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i\BSTRi\CT 

This project is about self-routing in the fault tolerant modification of 
the Benes network. Benes network is a non-blocking multistage 
interconnection network constructed recursively from exchange 
elements. Fault tolerance is defined as the ability of a system to 
execute specified algorithms correctly regardless of hardware 
failures and program errors by having multiple copies of critical 
hardware components or subsystems. In the Benes network, there is 
more than one independent path for each input-output pair, so that 
in principle it is possible to bypass single faults and to realize any 
given permutation in two passes without extra stages. If the first and 
last stages are augmented with multiplexors and demultiplexors, then 
the modified Benes network will be fault tolerant to single faults. A 
self-routing permutation network is a connector, which can set its 
own switches to realize any one-to-one mapping of its inputs onto its 
outputs. A self-routing switch routes a message to its destination 
using only the information contained in the message without 
requiring knowledge about other connections. In this project we will 
implement the self-routing algorithm in fault tolerant Benes network 
for certain permutations. 
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INTRODUCTION 

The term parallel processing refers to a large class of methods that 
attempt to increase computing speed by performing more than one 
computation concurrently. A parallel processor is a computer than 
implements some parallel processing technique. All modern computers 
involve some degree of parallelism. Two major types of parallel 
computers are considered: pipeline (vector) processors and 
multiprocessors. 

1\tlULTIPROCESSOR SYSTEMS 

There has been a debate on whether one fast processor would be faster 
and more cost effective than a system with more than one slower but less 
expensive processor. However now it is apparent that multiple processors 
must be used to obtain improvements in speed even though the 
difficulties of using more than one processor on a single problem have 
not been resolved. Multiprocessor systems are also designed to gain fault 
tolerance, i.e. to be able to continue operating in the presence of hardware 
(and possibly software) faults. Hardware fault tolerance is achieved by 
the addition of circuits that are not necessary for normal operation but 
that enable the system to continue if the faults occur. The number of 
faults that can be present is limited and dependent upon the system 
design. Specific applications in which computer systems must continue 
operating for as long as possible or over an initial period of time. For 
example, the computer system in an aircraft must continue working while 
operating with aircraft, and a faulty system could lead to losses of life. 
Fault tolerance is also extremely important in the military areas, 
commercial field and manufacturing plants. 

MULTIPROCESSOR CLASSIFICATIONS 

A number of taxonomies of parallelism have been proposed. The earliest 
is probably Flynn's originally proposed in 1966. A normal single 
processor stored program computer (von Neumann computer) generates a 
single stream of instructions, which acts upon single data items. Flynn 
called this type of computer a single instruction stream-single data 
stream (SISD) computer. In a general-purpose multiprocessor system, 
one instruction stream is generated for each processor. Each instruction 
acts upon different data. Flynn called this type of computer a multiple 
instruction stream-multiple data stream (MIMD) computer. Apart 
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from these two, there are computers in which a single instruction stream 
is generated by a single control unit and the instructions are broadcast to 
more than one processor. Each processor executes the same instruction, 
but using different data. The data items form a vector and the instructions 
act upon the complete vector in one instruction cycle. Flynn called this 
type of computers a single instruction stream-multiple data stream 
(SIMD) computer. The fourth combination, multiple instruction 
stream-single data stream (MISD) computer does not exist, unless one 
specifically classifies pipelined architectures in this group or possibly 
some fault tolerant systems. 
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Figure: Distributed Memory System 

Singie instruction stream-multiple data stream (SIMD) multiprocessor 
computing systems occupy a central place among parallel computing 
system architectures. In these systems, N processors or "processor 
elements" (PE) execute the same instruction with different operands. 
SIMD computers are vector machines with speed currently in the range of 
biliions and tens of billions floating point arithmetic operations per 
second; the number of processors in the system may reach several 
thousands. One of the main difficulties in Slt\tID computers, as in other 
paraliei systems is timely delivery of data to ali processors. Efficient 
choice of switching networks helps to overcome this difficulty. 
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Two basic switching structures are available for SIMD computers. In the 
first structure, each processor has its own individual memory M and is 
linked by a switching network to other identical processors. In the second 
structure, the switching network is interposed between the processors and 
the shared memory modules M of all the processors. 
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The advantage of the second switching structure compared with the first 
is that each processor has access to the entire addressing space of the 
shared memory. The main shortcomings are additional delay introduced 
by the switching network when accessing the memory and the possibility 
of collision when two or more processors try to access the same memory 
module. 

INTERCONNECTION NETWORK 

Interconnection networks (also known as permutation networks) are used 
for regular interconnections of processors in a paraliel computer. Such a 
network consists ofN nodes, also known as switches, each of which has k 
input and output lines. 

Interconnection networks can be divided into two categories: dynamic 
and static. Dynamic connection means the path between two entities (PE 
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to memory or PE to PE) may change from one communication to next~ 
static connection means the network topology stays the same ail the time. 

Interconnection networks are critical to parailel systems because their 
performances are closely related to network latency and throughput. 

An interconnection network of size N, where N = 2n, for some n, n~O, has 
n + I stages numbered 0 through n (the stages will appear in increasing 
order from left to right in the figures). Each stage has N nodes. Nodes in 
stage 0 are called initial nodes and those in stage n are final nodes. Each 
non-initial node has two input ports, known as top and bottom. Each non­
final node has two output ports known as top and bottom. Each output 
port of a node in stage i is connected to a distinct input port of a node in 
stage i + 1, 0 < i < n. 

CLASSIFICATION OF INTERCONNECTION NETWORKS 

BY CONNECTIVITY 

1. Blocking 
2. Non Blocking 
3. Rearrangable 

1. Blockin2 Network 

A blocking network is always formed by some specified permutation and 
do not allow nay permutation. Examples are Crossbar, Clos network and 
Benes network 

2. NonBlockin2 Network 

A non-blocking network is capable of providing N parallel paths between 
pairs of nodes forming any arbitrary permutation. Examples are Shuffle 
Exchange, Omega network and Hypercube network. 

• "Strictly non-blocking": If it is always possibie to connect an idle 
inlet to an idle outlet, regardless of the state of the network. 

• "Non-blocking in wide sense": If by suitable choosing routes for 
new calls it is possible to avoid all the blocking states and still to 
satisfy all demands for connection as they arise, without having to 
rearrange existing calls. 
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3. Rearrane;able Network 

A rearrangeable network is an interconnection network, which can 
achieve all possible permutations of its inputs' connections to its outputs. 
In a rearrangable network, a blocked call can always be unblocked by 
assigning new routes to the call in progress. One class of rearrangeable 
networks, are Clos three-stage nef\vorks. Earlier procedures to route such 
networks rapidly require an excessive amount of hardware, either in the 
network itself or in the device required to compute the routing. 

BY TOPOLOGY 

Topology is the structure of the interconnection network, which 
determines 

-Degree: number of links from a node 
-Diameter: max number of links crossed between nodes 
-Average distance: number of hops to random destination 
-Bisection: minimum number of links that separate the network 
into two halves. 

Interconnection networks can be divided into two categories by topology: 

1. Static Topologies 
2. Dynamic Topologies 

STATIC TOPOLOGIES 

Static connection means that the network topology stays the same all the 
time. The static network is characterized by node degree, number of links 
(edges) connected to the node. 

Meshes and Rine:s 

The simplest - and cheapest - way to connect the nodes of a parallel 
computer is to use a one-dimensional mesh. Each node has two 
connections, boundary nodes have one. If the boundary nodes are 
connected to each other, we have a ring, and all nodes have two 
connections. The one-dimensional mesh can be generalized to a k­
dimensional mesh, where each node (except boundary nodes) has 2k 
connections. Again. boundarv nodes can be connected. but there is no 

- -' J _, 

general consensus on what to do on boundary nodes. 

6 



(a) 1-DMesb (bj 2-DMesh (cj Ring 

However, this type of topoiogy is not suitable to build large-scaie 
computers, since the maximum message iatency, that is, the maximum 

delay of a message from one of the N processors to another, is "/y; this 
is bad for two reasons: firstiy, there is a wide range of latencies (the 
latency between neighboring processors is much lower than between not­
neighbors ), and secondly the maximum iatency grows with the number of 
processors. 

In a star topology there is one central node, to which all other nodes are 
connected· each node has one connection excep·t the center node vvhich 

' ' ' 
has N-1 connections. 
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Figure: Star Topology 

Stars an~ also not suitable fo1 large syski11~, ~im.;t; litt; 1,;t;Hi.1;;r rn.Jc.k w iii 
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Hypercubes 

The hypercube topology is one of the most popuiar and used in many 
large-scale systems. A k-dimensional hypercube has 2k nodes, each with k 
connections. 

Hypercubes scale very well, the maximum latency in a k-dimensional 
hypercube is log2 N, with N = 2k. An important property of hypercubes is 
the relationship between node-number and which nodes are connected 
together. The rule is, that any two nodes in the hypercube, whose binary 
representations differ in exactly one bit, are connected together. For 
example in a four-dimensional hypercube, node 0 (0000) is connected to 
node 1 (0001), node 2 (0010), node 4 (0100) and node 8 (1000). This 
numbering scheme is called Gray code scheme . 
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Figure: 4-D Hypercube Topology 

ROUTING ALGORITHMS 

Routing algorithm determines 

/ 
/ 

•which of the possible paths are used as routes 
• how the route is determined 

Routing Delay 

Routing delay is a function of the number of channels (hops) on the route, 
i.e. routing distance h, delay D incurred at each switch as part of the 
output port selection. Routing distance depends on network topology, 
routing algorithm, and source and destination node. 
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Meshes and Rings 

Typically, in meshes the so-called dimension-order routing technique is 
used. That is, routing is performed in one dimension at a time. In a three­
dimensional mesh for example, a message's path from node (a, b, c) to the 
node (x, y, z) would be moved along the first dimension to node (x, b, c), 
then, along the second dimension to node (x, y, c), and finally, in the third 
dimension to the destination-node (x, y, z). 

Routing in stars is trivial. If one of the communicating nodes is the center 
node, then the path is just the edge connecting them. If not, the message 
is routed from the source node to the center node, and from there to the 
destination node. 

Hypercubes 

A k-dimensional hypercube is nothing else than a k-dimensional mesh 
with only two nodes in each dimension, and thus the routing algorithm is 
the same as for meshes; apart from one difference: the path from node A 
to node B is calculated by simply calculating the exclusive-or X = A E8l B 
from the binary representations for node A and B. If the i-th bit in X is '1' 
the message is moved to the neighboring node in the i-th dimension. If 
the i-th bit is 'O' the message is not moved anyway. This means, that it 
takes at most iog2N steps for a message to reach its destination (where N 
is the number of nodes in the hypercube). 

DYNA~IIC TOPOLOGIES 

Dynamic connection means the path between two entities (PE to memory 
or PE to PE) may change from one communication to next. 

SINGLE-STAGE NETWORKS 

Buses and crossbars are the two main representatives of this class. A bus 
is the simplest way to connect a number of processors with each other: all 
processors are simply connected to one wire. This makes communication 
and especially message routing very simple. The drawback of this type of 
network is, that the available bandwidth is inversely proportional to the 
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number of connected processors. This means, that buses are good only for 
small networks with a maximum of about 10 processors. 

Bus 

••• 
i 

I Pn 
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The other extreme in terms of complexity is the crossbar network. With a 
crossbar full connectivity is given, i.e. all processors can communicate 
with each other simultaneously without reduction of bandwidth. In the 
figure, the connection of n processors with m memory modules (as in a 
shared memory system) is shown. Certainly crossbars can also be used to 
connect processors with each other. In that case the memory modules are 
connected directly to the processors (which results in a distributed 
memory system), and the lines that were connected to the memory 
modules Mi are now connected to the processors Pi. 
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Figure: Crossbar Network 
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To connect n processors to n memoi:y modules n2 switches are needed. 
Consequently, crossbar networks cannot be scaled to any arbitrary size. 
Today's commercially available crossbars can connect up to 256 units. 

l\!IULTISTAGE rNTERCONNECTION NETWORKS 

IvI ultistage interconnection networks (I\/IJN s) provide more cost-effective 
communication than crossbar networks and higher-bandwidth 
communication than bus systems. Multistage switch ing networks are 
designed for both synchronous and asynchronous parallel systems with a 
large number of PEs (hundreds or more). An N x N multistage switching 
network is a communication network with N input terminais (sources) 
and N output terminals (destinations) composed of a certain number of 
stages of switching elements (with 2 X 2 switching elements, the number 
of stages is usually not less than log2N). Each stage is connected to the 
next stage by at least N data transmission lines between any source­
destination pair. Each switching element may select from two or more 
output lines when establishing a connection with an input line. 
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Three-stage MIN 

An optimal switching element has two inputs and two outputs. It has been 
shown theoretically that such an element ensures the least number of 
connection points. Moreover control algorithms for networks of two input 
elements. 
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Figure: Shuffle-Exchange Switching Elements 

The figure shows possible states for a 2 X 2 switch. With integrated 
circuit implementation of such switches, their input length may vary from 
one bit to one word. 

Important network properties include blocking of information in the 
network; speed, i.e. the rate of transmission of a message from the source 
to the destination; ease of use, i.e. the degree to which the connections are 
automatically established in the network; partitionability, i.e. the 
possibility of partitioning the system into subsystems of different size; 
modularity; i.e. the possibility of constructing the system from a limited 
number of LSI chip; extensibility; i.e. the possibility of extending a given 
system to a larger size or in other words the amount of changes required 
to make the system work with great number of inputs and outputs; fault 
tolerance; i.e. the ability of the system to remain functional even when 
some components are faulty. 

One of the most important parameters of a switching network is the 
connectivity or combinatorial power C. this is defined as the ratio of the 
number of permutations r realized by a network to the total number of 
permutations of N elements, which is equal to N! 

C = r/N! where l:::;r:sN! 

Other conditions being equal, the greater the parameter C, the higher is 
the MSN throughput. Another network parameter is Q, the average 
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number of source-destination pairs that can simultaneously exchange 
information, assuming that all the N ! permutations are equiprobable. An 
important' technological parameter of the network is the switch bandwidth 
B, which depends on the interconnection of the switch components. 
Another parameter is the message delay D in the switching network. T­
the broadcast scope characterizes the ability to transmit information from 
one source simultaneously to a group of destinations. 

BASIC TYPES OF DATA TRANSFER 

The choice of the switching network depends on the frequently used 
types of messages. The main types of permutations belong either to BPC 
or to Omega class. Such permutations usually have names and they are 
listed together with their names as below where each equation shows the 
mapping of a source to the destination. 

BPC Permutations 

A permutation is cailed a BPC permutation if the destination tag can be 
obtained from the source tag by permuting the bits in the source address 
(s!l-! sn_2 ... s1 so) and/or complementing some or. a11 of its bits positions. 
The class BPC (n), N=2", only contains N(lo~)! of the possible N! 
permutations. Nevertheiess, many of the permutations encountered in 
parallel algorithms are included in this class. For example, Lenfant 
identifies five families of "frequently used bijections" (FUB). Three .of 
these FUB families (namely a("\ ~(n\ y(n)) are 1included in this BPC (n). 

Shuffle: 

Vector Reversal: 

TI vector reversal = (Sn-I Sn-2 · · · S1 So) 

Butterfly: 

TI butterfly= (So Sn-2 ... S1 Sn-I) 

Exchange: 
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Fiip: 

11 flip = s EB o where 1 :'.S o ::;211 -1 

Unshuffle Permutation: 

TI 1mshuffle = (sn-2 Sn-3 · · · So Sn-1) 

Bit Reversal: 

fl bit reversal =(so Si . ·· Sn-2 Sn-1) 

Matrix Transposition: 

Si-I ... SJ So S2l-l ... Si+ l SJ if n = 21 

TI matrix transposition = 
SJ-I ... SJ So S21 ... Si+ J S1 ifn= 21+1 

Bit Shuffle: 

TI bit shuffle = 

Shuffle Row ~lajor: 
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rr shuffle row major = 

Omega Permutations 

Lawrie has defined the class of omega permutations to consist of exactly 
those permutations realizable by omega network. Inverse omega 
permutations are realizable using an omega network backwards. The 
followings are some examples of inverse Omega permutations: 

Cyclic Shift Of Amplitude k: 

rr cyclic shift of amplitude k = (js+ k) mod 2n where 1 :5 k :5 2n, and j is odd 

Cyclic Shift Within Segments: 

IT cyclic shift wit!tin segments= o EB (s+k) mod 211
-j where l S k S 211, and o is the 

number equivalent to the j most significant bits in the binary 
representation of s. 

Unscrambling j-Ordered Vectors: 

fl unscramblingj-orderedvectors =(js) mod 2k EB(sk ... Sn-2 Sn-1) 2k where l S k Sn, 
andj is odd 

MULTISTAGE SWITCHING NETWORKS WITH BLOCKING 

Multistage switching networks for SIIVID computers can be divided into 
two main categories: blocking networks, in which certain permutations 
may lead to collision and non-blocking networks. For blocking networks 
we obviously have C<l, while for non-blocking networks C;;;;l. 

Blocking networks for SIMD computers usually allow self-tuning or 
distributed control, while non-blocking networks require centralized 
control, and the setup of such network is very time consuming. This 
accounts for the considerable popularity of blocking networks in SIMD 
computers. 
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Typical representatives for blocking networks are Omega network and 
the n-cube network. An 8 X 8 omega network is shown in the figure. 

Stages 2 1 0 

The 6x8 omega network 

Each stage in this network implements the interconnections by the ideal 
shuffle scheme. This network is defined by two functions: the shuffle 
function and the exchange function. The shuffle function is 

shuffle (sn-1 Sn-2 ... S1 So)= Sn-2 Sn-3 ... S1 So Sn-l 

The exchange function is defined as: 

exchange (sn-1 Sn-2 ... S1 so)= (sn-1 Sn-2 ... St So) 

This network connects 2N nodes using N stages, with each stage 
containing 2N-l switches. Successive stages are interconnected in a pattern 
called the perfect shuffle. The Omega network is a blocking network, 
because some messages may be blocked by the settings required for other 
messages. In addition, it is not fault tolerant; if a single switch fails; some 
connections are no longer possible. By adding additional stages, we may 
increase fault tolerance and reduce or eliminate blocking. The omega 
network has the problems with output port contention and path 
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contention. Path contention and output port contention can seriously 
degrade the achievable throughput of the switch. 

The n-cube network belongs to the same network as omega network. It 
derives it names from its geometrical interpretation as n-dimensional 
cube whose vertices are the processor addresses in binary representation. 
An 8 X 8 cube is shown in the figure. The synthesis algorithm for the 
cube network is quite simple. If the upper and lower outputs for each 
switch have the same addresses as the upper and lower inputs, then the i­
th stage pairs on the switch inputs those input lines whose addresses 
differ only in the i-th position(in the binary representation of the terminal 
addresses). Functionally the cube is equivalent to the omega network, i.e. 
it realizes without collision the same classes of permutations and has the 
same control algorithm. 
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For a network with N= 211 inputs and binary representation of the input 
address in the form gn_1gn_2 ... g1g0, the cube network may be regarded as 
consisting of n functions: 

Cube and Omega are essentially topological modifications of the same 
network. The same class of networks also includes the so-called indirect 
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cube ( the full name is "indirect binary n-cube"). In the indirect binary n­
cube network, the sequence of stages is reversed compared to the direct 
cube. The indirect cube is functionally equivalent to the direct cube with 
all input and output addresses transformed from gn_1gn_2 ... g1g0 to g0gl ... 
gn+ 

lo ·1 ~~ 
I I rlD 

2 co 
3 [] 
4 EJ 
5 LJ 
6 [O 
7 ~co 

Figure: The 8 X 8 Indirect Cube Network 

From the list of frequently used permutations, the cube network and its 
modifications realize without coliision all the arbitrary shifts, including 
shifts within segments, but neither ideal shuffle nor reversal can be 
realized in one pass through the network, i.e. these networks fail. 

Banyan networks are topologically equivalent to cube networks. However 
banyan networks differ from the cube by their use of the switching 
elements, which have six, and not four, admissible states. 

A fundamental property of different networks considered above is that 
they all lay a unique path from each input to output. This produces 
intersecting routes and may cause collision in the network. 
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THE BENES NETWORK AND ITS MODIFICATIONS 

A second class of multistage switching networks that are of considerable 
practical interest is so called Clos-Benes non-blocking network 
representing a fairly wide class of network topologies. The objective was 
to develop a multistage network realizing crossbar switching functions, 
i.e. no blocking, yet having fewer connection points than in crossbar 
networks. 

Let N=dq, where d and q are integers. Then the NXN Clos network is 
representable by three stages. 

N.xH 
d d 

delements 

\ J=r_~ 
\

I 

~\·fr-- d+1 

/1 1---2d 

f
l~ i 

8 
\ Nld elements 

, l -t- N-
~-Nd+1 

Base-<! N J< N Clos naiwork. 

The input and output switches contain N/d dxd subnetwork each. The 
intermediate stage consists of d identical N/d x N/d subnetwork. Such a 
network is usually termed as base-d network. 

Such networks are fairly efficient in terms of hardware costs and are 
known in the literature as rearrangable because in case of blocking there 
is always a possibility of realizing the desired connection by rearranging 
some of the previously established connections. For these networks there 
are algorithms for collision free realization of arbitrary permutations with 
simultaneous establishment of all the specified connections in this 
network. This is typically of the class of synchronous systems, which 
includes the SIMD computer systems as a particular case. Thus for 
rearrangable networks C=l. 
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For d=2, successive decomposition of the middle stage into three stage 
structures produces a network implemented using only two input 
elements. The network constructed in such a way is called Benes 
network. The figure shows a base-2 8 X 8 Benes network. 
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With N= 2n inputs, the Benes network has 2log2N -1 stages. lts main 
shortcomings as compared with cube netv1orks is the need for centralized 
control; moreover it uses a complex and essentially sequential algorithm 
in order to computer the coliection of signals controlling subnetwork 
switching (the "control vector" in what follows) during the realization of 
an arbitrary permutation. 
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Characteristics Of Benes Network 

• This is a multistage network constructed recursively from exchange 
elements. 

• The Benes network is non-blocking. 

• It has 2log2N-l columns and N/2 exchange elements. 

• The Benes network is harder to control than a crossbar. 

• The Benes network can perform any permutation ofN inputs. 

Construction Of The Benes Network 

• A general permutation can be described as a set of N (source, 
destination) pair. 

• Let us consider the set (0,0), (1,1 ),. .. as the pennutation in order to 
construct the Benes network. 

• For each level of recursion, we construct one column ofN/2 (input) 
exchange elements followed by two Benes networks of size N/2 
inputs and output (upper and lower N/2 permutations), followed by 
one column of N/2 (output) exchange elements. 

• We pick one source and set the input exchange box to send it to the 
upper N/2 permutations. 

• Using the upper permutation, we connect its output to the output 
exchange box, which is associated with the correct destination. 

• We set the output exchange box to connect to the correct 
destination. 

• Now working backwards, we connect the paired destination (the 
second destination on the output exchange box) to the lower N/2 
pennutation. 

• We find the source pair matching this destination and set the lower 
permutation to connect it to the correct input exchange box (for the 
source). 

• We set the input exchange box to connect to the correct input. 
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LOOPING ALGORITHM: 

The so-called looping algorithm is the basic for interconnection control in 
Benes network. We assume that the Benes is required to realize the 
permutation o: 0 ~3, 1~1, 2~4, 3~0, 4~2, 5~6, 6 ~i,7~5 which is 
""""' 11·' .. 0 pr0
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0 "t0 r1 11· ... th"' ""'mpa"t .f:orm · U"Ual y l v '"'"'-'ll '-'U l H'-' L<VH '"' ii l l. 
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First this permutation should be described as an interconnection map. The 
pair of network inputs that belong to the same switching element of the 
output stage defines the row address and the pair of network input that 
belor1g to the same switching element of the input stage defmes the 
column address. Crosses in the corresponding positions mark pairs of 
input-output connections of the given permutations. Then the input into 
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the map is chosen arbitrarily. For example, choosing as the starting point 
the cross in row 23 and column 01, we look for the next input in the same 
row or same column so as to form a loop. In figure, the input in row 23 



and column 45 is chosen. The process is continues until no loop can be 
formed because we return to row 23 and column 01. The loop inputs are 
then alternately named as a and b. a second loop is formed similarly. 
Then the input and output lines named a are assigned to the subnetwork a, 
while the lines named b are assigned to the subnetwork b. The resulting 
control of the input and output switching elements are shown in the 
figure. 
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Figure: States Of Input And Output Switches 

Using the given permutations and the established connections in the input 
and output stages, we can easily identify the permutations that should be 
realized by the sub networks a and b. Then the looping algorithm is 
recursively applied to _both sub networks. 
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Such algorithms run in time 0 (Nlog2N). These time requirements to 
compute the control vector are obviously very large and may be totally 
unacceptable in some cases. To avoid this difficulty, we can compute the 
control vectors in advance(" e.g., in the compiling stage) and store them 
in a "control vector table". Such tables take up a lot of memory space-not 
less than (2log2N-1) N/2 bits per control vector for one permutation. 

FAULT TOLERANT SWITCHING NETWORKS 

With a large number of processors (hundreds and thousands), the 
networks are fairly complex devices. The switching control algorithm is 
also fairly complex-essentiaUy for Benes network. Since the reliability of 
a switching network has a direct impact on the reliability of the entire 
system, reiiabiiity improvement can be achieved by designing networks 
that are fault tolerant with respect to single faults (usually). The problems 
of designing of a fault tolerant network is formulated as follows: 

1. For single faults in the switching eiements and tneir 
interconnections, the network should realize without collision the 
original classes of admissible permutations. 

2. A fault tolerant network should have a sufficiently simple 
algorithm that will rearrange it in case of a fault 

3. Network control should be capable of partitioning the network into 
sub networks of equal size, coupled both electrically and 
structurally. The last requirement makes it possible to disconnect 
the faulty half of the network for repair, while the non-faulty half 
continues functioning, emulating the complete switching network 
with performance reduced by a factor of 4. 

Fault tolerance implies neutralization of the effect of fauits in the 
network. This is possible only if provide static redundancy, e.g. masking 
in a three-fold majority voting structure, or dynamic redundancy, which 
pinpoints the fault and reconfigures the network or the data flows. In 
what follows, we consider dynamic redundancy techniques. 

The data transmitted in a single clock cycle through the switching 
networks may be one bit, one byte or one processor word. In the last two 
cases, faults may be detected by appending a parity bit or several bits in 
the Hamming code. However these methods, while signaling the 
existence of a fault, do not pinpoint the fault location in the switching 
network. It is better to use for this purpose special diagnostic tests which 
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are run periodically as part of network testing or after a fault has been 
detected. 

Simple and efficient diagnostic tests available for the class of single 
struck- at faults const = 1 (or = 0) on one of the information inputs 
(outputs) or on the control input of the switching element in a base-2 
switching network. The main idea is to apply an combination to the N 
network inputs such that each switching element receives the signal 01 or 
10 on its two inputs, with the same control signal on all the elements. As 
all the input values are inverted in a non-faulty network, each output 
terminal should successively produce the two values 01 and 10. if this 
sequence is not observed on one fo the output terminals, there is a fault in 
the information channel connected with this element. Repeating the same 
test for inverted values of the control signal on each switching element, 
we may detect another information channel passing through the same 
faulty component. The fault is in the component, which is common to 
both information channels. 

These tests are similarly applied to check for control signal faults. An 
error in the output signal is detected by comparing the output values with 
a reference. A reference signal is needed because if there is a fault in the 
control signal of the switching elements in the last stage, a 1-out-of-2 
code will not be violated on the network output terminals (unlike the case 
of such a fault in all the other stages), and the output therefore have to be 
tested by comparison with reference values. 

All the above remains valid for cube and omega networks, their 
generalizations and also for Benes networks. Thus a base-2 switching 
network can be diagnosed by four test combinations, which identify the 
faulty switching element or the faulty component in the transmission 
channel. 

The diagnostic results make it possible to move to the next stage of 
recovery in a faulty switching network neutralizing the effect of the fault. 
Here two approaches are available. The first relies on the introduction of 
an extra stage in cube networks. Because of the extra stage, there are now 
two paths from any source to any destination in the switching network. 

The second approach designs a switching network with a given constant 
number of nonintersecting routes from any source to the destination. For 
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blocking networks, the existence of alternative routes is ensured by a 
special choice of the switching element base in the network. 

In an 8 X 8 cube network the main idea that achieves the fault tolerance is 
the introduction of an extra stage from the side of the data source (stage 
3 ). As a result each source can access through a switching element two 
inputs of a cube subnetwork. In the cube network there is a unique path 
from each source to any destination, and therefore in a non-faulty 
network with an extra stage, two different routes lead them from the extra 
stage inputs to the same destination. These routes are non-intersecting, 
and therefore in case of a fault on one of the routes, the "conjugate" route 
may be used. 
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In the Benes network, there are more than one independent paths from 
one input-output pair, so that in principle it is possible to bypass single 
faults and to realize any given permutation in two passes without extra 
stages. If the first and last stages are augmented with multiplexors­
demultiplexors, then the modified Benes network will be fault tolerant to 
single faults. In this case, fault tolerance is also accomplished in two 
passes through the network. In the first pass, the data are switched 
through the non-faulty paths. Because of the perfect symmetry of the two 
aitemative paths between the same pair of input-output terminals, the data 
are switched to the aitemative path in the second pass by passing the 
control signal from the switching element of one "storey" of intermediate 
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stages to another "storey". The control signals are generated in advance 
for the given interconnection list by one of the known algorithms, 
assuming anon-faulty network. The control for the switching elements of 
the first and the last stages participating in the unrealized connection is 
reversed, i.e. if one element was initially connected "straight", it is now 
switched to "exchange" and conversely. 

If the fault is detected in the first or the last stage, then the network 
control is somewhat different. Specifically if the fault is detected in a 
switching element of the first (last) stage connected "straight", then this 
element is disconnected, the bypass multiplexors-demultiplexors are 
activated, and the required switching can be realized even in a single 
pass, because all the other control signals are not altered. If the faulty 
element was realizing exchange function, then the faulty element is 
disconnected, all the input-output elements, except those connected to the 
faulty element, are switched in the first pass, and the bypass multiplexors­
demultiplexors of the faulty element are activated in the second pass, 
when the control signals from the first storey of intermediate stages are 
transferred to the second storey and conversely, thus exciting two 
aitemative paths relative to the initial paths in the faulty network. 

The modified Benes network allows decomposition of the entire network 
into two sub networks of equal size, so that the non-faulty half can 
emulate the entire network. This decomposition is useful during the 
recovery of the faulty half of the network. 

A SELF-ROUTING PERl\iiUTATION NETWORK 

A self-routing permutation network is a connector, which can set its own 
switches to realize any one-to-one mapping of its inputs onto its outputs. 
A self-routing switch routes a message to its destination using only the 
information contained in the message without requiring knowledge about 
other connections. Self-routing has several advantages over a global 
routing scheme: the routing time of a self-routing network is the same as 
the propagation delay in the network; if the address decoding logic at 
each switch can be kept simple then the hardware cost of a self-routing 
wiU in general be less than that of a network with global routing scheme. 
Consequently, self-routing scheme reduces the connection complexity for 
the control Jines. Again, as the control is distributed in self-routing 
network to each switch, it is less susceptible to the faults of a switch. 
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An Example Of Self-Routing Algorithm For Omega Network 

The omega network is another example of a banyan multistage 
interconnection network that can be used as a switch fabric. The omega 
MIN uses the "perfect shuffle". The interconnections between stages are 
defined by the logical "rotate left" of the bits used in the port ids 

•Example: 000 ---> 000 ---> 000 ---> 000 
•Example: 001 ---> 010 ---> 100 ---> 001 
•Example: 011 ---> 110 ---> 101 ---> 011 
•Example: 111 ---> 111 ---> 111 ---> 111 

Omega network has self-routing property. The path for a ceU to take to 
reach its destination can be determined directly from its routing tag (i.e., 
destination port id). 

• Stage k of the MIN looks at bit k of the tag, 
• If bit k is 0, then MIN sends celi out to the upper port. 
• If bit k is 1, then MIN sends cell out to the lower port. 

Cell destined for output port 4 (= 1002) from port 1 
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ALGORITHM FOR SELF-ROUTING IN BENES NETWORK 

Here we investigate the possibility of rapidly obtaining the switch settings 
of the Benes network for certain classes of permutations. It is shown that 
by providing a "destination tag" with each signal and by adding some 
simple logic to each switch in the Benes network, it is possible for each 
s\vitches to determine its own setting dynamically (i.e., when it receives 
the incoming signai). The resulting network can perform certain 
permutations in 0 (logN) time (including the setup time). It is 
demonstrated that the richness of the set F (the set of permutations 
realizable on "self-routing" Benes net\vork) includes most classes of 
permutations studied in the parallel processing literature. 

Let Di be the "destination tag" on input terminal i, Os i :S N-1. Here (Dn-i 
Dn-2 ... D1 Do) is a permutation of (N-1, ... , 1,0). The data at input 
terminal i is to be routed to output terminal Di. The switch settings are 
determined from the binaiy representation of Di. If an N= 2n input I 
output Benes net\vork is being used, then there are 2n- l stages of 
switches whose settings need to be used. Let the stages be numbered 0 
through 2n-2. the state of a switch in stage b or stage 2n-2-b, Os b :S n-1, 
is determined by bit b of the destination tag of its upper input. Tf bit b is 0, 
the switch is set to state 0, otherwise to state 1. 

Figure shows the switch settings obtained by this procedure for bit 
reversal. The destination for each switch input is given on the respective 
input line. 
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Figure: Bit Reversal Permutation Using Seif-Routing Algorithm 

The number of switches and delay in this self-routing network are both 
about twice the corresponding figures in a self-routing Omega network. 
However the number of permutations realizable on Benes networks (i.e. 
the cardinality of the set F) is much larger than that of an omega net\vork. 

F is the set of permutations realizable on "self-routing" Benes network. 
David Nassimi and Sartaj Sahni concluded that BPC (n) c F (n) and Inc 
F(n), i.e., an of Lenfant's five famiiies of"frequently used bijections" are 
included in F(n). This is because as commented earlier, three of the PUB 
.i:: ·1· . BPC d h . . . I" 1am11es are m _,an t e remammg two m _,),~. 

Unfortunately, not all O(n) permutations are in F (n). However, as 
mentioned earlier, many Q(n) permutations of interest (e.g., cyclic shift 
and p-ordering) are also in IO(n), hence in F (n). By providing the self­
routing network with some additional simple logic, the network can 
handle all Q(n) permutations as well. Since the last n stages of B(n) 
correspond to an omega network, it is easy to see that an O(n) 
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permutation can be realized on Benes network if the switches in stages 0 
through n-2 are all placed in state 0, while the remaining n stages obey 
the self-routing scheme described earlier. One way to implement this on 
the Benes network is to provide an additional "omega" bit with each 
"destination tag". (This bit will be equal to I if and only if we are 
perfom1ing an omega permutation.) Each switch in stages 0 through n-2 
places itself in state 0 if it finds the "omega" bit= 1, otherwise the switch 
determines its state as before. The logic of switches in the last n stages of 
the self-routing network is not altered. 
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SOME ADlVIISSIBLE PERMUTATIONS 
USING SELF-ROUTING ALGORITHM 
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SOME ADMISSIBLE PERMUTATIONS 
USING LOOPING ALGORITHM 
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FAULT TOLERANCE IN THE FIRST 
AND THE LAST STAGE 

46 



SHIFT2 
01234567 
04152637 

S\\dtch No. 
I 
2 
3 
4 

I 5 
6 
i 
8 

State 
Straight 

Exchange 
Straight 

Exchange 

47 



Perfect Shuffie 
01234567 
02461357 

~n•1'+,..h No 
Ut'r &.11.1.U. ' • 

1 
2 
3 

------ --·· -·- ------- . 

4 
5 
6 
7 
8 

State 
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FLIP (IOI) 
01234567 
54761032 

Switch No. 
I 
2 
3 
4 
5 
6 
7 
8 

State 
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FLIP (011) 
01234567 
32107654 

1 

2 

~3 
a. c 
-4 

5 

6 

7 

Switch No. 
1 
2 
3 
4 
5 
6 
7 
8 

2 

' 3~ 
.9-

48 

6 

7 

State 
Straight 
Straight 
StraiMt 
Straif.ilit 

Exchange 
Exchan~e 
Exchange 
Exchange 
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Bit Reversal 
01234567 
04261537 

I Switch No. 
r 1 

') 

'"' ,., 
.) 

4 
5 
6 
7 
8 

State --~~ 

Exchange 
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HARDWARE IMPLEMENTATION OF 
FAULT TOLERANT BENES NETWORK 
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Circuit Diagram of the switch 

y 

State 0: State 1: 

lfc= 0 If c=l 
x=a x=b 
y=b y=a 
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_J_ 

Block Diagram Of The Address Decoder 
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-· :/,,,. i'----
' i 
'--_ _j,.,.._.....---, 

I I 
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00 

' 
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SWITCH : H!K 

74lS-~[r 
6SB 

I AO 
---
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Ar 

M 

Vee l 
A15t~ 
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DO 

PORT o7 
AO 
A1 

1 A2 

Af5 

Circuit Diagram of the address decoder 2 

03 
10K 

A15 
DIP 74LS 

SWJT 
10K 688 

CH 
A8 

AO T-
A1 cso i------'1-----1 ---~ 
A2. 

74LS : 
155 : 

• 

CS7i---~..----, __ _., 

08 
10K 

DIP 74LS 
SWIT 

10K 688 
CH 

AO 

A7 

DO . . . . 
07 PORT 

cso . 2 . . . . 
CS7 
CSB 
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Circuit Diagram of the Benes Network 

PORT2 

D 

D Ll 

[ 

74LS373 
L 
A 
T DO 
c : 
H : 
8 07 
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CONCLUSION 

Here we have presented the structure of a fault-tolerant self-routing Benes 
Network. The destination tag (logN bits) is passed through the network 
along with each input. A very simple logic is required in each switch. 
This logic determines the binary state of the switch from a particular bit 
of the destination tag of its upper input. The resulting network is capable 
of realizing a rich class of permutations, F(n), N= 2n , in 0 (logN) time. 
The class F(n) includes Lawrie's J.O(n) pemmtations, Nassimi and 
Shahni ' s BPC(n) permutations and consequently Lenfant's FUB families. 
Any O(n) permutation can also be realized on this network if the switches 
in the first n-1 stages are forced into state 0. The fault tolerant self-routing 
Benes network promises an effective interconnection network for SIMD 
computers. 

REFERENCES 

1. Switching Networks For SIMD Multiprocessor Computing 
Systems (State-:-Of-The-Art-Review);Gennady Veselovsky, M.F. 
Karavai, And S.M. Kuznechik. 

2. A Study Of The Permutation Capability Of A Binary Hypercube 
Under Deterministic Dimension-Order Routing; Gennady 
Veselovsky, Dobri Atanassov Batovski. 

3. Private Communication With Dr. Gennady Veselovsky. 

4. A Self Routing Benes Network And Parallel Permutation 
Algorithms; David Nassimi And Sartaj Sahni. 

JSt. Gabriel's Library-:-Au 

56 




	Cover and Tilte page
	Abstract
	Introduction
	Some Admissible Permutations using self-routing Algorithm
	Some Admissible Permutations using looping Algorithm
	Fault Tolerance in the first and the last stage
	Hardware implementation of fault tolerant benes network 
	Conclusion
	References

