


·fBE ASSUMPTION VNIVERSITY LmRARl 

Master Thesis 

A Bayesian Network Modeling For 

Flood Prediction In 

The Chaophraya River Basin 

By 

Peerapol Moemeng 

Submitted in Partial Fulfillment of 
the Requirements for the Degree of 

Master of Science 
in Computer Science 

Assumption University 

December, 2000 



The Faculty of Science and Technology 
Thesis Approval 

Thesis Title A Bayesian Network Modeling for Flood Prediction m the 
Chaophraya River Basin 

By Mr. Peerapol Moemeng 
Thesis Advisor 
Academic Year 

Prof. Dr. Peter Haddawy 
1/2000 

The department of CS, the Faculty of Science and Technology of Assumption 
University had approved this final report of the twelve credits course, SC7000 
Master Thesis, submitted in partial fulfillment of the requirements for the degree of 
Master of Science in Computer Science. 

Approval Committee: 

(Prof. Dr. Peter Hadda~) 
Advisor 

. Jirapun Daengdej) 
Committee Member 

Faculty Approval: 

(Dr. Thitipong Tanprasert) 
Director 

(Dr. T g Van To) 
Committee Member 

(Asst. Prof. Dr. Surapong Auwatanamongkol) 
Representative of Ministry of 

University Affairs 

(Asst. Prof. Dr. Pratit Santiprabhob) 
Dean 

December/2000 



ABSTRACT 

One of the major problems plaguing the Thailand capital city, Bangkok, is flooding 

during the rainy season, which is determined by two primary factors: local rainfall and 

water level in Chaophraya River. This project proposal is an attempt to develop a system 

to predict the water level in Chaophraya River, based on readings of the water level up­

river and downstream as well. Traditional statistical and Bayesian network modeling 

techniques are used to construct models from daily water level data spanning a period of 

five years. Some preliminary work has been done and will be discussed in this proposal. 
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1. INTRODUCTION 

1.1 MOTIVATION AND BACKGROUND 

Flooding during the rainy season in Bangkok has major impacts upon communication, 

transportation, and public health. The Bangkok Metropolitan District spends large 

amounts of money in attempts to prevent and minimize the impact of flooding. Many 

other provinces along the Chaophraya River are also affected by flooding. Thailand 

loses billions of baht1 because flooding destroys agricultural crops in these provinces. 

Flood prediction is an important component in flood prevention. Many factors affect 

flooding, such as the flood control system, quantity of rain, water transfer rates to 

nearby areas, and water level in Chaophraya River. The water level in the river affects 

the amount of runoff it is able to accommodate, as well as affecting the water levels in 

the connecting klongs2
, into which the city pumps rain water as part of it flood control 

measures. Thus the ability to predict the river water level is a key step in overall flood 

prediction. 

1 Baht n (I'hal), Thai currency 
2 Klang n. (I'hai), a waterway, a path of water that connects to a river 
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1.2 EXISTING APPROACHES TO BUILDING FLOOD 

PREDICTION SYSTEM 

The Royal Irrigation Department of Thailand (RID) is responsible to for monitoring 

the amount of the water that flows in Thailand's rivers and warning any department 

that is in charge of flood prevention. They predict the water level by using a software 

package, MIKE-11 3
, which predicts the amount of water in the river based on factors 

such as; soil type, geographical information, current and past amount of water in the 

river/soil, underground water, and also water level of Thai bay4
. The most difficult part 

of the software is calibrating the model, which has many parameters involved. It takes 

time to adjust the parameters, since some parameters (e.g. dispersion) must be a 

analyzed in the laboratory (the specification of this hydrology software will be 

discussed later). After that, they run the model and determine the accuracy by 

comparing the outcome result with the actual data. Operating the software is not a 

problem, since the staff can be trained, but calibrating the model takes hydrological 

modeling knowledge. 

The model is fixed with a set of parameters that best describe the hydrological 

information in the area. Those parameters need to be updated at sometime later when 

the model begins predicting not precisely. 

RID informs that, the water level that is determined to be flooded is 150 cm. With 

MIKE-11, the accuracy is 4-8 cm, which is very high. But it would be more error 

3 MIKE- I I, a system for the ID modelling of rivers, channels and irrigation systems, including rainfall-runoff, 
advection-dispersion, morphological, water quality and two-layer flow modules by Danish Hydraulic Institute 
(DHI) 
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during the rainy season and flooding period, approximately the accuracy is up to 30 

cm. Nowadays, RID is not predicting the water level anymore, because they do not 

have access to Thai-bay tidal information to input to MIKE-11. 

In the past, RID uses expert's prediction5 together with MIKE-11 to predict the water 

level in Chaophraya River in Bangkok. Consider Chaophraya River in Bangkok area, 

there are 3 major factors involved the water level in Chaophraya River; incoming 

water from upriver, incoming water from small connected rivers, and rain. So expert's 

prediction is still precise, since the prediction result is only "The level will increase" 

Or "The level will decrease'', but not a number. 

1.3 IN THIS THESIS APPROACH 

Base on an assumption that the water level on the upstream affects the water level at 

downstream. In this thesis, we represent the problem of predicting water level. So far, 

there is no flood prediction system has been done with probabilistic model. Other 

models were done using mathematic model, neural network [1], and hydrological 

model [2][3]. In this thesis also represents the ability of Bayesian modeling in 

predicting continuous value. Water level is measured in numeric unit, while Bayesian 

results in probability distribution over set of possible states [4]. Using Bayesian 

network is useful since the technique encodes any kind of relationship, which water 

level among each station could be related in a non-linear function. It is not practical to 

discretize the water level into small ranges in a variable, because it could produce very 

large conditional probability tables (CPT). So we purpose 2 discretization methods and 

4 Water level of Thai bay is an input to MIKE-11, informed by RlD staff on November 2000. 
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compare the performance of both methods, which these 2 methods will be described 

later. 

We construct the models by learning Bayesian network from the existing data, which 

there are 2 datasets which both of them are about water level. 

1. RID provided data on daily and hourly water level readings from seven stations 

along the Chaophraya River. 

2. Tide level data was obtained from Marine and Atmosphere Science 

Information Center, State University of New York, at Stony Brook, shown in 

table 1. 

STATION Province DATA POINTS 

C3 Singburi 2454 

C7A Angtong 61366 

C34 Ayuthaya 7842 

C31 Patumtani 12357 

C22 Nontaburi 34014 

C12, C4 Bangkok 19861 

rTIDEBKB Thai Bay 122736 

ifIDEMKL Thai Bay 122736 

TIDESMS Thai Bay 122736 

Table 1 The seven stations and Thai bay data at which daily water level readings were taken. 

5 As we have interviewed with Mr.Phonchai Klinkhachorn, Engineer, Hydrology and Water 
Management Office, Royal Irrigation Department. 
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1.4 DESIGN CRITERIA 

Simplified parameters 

The parameter set is minimized. Input variables are continuous variables, which are 

states of water levels. The model will not be difficult to use, since the data input to the 

model is simplified to the same type of data (the water level only). 

Accuracy and Precision 

Bayesian network output is a probability distribution over states. We compute the 

expected value from the probability distribution to get one number as prediction. The 

prediction should be precise (answer in the right range of water level), and accurate 

(the different of prediction and actual result should be minimal) 

1.SOUTLINE 

After this section, we will discuss about the methodology that we have applied to the 

available data. Some properties of Bayesian network those are interesting. The 

prediction in continuous value is described in chapter 2. In chapter 3, we discuss 

about the overview system, how we implement the system. Chapter 4 is the result of 

the experiment. Chapter 5 is the analysis of the result obtained from the experiment. 

Chapter 6, we discuss about other researches that are relevant to this thesis. 
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2. REPRESENTATION OF FLOOD PREDICTION 

WITH BAYESIAN NETWORK 

2.1 WATER LEVEL DATA 

We have several sets of data, but these sets are not smooth. Some of data points are 

missing. Figure 1 shows the chart that is plotted based on smoothen data using 

Window Sliding algorithm on intersected data, which we obtained 1102 data points of 

every station of each time of day. 

Figure 1 shows the trend of the C4 and C12 data in the function of time, which are 

water stations in Bangkok. They are almost the same pattern, which yields in high 

correlation coefficient. 

Figure 2 shows the trend of all stations in the function of time, which also look alike in 

each station (excluding C4 and C12). The water station at upstream of the river has 

high water level, and relatively low along downstream of the river. 

Figure 3 shows the trend of TIDE data, which also look similar for each dataset. 
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2.2 SELECTED ATTRIBUTES 

We compute the correlation coefficient of each station, to determine the straight of 

relationship among stations (shown in table 2). The correlation coefficient is computed 

based on intersected data, because we need the complete data6 to construct the 

network. The completeness of data is shown in table 4. The correlation coefficient 

shows 

1. The interested output is the water level at C4 station, so we set output variable 

to be C4. Because RID is interested in predicting water level at C4 only. 

2. Correlation coefficient among TIDE data TIDESMS, TIDEBKB, TIDEMKL 

are high. Which in the case, we can choose one of the datasets to be a 

representative of the TIDE data. Here we choose TIDESMS dataset to 

represent the Thai bay water level, since it has highest correlation coefficient 

with C4. 

In our preliminary work, we have discussed the assumption bases on correlation 

coefficient between stations in sequence of days, and picked the best couple to design 

the model. We do not couple the stations on different days, because determining from 

the chart, shifting the chart by a next day or two, would make the correlation 

coefficient becomes lower. The physical distance, amount of water, and the speed of 

water flow between stations are not defined, so we cannot determine the number of 

days that the water flows from upstream to downstream. 

6 Complete set of input parameter to instantiate the network model. 
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CORREL 

C3 

0.983636 C7A 
0.692566 0.742675 C31 
0.605941 0.637903 0.91465 C22 
0.452741 0.482045 0.770048 0.906534 C12 
0.369015 0.391716 0.72879 0.860152 0.859447 C4 

0.122928 0.133793 0.316062 0.483173 0.669323 0.540836 TIDEBKB 

0.090975 0.090672 0.271978 0.459308 0.656981 0.55993 0.978458 TIDEMKLI 
0.089103 0.08795 0.256847 0.443316 0.643349 0.567547 0.979053 0.996952ITIDESMS I 

Table 2 Correlation Coefficient of all stations 
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Other Stations 

14 ..------------------------------------------, 

12 +---------------------------------------~~--f 

10 +--~-----~~~------------~---~-~~-~----~-----l 

~ 8 

! 
~ 6 
j ... 
.l!l ca 
s:: 4 

2 -- · - ---·· -l--'"-•HI---..-- -1\{C·-
o ··~ • \~ ~mww11:,;::'J~:~f;;~,y JI 1 · y - , . V'. . ' · · I llWWWWWMdhWWWWWIWWM_P.::..~1\7<:\llU . . , . ' • ICWWWllllPWIDllDM-l...llm:z.;;;:,':iC,"': , \~J ·-wwwwta1u,wru.ununtM~iiiliilhDIUiUibnura1m11um1a1i·u1am 

1 101 201 301 401 501 601 701 801 901 1001 1101 

~ I 
Time (Day) 

Figure 2 Other stations water level 

--C7A 
--C22 

C3 
·- --·- C31 

13 



Tide Level 

450 ~~~------~~~~-----~~-~~---------~ 

400 +-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--i 

350 " - - -

300 
_ I I I , I I 11 I I I _ , . I . I I . I I 11

1

. , I I I_ . I I I ! 

! 250 - i 'j ,! I ··ri\ ' w ,1 I l:·1
1 

Im 1 ,1 ~~: : : ' 1

1 
•. :! I '.1 ;11 I~; Li ~,: .. ::1j

1

• ! ; ) '~l;:!jl!~11 i ul' ;~\ ! . ' ~I~ ~ II 1 · I 1. l · I tl J ·I I I, I l · I I I .I l ·I I I, 1J · I' I 1 · I I ' I 
-I I . . I I f ' 11 l I ' I 1 I I I ' 

. . I . " . I . I , . I ' ... 200 - ;lj L .!. .. ·- -1 . :r L.. . .. _j _ ·t ··r L .. ·- 1-- ... ,t L ... .. ·- -·1 · '."t L ., __ 1 _ ' l;r L .. . ---.. -· • ·11t L .•. -.. ·- -'- •Ji L .. . ... .s I I I I I I I I I 
1
1 11 I ·1 I I 1

1 I I I I I 

~ I· 1· 11· [· . I. 11· I 3: 150 - .11 _ _:_1 ___ ~- - ·--'r-~l --~ · - -11-_:__ 1 __ :_ ... wl. _ _:_1 ___ ~. _Ji-~--- ·~- ... : .. 11 _ _:__1._~--- 'r-· 1 __ :_ ..J, _ _:_ __ _ 
11 • II . 11 I • II, • 11 . I . • 11 11 

I I I I 'I l I 
• 1; • • . I • - • 'II . 

100 -1-' ··-·----'J_I ---·!----·--+----.1----~.1--~·~--: ---
, I I ., I 

-TIDEBKB 

-TIDEMKL 

TIDES MS 

50 +-- ·-

0 ~llUUIUlliiilUIUIUUlllllllllUlllUUUUU&illiUiillliilllUllllllUIU_UHDDDDDH••••111111m1mtuumlllllllliWWWIWWWIUiiiUUUimimil 

101 201 301 401 501 601 701 801 901 1001 1101 

Time (Day) 

Figure 3 Thai bay water level 

15 



2.3 LIMITATION OF BAYESIAN NETWORK PREDICTING 

THE CONTINUOUS VALUE 

One limitation of Bayesian network is Bayesian network results in probability 

distribution over states. Which each variable must be discretized7 into set of states. The 

continuous value is an issue to be talked about here, because the continuous value 

discretization is defining the range of numbers. When we discretize the continuous 

value into set of intervals, of course that there will be data lost during discretization. 

There is no rules to judge the number of intervals and the size of intervals, so we try 

several di-scretization, say 10, 15, 20, 25, 30 intervals with 2 methods, which will be 

discussed in the later section. 

7 A mechanism for defining data into set of states 
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3. OVERVIEW OF FLOOD PREDICTION SYSTEM 

3.1 MODEL DESIGN 

Model design, we come up with 2 models for different experiments on different 

discretization method, which are mixture of METHODS and STATIONS. 

1. METHODS, there are 2 methods (describe in next chapter) in discretizing the 

water level which are discussed in previous section. We will discretize into 10. 

15. 20. 25. 30 intervals. 

2. STATIONS, as we have to experiment on different models, so one way to do is 

to simply include every dataset that we have into the model, we name this kind 

of model as ALL STATION MODEL. We also choose the best couple of 

datasets from con-elation coefficient, which we have chosen C31 ~ C22 ~ C4 

~ TIDESMS, we name this kind of model as BEST ST A TI ON MODEL. 

There are 2 different models, different 5 interested intervals for 2 discretization 

methods. So we will come up with 20 experiments. 

3.1.1 CONSTRAIN NODES 
While we were choosing the discretization of the water levels to avoid conditional 

probabilities with zero in the denominator, because of insufficient data. This will 

nonetheless occur due to physically impossible situations. For example, it is not 

physically possible to have the highest possible water level at station C4 and the lowest 

possible at C22 on the same day. To prevent our model from assigning positive 

probability to such physically impossible combinations of variable values, we use 

constraint nodes [ 4], denoted as 2-station-name node in the figures. For example, the 

node labeled C3 7 A constrains the combinations of values that the nodes C3 and C7 A 

17 



can assume to rule out impossible combinations. We can then simply assign uniform 

probabilities to the conditional probability table entries for node C3 conditioned on 

physically impossible combinations of variable values, since these will not affect 

computations. 

C4 and C22 Data Scatter 

1.5 •• . ... ~ • • • • I 

~·· •• •• 
•o.5 ~ ·.it. ~.: 
i ·~·· .. 

..j),5 ..... ~1~..,.- D.5 ~ "" l I 1.5 2 . . .~ ~· .. 
.: ~. ·D.3 

•• +"i • 

• · I 

• • 
C4 Water Level (meter) 

Figure 4 C4 and C22 Data Scatter 

Figure 4 shows the data scatter of C4 and C22. The data lies in the diagonal, which 

represent the relationship between C4 and C22 water level. Other couples of nearby 

stations are similar to the figure 6, since it is reasonable that water should be related in 

the same day. Therefore, there should not be data lies at top-left and bottom-right area, 

since it is impossible to have a very high water level and very low water level of 

nearby stations in the same day. The following figures, they do not have constrain 

nodes between the first slice of the network, because these nodes will be instantiated 

with the real inputs anyway, so there will not be Impossible case happens. 

The Bayesian network models we have constructed are called time-sliced Bayesian 

networks because they represent the state of a system at discrete time slices. Each 
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model is equivalent to a first-order Markov chairi. The set of states of the Markov 

chain is just the cross product of the domains of the variables at a given time, e.g. day 

zero. The conditional probabilities governing the transition from the state at one time 

point to the state at the next time point are static, i.e., the same for every transition. 

The conditional independence semantics associated with the network topology 

enforces the Markovian assumption that the probability of being in a given state is 

conditional only on the state at the previous time point. 

C3 

C7A 

C31 

C22 

C4 C4_4 

SMS_ 1 SMS_2 SMS_3 SMS_4 

Figure 5 ALL ST A TION model 
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Figure 6 BEST STATION model 

Figure 5, ALL STATION models have chain node up to number 4, which it could use 

to predict for 4 days in advance, but in order to compare the result with BEST 

STATION model (figure 6), we scope down to 3 days prediction only. 

There is no TIDE data influent the C4 node because the C4 is to be instantiated 

anyway, which this causes the TIDE data that influent C4 bed-separated. 

The TIDE level data does not influent the next day TIDE level, because the TIDE level 

that we have is a predicted result, not the actual tide level, so the predicted value would 

not influent the next day predicted value. 

One consideration to include month into the model, we have reviewed the possibility 

and found that, it is good idea to have month to cooperate with the model to tell the 

season and time that water level should begin to increase or decrease. But including 
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month data will enlarge the CPT by 12, which there is not enough data to fill in this 

large CPT. 

3.2 DATA PREPARATION 

With enhancement of database software, we execute the SQL statement for different 

sets of data as required for each model. Since the validity of water level data are not 

completely same format in each station and also in each day, so we average the water 

level in a day, so we will have 1102 data points per station. We use this set of data to 

compute the CPT and also for testing. In this thesis, the supervise learning is used. We 

apply the same train and test data set to design and test result. 

3.3 DISCRETIZATION METHODS 

In this thesis, we use 2 discretization methods to compare the result of prediction. 

3.3.1 METHOD! 
The interval sizes are evenly equal. We compute the size of intervals from number of 

intervals. The lowest and highest water levels are left as opened ranges. The interval 

size is the division of range of water level in each station with number of interested 

intervals. For example, 

C31 highest water level is 3.26 meters, and lowest water level is 0.04 meters. 

So the range is 3.3. For 10 interested intervals, the size of each interval is 0.33 

meter. We add extra size for the ended range, say 1 meter. Example of 

discretization is shown in table 3. 
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LOWER BOUND UPPER BOUND PROBABILTY 
INVERVAL OVER) 'NOT OVER) 

1 -0.96 0.04 0.056 

2 0.04 0.37 0.070 

3 0.37 0.7 0.116 

4 0.7 1.03 0.138 

5 1.03 1.36 0.192 

6 1.36 1.69 0.167 

7 1.69 2.02 0.150 

8 2.02 2.35 0.076 

9 2.35 2.68 0.028 

10 2.68 4.26 0.007 

Table 3 Method I Discretization for C31 

With this discretization method, the probability distribution is a fine bell-shape, since 

each class is equal size, and the water level data is naturally distributed. 

3.3.2 METHOD II 
The interval sizes are not equal, but we expect the number of data entries to fit into 

each interval to be equal instead. We begin with the lowest water level, and then try to 

adjust the size of intervals that each interval has similar number of population. So the 

interval sizes are not equal and the probability distribution is almost uniform. 

LOWER BOUND UPPER BOUND PROBABILTY 
INVERVAL (OVER) NOT OVER) 

1 -1.72 0.63 0.11 

2 0.63 0.8 0.1 

3 0.8 0.94 0.1 

4 0.94 1.08 0.09 

5 1.08 1.18 0.1 

6 1.18 1.26 0.1 

7 1.26 1.34 0.1 

8 1.34 1.44 0.09 

9 1.44 1.62 0.1 

10 1.62 5.34 0.11 

Table 4 Method II Discretization for C31 
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3.4 CONSTRUCTING THE CONDITIONAL PROBABILTY 

TABLE FOR THE MODELS 

Since we have data for every node in each of our models, we calculate the CPT entries 

for each node by simply using the definition of conditional probability. For example, 

if a node A has parents B and C, then the conditional probability table entries are 

computed as 

P(Aj B,C) = P(A,B,C) 
P(B,C) 

In our preliminary work, we suggested to prevent the zero denominator in computing 

CPT, by setting up constrain nodes. In this thesis, we do not have to set up constrain 

nodes to prevent the impossible case and insufficient evidence to fill in CPT, because 

we initialize every cell in CPT to be a small number, say 0.00001, hence there is no 

zero. In this thesis, the numbers represent are 4 decimal points, so the fifth decimal 

points number should have very less effect to the result. 
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4. EXPERIMENT RESULT 

4.1 EVALUATION CRITERIA 

Prediction is the result of computing and compares to the actual data, which there are 2 

issues to think of, and we also take these 2 issues as our criteria. 

1. Accuracy, 

Predicted value is a middle point of the expected range (interval) that we obtain 

from probability distribution. For example, the expected value shows in a 

distribution as following table 5. Network model that has discrete value of state 

intervals. After we get the expected value, we compute the accuracy by finding 

the difference between the value that we predict and the actual value in the data 

file. If the actual value lies in the expected interval, then the error is zero. 

Otherwise, the error is the distance between the actual value and the closest end 

point. Predicted value is computed to get a predicting number, as the following 

formula 

n n 

L: (Pi *UBi) + L: (Pi* LBi) 
e = -'-1-""""1 ____ -"-1-1-"----

2 

e =predicted value 

P =Probability of 

n = number of states 

UB = Upper bound value 

LB = Lower bound value 
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C22 

Lower Upper Probability Lower"' Prob. Upper* Prob. 

-10 -0.77 0.006944444 -0.069444444 -0.005347222 

-0.769 -0.6 0.034722222 -0.026701389 -0.020833333 

-0.599 -0.43 0.027777778 -0.016638889 -0.011944444 

-0.429 -0 .26 0.041666667 -0.017875 -0.010833333 

-0.259 -0.09 0.055555556 -0.014388889 -0.005 

-0.089 0.08 0.055555556 -0.004944444 0.004444444 

0.081 0.25 0.104166667 0.0084375 0.026041667 

0.251 0.42 0.118055556 0.029631944 0.049583333 

0.421 0.59 0.090277778 0.038006944 0.053263889 

0.591 0.76 0.145833333 0.0861875 0.110833333 

0.761 0.93 0.145833333 0.110979167 0.135625 

0.931 1.1 0.076388889 0.071118056 0.084027778 

1.101 1.27 0.027777778 0.030583333 0.035277778 

1.271 1.44 0.006944444 0.008826389 0.01 

1.441 1.61 0.013888889 0.020013889 0.022361111 

1.611 1.78 0.013888889 0.022375 0.024722222 

1.781 1.95 0.013888889 0.024736111 0.027083333 

1.951 2.12 0.013888889 0.027097222 0.029444444 

2.121 10 0.006944444 0.014729167 0.069444444 

Expected Interval (average) 0.342729167 0.628194444 

Predicted Value (average) 0.485461806 

Table 5 Sample of computing expected interval and value 
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2. Precision, 

The precision is the expected range that we could predict. Precision can be 

computed by computing probability distribution for each interval and average 

them. 

4.2 RUNNING TEST 

With supports of HUG IN Professional 5.48
, we can interface with the HUG IN 

propagation engine through set of API that allow us to load the model into HUGIN 

engine and run the test by iterating entering information to the models and produce 

the output. The program we develop for this testing purpose was written in Visual 

Basic, interface with ORACLE database, and interface with HUGIN API through 

ActiveX server (new feature in HUGIN Professional 5.4). We develop separate sub 

program for each models and methods to run the test. 

:. ~ Flood Prediction · · -- ~ .-.~::.-:i 

Intervals 

jrn 
SD 
jo.151154 

Average Error 

15.411245 

Average Intervals Size 

j20.03341l 

fiun 

Figure 7 Sample program for testing the model 

8 Thank you to Dr.Peter Haddawy for supporting this software with his Ph.D. license. 
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4.3 TEST RESULTS 

Explanation of the figure 
The labels 10, 15, 20, 25, and 30 on the figures 8-19 are the numbers of intervals co 

responding to the data point on the chart. 

Figure 8, Figure 9, Figure 10 ALL Model Overall Performance 

The figures are result of ALL models prediction in day III, II, and I respectively. These 

figures show the trade-offs comparison between method I and II in predicting water 

level on overall data. 

Figure 11, Figure 12, Figure 13 ALL Model Prediction During High Water Level 

The figures are result of ALL models prediction in day III, II, and I respectively. These 

figures show the trade-offs comparison between method I and II in predicting high 

water level on high water level data only. 

Figure 14, Figure 15, Figure 16 BEST Model Overall Performance 

The figures are result of BEST models prediction in day III, II, and I respectively. 

These figures show the trade-offs comparison between method I and II in predicting 

water level on overall data. 

Figure 17, Figure 18, Figure 19 BEST Model Prediction During High Water 

Level 

The figures are result of BEST models prediction in day III, II, and I respectively. 

These figures show the trade-offs comparison between method I and II in predicting 

high water level on high water level data only. 

Figure 20 BEST Model Performance 

The figure shows the prediction performance of BEST Model. It shows the upper and 

lower bound of the predicted intervals compare to the actual water level at C4. 
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Figure 21 BEST Model Performance (ZOOM) Predicted Interval VS Actual 

Water Level 

This figure is a zoomed version of the figure 20, excluding predicting water level. It 

shows the coverage of the predicted intervals on the actual water level at C4. 

Figure 22 BEST Model Prediction VS Actual Water Level 

The figure compares the predicted water with the actual water level. 

Figure 23 ALL Model Performance 

The figure shows the prediction performance of ALL Model. It shows the upper and 

lower bound of the predicted intervals compare to the actual water level at C4. 

Figure 24 ALL Model Performance (ZOOM) Predicted Interval VS Actual Water 

Level 

This figure is a zoomed version of the figure 23, excluding predicting water level. It 

shows the coverage of the predicted intervals on the actual water level at C4. 

Figure 25 ALL Model Prediction VS Actual Water Level 

The figure compares the predicted water with the actual water level. 
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METHOD II 
HIGH WATER LEVEL HIGH WATER LEVEL 
PREDICTION PREDICTION 

IAVG AVG IAVG AVG 
AVG INTERVAL AVG INTERVAL IAVG INTERVAL IAVG INTERVAL 

DAY INTERVALS ERROR SIZE SD ERROR SIZE ~D ERROR SIZE SD ERROR SIZE SD 

DAY Ill 10 7.651 21 .843 0.147 9.425 21.873 0.306 7.619 21 .833 0.562 6.240 23.674 0.310 
15 9.884 18.502 0.831 10.523 20.851 0.974 8.736 19.009 0.066 7.514 22.834 0.707 
20 12.269 16.353 0.112 13.508 19.363 0.183 12.410 16.022 0.688 15.498 19.098 0.646 
25 14.210 14.689 0.760 19.421 15.244 0.807 15.234 14.366 0.164 16.545 18.737 0.491 

30 18.054 12.399 0.685 22.034 14.216 0.936 19.750 12.013 0.321 21.715 16.035 0.595 
DAYll 10 7.308 21.395 0.421 9.136 21.469 0.042 7.195 21.304 0.318 5.487 23.131 0.209 

15 8.939 18.222 0.952 9.958 20.491 0.408 8.351 18.810 0.486 6.965 22.279 0.375 
20 11.979 15.650 0.170 13.420 19.239, 0.889 12.023 15.671 0.488 14.531 18.400 0.979 
25 14.024 13.872 0.250 19.317 14.970 0.227' 14.573 14.142 0.140 15.754 17.899 0.261 

30 17.067 11.569 0.414 21 .731 14.068 0.133 18.985 11.186 0.581 21 .032 15.960 0.693 
DAY! 10 6.678 21 .1 43 0.241 8.220 20.893 0.820 6.347 20.805 0.028 5.284 22.907 0.480 

15 8.029 17.992 0.038 9.689 19.492 0.232 8.048 17.985 0.755 6.464 21.390 0.084 
20 11.769 14.773 0.910 12.623 18.601 0.232 11.595 15.504 0.860 13.942 18.238 0.679 
25 13.492 13.165 0.808 19.3041 14.667 0.1391 13.589 13.324 0.892 15.341 17.196 0.028 

30 16.968 11.301 0.491 20.969 13.612 0.701 18.403 10.353 0.374 20.040 15.334 0.925 

Table 6 Test Result for ALL Model 
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METHOD II 

HIGH WATER LEVEL HIGH WATER LEVEL 
PREDICTION AVG PREDICTION 

~VG AVG INTERV AVG 
~VG INTERVAL ~VG INTERVAL AVG AL INTERVAL 

DAY INTERVALS ERROR !SIZE SD ERROR SIZE SD ERROR SIZE SD ~VG ERROR SIZE SD 

DAY Ill 10 5.411 20.033 0.151 6.075 20.032' 0.094 3.991 22.046 0.194 3.031 22.037 0.246 
15 6.641 17.068 0.093 8.059 19.094 0.088 7.340 17.017 0.139 7.361 20.013 0.111 
20 8.151 15.736 0.122 11.007 17.052 0.087 12.940 12.060 0.149 10.965 18.089 0.133 
25 10.240 14.029 0.110 16.035 15.008 0.089 16.221 9.552 0.117 16.289 16.017 0.191 
30 17.251 9.016 0.139 20.092 14.084 0.091 19.320 8.605 0.148 18.348 15.026 0.209 

DAY II 10 4.495 19.940 0.155 6.027 20.000 0.132 3.426 21.968 0.100 2.953 21.948 0.146 
15 6.094 17.064 0.183 7.972 19.048 0.114 6.606 16.9571 0.155 7.281 19.934 0.189 
20 7.191 15.657 0.147 10.910 16.973 0.117' 12.896 11.984 0.183 10.963 18.035 0.175 
25 9.798 13.958 0.084 16.007 14.937 0.124 15.594 9.537 0.125 16.271 15.921 0.071 

30 16.906 8.917 0.144 20.040 14.082 0.122 18.638 8.524 0.165 18.290 14.968 0.189 
DAVI 10 3.908 19.845 0.183 6.003 19.923 0.215 2.937 21 .893 0.171 2.905 21.903 0.108 

15 5.494 16.971 0.130 7.903 18.998 0.205 5.671 16.886 0.193 7 .241 19.880 0.169 
20 6.866 15.567 0.113 10.640 16.889 0.208 11.987 11.963 0.126 10.436 17.976 0.160 
25 9.703 13.918 0.160 15.440[ 14.841 0.114 15.504 9.513 0.139 16.192 15.877 0.171 

30 16.696 8.870 0.162 19.518 14.062 0.137" 18.328 8.430 . 0.155 17.558 14.879 0.178 

Table 7 Test Result for BEST Model 
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Figure 19 BEST Model Prediction During High Water Level Day I 
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Figure 21 BEST Model Performance (ZOOM) Predicted Interval VS Actual Water Level 
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BEST Model Predicted Water Level Perfonnance (Zoom) 
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Figure 22 BEST Model Prediction VS Actual Water Level 
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ALL Model Perfonnance 
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Figure 24 ALL Model Performance (ZOOM) Predicted interval VS Actual Water Level 
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5. EMPIRICALANALYSIS 

We test the model in 2 interested datasets. 

1. Test on overall data. Which this could tell the overall performance of the model 

in predicting the water level compare to the actual water level. 

2. Test on flood situation data. The flood situation is considered by water level 

1.5 meters at C4 station. In this case, we sort the data we have, and take the 

high water level, approximately 15% of the overall dataset to test as the high 

water level, or flood situation. 

Figure 8, 9,and 10 show trade-offs between error and interval size, and also compares 

two methods trade-offs. 

5.1 EVALUATIONOFMODELS 

In overall performance measurement, BEST model results better compare with the 

ALL model, as well as the flood situation prediction. The reason to this result could be 

that the prediction in BEST model involves only stations that have high relationships, 

or we may say, BEST model involves only the stations that influents the water level in 

C4. In another saying, it could be that, if we are interested in other station that is not 

C4, the stations involved in the model may not be only 4 nodes, but could be more or 

less. Involving many nodes into the model makes the prediction not good, compare 

ALL and BEST model result. It could be that the noise of data in low correlation 

coefficient interfere the propagation of the model, so the precision of the ALL model is 

wider than BEST model. 
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The prediction in the sequence of days becomes inaccurate for the later days. The 

precision drops in day 2 and 3, so it could be that the noise of the data could interfere 

the model. Since the model compute the probability of the water level in each status 

only, but it may not cover every case of the water level status. It could be unexpected 

case like, immediate storm encounters in Thai bay, high water level from the ocean 

directly increases water level in Bangkok. 

5.2 EVALUATION OF DISCRETIZATION METHODS 

As the result of the experiment, method I and II are giving similar performance. But 

during the flood situation, the prediction of model using method I is a little bit better 

than method II both precision and accuracy. The reason to this could be that the 

discretization in method II has wider interval size in low and high water level, so 

probability distribution that distribute to all the intervals, although low in low and high 

water level, affects the computation for expected water level and intervals. While the 

discretization method I has equal interval size, so the probability distribution 

distributes over these intervals does not affect much on computing the expected water 

level and intervals, compare to the wider intervals. 

Here we can summarize that, 2 discretization methods give the similar performance, 

but in specific situation, if we are interested at very high and very low water level, the 

discretization of method II does not result so precise because of the wide range. 
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6. RELATED WORK 

6.1 Introduction to Bayesian Network 

Bayesian networks have become the most popular technique for representing and 

reasoning with probabilistic information. A Bayesian network [2], [3] is a directed 

acyclic graph that represents a probability distribution. Nodes represent random 

variables and arcs represent probabilistic correlation between the variables. The types 

of paths (and lack thereof) between variables indicates probabilistic independence. 

Quantitative probability information is specified in the form of conditional probability 

tables (CPT). For each node the table specifies the probability of each possible state of 

the node given each possible combination of states of its parents. The tables for root 

nodes just contain unconditional probabilities. 

Figure 26 A simple Bayesian network 

Figure 26 shows a simple Bayesian network representing the fact that local rainfall and 

river water level influence the degree of flooding in central Bangkok, with in tum 

influences the degree of traffic congestion. (For simplicity of the example, the many 

other factors influencing traffic have been left out.) The network is quantified by 

specifying two unconditional probabilities and two sets of conditional probabilities: 
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P(Rain), 

P(Water_Level), 

P(Flood I Rain, Water_Level), 

P(Traffic I Flood). 

The key feature of Bayesian networks is the fact that they provide a method for 

decomposing a probability distribution into a set of local distributions. The 

independence semantics associated with the network topology specifies how to 

combine these local distributions to obtain the complete joint probability distribution 

over all the random variables represented by the nodes in the network. In our example, 

the network topology encodes the assumption that Rain and Water_ Level are 

probabilistically independent and that Traffic is independent of Rain and Water_ Level 

given Flood. The joint probability distribution is 

P(Rain, Water_Level, Flood, Traffic)= 

P(Rain) * P(Water_Level) * 

P(Flood I Rain,Water_Level) * 

P(Traffic I Flood) 

Bayesian networks have three important advantages. 

1. First, naively specifying a joint probability distribution with a table requires a 

number of values exponential in the number of variables. In systems in which 

interactions among the random variables are sparse, Bayesian networks 

drastically reduce the number of values required. 
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2. Second, efficient inference algorithms exist that work by transmitting 

information between the local distributions rather than working with the full 

joint distribution. 

3. Third, the separation of qualitative representation of the influences between 

variables from the numeric quantification of the strengths of the influences has 

a significant advantage for knowledge engineering. 

In building a Bayesian network model, one can first focus on specifying the qualitative 

structure of the domain and then focus on quantifying the influences. When finished, 

one is guaranteed to have a complete specification of the joint probability distribution. 

Many commercial and free software packages exist for building and performing 

computations with Bayesian networks. For a list of these see [4]. 

For this section we discuss related works that have been done earlier and the temporal 

probabilistic modeling technique. 

In first 2 related works, we take a look at how MIKE-11 is applied in Thailand. MIKE-

11 is a product of Danish Hydraulic Institute (DHI). DHI is international provider of 

specialized constancy and software within coastal, marine and water resources 

engineering. DHI has solved complex problems for clients in over 120 countries within 

a wide range of water related fields. Thailand is one of the countries that DHI has 

involved. 
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6.2 Flood Modeling Program, Thailand (1993-96) 

Location: Five river basins in Thailand 

Type of Project: Transfer ofMIKE-11 modeling technology 

Client: Cooperation project between six government institutions m Thailand and 

DBI/Asian Institute of Technology (AIT). Sponsored by DANIDA [2] 
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Description During this project, the MIKE-11 modeling system has been set up in five 

river basins in Thailand for the purpose of planning, design and operation of flood 

control measures as well as real-time flood forecasting. The project is carried out by 

DHI and AIT in cooperation with six government institutions in Thailand (DOLA, 

DEPD, DPW, EGAT, MED and RID). 

The objective is to enhance the capabilities of the institutions to plan, design and 

operate flood mitigation and preparedness programs by introducing effective flood 

modeling tools for river basins. The project involves the transfer of computer hardware 

and software and comprehensive training of 18 government officers from the 

participating institutions. 
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The project activities are centered around the selected five river basins in Thailand and 

serve the dual purpose of training and establishment of operational facilities for real­

time flood forecasting as well as for the planning, design and operation of flood 

control measures for high-priority areas. The models for Chi-Mun, Nan and Utaphao 

river basins, where telemetric systems have been established, are now being operated 

for real-time flood forecasting on a routine basis. 
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6.3 Flood Modelling In The Chi-Mun River Basin, Thailand 

(1993-96) 

Location: Chi-Mun River basin in northeastern Thailand 

Type of Project: Transfer ofMIKE-11 modelling technology and training 

Client: A collaboration between six government institutions in Thailand and DHI/ AIT. 

Sponsored by DANIDA [3] 

Description During the 3-year flood modeling program in Thailand a comprehensive 

MIKE-11 model has been set up for the lower part of the large Chi-Mun River basin. 

In 1994 the Pak Mun dam, close to the confluence between the Mun and Mekong 

Rivers, was completed and the Electricity Generating Authority of Thailand (EGA T) 

needed a model for inflow forecasting and operation of the dam in order to ensure that 

strict operation criteria were fulfilled requiring water levels just upstream the new 

reservoir not to exceed a certain limit. 

The hydraulic conditions in the lower Mun River are very complicated due to a 

number of rapids (small water falls). Due to the flexibility of MIKE-11 it has, 
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however, been possible to accommodate for these, and the modeling results are 

excellent. The model has been operated in real-time by EGAT at the dam site since 

July 1996 using real-time data on rainfall and water levels from a newly established 

automatic telemetric system in the 13,000 km2 model area upstream the dam. 

The forecasted inflow hydrographs are very reliable (within +/-10% of the 

subsequently observed ones) and the built-in structure operation module provides 

useful advance guidance on how to operate the spillway gates during flood periods to 

fulfil the water level criteria upstream. 
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6. 4 MIKE-11 Specification 

MIKE-11 [9] is a hydrology software package for the simulation of flows, water 

quality and sediment transport in estuaries, rivers, irrigation systems, channels and 

other water bodies. MIKE-11 is a fully dynamic tool for the detailed analysis, design, 

management and operation of both simple and complicate rivers and channel systems. 

The hydrodynamic (HD) module is the core engine of the MIKE-11 modeling system 

and forms the basis for most modules including Flood Forecasting. In order to predict 

water level, the hydrodynamic module takes several input parameters and most of 

them have to be collected from the environment of that area. 

The example parameters for hydrodynamic module are shown as follow, 

Hydrodynamic Module Parameter 

Initial condition 

The initial water level and discharge at the start time of the computation. 

Wind 

The wind field boundary condition consists of specification for wind 

direction and the wind velocity. 

Groundwater Flow-rate 

Wave Approximation 

To specify which wave approximation should be used in the computation, viz 

Kinematic, Diffusive or one of two fully dynamic wave approximations. 

Water Loss 

Parameters for the water loss are: 

Smax(mm) :Capacity of retention storage. 
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INF( mm/hr) 

K(hr) 

Wmin(m) 

Dispersion 

:Infiltration capacity of flood plains. 

:Time constant for return flow, 

:Minimum river width for water loss. 

The dispersion can be specified as a function of the flow velocity calculated 

by the following expression: 

D= F * yex 

Where: 

Dis the dispersion coefficient (m2/s) 

Vis the flow velocity (mis) 

F is the dispersion factor 

ex is a dimensionless exponent. 

Decay 

The hydrological modeling, normally, gives accurate results. However, most of the 

parameters are the data that we have to collect from the environment of the predicted 

area. This makes the difficulty in gathering data for predicting the water level since we 

need some special equipment to collect the data. 
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6.4 Discretizing Continuous Attributes While Learning 

Bayesian Networks 

N. Friedman and M. Goldszmidt [7] present a method for learning Bayesian network 

that handles the discretization of continuous variables as an integral part of the 

learning process. They formally derive a criterion based on the Minimal Description 

Length principle for choosing the threshold values for the discretization. This new 

metric embodies a tradeoff between the complexity of the learned discretization, the 

complexity of the Bayesian network, and the fitness of the network as a model of the 

training data. The metric has the attractive property of decomposition: the 

discretization of each variable depends only on the interactions between the variable 

and its local neighborhood in the network. They examine other properties of this 

metric that are relevant to the computation of a discretization policy and propose an 

iterative algorithm for learning a policy. 

The work discussed about the interaction of nearby nodes, which only some interested 

information will be interacted. The iterative algorithm for learning policy could be applied to 

the learning policy in this thesis problem area. 
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6.5 Graphical Decision Models, Planning and Control 

Thomas L. Dean and Michael P. Wellman [8] discuss about the Markov process and 

the graphical model that is used in planning and control. The Markov model is a 

temporal model that each state is influenced by the previous state. The Markov model 

can be in multiple orders. In this thesis, we design model as a Markov model order 

one. The reason we do not involve multiple orders into the model design, which we 

could describe the water level in current day with the 1 or 2 or even 3 previous days. 

But involving multiple orders cause the conditional probability table to be much more 

larger. Example, one node is discretize to 1 ~ states, Markov order 2. The consequence 

time slice, the node must have CPT of joint between current day, previous 2 days, 

which the CPT size is 103
. Together with constrain nodes and influence from other 

stations, the CPT size would increase to be 103* 1O*10, which there will not be enough 

data to fill in the CPT. The probability for each cell in CPT would be very tiny, that 

will not have much significant in prediction. 

But the multiple orders Markov chain model is an interesting idea to try. When we 

have more data, we would try in multiple orders. 
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6.6 Prediction of the Water Level during Storm Situations 

using Neural Networks 

M.C. van de Wag [1] develop Neural network framework for the flood prediction in 

river in Hoak van riven, Holland. He compared the 2 training techniques, radical basis 

training with training with a feed-forward back propagation network, which the multi­

layer feed-forward network gives better result. 

This is an attempt to develop flood modeling using other technique, which the 

development approach is similar to this thesis, which is the work based on an 

assumption to construct an initial model, and then what he was interested in is the 

methodology in learning the network. 
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7. CONCLUSION AND FUTURE RESEARCH 

7.1 THEORICAL ISSUE 

This thesis is an attempt to improve the flood prediction done with Bayesian network 

technique. From our preliminary work that has been done before, we improve 

techniques and implementations. Many points that we pinned down ourselves weak 

points form the preliminary work, and prove that we have improve the work, although 

the result is not that impressive. The model needs to be calibrated, but due to the 

limitation of the data we have. But from the limitation, we still can discover some 

things, for example, one single type of data input is possible to predict the same type of 

data quite well. But the prediction in open environment, like a river, needs more inputs 

as factors. MIKE-11 is an example of hydrological modeling software. It takes a lot of 

inputs to generate the best output. We need to balance the ease of use and the result 

output, and also the precision and accuracy are invert. 

7.2 IMPLEMENTATION ISSUE 

The flood prediction system was developed by 

Programming tool: Microsoft Visual Basic, SQL, PL/SQL 

Database tool: Microsoft Access, ORACLE 8i 

Statistical tool: Microsoft Excel, SPSS 8.0 

Model implementation and computation: HUGIN Professional 5.4 

The software is to be re-done if there is any change in the modeling. But updating the 

probability to the model does not need to re-build the software, simply update the 

database and re-run the CPT computation again. 
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7.3 FUTURE RESEARCH 

We are planning to improve Bayesian network prediction that deal witContinuous 

variables by using Conditional Gaussian variable. The feature is also available in 

HUGIN Professional 5.4, and also accessible through the HUGIN APL 

We have discussed through e-mail with well-known researchers, for this discussion, 

we are really appreciate for help from Dr.Peter Haddawy. 

Robert Dodier suggested an alternative to deal with continuous variables. 

"Discretize all the continuous variables 

Conditional Gaussian (CG) variables. A key feature of this scheme is that the Bayesian 

network can be represented using original distributions from the problem domain, and 

at least some of the results will also have some ordinary parametric form, rather than 

being uninterpretable approximations. " 

Discretize all the continuous variables, of course that, the information must be lost 

some where during the interval chopping. 

And, Lars M Nielsen also suggested, 

"Conditional Gaussian (CG) variables have a normal distribution for each 

configuration of their discrete parents where the means depend linearly on the CG 

parents. 

If you want any other kind of continuous variables, you need to discretize them (and 

lose accuracy). I don't know exactly how much you lose if you discretize. If you use 

many narrow intervals you can of cause get this down to a minimum. " 
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From his sentence, his idea also supports us to narrow the intervals to a minimum, as 

what we have done in this thesis. 

Alexander V. Kozlov suggested the algorithms for the continuous value, 

"He was trying to minimize the KL distance of the answer to a query given BN on 

discrete and continuous variables. It can be done by propagating information back 

and forth thorughout a network (in a fashion very similar to LS algorithm). 

The initial work was published in UAI-97" 

From these comments from these researchers, we need to learn more in other 

techniques and apply our problem, so the flood prediction could be better. 
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