcopoud
m.tiod an to mn~ •
n~ of le~ "'" wtwa
ccnUdellng • ~l!y of
tut st'f)9 clncr.b«f l"I eec:h
demeltv• p.1th (Hans, 2005)
This metlod b dwelop.d to
rtlONe h probl«n of liMge
number ol test ease• and
•lt1n1tt. .. 1:19111 , (Pet.r tt al.
2008 ; .Jim H11.m1nn, 2001;
.Johanr'IH Ryser ti al, ~:
Mllnb h HQoweret al, 20031

AnntlHUC el, 2D04)

~3 shows that there i:; a rclutfonslup lx:t\\een 3 11umber or test case
ROT ~ {

and test case 1 pll'.xity. There ere three llfc."3s in the rcl.111onship

l. A number ~11<."Sl cas~"S Crt * 0 A. * 2. J'cst c. ompk:itim NC I: l 9 69 o'. ~
?~ otct>~ OI

3. Both ol two fa t;, !/1itJ-0t\~
·n1e st.'C(>lld proposed method is in the nrcn I. ·1 his is dm: !(1 the fact 1hn1 it

aim" I<• minimi.Lc a number of test easel> during a test case gt-ni!rntion procec;c;.

Meanwhik, the last proposed mc1hod i-; in the arc:a 3. ' lllis is because it included a t~t

case complexity factor in lhe algonthm in order to ri:duce a large number of lest cases.

Doth of these mt.1hods ore relnti"c 10 the outst.an<hng problems mentioned m the

Chnptc.:r 3.

llle followini prc~t an ov~iew of our proposed 1cchn1ttut:s hSOCl.'llcJ

with resol\ini; the nbo\ c 1>utstant.ling issues in pn .. "Vaous to;('ction.

107

Problem #1 Lack of Requirement Prioritization
Before Test Case Generation Process

Propose #1 - Test Case = Use Case + WOW Factors +
~...-. Marketing Driven Requirement Prioritization

Problem #2 1 Unable to identify which test cases
can be removed during a test case generation

process

,,..i Propose #2 - Test Case = Use Case + WOW Factors
+ Marketing Driven Requirement Prioritization +

~~ Alternate Path Points

Propose #3 - Test Case = Use Case + WOW Factors +
--· Marketing Driven Requirement Prioritization +

Alternate Path Points + Retain Score

Figure 4-4 Proposed Methods Relative to Research Problems

Figure 4-4 shows that there ~e three proposes in this thesis. The first proposed

method is to add the requireme9t--prioritizatior;l. process before a test case generation

process. The second proposed method is developed to be able to identify how many

and which test cases can be removed. The last method aims to remove test cases after

the test case generation by using risk factors [10)[139][163]. The objective of these

methods is to minimize a number of test cases after test case generation process, while

preserving critical higher priority requirements.

108

4.2 Assumptions

The following lists assumptions in this thesis:

1. In this dissertation, we assume that customers are the same people or users

who can provide requirements.

2. Testing activity, which is to prioritize the requirement, is required to start in

the requirement phase. Software test engineers ~lay a major role as early as

possible in SDLC.

3. Requirements are not prioritized before test case generation p rocess.

4. UML use case diagram must be completed and must fully contain all required

information (e.g. purpose, basic flow and alternative flow). No methods in this

thesis are used to verify and qualify the completeness of diagrams.

5. Prioritizing requirements by test engineers are not required if there are a few

requirements. For example, if there are 1-3 requirements to develop and

implement software, there is no need to prioritize those requirements.

6. In order to generate test scenarios and test case$ from UML use case diagram

and respectively, the diagram with required information must be available.

7. Approaches to estimate cost for development and testing activities proposed in

this dissertation such as COCOMO and Function Analysis, are out of scope.

4.3 Test Case Generation Process

This section introduces a recommended test case generation process by

inserting a requirement prioritization based on user satisfaction. This dissertation

proposes to prioritize requirements from business' perspective, prior to generate test

cases, in order to maintain and increase user satisfaction (100)(114].

109

Before discussing our proposed process, we would like to discuss existing test

case generation process and point out exactly what is different between traditional and

proposed process.

The following presents three types of test case generation process.

CSJ.~1 ••rl.lftf';HuncT1a\. 2t0t:s..-
1.,Mw-•ttl, -1';-ttHll.,.•<1 ...
>ON; W.I , T•ot41t05)

(Black-Box)

u;... __, aeos•:MftaNW• ...,._ .e*"
JOOO•;~ ffbww etal.t lOOt•~A..Z,,td

etll, 2-to7;A-'*SIAMi ttll Jtol;VtldMn•
s Mll.aco ~· 20°'1

(Blacl(·8ox)

~
~

.

u * TtslC.M
>G•-4lf0n I

' ~
.

CS"""<t ol.-J: ohnott.., 1tts;c.
aamwnoortlw tt • 1t16l

(Whit~Box)

Figure 4-5 Traditional Test Case Generation Process

Figure 4-5 presents three test case generation processes. The first two

processes are used for black-box testing. The last process is used for white-box

testing. First, a test case generation process is occurred during a requirement phase.

Second, the test case generation process is occurred during a design phase. Last, the

test case generation process is happened during a development phase. Due to the fact

that this dissertation concentrates on black-box testing and test cases derived from

diagrams, therefore, the first and last process is ignored.

The following compares the second process and our proposed process.

110

Existing Test Case Generation Process

. 4.
- ; i

;:;- ...-.~ ~.

b

2.1

T•stC~M
Gen.radon ---* l l i..:;.._,~'~t' f

Proposed Test Case Generation Process

11

f.1, .,. .nr• •,, , ,1

i'·,.:i·. ·11.:i•·

Figure 4-6 Compare Test Case Generation Process

Figure 4-6 compares test case generation process between traditional process

that derive test cases from diagrams and our proposed process. The only different is

that there is additional process, called "requirement prioritization", in the test case

generation process.

The following depicts ho'tf the requiremeQt prioritization activities can be

aligned with the test case generation process.

111

1.

3. Oevelopmeot

'
4. Testing

---·--- ---v-
s.

Maintenance

2 .1 1 Extract

U>e Cd~e
D1agrarn

2.1 4 Minimize
Test Cases

'

'

212 [>tract

Te~t Scenarro

2 1 3 Generate:
Test Data and

hpected Ri?sult

Figure 4-7 Requirement Prioritization based on User Satisfaction

Figure 4-7 shows that there are two test case generation processes: existing

process and proposed process. Proposes shown on the right-hand side of Figure 4-7

add an additional requirement prioritization process before generating test cases.

Traditional test case generation process does not include a requirement prioritization

process. In fact, the requirement prjoritization process aims to be able to effectively

handle a large number of requirements. The objective of this process is to prioritize

and organize requirements in an appropriate way in order to effectively design and

prepare test cases (54](112][188]. There are two sub-processes: (a) classify

requirements and (b) prioritize requirements.

In Figure 4-7, there are four sub-processes in the test case generation process:

(a) extract use case diagram (b) extract test scenario (c) generate test data & expected

result and (d) minimize test cases after generating.

Both of requirement prioritization (Refer to 1.1 in Figure 4-7) and test case

generation (Refer to 2.1 in Figure 4-7) can be illustrated in details as follows:

112

4.4 Requirement Prioritization Based On User Satisfaction

Before discussing the procedure of the proposed requirement classification

and prioritization technique, this dissertation begins a discussion with reasons why

requirement prioritization and user satisfaction are important.

The explanations why requirement prioritization is important can be found as

follows:

One of the most important testing goals is to generate a large number of test

cases, in fact as many as possible, in order to cover and verify all customer

requirements. At the present, requirements become more complex and difficult,

particularly in the high competitive markets. Large number of complex requirements

can lead to a huge number of test cases. Consequently, it takes longer and the project

budget may be overrun due to those test cases.

A topic of many interesting researches bas been prioritizing requirements.

There are many techniques that have been proposed over a long period of time (as

mentioned in Chapter 2). ' Donald [54] provides primarily benefits of requirement

prioritization as follows: /':J ,,. _ °" ~ ~
1. Modify schedule. When using an iterative incremental development cycle, it

enables the project manager and customer to modify the project schedule, to

deal with the project realities of limited resources and to fix deadlines.

2. Improved user satisfaction. It improves user satisfaction by increasing the

likelihood that the customer's most important requirements are implemented

and delivered first.

3. Lower risk of cancellation. The project is less likely to be cancelled during

SDLC. This is because valuable progress is being demonstrated with each

increment. Even if the project must be cancelled before the delivery of the

113

final increment, it is not a total loss as some important functionality has been

already implemented and delivered.

4. Address all requirements. Prioritizing requirements is a good approach to

force stakeholders to address all requirements, particularly critical

requirement

5. Estimate benefits. Priorities provide management and engineering with a

rough estimate of the benefit of the different requirements, which is useful

when perfo~ing cost/benefit analyses of the requirements to determine where

would be tlie best to expend limited project resources in preparation for

requirements negotiation.

6. Prioritize investments. The requirements prioritization techniques can help

determine how to prioritize the investment of limited project resources. For

examp1e1 the project can allocate most of its resources for quality assurance

and system testing according to the highest priority requirements.

The following shows a survey result why user satisfaction is important and

matter to the business.

114

A Survey Rnult of Customer Satisfaction

·~-· 1111/<Yrflr beliov• lllal
customor Mtisladl<>n ls

"" lo IUOCftC ·---,..... on pico. product and -
•souroo: Millard, 2006

(Kano et al,1984; Harklranpal $., 2006; Herzberg et al, 1959; Cadotte el al, 1998; Bruidl et al, 1988)

(l'ulunan Mert et al, 2007; Scott Mccartney, 2007; Jmnff Clausen, 2009)

(Andrea Hemnann .• 2008) (Holty~af*ona, 2006)

~ Business .. Technical

Figure 4-8 Overview of Requirement Prioritization

Figure 4-8 shows that 85 percent of business leader organizations focus on

customer satisfaction (also known as "user satisfaction" in this dissertation) [1 14].

High user satisfaction can give a long-term success with the customer as well as

higher profits. Therefore, this dissertation proposes to classify requirements based on

business' perspective [115]. Our p,i;,oposed method iS supported by using WOW

factors [IOO][l 14).

This dissertation realizes that user satisfaction is the key to success. That is

another reason why we propose a test case generation method based on user

satisfaction. Our customers are a people who use the system that we develop and test.

They expect high quality software that makes their life easier [45)(115]. In order to

achieve this, software testing can play a major role to ensure that software can meet

their expectation and eventually satisfy them. Recall that test case generation activity

is one of the most important and widely-researched activities in the software testing

process. Finally, this dissertation proposes to classify and prioritize requirements

115

based on user satisfaction prior to generate test cases. The requirements classification

and prioritization are to ensure that all requirements, that are able to highly satisfy

customers, are addressed as priority.

These studies [28)(32][57][89] show that a marketing perspective concentrates

on two factors: customer's needs and customer satisfaction. We apply that perspective

to the requirement prioritization and propose to build user satisfaction as shown

below:

Delight

(Nice to~ave)

Not Fulfilled

*

Customer satisfaction

A

Indifferent

(Don'tCare)

Disse!isfied

Basic

(Must be)

Figure 4-9 Kano Model Analysis

Attractive

(Surprise)

Well Fulfilled

0
c s
3
Cl>
CJi
z
Cl>
Cl>
a.

Figure 4-9 represents a KANO model proposed by Noriak.i (89] to classify

requirements based on customer's need and customer's satisfaction. The horizontal

axis presents a customer's need while the vertical axis represents a customer

satisfaction (89). There are four groups of requirements based on those two factors:

delight, attractive, indifferent and basic. First, the delight requirement is known as

'nice-to-have' requirement. If this requirement is well fulfilled, it will increase the

116

user satisfaction. Otherwise, it will not decrease the satisfaction. Second, the attractive

requirement is called as 'surprise' or 'know your customer' requirement. This

requirement can directly increase the user satisfaction if it is fulfilled. Marketers and

sales [28) believe that if we can deliver this kind of requirement, it will impress

customers and significantly improve the user satisfaction. Third, the indifferent

requirement is the requirement that customer does not concentrate and it will not

impress customers at all. In the competitive industry, this requirement may be fulfilled

but there is not any impact to the user satisfaction. Last, the basic requirement is a

mandatory requirement that customers basically expect. Therefore, if this requirement

is well delivered, it will not increase the user satisfaction.

Our comprehensive of literature review shows that KANO model [89] is one of

the best and highly recommended models to classify and prioritize requirements based

on user satisfaction. In fact, it is a widely-used in the marketing and business sides.

KANO model contains four types of requirements:

1. Basic. This is a basic requirement that customers expect to have. Customers

are not surprised when this requirement is implemented, as they it is assumed

that all basic requirements must be implemented. On the other hand,

customers might be surprised if this requirement is not implemented. It can

therefore be concluded that this requirement does not effect to the user

satisfaction. For example, in the A TM system, the basic functionalities are

withdraw, inquiry and transfer money.

2. Indifferent. This is an indifferent requirement that we may implement in

order to be different from our competitors. Unfortunately, Noriaki claimed that

this requirement does not satisfy customers at all. In fact, they do not care or

acknowledge if this requirement is implemented. For example, in the ATM

117

system, the indifferent functionality is to book airline tickets from the

machine. This type of requirement is excluded in the proposed method

because this dissertation uses WOW factors, mentioned in Figure 4-10, to

prioritize requirements based on user satisfaction. Our study (124) compares

both of KANO model and WOW factors and we discover that the "indifferent"

requirements are excluded in the WOW factors.

3. Delight. This is likely a nice-to-have requirement that can satisfy customers.

Noriaki mentioned that the more nice-to-have requirements are included the

higher the user satisfaction will be. ROI is one of the most important factors to

determine to implement this requirement. Typically, high ROI requirements

should have higher priority when it comes to implementation. For example, in

the ATM system, nice-to-have requirements could be transferring money to

other countries and mutual fund investment.

4. Attractive. This is beyond customer's expectation. This requirement highly

increases user satisfaction. Noriaki claimed that the more this requirement is

implemented, the more project success can be. For example, in the A TM

system, a surprise or attractive requirement could be withdraw, inquiry and

transfer from multiple own accounts.

The literature review shows that the KANO model is widely-used in several of

industries to classify and prioritize based on user satisfaction.

Apart from KANO model, this dissertation proposes to use WOW factors

(100][114] to support an idea of classifying and prioritizing requirements based on

user satisfaction. These factors and their implementation cost can be shown as

follows:

118

·'' . . "
8'11<k ~i. > :10· ""'

~. ·;.:-¥.. -,,'.. ·-~;t~';i },_~~l~~i:. ·~~· .:~~t:~ -~ . ..,,_...__,:t::~ . ..-...;-.... --""-'-':ii<_-·•<-~"'-··M--a ~. I;.,_..
WOW P"actorsSupported Markedng"s View tmptementatton Cost

(Tukman Mert et al, 2007; Sc-Mccertn~. 2007; James Clausen, 2009)

Figure 4-10 WOW Factors and Implementation Cost

Figure 4-10 shows that there are three groups of Iequirements from

marketing's perspective: (a) basic (b) surprise and (c) WOW (or also known as

extraordinary). These factors can be discussed in details as follows:

1. Basic. This is the same as a basic requirement introduced by N"oriaki [89]. It is

likely to be a must-have requirement. Tokman (100] and Milliard [114]

studied and found that this requirement requires a small amount of cost to

implement.

2. Surprise. This is a surprise requirement that has an impact on the user

satisfaction factor. This is similar to a slirprise requirement proposed by

KANO model. This requirement requires higher cost than basic requirements.

3. Extraordinary (also called "WOW"). This is by far beyond user's

expectation. It takes a large amount of cost to implement this requirement.

Tokmann [100} claimed that these factors are perfectly suitable to reacquire

lost customers. In the business' perspective, acquiring a new customer requires a

significant amount of cost and time. Reacquiring lost existing customers is cheaper.

Additionally, the study shows that the implementation cost for a set of

extraordinary requirements is the highest while the cost for basic requirements is the

lowest.

119

When the requirements are classified, the next step is to prioritize requirement

based on return on investment (ROI) and requirement complexity [70). The proposed

requirement prioritization method is built on the benefit and cost estimation (52)(109].

The literature review shows that there are many techniques to calculate

estimated efforts and cost for coding and testing (See Ejf in (1)), such as COCOMO,

Function Analysis and Cost-Value approach. Our previous work (124] discovers that

one of the most widely-used techniques to estimate efforts and cost is the "benefit and

cost prediction and estimation" approach introduced by Andrcta [-202).

Andrea and Maya (202) argue that "Requirements prioritization based on

importance has been a popular concept in software engineering for more than 30

years." They investigate and research how existing estimation approaches (e.g.

COCOMO, Functional Analysis, Analytic Hierarchy Process, Planning Game, Binary

Search Tree and traditional cost-value approach) are suitable for the requirement

prioritization based on benefit and cost. They compare 15 requirement prioritization

approaches in order to systematically determine which method is the highest

recommended technique. Their evaluation result indicates that the most recommended

prioritization technique based on importance is to simply calculate by using ROI.

Additionally, Richard (201) supports Andrea's statement that requirement

prioritization based on ROI is the most effective approach to prioritize requirements.

He [201) claims that "ROI is an effective approach for arguing the need for, or

demonstrating the success of. process improvements and IT investments. "

Therefore, this dissertation is built on Andrea's experiment. We use the simple

benefit and cost model in the proposed method. The following paragraphs describe a

simple method to calculate ROI based on benefit and cost.

The following paragraphs describe the procedure step-by-step.

120

The first step is to compute a total estimated cost. The formula can be found as

follows:

Cst = Eff * Cph (1)

Where:

• Cst is a total estimated cost.

• Effis a total number of efforts estimated for coding and testing.

• Cph is an employee cost per hour for coding and testing.

In order to compute Cph, we propose a cost-value approach based on WOW

factors. For example a cost of implementing "surprise" requirements is three times

greater than the cost of "basic" requirements. It is assumed that the employee cost per

hour is $65 (201]. Richard [201) suggests that the average cost per employee per year

is $120,000 (Assumed that a number of working days are 230). This is equal to $522

employee cost per day, which is equal to $65 per hour. This dissertation use

Richard's average cost per employee per year in the example described in section 4.5.

Therefore, the employee cost per hour for "surprise" requirements is equal to $195

while the cost for ''basic" requirements is $65.

The second step is to compute the total cost for the customer. The formula can

be found as follows:

Chg = Eff * Cgh (2)

Where:

• Chg is a total number of fees that are charged to.

• Effis a total number of efforts estimated for coding and testing.

• Cgh is the fee per hour charged for customers.

Richard [201] suggests that an average fee per hour charged for customers is

$100 for "Basic", $300 for "Surprise" and $500 for 'Extraordinary" requirements. In

121

order to compute Cgh, this dissertation use Richard's average fee per hour in the

example described in section 4.5.

The third step is to simply calculate ROI, as follows:

iCho-Cst)
%ROI= ' *100

Cst
(3)

Where:

• %ROI is a percentage ofretum on investment.

• Chg is a total number of fees that are charged to customers.

• Cst is a total estimated cost.

In general, ROI is used to systematically determine which requirements (under

surprise and extraordinary introduced by WOW concept) should be implemented.

However, this dissertation discovers that ROI is not the only factor to estimate and

determine which requirements could be developed and tested (109]. We find that a

complexity of requirements is another factor needed to be taken into the account.

In fact, requirements with high ROI and Jess complexity are desirable. Our

study [124] proposes to divide ROI by requirement complexity. This is because we

want to prioritize high ROI and less complex rC9uirements as top priority.

ROI is based on the estimation of development and testing. There is a chance

that the estimation may be under estimated and cost is overrun when implementing

high complex requirements.

In 2005, Hans (163] supported that the requirement complexity plays a major

role for the requirement prioritization. He supported that "complexity is the most

important factor." He said that there are over 200 different complexity measurements

to determine a complex of requirements. However, he suggested that 'a number of

hours' is the simple and effective measurement to determine a complexity.

122

Additionally, Holly (70] argues that "the number one reason for inability to

complete a project as 'incomplete requirements"' The survey report in [70] confirmed

that the above statement is true. Holly also claims that "requirement complexity is

well known paradigm within the software engi.neering domain". Holly def mes a

meaning of complexity as follows: "(a) consisting of many different and connected

parts and (b) not easy to analyze; complicated or intricate". In (70] there are many

measurements defined to identify a complexity of requirements, such as time spent on

project, a number and location of stakeholders and project resources. Eventually, the

research [70) suggests to determine a requirement complexity based on a number of

hours to implement the requirements. In fact, Holly proposes the following simple

table to measure a requirement complexity.

Table 4-3 Measuring Requirement Complexity

Number of Hours 0-8 9-40 41-160 161.::320 321-480
Complexity Number 1 2 3 4 5

*Note: 1 is verv low, 2 is low, 3 is medium, 4 is hif!h and 5 is verv hif!h.

Table 4-3 guides a simple scale to measure requirement complexity. It

defines I is very low, 2 is low, 3 is medium, 4 is high and 5 is very high complexity.

This dissertation uses the above guideline to simply measure a requirement

complexity. This is corresponding with we propose in (1), (2) and (3). In [70], the

research claims that a complex of requirements is one of the most important factors

we need to consider for prioritization. Our study [124) discovers that traditional

requirement prioritization, based on benefit and cost, does not concentrate on the

requirement complexity. Consequently, this can lead to a poor performance of

prioritization. Highly complex requirements with high ROI may be prioritized as top

priority. This can also lead to questions that "What about requirements that have the

123

same high ROL but less complexity? Why don't we consider requirement complexity

as well during prioritization process?"

To answer these questions, this dissertation proposes the following formula (4)

m order to determine highly recommended priorities for each requirement. We

normally prefer less complex requirements that have a high ROI. For example, there

are two requirements that have the same ROI. The requirements with less complexity

to implement and test should have higher priority.

Cor=

Where:

%ROI

Cp:c.
(4)

• Cor is a percentage ratio between ROI and a complexity ofiequirement.

• Cpx is a complexity of requirement.

The ~ast step is to prioritize requirements based on the correlation ratio. Our

study [124] reveals that the requirements with high ROI and high complexity are not

desirable. From marketing's perspective, the complex requirements with high ROI

may not be able to be implemented on time. Therefore, the requirements with high

ROI and less complexity are preferred. i't1'il'il"

4.5 Example of Requirement Prioritization

This section provides an example of the above approach to classify and

prioritize requirements. The following shows the example of 10 requirements, aligned

with WOW factors, and implementation cost of each requirement.

124

Figure 4-11 Example of Requirement Prioritization

Figure 4-U shows that there are 10 requirements, classified with WOW

factors, as follows:

l. Basic requirements - R1, Ri, RJ and Rio.

2. Surprise requirements - R,, Rs,~ and R9.

3. WOW requirements - R1 and Rs.
RIE{

The implementation cost of each requirement is assigned by weights as

follows: R1 = 1, Ri = 1.1, RJ = 1.2, Rio= 1.3, R, = 3, Rs= 3.1 , R6 = 3.2, R9 = 3.3, R1 =

5 and Rs= 5.1 .

In order to prioritize above requirements, the proposed method can be

explained as follows:

The first step is to compute total estimated cost for each requirement, which

can be shown as follows:

Table 4-4 Total Estimated Cost

125

Basic 32 24 56 1.00 $65.00 $3,640

2 Basic 24 16 40 1.10 $71.50 $2,860

3 Basic 32 8 40 1.20 $78.00 $3,120
$32,76

4 s rise 88 80 168 3.00 $195.00 0
$17,73

5 s rise 48 40 88 3.10 $201.50 2
$38,27

6 s rise 96 88 184 3.20 $208.00 2
Extra

Ordinar $71,50
7 120 100 220 5.00 $325.00 0

Extra
Ordinar $135,9

8 220 190 410 5.10 $331.50 15
$27,88

9 Su rise 90 40 130 3.30 $214.50 5

10 Basic 8 8 16 1.30 $84.50 $1,352
'Y

Table 4-4 presents total estimated cost calculated by using formula (1). In this

example, the employee cost per hour is equal to $65 [201]. Each requirement requires

different cost per hour based on assigned weights. For example, R1 requires $65

(=65*1), R~ requires $195 (=65*3) and R7 requires $325 (=65*5).

Next, the second step is to calculate total charges to customer. This example

assumes that charge per hour is $100. Therefore, total charges for each requirement

can be shown as follows:

Table 4-5 Total Charges to Customer

126

Basic 56 LOO $3,640 $100 $5,600

2 Basic 40 1.10 $2,860 $100 $4,000

3 Basic 40 l.20 $3,120 $100 $4,000

4 s rise 168 3.00 $32,760 $300 $50,400

5' Su rise 88 3.10 $17 732 $300 $26,400

6 Su rise 184 3.20 $38,272 $300 $55,200
Extra

7 Ordinary 220 5.00 $71,500 $500 $110,000
Extra $135,91

8 Ordinary 410 5.10 5 $500 $205,000

9 s rise 130 3.30 $27,885 $300 $39,000

10 Basic 16 1.30 $1,352 $100 $1,600

Table 4-5 presents total charges per requirement for customer by using

formula (2). For example, the total charges for R1 is equal to $5,600 (=56*100), R4 is

equal to $50,400 (=168*300) and R7 is equal to $110,000 (=220*500).

Afterward, the next step is to compute ROI using both of total estimated cost

and total charges. The following shows ROI for each requirement.

Table 4-6 ROI for Each Requirement

Basic $3,640 $5,600 $1,960 53.85%

2 Basic $2,860 $4,000 $1,140 39.86%

3 Basic $3,120 $4,000 $880 28.21%

4 s rise $32,760 $50,400 $17,640 53.85%

5 s rise $17,732 $26,400 $8,668 48.88%

6 s rise $38,272 $55,200 $16,928 44.23%

127

Req.
Id

7

8

9

10

C~iJication

E.xtra

Touil
Estlmatc
dCost

a

Total
Charges

(b)

Estimated
Benefit

(c)
b a

ROI(%)
(d)

'""((c/a)•too

Ordiuat)' -i--,-$ 7_1-'-.s""":':o_o-+-_$_11_0.:....oo_o-1-_S_3_8.;.._5_00_-+-__ 53_._85_'3_(1 _
h.xlra .S 135, 91

50.83% Ordtnal"t' 5 $205,000 S69,085
..:.-~.------ --------~

_s_urr ___ r_isc __ ,_s_2_1_.s_Rs ___ S39.o~o_o-+ __ s 11.1_1 s ____ .l_~9_._86_~~•--1
nas1c SI ,352

Table 4-6 present r tor c.ach rcquuemcnt usi g formul,1 (Jl. However, \\'C

Q
discov1:r that r~urr\!tilenh '' ith high RO I und le~:. comt'? . 1ty ore <lc'iruhlc

et:". 111 that there arc .some arguments that re~u 1 • t complexity

factor is o f the most important tac tors for pnorit iz.ation , -disserution r.ror>oses to use b(llh of ROI :rnd requirement coinpl1.:xi1y. r-
tlus

.s tep shQ\0' a cnrrelation ratio bc:t\\C~n ROI .i.nif requirement

complexity. a

Basic 56 53.85°10 3 17.95%
2 Bnsic .io 39.86% 2 19.93%
3 Basic 40 28.21% 1 1-UOo/o -4 s n sc: 168 53.85% 4 13.46~1-

5 Surpnsc; 88 48.88% 3 1629%
6 SU!JlriS" 184 4413°10 4 11 .06%
7 I 'd t3 Ordmarv 220 51 ~5°'o 4 13.46%
8 r :dra Ordtnarv 410 S0 .83~·o 5 10.17%
9 ~rise 130 1986% 3 13.29%
IO Baste 16 18.34% 1 18.34%

I 2!i

Table 4-7 shows a correlation ratio for each requirement. Our proposed

method is to prioritize requirements based on the above ratio. Therefore, the

prioritized requirements are: Ri, R10, R1, R5, R1, R4, R1, R9, R6 and Rs.

4.6 Test Case Generation Technique

This section presents a test case generation method derived from fully dresses

use case. After the requirements are classified and prioritized, we propose to generate

test cases from those prioritized requirements that can be represented in the UML use

case diagram. Alistair [40][151) classified the UML use case diagram into three

categories: brief use case, casual use case and fully dressed use case.

The ·first category contains the following elements: use case name, use case

number and goal. The second category is consists of: use case name, use case number,

goal I purpose and summary. The last category is composed of all information, such

as use case name, summary, conditions, basic path, alternative path and business

rules. The proposed method concentrates on the last type only.

Our proposed method contains four steps, as follows: (a) extract use case

diagram (b) extract test scenario (c) generate test data and expected result and (d)

minimize test cases. These steps can be shortly described as follows:

The first step is to extract the following information from fully dressed use

cases: (a) use case number (b) purpose (c) summary (d) pre-condition (e) post­

condition (f) basic event and (g) alternative events. This information is called use case

scenario in this thesis. The example fully dressed use cases of A TM withdraw

functionality can be found as follows [151]:

Table 4-8 Example Fully Dressed Use Case

129

Use
Cue

Id

UC-
001 nw cu~omcrs to

withdraw
money from
A'IM machines
anywhere in
'lbatland

2. Input
PN
1 ~11..-ct
Withdraw
4. Select
A/CType
5". lnptd
Dal!J'I\;
6. Get
Money
7. Gd Card

I $(!lect
Inquiry
2 Select
\.C lype
3 Check
BaJance

{a) loput amount
<..,. Outstandjng
Balance
(b) rec ch.1rge if
using different
A TM machines

i,u ios:

Q. T,1blc *-9 E.\.trncted to Use l'a~ Scenarios

allow bank's customers to wilhrunw monci. lnser1
n ATM n5hmcs anywhere in 'l1111iJ,111d IE • Input P

Sl:kc:t

AB

..1 Selcc C T}'P<:
rT <; Input 13~fancc

~· Ge' foncy r· G tCard

wb~n: ind11~ 1~d . Inpm PIN
o w1ltt Im f90ll{'~ hhcrt ('.ml

,atl Scl""Ct Inquiry
4 ScltXt A1 C 'l ype
5 Check Balance
t>. Select Withdraw
jl. S1,;lt..'l:t A.C Type
~· lnput Bal:mce
~-Get Money
II 0. Get (';1rd

Inc second step is to automatically e~u-:11.:t tcst scenarios from the pre\.ious u.c;e

case scenarfos [69]. Prom the above 1.1ble the following Les! sccnanos can be

cxlracte<l.

Tablc+.10 Extro..:t to fc~t Scenarios

130

Test
Scepriofd

Summary Basic Sanario

1 1 s~oo1

rs-002

--~----) o alJow bank''! customcri; lo withdraw money
·rom ATM mJdunes anywhere m Thailand.

I. lnscn Card
. Input PIN
. Select Withdraw

4. Select AC fypc
l5. Input Balance

. Get Money

. Get C3rd

l. lnscri Cnrd
. input PIN

l Select Inquiry
i4 Sckc.:t A/C T}'J'C
l"i. l'h~k BJ.lance

eel Withdraw
7 Select AlC Type
8. lnp.µt Dalancc
. GCL:Moncy

10. Gc.."t Card

e.\t ~1ep i!' to manually g\!llcr:m: jnput d3rn, c:cpccted rc~l CIU:ll result

• I"' rurus for each test sce.narari. 111is cxumplc assr::~ that lhc~c
n eRIEt

·remco <'S follow ;.

A T&hle 4-11 Extr.1c.:1 ht 'f~..,t 9,--e

t> N, User gets j
lL'>lomcrs to - lnput PTN Amount, money and
'-'ithdraw money13. Sck1:t W1lbdr3w Balance the balance
from AT~1 4. Select lvC Type 1s calculated
nachmcs 5. Input Balance successfully.

1a1land. . Ciel Card
nvwhere in ~· Get \1oney

1-----
C-002 ro allow bJnk's l. Insert Card PIK The

·ustomers to Jnput PIN Amount, outstanding
vithdraw money~ Select Inqwry Balance balance i>
~rorn AT~f rl &:lec1 NC Type displa>cd.

nywhere m
iaibnd.

C..hc:ck Balance User gets
Select Withdraw money and
Select A'C Type the balance
Input Balance ,., cakuli.11eJ

. Get Money ,successfully.
10. Get Card

131

*Actual result and "pass/ fail" status can be fulfilled when test cases are executed.

The last step is to minimize a number of test cases. The outstanding problem

for reducing black-box tests is to unable to identify which test cases should be

removed, as mentioned in Figure 4-1. Therefore, we propose to reduce a number of

test cases based on alternative paths of use cases, called "ALT''. The study shows that

there are many alternative paths in each use case [69][197].

Peter [197] argued that one requirement can have multiple use cases. Each use

case must have basic path and has at least one alternative path. The relationship

among requirements, use cases, basic paths, alternative paths and test cases can be

shown as follows:

(Peter et el , 2006 ; Heumann, 200-.; R x ••r et a l, 2000;
Nllawar et al, 2003)

Figure 4-12 Overwhelm Alternative Paths

The studies [24][52][69](85](96][105][197] prove that both of basic and

alternative paths, described in fully dressed use cases, play a major role to generate

tests. In fact, each use case can have overwhelmed of those paths [197]. This means

that some of duplicated or unnecessary paths could be removed. This is because

duplicated paths can lead to larger number of test cases. One of our objectives is to

minimize a number of test cases during test case generation process. Therefore, this

dissertation proposes a fonnula, associated with alternative paths, to preserve high

132

coverage alternative paths. Note that the large number of unnecessary alternative

paths can lead to greater deal amount of cost and time to generate and execute tests.

Therefore, we propose the following formula to identify which test cases

should be removed.

Alt(TC,J = Wgh(TC,J * Pth(TC,J (5)

Where:

• Alt (TC,J is an alternate path point for each test case, TCn.

• Wgh (TC,J is a weight factor that is calculated by using a number of paths

in each use case, for each test case, TCn. where:

o Weight= 1 when a number of paths is less than or equal to 3.

o Weight = 2 when a number of paths is greater than or equal to 4

and less than or equal to 7.

o Weight= 3 when a number of paths is greater than 7.

• Pth (TC,J is a number of covered paths for each test case, TCn.

The following shows an example of how to calculate the alternate path points.

T4

Path I ol
l :,C (·aSl' 1

Path 2 of
l\l' C:tSl' t

x

133

x

Path 2 of
l Sl' cn,c 2

x

Path~ of
l.isl' Cn\c 2

x

Figure 4-13 presents a testing matrix table described a relationship between

test cases and alternate paths of use cases. There are seven test cases and two use

cases. The first use case contains two alternate paths. The second use case consists of

three paths.

The weight and value of the above test cases can be described as follows:

Wgh (T1) = 2, Pth (T1) = 4

Wgh (Ti)= 1, Pth (T2) = I

Wgh (T3) = 1, Pth (T3) = 2

Wgh (Ttf) = 2, Pth (T4) = 4

Wgh (TJ) = 1, Pth (T5) = 2

Wgh (T6) = 1, Pth (T6) = l

Wgk(T1) = 1, Pth (T7) = 1

The above test cases can be calculated the alternate path points as follows:

Alt (T1) = 2"'4 = 8

Alt (T2) = 1 * l = I

Alt (T3) = l *2 = 2

Alt (T4) = 2*4 = 8

Alt (T5) = 1 "'2 = 2

Alt (T6) = 1*1 = 1

Alt(T7)= l*l = 1

rr

With the above alternate path points, T2, T6 and T7 are removed due to

minimum points.

However, the further study [124][125][197] shows that alternate path points

are not enough to reduce a number of black box tests. The above method ignores a

risk of each test case. Risk contains two major factors [10][139][163]: (a) level of

134

damage and (b) probability of failure. In September of 2010, our previous work [124]

proposed a risk-driven factor that contains both of:

1. Level of Damage. This factor indicates a level of damage if test cases are

removed. There is a simple guideline to determine a level of damage proposed

by Praveen (139].

2. Probability of Failure. This factor indicates a probability that test cases can

be failed during a test execution process. Hans [163] and his work in 2005

presented that this factor can be represents as a complexity of test cases.

Fortunately, 1here was a suggestion during EMDT conference where our

previous work is published [124] that a level of damage should be removed. This is

because it is difficult to systematically determine a level of damage i!test cases are

removed. The simple guideline is ambiguous and inadequate. This is the first reason

why we propose only a probability of failure.

Another reason why we propose to use a retain score associated with a

complexity of test cases is that less complex test cases that are generated from

alternative paths should be reserved. This is because less comp1ex test cases can lead

to a low probability of failure during the test execution [124)(125][163]. The retain

score allows to reduce a number of high complex test cases.

Eventually, we propose the following formula, called "RET'', to reduce a

number of test cases by considering risk factor and alternate path points together.

Ret (T,J = Cpx* Alt (6)

Where:

• Ret is a retain score for each test case, Tn. Test cases with low score must

be removed.

• Cpx represents as a total number of test steps in each test case.

135

• Alt (I'C,J is an alternate path point for each test case, TCn.

The following describes an example of how to compute retain scores .

:\lkrnak Path' in l.sl' Case . \Number of Test Skps in Tc't Casl'

:f~~& '1*-~t fl~ci$:·1 ' _ ... 7li:·. ' . ,,~~~ :~~ -:~ ~

Path 2 of Use Case I 3

Figur:e 4-J 4 shows that each alternate path of each use case requires a number

of test steps in: the test case. For example, path 1 of use case 1 requi.t:es 3 steps in the

test case.

In Figure 4-13 and 4-14, the complexity of each test case can be computed as

follows: rr

Cpx (T1) = 3+3+4+2 = 12 -.'\.. *
I N C - 1 9 6 9 ~'lo~

Cpx (T2) = 3 7'J9A _ °' ~2'.~
"' fl'l a !l 'il_t>t-&'

Cpx (T1) = 3+3 = 6

Cpx (T4) = 3+4+2+3 = 12

Cpx (Ts)= 4+2 = 6

Cpx (T6)= 3

Cpx (T1)= 3

Afterward, the retain score for each test case can be computed as follows:

Ret (T1) = 12*8 = 96

Ret (T2) = 3*1 = 3

Ret (T3) = 6*2 = 12

136

Ret (T4) = 12*8 = 96

Ret (Ts)= 6*2 = 12

Ret (T6) = 3*1 = 3

Ret (T1) = 3*1 = 3

Finally, all test cases with a minimum retain score are removed. Thus, T2, T6

and T1 are removed.

4. 7 Limitations

The following lists limitations of the proposed techniques.

I. Tue limitation of the proposed techniques is that both of input data and

expected results require manual efforts to generate during a test case

generation process.

2. In addition, the proposed techniques can generate test cases from fully dressed

use case, which fully contains all required information only. The techniques

are limited to brief and casual use case.

3. Alternative path points in the proposed method are not applicable when use

cases have only basic path. 'l~H!J'Ql~

4. Our proposed method is limited to only fully dressed use case effectively

written based on guidelines in [40][151]. In the commercial industry, it may be

difficult to allow analysts to effectively write comprehensive information for

use cases.

137

CHAPTERS

EVALUATION

The chapter explains how the experiment has been designed, its measurements

and the evaluation result, with the aim of determining which test generation method is

the most recommended in terms of customer satisfaction. Also, this chapter discusses

and compares the result in detail. The evaluation aims to proof that the proposed

techniques can work well under circumstance. This dissertation does not argue that

other test case generation techniques have poor performance.

5.1 Experiments

The section describes the experiment in details. The objective of the

experiment is to provide an empirical support for our contributions mentioned in the

Chapter 4. We design the experiment into three parts: (a) prepare data (b) generate

test case and (c) evaluate a result. The following shows an overview of experiments.

Requirement/ Use Case

Requirement
R1 , R2, ...• R50

Use Case Scenario
UC1. UC2, U C50

Figure 5-1 Overview of Experiment

Figure 5-1 can be explained in details, as follows:

eumenns
Te st Cases

1. Prepare Experiment Data. Before evaluating the proposed methods and

other methods, preparing the experiment data is required. In this step, 50 requirements

and 50 use case scenarios, associated with those requirements, are randomly

138

generated. The "dataset" term is used in the rest of this dissertation to represent the

experiment data. This experiment is designed to randomly generate 10 datasets in

order to determine an average value for each measurement.

2. ~nerate Test Case. A comparative evaluation method has been made

among the proposed test generation algorithm, Heumann's technique [69], Ryser's

method [85], Nilawar's algorithm [105] and the proposed methods presented in the

Chapter 4. This experiment aims to compare a performance of ALT and RET

methods. This is because it is included a prioritization requirement algorithm prior to

generate a set of test cases. The experiment includes a requirement prioritization

based on user satisfaction steps in the ALT and RET methods respectively. Also,

there is a link relationship between requirements that have been prioritized and use

cases for those two proposed methods. There are 10 datasets randomly generated for

requirements and use case scenarios. Therefore, this part aims to generate 10 sets of

test cases as well.

3. Evaluat Results. In this part, comparative generation methods are

executed by using 50 requirements and 50 use case scenarios. These methods are also

executed for 10 datasets in order to fmd out the average percentage of a number of

test cases and requirement coverage. In total, there are 500 requirements and 500 use

case scenarios executed in this experiment. This part evaluates and compares results

based on datasets and proposed measurements.

The following tables present how to randomly generate requirements and use

case scenarios for each dataset respectively.

139

Table 5-1 Generate Random Requirements

Requirement
ID

Description

~
Q..
~
:::)
(/)

~

A unique
number to
reference
requirement.

A description
of requirement.

R

A

~.

c(,'1 ~Ir

'~

Randomly generated from the
following combination: Req +
Sequence Number. For
example, Reql, Req2, Req3, ... ,
Re N.
Randomly generated from the
followings:

(' i:...

1. Supported protocols that
are allowed via the
access layer, service
cells and core cells

2.

3.

4.

5

Platform services should
not require a speci.(ied
start-up order in order to
function properly
Platform Services will
adhere to the ITIL based.
release management
process and must issue a
Release schedule which
defines the frequency of
major and miQor
releases
Any release/change
must adhere to the
following guidelines for
maintenance windows
Services should use the
Standard OS Builds
provided by Shared
Infrastructure Group

6. Automated installation
procedures and
automated software
builds must be provided
for servers via the
automated scripts

7. Releases should be
stored, packaged and
delivered using
Operations Management
Infrastructure approved
technology

8. Platform services must
document their data
retention times and

140

String

9. All regular activities that
occur on platform must
be scheduled via one of
the Management
Infrastructure job
scheduling tools

~l\\
1 O. Content and data related

changes on platform
should be seamless,
reliable, transparent and
auditable

Type of A type of Randomly selected from the String
Requirement requirement following values:

that contains 1. Functional

~
four groups: 2. Performance
Function, 3. Security

:::» Performance, 4. Operational
Security and
0 erational.

Classification A Randomly generated from: String
classification Basic, Surprise and Extra-
of requirement ordinary.
based on
WOW factors.

Estimated An estimated Randomly generated from l to Numeric
Efforts for effort for 480 hours.
Cod in codin .
Estimated An estimated Randomly generated from 1 to Numeric
Efforts for effort for 480 hours.
Testing testing.

Cost-Value A cost-value Randomly generated from 1 to Numeric
Assignment assigned for 5 such as 1, 1.1, 1.2, 1.3, 3, 3.1,

each 3.2, 3.3, 5, 5.1, 5.2 and 5.3.
re uirement.

ReqComplex A complexity Apply Holly's guideline in Numeric
of Holly's work [70].
re uirements.

Correlation A correlation This attribute is calculated by Numeric
ratio between using ROI and requirement
ROI and complexity as mentioned in the
requirement proposed method.
complexity.

141

Num Use Case

Use case ID

Purpose

Randomly generate from 1 to
10.

Table 5-2 Generate Random Use Case Scenario

A unique
number to
reference u se
case.

A detail to
explain a
purpose of use
case.

A

Randomly generated from the
following combination: uCase
+ Sequence Number. For
example, uCase1, uCasez, ... ,
uCasen.
Randomly generated from the
followings

I . Remote Procedure Calls
(RPC) are not permitted
through firewalls

2. The use of any protocol
that dynamically
allocates ports, rather
than operating through
set, known ports, is not
permitted

3. As part of Management
Infrastructure the patch
management solution
has been chosen as the
product t:or security
patch-management

4. The Network
Infrastructure
Components used in
platform must adhere to
the management team's
recommended technical
standard

5. Applications statistics
must be created in line
with the formatting
standards specified by
the global management
tool and transferred to
the PA WZ Server on a
daily basis

6. Each service/capability
must have an associated

142

Numeric

String

String

Attribute' . ~ ~ ¥;¥. ··Data
,.,

Site Failover (SFO)
recovery plan

7. The table below
describes the baseline
standard password
security controls for
internal applications and
products

8. Services should be built

~~
on approved technology
platforms (hardware and
OS)

9. Events should be sent
and formatted using the

~
standards specified by
Management

Q., Infrastructure
10. The BSV should

~ represent the status of
the service/capability ::::» from an end-user client

s ective
Pre-condiiioA A pre-requisite Randomly generated from the String

condition that following combination: pOon +
must be done Sequence Number same as Use
before case ID. For example, pCon1,
executing use pCon2, ... ,pConn.
case.

Basic Path A basic path of ~andon;ily generated from the String
use case. following combination: uCase

+ Sequence Number. For
example, basic1, basic2, .. .,
basicn.

No_Altemate A number of Random a number of paths Numeric
Paths alternative from 1to10

paths in use
case.

143

Table 5-3 Generate Random Alternative Paths for Use Cases

AltID

No_Steps

Steps Q..

reference use
case.

A unique
number to
reference an
alternative

th.
A number of
steps in each
alternative

ath.
Details of steps
in each
alternative
path.

Randomly generated from 1 to
10.

Randomly generated from the
following combination: Step1 +
"+" + Step1 + "+"+ ... Step,.;
n is a No_Steps number.
For example, Step I + Step2 or
Ste l+St 2+Ste 3.

Numeric

Numeric

String

The following presents an example of test cases used in the experiment

"'• Table 5-4 Attributes of Test Cases

A unique number of test cases. Numeric

Purpose Detail information describing what the purpose of String
test case is.

Pre-Conditions Pre-requisite conditions that must be done before String
executin test cases.

Test Steps A detail information describing steps to execute String
test case.

Input Data An input data using during a test execution String

Expected An expected result of test case that describes String
Result what the result should be.
Actual Result An actual result of test case that describes what String

the result is after execution.
Status A status of test case that contains "pass" or "fail" Boolean

The following presents an example of data used in the experiment

144

~ '

--~-·-oewrfttOI' · Typer,.,, • Clnsl'q.IO • i.$itlfc.ode • tncttTcm • Ca;i'l/411"" • 11~ .. 1 •
l ~ptO'f&;!Otllll'! ~~ I~ 1iC I.~ •

PurpcY,..e • Pre.C~ndillC • !aslc Pith • tlum Alt Pll •
J 4 Tho N9tWOl1! 1nf1.111NC1uroCOmponcm Prteonl ISHlcl :

A/oJ14m1t1 • Hllm~t~ • s~ • U)eCnell> • rv.iea:elO •

1 ·~~·s:~-"~ J
2 • ~r;-1 • S:~J • Sl..PI • Strpl I

use the foll

Cl
c
0

proof thnt the propo~d me1h~1u can gcm:r:uc smalCifumber of lest ca.st"S whik

. • ' I * mruntamtng rcquucm covc.-r;1gc. ol. -.'\..
If~~ SINCE 1 969 o-! ~"o~

l he followmgs dcscrl t ''~jJJ,Ci,iur • ml • c ail~ .

I. A Number of rest ca,e~: 'Ib is is the total num°'-.-r of generated test cnscs.

expressed as n percemagc. as follows:

% Sl:t = f , .. 100
If o Tota,

(7)

Where:

• % Si::e is a percentage of the num°'-.>r of test c:ises.

• If of Si:.""": is a number of lesl case~.

• ti of J'owl b I.he truu.imum number of test cases in the experiment.

which is assigned 1,000.

145

2. Requirement Coverage: This is an indicator to identify the number of

requirements covered in the system [14]. Due to the fact that one of the goals of

software testing is to verify and validate requirements covered by the system, this

metric is a must. Therefore, a high percentage of critical requirement coverage is

desirable.

It can be calculated using the following formula:

If Critical
%CRC= ~100

#of T'Jtal
(8)

Where: ()
• % CRC is the percentage of critical requirement coverage.

• # of Critical is a number of critical requirements covered.

• #of Total is the total number of requirements. -

In 2005, Avik [14] used the following guideline in the experiment.

• If correlation ratio of requirement is greater than 80%, it shows that

requirement is one of top priority requirements.

• If it is greater than 50%, it shows that requirement is one of medium

priority requirements. D' ~'6\~~
~!IK-1

5.3 Results

This section shows comparison results of the above experiment. There are two

types of comparison graph results:

1. Comparison based on each dataset randomly generated in each round by the

approach in section 5.1.

2. Comparison of all measurements mentioned in section 5.2 among test case

generation techniques.

146

r

5.3.1 Compare based on Dataset

This section presents three graphs that compare the latest proposed method

against other three existing test case generation techniques, based on dataset generated

randomly. Those three techniques are: (a) Heumman's method [69) (b) Ryser's work

[85] and (c) Nilawar's approach [105]. There are two dimensions in the following

graph, (a) horizontal and (b) vertical axis. The horizontal represents a percentage value

whereas the vertical axis represents a number of dataset.

The following graph compares a number of test cases based on each dataset

generated as explained above.

Compare A Percentage of A Number of Test Cases Based on
Each Dataset

120% 1

80% .,
:r
c 60% !.
~ ,.

:. 40%

,: r
i

Figure 5-3 Comparison Result for a Number of Test Cases

Figure 5-3 presents that the proposed methods generate a number of test cases

slightly smaller than other methods. Meanwhile, other three methods have a similar

number of test cases. This is because the propose method has reduced a number of test

cases during a test case generation process.

147

Secondly, the following compares requirement coverage based on each dataset

generated as explain above.

90.00%

80.00%

70.00%

Compare A Percentage of Requirement Coverage Based on
Each Dataset

r-o .. -~·----
1

i---- - ... --- - -----·
I

'
I

~ 60.00% !- ---
!!· S0.00% .~· -· c

~ 40.00%
cf

30.00%

20.00%

10.00% -· I
L !

0.00% ' J , r ..,

r•i~~~;;;;~~2·2.~o% · l8.~0%t22 .~0% 118.:0%1-24.~0% ! 20:~0% ; 1s.~0%f22~~~ r 18.~0% tiei~:o% I
fiR;;e;---120-:-00% 2o~ ;-20.00%T2iL"oo%118-.00%~20~oo;;-2D.00%T2o.00%2o:ci<i%f 20.oo%-j
;-.~~awa~ -.f.~ 1.8:?.?.~ 1-2~.00:' 2.~?.~-1 20:00.~. !_~·0_0%. 16.~?.?.~J~o.°.O°,i; ~~?.:~'.r.o_ ll.~-~%-J
1 • ALT i 60.00% 52.00% i 48.00% 68.00% I 50.00% 66.00% j 76.00% [58.00% 42.00% I 46.00% I

t~ ~£! ~~ :I;~~O.<>% -~~:~11-~It~ .'oo~ 7a:o~~ ~~s.'_~]E.:.oo%'f82~~~.Ii~·§~~~6.:~~ ~~~~l _!

Figure 5-4 Comparison Result for Requirement Coverage

Figure 5-4 shows that the proposed methods have a high percentage of critical

requirement coverage and it is by far greater than other methods. This is because the

proposed method classifies and priorit\zes ~equirements before generating test cases.

5.3.2 Compare based on Measurements

This section presents a graph that compares the latest proposed method against

other three existing test case generation techniques, based on the following

measurements: (a) an average of number of test cases and (b) an average of critical

requirements coverage. Those three techniques are: (a) Heumman's method [69] (b)

Ryser's work [85] and (c) Nilawar's approach [105]. There are two dimensions in the

following graph: (a) horizontal and (b) vertical axis. The horizontal represents two

measurements whereas the vertical axis represents the percentage value.

148

Compare Average Percentage of A Number of Test
Cases and Requirement Coverage

120.00% r---·----··--------·--·-·-····-----··-·- ------- -·---

80.00% I
., I

f>.00% 1-·-..
v
~0.00% ----

20.00% 1'·-
0.00% -

• Heumann

•Ryser

• Nil~war

l' ALT

• RET

A Number ofTcst Cases Critical Requirement Coverage
Measurements '--------1 - --- -·--- -

Figure 5-5 Result of Test Case Generation Methods

Figure 5-5 shows that the above proposed method generates Uie smallest set of

test cases. It is calculated as 80.80% where as the other techniques is computed over

97%. Those techniques generated a bigger set of test cases, than a set generated by the

proposed method. The literature review reveals that the smaller set of test cases is

desirable. Finally, the graph presents that the proposed methods are the most

recommended techniques to coverage high priority requirements. Its percentage is

much greater than other techniques' percentage, more than 30%.

From Figure 5-5, this study determines and ranks the above comparative

methods into five ranking: 5-Excellent, 4-Very good, 3-Good, 2-Normal and 1-Poor.

This study uses a maximum and minimum value to find an interval value for ranking

those methods.

For a number of test cases, the maximum and minimum percentage is 98% and

80.80%. The different between maximum and minimum value is 17.2%. An interval

value is equal to a result of dividing the different values by 5. As a result, the interval

149

valui: is npproxi1ru11ely 3.4. 'lhus, it can be dc11.-'Tlllined as follow:-.: 5-E..xc:cllcnt (<:incc

80.80% to 84.2%). 4·Vcry good (between 84.1% am.I 87.6%). 3-Gnod (between H7.6%

nnd 91%). 2-~omml (between 91% and 94.4%) and I-Poor (from 94.4% to 97.1\%).

To covl:l' n:qutrement. the maximum and minimum percentage ts 53.20% and

19% The different value i!; 34.2~i.. The irl!CC\'al value is 6.84. Therefore:.. it c~n be

determi111:d as follows: 5-r.xccllt..-nt {since 46. 36% to 53.2%), 4-Vcry goo<l (bclwcen

below.

anil, 52%), 2-:\ormal (betwt:en

-Poor (from lSJ~(, to 25.84%1). ()A'
lbcr~ the e:-.p¢timc:nl result of those comparame me~' can be 'bown

Q.. ~
blc 5-S A Comparii;on Result for Tes! Ca c Gl"Der.i1io1l Methods

5
5

gencmlc lhe smallest size of le t cases wilh I.be m.1ximum requirement coverage.

However, this dissc11a1ion doe~ not clilun that c1th1.:r techniques arc poor.

5.4 Discussions

lhis sect1011 discusses the aho·.-e evaluation rc~ull~. TI1i:. <lbscnalion dot:.'> not

claim thm other comp3rati\.~ test Ci!se g~'llcranon mcU10ds arc worst or have a poor

pcrfonnance during test case generntiou nctiv1ttcs. hl fact, the evaluation aims lo prove

that 1hl! proposed methods in this dissertation work as cxIX-Ctccl.

150

Our experiment found that our proposed method is the most recommended test

case generation technique to minimize a number of test cases. Also, our experiment

showed that our method is the best method comparing to other methods, like

Heumann, Ryser and Nilawar. Those methods generate larger number of test cases.

The following shows a comparison result in terms of numbers of test cases:

ALTandRET

Q..
<~------>

Smafter ANumberofTestCases Larger

~o

·: i~t~i;: " Existing Test Case Generation Methods
l,.,_ • 't·. ' ~

,. Proposed Test Case Generation Methods

Figure 5-6 A Comparison for a Number of Test Cases

Figure 5-6 compares four test case generation techniques in terms of numbers

of test cases. The horizon axis represents a number of test cases. The proposed

methods are by far better than the other three methods. Generally, test case generation

methods with the smallest number of test cases are desirable.

The following represents a comparison between a number of test cases and

coverage of high priority requirements. The horizon axis presents a number of test

cases while the vertical gives a percentage of requirement coverage.

151

• Cl .. • 8
i
E
.~
:J a • 0::

ALT

And

RET

Smalle.r Larger

A Number of Test Cases

. '
. : ; , ProposedTestCaseGenarationMethods

Figure 5-7 A Comparison for a Number of Test Cases and Coverage

Figure 5-7 shows that our proposed methods generate and minimize a number

of test cases while preserving high capability to cover high priority requirements. Also,

it shows tha(our methods are by far better than other existing test case generation

methods in terms of number of tests and coverage. •

~ - -- o!~~~ 7-;,11fl,a!l~t\~

152

CHAPER6

CONCLUSION

This chapter provides three sections. The first section concludes major

contribution of this dissertation. The second section discusses the most suitable test

case generation to tackle with research problems. The last section describes future

researches.

6.1 Major Contributions

In the conclusion, software testing phase has been proven that it is one of the

most critical_phases in software development life cycle. Typically,,it takes around 40-

50% of effort and cost of developing software [21]. Many esearchers have

investigated to reduce time, effort and cost of testing activities. The literature reviews

reveal that test case generation is one of the most important phases in software testing

phase. Therefore, this proposal concentrates on test case generation techniques.

The outstanding research problems remaining from test case generation

methods based on UML use case cffagram, which motivated this study, are: lack of

requirement prioritization before test case generation, unable to identify which test

cases can be removed during a test case generation process and large number of test

cases due to large number of alternative paths in each use case.

In order to resolve the above problems, this dissertation proposes an effective

test case generation method, derived from UML Use Case diagram, along with

marketing-driven requirement prioritization for black-box testing [89][115]. This

dissertation introduces WOW factors based on user satisfaction to support the

requirement c lassification and prioritization (100)(114]. This is because critical

requirements must have higher priority. Typically, a general requirement

153

prioritization uses only return on investment (ROI) to prioritize requirements.

Unfortunately, our study reveals that ROI is not the only factor for a requirement

prioritization. The research presents that a complexity of requirement is one of the

critical factors to give a priority. This thesis introduces a relationship between ROI

and the requirement complexity [70]. The high ROI requirements with less

complexity are desirable.

In addition, this dissertation improves a sketch diagram-based test case

generation method by minimizing a number of test cases during the process. The

proposed method aims to reduce a number of test cases derived from UML use case

diagram by considering alternate paths of use cases. It introduces alternate path points

for removing unnecessary test cases. Unfortunately, the research shows that the

remaining problem of considering only paths is that a number of test cases are still

large due to overwhelm alternate paths.

Eventually, the dissertation proposes a retain score in order to enhance ability

to remove test cases. It introduces a probability of failure, as a part of risk value,

represented as a complexity of test case. The complexity factor is a total number of

test steps in each test case. The high complex test cases generally have a lot of test

steps. Consequently, these high complex test cases can lead to high probability to

failure.

Furthermore, the research conducts an evaluation experiment with a random

require~ents and fully described use cases. The evaluation result reveals that the

proposed method is the most recommended test case generation methods for

maximizing critical requirement coverage. Also, the result presents that the proposed

method is one of the most recommended test case generation methods to minimize a

number of test cases and cover critical requirements based on user satisfaction.

154

6.2 Discussion: The Most Suitable Approach

This section provides a discussion on which test case generation method is

best suited to the following problems: (a) lack ofrequirement prioritization during test

case generation process that can lead to low rate of critical requirement coverage and

poor user satisfaction (b) unable to systematically determine, which test cases for

black-box testing should be removed, tha,t can lead to a large number of test cases and

(c) still large number of test cases due to large number of alternative paths described

in use cases, that is resulted in consuming a greater amount of time and cost.

In this dissertation, we consider the following:

6.2.1 Requirement Prioritization based on Customer Satisfaction

This dissertation proposes a marketing-driven requirement prioritization

technique with WOW factors to classify requirement. This is likely to classify

requirements based on user satisfaction, along with the implementation cost.

Additionally, the research introduces a correlation between ROI and requirement

complexity to effectively prioritize requirements. In fact, this dissertation inserts the

requirement prioritization process prior to generate test case. We conduct the

experiment to determine which test case generation is best suited to resolve the above

research problems. Our evaluation result shows that the proposed technique can

increase the ability of requirement coverage based on user satisfaction during test case

generation activities.

The following lists advantages and disadvantages when using the requirement

prioritization technique prior to test case generation activities.

Advantages:

1. Increase requirement coverage based on user satisfaction.

155

2. Provide an easy method in prioritizing large number of requirements based on

user satisfaction.

3. Indirectly reduce a number of test cases to be generated for low priority

requirements that are not relatively to the satisfaction factor.

4. Raise high priority for requirements with high ROI and less complexity.

Disadvantages:

(. Requires several involvements with customers to identify and classify

requirements.

2. Requires large number of requirements in order to classify and prioritize.

3. Difficult to systematically identify which requirements can extraordinary

increase the user satisfaction.

4. Difficult to systematically determine a complexity of requirements.

6.2.2 Test Case Generation Technique

This dissertation proposes to reduce a number of test cases during a test case

generation technique, which derive tests from fully dressed use cases. There are two

major proposes: (a) alternative path point formula and (b) a retain score. They are

important and be part of our proposed methods to remove test cases. This is due to

that use cases have overwhelm alternative paths and it can eventually lead to large

number of test cases. None of existing sketch diagram based generation techniques,

derived from UML use case diagram, removes test cases and concentrates on

alternative paths. In case that there are a large number of alternative paths that can be

optimized for generating test cases, this dissertation suggests our proposed method.

The following lists advantages and disadvantages when reducing test cases

during test case generation activities.

156

Advantages:

I. Reduce a number of test cases during test case generation process.

2. Reserve test cases with less complexity and a few steps in the test case.

3. Able to systematically determine which test cases should be removed during

test case generation process.

Disadvantages:

I. Not applicable for use cases that have only basic paths.

2. Requires fully dressed use cases only.

3. Manually generate test data and expected result.

6.3 Future Research

The problems that occur when using the above approach need future

investigation. In brief, they are:

1. Difficult to systematically determine and classify requi~ments

Recall that one of the weaknesses of the proposed method is to difficult to

systematically determine and classify requirements based on user satisfaction

prior test case generation process. One of the interesting areas for future

research is finding a systematic approach to identify user satisfaction and

relative to a requirement engineering field.

2. Manual generate test data and expected result

The proposed technique manually generates test data and expected result that

cannot reduce time and cost as much as expected. The future research should

concentrate on incorporating other diagrams or techniques to automatically

generate both of test data and expected result.

157

REFERENCES

[l] A. Blum and M. Furst. "Fast Planning Through Planning Graph Analysis."

Artificial Intelligence 90 (1997): 281-300.

[2] A. Gargantini and C. Heitmeyer. "Using model checking to generate tests

from requirements specifications." Software Engineering Notes 24, no. 6

(November 1999): 146-162.

[3] A. Jefferson Offutt, Yiwei Xiong and Shaoying Liu. "Criteria for Generating

Specification-based Tests." Proceedings of the 5th IEEE Internation

Conference on Engineering of Complex Computer Systems, 1999 (ICECCS

'99) . .Las Vegas, NV, USA: IEEE Computer Society, 1999. 119-129.

[4) A.Z. Javed, P.A. Strooper and G.N. Watson. "Automated Generation of Test

Cases Using Model-Driven Architecture." Second International Workshop on

Automation of Software Test (AST'07). Minneapolis, USA: IEEE Computer

Society, 2007. 3. ~

[5] Ahl, V. An Experimental Comparison of Five Prioritjzation Methods. Master's

Thesis, Ronneby, Sweden: Blel6nge Institute of Technology, 2005.

[6] Alberto Avritzer and Elaine J. Weyuker. "The automatic generation of load

test suites and the assessment of the resulting software." IEEE Transactions on

Software Engineering 21, no. 9 (1995): 705-716.

[7] Alessandra Cavarra, Charles Crichton, Jim Davies, Alan Hartman, Thierry

Jeron and Laurent Mounier. "Using UML for Automatic Test Generation."

Proceedings of the Tools and Algorithms for the Construction and Analysis of

Systems (T ACAS'2000). Oxford University Computing Laboratory, 2000.

[8] Al-K.ilidar, H., Cox, K. and Kitchenbam, B. "The use and usefulness of the

ISO/IEC 9126 quality standard." Proceedings of the International Symposium

158

on Empirical Software Engineering. Noosa Heads, Australia: IEEE Computer

Society, 2005. 7.

[9] Amaral. A.S.M.S. Test case generation of systems specified in Statecharts.

M.S. thesis , Laboratory of Computing and Applied Mathematics, INPE,

Brazil: Laboratory of Computing and Applied Mathematics, 2006.

[10] Andrea Hennann and Barbara Paech. "Practical Challenges of Requirements

Prioritization Based on Risk Estimation." Journal of Empirical Software

Engineering (Kluwer Academic Publishers) 14, no. 6 (2009): 644 - 684.

[11] Annelises A. Andrews, Jeff Offutt and Roger T. Alexander. "Testing Web

Applications." Software and Systems Modeling 4, no. I (2005); 326--345.

[12] Atif M. Memon, Martha E. Pollack and Mary Lou Soffa. "Hierarchical GUI

Test Case Generation Using Automated Planning." IEEE Transactions on

Software Engineer (IEEE Press) 27, no. 2 (February 2001): 144-155.

[13] At if M. Memon, Martha E. Pollack and Mary Lou Soffa. "Using a Goal-driven

Approach fo Generate Test Cases for GUis." Proceedings of the 21st

international conference on Software engineering (ICSE'l999). Los Angeles,

CA, USA: ACM, 1999. 257-266.

[14] Avik Sinha. Domain Specific Test Case Generation Using Higher Ordered

Typed Languages for Specification. Ph. D. Dissertation, College Park, MD,

USA: University of Maryland, 2005.

[15] Aynur Abdurazik and Jeff Offutt. "Generating Test Cases from UML

Specifications." Proceedings of the 2nd International Conference on the

Unified Modeling Language (UML'99). Fort Collins, CO, USA, 1999.

159

[16] AZUMA, Motoei. Applying ISO/IEC 9126-1 Quality Model to Quality

Requirements Engineering on Critical Software. Waseda University, USA:

Waseda University, 2004.

[17] B.M. Subraya and S.V. Subrahmanya. "Object driven performance testing in

Web applications." Proceedings of the First Asia-Pacific Conference on

Quality Software (APAQS'OO). Hong Kong: IEEE Computer Society, 2000.

17-26.

[18] Barry Boehm and Victor R. Basili. "Software Defect Reduction Top 10 List."

Computer (IEEE Computer Society Press) 34, no. 1 (January 2001): 135-137.

[19] Beck, K. and Andres, C. Extreme Programming Explained: Embrace Change.

Boston, MA: Addison-Wesley, 2004.

[20] Bee Bee Chua and Laurel Evelyn Dyson. Applying the ISO 9126 model to the

evaluation of an e-learning system. Sydney, Australia: University of

Technology, 2004.

[21] Beizer, B. Software Testing Techniques. New York, USA: Van Nostrand

Reinhold, Inc, 1990.

[22] Bentley, John E. Software Testing Fundamentals - Concepts, Roles and

Terminology. USA: SAS Institute, TechRepulic, 2005.

[23] Bertolino, A. "Software Testing Research and Practice." Proceedings of the

10th International Workshop on Abstract State Machines (ASM'03).

Taormina, Italy: Springer-Verlag Berlin, Heidelberg, 2003. 1-21.

[24] Bill Hasling, Helmut Goetz and Klaus Beetz. "Model Based Testing of System

Requirements using UML Use Case Models." Proceedings of International

Conference on Software Testing Verification and Validation (ICST'08).

Lillehammer, Norway: IEEE Computer Society, 2008. 367-376 .

160

[25] Boehm, B. and Ross, R. "Theory-W Software Project Management: Principles

and Examples." IEEE Transactions on Software Engineering 15, no. 4 (July

1989): 902-916.

[26) Boehm, B. "Industrial Metrics Top 10 List." IEEE Softwar, 1987: 84-85.

(27) Bogdan Korel and Ali M. Al-Yami. "Automated Regression Test Generation."

Proceedings of the 1998 ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISST A'98). Clearwater Beach, FL, United

States: ACM, 1998. 143-152.

(28] Brandt-; D. Randall. "How service marketers can identify value-enhancing

service elements." Journal of Services Marketing 2, no. 3 (1988): 35-41.

[29] C. ~amamoorthy, S. Ho, and W. Chen. "On the automated generation of

program test data." IEEE Transactions on Software Engbeering 2, no. 4

(1976): 293-300.

[30] C.-H. Liu, D. C. Kung, P. Hsia, and C.-T. Hsu. "An object based data flow

testing approach for web applications." International Journal of Software

Engineering and Knowledge Engineering 11, ~o. 2 (April 2001): 157- 179.

[31] C.H. Liu, D.C. Kung, P. Hsia and C.T. Hsu. "Structural testing of Web

applications." Proceedings of the 11th International Symposium on Software

Reliability Engineering (ISSRE'OO). San Jose, USA: IEEE Computer Society,

2000. 84-96.

(32] Cadotte, Ernest R. and Turgeon, Normand. "Dissatisfiers and Satisfiers:

Suggestions from Consumer Complaints and Compliments." Journal of

Consumer Satisfaction, Dissatisfactions and Complaining Behavior 1 (1988):

74-79.

161

[33] Carl Adam Petri and Wolfgang Reisig. Petri net. USA: Scholarpedia

Publisher, 2008.

(34] Cem Kaner, J.D., Ph.D. "What Is a Good Test Case?" Proceeding of Software

Testing Analysis & Review. Florida, USA: STAR East, 2003.

(35] Cem Kaner, James Bach and Bret Pettichord. Lessons Learned in Software

Testing: A Context-Driven Approach. New York: Wiley, 2002.

[36] Cem, Kaner. An.Introduction to Scenario Testing. Florida, USA: Florida Tech,

2003.

[37] Chaffee, Alex. "What is a web application (or "webapp")?" 2008.

[38] Chang-Jia Wang and Ming T. Liu. "Axiomatic Test Sequence Generation for

Exten<led Finite State Machines." Yokohama , JapanProceedings of the 12th

International Conference on Distributed Computing Systems, 1992.

Yokohama, Japan: IEEE Computer Society, 1992. 252 - 259.

[39] Chien-Hung Liu, David C. Kung, Pei Hsia and Chih-Tung Hsu. "Object-Based

Data Flow Testing of Web Applications." Proceedings of the First Asia­

Pacific Conference on Quality Software (APAQS'OO). Hong Kong: IEEE

Computer Society, 2000. 7-16.

[40] Cockburn, Alistair. Writing Effective Use Cases. Boston, MA, USA: Addison­

Wesley Longman Publishing Co., Inc, 2001.

[41] D.M. Cohen, and M.L. Fredman. "New Techniques for Design-ing

Qualitatively Independent Systems." Journal of Combinational De-signs 6, no.

6 (1998): 411-416.

[42] D.M. Cohen, S.R. Dalal, and M.L. Fredman. "The AETG System: An

Approach to Testing Based on Combinatorial Design." IEEE Trans on

Software Engineering 23, no. 7 (1997): 437-444.

162

[43] David C. Kung, Chien-Hung Liu and Pei Hsia. "An Object-Oriented Web Test

Model for Testing Web Applications." Proceedings of the First Asia-Pacific

Conference on Quality Software (APAQS'OO). Los Alamitos, CA, USA: IEEE

Computer Society, 2000. 111.

[44] David Turner, Moonju Park, Jaehwan Kim and Jinseok Chae. "An Automated

Test Code Generation Method for Web Applications using Activity Oriented

Approach." Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering . L'Aquila, Italy: IEEE

Computer Society, 2008. 411-414.

[45] Dayis, A. Just Enough Requirements Management: Where Software

Development Meets Marketing. New York: Dorset House, 2005.

[46] Davis, A. "The Art of Requirements Triage." IEEE Computer 36, no. 3

(March 2003): 42-49.

[47) Deursen, P. Klint and J. Visser. "Domain-specific Languages: An annotated

bibliography." ACM SIGPLAN Notices 35, no. 6 (2006): 26-36.

[48] E. Hieatt, R Mee, and G. Faster. "Testing the web application engineering

internet." IEEE Software 19, no. 2 (April 60-65): 2002.

[49) E. Weyuker, T. Goradia, and A. Singh. "Automatically generating test data

from a boolean specification." IEEE Transactions on Software Engineering 20,

no. 5 (1994): 353-363.

[50] Edvardsson, Jon. "A Survey on Automatic Test Data Generation." Proceedings

of the 2nd Conference on Computer Science and Engineering. Linkoping,

Sweden, 1999. 21-28.

163

[51] Elizabeth M. Rudnick and Janak H. Patel. "Efficient Techniques for Dynamic

Test Sequence Compaction." IEEE Transactions on Computers, Marh 1999:

323 - 330.

[52). Erika Regina Campos de Almeida, Bruno Teixeira de Abreu and Regina

Moraes. "An Alternative Approach to Test Effort Estimation Based on Use

Cases." Proceedings of the 2009 International Conference on Software Testing

Verification and Validation (ICST'09). Denver, CO, USA: IEEE Computer

Society, 2009. 279-288.

[53] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry and Yves Le Traon.

"Metamodel-based Test Generation for Model Transformations: an Algorithm

and a Tool." Proceedings of the 17th International Symposium on Software

Reliability Engineering (ISSRE'06). Raleigh, NC, USA: IEEE Computer

Society, 2006. 85-94.

[54] Firesmith, Donald. "Prioritizing Requirements." Journal of Object Technology

3, no. 8 (2004).

[55] Flippo Ricca and Paolo Tonella. "Analysis aQd Testing of Web Applications."

Proceedings of the 23rd International Conference on Software Engineering

(ICSE'Ol). Toronto, Ontario, Canada: IEEE Computer Society, 2001. 25-34.

[56] Flippo Ricca and Paolo Tonella. "Web Testing: a Roadmap for the Empirical

Research." Proceedings of the 2005 Seventh IEEE International Symposium

on Web Site Evolution (WSE'05). Budapest, Hungary: IEEE Computer

Society, 2005. 63-70.

[57] Frederick Herzberg, Bernard Mausner and Barbara Bloch Snyderman. The

motivation to work. 2nd edition. New York: Wiley, 1959.

164

[58] George, Mealy H. "A Method for Synthesizing Sequential Circuits." Bell

Systems Technical Journal 34 (September 1995): 1045-1079.

[59] Geraci, Anne. Compilation of IEEE standard computer glossaries. NJ, USA:

IEEE Press Piscataway, 1991.

[60] Grady Booch, Ivar Jacobson and Jim Rumbaugh. OMG Unified Modeling

Language Specification. USA: OMG Organization, 2000.

[61] Gregor V. Bochmannand and Jan Gecsei . "A unified method for the

specification and verification of protocols." Proceedings of the IFIP

Congress'77. Toronto, Canada: North-Holland Publishing Company, 1977.

229-234.

[62) Harel, D. "On visual formalisms." Communications of the ..ACM 31 , no. 5

(1988): 514-530.

[63] Harel, D. "Statecharts: A visual formalism for complex system." Journal of

ACM (Elsevier North-Holland, Inc. Amsterdam, The Netherlands), June 1987:

231-274.

[64] Harrold, M. J. "Testing: A Roadmap." Proceedings of the International

Conference on Software Engineering. Limerick, Ireland: ACM, 2000. 61-72.

[65] Hasan Ural and Keqin Zhu. "Optimal Length Test Sequence Generation Using

Distinguishing Sequences." IEEE Transaction on Networking, 1993: 358 -

371.

[66] Hassan Reza, Kirk Ogaard and Amarnath Malge. "A Model Based Testing

Technique to Test Web Applications Using Statecharts." Proceedings of the

Fifth International Conference on Information Technology. Las Vegas, NV,

USA: IEEE Computer Society, 2008. 183-188.

165

[67] Hayes, Jane Huffman. Input Validation Testing: A Requirements-Driven,

System Level, Early Lifecycle Technique. Ph.D. Thesis, George Mason

University, Fairfax, VA, USA: George Mason University, 1999.

[68] Hetzel, William C. The Complete Guide to Software Testing. MA, USA: QED

Information Sciences, Inc. Wellesley, MA, USA, 1988.

[69] Heumann, Jim. Generating Test Cases From Use Cases. IBM Rational

Software, 200 l.

[70) Holly Parsons-Hann and Kecheng Liu. "Measuring Requirements Complexity

to Increase the Probability of Project Success." Proceedings of International

Conference on Enterprise Information Systems (ICEIS'05). Miami, USA,

2005.

[71] Ho-Won Jung, Seung-Gweon Kim and Chang-Shin Chung. "Measuring

Software Product Quality: A Survey of ISO/IEC 9126~" Journal of IEEE

Software (IEEE Computer Society) 21, no. 5 (September 2004): 88-92.

[72] Huaikou Miao, Shengbo Chen, Huanzhou Liu and Zhongsheng Qian. "An

Approach to Generating Test Cases for Testing Component-based Web

Applications." Proceedings of the Workshop on Intelligent Information

Technology Application (IITA'07). Zhang Jiajie, China: IEEE Computer

Society, 2007. 264-269.

(73] Huaikou Miao, Zhongsheng Qian and Bo Song. "Towards Automatically

Generating Test Paths for Web Application Testing." Proceedings of the 2nd

IFIP/IEEE International Symposium on Theoretical Aspects of Software

Engineering (TASE'08). Nanjing, China: IEEE Computer Society, 2008. 211-

218.

166

[74) Hui Liu and Hee Beng Kuan Tan. "Automated Verification and Test Case

Generation for Input Validation." Proceedings of the 2006 international

workshop on Automation of software test, International Conference on

Software Engineering. Shanghai, China: ACM, 2006. 29-35.

(75] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik and Inyoung Ko. "Test

Cases Generation from UML Activity Diagrams." Proceedings of the Eighth

ACIS International Conference on Software Engineering , Artificial

Intelligence, Nefworking, and Parallel/Distributed Computing. Qingdao,

China: Haier International Training Center, Qingdao, China, 2007. 556-561.

[76] Ibrahim K. El-Far and James A. Whittaker. Model-based Software Testing.

Publfcation Report, Encyclopedia of Software Engineering, Wiley, 2001.

[77] lrith Pomeranz, Praveen K. Parvathala and Srinivas Patil. "Estimating the

Fault Coverage of Functional Test Sequences Without Fault Simulation."

Proceedings of the 16th IEEE Asian Test Symposium. San Francisco,

California, USA: IEEE Computer Society, 2007. 25-32.

[78] J. Dick and A. Faivre. "Automating the Generation and Sequencing of Test

Cases from Model based specification." Proceedings of the First International

Symposium of Formal Methods Europe on Industrial-Strength Formal

Methods. Odense, Germany: Springer-Verlag London, UK, 1993. 268-284.

[79) Jalote, Pankaj. "An Integrated Approach to Software Engineer." 2005.

[80] Jane Huffman Hayes and A. Jefferson Offutt. "Increased Software Reliability

through Input Validation Analysis and Testing." Proceedings of the 10th

International Symposium on Software Reliability Engineering (ISSRE '99).

Boca Raton, FL, USA: IEEE Computer Society, 1999. 199.

167

[8 l] Jeff Offutt, Shaoying Liu, Aynur Abdurazik and Paul Ammann. "Generating

Test Data from State-based Specifications." The Journal of Software Testing,

Verification and Reliability 13, no. 1 (March 2003): 25-53.

[82] Jeff Offutt, Ye Wu, Xiaochen Du and Hong Huang. "Bypass Testing of Web

Applications." Proceedings of 15th International Symposium on Software

Reliability Engineering, 2004. JSSRE 2004. Fairfax, VA, USA: IEEE

Computer Society, 2004. 187=197.

[83] Jeff Tian, Li Ma, Zhao Li and A. Gunes Koru. "A Hierarchical Strategy for

Testing Web-Based Applications and Ensuring Their Reliability." Proceedings

of the 27th Annual International Computer Software and Applications

Conference (COMPSAC'03). Dallas, Texas, USA: IEEE Computer Society,

2003. 702.

[84] Ji-Tz.ay Yang, Jiun-Long Huang, Feng-Jian Wang and William C. Chu.

"Constructing Control-Flow-Based Testing Tools for Web Application."

Proceedings of the 11th Software Engineering and Knowledge Engineering

Conference (SEKE'99). Kaiserslautem, Germany, 1999.

[85] Johannes Ryser and Martin Glinz. SCENT: A Method Employing Scenarios to

Systematically Derive Test Cases for System Test. Technical Report: ifi-

2000.03 , Zurich, Switzerland: University of Zurich , 2000.

[86) Kancherla, Mani Prasad. Generating Test Templates via Automated Theorem

Proving. Technical Report: NASA CR-207042, NASA, Washington, DC,

USA: NASA Ames Research Center, 1997.

[87] Kaner, Cem. "A Course in Black Box Software Testing." 2004.

168

(88) Kaner, Cem. "Software Engineering Metrics: What Do They Measure and

How Do We Know?" Proceedings of the 10th International Software Metrics

Symposium. Chicago, IL, USA: IEEE Press, 2004.

(89) Kano Noriaki, Nobubiku Seraku, Furnio Takahashi and Shinichi Tsuji.

"Attractive Quality and Must-Be Quality." Journal of the Japanese Society for

Quality Control 14, no. 2 (1984): 39-48.

[90) Karlsson, J. "A Cost-Value Approach for Prioritizing Requirements." Journal

ofIEEE SOftware, 1997: 67-74.

(91] Karlsson, J. and Ryan, K. "A Cost-Value Approach for Prioritizing

Requirements." IEEE Software (IEEE Computer Society) 14, no. 5

(September/October 1997): 67 - 75.

[92] Karlsson, J. "Software Requirements Prioritizing." Proceedings of the Second

International Conference on Requirements Engineering (1CRE'96). Colorado :

IEEE Computer Society, 1996. 110-116.

[93) Konda, Kalyana Rao. Measuring Defect Removal Accurately. USA: Software

Testing PRo, 2005. v' ' o'- ~

[94) Kore!, Bogdan. "Automated Software Test Data Generation." IEEE

Transaction on Software Engineering (IEEE Press) 16, no. 8 (August 1990):

870-879.

[95) L. Brim, I. Cerna, P. Varekova, and B. Zimmerova. "Component-interaction

automata as a verification oriented component-based system specification."

ACM SIGSOFT Software Engineering Notes (ACM) 31, no. 2 (March 2006):

31-38.

[96) Leffingwell, D. and Widrig, D. Managing Software Requirements: A Use

Case Approach. Boston, MA: Addison-Wesley, 2003.

169

[97] Lei Xu and Baowen Xu. "Applying Agent into Intelligent Web Application

Testing." Proceedings of the International Conference on Cyberworlds.

Hannover, Germany: IEEE Computer Society, 2007. 61-65.

[98] Lei Xu, Baowen Xu and Jixiang Jiang. "Testing Web Applications Focusing

on Their Specialties." ACM SIGSOFT Software Engineering (ACM) 30, no. 1

(January 2005): l 0.

[99] · Lena Karlsson, Asa G. Dahlstedt, Johan Natt och Dag, Bjorn Regnell and

Anne Persson. "Challenges in Market-Driven Requirements Engineering - an

Industrial Interview Study." Proceedings of Eighth International Workshop on

Requirements Engineering: Foundation for Software Quality. Essen, Germany,

September 2002. 37-49.

[100] M Tokman, LM Davis and KN Lemon. "The WOW factor: Creating value

through win-back offers to reacquire lost customers." Journal of Retailing 83,

no. 1 (2007): 47-64.

[101] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.

Veanes. "Model-Based Testing with AsmL.NET." Proceedings of the lst

European Conference on Model-Driven Software Engineering. Nuremberg,

Germany: Microsoft Press, 2003. 11-12.

[102] M. Blackburn and R. Busser. "T-VEC: A tool for developing critical systems."

Proceedings of the 1996 Annual Conference on Computer Assurance

(COMPASS'96). Gaithersburg, MD: IEEE Computer Society Press, 1996.

237-249.

[103] M. Prasanna S.N. Sivanandam R. Venkatesan R.Sundarrajan. "A Survey on

Automatic Test Case Generation." Academic Open Internet Journal 15 (2005).

170

[104] Mahnaz Shams, Diwakar Krishnamurthy and Behrouz Far. "A Model-Based

Approach for Testing the Performance of Web Applications." Proceedings of

the Third International Workshop on Software Quality Assurance

(SOQUA'06). Portland, Oregon, USA: ACM, 2006. 54-61.

(105] Manish Nilawar and Dr. Sergiu Dascalu. A UML-Based Approach for Testing

Web Applications. Master Thesis, Master of Science with major in Computer

Science, University of Nevada, Reno, Nevada, USA: University of Nevada,

2003.

(106] Marick, Brian. The Craft of Software Testing: Subsystem Testing Including

Object-Based and Object-Oriented Testing. USA: Prentice Hall, 1995.

[107] Mats Grindal, Jeff Offutt and Sten F. Andler. "Combination Testing

Strategies: A Survey." The Journal of Software Testing, Verification and

Reliability 15 (2005): 167-199.

[108] Mats P.E. Heimdahl, Sanjai Rayadurgam, Willem Visser, Devaraj George and

Jimin Gao. Auto-generating Test Sequences using Model Checkers: A Case

Study. NASA Ames Research Center, USA: NASA Ames Research Center,

2003. •

[l 09] Maya Daneva and Andea Hermann. "Requirements Prioritization Based on

Benefit and Cost Prediction: A Method Classification Framework."

Proceedings of the 2008 34th Euromicro Conference Software Engineering

and Advanced Applications. Parma, Italy: IEEE Computer Society, 2008. 240-

247.

(110) McConnell, Steve. Code Complete. California, USA: Microsoft Press, 2004.

(111) McMinn, Phil. "Search-based Software Test Data Generation: A Survey."

Software Testing, Verification & Reliability 14, no. 2 (June 2004): 105-156.

171

[112] Mead, Nancy R. Requirements Prioritization Introduction. Software

Engineering Institute, Carnegie Mellon University, USA: Carnegie Mellon

University, 2008.

[113] Miao Huaikou and Liu Ling. "A Test Class Framework for Generating Test

Cases from Z Specifications." Proceedings of the 6th IEEE International

Conference on Complex Computer Systems (ICECCS'OO). Tokyo, Japan:

IEEE Computer Society, 2000. 164.

[114] Millard, N. "Leaming from the 'wow' factor -- how to engage customers

through the design of effective affective customer experiences." Journal of BT

Technology 24, no. 1 (2006): 11-16.

[115] MI..: Meuter, AL Ostrom, RI Roundtree and MJ Bitner. "Self-service

technologies: understanding customer satisfaction with technology-based

service encounters." Journal of Marketing 64 (2000): 50-64.

[116] Mohammed Benattou, Jean-Michel Bruel and Nabil Hameurlain. "Generating

Test Data from OCL Specification." 2002. 'I'

[117] Moisiadis, F. "A Requirements Prioritisation Tool." Proceedings of the 6th

Australian W orksbop on Requirements Engineering (A WRE'O l). Sydney,

Australia, 200 I.

[118] Moisiadis, F. "Prioritising Scenario Evolution." Proceedings of the

International Conference on Requirements Engineering (ICRE'OO).

Schaumburg, IL , USA : IEEE Computer Society, 2000. 85-94.

[119) Monalisa Sanna and Rajib Mall. "Automatic Test Case Generation from

UML Models." Proceedings of the 10th International Conference on

Information Technology. Rourkela, India: IEEE Computer Society, 2007. 196-

201.

172

[120] Myers, Glenford J. The art of software testing. New York, USA: Wiley, 1979.

(121] N. Kobayashi, T. Tsuchiya, and T. Kikuno. "A New Method for Constructing

Pair-wise Covering Designs for Software Testing." Infor-mation Processing

Letters (Elsevier North-Holland, Inc. Amsterdam, The Netherlands, The

Netherlands) 81, no. 2 (January 2002): 85-91.

(122] Neelam Gupta, Aditya P. Mathur and Mary Lou Soffa. "Automated Test Data

Generation Using An Iterative Relaxation Method." ACM SIGSOFT Software

Engineering Notes (ACM) 23, no. 6 (November 1998): 231-244.

[123) Nicha Kosindrdecha and Jirapun Daengdej. "A Test Generation Method Based

on State Diagram." Journal of Theoretical and Applied Information

Technology, 2010.

(124] Nicha Kosindrdecha and Jirapuod Daengdej. "Test Case Generation

Technique and Process." Proceedings of First International W orksbop on

Evolution Support for Model-Based Development and Testing (EMDT2010).

Ilmenau, German, 2010.

(125] Nicha Kosindrdecha
1

Siripong Roongruangsuwan and Jirapun Daengdej.

"Reducing Test Cases Created by Path Oriented Test Case Generation."

Proceedings of the AIAA Conference and Exhibition (AIAA'07). Rohnert

Park, California, USA: American Institute of Aeronautics and Astronautics,

Inc., 2007.

(126] Nigel Tracey, John Clark, and Keith Mander. "Automated program flaw

finding using simulated annealing." ACM SIGSOFT Software Engineering

Notes (ACM) 23 (1998): 73-81.

[127] NIST. The economic impacts of inadequate infrastructure for software testing.

USA: National Institute of Standards and Technology, 2002.

173

[128) Nyman, Matias. "Software Component Quality." 2004.

[129] P. Botella, X. Burgues, J.P. Carvallo, X. Franch, G. Grau, J. Marco and C.

Quer. "ISO/IEC 9126 in practice: what do we need to know?" Rome, Italy,

2004.

[130) P. E. Ammann, P. E. Black, and W. Majurski. "Using model checking to

generate tests from specifications." Proceedings of the Second IEEE

International Conference on Formal Engineering Methods (ICFEM'98).

Brisbane, Australia: IEEE Computer Society, 1998. 46-54.

(131) P. Samuel, R. Mall and A.K. Bothra. "Automatic Test Case Generation Using

Unified Modeling Language (UML} State Diagrams." Journal ofIET Software

2,2 -no. 2 (April 2008): 79 - 93.

(132) P. Stocks and David Carrington. "A Framework for Specification-Based

Testing." IEEE Transaction on Software Engineering (IEEE Press Piscataway,

NJ, USA) 22, no. 11 (November 1996): 777-793.

[133] Paga, F. G. Formal Specification of Programming Languages: A Panoramic

Primer. Australia~ Rentice-Hall, Inc., 1981.

[134] Pan, Jiantao. Software Testing (18-849b Dependable Embedded Systems).

Electrical and Computer Engineering Department, Carnegie Mellon

University, USA: Carnegie Mellon University, 1999.

[135] Park, J.; Port, D. ; and Boehm B. "Supporting Distributed Collaborative

Prioritization for Win-Win Requirements Capture and Negotiation."

Proceedings of the International Third World Multi-conference on Systemics,

Cybernetics and Informatics (SCl'99). Orlando, FL: International Institute of

Informatics and Systemic (IlIS), 1999. 578-584.

174

[136] Percy Antonio, Pari Salas and Bernhard K. Aichemig. Automatic Test Case

Generation for OCL: a Mutation Approach. Technical Report UNU-IIST

Report No. 321, Tokyo, Japan: United Nations University, 2005.

[137] Peter Frohlich and Johannes Link. "Automated Test Case Generation from

Dynamic Models." Proceedings of the 14th European Conference on Object­

Oriented Programming. Nottingham, UK: Springer-Verlag London, UK, 2000.

472 - 492.

[138] Philip Samuel and Anju Teresa Joseph. "Test Sequence Generation from UML

Sequence Diagrams." Proceedings of the Ninth ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing. Phuket, Thailand: IEEE Computer Society,

2008. 879 - 887 .

[139] Praveen Ranjan Srivastva, Krishan Kumar and G Raghurama. "Test Case

Prioritization Based on Requirements and Risk Factors." Journal of ACM

SIG SO Ff Software Engineer Notes {ACM) 34, no. 4 (2008): 1-5.

[140] Preeyavis Pringsulaka and Jirapun Daengdej. ' 'Coverall Algorithm for Test

Case Reduction." Aurospace Conference. Big Sky, MT, USA: IEEE Computer

Society, 2006. 8.

[141] Q.Nguyen, Hung. Testing Application on the Web: Test Planning for Internet­

Based Systems. USA: John Wiley & Sons, 2003.

[142) R. A. DeMillo and E. H. Spafford. "The Mothra software testing

environment." Proceedings of the 11th Nasa Software Engineering Laboratory

Workshop. Dayton, OH: Goddard Space Center, 1989. 1555 - 1561.

175

[143] R.E. Fikes and N.J. Nilsson. "STRIPS: a new approach to the application of

theorem proving to problem solving." Artificial Intelligence 2 (ACM) 2

(1971): 189-208.

[144] Rajib. "Software Test Metric." QCON. USA: QCON Corporation Training

Services, 2006.

[145] Ramesh, B. and Jarke, M. "Toward Reference Models for Requirements

Traceability." IEEE Transactions on Software Engineering 27, no. 1 (January

2001): 58 - 93.

(146] Rex, Black. Managing the Testing Process (2nd Edition). USA: Wiley

Publishing, 2002.

[14 7] Richard A. DeMillo and A. Jefferson Offutt. "Constraint-Based Automatic

Test Data Generation." IEEE Transaction on Software Engineering (IEEE

Press) 17, no. 9 (September 1991): 900-910.

[148] Rob Hendriks and Robert van Vonderen. "Measuring software product quality

during testing." Proceedings of the European Software Quality Week. San

Francisco, California, USA: Software Magazine, 2000.

(149] Robert Nilsson, Jeff Offutt and Jonas Mellin. "Test Case Generation for

Mutation-based Testing of Timeliness." Proceedings of the 2nd International

Workshop on Model Based Testing (MBT'06). Vienna, Austria, 2006.

(150] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. "Test-data generation

using genetic algorithms." Journal of Wiley Software Testing, Verification

And Reliability 9, no. 4 (1999): 263-282.

[151) S. Adolph, A. Cockburn and P. Bramble. Patterns for Effective Use Cases.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc, 002.

176

(152] S. Gnesi, D. Latella, and M. Massink. "Formal conformance testing UML

Statechart Diagrams Behaviours: From theory to automatic test generation."

ACM SIGSOFT Software Engineering Notes (Consiglio Nazionale delle

Ricerche, Istituto CNUCE), 2002: 144-153.

(153] S. R. Dalal and C. L. Mallows. "Factor-covering designs for testing software."

Technometrics 40, no. 3 (August 1998): 234-243.

[154] · S. Rayadurgarn and M. P. Heimdahl. "Coverage based test case generation

using model checkers." Proceedings of the 8th Annual IEEE International

Conference and Workshop on the Engineering of Computer Based Systems
"

(ECBS 2001). Washington, DC, USA: IEEE Computer Society, 2001. 83-91.

(155] S.J. Cunning and J.W. Rozenblit. "Automatic Test Case Generation from

Requirements Specifications for Real-time Embedded Systems." Proceedings

of the IEEE International Conference on Systems, Man, and Cybernetics, 1999

(SMC'99). Tokyo, Japan: IEEE Computer Society, 1999. 784-789.

(156] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton and

B.M. Horowitz. "Model-Based Testing in Practice." Proceedings of the

International Conference on Software Engineering (ICSE'99). Los Angeles,

CA, USA: ACM, 1999. 285-294.

[157] Saaty, T. L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.

(158] Sarni Beydeda and Volker Gruhn. "BINTEST - binary search-based test case

generation." Proceedings of the Computer Software and Applications

Conference (COMPSAC'03). Dallas, TX, USA: IEEE Computer Society,

2003. 28.

[159] Sanjai Rayadurgam and Mats P. E. Heimdahl. "Test-Sequence Generation

from Formal Requirement Models." Proceedings of the 6th IEEE International

177

Symposium on HighAssurance Systems Engineering (HASE'Ol). Boco Raton,

FL, USA: IEEE Computer Society, 2001. 23-31.

[160] Sanjai Rayadurgam and Mats P.E. Heimdahl. "Coverage Based Test-Case

Generation using Model Checkers." Proceedings of the 8th Annual IEEE

International Conference and Workshop on the Engineering of Computer

Based Systems (ECBS'Ol). IEEE Computer Society, 2001. 83-91.

[161) Sara Sprenkle, Emily Gibson, Sreedevi Sampath and Lori Pollock. "A Case

Study of Automatically Creating Test Suites fr:o Web Application Field

Data." Proceedings of the 2006 workshop on Testing, analysis, and

verification of web services and applications (TA V-WEB '06). Portland,

Maine, USA: ACM, 2006. 1-9.

[162) Sasa Misailovic, Alekasandar Milicevic, Sarfraz Khurshid and Darko

Marinov. "Generating Test Inputs for Fault-Tree Analyzers using Imperative

Predicates." Proceedings of the Workshop on Advances and Innovations in

Systems Testing (STEP'07). Memphis, TN, USA, 2007.

[163) Scahefer, Hans. "Risk-based Testing." Proceedings of STAR WEST'98. USA,

1998. •u

[164] Shammi, Marjana. "How can a QA help prevent rather than cure?" 2008.

[165) Shengbo Chen, Huaikou Miao and Zhongsheng Qian. "Automatic Generating

Test Cases for Testing Web Applications." Proceedings of the International

Conference on Computational Intelligence and Security Workshops

(CISW'07). Heilongjiang, China: IEEE Computer Society, 2007. 881-885.

[166] Silk:test User's Guide, Version 6.5. Lexington, MA: Segue Software Inc.,

2002.

178

(167] Sokenou, Dehla. "Generating Test Sequences from UML Sequence Diagrams

and State Diagrams." Proceedings of Ninth ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing. Phuket, Thailand: IEEE Computer Society,

2008. 879-887.

(168] Sommerville, Ian. Software Engineering 6th edition Chapter 20. USA: Powell,

2000.

[169] StClair, Bill. "Efficient Testing Ensures Requirements Traceability and

Verification." 2006.

[170) Stefania Gnesi, Diego Latella and Mieke Massink. "Formal Test-case

Generation for UML Statecharts." Proceedings of the Ninth IEEE

International Conference on Engineering Complex Computer Systems

Navigating Complexity in the e-Enginerring Age. Florence, Italy: IEEE

Computer Society, 2004. 75 - 84 .

[I 71] Stocks, P. Applying Formal Methods to Software Testing. PhD thesis,

University of Queensland, Queensland, Australia: University of Queensland,

1993.

(172) Suet Chun Lee and Jeff Offutt. "Generating Test Cases for XML-based Web

Component Interactions Using Mutation Analysis." Proceedings of the 12th

International Symposium on Software Reliability Engineering . Washington,

DC, USA: IEEE Computer Society, 2001. 200.

[173) The Standish Group. Chaos Report: Why IT Project Fail. USA: Standish

Group, 1994.

179

[174) Thoms J. Ostrand and Marc J. Balcer. "The Category-Partition Method for

Specifying and Generating Functional Tests." Communication of ACM 31, no.

6 (1988): 676 - 686.

[175] Tran, Hung. "Test Generation using Model Checking." Proceedings of the

Conference on Software Maintenance and Reengineering (CSMR'Ol). Lisbon,

Portugal: IEEE Computer Society, 2001.

(176) U. Farooq, C.P. Lam and H. Li. ''Towards Automated Test Sequence

Generation." Proceedings of the 19th Australian Conference on Software

Engineering. Perth, WA, Australia: IEEE Computer Society, 2008. 441 - 450 .

[177) V., Karthikeyan. StickyMinds article: Traceability Matrix. USA: StickyMinds

Website.

[l 78] Valdivino Santiago, Ana Silvia Martins do Amaral, N.L. Vijaykumar, Maria

de Fatima, Mattiello-Francisco, Eliane Martins and Odnei Cuesta Lopes. "A

Practical Approach for Automated Test Case Generation using Statecharts."

Proceedings of the 30th Annual International Computer Software and

I
Applications Conference (COMPSAC'06). Chicago, IL, USA: IEEE Computer

Society, 2006. 183-188. •O

[179] Vijaykumar, N. L.; Carvalho, S. V. and Abdurahiman, V. "On proposing

Statecharts to specify performance models." International Transactions in

Operational Research, 2002: 321-336.

[180) von Knethen, A. "Change-Oriented Requirements Traceability. Support for

Evolution of Embedded Systems." Proceedings of the International

Conference on Software Maintenance. Montreal, Canada: IEEE Computer

Society, 2002. 482-485.

180

(181] W. Eric Wong, Yu Lei and Xiao Ma. "Effective Generation of Test Sequences

for Structural Testing of Concurrent Programs." Proceedings of the 10th IEEE

International Conference on Engineering of Complex Computer Systems

(ICECCS'05). Shanghai, China: IEEE Computer Society, 2005. 539 - 548.

(182] W.T. Tsai, X. Wei, Y. Chen, R Paul and B. Xiao. "Swiss Cheese Test Case

Generation for Web Services Testing." IEICE Transactions (IEICET) 88, no.

D(12) (2005): 2691 -2698.

[183) Wagner, F. Modeling Software with Finite State Machines: A Practical

Approach. USA: Auerbach Publications, 2006.

[184] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun Li Xuandong and

Zheng Guoliang. "Generating Test Cases from UML Activity Diagram based

on Gray-Box Method." Proceedings of the 11th Asia-Pacific Software

Engineering Conference (APSEC'04). Busan, Korea: IEEE Computer Society,

2004. 284 - 291 .

[185] Weyuker, E.J. "The evaluation of program-based software test data adequacy

criteria." ACM, 1998: 668-675. o!.,.. "'

[186] Whalen, M. W. A formal semantics for RSML. Master's thesis, University of

Minnesota, USA: University of Minnesota, 2000.

[187] Wiegers, K. E. Software Requirements. Redmond, WA: Microsoft Press,

2003.

[188] Wiegers, Karl E. "First Things First: Prioritizing Requirements." Journal of

Object Technology, 1999.

(189) Wolff, Achim D. Brucker and Burkhat. "Test-Sequence Generation with

HOL-TestGen With an Application to Firewall Testing." Proceedings of the

181

1st international conference on Tests and proofs . Zurich, Switzerland

Springer-Verlag Berlin, Heidelberg, 2001. 149-168.

[190] Xiaoping Jia and Hongming Liu. "Rigorous and Automatic Testing of Web

Applications." Proceedings in the 6th IASTED International Conference on

Software Engineering and Applications (SEA'02). Cambridge, MA, USA,

2002. 280-285.

[191] Xiaoping Jia, Hongming Liu and Llzhang Qin. "Formal Structured

Specification for Web Application Testing." Proceedings of the 2003 Midwest

Software Engineering Conference (MSEC'03). Chicago, IL, USA, 2003. 88-

97.

[192] Yamaura, Tsuneo. "How to Design Practical Test Cases." Journal of IEEE

Software (IEEE Computer Society) 15, no. 6 (November 1998): 30-36.

[193] Yang, J.T., Huang, J.L., Wang, F.J. and Chu, W.C. "Constructing an object­

oriented architecture for Web application testing." Journal of Infonnation

Science and Engineering 18, 2002: 59-84. 'I'

[194] Ye Wu and Jeff Offutt. Modeling and Testing Web-based Applications.

Technical Report, Information and Software Engineering Department, George

Mason University, Fairfax, VA, USA: George Mason University, 2002.

[195] Ye Wu, Jeff Offutt and Xiaochen. Modeling and Testing of Dynamic Aspects

of Web Applications. Technical Report ISE-TR-04-01, Information and

Software Engineering Department, George Mason University, Fairfax, VA,

USA: George Mason University, 2004.

[196] Yu Qi, David Kung and Eric Wong. "An Agent-based Testing Approach for

Web Applications." Proceedings of the 29th Annual International Computer

182

Software and Applications Conference (COMPSAC'OS). Edinburgh, Scotland:

IEEE Computer Society, 2005. 45-50.

[197) Zeilcynski, Peter. Traceability from Use Cases to Test Cases. IBM Research,

2006.

[198] Zhenyu Liu, Ning Gu and Genxing Yang. "An Automated Test Cases

Generation Approach Using Match Technique." Proceedings of the 5th

International Conference on Computer and Information Technology (CIT'OS).

Shanghai, China: IEEE Computer Society, 2005. 922-926.

[199) Zhu, H., Hall, P. and May, J. "Software Unit Test Coverage and Adequacy."

ACM Comp. Survey 29, no. 4 (1997): 366-427.

[200) Zimmermann, Annin. Stochastic Discrete Event Systems: Modeling,

Evaluation, Applications. USA: Springer, 2007.

[201] Richard Denney. Calculating ROI On Your Investment. USA: August, 2006.

[202] Andrea Herrmann and Maya Daneva. Requirement Prioritization Based on

Benefit and Cost Prediction: An Agenda for Future Research. Proceedins of

161
h IEEE International Requirements Engineering Conference.

Kaiserslautern, Germany: December, 2008.

183

	Cover and Title Page
	Abstract
	Acknowledgements
	Publication
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Literature Review
	Chapter 3 : Research Problems
	Chapter 4 : Proposed Techniques
	Chapter 5 : Evaluation
	Chapter 6 : Conclusion
	References

