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ABSTRACT

A general method for numerical solution of eigenfunction problems is presented. The
method is based on differential T-transform technique and the acceleration properties
of the Padé approximation. The advantages of the method consist in its quick-action
and the possibility to find precisely the searching solution, especially in cases when
the conventional methods do not work. Mathieu's eigenfunctions at extremely high g-

parameter are obtained in order to illustrate the power of the method.
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1. INTRODUCTION

The stationary Schrédinger equation1 describes the properties of many quantum
systems interesting from practical point of view. The eigenvalues and eigenfunctions

of this equation cannot be presented in general via analytical expressions for arbitrary
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potentials and boundary conditions. For this reason, the equation has to be solved
numerically. Two basic general methods have been used in this connection: finite
difference method and Fourier transform (mostly in case of periodic potential). The
first method cannot obtain precisely the shape of the higher ‘eigenfunctions and needs
big computer memory. The second one produces divergent solutions in many cases
too. Both methods cannot process effectively the cases of nearly distributed
eigenvalues and stiff eigenfunction problems (related to localization phenomgna).

The development of a way for general semi-analytical solution of the problem
(known as Sturm-Liouville problem) on the basis of non-standard usage of known

methods and theoretical results is the subject of the present work.

2, BASIC THEORETICAL RELATIONS

Let us consider the Schrodinger operator in the following equivalent mathematical

formz’3
0%y, (x)
’ —8;’2——+v(x)y/i(x):Ei wi(x),i=0,1, ...,
2.1)

where i is an index for the corresponding eigenvalue E ; (E i<E iy 1). The lowest

eigenvalue is E 0 The index also shows how many times the eigenfunction (bound

sate, related to the corresponding eigenvalue) crosses the zero line in its integration

interval. 2-3

In practice, the eigenfunctions ¥; (x) are normalized in an interval x €

x . ;% ) instead of infinity
min max
X
max 2
J v =1, i=0,1...
:
min
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(2.2)

Usually, the boundary conditions for the eigenfunction w;(x) are known at

the points x . and x
min max

const., for thecase of periodic wave function
VilX=Xpin) = 0, whenV(x=x,.)=V(x=X,z)=
(2.3)
or for its first derivative
oy;(x) _6(//i(x) _
ox ¥ min ox 1 max

const., for thecase of periodic wave function
0, when theeigenfunction i has extremum

2.4)
representing a two-point boundary Dirichlet problem.
The solution of the equation using the finite difference method needs a high
floating point precision and large discrete mesh of points.

Furthermore, the points x(-:mlcal where the eigenvalues £ . cross the potential
p i g ; p

function v(x) (representing tuimeling effect under the existing potential barrier)

E -v(x= x4y =, i=0,1...

@2.5)

are critical for the eigenfunction calculation process 45 and the solution becomes
divergent, especially for a potential function with complicated form when the
eigenvalue crosses the potential barriers many times. But at present this situation is
regular considering electronic properties of super-lattices and quantum wells in

condensed matter physics.
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3 DIFFERENTIAL T-TRANSFORM

Approximately twenty years ago, a new transformation technique named T (Taylor)-

7 in contrast to the well known

transform has been developed by G.E. Poukhov
integral Laplace transforms and Fourier transforms. The T-transform deals with
function transforms where the representations are determined by means of the
differential operations. Numerous examples from electrical engineering, electronics,
mechanics, chemical engineering, heat engineering and computing engineering can be

solved using this transform. e

Supposing the convergency of the corresponding Taylor series for the function

y(x) in the interval x 0 * H, the T-transform consists of the following relations for the
image

k A~k
H* 0" y(x)
Y(k)= X k x:xo, k=0, 1,

3.1)

and the original

o (x—xo)k
= > ————Y(k
(x) k§0 Hk (k)
(3.2)

k
3 H
These expressions are known also as DT- e transform. ’

The basic arithmetic operations for the originals correspond to the following

operations for the images
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Table 3.1 Basic arithmetic operations for both originals and T-transform images.

ORIGINAL IMAGE
¥, +y,() Y, (k)Y (k)
dv(x) kw1
L F YFk)— 7 Y(k+1)
y @)y, @) A _
17 g VY= 2T, (kD)

Note: Here " * " denotes discrete convolution.

Using T-transform, the corresponding image presentation of the Schrodinger

equation becomes
(k +1)(k+2)
H
(3.3)

HEk+2)+ Z HDV(k-I) = E HUk), k=0,1,...

It is well known that the Taylor series are convergent near to the point x 0 and

divergent elsewhere. The T-transform forms a polynomial approximation of &™ order

to the searching solution near to the point x 0 For this reason, until now the method is

used mostly in private cases when the polynomial approximation can successfully

describe the searching solution in the integration interval H.

4. e-ALGORITHM
The convergency of the Taylor series can be improved using corresponding

acceleration techniques. The theory of the Padé approximation "

a +ax! +...+amx'"

0 i
1 n
b0 +b1x +...+bnx

P(m/n) =



4.1)
as a method for acceleration of Taylor (and non-Taylor) series can be used in the case

of T-transform to expand the interval where the initial series can be applied.
One private case of this approach is the g-algorithm, developed by Shanks !

and Wynn 2 . The method consists of &-table construction

Table 4.1 &-table.

&0 0 )Y £!
=2 0 1 2
o ! !
=5 0 1
62 82
=] 0
o
=

by the following recurrent dependence

j Jod 1
£ 32 JA LN GLPVR G TRV
x5 e 6 Sl RS UL
6 "%
4.2)
where ei 5.7 0 and sé is the /™ sub-sum of the initial series. The column gé is

identical with the Aitken's acceleration series 10 and only the even columns (k = 2, 4,

10

6, ...) give approximation to the searching solution. It can be shown that the &

table and the Padé approximation table are connected via relation

Jo o
&5, =Pkt / k)
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(4.3)
which explains the convergent properties of the g-algorithm in cases of Taylor series.

The calculation process stops when

e EIYS N
gk -ek =(
4.4)

1.e., when the necessary floating point precision for the concrete computer variables is

reached. 13 In practice, if this condition cannot be satisfied when k < 100, this is an

indication for the bad convergency of the series and they became divergent.

3. DESCRIPTION OF THE METHOD

J

o e the sub-sums of the T-transform series in Eq.

In our case, the initial series &

(3.2). We note that the g-algorithm is divergent too far away from the initial point x 0

J

) can be determined if we dispose of information

The initial T-transform series ¢

about:

- the eigenvalue E i

- the eigenfunction y/;(x =x,) = ¥(0);
. . oy
- the eigenfunction's first derivative T i = H1).

Here E i is unknown. At arbitrary E-value, starting from the boundary point x 0=

x . ,where
min
- ¥0) = 0 (eigenfunction zero point), supposing (1) = const.
or

- (1) =0 (eigenfunction extremum point), supposing ¥(0) = const.



the g-algorithm can be applied toward the series (3.2) to obtain a corresponding point

* (x . <x <x ) where the galgorithm is still convergent for the T-
new min new max

transform series. Then we can determine new series (3.2) for the new point x 0"

X It is convenient to set - s at a point where the eigenfunction has extremum

(1) = 0) or crosses the zero line (¥(0) = 0). This extremum or zero point can be
determined using binary search method. The aforesaid procedure can continue until

x - 1isreached.
max

max

For two different values E;nm and £ ; one can obtain two different

. . min (pimax _ :
solutions  y/; (Ei X) and ¥ (441, X), X (xmin, xmax)’ which have

max

min . I
. ,x—xmax)and Vi (Ei , X =

corresponding values at the point x o Vi (E ;
- ). This approach is well known in the literature as shooting method.4 The

second boundary condition can be reached using binary search method

new max min
Ei =(Ei +Ei

(5.1)

i 2

E’.’ew corresponds to a new limit E fnaxor E r‘nm' It is well known that the
l p 1

eigenfunction ¥; (x) crosses i times the zero point in the integration interval (xmin ,

4 : . new .
X Yoy i1t zcmssing denotes how many times ¥/; (E ; ,X) crosses the zero point

min new

< i, then Ei = Ei

in the integration interval. If i , else E ;nax = E?ew.

crossing
The shooting process continues until the needed precision for the eigenvalues Ei is

obtained.
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Our method allows one to obtain precisely each consecutive point of the
eigenfunction (including the second boundary point PR '= xmax) during the

shooting process. For this reason, the determination of the eigenvalues is so effective

in contrast to the shooting process applies in combination with the finite difference

method. *
The presented method has the following advantages in comparison with the
other methods :
- precise determination of nearly distributed eigenvalues;
- precise determination of higher eigenfunctions, especially at its extremum
and zero points;
- there is no need to solve systems of linear equations as in the case of finite
difference method or Fourier transform method;
- the numerical quick-action increases, since the s-algorithm ensures large
steps passing the integration interval;
- the needed computer memory for the numerical algorithm is very small;
- stiff eigenfunction problems can be solved, since the step in the integration
interval decreases or increases depending on the acceleration properties of

the g-algorithm.

6. APPLICATION TO MATHIEU'S FUNCTION

In this section we will show the power of the presented method solving a difficult
problem of the mathematical physics, where the existing at present methods do not
work properly.

14,15

The Mathieu function (elliptic cylinder function) as a solution of the

Sturm-Liouville problem of the equation

O’y (x) ,
- ?+2qcos(2x)l//i(x)=Ei w;(x), i=0,1,...
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(6.1)
represents a special function with period 27z. Here v(x)= 2gcos(2x). The default

normalization of this function in the literature is

2r 3
.[ Wi (xaq)dx =7
0

(6.2)

The function describes an one-dimensional rotator in cosinusoidal potential
with height 2q. The localization of the rotator rises increasing g. The values up to g =
20 are interesting from practical point of view.

The analytical solutions of the Mathieu function using Fourier transform are

14,15

well known. In universally accepted designations the following functions

correspond to the eigenvalues E ; as follows:

fori=4n,n=0, 1, . .. (even functions with period 7):
o0
ce, (x.q)= k§0 AZm,ZkCOS(ka)’ m=0,1,...
(6.3)

fori=4n+1,n=0,1, ... (odd functions with period 27):
o0

% g T ,EO Bom+12k+1
(6.4)

sin[(2k+1)x], m=0,1,...

fori=4n+2,n=0, 1, ... (even functions with period 27):
o0

e amios e 9 oo 2mised st
(6.5)
fori=4n+3,n=0, I, ... (odd functions with period 7):

cos[(2k+1)x], m=0,1,...

o0

se, (x,q)= kz=:1 BZm,Zk sin(2kx), m=1,2,...
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(6.6)
The eigenvalues E and the coefficients 4 and B can be found from the basic recurrent

dependence

C._,4(E-s°)C_+4qC__ =0,C=4, B;s=2m 2mtl;r=2k
q

S, r—2 S, ¥ s, r+2

2k+1 (6.7)

The initial dependencies for the different functions are:

. 2 = A, =
For e i 4) 294 omp T E A7 5 2t 9 = 0 EA  ptad 2 =0
(6.8)
force , . @ q): (E'1+Q)A2m+1,1+qA2m+1,3=0
(6.9)
forse (x q): (E'I°q)32m+1,1+qB2m+1,3=0
(6.10)
forse, (x.q): (E-9)B 2t 9B 4" 0
6.11)

These dependencies form infinite three-diagonal matrices. For example, the three-

diagonal determinant of the matrix for ce om (x, g) has the form

0 0
2q E-4 q 0
0 q E-I6 g’ .2 =0

0 0 § TE36.

(6.12)
The first 30 eigenvalues can be obtained from Eq. (6.12) with more than /6 true digits
using no more than 200 initial elements of the infinite matrix. The asymmetry of the

first sub-diagonal elements (¢ and 2¢) can be removed since the initial determinant is
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equivalent to a symmetric determinant with first sub-diagonal elements equal to \/E q.
The eigenvalues can easily be found with the needed precision using the well
developed iterative methods for these infinite matrixes. The most powerful method for
obtaining the eigenvalues of symmetric three-diagonal matrix consists of the extension
of the corresponding determinant in Sturm series. A very fast and effective algorithm

(especially for nearly distributed eigenvalues) has been realized in the procedure

BISECT. '
However, the eigen functions cannot be obtained from the Fourier series (6.3-
6.6) since they are divergent at ¢ > /. The acceleration properties of the g-algorithm
applied toward these series do not work properly. The numerical solution for the
higher eigenfunctions using finite difference method is also not effective at g > 1.
Using the method presented in this paper, we can obtain a solution at extremely

high ¢=100 (which corresponds to non-physical strong localization) and can

determine, for example, the initial 30 eigenvalues and eigenfunctions. ¥

Fig.1 represents the dependence E l,(q), q =-100 . . . 100. The form of the

potential and corresponding eigenvalues at g=/00 are shown in Fig.2. In this figure the
initial even and odd eigenvalues with different period (7 and 27) in practice coincide

with more than 6 true digits.

200 200
Eog _ AN VAR E23
150 E22 5150 \\ /l \7 /l E22
< 100 Z 100 A ] 3 F
3 - \ | /
Z sof S sop_\ / \ /
—_
;Y S —
= 2
Z sof - Sof \ / \ /
e =
o= -100 U.EJ -100 \\ /] \\ ]/
-150 f 5 -150 F
LEy e Tk \_/ gt E)
-200 - - . EO -200 A4 L ANV EO
-100 -50 0 50 100 ) ~3.14 ~1.57 0 157 3.14

Figure 1. Eigenvalues of Mathieu's equation as a function of the g-parameter
(on the left).
Figure 2. Potential function and eigenvalues (g=100) (on the right).
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Starting from x i 0 one can obtain the eigenfunctions in the interval [-7/2,

n/2] without any change of x 0 After that one can choose new points x 0 =% and x 0

= mto obtain the eigenfunctions in the intervals [-7, -7/2] and [#/2, 7].

The normalized eigenfunction Wo(x)=ce 0 (x) at g=100 is presented in Fig.3.
It can be seen that the higher localization of the eigenfunction corresponds to a stiff
numerical problem.

The normalized eigenfunction ¥ 53(x)=se 2 (x) at g=100 is shown in Fig.4.

The eigenfunction crosses 23 times the zero point. The finite difference method will

need very fine mesh of discrete points and higher numerical precision to obtain the

shape presented in the figure.

4 2.5
2
S 3t :E 1.5 F
- 2 Ly
£ = 0
<8 ) £
= Z -0.5F
S ! 5 -1.5 k
(W] _2 E
0 . . L -2.5 : . L
-3.14 -1.57 0 1.57 3.14 =3.14° -1.57 0 1.5% 3.14
DISTANCE (RADIAN) DISTANCE (RADIAN)

Figure 3. Eigenfunction ¥/, (x) (g=100) (on the left).

Figure 4. Eigenfunction ¥/,3(x) (g=100) (on the right).

In practice, our method can find precisely the eigenfunctions only, if the
eigenvalues can be obtained easily using some different method as in the case of
Mathieu's function. However, the shooting method is very effective for solving the

problem in general.
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y CONCLUSION

In this paper we have presented an ultimate method for semi-analytical solution in
general of the stationary Schrédinger equation.. The differential T-transform in
connection with &table acceleration can be used in many related problems of the
mathematical physics.

The extension of the method for solving two- and three-dimensional

Schrodinger equations on the basis of two- and three- dimensional T-transforms 7 s
based on the same idea. The theoretical and numerical treatment of many-dimensional

T-transform acceleration techniques will be published in an additional paper.
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