

USERS' OVERALL SATISFACTION FOR ARC WELDING ROBOT: A CASE STUDY OF UNI ARC CO., LTD.

> By THITI ŴONGTHANASAK

A Thesis submitted in partial fulfillment of the requirement for the degree of

Master of Business Administration

Graduate School of Business Assumption University Bangkok, Thailand March 2009

THE ASSUMPTION UNIVERSITY LIBRARY

USERS' OVERALL SATISFACTION FOR ARC WELDING ROBOT: A CASE STUDY OF UNI ARC CO.,LTD.

By

THITI WONGTHANASAK

A Thesis submitted in partial fulfillment of the requirement for the degree of

Master of Business Administration

Examination Committee:

1. Dr. Charnchai Athichitskul LABOR

×

- 2. Dr. Thongdee Kijboonchoo
- 3. Dr. Ioan Voicu
- 4. Dr. Chittipa Ngamkroeckjoti
- 5. Assoc.Prof. Poonsak Sangsunt

Examined on : 27 March 2009 Approved for Graduation on :

> Graduate School of Business Assumption University Bangkok, Thailand March 2009

(Member)

(Member)

(MOE Representative) Formak Sangom?

1000

(Advisor)

(Member

ABSTRACT

Nowadays, arc welding robot sales situation of each distributor not only in Thailand but around the world is in the midst of the fear that the equipment investment is curbed down due to the global recession. To survive in this difficult period, the important factors in environmental changes that would promote purchasing demand of arc welding robots are improvement the right products and also improvement the right sales activity to meet the highest levels of customer satisfaction to the right person. Therefore, this study is focused on the difference of users' satisfaction for arc welding robots when classified by various users' characteristic profiles. In this study, Uni Arc Co., Ltd. [UNAC] as a reliable arc welding robots distributor in Thailand was selected to be the case study. The research objectives encompass 1) To study the levels of users' satisfaction toward the product factors of arc welding robots which are Performance in operation, Reliability, Technical sophisticate, Flexibility and Adaptability in use, Size, Weight, Speed, Warranty, and Durability. 2) To study the differences of satisfaction toward the arc welding robots of UNAC among users when classified by users' characteristic profiles (Gender, Age level, Income level, Education level, and Department).

Research methodology encompasses sampling survey. Data collection tools involve structured questionnaires, in which 400 sets of closed-form questionnaires were used. Probability sampling technique is chosen. Sampling element is users who have ever experienced in using, received the service at any period of product life or involved in purchasing the arc welding robots of UNAC before. There are totally 45 hypotheses conjectured for testing.

Descriptive statistics is used to explain the users' satisfaction through product factors of arc welding robots can be concluded that the users have the greatest satisfaction on the "Performance in Operation" of arc welding robots; following with; Durability, Speed, Warranty, Flexibility and adaptability in use, Size, Reliability, Weight, and the least satisfaction of users toward product factors of arc welding robot is "Technical Sophisticate" respectively. Also, Independent Sample T-test is used for testing the hypotheses which want to find out the difference between male and female's satisfaction toward the arc welding robots of UNAC. Results from the test of 9 hypotheses by T-test can be concluded that there is significant difference between male and female on satisfaction toward the arc welding robots of UNAC by Male users have the greater satisfaction than Female users on the arc welding robots toward Performance in operation, followed by Durability, Speed, Warranty, Flexibility and adaptability in use, Reliability, and Weight, respectively. However, only Technical sophisticate and Size of arc welding robot factors that both Male and Female users have the same level on satisfactions. Moreover, Analysis of variance (ANOVA) technique is used for hypotheses testing in analyzing the difference among the other respondents' characteristic profiles which are Age level, Income level, Education level, and Department with the level of satisfaction toward the arc welding robots of UNAC. Results from the test of the rest 36 hypotheses by Oneway ANOVA can be concluded that there is significant difference among the respondents regarding their satisfaction toward the arc welding robots of UNAC when classified by Age level, Education level, Income level and Department. However, there are no difference among the respondents regarding their satisfaction for Reliability and Speed of the arc welding robots of UNAC when classified by department.

Finally, the findings have implications for arc welding robots supply businesses which will recommend about the right product factors of arc welding robots that should be developed on the new generation of arc welding robots and also should be emphasized or improved when arc welding robots distributors directly make their sales activities to the right users.

ACKNOWLEDGEMENTS

I would like to thank all the people who have contributed to the successful completion of this work. I would like to express my sincere appreciation to Dr. Charnchai Athichitskul, my advisor, who provided a detailed review and suggested good guidance and excellent advice throughout the study.

I am greatly indebted and would like to convey my gratitude to Dr. Thongdee Kijbonnchoo, Dr. Chittipa Ngamkroeckjoti, and Dr. Ioan Voicu, who are the members of thesis committee for their recommendations for the improvement of my thesis. Their valuable suggestions make my research more complete.

Finally, I wish to thank you all the members of my family for their love, encouragement, support, and understanding during the period of MBA study.

Thiti Wongthanasak Assumption University

March, 2009

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xii
CHAPTER 1 GENERALITIES OF THE STUDY	1
1.1 Introduction of the Study	1
1.1.1 Industrial Robot	1
1.1.2 Arc Welding Robot	3
1.1.3 Global Arc Welding Robot Supply Industry	4
1.1.4 Arc Welding Robot Supply Industry in Thailand	6
1.1.5 Uni Arc Co., Ltd. [UNAC] Company Profile	7
1.2 Statement of the Problem	10
1.3 Research Objectives SINCE1969	14
1.4 Scope and Limitations of the Research	14
1.5 Significance of the Study	15
1.6 Definitions of Terms	16
CHAPTER 2 LITERATURE REVIEW	22
2.1 Definition on Users' Satisfaction for Robotic Factors	22
(Dependent Variables)	
2.1.1 Product	22

2.1.2 Product Factors (Technology) 25

2.1.2.1 Performance in Operation	26
2.1.2.2 Quality	26
2.1.2.3 Reliability	27
2.1.2.4 Technical Sophisticate	27
2.1.2.5 Flexibility and adaptability in Use	27
2.1.2.6 Weight	28
2.1.2.7 Size	28
2.1.2.8 Warranty	28
2.1.2.9 Speed VERS/	29
2.2 Theories of Product Attributes Model	29
2.2.1 Product Model 1: Product Attributes Model	29
2.2.2 Product Model 2: Product Differentiation Model	31
2.2.3 Product Model 3: Product Dimensions Model	35
2.3 Identify the Dependent Variables	42
2.4 Respondents' Characteristic Profiles (Independent Variables)	43
2.4.1 Personal Factors	43
2.5 The Importance of Customer Satisfaction	46
 2.5 The Importance of Customer Satisfaction 2.5.1 Customer Satisfaction Theory 2.5.2 Customer Satisfaction Definitions 	47
2.5.2 Customer Satisfaction Definitions	48
2.6 Previous Studies	49
CHAPTER 3 THEORETICAL AND CONCEPTUAL FRAMEWORKS	55
3.1 Theoretical Framework	55
3.2 Conceptual Framework	56
3.3 Research Hypotheses	59
3.4 Operational Definitions of the Independent	71

and Depen	dent V	'ariables
-----------	--------	-----------

CHAPTER 4 RESEARCH METHODOLOGY	80
4.1 Research Methods	80
4.2 Respondents and Sampling Procedures	81
4.2.1 Target Population	81
4.2.2 Sampling Element	81
4.2.3 Sampling Unit	81
4.2.4 Sample Size ERS/	82
4.2.5 Sampling Procedure	83
4.3 Research Instrument	84
4.3.1 Pre-Test of Questionnaires	86
4.4 Data Collection Procedures	87
4.5 Statistical Treatment of Data	88
4.5.1 Independent Sample T-test	91
4.5.2 Analysis of Variance (ANOVA)	92
8/2973 SINCE1969 3050	
CHAPTER 5 DATA ANALYSES AND RESULTS	95
5.1 Introduction	95
5.2 Samples Profile	96
5.3 Descriptive Data Analyses	96
5.3.1 Users' Characteristic Profiles of the Respondents	97
5.3.2 Descriptive Analyses of Users' Satisfaction	99
toward the Arc Welding Robots of Uni Arc Co., Ltd. [UNAC]
5.4 Inferential Statistics	109
5.4.1 Independent Sample T-test	109

119
209
218
218
219
219
220
222
223
231
237

APPENDIX D: Hypothesis Tables

LIST OF TABLES

		Page
Table 2.1	The Meanings of Product Attribute	30
Table 2.2	Model of Garvin's Eight Dimensions of Quality	36
Table 3.1	Hypotheses Testing	59
Table 3.2	Operational Definitions of Independent	71
	and Dependent Variables	
Table 4.1	Cronbach's Alpha values of Pre-Testing	86
Table 4.2	The Arbitrary Level VERS/	89
Table 4.3	Statistical Treatment Conclusion	94
Table 5.1	Gender	97
Table 5.2	Age	97
Table 5.3	Income	98
Table 5.4	Education	98
Table 5.5	Department	99
Table 5.6	Descriptives: Performance in Operation	100
Table 5.7	Descriptives: Reliability NCE1969	101
Table 5.8	Descriptives: Technical Sophisticate	102
Table 5.9	Descriptives: Flexibility and Adaptability in Use	103
Table 5.10	Descriptives: Size	104
Table 5.11	Descriptives: Weight	105
Table 5.12	Descriptives: Speed	105
Table 5.13	Descriptives: Warranty	106
Table 5.14	Descriptives: Durability	107
Table 5.15	Descriptives: Product Factors of the Arc Welding Robot	108
Table 5.16	Independent Sample T-test (Performance in Operation)	110

Table 5.17	Independent Sample T-test (Reliability)	111
Table 5.18	Independent Sample T-test (Technical Sophisticate)	112
Table 5.19	Independent Sample T-test (Flexibility and Adaptability in Use)	113
Table 5.20	Independent Sample T-test (Size)	114
Table 5.21	Independent Sample T-test (Weight)	115
Table 5.22	Independent Sample T-test (Speed)	116
Table 5.23	Independent Sample T-test (Warranty)	117
Table 5.24	Independent Sample T-test (Durability)	118
Table 5.25	One Way ANOVA (Performance in Operation)	119
Table 5.26	One Way ANOVA (Reliability)	122
Table 5.27	One Way ANOVA (Technical Sophisticate)	124
Table 5.28	One Way ANOVA (Flexibility and Adaptability in Use)	126
Table 5.29	One Way ANOVA (Size)	129
Table 5.30	One Way ANOVA (Weight)	131
Table 5.31	One Way ANOVA (Speed)	133
Table 5.32	One Way ANOVA (Warranty)	135
Table 5.33	One Way ANOVA (Durability)	137
Table 5.34	One Way ANOVA (Performance in Operation)	140
Table 5.35	One Way ANOVA (Reliability)	143
Table 5.36	One Way ANOVA (Technical Sophisticate)	146
Table 5.37	One Way ANOVA (Flexibility and Adaptability in Use)	149
Table 5.38	One Way ANOVA (Size)	152
Table 5.39	One Way ANOVA (Weight)	155
Table 5.40	One Way ANOVA (Speed)	158
Table 5.41	One Way ANOVA (Warranty)	161
Table 5.42	One Way ANOVA (Durability)	164

Table 5.43	One Way ANOVA (Performance in Operation)	167
Table 5.44	One Way ANOVA (Reliability)	169
Table 5.45	One Way ANOVA (Technical Sophisticate)	171
Table 5.46	One Way ANOVA (Flexibility and Adaptability in Use)	173
Table 5.47	One Way ANOVA (Size)	175
Table 5.48	One Way ANOVA (Weight)	177
Table 5.49	One Way ANOVA (Speed)	179
Table 5.50	One Way ANOVA (Warranty)	181
Table 5.51	One Way ANOVA (Durability)	183
Table 5.52	One Way ANOVA (Performance in Operation)	185
Table 5.53	One Way ANOVA (Reliability)	187
Table 5.54	One Way ANOVA (Technical Sophisticate)	189
Table 5.55	One Way ANOVA (Flexibility and Adaptability in Use)	192
Table 5.56	One Way ANOVA (Size)	195
Table 5.57	One Way ANOVA (Weight)	198
Table 5.58	One Way ANOVA (Speed)	201
Table 5.59	One Way ANOVA (Warranty)	203
Table 5.60	One Way ANOVA (Durability)	206
Table 5.61	Summary of Hypotheses Testing Results	209

LIST OF FIGURES

Figure 1.1	Robot Application	2
Figure 1.2	Main Components of the Arc Welding Robots	3
Figure 1.3	Worldwide Demand for Industrial Robots	4
Figure 1.4	Global Shares of Welding and Painting Robots	5
Figure 1.5	Summary of UNAC Profile	9
Figure 1.6	Shipment Volume and Shipment Sum	12
Figure 2.1	Three levels of Products ERS/	23
Figure 2.2	Model of Product Factors (Technology)	25
Figure 2.3	Product Attributes Model	30
Figure 2.4	Product Differentiation Model	31
Figure 2.5	Product Dimensions Model (High Technology)	36
Figure 2.6	Product Factors (Dependent Variables)	42
Figure 3.1	Theoretical Framework	56
Figure 3.2	Conceptual Framework	58
	ชื่าววิทยาลัยอัสสัมชัดษิ	

CHAPTER 1

GENERALITIES OF THE STUDY

This chapter introduces the general information related to arc welding robots and the profile of Uni Arc Co., Ltd., Statement of the Problem, Research Objectives, Scope of the Research, Limitations of the Study, Significance of the Study and Definitions of Terms.

1.1 Introduction of the Study

The word "Robot" is derived from the Czech word "Robonik" means working like a slave (Western Abenaki Dictionary, 1994). The world's first industrial robot was "Unimates" jointly developed by George Devol and Josef (Joe) Engelberger in the 1950s decade and led to the formation of Unimation Inc. producing industrial robots. The first generation Unimation was installed at General Motors in 1962. Two decades later Japanese technology has taken over industrial robots development (Reed Tradex, 2008).

Generally, robots are appropriate for individuals who have a deficiency in manipulation ability. In industry, a robot replaces human when the task is dangerous or monotonous, and sufficiently simple (Mahoney, 2006).

1.1.1 Industrial Robot

Industrial robots are programmable, multifunctional, mechanical devices through variable programmed motions to perform a variety of tasks. An industrial robot system includes not only industrial robots but also any devices and/or sensors required for the robot to perform its tasks as well as sequencing or monitoring communication interfaces. Robots are generally used to perform unsafe, hazardous, highly repetitive, and unpleasant tasks. Most robots are set up for an operation by the teach-and-repeat technique. In this mode, a trained operator (programmer) typically uses a portable control device (a teach pendant) to teach a robot its task manually. They have many different functions such as material handling, assembly, arc welding, resistance welding, machine tool load and unload functions, painting, spraying, etc. (US Department of Labor, 2005).

Industrial robots and their application systems were put into full-fledged practical use in 1980s, and demand for such robots and systems has increased steadily ever since. Nowadays an industrial robot is classified by many applications (Figure 1.1).

Figure 1.1: Robot Application

LABOR Current Po	bot Application
*	
Die Casting CE190	Machine Loading
Spot Welding	Stamping
Arc Welding	Plastic Molding
Glass Handling	Investment Casting
Heat Treatment	Conveyer Transfer
Forging	Palletizing
Paint Spraying	Inspection

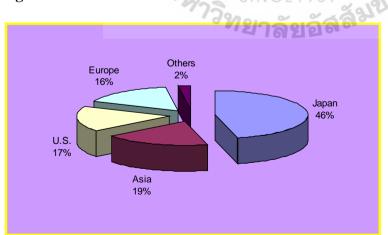
Source: Shimon Y. Nof (1999). Handbook of Industrial Robotics. 2nd ed. p. 8.

1.1.2 Arc Welding Robot

Arc welding robots are classified according to articulated robots on the basis of rotation of wrist in space. They work on the principle of industrial robot controlled by robot controller through teach pendant and used together with a welding power source. They are used in industrial welding processes to facilitate automatic welding.

Figure 1.2 indicates the three main components of arc welding robot: manipulator, robot controller, and welding power source (Uni Arc's service division, 2008).

Figure 1.2: Main Components of Arc Welding Robots

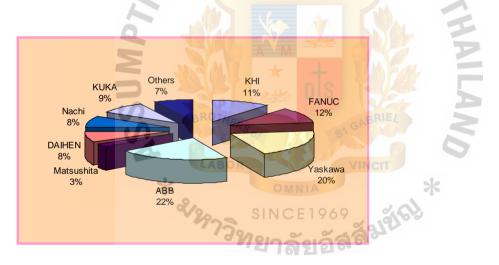


Source: Uni Arc's service division (2008). Introduction of Arc Welding Robots. p.21.

Arc welding robots perform their tasks more repeatedly than a manual welder under various conditions at high duty cycles because they are designed for the repetitive program and monotony of the task with consistent positional accuracy. They provide a better quality product than manual production and, moreover, helping in reduction of labor cost. In Summary, arc welding robots offer many benefits to users, including consistency, quality of welding, reduction of production costs, fewer scrapped parts, and increment of users' returns on investment. However, arc welding robots also require appropriate maintenance for continuous performance. They may require regular recalibration or reprogramming. Proper robotic system design also helps in minimizing interruptions in the continuous production line. Precisely programmed welding robots provide the same quality every time on pieces of the same dimensions and specifications. Generally, there are four methods of robot's arc welding processes which are most popular used in the industry: Co2 arc welding process, MAG arc welding process, MIG arc welding process, and TIG arc welding process (Uni Arc's service division, 2008).

1.1.3 Global Arc Welding Robot Supply Industry

Industrial robots are driving many worldwide manufactured industries. Japan is the most important supplier of robotic software, hardware and peripheral equipment; Japan is the largest market. Figure 1.3 shows demand for industrial robots in each area.



Source: JETRO (March 2006). Trends in the Japanese Robotics Industry. *Industrial Reports*. Retrieved May 06, 2008, from The Japan External Trade Organization (JETRO) website

Nowadays, there are several leading industrial robot manufacturers who are countable as global robot suppliers such as ABB, Yaskawa, DAIHEN (collaborated with Nachi), FANUC, Kawasaki [KHI], KUKA and Panasonic. Up to 2007, ABB has top share in spot-welding and painting and is quite successful in export sales and earning the firm the largest share in terms of volume. Yaskawa, the second market share, supplies to Toyota's plant in the Czech Republic and is getting more orders from other Japanese manufacturers building plants overseas such as Thailand. FANUC and KHI are supplying western customers (Figure 1.4).

Figure 1.4: Global Shares of Welding and Painting Robots (Robots: arc welding, spot welding, painting, shearing, de-burring & grinding)

Source: JETRO (March 2006). Trends in the Japanese Robotics Industry. *Industrial Reports*. Retrieved May 06, 2008, from The Japan External Trade Organization (JETRO) website

Today, Nachi has made inroads in the American welder robot market, which is formerly a base of ABB. Nachi has taken market share away from ABB by concluding a contract with Chrysler plant. While the manufacturer robot like Yaskawa aims to increase its contracts with other related manufacturers in an effort to sell more robots in USA and other markets (JETRO, March 2006). Focus on arc welding robots, we can count that there are only two suppliers who manufacture all completed components (manipulator, robot controller, and welding power source). Those are OTC-Daihen and Panasonic-Matsushita while the others such as ABB, Yaskawa, FANUC, KUKA, Nachi, Kawasaki, and so on attach their arc welding robots and robot controllers with welding power sources from other welding power sources manufacturers (Uni Arc's service division, 2008).

Because of manufacturing welding power sources by themselves, now, Both OTC- Daihen and Panasonic-Matsushita are competing to get the biggest share in Japan and throughout the world in the category of arc welding robots (Uni Arc's service division, 2008).

To support a huge global demand of industrial robot including arc welding robots, all leading industrial robot manufacturers are strengthening sales and maintenance overseas to attract customers. Most of them are also initiating overseas production of robots especially for foreign auto industries. Moreover, they also set up their subsidiary companies as sales and services center for supporting their distributors in each country with a significant demand of this product such as USA, Germany, China, and also Thailand (Uni Arc's service division, 2008).

1.1.4 Arc Welding Robot Supply Industry in Thailand

In Thailand, the demand of arc welding robots comes from many various manufacturing industries. The automotive part and motor vehicle industries are the biggest users of arc welding robots. A half number of arc welding robot is purchased by Japanese automotive manufacturers who have moved to Thailand and by local automakers since Thailand has become automobile production base with the continuity of support policy from every Thai government (Uni Arc's service division, 2008).

There are several local and joint venture companies who set up to be the distributors of global industrial robot manufacturers. Previously, the distributors are just responsible for sales and stock. Now intense competition has made them change. They have to provide full-line sales and services of their represented products. Moreover, the arc welding robot distributors have to offer a warranty, robot training, and prototype tooling for various robot integration packages. They also have to offer the users care service with trained engineers and technicians who can solve customers' inquiries ranging from programming issues to robot system failures (Uni Arc's service division, 2008).

Uni Arc Co., Ltd. is one of the leading arc welding robot distributors in Thailand. It roles as OTC Daihen representative who provides the arc welding robot to the users that employ the welding robot in their manufacture (e.g. automobile/ motorcycle manufacturers, local auto-parts makers, steel products maker, electric/electronic companies) (CMP Media, 2008). The next topic will discuss on the Uni Arc Co., Ltd. company profile.

1.1.5 Uni Arc Co., Ltd. [UNAC] Company Profile

Uni Arc Co., Ltd. [UNAC] was founded in 2003 as a distributor of OTC DAIHEN Asia Co., Ltd. [OTC] and a sales and services base of DAIHEN Corp

(Japan) for Asia and Australia region, to market OTC arc welding equipment especially arc welding robots in Thailand. When UNAC differentiated itself from the other players in the arc welding supply industry by providing full line of sales and services activities, the others are still rolling themselves as a commission agent or trading firm with no after-sales services. UNAC set up its own strongest robotic engineering team who can support all after sales activities with no support from other manufacturers. They have set up their own necessary and relevant facilities such as products showroom, welding lab, conference and training and repair shop. Also, they have set up OTC Suvarnbhumi Technical Center joint with DAIHEN Corp to provide education of arc welding principle and know-how, latest welding technology for all interest people.

Just three years later, UNAC has become the leading full line supplier of arc welding equipment especially arc welding robots, by responsible for more than 1,000 units population of OTC arc welding robot in Thailand. Most of their customers are in the automotive industry such as Toyota, Hino, Isuzu, Kawasaki, and so on. UNAC has doubled growth their revenue for three years continuously since 2003 to 2006 and become the second top sales volume of OTC arc welding robot in Thailand since then (CMP Media, 2008).

Currently, UNAC positions themselves as the leading full line supplier of arc welding equipments especially arc welding robot category. They have become the expert in robotized welding environments, which is capable of providing a full range of arc welding robots and control systems from compact standardized robot cells for simple tasks to large scale customized systems. Besides arc welding robots, the product line of UNAC includes a complete range of products to improve welding quality and quantity of output such as Co2/ MAG/ MIG/ TIG power sources, Air plasma cutting machines, welding wire, torches, accessories, and consumable and spare parts (Uni Arc's service division, 2008).

The summary of UNAC profile is shown in Figure 1.5.

Figure 1.5: Summary of UNAC Profile

Company Name:	Uni Arc Co., Ltd.	
Industry:	Arc Welding Supply Industry	
Establishment:	June 2003	
Head Office:	99/222 Moo16 Bangpleeyai, Bangplee, Samutprakarn 10540	
Warehouse:	12/23 Moo5 Rachatewa, Bangplee, Samutprakarn 10540	
Alliances:	DAIHEN Corp. (Japan)	
5	OTC DAIHEN Asia Co., Ltd.	
	Shanghai Atlantic Welding Consumables Inc. (China)	
	Keenweld (Thailand) Co., Ltd.	
Major Products:	Full Robotic/ Automatic Welding System, Stand-Alone Arc	
	Welding, Cutting, and handling Robot, Co2/ MAG/ MIG/ TIG/	
	SPOT Arc Welding Machine, Air Plasma Cutting Machine,	
	Welding Wire, Welding Torch, Welding Consumable and	
	Spare Parts, Welding Chemicals	

Source: CMP Media (2008). Summary of Uni Arc Co., Ltd. Intermach Times 2008, Vol.26, No.2,

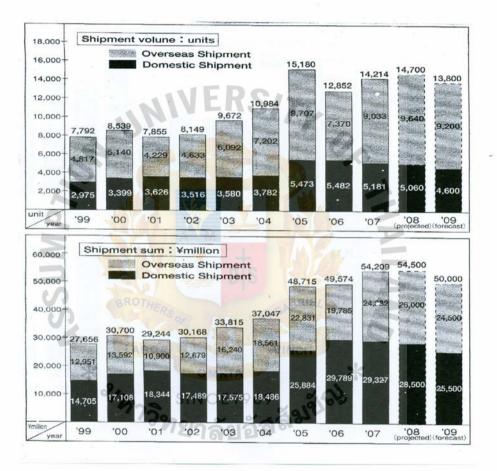
February, p.10.

1.2 Statement of the Problem

Currently, arc welding robots sales situation of each distributor, not only in Thailand but around the world, is in the midst of the fear that the equipment investment is curbed down due to the global recession.

The global sales data from Daihen Corp. (Japan) [OTC], role as the arc welding robot manufacturer of UNAC, reported that the sales circumstances were roughly transiting favourably until September 2008 on the whole, but in the after month of the financial crisis from October to November, the sales circumstances are sharply deteriorating. Looking at the sales circumstances by areas, first of all, in China, the sales of welding machine and welding robots were transiting in two-digit growth form a year earlier until around September, but the market conditions are deteriorating in such case as the large-scale capital investment centering on the automobile related industry becomes delayed (Kawahara, 2008)

*


In fiscal year 2008 (April 2008-March 2009), the sales are expected to show a plus increase over the previous year's since there were deposits in the first half. In ASEAN area, the motorbikes related industry was buoyant so far, but things take a sharp turn for a minus from the previous year, expecting to fall below the previous year results. In Korea, the sales of welding robots for small compact cars are steadily transiting, expecting a small increase from the previous year. Also in Europe, in the half of fiscal year, mainly welding robots for the automobile related industry were transiting favourably, but the sales are largely on the decline receiving the influence of the financial crisis. The sales volume in North America are falling below the

previous results due to a sluggish sales in automobiles business, but since the sales portion in North America of OTC's overseas business are not high, thus the influence exerting on the whole sales is small. As to the North America's marker, although the time cannot be estimated, we see that the automobile industry will come back some time. At present, in store for that period, OTC has a policy to perform what should be done, namely, cost down, quality improvements, reorganization of research and development division such as a new product development and foundation reinforcement. Although the growth rate in China and India is said to be sluggish, the demand will be over 2008 results. In North American market, it depends on the situation of the automobile industry, but we estimate that the sales level off in 2009 and recover from 2010. The market in ASEAN and Europe is the severest, and it will be unavoidable in two-digit down. The year 2009 is under very severe environment, but our company would like to maintain the 2008 results in anyway, and to seek the share-up (Kawahara, 2008).

Now then, as for the prospects in the arc welding robot market in 2009, it seems that the global financial crisis will largely affect also on the equipment investment of the robots. In the case of year 2008, that influence was only given several months in the latter periods, but in the case of the year 2009, the crisis will affect the demand trends throughout the year. It is feared that, especially Japanese domestic, North America and Europe are dropped down. As to the whole Asian market, there are many factories, where still robotization is needed, thus expecting a few percentages up (Shimpo Corporation, 2009).

Forecasted by Japan Robot Industrial Association estimated that in the arc welding robots shipment for 2009 (January – December), the Japan domestic

shipment will be 4,600 units (down by 9.1%) amounting to 25.5 billion yen (down by 10.5%). On the other hand, the overseas export will be 9,200 units (down by 4.6%) amounting to 24.5 billion yen (down by 5.8%), totaling 13,800 units (down by 6.1%) amounting 50 billion yen (down by 8.3%) (Shimpo Corporation, 2009).

Figure 1.6: Shipment Volume and Shipment Sum

Source: Shimpo Corporation (2009). Arc Welding Robots: Forecast for 2009. *The Japan Welding News* for the World, Vol.13, No.46, Winter Issue.

The number one factor in environmental changes that would promote demand of robots in 10 years to come was "Necessity of improving manufacturing processes will become higher as the average age of operators get higher", followed by, in order, "Since manufacturing is moving in the direction of multi-variety, small quantity production, the need for production facilities capable of coping with versatile products will increase," "Improved working ratio of facilities will become important in terms of lower manufacturing cost," "Need for improved product quality and yield become higher," "The sum of investment in plant and equipment will become higher because of higher labor cost," "Responding to the requirement of shorter working hours will become more necessary." and "Reduced price and improved performance of robots will create room for greatly increasing the demand of robots" (Shimon, 1999).

For reduced price, in the position of arc welding distributor, at the end, it will be limited by their product buying cost from manufacturers. For improving the performance of robots, the distributors should know what they should do or their manufacturers should produce by best understanding their various users' satisfaction, more necessary (Uni Arc's service division, 2008).

Focus on UNAC, one important problem lies in the sales ratio of cable built-in robot (standard and current model) is low compared with other companies. The company would like to aim at sales-up to high value-added peripheral devices to new type arc welding robot by providing feedback information of improvement of product to their manufacturer. Another problem is among many related users of arc welding robot; the level of satisfaction through product is doubt to hit their needs (Uni Arc's service division, 2008).

Judging from the above situation while UNAC, the leading arc welding robot distributor in Thailand, has a great number of users who has already bought and related to arc welding robot, to find the users' satisfactions in each area of product aspects among various users is very interesting for more understanding their needs and finally improving the capacity of UNAC arc welding robot supply industry as a whole (Uni Arc's service division, 2008).

Based on the background stated above, the author aims to conduct the research about the users' satisfaction for arc welding robots: A case study of Uni Arc Co., Ltd. on the following questions:

- 1. Which product factors of arc welding robots satisfy the users of Uni Arc Co., Ltd. [UNAC]?
- 2. Is the users' satisfaction toward the arc welding robots of UNAC different among the users' characteristic profiles (Gender, Age, Income, Education, and Department)?

1.3 Research Objectives

This research has two main objectives:

- To study the levels of users' satisfaction toward the arc welding robots of UNAC.
- To study the differences of satisfaction toward the arc welding robots of UNAC among users when classified by users' characteristic profiles (Gender, Age, Income, Education, and Department).

1.4 Scope and Limitations of the Research

• There are several arc welding robot distributors in Thailand but only users of UNAC will be focused in this research. Depending on the time constraint and

the budget, the data will be collected for a period of 22 days scheduled during February $1^{st} - 10^{th}$, 2009 for the reliability test and during February $16^{th} - 27^{th}$, 2009 for the actual primary data for the purpose of interpretation.

- This research will not study to all types of welding processes which can be welded by robots. It will be conducted to the users or respondents who are using arc welding robots in the processes of Co2/ MAG/ MIG/ TIG only.
- This study will valid only in the area of end user's satisfaction, not including the area of other arc welding robot distributors, sub-dealers, or any other robot commission agent.
- This study is a case study of Thailand, so the investigation result will be valid only in Thailand.

1.5 Significance of the Study

This study provides the critical improvement for UNAC to understand their users' satisfaction among different users' characteristic profiles through their product. Also this study is beneficial for the arc welding robot manufacturer of UNAC, Daihen Corp (Japan), to understand the users' satisfaction in product aspects of arc welding robots in Thailand.

Moreover, the research findings would be beneficial for general study in arc welding robots; especially for the companies in the arc welding robot supply industry in Thailand. The result of this study will also help other global robotics supply companies more understand and recognize the difference between the users' characteristic profiles and the satisfaction toward arc welding robots in Thailand. In highly competitive circumstance among arc welding robot manufacturers, the author intends to generate and inspire new ideas for robotic manufactures that need to improve or develop their products by understanding of their users' needs as well.

1.6 Definitions of Terms

Accuracy:

- 1. It refers to the quality, state, or degree of conformance to a recognized standard or specification
- 2. It also refers to the ability of a robot to position its end-effectors at a programmed location in space. Accuracy is characterized by difference between the position to which the robot tool-point automatically goes and the originally taught position, particularly at nominal load and normal operating temperature (Shimon, 1999).

Arc Welding:

Arc welding uses a welding power source to create an electric arc between an electrode and the base material to melt the metals at the welding point. They can use either direct (DC) or alternating (AC) current, and consumable or non-consumable electrodes. The welding region is sometimes protected by some type of inert or semi-inert gas, known as a shielding gas, and/or an evaporating filler material. The process of arc welding is widely used because of its low capital and running costs (Lincoln, 1994).

Arc Welding Robot:

An arc welding robot is comprised of: a robot main body including a welding torch and a wire feeder for feeding the welding wire to said welding torch, said wire feeder including a sensor and a driving motor; a robot controller for controlling said robot main body; and a welding power supply arranged inside said robot controller, said welding power supply controlling said wire feeder and a welding power, wherein a robot main body driving power cable and a robot control cable are connected between said robot controller and said robot main body and wherein a sensor cable of said wire feeder, a gas valve control cable for shield gas supplied to said welding torch and a welding voltage feedback cable to be accommodated in said robot main body driving power cable (Hayashi, 2003).

Articulated Robot:

It refers to a robot with rotary joints (e.g. a legged robot or industrial robot). The articulated robots can be ranged from simple two-jointed structures with 10 or more interacting joints. They are powered by a variety of means, including electric motors (US Department of Labor, 2005).

Axis:

- 1. It refers to the rotation line of manipulator.
- 2. It refers to the degree of freedom against a mechanical limit stop (Daihen Corp, 1991).

Co2 Arc Welding Process:

In this welding, fine coiled welding wire [0.8 -1.6mmø (1/32-1/16 inø)] is used in place of manual welding rod. The welding wire is fed to the welding torch through the wire feed roll. This wire is electrified through the torch tip, due to which arc is struck between the base metal and the wire, and both the base metal and the wire are continuously molten by arc heat. Since CO2 gas is used to protect the arc part from air, this welding method is named (Daihen Corp, 1991).

Industrial Robot:

A reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks (US Department of Labor, 2005).

Off-line teaching:

The simulation software designed for controlling robots by simulation through a personal computer without teach pendant (Uni Arc's service division, 2008).

MAG Arc Welding Process:

The welding process using mixed gas of Argon and CO2 is called MAG (Metal Active Gas) arc welding. MAG arc welding is similar to CO2 gas shielded arc welding in that the same basic power supply. Difference between MAG and CO2 gas shielded arc welding is only using gas and wire. By MAG arc welding, beautiful beads, free from spatter, can be formed not only in small current range but over the full working range of the welding machine (Daihen Corp, 1991).

Manipulator:

A device used under human control to manipulate materials without direct contact (US Department of Labor, 2008).

MIG Arc Welding Process:

MIG (Metal Inert Gas) welding process is similar to CO2 gas shielded arc welding and MAG arc welding in the principle. Usually Aluminum and Stainless steel welding is popular as MIG arc welding although various metal, copper, high-tension steel, and so on can be welded by this method (Daihen Corp, 1991).

Peripheral:

A peripheral is a device attached to manipulator or robot controller which is countable as additional axis for supporting the work of arc welding robot (Uni Arc's service division, 2008).

Positioner:

Also know as positioning table, the positioner is fixture devices for locating the parts to be processed in the required position and orientation. The positioner can be implemented as hard tooling devices or reprogrammable robotic devices which reduce the set-up time and part change over times. For instance, the positioner is used in robotic arc welding to hold and positioning pieces to be welded. The moveable axes of the positioner are sometimes considered additional robot axes. The robot controller controls all axes in order to present the seam to be welded to the robot's torch in the location and orientation taught or modified by adaptive feedback, or changes inserted by operator, dynamically during execution (Shimon, 1999).

Repair:

To restore robots and robot systems to operating condition after damage, malfunction, or wear (US Department of Labor, 2005).

าลัยอัสสิ

Robot:

A robot is programmable automation to augment human manipulation (Mahoney, 1995).

Robot Controller:

The unit attached to control one or more robot through teach pendant (Uni Arc's service division, 2008).

Robot Manufacturer:

A company or business involved in the design, fabrication, or sale of robots, robot tooling, robotic peripheral equipment or controls, and associated process ancillary equipment (US Department of Labor, 2005).

Robotic Cell:

A robot-served cluster of workstations which contains no internal buffers for work-inprocess and in which only a single family of parts is produced (Shimon, 1999).

Robotics:

Robotics in this study means the science of designing, building, and applying robots (Shimon, 1999).

Sensors:

Extracting relevant information from sensor signals and subsequent interpretation will be the function of inexpensive, high-performance computer processors. With these advance sensors, a robot will in time have a capability to detect, measure, and analyze data about its environment considerably beyond unaided human capabilities (Uni Arc's service division, 2008).

Slider:

Slider is a peripheral of robot that has a mode of locomotion by moving body parts smoothly along a surface while remaining in contact with robot (Daihen Corp, 2008).

Teach Pendant:

Teach Pendant in this study means a movable mechanism allowing the user to guide the robot's operation in the restricted envelope (Shimon, 1999).

TIG Arc Welding Process:

The gas tungsten arc welding (GTAW) process is sometimes called "TIG" (tungsten inert gas) welding and the inert gasses, argon and helium are chiefly used for gas

tungsten arc welding. Since argon gas is extensively used as shielding gas, this welding method is generally called Argon arc (TIG) welding. In his welding tungsten electrode (non-consumable) is used and filler wire may or may not be added. The electric arc is produced by passage go current through the ionized inert shielding (Daihen Corp, 1991).

UNAC:

Uni Arc Co., Ltd.

User:

A company, business, or person who uses robots and who contracts, hires, or is responsible for the personnel associated with robot operation (US Department of Labor, 2008).

User-Friendly:

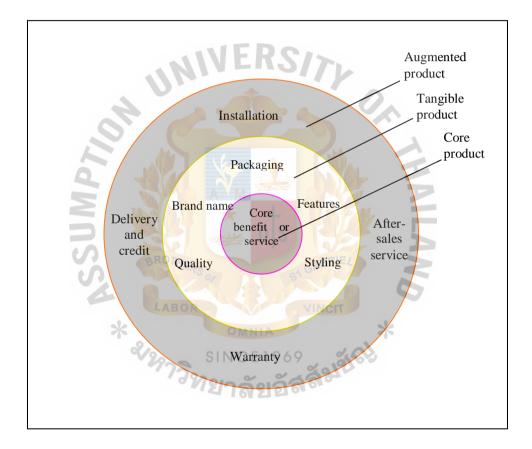
A common term implying eases of learning and operating a complex system by human users, especially via a computer interface (Shimon, 1999).

Welding Power Source:

A welding power source is a device that provides an electric current to perform welding (Uni Arc's service division, 2008).

CHAPTER 2

LITERATURE REVIEW


In this chapter, the researcher will explain related theories on studying the user's satisfaction for arc welding robots, a case study of Uni Arc Co., Ltd. In this literature review, the first section presents the theories related to product factors of arc welding robots. The second section will cover the independent variables, users' characteristic profiles, in order to use for measuring the difference between the respondents' variables and the satisfaction toward arc welding robots of UNAC. Finally, the last section presents review of previous studies that related to this research.

2.1 Definition on Users' Satisfaction for Robotic Factors (Dependent Variables)

2.1.1 Product

Kotler (2003) mentioned that "product is anything that can be offered to a market to satisfy a want or need". Also, he stated that, "product is also mean to any physical goods, services, experiences, events, persons, places, properties, organizations, information and ideas". Hawkins et al. (2001) stated that the product is anything a consumer acquires or might acquire to meet a perceived need. Moreover, Mandell and Rosenberg (1981) also stated that product is the element of marketing mix that represents the basic offering being made to consumers. In 1989, Walters and Bergiel stated that product is a bundle of physical goods, service, ideas, and symbolic

attributes designed to enhance consumer want and satisfaction. Then, Willaim and Slama (1989) mentioned that consumer's criteria are generally grounded in the attributes and benefit buyer seeks from the products they buy. Kotler and Armstrong (1997) also mentioned each product item offered to customers can be viewed on three levels and each level adds more customer value (Figure 2.1).

Figure 2.1: Three levels of Products

Source: Kotler P. (2000). *Marketing Management*. 10th ed. London UK: Prentice-Hall International.

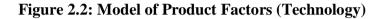
Core product

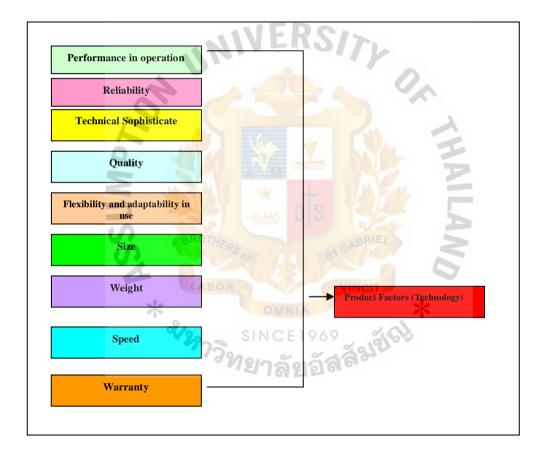
Core product means core benefits that customers seek when they buy a product. Thus, when designing products, the marketers must first define the core benefit of the product to be perceived to consumers (Kotler and Armstrong, 1997).

Tangible product

Tangible product may have as many as five characteristics: a quality level, feature, design, brand name and packaging (Kotler, 1989).

Augmented product


The last one is *augmented product*. It offered additional consumer service and benefits such as after sale service, warrantee, delivery, credit, etc. All of them become the important parts of the total product (Kotler, 2000).


NIVERS/7L

Gross et al. (1987) mentioned that consumers evaluate the product by deciding if acquiring the attributes of product will enable them to accomplish their intended life activities. And consumers will satisfy when they believe that an item's attributes suit their needs better than the attributes of other products. Schaffner et al. (1998) also mentioned that to be successful, product must meet the need of the target better than the competition does. The product benefit is identified by consumers as important to them in buying and using the product. Assael (1993) stated that product represents the product feature, the package, the brand name, and post sales service support. Zikmund and Amico (1996) quoted that the term product refers to what the business or nonprofit organization offers to its prospective customers or clients. The offering may be a tangible good, a service, or an intangible idea. The product that customers receive in the exchange process is the result of a number of product strategy decisions. Developing and planning a product involve making sure that it has the characteristics and features customers want. Selecting a brand name, designing, a package, developing appropriate warranties and service plants, and other product decisions are also activities involved in developing the "right" product.

2.1.2 Product Factors (Technology)

There are many factors associated to customer satisfaction on high technology product like arc welding robots. Evans and Berman (1982) stated that there are nine product attributes that can influence customer satisfaction for the high technology products (cited in Baker and Hart 1999); each factor is shown in Figure 2.2.

Source: Evans and Berman (1982) all cited in Baker and Hart (1999). *Product Strategy and Management*. London: Prentice Hall.

2.1.2.1 Performance in Operation

Baker and Hart (1999) mentioned that *performance factor* means performance specification on capability of the products. They also quoted that *performance factor for some technical products* means performance on some work in the processes of the manufacturer; which is considered as belonging to the product process under a consideration of the manufacturer. Generally, arc welding robots' performance in operation will be classified by following three main components of arc welding robots: manipulator, robot controller, and welding power supply. For the manipulator, its most important performance is enough working area. For the robot controller, its most important performance is stable welding capability (Uni Arc's service division, 2008).

2.1.2.2 Quality

Quality means the "totality of features and characteristics of a product or service that bear on its ability to satisfy stated or imply need" (Kotler, 2000). Therefore, the researcher concludes that the seller has delivered quality whenever the seller's product or service meets or exceeds the customer's expectation and quality is also a key to value customers' satisfaction.

2.1.2.3 Reliability

According to Lovelock (2001), reliability means least probability of malfunction or failure while Kotler (2000) defined reliability as "*The ability to perform the promised service dependably and accurately*". DeLone and McLean (1992) stated that reliability for robotic products means the promise from a robotic company that its robot can operate accurately, dependably and consistently, according to its specifications. In practical use, the reliability of arc welding robots means the repeatability of manipulator and the accuracy of robot controller and welding power supply, which are also agreed and used in this study.

2.1.2.4 Technical Sophisticate

According to Handscombe (1989), sophisticate means material objects of use to humanity, such as machine, hardware or utensils, and also system, the method of organization and techniques. *Technical Sophisticate* in this study means peripheral equipments that is the technology that comes along with the arc welding robots to support more complicated tasks, for example, simulation software, positioner, slider, and sensor.

2.1.2.5 Flexibility and Adaptability in Use

According to Baker and Hart (1999), flexibility is "the popular term for the ability to easily bend an object or the ability to adapt to different circumstances" and adaptability means "an anatomical structure, physiological process or behavioral

trait of an organism that has evolved over a short or long period of time by the process of natural selection". Therefore, flexibility and adaptability in use in this study means the capability of arc welding robots to be adjusted or handled in case of short-term or suddenly changes in production requirements occurred.

2.1.2.6 Weight

Slawsby (2006) mentioned that light weight can increase freedom to mobility. Light-weight arc welding robots are gaining popularity and could get up to 70 percent of the market in 2010, increasing from 20 percent in 2007 (Ranch, 2007). However, in this study *weight* means the weight of arc welding robots.

2.1.2.7 Size

According to Ranch (2007), *size* may refer to "*how big something is*". The dimension of size is consisting of length, width, height, diameter, perimeter, area and volume. In this study, size means the size of arc welding robot.

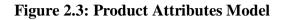
ยาลัยอ้สิ

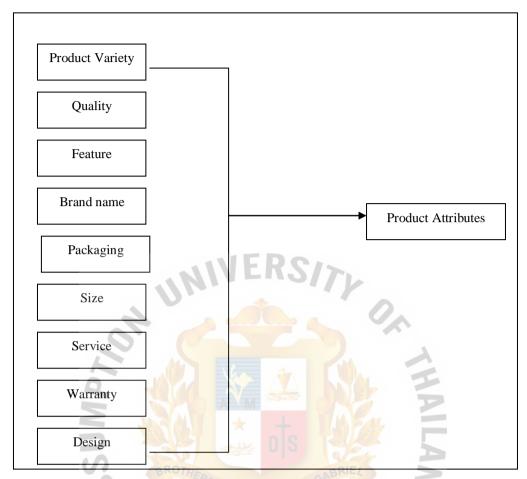
2.1.2.8 Warranty

Product warranty means an explicit or implicit promise by sellers that the product will perform as specified or the seller will fix it or refund the customer's money during a specified period (Kotler, 2000). Besides, Jobber (2001) also stated that the company should offer technical assistance to customer when the product is needed to repair.

However, Berkowitz et al. (2000) defined product warranty as "*a statement indicating the liability of the manufacturer for product deficiencies*". Moreover, there are various degrees of product warranty with different implications for manufacturers and customers; which are express warranty, limited-coverage warranty, full warranty and implied warranty (Berkowitz et al. 2000).

2.1.2.9 Speed


Several factors are influencing sales volume of arc welding robot; *Speed* variable is one of them.


The higher speed arc welding robot can reduce welding cycle time, and enhance productivity. Cycle time is faster because the motion speed of the robot axes is increased as a result of cutting-edge motor control technology and new ARM (Advanced Robot Motion) control. Other enhancements, such as minimized ARC ON/OFF time and reduce air-cut time, can also reduce welding cycle time (Yaskawa Electric Corporation, 2007).

2.2 Theories of Product Attributes Model

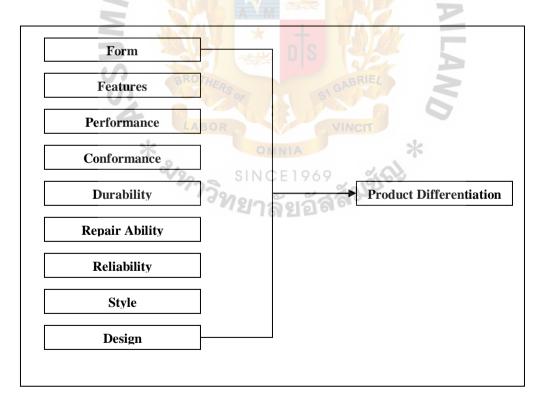
2.2.1 Product Model 1: Product Attributes Model

Kotler (2000) mentioned that there are 9 product attributes that can affect customer satisfaction as shown in Figure 2.3 and Table 2.1.

Source: Kotler P. (2000). Marketing Management. 10th ed. London UK: Prentice-Hall International.

Table 2.1: The Meanings of	of Product Attribute
----------------------------	----------------------

No.	Product Attributes	SINCE1969 Meaning
1	Product Variety	Have many product assortment to select
2	Quality	Characteristics of a product that perform high standard
3	Features	Characteristics that supplement the product's basic functions.
4	Brand name	Sign or symbol to differentiate the sellers from their competitors
5	Packaging	Designing and producing the container for a product
6	Sizes	Size of the product
7	Service	Provide additional service to the customers
8	Warranty	Implicit promise by sellers to buyers
9	Design	Shape and design of product


Source: Kotler P. (2000). *Marketing Management*. 10th ed. London UK: Prentice-Hall International.

These nine product attributes also corresponds to the characteristics of technology product of Evans and Berman (1982) on performance in operation, quality, design, size, and warranty. From the study of Ratsameeuthai (2002), product attributes can influence consumer's satisfaction on performance in operation, reliability, size, weight, speed, and warranty as well.

2.2.2 Product Model 2: Product Differentiation Model

Kotler (2000) stated that physical products are varying in their potential for differentiation. The product differentiation is shown in Figure 2.4.

Source: Kotler P. (2000). Marketing Management. 10th ed. London UK: Prentice-Hall International.

Form

According to Kotler (2000), there are many products that can be different in form, size, shape, or physical structure of product. By considering arc welding robots, there are various forms by their size, shape, and so on. Berkowitz et al. (2000) also stated that product forms can pertain to variations within the class of entire product category.

Features

Most of the products can be offered with varying features or characteristics that could supplement the product basic function. Therefore, being the first to introduce new valuable features is one of the effective ways to compete with other competitors (Kotler, 2000). Features are competitive tools to differentiate the company's products. Some companies are emphasizing on innovation by adding new features to their products. Moreover, most products can be offered with varying features. The point is a stripped-down, or bare-bones, version of the product. Therefore, the company can also create additional versions to its product by adding extra features (Ang H. et al. 1996).

Performance

Performance was defined by Kotler (2000) as "*the level at which the product's primary characteristics operate*"; by performance of product, usually have four levels: low, average, high or superior. Besides, from the study of Strategic Planning Institute (cited in Kotler, 2000), the study found that high performance of the product is resulted in more customer satisfaction, customer loyalty, return on investment (ROI), and positive word of mouth. Accordingly to Jobber (2001) stated that product

performance can be enhanced by such devices as raising speed, comfort, safety levels, capability, ease of use, etc.

Conformance

Kotler (2000) stated that conformance is defined as "the degree to which all the produced units are identical and meet the promised specification". According to Ang H. et al. (1996), conformance is the degree to which a product's design and operating characteristics come close to the target standard; it will reflect whether the various produced units are identically made and meet the specification. Many buyers expect that conformance of product should be high; while low conformance of the product will disappoint customers.

Durability

Durability is a measure of the product's expected operating life under natural or stressful conditions and is a valued attribute for certain products (Kotler, 2000). Moreover, Kotler (2000) mentioned that customers will generally pay more attention for the products that have long lasting reputation. However, Kotler (2000) also stated that this rule is not subject to some products, for example, the product that has rapid technology obsolescence. According to Jobber (2001), durability of product will provide longer life to the product and could generate low cost to the customer. In economics' sight, a durable good mean the good that does not quickly wear out; or more specifically, it yields services or utility over time rather than being completely used up when used one. For example, normally, arc welding robots' life cycle is around five years (Uni Arc's service division, 2008). So if they are easily broken down by manufacturer's fault within that period, it would be concluded that the products' durability is not good.

Repair Ability

Normally, customers prefer product that is easy to repair. Kotler (2000) stated that repair ability means "*a measure of the ease of fixing a product when it malfunctions or fails*". According to Ang H. et al. (1996), repair ability means the products that can be easily repaired when they are damaged. For example, arc welding robots distributors should have a high repair ability of their products. Quick response and enough reserved spare parts would result in more users' satisfaction.

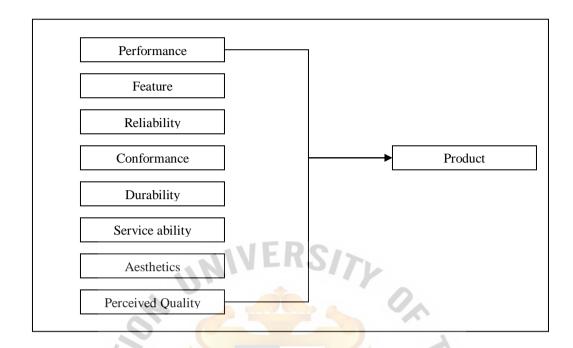
Reliability

In practical, reliability of arc welding robots means repeatability of manipulator and accuracy of robot controller and welding power supply. This meaning is as same as explained in the previous content of Figure 2.2 – Model of Product Factors (Technology).

Style

Jobber (2001) mentioned that product style can also give customer satisfaction through the improved looks that good style brings.

Design


In highly competitive market, design is one important factor that helps differentiate and position a company's products. Kotler (2000) stated that design is the totality of features that affect how a product looks and functions in terms of customer's requirements. A good design should be attractive to look, easy to open, install, use, repair and dispose of. According to Ang H. et al. (1996), a well designed product would be pleasant to look at, and also easy to open and learn how to use. Besides, Ang H. et al. (1996) also stated that a good design should be innovative, unobtrusive and enduring and enhances the usefulness of a product. Currently, the design of arc welding robots must be designed to respond the "user-friendly design", which is a common term implying eases of learning and operating a complex system by human users, especially via a computer interface (Shimon, 1999).

2.2.3 Product Model 3: Product Dimensions Model

Normally, products can reflect the intended function and the circumstances of product use. Consequently, as these circumstances change, it is sometimes necessary to adjust products ability according to that situation. Moreover, some technology products are also sometime defined as "meeting the requirement of the customers".

Besides, there is a widespread agreement that a product is multidimensional construction. Many scholars in the quality field have developed lists of dimensions of high technology products. One of them is from David A. Garvin. Garvin (1987) developed the list of eight dimensions of product; which are widely accepted as being applicable to most high technology products and the following table is the model of Garvin's eight dimensions of quality as shown in Figure 2.5 and Table 2.2.

Source: Garvin, D. (1987). Product technology: Competing on the Eight Dimensions of Quality. *Harvard Business Review, November 1987.*

Table 2.2: Model of	Garvin's Eight	Dimensions	s of Quality

Dimensions	Descriptions
Performance	A product's primary operating characteristics
Features 🛛 💥	Characteristics that supplement basic functioning
Reliability	Probability of a product malfunctioning within a specific time period
Conformance	The degree to which a product's design and operating characteristics meet established standards
Durability	Expected product life
Service ability	Speed, courtesy, competence, and ease of repair
Aesthetics	How a product looks, feels, sounds, and etc
Perceived Quality	Reputation and other indirect measures of quality

Source: Garvin, D. (1987). Product technology: Competing on the Eight Dimensions of Quality. *Harvard Business Review, November 1987.*

Performance

Garvin (1987) stated that performance refers to the primary operating characteristics of a product. In addition, whether performance differences are perceived as quality differences or not depends on individual preferences. The words that describe product performance include terms frequently associated with quality, along with the term that fails to carry the association (Garvin, 1987). Generally, arc welding robots' performance will be classified by three main components of arc welding robots: manipulator, robot controller, and welding power supply. For the manipulator, its most important performance is enough working area. For the robot controller, its most important performance is memory capacity. And for the welding power source, its most important performance is stable welding capability (Uni Arc's service division, 2008).

Features

Garvin (1987) stated that features are bells and whistles of the product; these are the secondary characteristics that supplement the product's basic function. Most of the products can be offered with various features or characteristics that could supplement the product's basic function. Therefore, being the first to introduce valued new features is one of the effective ways to increase the customer satisfaction (Kotler, 2000). Adding more features is also a competitive tool to differentiate the company's products. Some companies are extremely innovative in adding new feature into their products. Moreover, most products can be offered with many features. Besides, the company can also create additional versions to its product by adding extra features (Ang H. et al. 1996).

Reliability

Garvin (1987) stated that reliability reflects the probability of a product's malfunction or failure within a specified period of time. The most common measures of reliability are the mean times to first failure (MTFF), the mean time between failures (MTBF) and the failure rate per unit time. Because these measures require a product to be in use for some period; they are more subject to durable goods than to products and services that are consumed instantly. Reliability normally becomes more important to consumers when the maintenance cost is expensive (Garvin, 1987). Therefore, many arc welding robotic companies add more advertisement on their reliability. In other theory, a *reliable* product is also meant to totally free of technical errors; in practice, however, vendors frequently express a product's reliability quotient as a percentage. In this study, reliability is subject to attributes of arc welding robot-related components such as software or systems that need consistently performance according to its specifications.

Conformance

According to Garvin (1987), conformance is the degree to which a product's design and operating characteristics meet pre-established standards. In the field, data on conformance are more difficult to obtain and measure. However, there are two common measures that are frequently used: the measure of the incidence of service calls for a product and the frequency of repairs under warranty. In service business, measures of conformance are normally focus on the accuracy, timeliness, counts for processing errors, unanticipated delays, and other frequency mistakes. According to Kotler (2000), conformance was defined as *"the degree to which all the produced units are identical and meet the promised specification"*. Accordingly to Ang H. et al. (1996), conformance is the degree of how much a product's design and operating characteristics come close to the target standard. It will reflect whether the various produced units are identically made and meet the specification. Many customers expected that conformance of product should be high. The problem with low conformance is that the product will disappoint some customers.

Durability

According to Garvin (1987), durability is a measure of product life on both technology and economic dimensions, for example, time to technical obsolescence and rated life of monitor. Technically, durability can be defined as the amount of use one gets from a product before it physically deteriorates; this means that durability becomes the amount of use one gets from a product before it breaks down and replacement is regarded as preferable to continued repair.

&129739

Service Ability

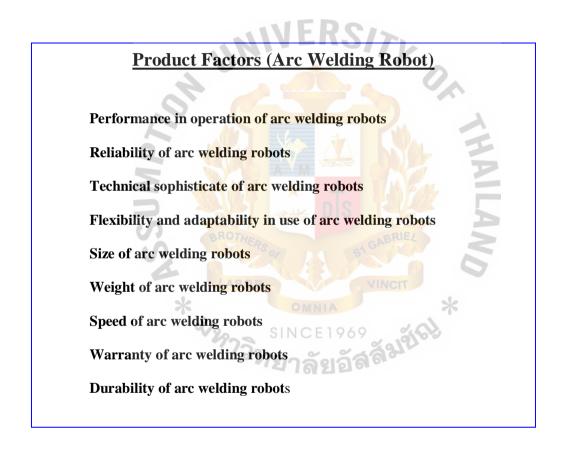
According to Garvin (1987), service ability means the courtesy, competence, and ease to repair. For example, in this study, warranty of arc welding robot includes after sales support for customers to call for service and spare part replacement. Customers are concerned not only about product's breakdown but also about the elapsed time before service can be restored, the timeliness with which service appointment are kept, the nature of dealing with service personnel, the frequency of service calls, and failure to correct an outstanding problem.

Aesthetics

According to Garvin (1987), aesthetics is how a product looks, feels, and sounds; which is clearly a matter of personal judgment and a reflection of individual preferences. However, Kotler (2000) mentioned that color is often the determining factor in a customer's acceptance or rejection of a product. However, the impact on customer satisfaction of the color should not be overlooked. For example, Red is often successful because it evokes feeling of warmth, passion and sensuality; while black, white and gold color can denote quality and class of the products.

Perceived Quality

According to Garvin (1987), perceived quality is a measure of various attributes of the product and service; the frequency indirect measures are the only basis for comparing brands. For example, we can compare perceived quality via brand name and advertising. Kotler (2000) stated that brand is a name, term, sign, symbol or design or a combination of them, which is intended to identify the goods and services of one seller to differentiate them from their competitors.


The consistency of these eight dimensions of product is significant and should be considered. Garvin (1987) mentioned that the product design sometimes cannot simultaneously maximize each of these eight dimensions because there are always tradeoffs among them.

ERSITU

2.3 Identify the Dependent Variables

In this study, the researcher applied all models, as mentioned in the literature reviewed above, to be the model of product factors of arc welding robot as shown in Figure 2.6.

Figure 2.6 Product Factors (Dependent Variables)

Source: Adapted from Evans and Berman (1982), Garvin (1987), and Kotler (2000).

2.4 Respondents' Characteristic Profiles (Independent Variables)

2.4.1 Personal Factors

Schiffman and Kanuk (2007) stated that personal factors are demographic characteristics of the customer and demography refers to the vital and statistic measurement of a population; they include age, sex, marital status, income, occupation and education and most often used as the basis for marketing segmentation. Besides, the information of demographics is easier for the company to classify the customer than other type of segmentation variables, such as psychology or socio-cultural studies. From Kotler (2003), personal characteristics include the buyer's age and stage in the life cycle, job position, economic circumstances, lifestyle, personality, and self-concept.

In this study the researcher applied personal factors to be users' characteristic profiles which are gender, age level, income level, education level, and department (job positions) as Independent Variables. The following topics are the description of each user's characteristic profile.

Gender

Gender is always a distinguishing segmentation variable. Gender affects consumer's thinking, attitude, behaviour, want, purchasing decision and levels of satisfaction. According to Kotler (2004), a marketer notices an opportunities for gender segmentation; males and females have different thinking value, attitude, need and want. Dholakia et al., (1990) stated that women and men seem to differ in their

satisfaction areas. Although sex roles have been blurred, satisfaction is still a gendered emotion, particularly in married households. Schiffman and Kanuk (1997) supported that women place more importance on personal gratification exemplified by such things as a comfortable life, pleasure, and happiness; while men, on the other hand, do not find fulfillment of such value as a comfortable life, pleasure, and happiness. Therefore, in this study, the researcher used gender to measure the level of satisfaction toward arc welding robots of UNAC.

NIVERS/7L

Age

Many age levels can be defined, such as infants and toddlers, young children, teenagers, adults, and senior citizens which are typical age-based market segments. Classifying consumers into age groups like this is useful when people in different ages have different purchasing behaviours and levels of satisfaction (Zikmund and Amico, 2001). Kotler (2000) also stated since consumers' wants and needs are changed by age, people buy different goods and service over their lifetime. Schiffman and Kanuk(1997) mentioned that product's need is often varied by consumer age; marketers have found age particularly useful demographic variables to distinguish segments. Many marketers have concentrated on a specific age segment. Therefore, in this study, the researcher uses age level to measure their level of satisfaction toward arc welding robots of UNAC.

Income

Income has been an important variable for distinguishing market segments for a long time. Product choice is greatly affected by one's economic circumstance. People's economic situation is comprised of their spendable income (its level, stability, and time pattern), savings and assets (including the percentage that is liquid), debt, borrowing power and attitude of saving versus spending (Kotler, 2004). Therefore, in this study, the researcher used the income level to measure the level of customer satisfaction toward arc welding robots of UNAC.

Education

Education is relatively simple to measure. Education level is correlated with both occupation and income. In addition, it influences lifestyle and therefore consumption patterns of individual directly (Hawkins, Best and Coney 2001). Skinner (1994) also stated that different educational levels can influence how decisions are made. And different educated consumers will seek different information and demand better-quality products in different ways. Therefore, in this study, the researcher uses the education level to measure the level of customer satisfaction toward arc welding robots of UNAC.

Department (Job positions)

According to Kotler (2004), variety in occupations or job positions can influence the purchasing decision and levels of satisfaction toward products. Besides, Hanna and Wozniak (2001) also defined occupation or job position as an activity that serves as one's regular sources of livelihood. Hanna and Wozniak (2001) also stated that occupation or job position tends to be closely related to the education level, and the income level; most of these factors are frequently used together as a composite index to evaluate the level of purchase intention and level of satisfaction. According to Hawkins et al.(1998) who mentioned that occupations can be broken down into large categories of job positions ranging from professionals in each department, technical workers, administrative officers, to maintenance workers position. Therefore, in this study, the researcher uses Department to measures the levels of customer satisfaction toward arc welding robots of UNAC.

2.5 The Importance of Customer Satisfaction

In the early 1970s, there has been a plenty of research on consumer satisfaction. Various theoretical structures have been presented to examine the antecedents of satisfaction and to develop meaningful measures of the construct. Kristensen et al. (1999) indicated that customer satisfaction is a key issue for every company wishing to create better business performance and increase the value of customer assets.

Fornell (1996) mentioned that companies that have high degree of satisfaction from customers were going much well in terms of economic performance, also in terms of profits, stock prices or some other measurement of shareholder values. Therefore, the companies that consider the level of customer satisfaction as a criterion to diagnose products or service performance and that tie customer satisfaction rating to both executive and employee's compensation will result in high return on revenues and business performances (Anderson and Sullivan, 1993).

Jones and Sasser (1995) indicated that customer satisfaction information can be a critical barometer of how well a company is serving its customers. Also, this information can be an indicator for a company to indicate what it needs to do to increase its customer satisfaction level until the majority of its customers are totally satisfied. Additionally, Anderson and Fornell (2000) stated that customer satisfaction has generally been regarded as a complement to traditional measures. It is a leading indicator of future profits, because it is derived from consumption data. Besides, it can contribute to greater customer's loyalty. With the increasing loyalty, customer satisfaction could ensure future revenues, decrease price elasticities, and reduce the cost of future transactions.

In addition, Anderson and Fornell (2000) mentioned that increasing the level of customer satisfaction can enhance the company's overall reputation and lower the cost of attracting new customers. Satisfied customers can be considered as an asset to the company and should be acknowledged as such on the balance sheet.

Therefore, customer satisfaction has a strong positive linkage with profitability and the business results of a company. Customer satisfaction has a vital impact as the primary source of future revenue for many companies; it is an important complement to traditional measures of economic performance, providing useful information not only to the companies themselves, but also to shareholders, investors, buyers, governments and regulators (Fornell, 1992). Therefore, it is not surprising that numbers of companies are endeavoring to measure customer satisfaction increasingly.

2.5.1 Customer Satisfaction Theory

According to Boulding (1990), the concept of customer satisfaction can be separated into transaction-specific and cumulative. From the transaction-specific perspective, customer satisfaction is regarded as a post-choice evaluative judgment of a specific purchase occasion (Oliver, 1977). In contrast, cumulative customer satisfaction is an overall evaluation based on the total experience with a product or service over time (Fornell, 1992). Although transaction-specific satisfaction may specifically refer to a particular product or service, cumulative satisfaction is a more basic indicator of the company's past, current, and future performance (Anderson, Fornell, and Rust, 1997). Therefore, cumulative satisfaction approach has been applied in a variety of theoretical models.

2.5.2 Customer Satisfaction Definitions

Customer satisfaction is referred to an individual's subjectively derived favorable evaluation of any outcome and/or experience associated with consuming a product. Conceptually, satisfaction is a purchase outcome, whereby consumers compare rewards and costs with anticipated consequences (Huang and Lin, 2005). Howard and Sheth (1969) stated that customer satisfaction can be defined by customer comparison and estimation. Also, customer satisfaction is one kind of cognition that evaluates feedback about suitability after a purchase.

^{วท}ยาลัยอัสสิ

Churchill et al. (1982) stated that customer satisfaction is the result of using a product, and it is generated by the buyer's anticipated result, reward and the investment cost. Oliver (1997) defined satisfaction as the consumer's fulfillment response. It is a judgment that a product or service feature, or the product or service itself, provided or is providing a pleasurable level of consumption-related fulfillment, including level of under/or over fulfillment. Therefore, satisfaction is the consumer's

sense that consumption provides outcomes against a standard of pleasure and displeasure.

Anderson, Fornell, and Rust (1997) mentioned that there are differences between specific transactions and cumulative transactions as two viewpoints to explain customer satisfaction. For a specific transaction, customer satisfaction comes from customer evaluation after the buying behavior about some specific purchase place or timing, and it may provide diagnostic information about the specific commodity or service performance. However, cumulative transactions arise from the customer evaluating all commodities or services purchased, and it may provide the company with important operational performance indicators for the future.

2.6 Previous Studies

Based on the previous studies, there are no any previous studies that exactly studied about the users' characteristic profiles and arc welding robot factors. Thus, the researcher reviewed the results of the relevant research that is suitable to explain or to support this research which study about customer satisfaction among various users and product factors of arc welding robots.

Determinants of Customer Satisfaction in Personal Computer (PC) Purchase: A Selected Survey on Pantip Plaza Area

According to the study of Phomnart (2000), "Determinants of Customer Satisfaction in Personal Computer (PC) Purchase: A Selected Survey on Pantip Plaza Area", the objective of this study are to study the factors contributing to customer expectation of PC purchase in Pantip Plaza and to contrast relevant factors indication customer satisfaction in PC purchase in Pantip Plaza.

The results from analytical portion of the study concluded that customers are satisfied with capability of PC, the appearance of PC, the durability of PC, and the reasonable price of PC while the 3 first positions of customer expectation are the efficiency of PC, the product warranty of PC, and the reasonable price respectively.

Determinants of Customer Satisfaction: The Windmill Park Country Club Case

According to the study of Tanphaibul (2001), "Determinants of Customer Satisfaction: The Windmill Park Country Club Case", the objective of this study are to study the factors contributing to expectation of customers of Windmill Park Country Club and to compare the factors indicating satisfaction of Windmill Park Country Club's customers.

The results from analytical portion of the study concluded that customers are satisfied with modern look and attractive physical facilities including service, product and facilities, promised service, dependability of performance, accuracy in term of service performance, good service of employees, readiness to serve attitude and being able to handle urgent requests effectively, whereas, other factors customers are dissatisfied with. The degree of satisfaction and dissatisfaction is high.

Customer Satisfaction, Productivity, and Profitability: Differences Between Goods and Services

According to the study of Anderson (2008), "Customer Satisfaction, Productivity, and Profitability: Differences between Goods and Services", the objective of this paper is to investigate whether there are conditions under which there are tradeoffs between customer satisfaction and productivity. A conceptual framework useful in resolving these contradictory viewpoints is developed.

NIVERS/71

The model predicts that customer satisfaction and productivity are less likely to be compatible when: 1) customer satisfaction is relatively company's offering is customization – the degree to which the company's offering is customized to meet heterogeneous customers' needs – as opposed to standardization – the degree to which the company's offering is reliable, standardized, and free from deficiencies; and 2) when it is difficult (costly) to provide high levels of both customization and standardization simultaneously.

SINCE1969

Although there is widespread belief that companies should be superior on both customer satisfaction and productivity, it may be more difficult to pursue both simultaneously when it is important to customize market offerings to better meet customers' needs. The findings presented here suggest that this may be particularly true for industries in which services have come to dominate the world's developed economies; such tradeoffs require greater understanding – especially as the trend toward services shows no signs of abating.

The analytical portion of the study suggests that customer satisfaction and productivity are less likely to be compatible when: (1) customer satisfaction is relatively more dependent on customization as opposed to standardization; and (2) when it is difficult (costly) to provide high levels of both customization and standardization simultaneously.

Finally, it is worth emphasizing that while the issue of tradeoffs between customer satisfaction and productivity is important today, it is expected to continue. The implication is that more business transactions involve long-term relationships that depend on satisfying customers, often by customizing the company's market offering, in order to retain them. In most developed countries, companies face slowing growth, mature markets, and increasing foreign competition. This makes customers an increasingly scarce resource pursued by an increasingly large number of aggressive suppliers. As cost structures make price competition difficult for many firms, pursuing customer satisfaction – reducing price elasticity and retaining current customer – is becoming an increasingly attractive alternative.

Robot for Rehabilitation: Status and Strategy

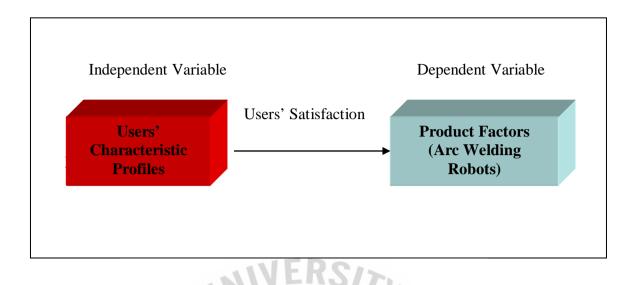
According to the study of Mahoney (2008) on "Robot for Rehabilitation: Status and Strategy"; the current status of commercially available robotic manipulation aids is reviewed. A perspective is discussed on why rehabilitation robot – The Handy 1 – has not achieved a level of success merited by their potential. Several strategies are introduced for expanding commercial development based on an evolutionary approach. The results of the study are shown that the Handy 1 was actually lease preferred by the subjects for many of the evaluated criteria. The Handy 1, however, is the only device that was able to be programmed so that the presentation position of the food to the person could be changed to accommodate someone with a high-level spinal cord injury or other severe posture constraint.

While the result of vocational robotic accommodations project at ASEL has been attempting to identify new jobs for which robotic accommodations may be appropriate. A study which was carried out was begun by creating a profile of an individual with a severe manipulation disability. This profile defined a fictitious applicant as having sedentary strength and fingering. This profile was then matched to the job database and it was found that forty job descriptions existed were accessible to a person with no manipulation ability. These jobs were primarily in the professional, technical, and managerial category. This approach demonstrates that it is not necessary to provide an individual with a complex robotic system in order to increase vocational opportunities. Even a modest increase in manipulation skill may open up many opportunities. These results support the vocational robotic accommodation appropriate for the implementation of robotics in the existing vocational accommodation process.

In conclusion, the number of readily available assistive robot products does not reflect the effort and funding that has been applied in this field. This state is a result of an imbalance in the effort applied to the development of simple and useful robotic aids, as compared to the fundamental research.

Speed Control of Permanent Magnet Brushless DC Motor Drive

According to the study of Paothong (2002), "Speed Control of Permanent Magnet Brushless DC Motor Drive", the results from analytical portion of the study concluded that the drive performance obtained from simulation and experimental work are compared and found to be in closed agreement. It was demonstrated that the closed loop control of the drive using current control strategy can provide precise speed regulation under various operating conditions.

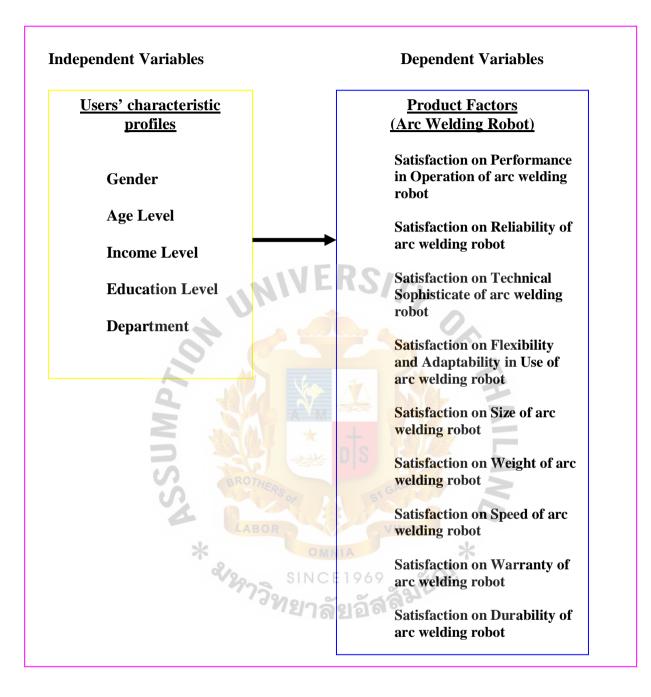

CHAPTER 3

THEORETICAL AND CONCEPTUAL FRAMEWORK

This chapter presents the research framework of this study. The theoretical framework is based on theories and concepts drawn from the literature review. The conceptual framework is then developed by the researcher. Finally, after developing the conceptual framework, the researcher generated the research hypotheses relevant to the study.

3.1 Theoretical Framework

A theoretical framework is related to several theories among several factors relevant to this study. After the researcher reviews many theories and concepts in the previous chapter, the researcher can identify the relationship between independent and dependent variables. In this study, the dimensions of product factors for arc welding robot are Performance in Operation, Reliability, Technology Sophisticate, Flexibility and Adaptation in Use, Size, Weight, Speed, Warranty and Durability; they were used as the dependent variables. Meanwhile, the personal factors of the customers are used as the independent variables as shown in Figure 3.1.


Source: Adapted from Evans and Berman (1982), Garvin (1987), Kotler (2000), Schiffman and Kanuk (2007), and Anderson and Fornell (2000).

The above figure shows that the independent variables, users' characteristic profiles of UNAC customers including Gender, Age level, Income level, Education level and Department, have a significant impact on level of users' satisfaction on arc welding robot's factors including Performance in Operation, Reliability, Technology Sophisticate, Flexibility and Adaptation in Use, Size, Weight, Speed, Warranty, and Durability, respectively.

3.2 Conceptual Framework

Sekaran (1992) stated that conceptual framework is the researcher's own model that can explain the relationship between independent and dependent variables. In this study, the researcher developed a conceptual framework to examine the difference between the users' characteristic profiles and the satisfaction level toward arc welding robots of UNAC. According to the literature review in chapter two and also comments received from on site interviewed with 30 users at customers' places which conducted between November and December 2008 confirmed that, the personal factors or users' characteristic profiles of UNAC in this study, which are Gender, Age level, Income level, Education level and Department, can be used as the independent variables, while the dimensions of product factors of arc welding robots including Performance in Operation, Reliability, Technology Sophisticate, Flexibility and Adaptability in Use, Size, Weight, Speed, Warranty, and Durability can be used as the dependent variables as shown in Figure 3.2.

Source: Adapted from Evans and Berman (1982), Garvin (1987), Kotler (2000), Schiffman and Kanuk (2007), and Anderson and Fornell (2000).

3.3 Research Hypotheses

The main objective of this study is to investigate the difference between the users' characteristic profiles and the satisfaction toward the product factors (arc welding robots) of UNAC.

According to conceptual framework, the hypotheses for this research are constructed as shown in Table 3.1.

Table	3.1:	Hypo	theses	Testing	

Table 3.1: Hypotheses Testing		
There is no difference among the respondents regarding their satisfaction		
for Performance in Operation of the arc welding robots of UNAC when		
classified by Gender ($\mu_1 = \mu_2$).		
There is a difference among the respondents regarding their satisfaction for		
Performance in Operation of the arc welding robots of UNAC when		
classified by Gender $(\mu_1 \mu_2)$.		
2/2973 SINCE 1969		
There is no difference among the respondents regarding their satisfaction		
for Reliability of the arc welding robots of UNAC when classified by		
Gender ($\mu_1 = \mu_2$).		
There is a difference among the respondents regarding their satisfaction for		
Reliability of the arc welding robots of UNAC when classified by Gender		
$(\mu_1 \mu_2).$		

	There is no difference among the respondents regarding their satisfaction
	for Technical Sophisticate of the arc welding robots of UNAC when
	classified by Gender ($\mu_1 = \mu_{2}$).
H3a:	There is a difference among the respondents regarding their satisfaction for
	Technical Sophisticate of the arc welding robots of UNAC when classified
	by Gender $(\mu_1 \mu_2)$.
H4o:	There is no difference among the respondents regarding their satisfaction
	for Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Gender ($\mu_1 = \mu_2$).
H4a:	There is a difference among the respondents regarding their satisfaction for
	Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Gender $(\mu_1 \mu_2)$.
H5o:	There is no difference among the respondents regarding their satisfaction
	for Size of the arc welding robots of UNAC when classified by Gender (μ_1
	$=\mu_{2}$
H5a:	There is a difference among the respondents regarding their satisfaction for
	Size of the arc welding robots of UNAC when classified by Gender (μ_1
	µ ₂₎ .
Нбо:	There is no difference among the respondents regarding their satisfaction
	for Weight of the arc welding robots of UNAC when classified by Gender
	$(\mu_1 = \mu_2).$
	There is a difference among the respondents regarding their satisfaction for
Нба:	
Нба:	Weight of the arc welding robots of UNAC when classified by Gender (μ_1
Нба:	Weight of the arc welding robots of UNAC when classified by Gender (μ_1 μ_2).
H6o:	$\mu_{2)}.$ There is no difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by Gender ($\mu_1 = \mu_{2}$).

H7o:	There is no difference among the respondents regarding their satisfaction
	for Speed of the arc welding robots of UNAC when classified by Gender
	$(\mu_1 = \mu_2).$
H7a:	There is a difference among the respondents regarding their satisfaction for
	Speed of the arc welding robots of UNAC when classified by Gender (μ_1
	μ ₂₎ .
H8o:	There is no difference among the respondents regarding their satisfaction
	for Warranty of the arc welding robots of UNAC when classified by
	Gender $(\mu_1 = \mu_2)$.
H8a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by Gender
	$(\mu_1 = \mu_2).$
H9o:	There is no difference among the respondents regarding their satisfaction
	for Durability of the arc welding robots of UNAC when classified by
	Gender $(\mu_1 = \mu_2)$.
H9a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by Gender
	$(\mu_1 \mu_{2}).$
H10o:	There is no difference among the respondents regarding their satisfaction
	for Performance in Operation of the arc welding robots of UNAC when
	classified by Age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H10a:	There is a difference among the respondents regarding their satisfaction for
	Performance in Operation of the arc welding robots of UNAC when
	classified by Age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

H11o:	There is no difference among the respondents regarding their satisfaction
	for Reliability of the arc welding robots of UNAC when classified by Age
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H11a:	There is a difference among the respondents regarding their satisfaction for
	Reliability of the arc welding robots of UNAC when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H12o:	There is no difference among the respondents regarding their satisfaction
	for Technical Sophisticate of the arc welding robots of UNAC when
	classified by Age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H12a:	There is a difference among the respondents regarding their satisfaction for
	Technical Sophisticate of the arc welding robots of UNAC when classified
	by Age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H13o:	There is no difference among the respondents regarding their satisfaction
	for Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H13a:	There is a difference among the respondents regarding their satisfaction for
	Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H14o:	There is no difference among the respondents regarding their satisfaction
	for Size of the arc welding robots of UNAC when classified by Age level
	$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$
H14a:	There is a difference among the respondents regarding their satisfaction for
	Size of the arc welding robots of UNAC, when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

H15o:	There is no difference among the respondents regarding their satisfaction
	for Weight of the arc welding robots of UNAC when classified by Age
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$
H15a:	There is a difference among the respondents regarding their satisfaction for
	Weight of the arc welding robots of UNAC when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H160:	There is no difference among the respondents regarding their satisfaction
	for Speed of the arc welding robots of UNAC when classified by Age level
	$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H16a:	There is a difference among the respondents regarding their satisfaction for
	Speed of the arc welding robots of UNAC when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H17o:	There is no difference among the respondents regarding their satisfaction
	for Warranty of the arc welding robots of UNAC when classified by Age
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
H17a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
H180:	There is no difference among the respondents regarding their satisfaction
	for Durability of the arc welding robots of UNAC when classified by Age
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$
H18a:	There is a difference among the respondents regarding their satisfaction for
	Durability of the arc welding robots of UNAC when classified by Age level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

H19o:	There is no difference among the respondents regarding their satisfaction
	for Performance in Operation of the arc welding robots of UNAC when
	classified by Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H19a:	There is a difference among the respondents regarding their satisfaction for
	Performance in Operation of the arc welding robots of UNAC when
	classified by Income level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H20o:	There is no difference among the respondents regarding their satisfaction
	for Reliability of the arc welding robots of UNAC when classified by
	Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H20a:	There is a difference among the respondents regarding their satisfaction for
	Reliability of the arc welding robots of UNAC when classified by Income
	level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H21o:	There is no difference among the respondents regarding their satisfaction
	for Technical Sophisticate of the arc welding robots of UNAC when
	classified by Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H21a:	There is a difference among the respondents regarding their satisfaction for
	Technical Sophisticate of the arc welding robots of UNAC when classified
	by Income level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H22o:	There is no difference among the respondents regarding their satisfaction
	for Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H22a:	There is a difference among the respondents regarding their satisfaction for
	Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Income level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are
	equal.

H230:	There is no difference among the respondents regarding their satisfaction
	for Size of the arc welding robots of UNAC when classified by Income
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H23a:	There is a difference among the respondents regarding their satisfaction for
	Size of the arc welding robots of UNAC when classified by Income level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H24o:	There is no difference among the respondents regarding their satisfaction
	for Weight of the arc welding robots of UNAC when classified by Income
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H24a:	There is a difference among the respondents regarding their satisfaction for
	Weight of the arc welding robots of UNAC when classified by Income
	level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H250:	There is no difference among the respondents regarding their satisfaction
	for Speed of the arc welding robots of UNAC when classified by Income
	level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H25a:	There is a difference among the respondents regarding their satisfaction for
	Speed of the arc welding robots of UNAC when classified by Income level
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H260:	There is no difference among the respondents regarding their satisfaction
	for Warranty of the arc welding robots of UNAC when classified by
	Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H26a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by Income
	level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

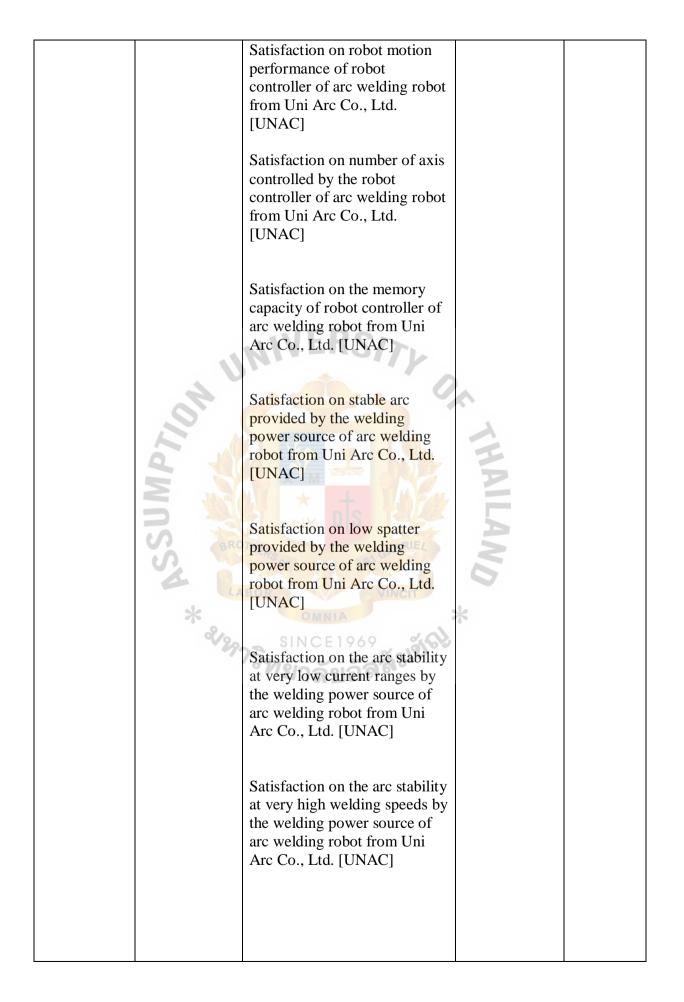
There is no difference among the respondents regarding their satisfaction
for Durability of the arc welding robots of UNAC when classified by
Income level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
There is a difference among the respondents regarding their satisfaction for
Durability of the arc welding robots of UNAC when classified by Income
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
There is no difference among the respondents regarding their satisfaction
for Performance in Operation of the arc welding robots of UNAC when
classified by Education level $\mu_1 = \mu_2 = \mu_3$.
There is a difference among the respondents regarding their satisfaction for
Performance in Operation of the arc welding robots of UNAC when
classified by Education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
There is no difference among the respondents regarding their satisfaction
for Reliability of the arc welding robots of UNAC when classified by
Education level $\mu_1 = \mu_2 = \mu_3$.
There is a difference among the respondents regarding their satisfaction for
Reliability of the arc welding robots of UNAC when classified by
Education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
There is no difference among the respondents regarding their satisfaction
for Technical Sophisticate of the arc welding robots of UNAC when
classified by Education level $\mu_1 = \mu_2 = \mu_3$.
There is a difference among the respondents regarding their satisfaction for
Technical Sophisticate of the arc welding robots of UNAC when classified
by Education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

H31o:	There is no difference among the respondents regarding their satisfaction
	for Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Education level $\mu_1 = \mu_2 = \mu_3$.
H31a:	There is a difference among the respondents regarding their satisfaction for
	Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
H32o:	There is no difference among the respondents regarding their satisfaction
	for Size of the arc welding robots of UNAC when classified by Education
	level $\mu_1 = \mu_2 = \mu_3$.
H32a:	There is a difference among the respondents regarding their satisfaction for
	Size of the arc welding robots of UNAC when classified by Education level
	Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
H33o:	There is no difference among the respondents regarding their satisfaction
	for Weight of the arc welding robots of UNAC when classified by
	Education level $\mu_1 = \mu_2 = \mu_3$.
H33a:	There is a difference among the respondents regarding their satisfaction for
	Weight of the arc welding robots of UNAC when classified by Education
	level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
H34o:	There is no difference among the respondents regarding their satisfaction
	for Speed of the arc welding robots of UNAC, when classified by
	Education level $\mu_1 = \mu_2 = \mu_3$.
H34a:	There is a difference among the respondents regarding their satisfaction for
	Speed of the arc welding robots of UNAC when classified by Education
	level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

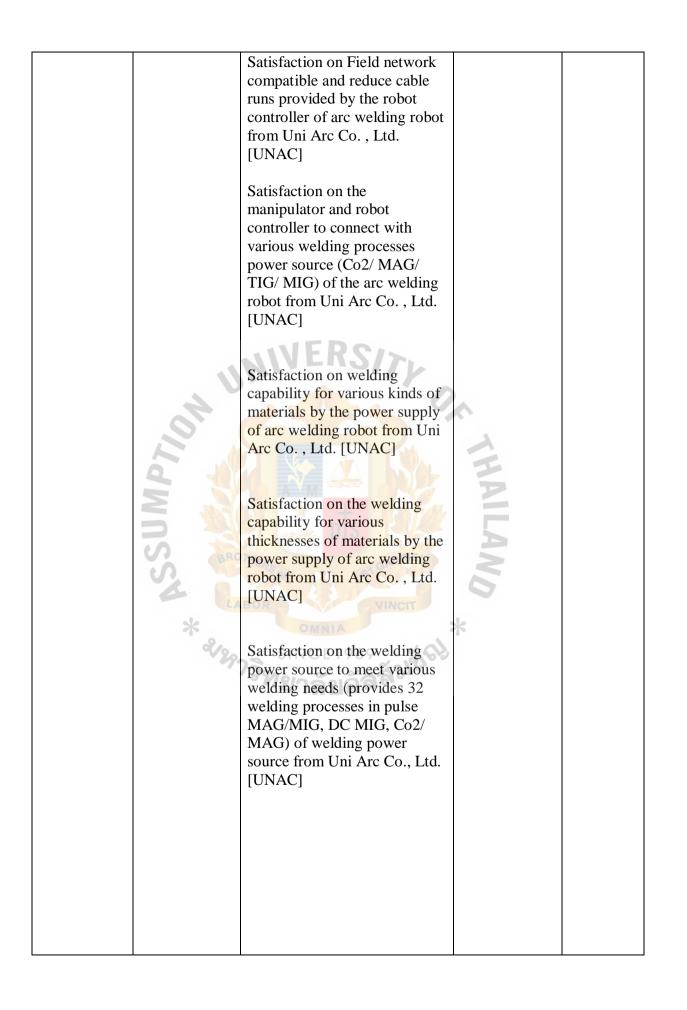
H35o:	There is no difference among the respondents regarding their satisfaction
	for Warranty of the arc welding robots of UNAC when classified by
	Education level $\mu_1 = \mu_2 = \mu_3$.
H35a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by Education
	level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
H360:	There is no difference among the respondents regarding their satisfaction
	for Durability of the arc welding robots of UNAC when classified by
	Education level $\mu_1 = \mu_2 = \mu_3$.
H36a:	There is a difference among the respondents regarding their satisfaction for
	Durability of the arc welding robots of UNAC when classified by
	Education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
H37o:	There is no difference among the respondents regarding their satisfaction
	for Performance in Operation of the arc welding robots of UNAC when
	classified by Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H37a:	There is a difference among the respondents regarding their satisfaction for
	Performance in Operation of the arc welding robots of UNAC when
	classified by Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H380:	There is no difference among the respondents regarding their satisfaction
	for Reliability of the arc welding robots of UNAC when classified by
	Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H38a:	There is a difference among the respondents regarding their satisfaction for
	Reliability of the arc welding robots of UNAC when classified by
	Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
l	

H390:	There is no difference among the respondents regarding their satisfaction
110,00	
	for Technical Sophisticate of the arc welding robots of UNAC when
	classified by Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H39a:	There is a difference among the respondents regarding their satisfaction for
	Technical Sophisticate of the arc welding robots of UNAC when classified
	by Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H40o:	There is no difference among the respondents regarding their satisfaction
	for Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
H40a:	There is a difference among the respondents regarding their satisfaction for
	Flexibility and Adaptability in Use of the arc welding robots of UNAC
	when classified by Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are
	equal.
H41o:	There is no difference among the respondents regarding their satisfaction
	for Size of the arc welding robots of UNAC when classified by Department
	$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H41a:	There is a difference among the respondents regarding their satisfaction for
	Size of the arc welding robots of UNAC when classified by Department
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H42o:	There is no difference among the respondents regarding their satisfaction
	for Weight of the arc welding robots of UNAC when classified by
	Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H42a:	There is a difference among the respondents regarding their satisfaction for
	Weight of the arc welding robots of UNAC when classified by Department
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

H43o:	There is no difference among the respondents regarding their satisfaction
	for Speed of the arc welding robots of UNAC when classified by
	Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H43a:	There is a difference among the respondents regarding their satisfaction for
	Speed of the arc welding robots of UNAC when classified by Department
	Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H44o:	There is no difference among the respondents regarding their satisfaction
	for Warranty of the arc welding robots of UNAC when classified by
	Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H44a:	There is a difference among the respondents regarding their satisfaction for
	Warranty of the arc welding robots of UNAC when classified by
	Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
H45o:	There is no difference among the respondents regarding their satisfaction
	for Durability of the arc welding robots of UNAC when classified by
	Department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
H45a:	There is a difference among the respondents regarding their satisfaction for
	Durability of the arc welding robots of UNAC when classified by
	Department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.


3.4 Operational Definitions of the Independent and Dependent Variables

According to Zikmund (2000), operational definitions help the researcher specify the rules for assigning numbers. The value can also be assigned in the measuring process which can be manipulated according to a certain mathematical rule. Besides, a specific type of scale must also be selected. Table 3.2 will help the researcher explain and clarify the operational definitions of independent and dependent variables.


Table 3.2: Operational Definitions of Independent and Dependent Variables

Concept	Conceptual	Operational Component	Level of	Question
	Definition		Measurement	Number
Dependent	5	DIS 24		
Variables	SSU	THERS OF SI GABRIEL BOR VINCIT	AND	
Performance in Operation	The performance in operation factor is conformed with some works in the processes of customers and considered as the belonging to the product process under a consideration of customers.	Satisfaction on the standard manipulator's working area of arc welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on the long arm manipulator type designed for increasing the working area of arc welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on the new manipulator (AX-V4) designed for moving into narrow space of arc welding robot from Uni Arc Co., Ltd. [UNAC]	Interval Scale	Q. 6-15

Reliability	The reliability	Satisfaction on the positional	Interval Scale	Q. 16-18
	in this study means the	repeatability of the manipulator of arc welding		
	promising	robot from Uni Arc Co., Ltd.		
	from the	[UNAC]		
	company that			
	can provide			
	accurately,	Satisfaction on Operational		
	dependably	Software (OS) of the robot		
	and reliably	controller of arc welding robot		
	arc welding	from Uni Arc Co. , Ltd.		
	robot for their	[UNAC]		
	customers.			
		Satisfaction on current and		
		voltage precisely controlled and supplied by the welding		
		power source of arc welding		
		robot from Uni Arc Co., Ltd.		
		[UNAC]		
	2		A	
	9		5	
Technical	Technical	Satisfaction on Off-Line	Interval Scale	Q. 19-22
Sophisticate	Sophisticate	teaching software (AX-OT)		
	in this study means the	for arc welding robot from Uni Arc Co., Ltd. [UNAC]		
	technology	AIC CO., Ltd. [UNAC]		
	that comes	Satisfaction on the positioner	5	
	along with the	designed for synchronized	5	
	arc welding	with the arc welding robot	0	
	robots, for	from Uni Arc Co., Ltd.	1.	
	example,	[UNAC]	*	
	software	SINCE1969		
	peripheral,	Satisfaction on the slider		
	equipments	designed for synchronized		
	and etc. Therefore, the	with the arc welding robot		
	arc welding	from Uni Arc Co. , Ltd. [UNAC]		
	robots should			
	offer new	Satisfaction on the sensor		
	technologies	designed for the arc welding		
	that are	robot from Uni Arc Co., Ltd.		
	sophisticated	[UNAC]		
	but still easy			
	to work; in			
	order to			
	respond to the needs of the			
	customers.			

Flexibility and Adaptability in Use	The flexibility and adaptability in use in this study means convenience	Satisfaction on the changeable arm (Arm side) of manipulator for the arc welding robot from Uni Arc Co. , Ltd. [UNAC]	Interval Scale	Q. 23-34
	to use arc welding robot; for example, the functions or commands of arc welding	Satisfaction on the hanging installation capability (Ceiling/Wall type) of Manipulator of the arc welding robot from Uni Arc Co. , Ltd. [UNAC]		
	robot is easy to understand or the arc welding robot can be installed easily.	Satisfaction on the manipulator designed for moving into narrow space of the arc welding robot from Uni Arc Co. , Ltd. [UNAC]	~	
	SUMP7/	Satisfaction on the built-in coaxial power cable designed for avoiding welding obstacles of the arc welding robot from Uni Arc Co. , Ltd. [UNAC]	THAILAN	
	SA &	Satisfaction on the compatibility to abundant applications of the robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	10 *	
		Satisfaction on the software PLC function of the robot controller of arc welding robot from Uni Arc Co. , Ltd. [UNAC]		
		Satisfaction on Data Management with Ethernet of the robot controller of arc welding robot from Uni Arc Co. , Ltd. [UNAC]		

Size	The	Satisfaction on the size of	Interval Scale	Q. 35-37
	dimension of	manipulator of the arc welding		
	size is	robot from Uni Arc Co., Ltd.		
	consisted of	[UNAC]		
	length, width,			
	height,	Satisfaction on the size of		
	diameter,	robot controller of the arc		
	perimeter, area and	welding robot from Uni Arc Co., Ltd. [UNAC]		
	volume. In	Co., Lid. [ONAC]		
	this study,	Satisfaction on the size of		
	size means	welding power source of the		
	the size of arc	arc welding robot from Uni		
	welding	Arc Co., Ltd. [UNAC]		
	robots.			
		NEDO		
		NIVERSITY		
Weight	In this study	Satisfaction on the weight of	Interval Scale	Q. 38-40
	weight means	manipulator of the arc welding	A	
	the weight of	robot from Uni Arc Co., Ltd.		
	arc welding	[UNAC]		
	robots. Light weight arc			
	welding	Satisfaction on the weight of		
	robots are	robot controller of the arc		
	gaining 🤍	welding robot from Uni Arc		
	popularity.	Co., Ltd. [UNAC]	>	
			6	
		BOR VINCIT		
	*	Satisfaction on the weight of	*	
	2/0	welding power source of the arc welding robot from Uni		
	29.	Arc Co., Ltd. [UNAC]		

a 1	<i>a</i> .		T 1 C T	0 11 15
Speed	Speed variable is one of the arc welding robots rivals	Satisfaction on the speed of manipulator (Air-cut time) of the arc welding robot from Uni Arc Co., Ltd. [UNAC]	Interval Scale	Q. 41-43
	in the market. The higher speed means the higher production	Satisfaction on the speed of robot controller (Processing time) of the arc welding robot from Uni Arc Co., Ltd. [UNAC]		
	for the customer. However, such high speed should get along	Satisfaction on the welding speed of the welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]		
	with low defection rate.	NIVERSITY	~	
Warranty	Product warranty means an explicit or implicit promise by sellers that the product will perform as specified or that the seller will fix it or refunds the customer's money during a specified period.	Satisfaction on one-year warranty period for the arc welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on customer technical assistance (in- warranty) of the arc welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on the on-site robot checking and repairing (in- warranty) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	Interval Scale	Q. 44-48
		Satisfaction on the period of part's claim for the arc welding robot from Uni Arc Co., Ltd. [UNAC]		
		Satisfaction on the reserved spare parts for broken arc welding robot from Uni Arc Co., Ltd. [UNAC]		

D 1.11	D 1.11	a	1 1 2 1	0 10 50
Durability	Durability	Satisfaction on the	Interval Scale	Q. 49-53
	will provide	manipulator's durability of arc		
	longer life to	welding robot from Uni Arc		
	the product	Co., Ltd. [UNAC]		
	and could			
		Satisfaction on the robot		
	generate low			
	cost for the	controller's durability of arc		
	customers.	welding robot from Uni Arc		
	Economically,	Co., Ltd. [UNAC]		
	a durable			
	good means a	Satisfaction on the welding		
	good that	power source's durability of		
	does not	arc welding robot from Uni		
	quickly wear	Arc Co., Ltd. [UNAC]		
	out, or more			
	specifically, it	Satisfaction on the welding		
	yields			
		consumable parts of arc		
	services or	welding robot from Uni Arc		
	utility over	Co., Ltd. [UNAC]		
	time rather			
	than being	Satisfaction on the welding		
	completely	spare parts of arc welding		
	used up when	robot from Uni Arc Co., Ltd.		
	used one.	[UNAC]		
	Perfectly	A MARKEN AND A MARKEN		
	durable goods			
	never wear			
	out.	HERS	~	
		BOR		
		BOR	1	
	*	OMNIA	*	
	ere al como de la como de	ราพการ ราพการ เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น		
	19.	13		
		<i>่ ที่</i> ยาลัยอัสิ ^ส ี		
		10146		
I	•		•	•

Independent	Personal	- Gender	Nominal	Q. 1
	factors or			
Variables	Users'	- Age	Ordinal	Q. 2
	characteristic			
	profiles in this	- Education	Ordinal	Q. 3
	study are	Ŧ		
	demography	- Income	Ordinal	Q. 4
	of the customers.	Doportmont	Ordinal	Q. 5
	Demography	- Department	Orumar	Q. 3
	refers to vital			
	and			
	measurable			
	statistics of a			
	population.			
	While the			
	characteristics	NIVERSITY		
	of other			
	demographics		0	
	include age,		~~~	
	sex, marital			
	status,			
	income, education,			
	and			
	occupation or		1	
	job position.			
	BRO		5	
L		or 51	2	
	LA			
	* 2/29.		*	
	2/0	SINCE1060	0.	
	- 49.	SINCE1969	1.01	
		้ ^พ ยาลัยอัล ^{ิต} ์		

CHAPTER 4

RESEARCH METHODOLOGY

This chapter is aimed to explain the research processing. The researcher wants to describe research methods used, respondents and sampling procedures, research instruments or questionnaires, collection of data and statistical treatment of data.

4.1 Research Methods

Zikmund (2003) stated that there are various methods that can be employed to collect primary data, ranging from interviews, questionnaires, observation and other motivational techniques. This research is conducted to clarify and define the nature of the problems. This research uses questionnaires for finding the information obtained from the respondents in the sampling unit.

In this study, descriptive research is used by employing the survey technique which is defined as a method of primary data collection. The reason why the researcher employed survey technique in this study because of it is mostly used in business research. It allows the researcher to study and describe large population on fairly and quickly (Malhotra, 1999). Besides, the survey technique provides relatively low cost, minimal time and accurate, and also represents the total population (Zikmund, 2003).

4.2 Respondents and Sampling Procedures

4.2.1 Target Population

According to Churchill and Brown (2007), target population means the complete group of specific population elements relevant to the research. Therefore, the target population of this study is the users who have experienced in using, received the service at any period of product life or involved in purchasing of the arc welding robots.

4.2.2 Sampling Element

Zikmund (2003) stated that a sampling element is an individual member of a specific population. Therefore, in this study, the sampling element is the users who have ever experienced in using, received the service at any period of product life or involved in purchasing the arc welding robots of UNAC before.

4.2.3 Sampling Unit

Zikmund (2003) stated that the sampling unit is the place where the researcher can find the sampling element. Therefore, in this study, the sampling unit is the UNAC customers' places or UNAC users' factories at which they have ever experienced in using, received the service at any period of product life or involved in purchasing the arc welding robots of UNAC before, especially in automotive manufacturers, local automakers, steel product makers, electrical and electronics manufacturers and etc.

4.2.4 Sample Size

The sample size must be taken into account for calculation in order to meet the requirements of the population. The researcher requires the most precision number of sample size in order to be the representatives of the total population. More often, the decision on sample size will require concessions with theoretically correct sample sizes and the sample sizes also depend on and allowed by available resources (Malhotra, 2004).

Therefore, in order to determine the sample size, Burns and Bush (2007) stated that the sample size can be calculated by mathematic formula below:

Where;

n = Sample Size

 \mathbf{P} = the population for the research calculated by the percentage of respondents. It

assumed to be 0.5(50%) (Burns and Bush, 2005).

q = (1-p) estimated between the non-customers to overall population

 Z^2 = allowed errors between the trued and sample population

E = the allowance error (precision), 0.05

Confidence Level is the degree of accuracy desired by the researcher and stipulated as a level of confidence in the form of a percentage. Typically, marketing researchers rely on the 90%, 95%, or 99% level of confidence. The researcher has set this percentage to be **95% confidence level** because it is the most commonly used level of confidence in market research and also usually the default level is found in statistical analysis programs such as SPSS. Therefore, standard score of Z associated with the confidence level mentioned below is equal to 1.96 (Burns and Bush, 2005).

Those values are substituted into the following formula:

or

= $\frac{(1.96)^2(0.5)(1-0.5)}{(0.5)^2}$

384.16 respondents400 respondents

Therefore, from the calculation above, the sample size of this study is equal to 400 respondents in order to collect the questionnaires in this study.

4.2.5 Sampling Procedures

There are two basic types of sampling techniques. The first one is nonprobability (The researcher does not know the total elements in the target population.) and the second is probability sampling (The researcher knows the total elements in the target population.) (Churchill and Brown, 2007). For this research, the method of **probability sampling** is selected because the researcher has the entire records and numbers of UNAC's users which can help the researcher create a sampling frame. Therefore, all of the target population has an equal chance to be selected as the sample in this study (Zikmund, 2003). In this study, the researcher decided to collect data from all UNAC's users by using the simple random sampling method to get 400 samples.

4.3 Research Instrument

The data collection which is applied in this research is referred to the quantitative research. This quantitative research relies on a sizable representative sample of the population and a formalized procedure for gathering data (Burns and Bush, 2005). In addition, the data is based on the numbers and variables which help interpretation of the result be easier (Winter, 2007). The questionnaire is the research instrument the researcher uses in this study. The researcher also selects a personal interview questionnaire which is suitable for eliciting the respondent's beliefs, opinions, attitudes, perceptions and so on.

A questionnaire is a structured sequence of questions designed to draw the factors, opinions and provide a vehicle for recording the data. According to Burns and Bush (2005), it is a list of questions that have pre-specified answer choices. There are four purposes for using the questionnaire. Firstly, it provides the accurate information from the respondents. Secondly, it offers the structured interviews. Thirdly, a standard on factors, comments and attitudes is provided. Finally, the questionnaire facilitates

the data processing.

In this study, the questionnaire is distributed to both male and female respondents who have received the service or purchased the arc welding robots from UNAC before. The number of questions in the questionnaire is totally 53 questions together with the respondents' characteristic profiles. The questionnaire can be separated into two parts as follows:

Part 1: The questions are to find out the users' characteristic profiles of individual respondent, including their gender, age, income, education and department.

VERS/7L

Part 2: This part is comprised of 48 questions to measure the respondent's satisfaction level toward the arc welding robots of UNAC. The questions in this part will ask about nine product factors of the arc welding robot including Performance in Operation, Reliability, Technology Sophisticate, Flexibility and Adaptation in use, Size, Weight, Speed, Warranty and Durability. A five-point Likert scale is applied in this research in order to make the respondents to indicate their degree of satisfaction or dissatisfaction for each question.

The researcher provides the Likert scale to capture the intensity of the respondent's answer for each question, as shown below.

Very Low Satisfaction	= 1
Low Satisfaction	= 2
Neutral	= 3
High Satisfaction	= 4
Very High Satisfaction	= 5

4.3.1 Pre – Test of Questionnaires

A pre-test was conducted by distributing 30 sets of questionnaires, during February 1st-10th 2009. By using self-administered questionnaires (Mail survey), the researcher distributed them to 30 samples of customers in Bangkok and Rayong area who had used or purchased the arc welding robots from UNAC before. Based on Cronbach's Alpha reliability test, if the coefficient is at least 0.7, the questionnaire is considered to be reliable (Rattana, 2004). As shown in Table 4.1, the researcher found that all the coefficients or Cronbach's Alpha values are greater than 0.7; therefore, this questionnaire is considered reliable.

Table 4.1: Cronbach's Alpha values of Pre	e-Testing	- I
Product Factors	Cronbach's Alpha	
Performance in Operation	.872	
Reliability	.892	
Technical Sophisticate	.804vcm	
Flexibility and Adaptability in Use	.885	×
Size	.888	2
Weight SINCE	.858	66
Speed 799805	.867	
Warranty	.837	
Durability	.868	
Total	.958	

From Table 4.1, the researcher can conclude that the reliability of Performance in Operation by Cronbach's Alpha is equal to 0.872; reliability of Reliability by Cronbach's Alpha is equal to 0.892; reliability of Technical Sophisticate by Cronbach's Alpha is equal to 0.804; reliability of Flexibility and Adaptability in Use by Cronbach's Alpha is equal to 0.885; reliability of Size by Cronbach's Alpha is

equal to 0.888; reliability of Weight by Cronbach's Alpha is equal to 0.858; reliability of Speed by Cronbach's Alpha is equal to 0.867; reliability of Warranty by Cronbach's Alpha is equal to 0.837; reliability of Durability by Cronbach's Alpha is equal to 0.868; and total reliability by Cronbach's Alpha is equal to 0.958, respectively.

The researcher has found that the reliability of the questionnaire is all above 0.7. Therefore, this questionnaire is acceptable to distribute to all 400 samples. Thus, this result will encourage further statistical relationships to be tested in Chapter 5.

4.4 Data Collection Procedures

The primary data is the data that the researcher gains from the respondents through the surveys (Saunder et al., 2003). In other words, Malhotra (2004) also cited that the primary data is originated by the researcher for the specific purpose of addressing the problem at hand.

In this study, the researcher used quantitative data to answer the questions of this research. The primary data were collected by using self-administered questionnaires distributed to 400 respondents. The survey research was designed to accomplish this research during February $16^{th} - 27^{th} 2009$.

Secondary data is the data which are already existed and are collected for some other purposes and can be used in the second time (Malhotra, 2004). The advantages of secondary data are lower cost or less expensive and more time saving than primary data. Therefore, the secondary data of this research were collected from textbooks, journals and web sites in order to contribute the literature review of the study.

4.5 Statistical Treatment of Data

The data will be analyzed and summarized in a readable and easily interpretable form. The Statistical Package for Social (SPSS) version 15.0 was used to analyze the data where needed.

Descriptive statistics

Descriptive statistics aims to describe and summarize the data that are collected in the survey. The statistical procedure reliability is measured by consistency and stability of the questionnaire's result. Frequency and percentage tables are the most common form of data description in the questionnaire. More importantly, the sample percentages used directly as an estimate of the percentages of the total population indicate each alternative response (Ankel, 2001).

In this study, the descriptive statistics, frequency tables, and average mean were used for analyzing the respondents' characteristics in terms of gender, age level, income level, education level and department as well as the satisfaction of respondents toward the arc welding robots of UNAC. The Arbitrary Level and Descriptive Rating given below were used for grouping the responses into levels as shown in Table 4.2.

Table 4.2: The Arbitrary Level

Arbitrary Level	Weighted Score	Descriptive Rating
1.00 - 1.80	1 point	Very Low Satisfaction
1.81 - 2.60	2 points	Low Satisfaction
2.61 - 3.40	3 points	Neutral
3.41 - 4.20	4 points	High Satisfaction
4.21 - 5.00	5 points	Very High Satisfaction

Source: Malhotra (2004). *Marketing Research: Research Design*. p. 145. New Jersey, USA: Prentice Hall, Pearson Education International.

Inferential statistics

All statistical interpretations of the data will follow commonly accepted research practices. The form of data presentation for these procedures would again be presented in an easily interpreted format. The computer ensures of accuracy and to minimizing errors. It will perform all statistical procedures (Zikmund, 2003).

There is hypothesis testing where an assessment is made as to how much a sample's findings support the researcher's a prior belief regarding the size of a population value. For hypothesis testing, it needs to find out the difference between the respondents' characteristic profiles and the level of satisfaction toward the arc welding robots of UNAC. Since the interval scale is being used for the questionnaire, this allows the researcher to use a broad range of statistical methods.

1) Independent Sample T-test was applied to find out the difference between male and female's satisfaction toward the arc welding robots of UNAC.

2) Analysis of variance (ANOVA) technique was applied for hypotheses testing in analyzing the difference among the other respondents' characteristic profiles and the level of satisfaction toward the arc welding robots of UNAC.

4.5.1 Independent Sample T-test

According to Malhotra and Peterson (2006), they mentioned that independent samples are two samples that are not experimentally related. The measurement of one sample has no effect on the values of the other sample. The two populations are sampled and the means and variances are computed, based on samples of size n1 and n2. If both samples are found to have the same variance, a pooled variance estimate is computed from the two sample variance as follows (use to test Hypotheses 1 - 9):

INFROM

$$S^{2} = (n_{1} - 1) s_{1}^{2} + (n_{2} - 1) s_{2}^{2}$$

Where:

$$n_{1} = size of sample 1$$

$$n_{2} = size of sample 2$$

$$n_{1} - 1 = degree of freedom for sample 1$$

$$n_{2} - 1 = degree of freedom for sample 2$$

$$s_{1}^{2} = sample variance for sample 1$$

$$s_{2}^{2} = sample variance for sample 2$$

Source: Malhotra and Peterson (2006). *Basic Marketing Research: A Decision Making Approach*. 2nd ed. New Jersey, USA: Prentice Hall, Pearson Education International.

4.5.2 Analysis of Variance (ANOVA)

According to Curchill and Iacobucci (2002), the analysis of variance (ANOVA) is the distinct advantage of being applicable when more than two means are being compared. The basic underlying the analysis of variance (ANOVA) is that the parent population variance can be estimated from the sample in several ways, and the comparisons among these estimates can tell us a great deal about the population. The test statistics for ANOVA is the F ratio. It compares the variance from the last two sources (use to test Hypotheses 10 - 45).

$$SS_{T} = \sum x^{2} (\sum x_{T})^{2}$$

$$SS_{b} = \sum (\sum x)^{2} - (\sum x_{T})^{2}$$

$$SS_{w} = SS_{T} - SS_{b}$$

$$df_{b} = (number of groups - 1)$$

$$df_{T} = (number of subjects - 1)$$

$$df_{w} = df_{T} - df_{b}$$

$$\mathbf{MS}_{\mathrm{b}} = \frac{\mathbf{SS}_{\mathrm{b}}}{\mathbf{df}_{\mathrm{b}}}$$

 $MS_{w} = \frac{SS_{w}}{df_{w}}$

 $F = \frac{MS_{b}}{MS_{w}}$

Where:

MS_{b}	=	Mean square between group
SS_b	=	Sum of squares between group
df_b	=	Degree of freedom between group
MS_{w}	=	Mean square within group
$SS_{\rm w}$	=	Sum of square within group
$df_{\rm w}$	=	Degree of freedom within group

Source: Malhotra and Peterson (2006). *Basic Marketing Research: A Decision Making Approach*. 2nd ed. New Jersey, USA: Prentice Hall, Pearson Education International.

If the null hypothesis is true, there should be no difference between the populations and the ratio should be close to 1. If the population means are not equal, the numerator should manifest this difference, and the F ratio should be greater than 1. The F distribution determines the size of ration necessary to reject the null hypothesis for a particular sample size and level of significance (Churchill and Iacobucci, 2002).

* ³ชาววิทยาลัยอัสลังบัชจะ

Table 4.3: Statistical Treatment Conclusion

No.	Null Hypothesis	Statistics Used
H1o – H9o	There is no significant difference between	Independent Sample
	male and female on satisfaction toward the	T-test
	arc welding robots of UNAC.	
	NIVERSIT	
H10o – H 45o	There is no significant difference among	
	the respondents regarding their satisfaction	Analysis of variance
	toward the arc welding robots of UNAC	(ANOVA)
i	when segmented by Age, Education,	
	Income and Department.	An
	AROP MINIST	0
	* OMNIA	*
	ຈັບກາງຈາງກາງອາຊຸສາຊັດ	

CHAPTER 5

DATA ANALYSES AND RESULTS

5.1 Introduction

This chapter provides the results of the data based on 400 questionnaires with the target respondents of this study. The findings are organized into two sections which are Descriptive Statistics and Inferential Statistics.

Descriptive Statistics is a branch of statistics that provides researchers with summary measures for the data in their samples. The objective of descriptive statistics is to provide summary measures of the data contained in all the elements of a sample.

Inferential Statistics is the branch of statistics that consists of generalizing from samples to populations performing hypothesis and making interpretations, since data collected are interval scaled data; thus, to test the hypothesis about the variable of interval; Independent Sample T-test was used to test Hypotheses 1 to 9; and One Way ANOVA was used to test Hypotheses 10 to 45 as had been discussed in chapter 4.

5.2 Samples Profile

The research conducts the survey and collects the data by distributing 400 copies of the questionnaire as the research instrument. The self-administered questionnaire is distributed to the 400 customers or users who have been used or purchased the arc welding robots of Uni Arc Co., Ltd. [UNAC].

5.3 Descriptive Data Analyses

In this part the researcher is going to analyze the descriptive statistics of the user characteristic information of the respondents. The items are explained in this part are as follows:

NVERS/7

User's characteristic data analyses consist of the result of population breakdown analysed by the following aspects.

- a. Gender
- b. Age
- c. Income
- d. Education
- e. Department

5.3.1 Users' characteristic profiles of the respondents

Table 5.1: Gender

Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	288	72.0	72.4	72.4
	Female	110	27.5	27.6	100.0
	Total	398	99.5	100.0	
Missing	System	2	.5		
Total		400	100.0		

From the above table, the researcher found that the majority of the respondents

are male (72.4 percent); while the rest are female (27.6 percent).

Table 5.2: Age

Age

		Frequ	iency	Percent	Valid F	Percent	Cumulative Percent
Valid	Under 22	.1.	52	13.0		13.0	13.0
	22-34	*	267	66.8	INIA	66.9	79.9
	35-54	0	68	S17.0	E196	9 17.0	97.0
	55-64		10	2.5	~ ~	2.5	99.5
	Over 64		2	.5	780	.5	100.0
	Total		399	99.8		100.0	
Missing	System		1	.3			
Total			400	100.0			

From the above table, the researcher found that the majority of the average age levels of respondents are between 22 and 34 years old around 67.0 percent, between 35 to 54 years old at 17.0 percent, under 22 years old at 13.0 percent, between 55 to 64 years old at 2.5 percent, and over 64 years old at 0.5 percent, respectively.

Table 5.3: Income

Income

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Below 10,000 baht	97	24.3	24.3	24.3
	10,000-20,000 baht	181	45.3	45.3	69.5
	20,001-30,000 baht	93	23.3	23.3	92.8
	30,001-40,000 baht	24	6.0	6.0	98.8
	40,001-50,000 baht	3	.8	.8	99.5
	Above 50,000 baht	2	.5	.5	100.0
	Total	400	100.0	100.0	

From the above table, the researcher found that the majority of the average income levels of respondents are between 10,000 and 20,000 baht at 45.3 percent, between below 10,000 baht at 24.3 percent, between 20,001 and 30,000 baht at 23.3 percent, between 30.001 to 40,000 baht at 6.0 percent, between 40,001 and 50,000 baht at 0.8 percent, and above 50,000 bath at 0.5 percent, respectively.

Table 5.4: Education

Education

		พยาลัง	129.00		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Below Bachelor' s Degree	117	29.3	29.3	29.3
	Bachelor' s Degree	261	65.3	65.4	94.7
	Master' s Degree	21	5.3	5.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

From the above table, the researcher found that the majority of the average education levels of respondents are Bachelor's Degree at 65.4 percent, below Bachelor's Degree at 29.3 percent, and Master's Degree at 5.3 percent, respectively.

Table 5.5: Department

Department

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Administrative	37	9.3	9.3	9.3
	Purchasing	69	17.3	17.3	26.5
	Engineering	69	17.3	17.3	43.8
	Production	166	41.5	41.5	85.3
	Maintenance	55	13.8	13.8	99.0
	Other	4	1.0	1.0	100.0
	Total	400	100.0	100.0	

From the above table, the researcher found that the majority of the department of respondents is production at 41.5 percent, purchasing and engineering equally at 17.3 percent, maintenance at 13.8 percent, administrative at 9.3 percent, and other at 1.0 percent, respectively.

5.3.2 Descriptive Analyses of Users' Satisfaction toward the Arc Welding Robots

of Uni Arc Co., Ltd. [UNAC]

According to research objective number one, which is "To study the level of

users' satisfaction toward the arc welding robots of UNAC", the results are shown

below.

Table 5.6: Descriptives: Performance in Operation

01-	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the standard manipulator's working area of are welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8246	.71895	1
Satisfaction on the memory capacity of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7794	.77750	2
Satisfaction on the new manipulator (AX-V4) designed for moving into narrow space of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7694	.69236	3
Satisfaction on number of axis controlled by robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7544	.74673	4
Satisfaction on the long arm manipulator type designed for increasing the working area of are welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	Nсп 5.00	3.7419	.68069	5
Satisfaction on the stable arc provided by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	SINCE 398	1969 2.00	5.00	3.7236	.74374	6
Satisfaction on robot motion performance of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	398	2.00	5.00	3.7186	.72118	7
Satisfaction on the arc stability at very high welding speeds by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7168	.72118	8
Satisfaction on the low spatter provided by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7118	.74661	9
Satisfaction on the arc stability at very low current ranges by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6992	.76662	10
Valid N (listwise)	397					

Descriptive Statistics

VERSIX.

From Table 5.6, the researcher can conclude that the most satisfaction factor of Performance in Operation is "Satisfaction on the standard manipulator's working area of are welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.8246, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Performance in Operation is "Satisfaction on the arc stability at very low current ranges by the welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6992.

Table 5.7: Descriptives:	Reliability
--------------------------	-------------

Fable 5.7: Descriptives: Reliability Descriptive Statistics									
0	N	Minimum	Maximum	Mean	Std. Deviation	Rank			
Satisfaction on the current and voltage precisely controlled and supplied by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7093	.70937	1			
Satisfaction on the Operational Software (OS) of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6566	.72285	2			
Satisfaction on the positional repeatability of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6391	.68368	3			
Valid N (listwise)	399	VIN	ICIT						

SINCE1969

From the above table, the researcher can conclude that the most satisfaction factor of Reliability is "Satisfaction on the current and voltage precisely controlled and supplied by the welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.7093, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Reliability is "Satisfaction on the positional repeatability of manipulator of the arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean is equal to 3.6391.

Table 5.8: Descriptives: Technical Sophisticate

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the Off-Line teaching software (AX-OT) for arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6291	.81921	1
Satisfaction on the slider designed for synchronized with arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6125	.73053	2
Satisfaction on the sensor designed for arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	1.00	5.00	3.5739	.79504	3
Satisfaction on the positioned designed for synchronized with arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.5414	.72130	4
Valid N (listwise)	397					

From the above table, the researcher can conclude that the most satisfaction factor of Technical Sophisticate is "Satisfaction on the Off-Line teaching software (AX-OT) for the arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean is equal to 3.6291 which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Technical Sophisticate is "Satisfaction on the positioner designed for synchronizing with the arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean is equal to 3.5414.

Table 5.9: Descriptives: Flexibility and Adaptability in Use

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the compatibility to abundant applications of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7619	.73734	1
Satisfaction on the manipulator and robot controller to connect with various welding processes power source (Co2/ MAG/ TIG/ MIG) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7550	.72546	2
Satisfaction on the welding capability for various kinds of materials by power supply of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7550	.72891	2
Satisfaction on the welding power source to meet various welding needs (provides 32 welding processes in pulse MAG/MIG, DC, MIG, Co2/ MAG) of welding power source from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7500	.75094	3
Satisfaction on the built-in coaxial power cable designed for avoiding welding obstacles of Arc Welding Robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7225	.72236	4
Satisfaction on the manipulator designed for moving into narrow space of Arc Welding Robot from Uni Arc Co., Ltd. [UNAC]	399	2.00 ⁵¹ GAB	5.00	3.7193	.70988	5
Satisfaction on the welding capability for various thicknesses of materials by power supply of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400 SINCE	2.00	5.00	3.7025	.72823	6
Satisfaction on the Field network compatible and reduce cable runs provided by robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	ี่ ³⁹⁹	2.00	5.00	3.6992	.73994	7
Satisfaction on the Software PLC Function of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6975	.74658	8
Satisfaction on the hanging installation capability (Ceiling/Wall type) of Manipulate if Arc Welding Robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6775	.75824	9
Satisfaction on the Data Management with Ethernet of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6742	.73608	10
Satisfaction on the changeable arm (Arm side) of manipulator for arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6650	.73083	11
Valid N (listwise)	396					

From the above table, the researcher can conclude that the most satisfaction factor of Flexibility and Adaptability in Use is "Satisfaction on the compatibility to abundant applications of the robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.7619 which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Flexibility and Adaptability in Use is "Satisfaction on the changeable arm (Arm side) of the manipulator for arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6650.

Table 5.10: Descriptives: Size

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the size of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7268	.71808	1
Satisfaction on the size of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6917	.80682	2
Satisfaction on the size of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6150	.71977	3
Valid N (listwise)	398 C E	1969				

^ทยาลัยอัล^{ิต}

From the above table, the researcher can conclude that the most satisfaction factor of Size is "Satisfaction on the size of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.7268, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Size is "Satisfaction on the size of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6150.

Table 5.11: Descriptives: Weight

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the weight of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.81243	1
Satisfaction on the weight of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6500	.85106	2
Satisfaction on the weight of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.5550	.88540	3
Valid N (listwise)	399					

Descriptive Statistics

From the above table, the researcher can conclude that the most satisfaction factor of Weight is "Satisfaction on the weight of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6942, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Weight is "Satisfaction on the weight of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.5550.

Table 5.12: Descriptives: Speed

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the welding speed provided by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7575	.74839	1
Satisfaction on the speed of robot controller (Processing time) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7300	.72347	2
Satisfaction on the speed of manipulator (Air-cut time) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6975	.74322	3
Valid N (listwise)	400					

From the above table, the researcher can conclude that the most satisfaction factor of Speed is "Satisfaction on the welding speed provided by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.7575, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Speed is "Satisfaction on the speed of manipulator (Air-cut time) of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6975.

NEDCA

Table 5.13: Descriptives: Warranty

Descriptive Statistics											
	NC	Minimum	Maximum	Mean	Std. Deviation	Rank					
Satisfaction on the reserved spare parts for broken arc welding robot from Uni Arc Co., Ltd. [UNAC]	398	1.00	5.00	3.7638	.80895	1					
Satisfaction on the on-site robot checking and repairing (in warranty) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7500	.79944	2					
Satisfaction on the customer technical assistance (in warranty) of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7275	.75144	3					
Satisfaction on the reserved spare part claim of arc welding robot from Uni Arc Co., Ltd. [UNAC]	400 400 C E	2.00	5.00	3.7025	.76187	4					
Satisfaction on the one-year warranty period for arc welding robot from Uni Arc Co., Ltd. [UNAC]	3997 ลัง	1.00	5.00	3.6792	.82811	5					
Valid N (listwise)	397										

From the above table, the researcher can conclude that the most satisfaction factor of Warranty is "Satisfaction on the reserved spare parts for broken arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.7638, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Warranty is "Satisfaction on the one-year warranty period for arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6792.

Table 5.14: Descriptives: Durability

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Satisfaction on the robot welding consumable parts of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8221	.81808	1
Satisfaction on the robot welding spare parts of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8020	.81345	2
Satisfaction on the welding power source's durability of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7393	.74835	3
Satisfaction on the manipulator's durability of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.73447	4
Satisfaction on the robot controller's durability of arc welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6617	.69695	5
Valid N (listwise)	399			*		

Descriptive Statistics

From the above table, the researcher can conclude that the most satisfaction factor of Durability is "Satisfaction on the robot welding consumable parts of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.8221, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction factor of Durability is "Satisfaction on the robot controller's durability of arc welding robot from Uni Arc Co., Ltd. [UNAC]" by mean equal to 3.6617.

Table 5.15: Descriptives: Product Factors of the Arc Welding Robot

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Rank
Performance in Operation	397	2.00	5.00	3.7456	.51199	1
Durability	399	2.00	5.00	3.7439	.62209	2
Speed	400	2.00	5.00	3.7283	.63988	3
Warranty	397	2.00	5.00	3.7239	.66161	4
Flexibility and Adaptability in Use	396	2.00	5.00	3.7155	.50861	5
Size	398	2.00	5.00	3.6767	.66026	6
Reliability	399	2.00	5.00	3.6683	.58931	7
Weight	399	2.00	5.00	3.6332	.76713	8
Technical Sophisticate	397	1.75	5.00	3.5894	.63629	9
Valid N (listwise)	384		r			

From the above table, the researcher can conclude that the most satisfaction of product factors of arc welding robot is "Performance in Operation" by mean equal to 3.7456, which is close to "5 = Very High Satisfaction". Meanwhile, the least satisfaction of product factors of arc welding robot is "Technical Sophisticate" by mean equal to 3.5894.

5.4 Inferential Statistics

According to research **objective number two**, which is "To identify the difference among the user's characteristic profiles and their satisfaction toward the arc welding robots of UNAC", the results are shown below (Testing of hypotheses 1 to 45).

5.4.1 Independent Sample T-test

Independent Sample T-test was applied to analyze the difference between male and female on satisfaction for Product Factors of the arc welding robots of UNAC, which are Performance in Operation, Reliability, Technical Sophisticate, Flexibility and Adaptability in Use, Size, Weight, Speed, Warranty and Durability. By testing of hypotheses 1 to 9, the results are shown from Table 5.16 to 5.24.

Table 5.16: Independent Sample T-test (Performance in Operation)

H1: The level of Performance in Operation is different in mean between Male and

Female.

Independent Samples Test												
		Levene's Test for Equality of Variances t-test for Equality of Means										
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference				
Performance in Operation	Equal variances assumed	.041	.839	2.517	393	.012	.14352	.05703	.03141	.25564		
	Equal variances not ass umed			2.502	195.653	.013	.14352	.05737	.03038	.25667		

Ho: There is no difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).

Ha: There is a difference among the respondents regarding their satisfaction for

Performance in Operation of the arc welding robots of UNAC when classified by gender ($\mu_1 \quad \mu_2$).

According to "Levene's Test", Sig. value is equal to 0.839 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Performance in Operation. According to "t-test for Equality of Means", Sig. value is equal to 0.012 < 0.05. Thus, Reject Ho and Accept Ha. There is a difference in mean of Performance in Operation between Male and Female.

Group Statistics											
					Std. Error						
	Gender	N	Mean	Std. Deviation	Mean						
Performance in Operation	Male	285	3.7881	.50609	.02998						
	Female	110	3.6445	.51306	.04892						

The male respondents have greater satisfaction toward Performance in Operation than the female ones (3.7881 > 3.6445).

Table 5.17: Independent Sample T-test (Reliability)

 μ_{2}).

H2: The level of Reliability is different in mean between Male and Female.

				maopon							
		Levene's Equality of		t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interval Differ	ofthe	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Reliability	Equal variances assumed	2.761	.097	2.019	395	.044	.13272	.06573	.00350	.26194	
	Equal variances not ass um ed			1.954	185.398	.052	.13272	.06791	00125	.26669	

Independent Samples Test

Ho: There is no difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by gender (μ_1 = μ_2).

Ha: There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by gender (μ_1

According to "Levene's Test", Sig. value is equal to 0.097 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Reliability.

According to "t-test for Equality of Means", Sig. value is equal to 0.044 < 0.05. Thus, Reject Ho and Accept Ha. There is a difference in mean of Reliability between Male and Female.

		•			
					Std. Error
	Gender	Ν	Mean	Std. Deviation	Mean
Reliability	Male	287	3.7085	.57380	.03387
	Female	110	3.5758	.61730	.05886

Group Statistics

The male respondents have greater satisfaction toward Reliability than the female ones (3.7085 > 3.5758).

Table 5.18: Independent Sample T-test (Technical Sophisticate)

H3: The level of Technical Sophisticate is different in mean between Male and Female.

			In	dependent S	amples l'est					
		t-test for Equality of Means								
		F	Sig.	t	df	Sig. (2-tailed)	Mean Std. Error Difference Difference Lower			of the
Technical Sophisticate	Equal variances assumed	.024	.878	1.164	393	.245	.08349	.07173	05753	.22451
	Equal variances not assumed			1.157	193.064	.249	.08349	.07214	05879	.22577

- Ho: There is no difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).
- Ha: There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by gender (μ_1 μ_2).

According to "Levene's Test", Sig. value is equal to 0.878 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Technical Sophisticate. According to "t-test for Equality of Means", Sig. value is equal to 0.249 > 0.05. Thus, Fail to Reject Ho and Accept Ho. There is no difference in mean of Technical Sophisticate between Male and Female.

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Technical Sophisticate	Male	286	3.6110	.63498	.03755
	Female	109	3.5275	.64311	.06160

Table 5.19: Independent Sample T-test (Flexibility and Adaptability in Use)

H4: The level of Flexibility and Adaptability in Use is different in mean between

Male and Female.

				independent	oampies re	31						
		Levene's Equality of		t-test for Equality of Means								
	F Sig			t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Cor Interval Differ Lower	of the		
Flexibility and Adaptability in use	Equal variances assumed	.419	.518	2.765	392	.006	.15732	.05690	.04546	.26917		
	Equal variances not ass um ed			2.667	182.392	.008	.15732	.05899	.04093	.27370		

andant Samplas Tas

- Ho: There is no difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).
- Ha: There is a difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by gender $(\mu_1 \quad \mu_2)$.

According to "Levene's Test", Sig. value is equal to 0.518 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Flexibility and Adaptability

in Use.

According to "t-test for Equality of Means", Sig. value is equal to 0.006 < 0.05. Thus, Reject Ho and Accept Ha. There is a difference in mean of Flexibility and

Adaptability in Use between Male and Female.

		•			
	Gender	N	Mean	Std. Deviation	Std.Error Mean
Flexibility and	Male	285	3.7605	.49344	.02923
Adaptability in use	Female	109	3.6032	.53491	.05123

Group Statistics

The male respondents have greater satisfaction toward Flexibility and Adaptability in Use than the female ones (3.7605 > 3.6032).

Table 5.20: Independent Sample T-test (Size)

H5: The level of Size is different in mean between Male and Female.

				indepe	endent Samp	ies l'est				
Levene's Test for Equality of Variances t-test for Equality of Means										
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Cor Interval Differ Lower	of the
Size	Equal variances assumed	4.595	.033	1.931	394	.054	.14289	.07399	00257	.28835
	Equal variances not assumed			1.817	176.272	.071	.14289	.07863	01229	.29807

Inde	pendent	Samples	Test

- Ho: There is no difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_{2}$).
- Ha: There is a difference among the respondents regarding their satisfaction for Size on arc welding robots of UNAC when classified by gender ($\mu_1 \quad \mu_2$).

According to "Levene's Test", Sig. value is equal to 0.033 < 0.05. Thus, Reject Ho and Accept Ha. Equal Variance is not assumed in Size.

According to "t-test for Equality of Means", Sig. value is equal to 0.071 > 0.05.

Thus, Fail to Reject Ho and Accept Ho. There is no difference in mean of Size

between Male and Female.

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Size	Male	286	3.7156	.63240	.03739
	Female	110	3.5727	.72544	.06917

Table 5.21: Independent Sample T-test (Weight)

The level of Weight is different in mean between Male and Female. **H6**:

	Independent Samples Test												
Levene's Test for Equality of Variances t-test for Equality of Means													
F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference Lower Upper						
.260	.610	4.227	395	.000	.35765	.08461	.19130	.52400					
	Equality of	Equality of Variances	F Sig. t	Equality of Variances F Sig. t df .260 .610 4.227 395	Equality of Variances t-test for F Sig. t df Sig. (2-tailed) .260 .610 4.227 395 .000	Equality of Variances t-test for Equality of Me F Sig. t df Sig. (2-tailed) Mean Difference .260 .610 4.227 395 .000 .35765	Equality of Variances t-test for Equality of Means F Sig. t df Sig. (2-tailed) Mean Difference Std. Error Difference .260 .610 4.227 395 .000 .35765 .08461	Equality of Variances t-test for Equality of Means Equality of Variances 95% Corent F Sig. t df Sig. (2-tailed) Mean Std. Error 95% Corent 260 .610 4.227 395 .000 .35765 .08461 .19130					

Ho: There is no difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by gender ($\mu_1 =$ μ_{2}).

There is a difference among the respondents regarding their satisfaction for Ha: Weight of the arc welding robots of UNAC when classified by gender (μ_1 μ_{2}).

According to "Levene's Test", Sig. value is equal to 0.610 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Weight.

According to "t-test for Equality of Means", Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha. There is a difference in mean of Weight between າລັຍເລີ່ຄີ Male and Female.

			•		
					Std. Error
	Gender	Ν	Mean	Std. Deviation	Mean
Weight	Male	288	3.7338	.74570	.04394
	Female	109	3.3761	.76994	.07375

Group Statistics

Weight	Male	288	3.7338	.74570	.04394	
	Female	109	3.3761	.76994	.07375	

The male respondents have greater satisfaction toward Weight than the female ones (3.7338 > 3.3761).

Table 5.22: Independent Sample T-test (Speed)

H7: The level of Speed is different in mean between Male and Female.

				Indepe	ndent Sampl	es Test				
		Levene's Test for Equality of Variances t-test for Equality of Means								
							Mean	Std. Error	95% Cor Interval Differ	ofthe
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Speed	Equal variances assumed	.090	.764	2.847	396	.005	.20290	.07126	.06280	.34301
	Equal variances not assumed			2.838	195.928	.005	.20290	.07150	.06189	.34392
						DITL	•			

Ho: There is no difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).

Ha: There is a difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by gender (μ_1 μ_2).

According to "Levene's Test", Sig. value is equal to 0.764 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Speed.

According to "t-test for Equality of Means", Sig. value is equal to 0.005 < 0.05.

Thus, Reject Ho and Accept Ha. There is a difference in mean of Speed between Male and Female.

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Speed	Male	288	3.7847	.63450	.03739
	Female	110	3.5818	.63925	.06095

The male respondents have greater satisfaction toward Speed than the female ones

(3.7847 > 3.5818).

Table 5.23: Independent Sample T-test (Warranty)

H8: The level of Warranty is different in mean between Male and Female.

				Indeper	ndent Sample	es Test				
Levene's Test for Equality of Variances t-test for Equality of Means										
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Warranty	Equal variances assumed	.015	.903	3.790	393	.000	.27735	.07318	.13348	.42122
	Equal variances not assumed			3.741	192.989	.000	.27735	.07413	.13114	.42357

- Ho: There is no difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).
- Ha: There is a difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by gender (μ_1 μ_2).

According to "Levene's Test", Sig. value is equal to 0.903 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Warranty.

According to "t-test for Equality of Means", Sig. value is equal to 0.000 < 0.05.

Thus, Reject Ho and Accept Ha. There is a difference in mean of Warranty between Male and Female.

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Warranty	Male	285	3.8028	.64654	.03830
	Female	110	3.5255	.66573	.06348

The male respondents have greater satisfaction toward Warranty than the female ones

(3.8028 > 3.5255).

Table 5.24: Independent Sample T-test (Durability)

H9: The level of Durability is different in mean between Male and Female.

				Indepen	dent Sample	s Test					
		Levene's Equality of		t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Interval of the Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Durability	Equal variances assumed	.419	.518	2.260	395	.024	.15724	.06957	.02048	.29401	
	Equal variances not assumed			2.274	199.922	.024	.15724	.06915	.02089	.29360	

- Ho: There is no difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by gender ($\mu_1 = \mu_2$).
- Ha: There is a difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by gender (μ_1 μ_2).

According to "Levene's Test", Sig. value is equal to 0.518 > 0.05. Thus, Fail to Reject Ho and Accept Ho. Equal Variance is assumed in Durability.

According to "t-test for Equality of Means", Sig. value is equal to 0.024 < 0.05.

Thus, Reject Ho and Accept Ha. There is a difference in mean of Durability between Male and Female.

	Gender	N	Mean	Std. Deviation	Std. Error Mean
Durability	Male	287	3.7882	.62265	.03675
	Female	110	3.6309	.61432	.05857

The male respondents have greater satisfaction toward Durability than the female ones (3.7882 > 3.6309).

5.4.2 One Way ANOVA (Interval & Nominal Scale)

Analyses of variance (ANOVA) technique have been applied for hypotheses testing and analyzing the difference between the respondents' characteristic profiles toward satisfaction for Product Factors of the arc welding robots of UNAC including Performance in Operation, Reliability, Technical Sophisticate, Flexibility and Adaptability in Use, Size, Weight, Speed, Warranty and Durability. By testing of hypotheses 10 to 45, the results are shown in Table 5.20 to 5.55 below.

Table 5.25: One Way ANOVA (Performance in Operation)

Performance in Operation

H10: There is a difference in the mean of Performance in Operation among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

De scriptives

		*		OMNIA	95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Under 22	51	4.1255	.43259	.06058	4.0038	4.2472	2.00	4.70
22-34	265	3.7445	.50293	.03089	3.6837	3.8054	2.30	4.90
35-54	68	3.5191	.47324	.05739	3.4046	3.6337	2.60	5.00
55-64	10	3.4600	.25473	.08055	3.2778	3.6422	2.90	3.80
Over 64	2	3.5000	.42426	.30000	3119	7.3119	3.20	3.80
Total	396	3.7465	.51234	.02575	3.6958	3.7971	2.00	5.00

- Ho: There is no difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC when classified by age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
- Ha: There is a difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Performance in Operation.)

Performance in Operation								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	11.784	4	2.946	12.535	.000			
Within Groups	91.901	391	.235					
Total	103.685	395						

ANOVA

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a difference in satisfaction for Performance in Operation of the arc welding robots of

UNAC.

Multiple Comparisons

Dependent Variable: Performance	e in Operation

		Mean Difference			95% Confide	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.38096*	.07413	.000	.2352	.5267
	35-54	.60637*	.08981	.000	.4298	.7829
	55-64	.66549*	.16767	.000	.3358	.9951
	Over 64	.62549	.34947	.074	0616	1.3126
22-34	Under 22	38096*	.07413	.000	5267	2352
	35-54	.22541*	.06590	.001	.0958	.3550
	55-64	.28453	.15618	.069	0225	.5916
	Over 64	.24453	.34410	.478	4320	.9211
35-54	Under 22	60637*	.08981	.000	7829	4298
	22-34	22541*	.06590	.001	3550	0958
	55-64	.05912	.16420	.719	2637	.3819
	Over 64	.01912	.34782	.956	6647	.7029
55-64	Under 22	6 <mark>6549*</mark>	.16767	.000	9951	3358
	22-34	- <mark>.28</mark> 453	.15618	.069	5916	.0225
	35-54	05912	.16420	.719	3819	.2637
	Over 64	04000	.37553	.915	7783	.6983
Over 64	Under 22	62549	.34947	.074	-1.3126	.0616
	22-34	24453	.34410	.478	9211	.4320
	35-54	01912	.34782	.956	7029	.6647
	55-64	.04000	.37553	.915	6983	.7783

From the multiple comparison table, the researcher found that those who have age under 22 years old have greater satisfaction on Performance in Operation of the arc welding robots of UNAC than those are who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages between 55 and 64 years old (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.38096), (0.60637) and (0.66549), respectively.

Moreover, the researcher found that those who have ages between 22 and 34 years old have greater satisfaction on Performance in Operation of the arc welding

robots of UNAC than those who have ages between 35 and 54 years old (Sig. value = 0.001 < 0.05); by mean difference is equal to (0.22541).

H11: There is a difference in the mean of Reliability among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

Descriptives

Reliability								
						ice Interval for		
					Me	an		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Under 22	52	4.0769	.47424	.06577	3.9449	4.2090	3.00	5.00
22-34	266	3.6303	.59552	.03651	3.5584	3.7022	2.00	5.00
35-54	68	3.5294	.55010	.06671	3.3963	3.6626	2.00	5.00
55-64	10	3.5333	.39126	.12373	3.2534	3.8132	2.67	4.00
Over 64	2	3.5000	.70711	.50000	-2.8531	9.8531	3.00	4.00
Total	398	3.6683	.59005	.02958	3.6102	3.7265	2.00	5.00

Ho: There is no difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by age level μ_1 $= \mu_2 = \mu_3 = \mu_4 = \mu_5.$

Ha: There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by age level Not

all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Reliability.)

ANOVA

Reliability

0	Sum of Squares	OTHEdf	Mean Square	RIEL	Sig.
Between Groups	10.617	4	2.654	8.174	.000
Within Groups	127.604	ABOR 393	.325	CIT	
Total	138.221	397	A REALL O	show and a show	

23 SINCE1969

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Reliability on arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Reliability	
ISD	

		Mean Difference			95% Confide	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.44660*	.08640	.000	.2767	.6165
	35-54	.54751*	.10497	.000	.3411	.7539
	55-64	.54359*	.19676	.006	.1568	.9304
	Over 64	.57692	.41060	.161	2303	1.3842
22-34	Under 22	44660*	.08640	.000	6165	2767
	35-54	.10091	.07743	.193	0513	.2531
	55-64	.09699	.18355	.597	2639	.4579
	Over 64	.13033	.40443	.747	6648	.9255
35-54	Under 22	54751*	.10497	.000	7539	3411
	22-34	10091	.07743	.193	2531	.0513
	55-64	00392	.19299	.984	3833	.3755
	Over 64	.02941	.40880	.943	7743	.8331
55-64	Under 22	54359*	.19676	.006	9304	1568
	22-34	09699	.18355	.597	4579	.2639
	35-54	.00392	. <mark>19</mark> 299	.984	3755	.3833
	Over 64	.03333	.44138	.940	8344	.9011
Over 64	Under 22	57692	.41060	.161	-1.3842	.2303
	22-34	13033	.40443	.747	9255	.6648
	35-54	02941	.40880	.943	8331	.7743
	55-64	03333	.44138	.940	9011	.8344

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have age under 22 years old have greater satisfaction on Reliability of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages between 55 and 64 years old (Sig. value = 0.006 < 0.05); by mean difference are equal to (0.44660), (0.54751) and (0.54359), respectively.

Table 5.27: One Way ANOVA (Technical Sophisticate)

.

H12: There is a difference in the mean of Technical Sophisticate among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

Sophisticate							
				Me	an		
N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
52	3.9471	.72817	.10098	3.7444	4.1498	2.00	5.00
266	3.5648	.60249	.03694	3.4921	3.6376	2.00	5.00
66	3.4053	.61200	.07533	3.2549	3.5558	1.75	4.75
10	3.6250	.59219	.18727	3.2014	4.0486	2.75	4.75
2	3.5000	.70711	.50000	-2.8531	9.8531	3.00	4.00
396	3.5896	.63708	.03201	3.5267	3.6526	1.75	5.00
	N 52 266 66 10 2	N Mean 52 3.9471 266 3.5648 66 3.4053 10 3.6250 2 3.5000	N Mean Std. Deviation 52 3.9471 .72817 266 3.5648 .60249 66 3.4053 .61200 10 3.6250 .59219 2 3.5000 .70711	N Mean Std. Deviation Std. Error 52 3.9471 .72817 .10098 266 3.5648 .60249 .03694 66 3.4053 .61200 .07533 10 3.6250 .59219 .18727 2 3.5000 .70711 .50000	N Mean Std. Deviation Std. Error 95% Confider Me 52 3.9471 .72817 .10098 3.7444 266 3.5648 .60249 .03694 3.4921 66 3.4053 .61200 .07533 3.2549 10 3.6250 .59219 .18727 3.2014 2 3.5000 .70711 .50000 -2.8531	N Mean Std. Deviation Std. Error Lower Bound Upper Bound 52 3.9471 .72817 .10098 3.7444 4.1498 266 3.5648 .60249 .03694 3.4921 3.6376 66 3.4053 .61200 .07533 3.2549 3.5558 10 3.6250 .59219 .18727 3.2014 4.0486 2 3.5000 .70711 .50000 -2.8531 9.8531	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum 52 3.9471 .72817 .10098 3.7444 4.1498 2.00 266 3.5648 .60249 .03694 3.4921 3.6376 2.00 66 3.4053 .61200 .07533 3.2549 3.5558 1.75 10 3.6250 .59219 .18727 3.2014 4.0486 2.75 2 3.5000 .70711 .50000 -2.8531 9.8531 3.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.

Ha: There is a difference among the respondents regarding their satisfaction for

Technical Sophisticate of the arc welding robots of UNAC when classified by

age level V Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Technical Sophisticate.)

Technical Sophisticate										
	Sum of Squares	df	Mean Square	F	Sig.					
Between Groups	9.080	4	2.270	5.869	.000					
Within Groups	151.238	391	.387							
Total	160.318	395								

Sig.	value is ec	ual to 0.000	< 0.05. Thus.	Reject Ho	and Accept Ha.
------	-------------	--------------	---------------	-----------	----------------

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a difference in satisfaction for Technical Sophisticate of the arc welding robots of UNAC.

Multiple Comparisons

LSD						
		Mean Difference			95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.38227*	.09430	.000	.1969	.5677
	35-54	.54181*	.11532	.000	.3151	.7685
	55-64	.32212	.21475	.134	1001	.7443
	Over 64	.44712	.44815	.319	4340	1.3282
22-34	Under 22	38227*	.09430	.000	5677	1969
	35-54	.15955	.08553	.063	0086	.3277
	55-64	06015	.20033	.764	4540	.3337
	Over 64	.06485	.44142	.883	8030	.9327
35-54	Under 22	54181*	.11532	.000	7685	3151
	22-34	15955	.08553	.063	3277	.0086
	55-64	21970	.21105	.299	6346	.1952
	Over 64	09470	.44638	.832	9723	.7829
55-64	Under 22	32212	.21475	.134	7443	.1001
	22-34	.06015	.20033	.764	3337	.4540
	35-54	.21970	.21105	.299	1952	.6346
	Over 64	.12500	.48175	.795	8221	1.0721
Over 64	Under 22	44712	.44815	.319	-1.3282	.4340
	22-34	06485	.44142	.883	9327	.8030
	35-54	.09470	.44638	.832	7829	.9723
	55-64	12500	.48175	.795	-1.0721	.8221

Dependent Variable: Technical Sophisticate

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Technical Sophisticate of the arc welding robots of UNAC than those who have ages between 22 to34 years old (Sig. value = 0.000 < 0.05) and than those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.38227) and (0.54181), respectively.

Table 5.28: One Way ANOVA (Flexibility and Adaptability in Use)

H13: There is a difference in the mean of Flexibility and Adaptability in Use among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

Flexibility and Adaptability in use									
					95% Confidence Interval for Mean				
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
Under 22	52	4.0176	.40769	.05654	3.9041	4.1311	2.83	4.50	
22-34	264	3.7159	.51009	.03139	3.6541	3.7777	2.00	5.00	
35-54	67	3.4925	.46187	.05643	3.3799	3.6052	2.33	4.50	
55-64	10	3.6833	.52675	.16657	3.3065	4.0602	2.92	5.00	
Over 64	2	3.5000	.70711	.50000	-2.8531	9.8531	3.00	4.00	
Total	395	3.7158	.50921	.02562	3.6655	3.7662	2.00	5.00	

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.

Ha: There is a difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Flexibility and Adaptability in Use.)

ANOVA

	Sum of								
	Squares	df	Mean Square	F	Sig.				
Between Groups	8.181	4	2.045	8.487	.000				
Within Groups	93.983	390	.241						
Total	102.164	394							

Flexibility and Adaptability in use

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Flexibility and Adaptability in Use of the arc welding

robots of UNAC.

Multiple Comparisons

LSD							
		Mean Difference			95% Confid	ence Interval	
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Under 22	22-34	.30172*	.07448	.000	.1553	.4481	
	35-54	.52509*	.09072	.000	.3467	.7035	
	55-64	.33429*	.16951	.049	.0010	.6676	
	Over 64	.51763	.35373	.144	1778	1.2131	
22-34	Under 22	30172*	.07448	.000	4481	1553	
	35-54	.22337*	.06715	.001	.0913	.3554	
	55-64	.03258	.15815	.837	2784	.3435	
	Over 64	.21591	.34843	.536	4691	.9009	
35-54	Under 22	52509*	.09072	.000	7035	3467	
	22-34	22337*	.06715	.001	35 54	0913	
	55-64	19080	.16642	.252	5180	.1364	
	Over 64	00746	.35226	.983	7000	.6851	
55-64	Under 22	<mark>33429</mark> *	.16951	.049	6676	0010	
	22-34	03258	.15815	.837	3435	.2784	
	35-54	.19080	16642	.252	ABRI 1364	.5180	
	Over 64	.18333	.38025	.630	5643	.9309	
Over 64	Under 22	51 <mark>76</mark> 3	.35373	.144	-1 <mark>.21</mark> 31	.1778	
	22-34	21 <mark>591</mark>	34843	.536	VINCIT9009	.4691	
	35-54	.00746	.3 <mark>5226</mark>	.983	6851	.7000	
	55-64	18333	.38025	.630	9309	.5643	
*. The mean difference is significant at the .05 level.							

Dependent Variable: Flexibility and Adaptability in use ISD

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Flexibility and Adaptability of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages between 55 and 64 years old (Sig. value = 0.049 < 0.05); by mean difference are equal to (0.30172), (0.52509) and (0.33429), respectively.

Moreover, the researcher also found that those who have ages between 22 and 34 years old have greater satisfaction on Flexibility and Adaptability of the arc welding robots of UNAC than those who have ages between 35 and 54 years old (Sig. value = 0.001 < 0.05); by mean difference is equal to (0.22337).

Table 5.29: One Way ANOVA (Size)

H14: There is a difference in the mean of Size among Age level groups (Under 22,

22-34, 35-54, 55-64 and Over 64).

Size									
					95% Confidence Interval for Mean				
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
Under 22	52	4.1474	.55391	.07681	3.9932	4.3016	2.67	5.00	
22-34	265	3.6478	.64750	.03978	3.5695	3.7261	2.00	5.00	
35-54	68	3.4853	.63984	.07759	3.3304	3.6402	2.00	5.00	
55-64	10	3.4000	.51640	.16330	3.0306	3.7694	3.00	4.00	
Over 64	2	3.1667	1.17851	.83333	-7.4218	13.7552	2.33	4.00	
Total	397	3.6767	.66110	.03318	3.6115	3.7420	2.00	5.00	

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.
- Ha: There is a difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.
- (Different age levels show a difference in the mean of Size.)

ANOVA

Size								
	Sum of							
	Squares	df	Mean Square	F	Sig.			
Between Groups	15.521	4	3.880	9.655	.000			
Within Groups	157.550	392	.402					
Total	173.071	396						

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Size of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Size	
ISD	

		Mean Difference			95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.49964*	.09615	.000	.3106	.6887
	35-54	.66214*	.11679	.000	.4325	.8918
	55-64	.74744*	.21891	.001	.3171	1.1778
	Over 64	.98077*	.45682	.032	.0826	1.8789
22-34	Under 22	49964*	.09615	.000	6887	3106
	35-54	.16250	.08618	.060	0069	.3319
	55-64	.24780	.20422	.226	1537	.6493
	Over 64	.48113	.44997	.286	4035	1.3658
35-54	Under 22	66214*	.11679	.000	8918	4325
	22-34	16250	.08618	.060	3319	.0069
	55 - 64	.08529	.21471	.691	3368	.5074
	Over 64	.31863	.45483	.484	5756	1.2128
55-64	Under 22	74744*	.21891	.001	-1.1778	3171
	22-34	24780	.20422	.226	6493	.1537
	35-54	08529	.21471	.691	5074	.3368
	Over 64	.23333	.49107	.635	7321	1.1988
Over 64	Under 22	98077*	.45682	.032	-1.8789	0826
	22-34	48113	.44997	.286	-1.3658	.4035
	35-54	<mark>31863</mark>	.45483	.484	- <mark>1.</mark> 2128	.5756
	55-64	23333	.49107	.635	-1.1988	.7321

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have age under 22 years old have greater satisfaction on size of the arc welding robots of UNAC than those are who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05); flowing with those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05), those who have ages between 55 and 64 years old (Sig. value = 0.001 < 0.05) those who have age over 64 years old (Sig. value = 0.032 < 0.05); by mean difference are equal to (0.49964), (0.66214), (0.74744) and (0.98077), respectively.

Table 5.30: One Way ANOVA (Weight)

H15: There is a difference in the mean of Weight among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

			•				
				95% Confider	nce Interval for		
				Me	an		
N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
51	4.0980	.58611	.08207	3.9332	4.2629	2.00	5.00
267	3.6841	.74122	.04536	3.5948	3.7735	2.00	5.00
68	3.1814	.75625	.09171	2.9983	3.3644	2.00	5.00
10	3.1667	.57198	.18088	2.7575	3.5758	2.00	4.00
2	2.8333	.70711	.50000	-3.5198	9.1864	2.33	3.33
398	3.6340	.76795	.03849	3.5583	3.7097	2.00	5.00
	51 267 68 10 2	51 4.0980 267 3.6841 68 3.1814 10 3.1667 2 2.8333	51 4.0980 .58611 267 3.6841 .74122 68 3.1814 .75625 10 3.1667 .57198 2 2.8333 .70711	51 4.0980 .58611 .08207 267 3.6841 .74122 .04536 68 3.1814 .75625 .09171 10 3.1667 .57198 .18088 2 2.8333 .70711 .50000	N Mean Std. Deviation Std. Error Lower Bound 51 4.0980 .58611 .08207 3.9332 267 3.6841 .74122 .04536 3.5948 68 3.1814 .75625 .09171 2.9983 10 3.1667 .57198 .18088 2.7575 2 2.8333 .70711 .50000 -3.5198	51 4.0980 .58611 .08207 3.9332 4.2629 267 3.6841 .74122 .04536 3.5948 3.7735 68 3.1814 .75625 .09171 2.9983 3.3644 10 3.1667 .57198 .18088 2.7575 3.5758 2 2.8333 .70711 .50000 -3.5198 9.1864	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum 51 4.0980 .58611 .08207 3.9332 4.2629 2.00 267 3.6841 .74122 .04536 3.5948 3.7735 2.00 68 3.1814 .75625 .09171 2.9983 3.3644 2.00 10 3.1667 .57198 .18088 2.7575 3.5758 2.00 2 2.8333 .70711 .50000 -3.5198 9.1864 2.33

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by age level μ_1 = $\mu_2 = \mu_3 = \mu_4 = \mu_5$.

Ha: There is a difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Weight.)

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	29.051	4	7.263	13.918	.000
Within Groups	205.080	393	.522		
Total	234.131	397			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Weight of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Weight

		Mean Difference			95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.41389*	.11039	.000	.1969	.6309
	35-54	.91667*	.13381	.000	.6536	1.1797
	55-64	.93137*	.24983	.000	.4402	1.4225
	Over 64	1.26471*	.52072	.016	.2410	2.2884
22-34	Under 22	41389*	.11039	.000	6309	1969
	35-54	.50277*	.09812	.000	.3099	.6957
	55-64	.51748*	.23268	.027	.0600	.9749
	Over 64	.85081	.51271	.098	1572	1.8588
35-54	Under 22	91667*	.13381	.000	-1.1797	6536
	22-34	50277*	.09812	.000	6957	3099
	55-64	.01471	.24466	.952	4663	.4957
	Over 64	.34804	.51826	.502	6709	1.3669
55-64	Under 22	93137*	.24983	.000	-1.4225	4402
	22-34	51748*	.23268	.027	9749	0600
	35-54	01471	.24466	.952	4957	.4663
	Over 64	.33333	.5 <mark>595</mark> 5	.552	7668	1.4334
Over 64	Under 22	-1.26471*	.52072	.016	<mark>-2.28</mark> 84	2410
	22-34	85081	.51271	.098	<mark>-1.8</mark> 588	.1572
	35-54	34804	.51826	.502	-1.3669	.6709
	55-64	333333	.55955	.552	-1.4334	.7668

* The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Weight of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05, followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05), those who have ages between 55 and 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.006 < 0.05); by mean difference are equal to (0.41389), (0.91667), (0.93137) and (1.26471), respectively.

Moreover, the researcher also found that those who have ages between 22 and 34 years old have greater satisfaction on Weight of the arc welding robots of UNAC than those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages between 55 and 64 years old (Sig. value = 0.027 < 0.05); by mean difference are equal to (0.50277) and (0.51748), respectively.

Table 5.31: One Way ANOVA (Speed)

H16: There is a difference in the mean of Speed among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

Descriptives

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Under 22	52	4.2436	.42326	.05870	4.1258	4.3614	3.00	5.00
22-34	267	3.6879	.64563	.03951	3.6101	3.7657	2.00	5.00
35-54	68	3.5343	.57343	.06954	3.3955	3.6731	2.00	5.00
55-64	10	3.4667	.63246	.20000	3.0142	3.9191	2.00	4.00
Over 64	2	3.6667	.47140	. <mark>333</mark> 33	5687	7.9021	3.33	4.00
Total	399	3.7285	.64067	.03207	3.6654	3.7915	2.00	5.00

Ho: There is no difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by age level $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$.

Ha: There is a difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Speed.)

ANOVA

Speeu					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	17.494	4	4.374	11.813	.000
Within Groups	145.870	394	.370		
Total	163.364	398			

Speed

Snood

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Speed of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Speed

LSD Mean 95% Confidence Interval Difference Std. Error Lower Bound Upper Bound (I) Age (J) Age (I-J) Sig Under 22 22-34 .55570* .09223 .000 .3744 .7370 35-54 .70928* .9296 .11209 .000 .4889 55-64 .77692* .21010 .000 .3639 1.1900 Over 64 .57692 43844 .189 -.2851 1.4389 22-34 Under 22 -.55570* .09223 .000 -.7370 -.3744 35-54 .15358 .08265 .064 -.0089 .3161 55-64 .22122 .19598 .260 -.1641 .6065 Over 64 .02122 .43186 .8703 .961 -.8278 35-54 Under 22 -.70928* .11209 .000 -.4889 -.9296 22-34 -.15358 .08265 .064 -.3161 .0089 55-64 .06765 .20608 .743 -.3375 .4728 Over 64 -.13235 43653 .762 -.9906 .7259 55-64 Under 22 -.77692* .21010 .000 -1.1900 -.3639 22-34 .260 -.6065 -.22122 .19598 .1641 35-54 -.06765 20608 .743 -.4728 .3375 Over 64 -.20000 47131 .672 -1.1266 7266 Over 64 Under 22 -.57692 .43844 .189 -1.4389 .2851 22-34 02122 .43186 .961 -.8703 8278 35-54 13235 .43653 .762 -.7259 .9906 55-64 .20000 47131 .672 1.1266 -.7266

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Speed of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages between 55 and 64 years old (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.55570), (0.70928) and (0.77692), respectively.

Table 5.32: One Way ANOVA (Warranty)

H17: There is a difference in the mean of Warranty among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

Warranty								
						nce Interval for an		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Under 22	52	4.1538	.53522	.07422	4.0048	4.3029	2.80	5.00
22-34	264	3.7379	.65936	.04058	3.6580	3.8178	2.00	5.00
35-54	68	3.4324	.53822	.06527	3.3021	3.5626	2.20	5.00
55-64	10	3.3800	.72694	.22988	2.8600	3.9000	2.00	4.60
Over 64	2	2.5000	.70711	.50000	-3.8531	8.8531	2.00	3.00
Total	396	3.7247	.66225	.03328	3.6593	3.7902	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by age level

 $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$

Ha: There is a difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by age level

Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Warranty.)

ANOVA

wananty					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	19.622	4	4.906	12.486	.000
Within Groups	153.615	391	.393		
Total	173.237	395			

Warranty

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Warranty of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Warranty	
LSD	

		Mean Difference			95% Confide	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.41597*	.09510	.000	.2290	.6029
	35-54	.72149*	.11547	.000	.4945	.9485
	55-64	.77385*	.21643	.000	.3483	1.1994
	Over 64	1.65385*	.45166	.000	.7659	2.5418
22-34	Under 22	41597*	.09510	.000	6029	2290
	35-54	.30553*	.08524	.000	.1379	.4731
	55-64	.35788	.20193	.077	0391	.7549
	Over 64	1.23788*	.44489	.006	.3632	2.1126
35-54	Under 22	72149*	.11547	.000	9485	4945
	22-34	30553*	.08524	.000	4731	1379
	55-64	.05235	.21229	.805	3650	.4697
	Over 64	.93235*	.44968	.039	.0482	1.8165
55-64	Under 22	77385*	.21643	.000	-1.1994	3483
	22-34	35788	.20193	.077	7549	.0391
	35-54	05235	.21229	.805	4697	.3650
	Over 64	.88000	.48552	.071	0746	1.8346
Over 64	Under 22	-1.65385*	.45166	.000	<mark>-2</mark> .5418	7659
	22-34	-1.23788*	.44489	.006	- <mark>2.1</mark> 126	3632
	35-54	932 <mark>35</mark> *	.44968	.039	-1.8165	0482
	55-64	88000	.48552	.071	-1.8346	.0746

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05), those who have ages between 55 and 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.41597), (0.72149), (0.77385) and (1.65385), respectively.

Moreover, the researcher also found that those who have ages between 22 and 34 years old have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. value = 0.006); by mean difference are equal to (0.30553) and (1.23788), respectively.

Table 5.33: One Way ANOVA (Durability)

H18: There is a difference in the mean of Durability among Age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64).

	9			De scriptiv		1 2		
Durability			A	M ~~				
		11		* 4		n <mark>ce I</mark> nterval for		
					Me	an		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Under 22	52	4.1731	.45336	.06287	4.0469	4.2993	2.80	5.00
22-34	267	3.7468	.61217	.03746	3.6731	3.8206	2.00	5.00
35-54	67	3.4716	.58848	.07189	3.3281	3.6152	2.00	4.80
55-64	10	3.4200	.68928	.21797	2.9269	3.9131	2.40	4.60
Over 64	2	3.0000	LAB.00000	.00000	3.0000	3.0000	3.00	3.00
Total	398	3.7442	.62283	.03122	3.6828	3.8056	2.00	5.00

Ho: There is no difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by age level

 $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$

Ha: There is a difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.

(Different age levels show a difference in the mean of Durability.)

ANOVA

Durability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	16.702	4	4.176	11.952	.000
Within Groups	137.299	393	.349		
Total	154.002	397			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among age level groups (Under 22, 22-34, 35-54, 55-64 and Over 64), there is a

difference in satisfaction for Durability of the arc welding robots of UNAC.

Multiple Comparisons Dependent Variable: Durability								
LSD	valiable. D	urability			0			
					~			
<i></i>	710	Mean Difference				ence Interval		
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
Under 22	22-34	.42626*	.08959	.000	.2501	.6024		
	35-54	.70144*	.10924	.000	.4867	.9162		
	55-64	.75308*	.20409	.000	.3518	1.1543		
	Over 64	1.17308*	.42591	.006	.3357	2.0104		
22-34	Under 22	42626*	.08959	.000	6024	2501		
	35-54	.27517*	° oz .08076	.001	.1164	.4340		
	55-64	.32682	.19038	.087	0475	.7011		
	Over 64	.74682	.41951	.076	0779	1.5716		
35-54	Under 22	70144*	.10924	.000	9162	4867		
	22-34	.27517*	.08076	.001	4340	1164		
	55-64	.05164	.20038	.797	3423	.4456		
	Over 64	.47164	.42414	.267	3622	1.3055		
55-64	Under 22	75308*	.20409	.000	-1.1543	3518		
	22-34	32682	.19038	.087	7011	.0475		
	35-54	05164	.20038	.797	4456	.3423		
	Over 64	.42000	.45784	.360	4801	1.3201		
Over 64	Under 22	-1.17308*	.42591	.006	-2.0104	3357		
	22-34	74682	.41951	.076	-1.5716	.0779		
	35-54	47164	.42414	.267	-1.3055	.3622		
	55-64	42000	.45784	.360	-1.3201	.4801		
*. The m	ean differen	ce is significar				I		

From the multiple comparison table, the researcher found that those who have ages under 22 years old have greater satisfaction on Durability of the arc welding robots of UNAC than those who have ages between 22 and 34 years old (Sig. value = 0.000 < 0.05), followed by those who have ages between 35 and 54 years old (Sig. value = 0.000 < 0.05), those who have ages between 55 and 64 years old (Sig. value = 0.000 < 0.05) and those who have ages over 64 years old (Sig. = 0.006 < 0.05); by mean difference are equal to (0.42626), (0.70144), (0.75308) and (1.17308), respectively.

VERSIT

Moreover, the researcher also found that those who have ages between 22 and 34 years old have greater satisfaction on Durability of the arc welding robots of UNAC than those who have ages between 35 and 54 years old (Sig. value = 0.001 < 0.05); by mean difference is equal to (0.27517).

Table 5.34: One Way ANOVA (Performance in Operation)

H19: There is a difference in the mean of Performance in Operation among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Performance in Opera	tion				95% Confiden			
	N	Mean	Std. Deviation	Std. Error	Me Lower Bound	an Upper Bound	Minimum	Maximum
Below 10,000 baht	96	4.0375	.54197	.05532	3.9277	4.1473	2.00	4.90
10,000-20,000 baht	181	3.7680	.46924	.03488	3.6991	3.8368	2.50	4.60
20,001-30,000 baht	91	3.4857	.42179	.04422	3.3979	3.5736	2.30	5.00
30,001-40,000 baht	24	3.4792	.35993	.07347	3.3272	3.6312	2.80	4.20
40,001-50,000 baht	3	3.3333	.37859	.21858	2.3929	4.2738	2.90	3.60
Above 50,000 baht	2	3.3500	.21213	.15000	1.4441	5.2559	3.20	3.50
Total	397	3.7456	.51199	.02570	3.6951	3.7961	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC when classified

```
by income Not all \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 are equal.
```

(Different income level groups show a difference in the mean of Performance in

Operation.)

Derfermense in Oneration

ANOVA

Performance in Operation								
	Sum of							
	Squares	df	Mean Square	F	Sig.			
Between Groups	16.943	5	3.389	15.253	.000			
Within Groups	86.862	391	.222					
Total	103.805	396						

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Performance in Operation of the arc welding robots of UNAC.

		Mean Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.26954*	.05951	.000	.1525	.3865
	20,001-30,000 baht	.55179*	.06896	.000	.4162	.6874
	30,001-40,000 baht	.55833*	.10757	.000	.3469	.7698
	40,001-50,000 baht	.70417*	.27634	.011	.1609	1.2475
	Above 50,000 baht	.68750*	.33674	.042	.0255	1.3495
10,000-20,000 baht	Below 10,000 baht	26954*	.05951	.000	3865	1525
	20,001-30,000 baht	.28224*	.06057	.000	.1632	.4013
	30,001-40,000 baht	.28879*	.10239	.005	.0875	.4901
	40,001-50,000 baht	.43462	.27437	.114	1048	.9740
	Above 50,000 baht	.41796	.33512	.213	2409	1.0768
20,001-30,000 baht	Below 10,000 baht	55179*	.06896	.000	6874	4162
	10,000-20,000 baht	28224*	.06057	.000	4013	1632
	30,001-40,000 baht	.00655	.10816	.952	2061	.2192
	40,001-50,000 baht	.15238	.27657	.582	3914	.6961
	Above 50,000 baht	.13571	.33692	.687	5267	.7981
30,001-40,000 baht	Below 10,000 baht	55833*	.10757	.000	7698	3469
	10,000-20,000 baht	28879*	.10239	.005	4901	0875
	20,001-30,000 baht	00655	.10816	.952	2192	.2061
	40,001-50,000 baht	.14583	.28863	.614	4216	.7133
	Above 50,000 baht	.12917	.34689	.710	5528	.8112
40,001-50,000 baht	Below 10,000 baht	70417*	.27634	.011	-1.2475	1609
	10,000-20,000 baht	RO43462	.27437	.114	RIE9740	.1048
	20,001-30,000 baht	15238	.27657	.582	6961	.3914
	30,001-40,000 baht	14583	.28863	.614	7133	.4216
	Above 50,000 baht	01667	.43026	.969	8626	.8293
Above 50,000 baht	Below 10,000 baht	68750*	.33674	.042	NCT-1.3495	0255
	10,000-20,000 baht	41796	.33512	.213	-1.0768	.2409
	20,001-30,000 baht	13571	.33692	A .687	7981	.5267
	30,001-40,000 baht	12917	.34689	.710	8112	.5528
	40,001-50,000 baht	.01667	.43026	196.969	8293	.8626
* The mean differ	ence is significant at the	e .05 level.	ยาลัข	ยอัสต์	3210	

Multiple Comparisons

Dependent Variable: Performance in Operation

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Performance in Operation of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05), those who have income between 40,001 and 50,000 baht (Sig. value = 0.011 < 0.05) and those who have income above

50,000 baht (Sig. value = 0.042 < 0.05); by mean difference are equal to (0.26954), (0.55179), (0.55833), (0.70417) and (0.68750), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Performance in Operation of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.005 < 0.05); by mean difference are equal to (0.28224) and (0.28879), respectively.

Table 5.35: One Way ANOVA (Reliability)

H20: There is a difference in the mean of Reliability among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Reliability 95% Confidence Interval for Mean Std. Deviation Std. Error Upper Bound Ν Mean Lower Bound Minimum Maximum Below 10.000 baht 97 3.8969 .59969 .06089 3.7760 4.0178 2.33 5.00 10,000-20,000 baht 3.6796 .04473 3.5913 181 .60181 3.7678 2.00 5.00 20.001-30.000 baht 92 3.5109 .50019 .05215 3.4073 3.6145 2.00 5.00 30,001-40,000 baht 3 3 3 3 3 42846 .08746 31524 4 0 0 24 35143 200 40,001-50,000 baht 3.3333 .57735 .33333 1.8991 3.67 3 4.7676 2.67 Above 50.000 baht 2 3.3333 .47140 .333333 -.9021 7.5687 3.00 3.67 Total 3.6103 5.00 399 3.6683 .58931 .02950 3.7263 2.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by income μ_1 = $\mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different income level groups show a difference in the mean of Reliability.)

୍ୟୁମ୍ବର ଥ ANOVA

Reliability

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	10.626	5	2.125	6.546	.000
Within Groups	127.595	393	.325		
Total	138.221	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000

baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is

significant difference in satisfaction for Reliability of the arc welding robots of

UNAC.

Dependent Variable: Reliability

Multiple Comparisons

LSD		-						
		Mean Difference			95% Confide	ence Interval		
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
Below 10,000 baht	10,000-20,000 baht	.21735*	.07170	.003	.0764	.3583		
	20,001-30,000 baht	.38604*	.08292	.000	.2230	.5491		
	30,001-40,000 baht	.56357*	.12990	.000	.3082	.8190		
	40,001-50,000 baht	.56357	.33402	.092	0931	1.2203		
	Above 50,000 baht	.56357	.40704	.167	2367	1.3638		
10,000-20,000 baht	Below 10,000 baht	21735*	.07170	.003	3583	0764		
	20,001-30,000 baht	.16869*	.07296	.021	.0253	.3121		
	30,001-40,000 baht	.34622*	.12378	.005	.1029	.5896		
	40,001-50,000 baht	.34622	.33169	.297	3059	.9983		
	Above 50,000 baht	.34622	.40513	.393	4503	1.1427		
20,001-30,000 baht	Below 10,000 baht	38604*	.08292	.000	5491	2230		
	10,000-20,000 baht	16869*	.07296	.021	3121	0253		
	30,001-40,000 baht	.17754	.13060	.175	0792	.4343		
	40,001-50,000 baht	.17754	.33429	.596	4797	.8348		
	Above 50,000 baht	.17754	.40726	.663	6232	.9782		
30,001-40,000 baht	Below 10,000 baht	56357*	.12990	.000	8190	3082		
	10,000-20,000 baht	34622*	.12378	.005	5896	1029		
	20,001-30,000 baht	17754	.13060	.175	4343	.0792		
	40,001-50,000 baht	.00000	.34893	1.000	6860	.6860		
	Above 50,000 baht	.00000	.41936	1.000	8245	.8245		
40,001-50,000 baht	Below 10,000 baht	56357	.33402	.092	-1.2203	.0931		
	10,000-20,000 baht	34622	.33169	.297	9983	.3059		
	20,001-30,000 baht	17754	.33429	.596	8348	.4797		
	30,001-40,000 baht	.00000	.34893	1.000	6860	.6860		
	Above 50,000 baht	00000.	.52015	1.000	RIEL -1.0226	1.0226		
Above 50,000 baht	Below 10,000 baht	56357	.40704	.167	-1.3638	.2367		
	10,000-20,000 ba <mark>ht</mark>	34622	.40513	.393	-1.1427	.4503		
	20,001-30,000 baht	A R17754	.40726	.663	9782	.6232		
	30,001-40,000 baht	.00000	.41936	1.000	8245	.8245		
	40,001-50,000 baht	.00000	0.52015	1.000	-1.0226	1.0226		
* The mean differ								

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Reliability of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.003 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.21735), (0.38604) and (0.56357), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Reliability of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.021 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.005 < 0.05); by mean difference are equal to (0.16869) and (0.34622), respectively.

Table 5.36: One Way ANOVA (Technical Sophisticate)

H21: There is a difference in the mean of Technical Sophisticate among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

					95% Confiden Me			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below 10,000 baht	96	3.7813	.72661	.07416	3.6340	3.9285	2.00	4.75
10,000-20,000 baht	180	3.6222	.60231	.04489	3.5336	3.7108	2.00	5.00
20,001-30,000 baht	93	3.4140	.52453	.05439	3.3060	3.5220	2.00	4.75
30,001-40,000 baht	23	3.2717	.67804	.14138	2.9785	3.5649	1.75	5.00
40,001-50,000 baht	3	3.7500	.25000	.14434	3.1290	4.3710	3.50	4.00
Above 50,000 baht	2	3.0000	.00000	.00000	3.0000	3.0000	3.00	3.00
Total	397	3.5894	.63629	.03193	3.5266	3.6522	1.75	5.00

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
- Ha: There is a difference among the respondents regarding their satisfaction for

Technical Sophisticate of the arc welding robots of UNAC when classified by

income Not all
$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$$
 are equal.

.0

(Different income level groups show a difference in the mean of Technical

Sophisticate.)

ANOVA

Technical Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.682	5	1.936	5.026	.000
Within Groups	150.643	391	.385		
Total	160.326	396			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Technical Sophisticate of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Technical Sophisticate

LSD						
		Mean Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.15903*	.07845	.043	.0048	.3133
	20,001-30,000 baht	.36727*	.09031	.000	.1897	.5448
	30,001-40,000 baht	.50 <mark>951</mark> *	.14410	.000	.2262	.7928
	40,001-50,000 baht	.03125	.36392	.932	6842	.7467
	Above 50,000 ba <mark>ht</mark>	.78125	.44345	.079	0906	1.6531
10,000-20,000 baht	Below 10,000 baht	15903*	.07845	.043	3133	0048
	20,001-30,000 baht	.20824*	.07927	.009	.0524	.3641
	30,001-40,000 baht	.35048*	.13745	.011	.0803	.6207
	40,001-50,000 baht	12778	.36134	.724	8382	.5826
	Above 50,000 baht	.62222	.44134	.159	2455	1.4899
20,001-30,000 baht	Below 10,000 baht	36727*	.09031	.000	5448	1897
	10,000-20,000 baht	20824*	.07927	.009	3641	0524
E	30,001-40,000 baht	.14224	.14455	.326	1419	.4264
	40,001-50,000 baht	33602	.36410	.357	-1.0519	.3798
	Above 50,000 baht	.41 398	.44360	.351	4582	1.2861
30,001-40,000 baht	Below 10,000 baht	50951*	.14410	.000	7928	2262
	10,000-20,000 baht	35048*	. <mark>13745</mark>	.011	6207	0803
	20,001-30,000 baht	14224	A .14455	.326	4264	.1419
	40,001-50,000 baht	47826	.38102	.210	-1.2274	.2708
	Above 50,000 baht	.27174	.45759	.553	6279	1.1714
40,001-50,000 baht	Below 10,000 baht	03125	.36392	.932	7467	.6842
	10,000-20,000 baht	.12778	.36134	.724	5826	.8382
	20,001-30,000 baht	.33602	.36410	.357	3798	1.0519
	30,001-40,000 baht	.47826	.38102	.210	2708	1.2274
	Above 50,000 baht	.75000	.56663	.186	3640	1.8640
Above 50,000 baht	Below 10,000 baht	78125	.44345	.079	-1.6531	.0906
	10,000-20,000 baht	62222	.44134	.159	-1.4899	.2455
	20,001-30,000 baht	41398	.44360	.351	-1.2861	.4582
	30,001-40,000 baht	27174	.45759	.553	-1.1714	.6279
	40,001-50,000 baht	75000	.56663	.186	-1.8640	.3640

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who

have income below 10,000 baht have greater satisfaction on Technical Sophisticate of

the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.043 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.15903), (0.36727) and (0.50951), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Technical Sophisticate arc of welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.009 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.011 < 0.05); by mean difference are equal to (0.20824) and (0.35048), respectively.

Table 5.37: One Way ANOVA (Flexibility and Adaptability in Use)

H22: There is a difference in the mean of Flexibility and Adaptability in Use among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Descriptives								
ility in use								
95% Confidence Interval for Mean								
Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
96	3.9549	.55972	.05713	3.8415	4.0683	2.00	5.00	
178	3.7509	.47032	.03525	3.6814	3.8205	2.33	4.75	
93	3.5269	.41651	.04319	3.4411	3.6127	2.33	5.00	
24	3.3056	.33932	.06926	3.1623	3.4488	2.50	4.17	
3	3.6389	.25459	.14699	3.0065	4.2713	3.42	3.92	
2	2.8750	.17678	.12500	1.2867	4.4633	2.75	3.00	
396	3.7155	.50861	.02556	3.6652	3.7657	2.00	5.00	
	N 96 178 93 24 3 2	N Mean 96 3.9549 178 3.7509 93 3.5269 24 3.3056 3 3.6389 2 2.8750	N Mean Std. Deviation 96 3.9549 .55972 178 3.7509 .47032 93 3.5269 .41651 24 3.3056 .33932 3 3.6389 .25459 2 2.8750 .17678	N Mean Std. Deviation Std. Error 96 3.9549 .55972 .05713 178 3.7509 .47032 .03525 93 3.5269 .41651 .04319 24 3.3056 .33932 .06926 3 3.6389 .25459 .14699 2 2.8750 .17678 .12500	N Mean Std. Deviation Std. Error 95% Confiden Me 96 3.9549 .55972 .05713 3.8415 178 3.7509 .47032 .03525 3.6814 93 3.5269 .41651 .04319 3.4411 24 3.3056 .33932 .06926 3.1623 3 3.6389 .25459 .14699 3.0065 2 2.8750 .17678 .12500 1.2867	N Mean Std. Deviation Std. Error 95% Confidence Interval for Mean 96 3.9549 .55972 .05713 3.8415 4.0683 178 3.7509 .47032 .03525 3.6814 3.8205 93 3.5269 .41651 .04319 3.4411 3.6127 24 3.3056 .33932 .06926 3.1623 3.4488 3 3.6389 .25459 .14699 3.0065 4.2713 2 2.8750 .17678 .12500 1.2867 4.4633	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Mnimum 96 3.9549 .55972 .05713 3.8415 4.0683 2.00 178 3.7509 .47032 .03525 3.6814 3.8205 2.33 93 3.5269 .41651 .04319 3.4411 3.6127 2.33 24 3.3056 .33932 .06926 3.1623 3.4488 2.50 3 3.6389 .25459 .14699 3.0065 4.2713 3.42 2 2.8750 .17678 .12500 1.2867 4.4633 2.75	

Ho: There is no difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by income Not all μ₁ = μ₂ = μ₃ = μ₄= μ₅ = μ₆ are equal.
(Different income level groups show a difference in the mean of Flexibility and

າລໍ່ເງລື່

Adaptability in Use.)

ANOVA

Flexibility	and Adaptability in use	

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	14.496	5	2.899	12.895	.000
Within Groups	87.685	390	.225		
Total	102.181	395			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Flexibility and Adaptability in use LSD

LSD						
		Mean Difference			95% Confidence Interval	
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.20392*	.06004	.001	.0859	.3220
	20,001-30,000 baht	.42798*	.06899	.000	.2923	.5636
	30,001-40,000 baht	.64931*	.10821	.000	.4366	.8621
	40,001-50,000 baht	.31597	.27800	.256	2306	.8625
	Above 50,000 baht	1.07986*	.33876	.002	.4138	1.7459
10,000-20,000 baht	Below 10,000 baht	20392*	.06004	.001	3220	0859
	20,001-30,000 baht	.22405*	.06067	.000	.1048	.3433
	30,001-40,000 baht	.44538*	.10311	.000	.2427	.6481
	40,001-50,000 baht	.11205	.27606	.685	4307	.6548
	Above 50,000 baht	.87594*	.33716	.010	.2130	1.5388
20,001-30,000 baht	Below 10,000 baht	42798*	.06899	.000	5636	2923
	10,000-20,000 baht	22405*	.06067	.000	3433	1048
	30,001-40,000 baht	.22133*	.10856	.042	.0079	.4348
	40,001-50,000 baht	11201	.27814	.687	6588	.4348
	Above 50,000 baht	.65188	.33887	.055	0144	1.3181
30,001-40,000 baht	Below 10,000 baht	64931*	.10821	.000	8621	4366
	10,000-20,000 baht	44538*	.10311	.000	6481	2427
	20,001-30,000 baht	22133*	.10856	.042	4348	0079
	40,001-50,000 baht	33333	.29037	.252	9042	.2375
	Above 50,000 <mark>bah</mark> t	.43056	.34898	.218	2556	1.1167
40,001-50,000 baht	Below 10,000 baht	<u>315</u> 97	.27800	.256	8625	.2306
	10,000-20,000 baht	11205	.27606	.685	.6548	.4307
	20,001-30,000 baht	.11201	.27814	.687	4348	.6588
	30,001-40,000 baht	.33333	.29037	.252	2375	.9042
	Above 50,000 baht	.76389	.43285	.078	0871	1.6149
Above 50,000 baht	Below 10,000 baht	-1.07986*	.33876	.002	-1.7459	4138
	10,000-20,000 baht	87594*	.33716	.010	-1.5388	2130
	20,001-30,000 baht	65188	.33887	.055	-1.3181	.0144
	30,001-40,000 baht	43056	.34898	.218	-1.1167	.2556
	40,001-50,000 baht	76389	.43285	.078	-1.6149	.0871

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.001 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. value = 0.002 < 0.05); by mean difference are equal to (0.20392), (0.42798), (0.64931) and (1.07986), respectively.

NIVERSITL

Also, the researcher found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05)), followed by those who have income between 30,001 to 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. value = 0.005 < 0.05); by mean difference are equal to (0.22405), (0.44538) and (0.87594), respectively.

Moreover, the researcher found that those who have income between 20,001 and 30,000 baht have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who have income between 30,001 and 40,000 baht (Sig. value = 0.042 < 0.05); by mean difference is equal to (0.22133).

SINCE1969

Table 5.38: One Way ANOVA (Size)

H23: There is a difference in the mean of Size among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Size 95% Confidence Interval for Mean N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum Below 10,000 baht 96 3.9792 .72517 .07401 3.8322 4.1261 2.00 5.00 10,000-20,000 baht 180 3.6815 .61111 .04555 3.5916 3.7714 2.00 5.00 20,001-30,000 baht 3.4839 3.3643 58051 06020 3 6034 200 500 93 30,001-40,000 baht 24 3.3333 .49147 .10032 3.1258 3.5409 2.00 4.00 40,001-50,000 baht 1.8991 3 3.3333 .57735 .33333 4.7676 3.00 4.00 Above 50,000 baht 2.3333 .00000 .00000 2.3333 2.3333 2.33 2.33 2 Total 398 3.6767 .66026 .03310 3.6117 3.7418 2.00 5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2$ $= \mu_3 = \mu_4 = \mu_5 = \mu_6.$

Ha: There is a difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

ମ୍ଚାପ୍ର

(Different income level groups show a difference in the mean of Size.)

ANOVA

Size					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	19.037	5	3.807	9.690	.000
Within Groups	154.034	392	.393		
Total	173.071	397			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Size of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Size

LSD						
		Mean Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.29769*	.07922	.000	.1419	.4534
	20,001-30,000 baht	.49530*	.09120	.000	.3160	.6746
	30,001-40,000 baht	.64583*	.14306	.000	.3646	.9271
	40,001-50,000 baht	.64583	.36752	.080	0767	1.3684
	Above 50,000 baht	1.64583*	.44784	.000	.7654	2.5263
10,000-20,000 baht	Below 10,000 baht	297 <mark>69*</mark>	.07922	.000	4534	1419
	20,001-30,000 baht	.19761*	.08005	.014	.0402	.3550
	30,001-40,000 baht	.34815*	.13622	.011	.0803	.6160
	40,001-50,000 baht	.34815	.36492	.341	3693	1.0656
	Above 50,000 baht	1.34815*	.44571	.003	.4719	2.2244
20,001-30,000 baht	Below 10,000 baht	49530*	.09120	.000	6746	3160
	10,000-20,0 <mark>00 baht</mark>	19761*	.08005	.014	3550	0402
	30,001-40,000 baht	.15054	.14352	.295	1316	.4327
	40,001-50, <mark>000 baht</mark>	.15054	.36770	.682	5724	.8735
	Above 50,000 baht	1.15054*	.44799	.011	.2698	2.0313
30,001-40,000 baht	Below 10,000 baht	64583*	.14306	.000	9271	3646
	10,000-20,0 <mark>00 ba</mark> ht	34815*	.13622	ABR.011	6160	0803
	20,001-30,000 baht	15054	.14352	.295	4327	.1316
	40,001-50,00 <mark>0 b</mark> aht	.00000	.38387	1.000	7547	.7547
	Above 50,000 baht	OR 1.00000*	.46135	/INCI.031	.0930	1.9070
40,001-50,000 baht	Below 10,000 baht	<mark>645</mark> 83	.36752	.080	-1.3684	.0767
	10,000-20,000 baht	34815	.36492	.341	-1.0656	.3693
	20,001-30,000 baht	15054	.36770	.682	8735	.5724
	30,001-40,000 baht	.00000	.38387	1.000	7547	.7547
	Above 50,000 baht	1.00000	.57223	.081	1250	2.1250
Above 50,000 baht	Below 10,000 baht	-1.64583*	.44784	.000	-2.5263	7654
	10,000-20,000 baht	-1.34815*	.44571	.003	-2.2244	4719
	20,001-30,000 baht	-1.15054*	.44799	.011	-2.0313	2698
	30,001-40,000 baht	-1.00000*	.46135	.031	-1.9070	0930
	40,001-50,000 baht	-1.00000	.57223	.081	-2.1250	.1250

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Size of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and

40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.29769), (0.49530), (0.64583) and (1.64583), respectively.

Also, the researcher found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Size of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.014 < 0.05), followed by those who have income between 30,001 and 40,000 baht (Sig. value = 0.011 < 0.05) and those who have income above 50,000 baht (Sing. Vale = 0.003 < 0.05); by mean difference are equal to (0.19761), (0.34815) and (1.34815), respectively.

Moreover, the researcher also found that those who have income between 20,001 and 30,000 baht have greater satisfaction on Size of the arc welding robots of UNAC than those who have income above 50,000 baht (Sing. Vale = 0.011 < 0.05); by mean difference is equal to (1.15054).

Finally, the researcher also found that those who have income between 30,001 and 40,000 baht have greater satisfaction on Size of the arc welding robots of UNAC than those who have income above 50,000 baht (Sing. Vale = 0.031 < 0.05); by mean difference is equal to (1.00000).

Table 5.39: One Way ANOVA (Weight)

H24: There is a difference in the mean of Weight among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Descriptives

Weight								
					95% Confidence Interval for			
					Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below 10,000 baht	96	3.9931	.71734	.07321	3.8477	4.1384	2.00	5.00
10,000-20,000 baht	181	3.6722	.78369	.05825	3.5572	3.7871	2.00	5.00
20,001-30,000 baht	93	3.3333	.65016	.06742	3.1994	3.4672	2.00	5.00
30,001-40,000 baht	24	3.1667	.49147	.10032	2.9591	3.3742	2.00	4.33
40,001-50,000 baht	3	3.6667	.57735	.33333	2.2324	5.1009	3.00	4.00
Above 50,000 baht	2	2.3333	.00000	.00000	2.3333	2.3333	2.33	2.33
Total	399	3.6332	.76713	.03840	3.5577	3.7088	2.00	5.00

Ho: There is no difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different income level groups show a difference in the mean of Weight.)

Weight					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	29.676	5	5.935	11.403	.000
Within Groups	204.545	393	.520		
Total	234.221	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Weight of the arc welding robots of UNAC.

Multiple Comparisons

LSD						
		Mean Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.32086*	.09109	.000	.1418	.4999
	20,001-30,000 baht	.65972*	.10497	.000	.4534	.8661
	30,001-40,000 baht	.82639*	.16464	.000	.5027	1.1501
	40,001-50,000 baht	.32639	.42298	.441	5052	1.1580
	Above 50,000 baht	1.65972*	.51542	.001	.6464	2.6730
10,000-20,000 baht	Below 10,000 baht	32086*	.09109	.000	4999	1418
	20,001-30,000 baht	.33886*	.09204	.000	.1579	.5198
	30,001-40,000 ba <mark>ht</mark>	.50552*	.15672	.001	.1974	.8136
	40,001-50,000 baht	.00552	.419 <mark>96</mark>	.990	8201	.8312
	Above 50,000 baht	1.33886*	.51294	.009	.3304	2.3473
20,001-30,000 baht	Below 10,000 baht	6 <mark>5</mark> 972*	.10497	.000	8661	4534
	10,000-20,000 baht	33886*	.09204	.000	5198	1579
	30,001-40,000 baht	.16667	.16518	.314	1581	.4914
	40,001-50,000 baht	33333	.42319	.431	-1.1653	.4987
	Above 50,000 baht	1.00000	.51559	.053	0137	2.0137
30,001-40,000 baht	Below 10,000 baht	82639*	.16464	RIE.000	-1.1501	5027
	10,000-20,000 baht	50552*	.15672	.001	8136	1974
	20,001-30,0 <mark>00</mark> baht	16667	.16518	.314	4914	.1581
	40,001-50,000 baht	50000	.44179	.258	-1.3686	.3686
	Above 50,000 baht	.83333	.53096	.117	2106	1.8772
40,001-50,000 baht	Below 10,000 baht	32639	.42298	.441	-1.1580	.5052
	10,000-20,000 baht	00552	.41996	.990	8312	.8201
	20,001-30,000 baht	.33333	.42319	.431	4987	1.1653
	30,001-40,000 baht	.50000	.44179	.258	3686	1.3686
	Above 50,000 baht	1.33333*	.65858	.044	.0386	2.6281
Above 50,000 baht	Below 10,000 baht	-1.65972*	.51542	.001	-2.6730	6464
	10,000-20,000 baht	-1.33886*	.51294	.009	-2.3473	3304
	20,001-30,000 baht	-1.00000	.51559	.053	-2.0137	.0137
	30,001-40,000 baht	83333	.53096	.117	-1.8772	.2106
	40,001-50,000 baht	-1.33333*	.65858	.044	-2.6281	0386

Dependent Variable: Weight

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Weight of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. value = 0.001 < 0.05); by mean difference are equal to (0.32086), (0.65972), (0.82639) and (1.65972), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Weight of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05); following those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. Value = 0.009 < 0.05); by mean difference are equal to (0.33886), (0.50552) and (1.33886), respectively.

NIVERS/7

Finally, the users who have income between 40,001 and 50,000 baht per month have greater satisfaction on Weight of the arc welding robots of UNAC than those who have income above 50,000 baht (Sig. Value = 0.044 < 0.05); by mean difference are equal to (1.33333).

Table 5.40: One Way ANOVA (Speed)

H25: There is a difference in the mean of Speed among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Speed 95% Confidence Interval for Mean Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum Ν Below 10,000 baht 97 4.0722 .66706 .06773 3.9377 4.2066 2.00 5.00 10,000-20,000 baht 3.7053 181 .04615 3.6143 2.33 .62091 3.7964 5.00 20,001-30,000 baht 93 3.4982 .50749 .05262 3.3937 3.6027 2.00 4.67 30,001-40,000 baht 3.4722 .12517 3.2133 2.00 24 .61319 3.7312 5.00 40,001-50,000 baht 3.4444 .38490 .22222 2.4883 4.4006 3.00 3.67 3 Above 50,000 baht 3.3333 2 3.3333 .00000 .00000 3.3333 3.33 3.33 3.6654 Total 400 3.7283 .63988 .03199 3.7912 2.00 5.00

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by income $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
- Ha: There is a difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different income level groups show a difference in the mean of Speed.)

Speed					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	18.616	5	3.723	10.134	.000
Within Groups	144.752	394	.367		
Total	163.368	399			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000

baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is

significant difference in satisfaction for Speed of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Speed LSD

		Mean				
		Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.36682*	.07627	.000	.2169	.5168
	20,001-30,000 baht	.57396*	.08797	.000	.4010	.7469
	30,001-40,000 baht	.59994*	.13819	.000	.3283	.8716
	40,001-50,000 baht	.62772	.35532	.078	0708	1.3263
	Above 50,000 baht	.73883	.43299	.089	1124	1.5901
10,000-20,000 baht	Below 10,000 baht	36682*	.07627	.000	5168	2169
	20,001-30,000 baht	.20713*	.07733	.008	.0551	.3592
	30,001-40,000 baht	.23312	.13167	.077	0258	.4920
	40,001-50,000 baht	.26090	.35284	.460	4328	.9546
	Above 50,000 baht	.37201	.43096	.389	4753	1.2193
20,001-30,000 baht	Below 10,000 baht	57396*	.08797	.000	7469	4010
	10,000-20,000 baht	20713*	.0773 <mark>3</mark>	.008	3592	0551
	30,001-40,000 baht	.02599	<mark>.1</mark> 3877	.852	2468	.2988
	40,001-50,000 baht	.05376	.35555	.880	6452	.7528
	Above 50,000 baht	.16487	.43318	.704	6868	1.0165
30,001-40,000 baht	Below 10,000 baht	59994*	.13819	.000	8716	3283
	10,000-20,000 baht	23312	.13167	.077	4920	.0258
	20,001-30,000 baht	02599	.13877	.852	2988	.2468
	40,001-50,000 baht	.02778	.37118	SRI.940	7020	.7575
	Above 50,000 baht	.13889	.44610	.756	7381	1.0159
40,001-50,000 baht	Below 10,000 baht	62772	.35532	.078	-1.3263	.0708
	10,000-20,00 <mark>0 baht</mark>	26090	.35284	460	9546	.4328
	20,001-30,000 baht	05376	.35555	.880	7528	.6452
	30,001-40,000 baht	02778	.37118	.940	7575	.7020
	Above 50,000 baht	-11111	.55332	.841	9767	1.1989
Above 50,000 baht	Below 10,000 baht	73883	.43299	.089	-1.5901	.1124
	10,000-20,000 baht	37201	.43096	.389	-1.2193	.4753
	20,001-30,000 baht	16487	.43318	.704	-1.0165	.6868
	30,001-40,000 baht	13889	.44610	.756	-1.0159	.7381
	40,001-50,000 baht	11111	.55332	.841	-1.1989	.9767

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Speed of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05)and those who have income between 30,001

and 40,000 baht (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.36682), (0.57396) and (0.59994), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Speed of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.008 < 0.05); by mean difference is equal to (0.20713).

Table 5.41: One Way ANOVA (Warranty)

H26: There is a difference in the mean of Warranty among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

	Descriptives									
Warranty										
					95% Confiden Me					
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum		
Below 10,000 baht	97	4.1072	.66712	.06774	3.9728	4.2417	2.00	5.00		
10,000-20,000 baht	181	3.7249	.62119	.04617	3.6338	3.8160	2.00	5.00		
20,001-30,000 baht	90	3.4378	.53033	.05590	3.3267	3.5489	2.00	5.00		
30,001-40,000 baht	24	3.3750	.56665	.11567	3.1357	3.6143	2.60	5.00		
40,001-50,000 baht	3	3.4667	.50332	.29059	2.2163	4.7170	3.00	4.00		
Above 50,000 baht	2	2.5000	.70711	.50000	-3.8531	8.8531	2.00	3.00		
Total	397	3.7239	.66161	.03321	3.6586	3.7892	2.00	5.00		

Ho: There is no difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by income μ_1 = $\mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different income level groups show a difference in the mean of Warranty.)

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	27.736	5	5.547	14.896	.000
Within Groups	145.606	391	.372		
Total	173.343	396			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Warranty

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000

baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is

significant difference in satisfaction for Warranty of the arc welding robots of UNAC.

Multiple Comparisons

LSD Mean 95% Confidence Interval Difference (I) Income (J) Income Std. Error Sig Lower Bound Upper Bound (I-J) Below 10,000 baht 10,000-20,000 baht .38235* .07679 .000 2314 5333 20,001-30,000 baht .66944* .08931 .000 .4938 .8450 30,001-40,000 baht .73222* .13912 .000 .4587 1.0057 40,001-50,000 baht .64055 .35773 .074 -.0628 1.3439 Above 50,000 baht 1.60722* .43593 .000 .7502 2.4643 10,000-20,000 baht Below 10,000 baht .38235* .07679 .000 -.5333 -.2314 20,001-30,000 baht .28708 .07871 .000 .1323 .4418 30,001-40,000 baht .34986 .13257 .009 .0892 .6105 40,001-50,000 baht .25820 .35523 .468 -.4402 .9566 Above 50,000 baht 1.22486* .43388 .005 .3718 2.0779 20,001-30,000 baht Below 10.000 baht -.66944* .08931 .000 -.8450 -.4938 10,000-20,000 baht -.28708* .07871 .000 -.4418 -.1323 30,001-40,000 baht .06278 .14019 .655 -.2128 .3384 40,001-50,000 baht -.02889 .35815 .936 -.7330 .6752 Above 50,000 baht .93778* .43627 .032 .0800 1.7955 30,001-40,000 baht Below 10,000 baht .000 -1.0057 -.73222* .13912 -.4587 10,000-20,000 baht -.34986* .009 -.6105 -.0892 .13257 20,001-30,000 baht -.06278 .14019 -.3384 .2128 .655 40,001-50,000 baht -.09167 -.8264 .6430 .37370 .806 Above 50.000 baht .87500 -.0080 1.7580 .44913 .052 40.001-50.000 baht Below 10.000 baht -1.3439 -.64055 .35773 .074 .0628 10.000-20.000 baht .468 -.25820.35523 -.95664402 20,001-30,000 baht -.6752 7330 .02889 .35815 .936 30,001-40,000 baht .37370 .806 -.6430 .8264 .09167 Above 50,000 baht -.1286 2.0619 .96667 .55707 .083 Above 50,000 baht Below 10,000 baht -1.60722* .43593 .000 -2.4643 -.7502 10,000-20,000 baht -1.22486* .43388 .005 -2.0779 -.3718 20,001-30,000 baht -.93778* .43627 .032 -1.7955 -.0800 30,001-40,000 baht -.87500 .44913 .052 -1.7580 .0080 40,001-50,000 baht -.96667 .55707 .083 -2.0619 .1286

Dependent Variable: Warranty

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000

baht (Sig. value = 0.042 < 0.05); by mean difference are equal to (0.38235), (0.66944), (0.73222) and (1.60722), respectively.

Also, the researcher found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 30,001 and 40,000 baht (Sig. value = 0.005 < 0.05) and those who have income above 50,000 baht; by mean difference are equal to (0.28708), (0.34986) and (1.22486), respectively.

Moreover, the researcher also found that those who have income between 20,001 and 30,000 baht have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have income above 50,000 baht (Sig. value = 0.032 < 0.05); by mean difference is equal to (0.93778).

* 212973

Table 5.42: One Way ANOVA (Durability)

H27: There is a difference in the mean of Durability among Income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht).

Descriptives									
Durability	Durability								
					95% Confiden Me				
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
Below 10,000 baht	97	4.0660	.62298	.06325	3.9404	4.1915	2.00	5.00	
10,000-20,000 baht	180	3.7689	.60936	.04542	3.6793	3.8585	2.00	5.00	
20,001-30,000 baht	93	3.5054	.49834	.05168	3.4027	3.6080	2.00	5.00	
30,001-40,000 baht	24	3.2667	.45556	.09299	3.0743	3.4590	2.00	4.40	
40,001-50,000 baht	3	3.5333	.50332	.29059	2.2830	4.7837	3.00	4.00	
Above 50,000 baht	2	3.0000	.00000	.00000	3.0000	3.0000	3.00	3.00	
Total	399	3.7439	.62209	.03114	3.6826	3.8051	2.00	5.00	

Ho: There is no difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by income μ_1 = $\mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by income Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different income level groups show a difference in the mean of Durability.)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	22.172	5	4.434	13.217	.000
Within Groups	131.851	393	.335		
Total	154.022	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Durability

Among income level groups (Below 10,000 baht, 10,000-20,000 baht, 20,001-30,000 baht, 30,001-40,000 baht, 40,001-50,000 baht and Above 50,000 baht), there is significant difference in satisfaction for Durability of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Durability

LSD						
		Mean Difference			95% Confidence Interval	
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.29709*	.07296	.000	.1537	.4405
	20,001-30,000 baht	.56060*	.08406	.000	.3953	.7259
	30,001-40,000 baht	.79931*	.13205	.000	.5397	1.0589
	40,001-50,000 baht	.53265	.33955	.118	1349	1.2002
	Above 50,000 baht	1.06598*	.41377	.010	.2525	1.8795
10,000-20,000 baht	Below 10,000 baht	29709*	.07296	.000	4405	1537
	20,001-30,000 baht	.26351*	.07397	.000	.1181	.4089
	30,001-40,000 baht	.50222*	.12587	.000	.2548	.7497
	40,001-50,000 baht	.23556	.33719	.485	4274	.8985
	Above 50,000 baht	.76889	.41184	.063	0408	1.5786
20,001-30,000 baht	Below 10,000 baht	56060*	.08406	.000	7259	3953
	10,000-20,000 baht	26351*	.07397	.000	4089	1181
	30,001-40,000 baht	.23871	.13261	.073	0220	.4994
	40,001-50 <mark>,000 baht</mark>	02796	.33977	.934	6959	.6400
	Above 50,000 baht	.50538	.41 395	.223	3085	1.3192
30,001-40,000 baht	Below 10,000 baht	79931*	.13205	RIE.000	-1.0589	5397
	10,000-20,000 baht	50222*	.12587	.000	7497	2548
	20,001-30,0 <mark>00</mark> baht	23871	.13261	.073	4994	.0220
	40,001-50,0 <mark>00 baht</mark>	26667	.35470	.453	9640	.4307
	Above 50,000 baht	.26667	.42630	.532	5714	1.1048
40,001-50,000 baht	Below 10,000 baht	53265	.33955	.118	-1.2002	.1349
	10,000-20,000 baht	23556	.33719	.485	8985	.4274
	20,001-30,000 baht	.02796	.33977	.934	6400	.6959
	30,001-40,000 baht	.26667	.35470	.453	4307	.9640
	Above 50,000 baht	.53333	.52876	.314	5062	1.5729
Above 50,000 baht	Below 10,000 baht	-1.06598*	.41377	.010	-1.8795	2525
	10,000-20,000 baht	76889	.41184	.063	-1.5786	.0408
	20,001-30,000 baht	50538	.41 395	.223	-1.3192	.3085
	30,001-40,000 baht	26667	.42630	.532	-1.1048	.5714
	40,001-50,000 baht	53333	.52876	.314	-1.5729	.5062

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have income below 10,000 baht have greater satisfaction on Durability of the arc welding robots of UNAC than those who have income between 10,000 and 20,000 baht (Sig. value = 0.000 < 0.05), followed by those who have income between 20,001

and 30,000 baht (Sig. value = 0.000 < 0.05), those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05) and those who have income above 50,000 baht (Sig. value = 0.010 < 0.05); by mean difference are equal to (0.29709), (0.56060), (0.79931) and (1.06598), respectively.

Moreover, the researcher also found that those who have income between 10,000 and 20,000 baht have greater satisfaction on Durability of the arc welding robots of UNAC than those who have income between 20,001 and 30,000 baht (Sig. value = 0.000 < 0.05) and those who have income between 30,001 and 40,000 baht (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.26351) and (0.50222), respectively.

Table 5.43: One Way ANOVA (Performance in Operation)

H28: There is a difference in the mean of Performance in Operation among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Descriptives								
Performance in Operation								
95% Confidence Interval for Mean								
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	116	3.9474	.55771	.05178	3.8448	4.0500	2.00	5.00
Bachelor's Degree	259	3.6749	.47245	.02936	3.6171	3.7327	2.30	4.60
Master's Degree	21	3.4762	.36042	.07865	3.3121	3.6403	2.80	4.20
Total	396	3.7442	.51188	.02572	3.6936	3.7948	2.00	5.00

There is no difference among the respondents regarding their satisfaction for Ho: Performance in Operation of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.

Ha: There is a difference among the respondents regarding their satisfaction for Performance in Operation of the arc welding robots of UNAC when classified Not all $\mu_1 = \mu_2 = \mu_3$ are equal. by education level

(Different education levels show a difference in the mean of Performance in ยาลัยอัสล

Operation.)

ANOVA

Performance in Operation								
	Sum of	.17	M	F	0 a			
	Squares	df	Mean Square	F	Sig.			
Between Groups	7.542	2	3.771	15.446	.000			
Within Groups	95.954	393	.244					
Total	103.497	395						

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is significant difference in satisfaction for Performance in

Operation of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Performance in Operation LSD

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.27251*	.05520	.000	.1640	.3810
	Master's Degree	.47122*	.11718	.000	.2408	.7016
Bachelor's Degree	Below Bachelor's Degree	27251*	.05520	.000	3810	1640
	Master's Degree	.19871	.11211	.077	0217	.4191
Master's Degree	Below Bachelor's Degree	47122*	.11718	.000	7016	2408
	Bachelor's Degree	19871	.11211	.077	4191	.0217

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Performance in Operation of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.27251) and (0.47122), respectively.

Table 5.44: One Way ANOVA (Reliability)

H29: There is a difference in the mean of Reliability among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Reliability

Reliability								
				95% Confidence Interval for				
				Mean				
Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
117	3.8490	.59612	.05511	3.7398	3.9582	2.33	5.00	
260	3.6038	.58134	.03605	3.5329	3.6748	2.00	5.00	
21	3.4444	.41276	.09007	3.2566	3.6323	2.67	4.33	
398	3.6675	.58982	.02956	3.6094	3.7256	2.00	5.00	
	117 260 21	117 3.8490 260 3.6038 21 3.4444	117 3.8490 .59612 260 3.6038 .58134 21 3.4444 .41276	117 3.8490 .59612 .05511 260 3.6038 .58134 .03605 21 3.4444 .41276 .09007	N Mean Std. Deviation Std. Error Lower Bound 117 3.8490 .59612 .05511 3.7398 260 3.6038 .58134 .03605 3.5329 21 3.4444 .41276 .09007 3.2566	N Mean Std. Deviation Std. Error Lower Bound Upper Bound 117 3.8490 .59612 .05511 3.7398 3.9582 260 3.6038 .58134 .03605 3.5329 3.6748 21 3.4444 .41276 .09007 3.2566 3.6323	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Mnimum 117 3.8490 .59612 .05511 3.7398 3.9582 2.33 260 3.6038 .58134 .03605 3.5329 3.6748 2.00 21 3.4444 .41276 .09007 3.2566 3.6323 2.67	

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.
- Ha: There is a difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.
- (Different education levels show a difference in the mean of Reliability.)

ANOVA

Reliability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	5.953	2	2.976	8.896	.000
Within Groups	132.158	395	.335		
Total	138.111	397			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is a significant difference in satisfaction for Reliability of the arc welding robots of UNAC.

Dependent Variable: Reliability LSD Mean 95% Confidence Interval Difference Upper Bound (I) Education (J) Education (I-J) Std. Error Sig. Lower Bound Below Bachelor's Degree Bachelor's Degree .24516* .06439 .000 .1186 .3718 Master's Degree .40456* .13708 .003 .1351 .6741 Bachelor's Degree Below Bachelor's Degree -.24516* .06439 .000 -.3718 -.1186 Master's Degree .15940 .13122 .225 -.0986 .4174 Below Bachelor's Degree Master's Degree -.40456* .13708 .003 -.6741 -.1351 Bachelor's Degree -.15940 .225 -.4174 .0986 .13122

Multiple Comparisons

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Reliability of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.003 < 0.05); by mean difference are equal to (0.24516) and (0.40456), respectively.

 LABOR
 OMNIA
 VINCIT

 *
 ØMNIA
 ØMNIA

 SINCE1969
 ØMNIA

Table 5.45: One Way ANOVA (Technical Sophisticate)

H30: There is a difference in the mean of Technical Sophisticate among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Descriptives								
Technical Sophisticate								
95% Confidence Interval for Mean								
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	115	3.7283	.68870	.06422	3.6010	3.8555	2.00	4.75
Bachelor's Degree	261	3.5268	.59586	.03688	3.4542	3.5994	2.00	5.00
Master's Degree	20	3.5750	.73494	.16434	3.2310	3.9190	1.75	5.00
Total	396	3.5878	.63622	.03197	3.5249	3.6506	1.75	5.00

.

- Ho: There is no difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.
- Ha: There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Technical Sophisticate.)

ANOVA

Technical Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.243	2	1.621	4.068	.018
Within Groups	156.645	393	.399		
Total	159.888	395			

Sig. value is equal to 0.018 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is significant difference in satisfaction for Technical Sophisticate of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Technical Sophisticate	
LSD	

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.20144*	.07066	.005	.0625	.3404
	Master's Degree	.15326	.15296	.317	1475	.4540
Bachelor's Degree	Below Bachelor's Degree	20144*	.07066	.005	3404	0625
	Master's Degree	04818	.14648	.742	3362	.2398
Master's Degree	Below Bachelor's Degree	15326	.15296	.317	4540	.1475
	Bachelor's Degree	.04818	.14648	.742	2398	.3362

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Technical Sophisticate of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.005 < 0.05); by mean difference is equal to (0.20144). * 2199739

Table 5.46: One Way ANOVA (Flexibility and Adaptability in Use)

H31: There is a difference in the mean of Flexibility and Adaptability in Use among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	116	3.8707	.56587	.05254	3.7666	3.9748	2.00	5.00
Bachelor's Degree	258	3.6647	.47060	.02930	3.6070	3.7224	2.33	4.75
Master's Degree	21	3.4484	.38683	.08441	3.2723	3.6245	2.50	4.08
Total	395	3.7137	.50803	.02556	3.6635	3.7640	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.

Ha: There is a difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when

classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Flexibility and

Adaptability in Use.)

ANOVA

Flexibility and Adaptability in use

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.956	2	2.478	10.041	.000
Within Groups	96.733	392	.247		
Total	101.688	394			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and

Master's Degree), there is a significant difference in satisfaction for Flexibility and

Adaptability in Use of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Flexibility and Adaptability in use LSD

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.20596*	.05553	.000	.0968	.3151
	Master's Degree	.42228*	.11781	.000	.1907	.6539
Bachelor's Degree	Below Bachelor's Degree	20596*	.05553	.000	3151	0968
	Master's Degree	.21632	.11273	.056	0053	.4379
Master's Degree	Below Bachelor's Degree	42228*	.11781	.000	6539	1907
	Bachelor's Degree	21632	.11273	.056	4379	.0053

* The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.20596) and (0.42228), respectively.

Table 5.47: One Way ANOVA (Size)

H32: There is a difference in the mean of Size among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	117	3.9003	.70203	.06490	3.7717	4.0288	2.00	5.00
Bachelor's Degree	259	3.5933	.61508	.03822	3.5180	3.6686	2.00	5.00
Master's Degree	21	3.4286	.66786	.14574	3.1246	3.7326	2.00	4.67
Total	397	3.6751	.66027	.03314	3.6099	3.7402	2.00	5.00

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by education level
 - $\mu_1 = \mu_2 = \mu_3.$
- Ha: There is a difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by education level

Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Size.)

ANOVA

Size

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	8.942	2	4.471	10.761	.000
Within Groups	163.697	394	.415		
Total	172.639	396			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is significant difference in satisfaction for Size of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Size						
LSD						
		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.30698*	.07180	.000	.1658	.4481
	Master's Degree	.47171*	.15276	.002	.1714	.7720
Bachelor's Degree	Below Bachelor's Degree	30698*	.07180	.000	4481	1658
	Master's Degree	.16474	.14625	.261	1228	.4523
Master's Degree	Below Bachelor's Degree	47171*	.15276	.002	7720	1714
	Bachelor's Degree	16474	.14625	.261	4523	.1228

*. The mean difference is significant at the .05 level.

.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Size of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.002 < 0.05); by mean difference are equal to (0.30698) and (0.47171), respectively.

Table 5.48: One Way ANOVA (Weight)

H33: There is a difference in the mean of Weight among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Weight

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	116	3.8046	.80346	.07460	3.6568	3.9524	2.00	5.00
Bachelor's Degree	261	3.5670	.75240	.04657	3.4753	3.6588	2.00	5.00
Master's Degree	21	3.4762	.60159	.13128	3.2024	3.7500	2.33	5.00
Total	398	3.6315	.76729	.03846	3.5559	3.7071	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Weight of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.

Ha: There is a difference among the respondents regarding their satisfaction for

Weight of the arc welding robots of UNAC when classified by education level

Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Weight.)

ANOVA

Weight

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.066	2	2.533	4.376	.013
Within Groups	228.663	395	.579		
Total	233.730	397			

Sig. value is equal to 0.013 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and

Master's Degree), there is significant difference in satisfaction for Weight of the arc

welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Weight

L	S	D	

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.23755*	.08490	.005	.0706	.4045
	Master's Degree	.32841	.18044	.070	0263	.6831
Bachelor's Degree	Below Bachelor's Degree	23755*	.08490	.005	4045	0706
	Master's Degree	.09086	.17258	.599	2484	.4302
Master's Degree	Below Bachelor's Degree	32841	.18044	.070	6831	.0263
	Bachelor's Degree	09086	.17258	.599	4302	.2484

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Weight of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.005 < 0.05); by mean difference is equal to (0.23755).

Table 5.49: One Way ANOVA (Speed)

H34: There is a difference in the mean of Speed among Education levels (Below

Bachelor's Degree, Bachelor's Degree and Master's Degree).

Descriptives

				95% Confidence Interval for			
				Mean			
Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
117	3.9744	.64201	.05935	3.8568	4.0919	2.33	5.00
261	3.6335	.61094	.03782	3.5590	3.7079	2.00	5.00
21	3.5079	.62021	.13534	3.2256	3.7903	2.00	4.67
399	3.7268	.63996	.03204	3.6638	3.7898	2.00	5.00
	117 261 21	117 3.9744 261 3.6335 21 3.5079	117 3.9744 .64201 261 3.6335 .61094 21 3.5079 .62021	117 3.9744 .64201 .05935 261 3.6335 .61094 .03782 21 3.5079 .62021 .13534	N Mean Std. Deviation Std. Error Lower Bound 117 3.9744 .64201 .05935 3.8568 261 3.6335 .61094 .03782 3.5590 21 3.5079 .62021 .13534 3.2256	N Mean Std. Deviation Std. Error Lower Bound Upper Bound 117 3.9744 .64201 .05935 3.8568 4.0919 261 3.6335 .61094 .03782 3.5590 3.7079 21 3.5079 .62021 .13534 3.2256 3.7903	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum 117 3.9744 .64201 .05935 3.8568 4.0919 2.33 261 3.6335 .61094 .03782 3.5590 3.7079 2.00 21 3.5079 .62021 .13534 3.2256 3.7903 2.00

- Ho: There is no difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.
- Ha: There is a difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Speed.)

ANOVA

Speed

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	10.450	2	5.225	13.564	.000
Within Groups	152.551	396	.385		
Total	163.001	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is significant difference in satisfaction for Speed of the arc welding robots of UNAC.

Dependent Variable: Speed						
LSD						
		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.34090*	.06905	.000	.2051	.4767
	Master's Degree	.46642*	.14709	.002	.1772	.7556
Bachelor's Degree	Below Bachelor's Degree	34090*	.06905	.000	4767	2051
	Master's Degree	.12552	.14078	.373	1513	.4023
Master's Degree	Below Bachelor's Degree	46642*	.14709	.002	7556	1772
	Bachelor's Degree	12552	.14078	.373	4023	.1513

Multiple Comparisons

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Speed of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.002 < 0.05); by mean difference are equal to (0.34090) and (0.46642), respectively.

Table 5.50: One Way ANOVA (Warranty)

H35: There is a difference in the mean of Warranty among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Warranty

Warranty											
					95% Confiden	ce Interval for					
					Mean						
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum			
Below Bachelor's Degree	117	3.9504	.69625	.06437	3.8229	4.0779	2.00	5.00			
Bachelor's Degree	259	3.6347	.63236	.03929	3.5574	3.7121	2.00	5.00			
Master's Degree	20	3.5200	.49161	.10993	3.2899	3.7501	2.80	4.80			
Total	396	3.7222	.66158	.03325	3.6569	3.7876	2.00	5.00			

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by education

level $\mu_1 = \mu_2 = \mu_3$.

Ha: There is a difference among the respondents regarding their satisfaction for

Warranty of the arc welding robots of UNAC when classified by education

level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Warranty.)

-	SIN	CE1	969	0	
23	ANOV	A	žá	สมา	

Warranty			19260		
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	8.893	2	4.446	10.656	.000
Within Groups	163.992	393	.417		
Total	172.884	395			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree), there is significant difference in satisfaction for Warranty of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Warranty

LSD			-				
		Mean Difference			95% Confidence Interval		
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Below Bachelor's Degree	Bachelor's Degree	.31568*	.07196	.000	.1742	.4571	
	Master's Degree	.43043*	.15630	.006	.1231	.7377	
Bachelor's Degree	Below Bachelor's Degree	31568*	.07196	.000	4571	1742	
	Master's Degree	.11475	.14992	.444	1800	.4095	
Master's Degree	Below Bachelor's Degree	43043*	.15630	.006	7377	1231	
	Bachelor's Degree	11475	.14992	.444	4095	.1800	

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Warranty of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.006 < 0.05); by mean difference are equal to (0.31568) and (0.43043), respectively.

Table 5.51: One Way ANOVA (Durability)

H36: There is a difference in the mean of Durability among Education levels (Below Bachelor's Degree, Bachelor's Degree and Master's Degree).

Durability

Durahility

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Below Bachelor's Degree	117	3.9761	.62487	.05777	3.8616	4.0905	2.40	5.00
Bachelor's Degree	260	3.6654	.59951	.03718	3.5922	3.7386	2.00	5.00
Master's Degree	21	3.3905	.48364	.10554	3.1703	3.6106	2.00	4.40
Total	398	3.7422	.62200	.03118	3.6809	3.8035	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by education level $\mu_1 = \mu_2 = \mu_3$.

Ha: There is a difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.

(Different education levels show a difference in the mean of Durability.)

ANOVA

Durability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	10.531	2	5.266	14.539	.000
Within Groups	143.060	395	.362		
Total	153.591	397			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the education levels (Below Bachelor's Degree, Bachelor's Degree and

Master's Degree), there is significant difference in satisfaction for Durability of the

arc welding robots of UNAC.

Bopoliaone variable: Balabi	ing					
LSD						
		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.31068*	.06700	.000	.1790	.4424
	Master's Degree	.58559*	.14263	.000	.3052	.8660
Bachelor's Degree	Below Bachelor's Degree	31068*	.06700	.000	4424	1790
	Master's Degree	.27491*	.13653	.045	.0065	.5433
Master's Degree	Below Bachelor's Degree	58559*	.14263	.000	8660	3052
	Bachelor's Degree	27491*	.13653	.045	5433	0065

Multiple Comparisons

Dependent Variable: Durability

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who have education below bachelor's degree have greater satisfaction on Durability of the arc welding robots of UNAC than those who have education bachelor's degree (Sig. value = 0.000 < 0.05) and those who have education master's degree (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.31068) and (0.58559), respectively.

Moreover, the researcher found that those who have education bachelor's degree have greater satisfaction on Durability of the arc welding robots of UNAC than those who have education master's degree (Sig. value = 0.045 < 0.05); by mean difference is equal to (0.27491).

Table 5.52: One Way ANOVA (Performance in Operation)

H37: There is a difference in the mean of Performance in Operation among

Departments (Administrative, Purchasing, Engineering, Production, Maintenance and

Other).

Performance in Operation

Descriptives

					95% Confiden Me			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.7784	.59355	.09758	3.5805	3.9763	2.60	5.00
Purchasing	68	3.5912	.46319	.05617	3.4791	3.7033	2.00	4.30
Engineering	69	3.6478	.46356	.05581	3.5365	3.7592	2.30	4.50
Production	166	3.8542	.51317	.03983	3.7756	3.9329	2.30	4.90
Maintenance	53	3.7396	.51078	.07016	3.5988	3.8804	2.40	4.60
Other	4	3.3250	.20616	.10308	2.9970	3.6530	3.10	3.50
Total	397	3.7456	.51199	.02570	3.6951	3.7961	2.00	5.00

There is no difference among the respondents regarding their satisfaction for Ho: Performance in Operation of the arc welding robots of UNAC when classified by department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$

Ha: There is a difference among the respondents regarding their satisfaction for

Performance in Operation of the arc welding robots of UNAC when classified

by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Performance in Operation.)

ANOVA

	Sum of									
	Squares	df	Mean Square	F	Sig.					
Between Groups	4.989	5	.998	3.948	.002					
Within Groups	98.816	391	.253							
Total	103.805	396								

Performance in Operation

Sig. value is equal to 0.002 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is significant difference in satisfaction for Performance

in Operation of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Performance in Operation LSD

		Mean				
		Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.18720	.10270	.069	0147	.3891
	Engineering	.13055	.10244	.203	0708	.3319
	Production	07584	.09139	.407	2555	.1038
	Maintenance	.03876	.10770	.719	1730	.2505
	Other	.45338	.26460	.087	0668	.9736
Purchasing	Administraive	18720	.10270	.069	3891	.0147
	Engineering	05665	.08590	.510	2255	.1122
	Production	26304*	.07238	.000	4053	1207
	Maintenance	14845	.09211	.108	3295	.0327
	Other	.26618	.25865	.304	2423	.7747
Engineering	Administrative	13055	.10244	.203	3319	.0708
	Purchasing	.05665	.08590	.510	1122	.2255
	Production	20639*	.07201	.004	3480	0648
	Maintenance	09180	.09182	.318	2723	.0887
	Other	.32283	.25854	.213	1855	.8311
Production	Administraive	.07584	.09139	.407	1038	.2555
	Purchasing	.26304*	.07238	.000	.1207	.4053
	Engineering	.20639*	.07201	.004	.0648	.3480
	Maintenance	.11459	.07931	.149	0413	.2705
	Other	.52922*	.25437	.038	.0291	1.0293
Maintenance	Administraive	03876	.10770	.719	2505	.1730
	Purchasing	.14845	.09211	.108	0327	.3295
	Engineering	.09180	.09182	.318	0887	.2723
	Production	ABC-11459	.07931	VINC.149	2705	.0413
	Other	.41 462	.26067	.113	0979	.9271
Other	Administraive	45 <mark>338</mark>	.26460	.087	9736	.0668
	Purchasing	26618	.25865	.304	7747	.2423
	Engineering	32283	.25854	.213	8311	.1855
	Production	52922*	.25437	.038	-1.0293	0291
	Maintenance	41462	.26067	.113	9271	.0979

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in production department have greater satisfaction on Performance in Operation of the arc welding robots of UNAC than those who are working in purchasing department (Sig. value = 0.000 < 0.05), followed by those who are working in engineering department (Sig. value = 0.004 < 0.05) and those who working in other departments (Sig. = 0.038 < 0.05); by mean difference are equal to (0.26304), (0.20639) and (0.52992), respectively.

Table 5.53: One Way ANOVA (Reliability)

H38: There is a difference in the mean of Reliability among Departments

(Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Reliability					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.7658	.58196	.09567	3.5717	3.9598	2.33	4.67
Purchasing	68	3.5882	.56168	.06811	3.4523	3.7242	2.00	5.00
Engineering	69	3.6329	.56344	.06783	3.4975	3.7682	2.00	4.67
Production	166	3.6928	.61517	.04775	3.5985	3.7870	2.33	5.00
Maintenance	55	3.6909	.59093	.07968	3.5312	3.8507	2.00	5.00
Other	4	3.4167	.50000	.25000	2.6211	4.2123	3.00	4.00
Total	399	3.6683	.58931	.02950	3.6103	3.7263	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Reliability of the arc welding robots of UNAC when classified by department

 $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$

Ha: There is a difference among the respondents regarding their satisfaction for

Reliability of the arc welding robots of UNAC when classified by department

Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Reliability.)

ANOVA

Reliability

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1.255	5	.251	.720	.609
Within Groups	136.966	393	.349		
Total	138.221	398			

Sig. value is equal to 0.609 > 0.05. Thus, Fail to Reject Ho and Accept Ho.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is no significant difference in satisfaction for

Reliability of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Reliability

LSD

_						
		Mean				
		Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.17753	.12060	.142	0596	.4146
	Engineering	.13292	.12029	.270	1036	.3694
	Production	.07299	.10733	.497	1380	.2840
	Maintenance	.07486	.12552	.551	1719	.3216
	Other	.34910	.31072	.262	2618	.9600
Purchasing	Administraive	17753	.12060	.142	4146	.0596
	Engineering	04461	.10088	.659	2429	.1537
	Production	10454	.08500	.219	2716	.0626
	Maintenance	10267	.10706	.338	3132	.1078
	Other	.17157	.30373	.572	4256	.7687
Engineering	Administraive	13292	.12029	.270	3694	.1036
	Purchasing	.04461	.10088	.659	1537	.2429
	Production	05992	.08456	.479	2262	.1063
	Maintenance	05806	.10671	.587	2679	.1517
	Other	.21618	.30361	.477	3807	.8131
Production	Administraive	07299	.10733	.497	2840	.1380
	Purchasing	.10454	.08500	.219	0626	.2716
	Engineering	.05992	.08456	.479	1063	.2262
	Maintenance	.00186	.09185	.984	1787	.1824
	Other	.27610	.29871	.356	3112	.8634
Maintenance	Administraive	07486	.12552	.551	3216	.1719
	Purchasing	.10267	.10706	.338	1078	.3132
	Engineering	.05806	.10671	. <mark>5</mark> 87	1517	.2679
	Production	00186	.09185	.984	1824	.1787
	Other	.27424	.30572	.370	3268	.8753
Other	Administraive	34910	.31072	.262	9600	.2618
	Purchasing	17157	.30373	.572	7687	.4256
	Engineering	21618	.30361	.477	8131	.3807
	Production	27610	.29871	.356	8634	.3112
	Maintenance	27424	.30572	.370	8753	.3268
			01			

Table 5.54: One Way ANOVA (Technical Sophisticate)

H39: There is a difference in the mean of Technical Sophisticate among Departments

(Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Technical Soph	isticate							
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.7365	.69957	.11501	3.5032	3.9697	1.75	4.75
Purchasing	68	3.5294	.51567	.06253	3.4046	3.6542	2.50	4.50
Engineering	69	3.6667	.63978	.07702	3.5130	3.8204	2.00	5.00
Production	165	3.5167	.66036	.05141	3.4152	3.6182	2.00	5.00
Maintenance	54	3.7361	.61892	.08422	3.5672	3.9050	2.00	4.75
Other	4	2.9375	.12500	.06250	2.7386	3.1364	2.75	3.00
Total	397	3.5894	.63629	.03193	3.5266	3.6522	1.75	5.00

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
- Ha: There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.
- (Different departments show a difference in the mean of Technical Sophisticate.)

Technical Sophisticate										
	Sum of									
	Squares	df	Mean Square	F	Sig.					
Between Groups	5.192	5	1.038	2.617	.024					
Within Groups	155.133	391	.397							
Total	160.326	396								

ANOVA

Sig. value is equal to 0.024 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is significant difference in satisfaction for Technical

Sophisticate of the arc welding robots of UNAC.

Dependent Variable: Technical Sophisticate LSD Mean 95% Confidence Interval Difference (I) Department (J) Department (I-J) Std. Error Sig. Lower Bound Upper Bound Administraive Purchasing .20707 .12868 .108 -.0459 .4601 Engineering .06982 .12835 .587 -.1825 .3222 Production .21982 .11458 .056 -.0054 .4451 Maintenance .00038 .13443 .998 -.2639 .2647 Other .79899* .33153 .016 .1472 1.4508 Purchasing Administraive -.20707 .12868 .108 -.4601 .0459 Engineering -.13725 .10763 .203 -.3489 .0744 Production .01275 .09077 .888. -.1657 .1912 Maintenance .20670 .11481 .073 -.4324 .0190 Other .59191 .32408 .069 -.0452 1.2291 Engineering Administrative -.06982 .12835 .587 -.3222 .1825 Purchasing .13725 .10763 .203 -.0744 .3489 Production .15000 .09030 .098 -.0275 .3275 Maintenance -.06944 .11444 .544 -.2944 .1556 Other .72917* .32394 .025 .0923 1.3661 Production Administraive -.21982 .11458 .056 -.**44**51 .0054 Purchasing .1657 -.01275 .09077 .888 -.1912 Engineering .0275 -.15000 .09030 .098 -.3275 Maintenance -.21944* .09875 .027 -.4136 -.0253 Other .57917 .31874 .070 -.0475 1.2058 Maintenance Administraive -.00038 .13443 .998 -.2647 .2639 Purchasing .20670 .11481 .073 -.0190 .4324 Engineering .06944 .11444 .544 -.1**5**56 .2944 Production .09875 .21944* .027 .0253 .4136 Other .79861* .32640 .015 .1569 1.4403 Other Administraive -.79899* .33153 .016 -1.4508 -.1472 Purchasing -.59191 .32408 .069 -1.2291 .0452 Engineering -.72917* .32394 .025 -1.3661 -.0923 -.57917 Production .31874 .070 -1.2058 .0475 Maintenance .32640 .015 -.79861* -1.4403 -.1569

Multiple Comparisons

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Technical Sophisticate of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.016 < 0.05); by mean difference is equal to (0.79899).

Also, the researcher found that those who are working in engineering department have greater satisfaction on Technical Sophisticate of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.025< 0.05); by mean difference is equal to (0.72917).

Moreover, the researcher found that those who are working in maintenance department have greater satisfaction on Technical Sophisticate of the arc welding robots of UNAC than those who are working in production department (Sig. value = 0.027 < 0.05) and those who are working in other departments (Sig. value = 0.027 < 0.05); by mean difference are equal to (0.21944) and (0.79861), respectively.

Table 5.55: One Way ANOVA (Flexibility and Adaptability in Use)

H40: There is a difference in the mean of Flexibility and Adaptability in Use among Departments (Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Flexibility and Adaptability in use 95% Confidence Interval for Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum Ν Mean Administraive 37 3.7387 .57941 .09525 3.5456 3.9319 2.33 5.00 Purchasing 69 3.5785 .45529 .05481 3.4691 3.6879 2.33 4.42 Engineering .05461 67 3.6766 .44701 3.5676 3.7857 2.67 4.42 Production 165 3.8086 .04069 3.7282 .52271 3.8889 2.00 5.00 Maintenance 3.6975 3.5647 4.50 54 .48653 .06621 3.8303 2.33 Other 4 2.9167 .11785 .05893 2.7291 3.1042 2.75 3.00 Total 396 3.7155 .50861 .02556 3.6652 3.7657 2.00 5.00

Descriptives

- Ho: There is no difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.
- Ha: There is a difference among the respondents regarding their satisfaction for Flexibility and Adaptability in Use of the arc welding robots of UNAC when classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Flexibility and Adaptability in Use.)

ANOVA

Flexibility and Adaptability in use

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.416	5	1.083	4.366	.001
Within Groups	96.765	390	.248		
Total	102.181	395			

Sig. value is equal to 0.001 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is significant difference in satisfaction for Flexibility

and Adaptability in Use of the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Flexibility and Adaptability in use LSD

		Mean				
		Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.16024	.10150	.115	0393	.3598
	Engineering	.06212	.10202	.543	1385	.2627
	Production	06985	.09061	.441	2480	.1083
	Maintenance	.04121	.10630	.698	1678	.2502
	Other	.82207*	.26217	.002	.3066	1.3375
Purchasing	Administraive	16024	.10150	.115	3598	.0393
	Engineering	09811	.08543	.252	2661	.0699
	Production	23008*	.07141	.001	3705	0897
	Maintenance	11903	.09050	.189	2970	.0589
	Other	. <mark>66184</mark> *	.25617	.010	.1582	1.1655
Engineering	Administraive	<mark>06212</mark>	.10202	.543	2627	.1385
	Purchasing	.09811	.08543	.252	0699	.2661
	Production	13197	.07216	.068	2738	.0099
	Maintenance	02091	.09109	.819	2000	.1582
	Other	.75995*	.25638	.003	.2559	1.2640
Production	Administraive	.06985	.09061	.441	1083	.2480
	Purchasing	.23008*	.07141	.001	.0897	.3705
	Engineering	.13197	.07216	.068	0099	.2738
	Maintenance	R.11105	.07809	.156	0425	.2646
	Other	.89192*	.25206	.000	.3964	1.3875
Maintenance	Administraive	04121	.10630	.698	2502	.1678
	Purchasing	.11903	.09050	.189	0589	.2970
	Engineering	.02091	.09109	.819	1582	.2000
	Production 🔀	11105	.07809	A .156	2646	.0425
	Other	.78086*	.25812	.003	.2734	1.2883
Other	Administraive	82207*	.26217	.002	-1.3375	3066
	Purchasing	66184*	.25617	.010	-1.1655	1582
	Engineering	75995*	.25638	.003	-1.2640	2559
	Production	89192*	.25206	.000	-1.3875	3964
	Maintenance	78086*	.25812	.003	-1.2883	2734

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference is equal to (0.82207).

Also, the researcher found that those who are working in purchasing department have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.010 < 0.05); by mean difference is equal to (0.66184).

Besides, the researcher found that those who are working in engineering department have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.003 < 0.05); by mean difference is equal to (0.75995).

Moreover, the researcher found that those who are working in production department have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who are working in purchasing department (Sig. value = 0.001 < 0.05) and those who are working in other departments (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.23008) and (0.89192), respectively.

Finally, the researcher found that those who are working in maintenance department have greater satisfaction on Flexibility and Adaptability in Use of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.015 < 0.05); by mean difference is equal to (0.78086).

Table 5.56: One Way ANOVA (Size)

H41: There is a difference in the mean of Size among Departments (Administrative,

Purchasing, Engineering, Production, Maintenance and Other).

Size								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.7477	.63053	.10366	3.5375	3.9580	2.67	4.67
Purchasing	69	3.6522	.59802	.07199	3.5085	3.7958	2.00	5.00
Engineering	67	3.5920	.66874	.08170	3.4289	3.7552	2.00	4.67
Production	166	3.7209	.65885	.05114	3.6199	3.8218	2.00	5.00
Maintenance	55	3.7030	.71628	.09658	3.5094	3.8967	2.00	5.00
Other	4	2.6667	.38490	.19245	2.0542	3.2791	2.33	3.00
Total	398	3.6767	.66026	.03310	3.6117	3.7418	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by department $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$.

Ha: There is a difference among the respondents regarding their satisfaction for Size of the arc welding robots of UNAC when classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Size.)

ANOVA

Size					
	Sum of	.16	M	L	0
	Squares	df	Mean Square	F	Sig.
Between Groups	5.151	5	1.030	2.405	.036
Within Groups	167.920	392	.428		
Total	173.071	397			

Sig. value is equal to 0.036 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is significant difference in satisfaction for Size of the

arc welding robots of UNAC.

Multiple Comparisons

Dependent Varia LSD	able: Size					
		Mean			95% Confide	ence Interval
(I) Department	(J) Department	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.09557	.13336	.474	1666	.3578
	Engineering	.15571	.13406	.246	1079	.4193
	Production	.02686	.11899	.821	2071	.2608
	Maintenance	.04472	.13916	.748	2289	.3183
	Other	1.08108*	.34448	.002	.4038	1.7583
Purchasing	Administraive	09557	.13336	.474	3578	.1666
	Engineering	.06013	.11226	.592	1606	.2808
	Production	06871	.09375	.464	2530	.1156
	Maintenance	05086	.11831	.668	2835	.1817
	Other	.98551*	.33660	.004	.3237	1.6473
Engineering	Administraive	15571	.13406	.246	4193	.1079
	Purchasing	060 <mark>13</mark>	.11226	.592	2808	.1606
	Production	12884	.09473	.175	3151	.0574
	Maintenance	1 <mark>109</mark> 9	.11909	.352	<mark>34</mark> 51	.1231
	Other	.92537*	.33688	.006	.2631	1.5877
Production	Administraive	02686	.11899	.821	2608	.2071
	Purchasing	.06871	.09375	.464	1156	.2530
	Engineering	.12884	.094 <mark>73</mark>	.175	0574	.3151
	Maintenance	.01785	.10183	.861	1823	.2181
	Other	1.05422*	.33117	.002	.4031	1.7053
Maintenance	Administraive	04472	.13916	.748	3183	.2289
	Purchasing	.05086	.11831	.668	1817	.2835
	Engineering	.11099	.11909	.352	1231	.3451
	Production	01785	.10183	.861	2181	.1823
	Other	1.03636*	.33894	.002	.3700	1.7027
Other	Administraive	-1.08108*	.34448	.002	-1.7583	4038
	Purchasing	98551*	.33660	.004	-1.6473	3237
	Engineering	92537*	.33688	E 1.006	-1.5877	2631
	Production	-1.05422*	.33117	.002	-1.7053	4031
	Maintenance	-1.03636*	.33894	.002	-1.7027	3700

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Size of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference is equal to (1.08108).

Also, the researcher found that those who are working in purchasing department have greater satisfaction on Size of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.004 < 0.05); by mean difference is equal to (0.98551).

Besides, the researcher found that those who are working in engineering department have greater satisfaction on Size of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.006 < 0.05); by mean difference is equal to (0.92537).

Moreover, the researcher found that those who are working in production department have greater satisfaction on Size of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference is equal to (1.05422).

Finally, the researcher found that those who are working in maintenance department have greater satisfaction on Size of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference is equal to (1.03636).

Table 5.57: One Way ANOVA (Weight)

H42: There is a difference in the mean of Weight among Departments

(Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Weight								
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.4865	.89785	.14761	3.1871	3.7858	2.00	5.00
Purchasing	68	3.4902	.63994	.07760	3.3353	3.6451	2.00	5.00
Engineering	69	3.4300	.74995	.09028	3.2498	3.6101	2.00	5.00
Production	166	3.8534	.75696	.05875	3.7374	3.9694	2.00	5.00
Maintenance	55	3.5879	.68483	.09234	3.4027	3.7730	2.00	5.00
Other	4	2.4167	.41944	.20972	1.7493	3.0841	2.00	3.00
Total	399	3.6332	.76713	.03840	3.5577	3.7088	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for

Weight of the arc welding robots of UNAC when classified by department

 $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$

Ha: There is a difference among the respondents regarding their satisfaction for

Weight of the arc welding robots of UNAC when classified by department

Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Weight.)

ลงองล้ออัสด์

Weight

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	19.120	5	3.824	6.987	.000
Within Groups	215.101	393	.547		
Total	234.221	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Multiple Comparisons

Maintenance and Other), there is significant difference in satisfaction for Weight of

the arc welding robots of UNAC.

Dependent Variable: Weight LSD Mean 95% Confidence Interval Difference (J) Department Lower Bound Upper Bound (I) Department Std Error (1-,1)Sig .2934 Administraive Purchasing -.00371 .15113 .980 -.3008 Engineering .708 .05653 .15075 -.2398 .3529 Production -.36693* .13450 .007 -.6314 -.1025 Maintenance -.10139 .15730 .520 -.4107 .2079 Other .38939 1.8354 1.06982* .006 .3043 Purchasing Administraive .00371 .15113 .980 -.2934 .3008 Engineering .06024 .12642 .634 -.1883 .3088 Production -.5726 -.36322* 10652 .001 -.1538 Maintenance -.09768 .13417 .467 -.3615 .1661 Other 1.07353* .38063 .005 .3252 1.8219 Engineering Administraive .15075 .708 -.3529 .2398 -.05653 Purchasing .06024 .12642 .634 -.3088 .1883 Production .10597 -.42346* .000 -.6318 -.2151 Maintenance -.15793 .13373 .238 -.4208 .1050 Other 1.01329* .38048 .008 .2653 1.7613 Production Administraive .36693* .13450 .007 .1025 .6314 Purchasing .36322* .10652 .001 .1538 .5726 Engineering .42346* .10597 .2151 .6318 .000 Maintenance .11510 .0392 .26553* .022 .4918 Other 1.43675* <mark>.37</mark>434 .000 .7008 2.1727 Maintenance Administrative .10139 .15730 .520 -.2079 .4107 Purchasing .09768 .13417 .467 -.1661 .3615 Engineering .15793 .13373 .238 -.1050 .4208 Production -.26553* .11510 .022 -.4918 -.0392 Other 1.<mark>171</mark>21* .38312 .002 .4180 1.9244 Other Administrative -1.06982* .38939 .006 -1.8354 -.3043 Purchasing -1.07353* .38063 .005 -1.8219 .3252 Engineering .38048 -1.01329* .008 -1.7613 -.2653 Production -1.43675* .37434 .000 -2.1727 -.7008 .002 Maintenance -1.17121* .38312 -1.9244 -.4180

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Weight of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.006 < 0.05); by mean difference is equal to (1.06982).

າລ໌ຍອດ

Also, the researcher found that those who are working in purchasing department have greater satisfaction on Weight of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.005 < 0.05); by mean difference is equal to (1.07353). Moreover, the researcher found that those who are working in engineering department have greater satisfaction on Weight of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.008 < 0.05); by mean difference is equal to (1.01329).

Besides, the researcher found that those who are working in production department have greater satisfaction on Weight of the arc welding robots of UNAC than those who are working in administrative department (Sig. value = 0.007 < 0.05), followed by those who are working in Purchasing department (Sig. value = 0.001 < 0.05), those who are working in engineering department (Sig. value = 0.000 < 0.05), those who are working in maintenance department (Sig. value = 0.022 < 0.05) and those who are working in Other departments (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.36693), (0.36322), (0.42346), (0.26553) and (1.43675), respectively.

Finally, the researcher found that those who are working in maintenance department have greater satisfaction on Weight of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference is equal to (1.17121).

Table 5.58: One Way ANOVA (Speed)

H43: There is a difference in the mean of Speed among Departments (Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Descriptives

				95% Confidence Interval for Mean			
Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
37	3.7117	.58880	.09680	3.5154	3.9080	2.67	4.67
69	3.5942	.59097	.07114	3.4522	3.7362	2.00	4.67
69	3.6667	.55719	.06708	3.5328	3.8005	2.33	4.67
166	3.8193	.69689	.05409	3.7125	3.9261	2.00	5.00
55	3.7515	.63251	.08529	3.5805	3.9225	2.67	5.00
4	3.1667	.19245	.09623	2.8604	3.4729	3.00	3.33
400	3.7283	. <mark>639</mark> 88	.03199	3.6654	3.7912	2.00	5.00
	37 69 69 166 55 4	37 3.7117 69 3.5942 69 3.6667 166 3.8193 55 3.7515 4 3.1667	37 3.7117 .58880 69 3.5942 .59097 69 3.6667 .55719 166 3.8193 .69689 55 3.7515 .63251 4 3.1667 .19245	37 3.7117 .58880 .09680 69 3.5942 .59097 .07114 69 3.6667 .55719 .06708 166 3.8193 .69689 .05409 55 3.7515 .63251 .08529 4 3.1667 .19245 .09623	N Mean Std. Deviation Std. Error Lower Bound 37 3.7117 .58880 .09680 3.5154 69 3.5942 .59097 .07114 3.4522 69 3.6667 .55719 .06708 3.5328 166 3.8193 .69689 .05409 3.7125 55 3.7515 .63251 .08529 3.5805 4 3.1667 .19245 .09623 2.8604	N Mean Std. Deviation Std. Error Lower Bound Upper Bound 37 3.7117 .58880 .09680 3.5154 3.9080 69 3.5942 .59097 .07114 3.4522 3.7362 69 3.6667 .55719 .06708 3.5328 3.8005 166 3.8193 .69689 .05409 3.7125 3.9261 55 3.7515 .63251 .08529 3.5805 3.9225 4 3.1667 .19245 .09623 2.8604 3.4729	N Mean Std. Deviation Std. Error Lower Bound Upper Bound Mnimum 37 3.7117 .58880 .09680 3.5154 3.9080 2.67 69 3.5942 .59097 .07114 3.4522 3.7362 2.00 69 3.6667 .55719 .06708 3.5328 3.8005 2.33 166 3.8193 .69689 .05409 3.7125 3.9261 2.00 55 3.7515 .63251 .08529 3.5805 3.9225 2.67 4 3.1667 .19245 .09623 2.8604 3.4729 3.00

- Ho: There is no difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by department μ_1 $= \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$
- Ha: There is a difference among the respondents regarding their satisfaction for Speed of the arc welding robots of UNAC when classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Speed.)

Speed

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.178	5	.836	2.068	.069
Within Groups	159.189	394	.404		
Total	163.368	399			

Sig. value is equal to 0.069 > 0.05. Thus, Fail to Reject Ho and Accept Ho.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is no significant difference in satisfaction for Speed of

the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Speed LSD						
		Mean Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.11751	.12952	.365	1371	.3721
	Engineering	.04505	.12952	.728	2096	.2997
	Production	10757	.11556	.353	3348	.1196
	Maintenance	03980	.13515	.769	3055	.2259
	Other	.54505	.33456	.104	1127	1.2028
Purchasing	Administraive	11751	.12952	.365	3721	.1371
	Engineering	07246	.10822	.503	2852	.1403
	Production	22507*	.09105	.014	4041	0461
	Maintenance	15731	.11490	.172	3832	.0686
	Other	.42754	.32690	.192	2152	1.0702
Engineering	Administraive	04505	.12952	.728	2997	.2096
	Purchasing	.072 <mark>46</mark>	.10822	.503	1403	.2852
	Production	1 <mark>5261</mark>	.09105	.094	3316	.0264
	Maintenance	08485	.11490	.461	3107	.1410
	Other	.50000	.32690	.127	1427	1.1427
Production	Administraive	.10757	.11556	.353	1196	.3348
	Purchasing	.22507*	.09105	.014	.0461	.4041
	Engineering	.15261	.09105	.094	0264	.3316
	Maintenance	.06776	.09889	.494	1267	.2622
	Other	.65261*	.32162	.043	.0203	1.2849
Maintenance	Administraive	.03980	.13515	.769	2259	.3055
	Purchasing	.15731	.11490	.172	0686	.3832
	Engineering	.08485	.11490	.461	1410	.3107
	Production	06776	.09889	.494	2622	.1267
	Other	.58485	.32917	.076	0623	1.2320
Other	Administraive	54505	.33456	.104	-1.2028	.1127
	Purchasing	42754	.32690	.192	-1.0702	.2152
	Engineering	50000	.32690	E 1 427 (-1.1427	.1427
	Production	65261*	.32162	.043	-1.2849	0203
	Maintenance	58485	.32917	.076	-1.2320	.0623

*. The mean difference is significant at the .05 level.

Table 5.59: One Way ANOVA (Warranty)

H44: There is a difference in the mean of Warranty among Departments

(Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Warranty								
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.7297	.60958	.10021	3.5265	3.9330	2.60	4.60
Purchasing	69	3.5275	.58206	.07007	3.3877	3.6674	2.00	5.00
Engineering	69	3.5536	.64182	.07727	3.3994	3.7078	2.00	4.60
Production	165	3.9285	.64806	.05045	3.8289	4.0281	2.40	5.00
Maintenance	53	3.6415	.66258	.09101	3.4589	3.8241	2.00	5.00
Other	4	2.6500	.47258	.23629	1.8980	3.4020	2.00	3.00
Total	397	3.7239	.66161	.03321	3.6586	3.7892	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Warranty of the arc welding robots of UNAC when classified by department

$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$$

Ha: There is a difference among the respondents regarding their satisfaction for

Warranty of the arc welding robots of UNAC when classified by department

Not all
$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$$
 are equal.

(Different departments show a difference in the mean of Warranty.)

ยาลยอจ

AN	ov	A
----	----	---

Warranty					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	16.541	5	3.308	8.249	.000
Within Groups	156.801	391	.401		
Total	173.343	396			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Multiple Comparisons

Maintenance and Other), there is significant difference in satisfaction for Warranty of

the arc welding robots of UNAC.

Dependent Varia	able: Warranty					
		Mean Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.20219	.12904	.118	0515	.4559
	Engineering	.17611	.12904	.173	0776	.4298
	Production	19876	.11519	.085	4252	.0277
	Maintenance	.08822	.13567	.516	1785	.3549
	Other	1.07973*	.33331	.001	.4244	1.7350
Purchasing	Administraive	20219	.12904	.118	4559	.0515
	Engineering	02609	.10781	.809	2381	.1859
	Production	40095*	.09079	.000	5794	2225
	Maintenance	11397	.11567	.325	3414	.1134
	Other	.87754*	.32568	.007	.2372	1.5178
Engineering	Administraive	17611	.12904	.173	4298	.0776
	Purchasing	.02 <mark>609</mark>	.10781	.809	1859	.2381
	Production	<mark>37486*</mark>	.09079	.000	5534	1964
	Maintenance	08789	.11567	.448	3153	.1395
	Other	.90362*	.32568	.006	.2633	1.5439
Production	Administraive	.19876	.11519	.085	02 7 7	.4252
	Purchasing	.40095*	.09079	.000	.2225	.5794
	Engineering	.37486*	.09079	.000	.1964	.5534
	Maintenance	.28698*	.09999	.004	.0904	.4836
	Other	1.27848*	.32045	.000	.6485	1.9085
Maintenance	Administraive	08822	.13567	.516	3549	.1785
	Purchasing	.11397	.11567	.325	1134	.3414
	Engineering	.08789	.11567	.448	1395	.3153
	Production	28698*	.09999	.004	/INCIT4836	0904
	Other	.99151*	.32836	.003	.3459	1.6371
Other	Administraive	-1.07973*	.33331	.001	-1.7350	4244
	Purchasing	87754*	.32568	F 1 0.007	-1.5178	2372
	Engineering	90362*	.32568	.006	-1.5439	2633
	Production	-1.27848*	.32045	.000	-1.9085	6485
	Maintenance	99151*	.32836	.003	-1.6371	3459

Dependent Variable: Warranty

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Warranty of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.001 < 0.05); by mean difference is equal to (1.07973).

Also, the researcher found that those who are working in purchasing department have greater satisfaction on Warranty of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.007 < 0.05); by mean difference is equal to (0.87754).

Moreover, the researcher found that those who are working in engineering department have greater satisfaction on Warranty of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.006 < 0.05); by mean difference is equal to (0.90362).

Besides, the researcher found that those who are working in production department have greater satisfaction on Warranty of the arc welding robots of UNAC than those who are working in purchasing department (Sig. value = 0.000 < 0.05), followed by those who are working in engineering department (Sig. value = 0.000 < 0.05), those who are working in maintenance department (Sig. value = 0.004 < 0.05) and those who are working in other departments (Sig. value = 0.000 < 0.05); by mean difference are equal to (0.40095), (0.37486), (0.28698) and (1.27848), respectively.

Finally, the researcher found that those who are working in maintenance department have greater satisfaction on Warranty of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.003 < 0.05); by mean difference is equal to (0.99151).

206

Table 5.60: One Way ANOVA (Durability)

H45: There is a difference in the mean of Durability among Departments

(Administrative, Purchasing, Engineering, Production, Maintenance and Other).

Durability

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Administraive	37	3.8486	.50860	.08361	3.6791	4.0182	2.60	4.60
Purchasing	69	3.5913	.59945	.07216	3.4473	3.7353	2.00	4.80
Engineering	68	3.6000	.60742	.07366	3.4530	3.7470	2.00	4.80
Production	166	3.8735	.63867	.04957	3.7756	3.9714	2.00	5.00
Maintenance	55	3.7164	.58587	.07900	3.5580	3.8747	2.40	5.00
Other	4	2.8500	.30000	.15000	2.3726	3.3274	2.40	3.00
Total	399	3.7439	.62209	.03114	3.6826	3.8051	2.00	5.00

Descriptives

Ho: There is no difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by department

 $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6.$

Ha: There is a difference among the respondents regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.

(Different departments show a difference in the mean of Durability.)

Durability					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.447	5	1.889	5.136	.000
Within Groups	144.576	393	.368		
Total	154.022	398			

Sig. value is equal to 0.000 < 0.05. Thus, Reject Ho and Accept Ha.

Among the departments (Administrative, Purchasing, Engineering, Production,

Maintenance and Other), there is significant difference in satisfaction for Durability of

the arc welding robots of UNAC.

Multiple Comparisons

Dependent Variable: Durability LSD

		Mean				
		Difference			95% Confide	
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.25734*	.12359	.038	.0144	.5003
	Engineering	.24865*	.12391	.045	.0050	.4922
	Production	02485	.11027	.822	2416	.1919
	Maintenance	.13229	.12896	.306	1213	.3858
	Other	.99865*	.31924	.002	.3710	1.6263
Purchasing	Administraive	25734*	.12359	.038	5003	0144
	Engineering	00870	.10364	.933	2125	.1951
	Production	28219*	.08688	.001	4530	1114
	Maintenance	12506	.10964	.255	3406	.0905
	Other	.74130*	. <mark>31193</mark>	.018	.1280	1.3546
Engineering	Administraive	<mark>248</mark> 65*	.12391	.045	4922	0050
	Purchasing	.00870	.10364	.933	1951	.2125
	Production	27349*	.08733	.002	4452	1018
	Maintenance	- <mark>.116</mark> 36	.10999	.291	3326	.0999
	Other	.75000*	. <mark>31206</mark>	.017	.1365	1.3635
Production	Administraive	.02485	.11027	.822	1919	.2416
	Purchasing	R074.28219*	.08688	.001	.1114	.4530
	Engineering	.27349*	.08733	.002	.1018	.4452
	Maintenance	.15713	.09437	.097	0284	.3427
	Other	A 1.02349*	.30690	VIN.001	.4201	1.6269
Maintenance	Administraive	132 <mark>29</mark>	.12896	.306	3858	.1213
	Purchasing	.12506	.10964	.255	0905	.3406
	Engineering	.11636	C.109996	.291	0999	.3326
	Production	15713	.09437	.097	3427	.0284
	Other	.86636*	.31410	.006	.2488	1.4839
Other	Administraive	99865*	.31924	.002	-1.6263	3710
	Purchasing	74130*	.31193	.018	-1.3546	1280
	Engineering	75000*	.31206	.017	-1.3635	1365
	Production	-1.02349*	.30690	.001	-1.6269	4201
	Maintenance	86636*	.31410	.006	-1.4839	2488

*. The mean difference is significant at the .05 level.

From the multiple comparison table, the researcher found that those who are working in administrative department have greater satisfaction on Durability of the arc welding robots of UNAC than those who are working in purchasing department (Sig. value = 0.038 < 0.05), followed by those who are working in engineering department (Sig. value = 0.045 < 0.05) and those who are working in other departments (Sig. value = 0.002 < 0.05); by mean difference are equal to (0.25734), (0.24865) and (0.99865), respectively.

Also, the researcher found that those who are working in purchasing department have greater satisfaction on Durability of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.018 < 0.05); by mean difference is equal to (0.74130).

Besides, the researcher found that those who are working in engineering department have greater satisfaction on Durability of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.017 < 0.05); by mean difference is equal to (0.75000).

Moreover, the researcher found that those who are working in production department have greater satisfaction on Durability of the arc welding robots of UNAC than those who are working in purchasing department (Sig. value = 0.001 < 0.05), followed by those who are working in engineering department (Sig. value = 0.001 < 0.02 < 0.05) and those who are working in other departments (Sig. value = 0.001 < 0.05); by mean difference are equal to (0.28219), (0.27349) and (1.02349), respectively.

Finally, the researcher found that those who are working in maintenance department have greater satisfaction on Durability of the arc welding robots of UNAC than those who are working in other departments (Sig. value = 0.006 < 0.05); by mean difference is equal to (0.86636).

209

5.5 Summary of Hypotheses Testing Results

Table 5.61: Summary of Hypotheses Testing Results

The below table shows the summary of the hypotheses testing results by using Independent Sample T-test (Interval & Nominal Scale) and One Way ANOVA (Interval & Nominal Scale).

Hypotheses Test	Sig.	Result
INIVERS/7	(2-tailed)	
Independent Sample T-test (Interval & Nominal	0	
Scale)		
Ha ₁ : There is a difference among the respondents	0.012	Reject Ho
regarding their satisfaction for Performance in	A Part	
Operation of the arc welding robots of UNAC when	RIE	
classified by gender ($\mu_1 \mu_{2}$).		
Ha ₂ : There is a difference among the respondents	0.044 *	Reject Ho
regarding their satisfaction for Reliability on arc	ja bi	
welding robots of UNAC when classified by gender	Hr.	
$(\mu_1 \mu_2).$		
Ha ₃ : There is a difference among the respondents	0.245	Fail to Reject
regarding their satisfaction for Technical Sophisticate		Но
of the arc welding robots of UNAC when classified by		
gender ($\mu_1 \mu_2$).		

Ha ₄ : There is a difference among the respondents	0.006	Reject Ho
regarding their satisfaction for Flexibility and		
Adaptability in Use of the arc welding robots of UNAC		
when classified by gender $(\mu_1 \mu_2)$.		
Ha ₅ : There is a difference among the respondents	0.054	Fail to Reject
regarding their satisfaction for Size of the arc welding		Но
robots of UNAC when classified by gender $(\mu_1 \mu_2)$.		
Ha ₆ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Weight of the arc	4	
welding robots of UNAC when classified by gender	0	
$(\mu_1 \ \mu_2).$		
Ha ₇ : There is a difference among the respondents	0.005	Reject Ho
regarding their satisfaction for Speed of the arc		
welding robots of UNAC when classified by gender		Δ
(μ ₁ μ ₂).		
Ha ₈ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Warranty of the arc	J ží Gl	
welding robots of UNAC when classified by gender	2	
$(\mu_1 \ \mu_{2).}$		
Ha ₉ : There is a difference among the respondents	0.024	Reject Ho
regarding their satisfaction for Durability of the arc		
welding robots of UNAC when classified by gender		
$(\mu_1 \mu_2).$		

One Way ANOVA (Interval & Nominal Scale)		
Ha ₁₀ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Performance in		
Operation of the arc welding robots of UNAC when		
classified by age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$		
are equal.		
Ha ₁₁ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Reliability on arc		
welding robots of UNAC when classified by age level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.	0	
Ha ₁₂ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Technical Sophisticate	84 3	
of the arc welding robots of UNAC when classified by	New 1	
age level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.	RIEL	
Ha ₁₃ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Flexibility and	*	
Adaptability in Use of the arc welding robots of UNAC	19161	
when classified by age level Not all $\mu_1 = \mu_2 = \mu_3 =$	2	
$\mu_4 = \mu_5$ are equal.		
Ha ₁₄ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Size of the arc welding		
robots of UNAC when classified by age level Not all		
$\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.		

Ha ₁₅ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Weight of the arc		
welding robots of UNAC when classified by age level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.		
Ha ₁₆ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Speed of the arc		
welding robots of UNAC when classified by age level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.		
Ha ₁₇ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Warranty of the arc	0	
welding robots of UNAC when classified by age level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.		
Ha ₁₈ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Durability of the arc	RIE	
welding robots of UNAC when classified by age level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ are equal.	*	
Ha ₁₉ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Performance in		
Operation of the arc welding robots of UNAC when		
classified by income level Not all $\mu_1 = \mu_2 = \mu_3 =$		
$\mu_4 = \mu_5 = \mu_6$ are equal.		
Ha ₂₀ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Reliability on arc		
welding robots of UNAC when classified by income		
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		

Ha ₂₁ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Technical Sophisticate		
of the arc welding robots of UNAC when classified by		
income level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are		
equal.		
Ha ₂₂ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Flexibility and		
Adaptability in Use of the arc welding robots of UNAC		
when classified by income level Not all $\mu_1 = \mu_2 = \mu_3$		
$=\mu_4=\mu_5=\mu_6 \text{ are equal.}$	0	
Ha ₂₃ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Size of the arc welding	Se E	
robots of UNAC when classified by income level		
Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.	RIEL	Δ
Ha ₂₄ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Weight of the arc	лт Ж	
welding robots of UNAC when classified by income	Jaier .	
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		
Ha ₂₅ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Speed of the arc		
welding robots of UNAC when classified by income		
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		

Ha ₂₆ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Warranty of the arc		
welding robots of UNAC when classified by income		
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		
Ha ₂₇ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Durability of the arc		
welding robots of UNAC when classified by income		
level Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		
Ha ₂₈ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Performance in	0	
Operation of the arc welding robots of UNAC when		
classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are	1	
equal.		
Ha ₂₉ : There is a difference among the respondents	0.000	Reject Ho
	0.000	Reject Ho
Ha ₂₉ : There is a difference among the respondents	0.000 RIEZ	Reject Ho
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc	0.000 RIEZ XIEZ XIEZ XIEZ	Reject Ho
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education	0.000	Reject Ho Reject Ho
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents regarding their satisfaction for Technical Sophisticate		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by		
Ha ₂₉ : There is a difference among the respondents regarding their satisfaction for Reliability on arc welding robots of UNAC when classified by education level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. Ha ₃₀ : There is a difference among the respondents regarding their satisfaction for Technical Sophisticate of the arc welding robots of UNAC when classified by		

Ha ₃₁ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Flexibility and		
Adaptability in Use of the arc welding robots of UNAC		
when classified by education level Not all $\mu_1 = \mu_2 =$		
μ_3 are equal.		
Ha ₃₂ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Size of the arc welding		
robots of UNAC when classified by education level		
Not all $\mu_1 = \mu_2 = \mu_3$ are equal.	k	
Ha ₃₃ : There is a difference among the respondents	0.013	Reject Ho
regarding their satisfaction for Weight of the arc		
welding robots of UNAC when classified by education	Par =	
level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.		
Ha ₃₄ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Speed of the arc		
welding robots of UNAC when classified by education	*	
level Not all $\mu_1 = \mu_2 = \mu_3$ are equal. INCE1969	JEIGH	
Ha ₃₅ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Warranty of the arc		
welding robots of UNAC when classified by education		
level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.		
Ha ₃₆ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Durability of the arc		
welding robots of UNAC when classified by education		
level Not all $\mu_1 = \mu_2 = \mu_3$ are equal.		

Ha ₃₇ : There is a difference among the respondents	0.002	Reject Ho
regarding their satisfaction for Performance in		
Operation of the arc welding robots of UNAC when		
classified by department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 =$		
$\mu_5 = \mu_6$ are equal.		
Ha ₃₈ : There is a difference among the respondents	0.609	Fail to Reject
regarding their satisfaction for Reliability on arc		Но
welding robots of UNAC when classified by		
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are	4	
equal.	0	
Ha ₃₉ : There is a difference among the respondents	0.024	Reject Ho
regarding their satisfaction for Technical Sophisticate	14 3	
of the arc welding robots of UNAC when classified by	En	
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are		Δ
equal.		
Ha ₄₀ : There is a difference among the respondents	0.001	Reject Ho
regarding their satisfaction for Flexibility and 1969	13161	
Adaptability in Use of the arc welding robots of UNAC		
when classified by department Not all $\mu_1 = \mu_2 = \mu_3 =$		
$\mu_4 = \mu_5 = \mu_6$ are equal.		
Ha ₄₁ : There is a difference among the respondents	0.036	Reject Ho
regarding their satisfaction for Size of the arc welding		
robots of UNAC when classified by department Not		
all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are equal.		

Ha ₄₂ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Weight of the arc		
welding robots of UNAC when classified by		
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are		
equal.		
Ha ₄₃ : There is a difference among the respondents	0.069	Fail to Reject
regarding their satisfaction for Speed of the arc		Но
welding robots of UNAC when classified by		
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are	4	
equal.	0	
Ha ₄₄ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Warranty of the arc	84 3	
welding robots of UNAC when classified by		
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are	PIE	Δ
equal.		
Ha ₄₅ : There is a difference among the respondents	0.000	Reject Ho
regarding their satisfaction for Durability of the arc	19161	
regarding their satisfaction for Durability of the arc welding robots of UNAC when classified by	4	
department Not all $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$ are		
equal.		

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the main finding, conclusions, discussions, implication and recommendation based on the research. The first section shows the summary of study that is based on the statement of the problem and research objectives. The second section is summary of findings. The third section is to discuss the recommendations and conclusion from the study and recommendation for future research.

6.1 Summary of the study

This research project was conducted by using Independent Sample T-test and One Way ANOVA to find and analyze the results of users' satisfaction for the arc welding robots: A case study of Uni Arc Co., Ltd.

As described in the statement of the problem, nowadays, the arc welding robot sales situation of each distributor not only in Thailand but around the world is in the midst of the fear that the equipment investment is curbed down due to the global recession.

One factor in environmental changes that would promote the demand of robots is the need for improving arc welding robots to meet the highest levels of users' satisfaction. Only taking action on reduced price strategy, all of arc welding distributors will finally not survive as this way have limitation by their buying cost from manufacturers. Therefore, in this global recession situation, the distributors of arc welding robots should know what they should do; or their manufacturers should produce or improve arc welding robots by utmost understanding their various users' satisfaction. This will be necessary for the current situation and also support a longterm strategy in the arc welding robot supply industry.

The sample elements of this study are users who have ever used or purchased arc welding robots. The target respondents needed were 400. The primary data were collected through the structured questionnaire. The questions have been projected from the main variables of the study: the independent variables and the dependent variables. The independent variables are users' characteristic profiles of the customers (Gender, Age level, Income level, Education level, and Department). The dependent variables are Performance in Operation, Reliability, Technology Sophisticate, Flexibility and Adaptability in Use, Size, Weight, Speed, Warranty, and Durability. The variables would help the researcher more understand the users' satisfaction for the arc welding robots.

6.2 Conclusion of the Research Findings

6.2.1 General Information of Users' Characteristic Profiles

In this study, the researcher found that most of the respondents are male who have average ages between 22 and 34 years old and the average income is between 10,000 and 20,000 baht. Besides that, most of them graduated Bachelor's Degree and also most of them are working in production department.

6.2.2 Levels of Customer's Satisfaction toward Arc welding Robot Factors

<u>Ouestion One</u> in the statement of the problem of this research asks, "Which product factors of arc welding robots satisfy the users of Uni Arc Co., Ltd. [UNAC]?"

In this study, the researcher can conclude that most of users have the highest satisfaction on the "Performance in Operation" of the arc welding robots, Durability, Speed, Warranty, Flexibility and adaptability in use, Size, Reliability, Weight, and "Technical Sophisticate", respectively.

In deep details of each factor, for users' satisfaction toward the arc welding robot factors started with **Performance in operation**. The highest satisfaction level is "Satisfaction on the standard manipulator's working area of arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the arc stability at very low current ranges by the welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is **Reliability**. The highest satisfaction level is "Satisfaction on the current and voltage precisely controlled and supplied by the welding power source of arc welding robot of Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the positional repeatability of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is **Technical sophisticate**. The highest satisfaction level is "Satisfaction on the Off-Line teaching software (AX-OT) for the arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the positioner designed to be synchronized with the arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is **Flexibility and** adaptability in use. The highest satisfaction level is "Satisfaction on the compatibility to abundant applications of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the changeable arc (Arm side) of manipulator for arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is Size. The highest satisfaction level is "Satisfaction on the size of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the size of robot controller of arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is Weight. The highest satisfaction level is "Satisfaction on the weight of welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the weight of manipulator of arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is Speed. The highest satisfaction level is "Satisfaction on the speed provided by welding power source of arc welding robot from Uni Arc Co., Ltd. [UNAC]" and the lowest satisfaction level is "Satisfaction on the speed of manipulator (Air-cut time) of arc welding robot from Uni Arc Co., Ltd. Next is Warranty. The highest satisfaction level is "Satisfaction on the reserved spare parts for the broken arc welding robot from Uni Arc Co., Ltd. [UNAC]" and the lowest satisfaction level is "Satisfaction on the one-year warranty period for arc welding robot from Uni Arc Co., Ltd. [UNAC]". Next is Durability. The highest satisfaction level is "Satisfaction on the robot consumable parts of arc welding robot from Uni Arc Co., Ltd. [UNAC] and the lowest satisfaction level is "Satisfaction on the robot controller's durability of arc welding robot from Uni Arc Co., Ltd. [UNAC]".

The top three important arc welding robots factors that have the highest satisfaction by the users are Performance in operation, Durability, and Speed. Thus, UNAC sales representative should focus on these three factors. Especially on Performance in operation on the item of standard manipulator's working area that the users have the highest satisfaction as the top priority when make sales activities to existing or new customers. Moreover, arc welding robots manufacturers should focus on this product factor when develop a new model or new generation of arc welding robots.

VERS

6.2.3 Independent Sample T-test (Interval & Nominal Scale)

<u>Question Two</u> in statement of the problem of this study asks, "Is the users' satisfaction toward arc welding robots of Uni Arc Co., Ltd. [UNAC] different among the users' characteristic profiles (Gender, Age, Income, Education, and Department)?" The results are shown as the followings.

Levels of Satisfaction when Classified by Gender

In this study, the researcher can conclude that male users have greater satisfaction than female users on the arc welding robots toward Performance in operation, followed by Durability, Speed, Warranty, Flexibility and adaptability in use, Reliability, and Weight, respectively.

However, only Technical sophisticate and Size of arc welding robot factors, both Male and Female users have the same level on satisfactions. On the top three items of product factors that most satisfy users which are Performance in operation, Durability, and speed; Male users which are the majority respondents of this research also have the greater satisfaction than Female users. Thus, UNAC sales representative should focus on these three items as the top priority when make sales activities.

6.2.4 One Way ANOVA (Interval & Nominal Scale)

The research's <u>question two</u> in statement of the problem of this study asks "Is the users' satisfaction toward arc welding robots of Uni Arc Co., Ltd. [UNAC] different among the users' characteristic profiles (Gender, Age, Income, Education, and Department)?" The results are shown as the followings:

ERSI

Levels of Satisfaction when Classified by Age

In this study, the researcher can conclude that users who have ages under 22 years old have greater satisfaction on Performance in operation, Reliability, Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of the arc welding robots than those who have ages between 22 and 34 years old and those who have ages between 35 and 54 years old.

Besides, the researcher also can conclude that users who have ages under 22 years old have greater satisfaction on Performance in operation, Reliability, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of

the arc welding robots than those are who have ages between 55 and 64 years old; except Technology sophisticate factor that both of them have the same level of users' satisfactions toward the arc welding robots.

Also, the researcher can conclude that the users who have ages under 22 years old have greater satisfaction on Size, Weight, Warranty, and Durability of arc welding robots than those who have ages above 64 years old; except Performance in operation, Reliability, Flexibility and adaptability in use, Technology sophisticate, and Speed factors that both of them have the same level of users' satisfaction toward the arc welding robots.

Moreover, the researcher also can conclude that the users who have ages between 22 and 34 years old have greater satisfaction on, respectively, Performance in operation, Flexibility and adaptability in use, Weight, Warranty, and Durability of arc welding robots than those who have ages between 35 and 54 years old; except Reliability, Size, Speed, and Technology sophisticate of arc welding robot factors that both of them have the same level of users' satisfaction toward arc welding robots.

^{ุภ}ทยาลัยอัสสิ

The researcher can also conclude that, the users who have ages between 22 and 34 years old have greater satisfaction on Weight of arc welding robots than those who have ages between 55 and 64 years old; except Performance in operation, Reliability, Flexibility and adaptability in use, Technology sophisticate, Size, Speed, Warranty and Durability of arc welding robot factors that both of them have the same level of users' satisfaction toward arc welding robots. And the users who have ages between 22 and 34 years old also have greater satisfaction on Warranty of arc welding robots than those who have age above 64 years old; except Performance in operation, Reliability, Flexibility and adaptability in use, Weight, Technology sophisticate, Speed, Size, and Durability of arc welding robot factors that both of them have the same level of users' satisfaction toward arc welding robots.

On the top three items of product factors that most satisfy users which are Performance in operation, Durability, and speed; the users who have age between 22 and 34 which are the majority respondents of this research still have greater satisfaction on Performance in operation and Durability than other Age groups. Thus, UNAC sales representative should focus on Performance in operation and Durability items as the top priority when make sales activities. Moreover, the results of levels of satisfaction when classified by Age can be concluded that lower Age groups have the greater satisfaction than the higher Age groups. Therefore, UNAC sales representative should try to close sales with the youngest users.

Levels of Satisfaction when Classified by Income

In this study, the researcher can conclude that the users who have income per month below 10,000 baht have greater satisfaction on, respectively, Performance in operation, then Reliability, Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of arc welding robots than those who have income between 10,000 and 20,000 baht, followed by those who have income between 20,001 and 30,000 baht, and those who have income between 30,001 and 40,000 baht. Besides, the researcher also can conclude that the users who have income per month below 10,000 baht have greater satisfaction on Performance in operation than those who have income between 40,001 and 50,000 baht; except Reliability, Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability factors that both of them have the same level of users' satisfaction toward the arc welding robots.

Also, the researcher also can conclude that the users who have income per month below 10,000 baht have greater satisfaction on, respectively, Performance in operation, Flexibility and adaptability in use, Size, Weight, Warranty, and Durability than those who have income more than 50,000 baht; except Reliability, Technology sophisticate, and Speed factors that both of them have the same level of users' satisfaction toward arc welding robots.

Moreover, the researcher also can conclude that the users who have income per month between 10,000 and 20,000 baht have greater satisfaction on, respectively, Performance in operation, Reliability, Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of arc welding robots than those are who have income between 20,001 and 30,000 baht, followed by those who have income between 30,001 and 40,000 baht except Speed factor that both income groups have the same level of satisfaction.

The researcher can also conclude that the users who have income per month between 10,000 and 20,000 baht have greater satisfaction on Flexibility and adaptability in use, Size, Weight, and Warranty of arc welding robots than those are who have income above 50,000 baht.

The researcher can also conclude that the users who have income per month between 20,001 and 30,000 baht have greater satisfaction on Flexibility and

227

adaptability in use of arc welding robots than those who have income between 30,001 and 40,000 baht.

For the users who have income per month between 20,001 and 30,000 baht have greater satisfaction on Size and Warranty of arc welding robots than those who have income above 50,000 baht.

Finally, the users who have income between 30,001 and 40,000 baht have greater satisfaction on Size of arc welding robots than those who have income above 50,000 baht per month. And the users who have income between 40,001 and 50,000 baht have greater satisfaction on Weight of arc welding robots than those who have income above 50,000 baht per month.

On the top three items of product factors that most satisfy users which are Performance in operation, Durability, and speed; the users who have income between 10,000 and 20,000 which are the majority respondents of this research still have greater satisfaction on Performance in operation and Durability than other Income groups. Thus, UNAC sales representative should still focus on Performance in operation and Durability items as the top priority when make sales activities. Moreover, the results of levels of satisfaction when classified by Income can be concluded that lower Income groups have the greater satisfaction than the higher Income groups. Therefore, UNAC sales representative should try to close sales with users who have lowest income.

Levels of Satisfaction when Classified by Education

In this study, the researcher can conclude that the users who have education below bachelor's degree have greater satisfaction on Performance in operation, Reliability, Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of the arc welding robots than those who graduated bachelor's degree.

The researcher can also conclude that the users who have education below bachelor's degree have greater satisfaction on all factors of the arc welding robots than those who graduated master's degree except Technology sophisticate and Weight.

Finally, the users who graduated bachelor's degree have greater satisfaction on Durability of the arc welding robots than those who graduated master's degree.

On the top three items of product factors that most satisfy users which are Performance in operation, Durability, and speed; the users who graduated Bachelor's degree which are the majority respondents of this research still have greater satisfaction on Durability than Master's degree. Thus, UNAC sales representative should still focus on Durability items as the top priority when make sales activities especially for the users who graduated Bachelor's degree. Moreover, the results of levels of satisfaction when classified by Education can be concluded that lower Education groups have the greater satisfaction than the higher Education groups. Therefore, UNAC sales representative should try to close sales with users who have lowest education level.

Levels of Satisfaction when Classified by Department

In this study, the researcher can conclude that the users who are working in all departments (Administrative, Purchasing, Engineering, Production, Maintenance and Other) have same level of satisfaction toward the Reliability and Speed of the arc welding robots.

The users who are working in Production department have greater satisfaction on, respectively, Performance in operation, Weight, Warranty, and Durability of the arc welding robots than those who are working in Engineering Department.

Then, the users who are working in Production Department also have greater satisfaction on, respectively, Performance in operation, Flexibility and adaptability in use, Weight, Warranty, and Durability of arc welding robots than those who are working in Purchasing Department. The users who are working in Production department also have greater satisfaction on, in order, Performance in operation, Flexibility and adaptability in use, Size, Weight, Warranty, and Durability of the arc welding robots than those who are working in other departments.

Moreover, the researcher can conclude that the users who are working in Production Department also have greater satisfaction on Weight factor of arc welding robots than those who are working in Administrative Department. The users who are working in Production Department have greater satisfaction on Weight and Warranty factors of the arc welding robots than those who are working in Maintenance Department, respectively.

Besides, the researcher can conclude that the users who are working in Administrative Department have greater satisfaction on Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Warranty, and Durability of the arc welding robots than those who are working in other departments. And also users who are working in Administrative Department have greater satisfaction on Durability of the arc welding robots than those who are working in Purchasing Department and Engineering Department.

In Engineering Department, the researcher can conclude that the users have greater satisfaction on Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Warranty, and Durability of the arc welding robots than those who are working in other departments.

In Maintenance Department, the researcher can conclude that the users have greater satisfaction on Technology sophisticate, Flexibility and adaptability in use, Size, Weight, Warranty, and Durability of the arc welding robots than those who are working in other departments. Then those users who are working in Maintenance Department also have greater satisfaction on Technology sophisticate of the arc welding robots than those who are working in Production Department.

Finally, the researcher can conclude that the users who are working in Purchasing Department have greater satisfaction on Flexibility and adaptability in use, Size, Weight, Warranty, and Durability of the arc welding robots than those who are working in other departments.

On the top three items of product factors that most satisfy users which are Performance in operation, Durability, and speed; the users who are working in Production Department which are the majority respondents of this research still have greater satisfaction on Performance in operation and Durability than the rest departments (Engineering Department, Purchasing Department, Administrative Department, Other Department). Thus, UNAC sales representative should still focus on Performance in operation and Durability items as the top priority when make sales activities. However, even all departments have the same level of satisfaction on Speed factor, UNAC sales representative should also focus on this item.

6.3 Recommendations

The purpose of this study is to conduct the research about the users' satisfaction for the arc welding robots in order to provide the beneficial results to arc welding robot distributors to better understand their users, which will increase the capability of arc welding distributors to make the appropriative action to survive in the tough competition. Also, the findings can cause the beneficial results to the arc welding robot manufacturers to develop, improve, or generate ideas for the next model of arc welding robots by best understanding their various users' satisfaction in the current situation when the investment on equipment is curbed down due to the global recession.

According to the results of descriptive statistics of user's characteristic profiles, the researcher would like to recommend that, to meet the highest satisfaction from users of arc welding robots, the arc welding robot distributors should know and understand the characteristics of the users. Most of them are male who have ages between 22 and 34 years old, graduated bachelor's degree, have income between 10,000 and 20,000 baht, and have industrial engineering skills (or work in Production Department). Therefore, to be successful in the sales activities, the sales representatives of arc welding robot distributors must have personal characteristics

which match to the users. For example, only having product knowledge but having no industrial engineering and selling skills is very difficult to succeed in sales activities.

According to descriptive statistic results of the product factors of arc welding robot, the researcher would like to provide recommendations as follows:

• Hitting the strength sales point by emphasizing on the performance in operation, durability, and speed of the arc welding robot.

Uni Arc Co., Ltd. [UNAC] should present their product attributes by focusing on the performance in operation, durability, and speed of arc welding robots because these three items meet the highest satisfaction among the respondents. Also, with the experience of the researcher who is working in this field, in actual sales situation, the research findings confirm the researcher's belief that these three product factors are very important to hit customers or users' requirements for making purchase decision.

• Concerning the low satisfaction of the users on Warranty, Reliability and Technical sophisticate of the arc welding robot

UNAC provides only one-year warranty for the arc welding robot. This factor should be reconsidered because it seems too short for the users as shown in No.4 among 9 factors of the product factors satisfied by users; by deep analysis from the questionnaire, the researcher found that the lowest satisfaction on warranty factor is "Satisfaction on the one-year warranty period for arc welding robot from Uni Arc Co., Ltd. [UNAC]". Another focus is reliability. The result from descriptive statistic analysis of arc welding robot factors shows its rank at No. 7 from 9 factors of users' satisfaction. Normally, when customers make purchase decision for an arc welding robot, the reliability factor should be in the top three factors for buyers to be concerned. Therefore, UNAC has to focus on this product factor or try to find the reason why reliability of the arc welding robot of UNAC is less important in terms of satisfaction from the respondents.

Technical sophisticate, defined as peripherals in this study, meets the lowest satisfaction among the respondents. Therefore, it should be more concentrated by the sales department or the sales representative of UNAC to find out the problem why the users have less satisfaction on this product factor of the arc welding robot. Off-line teaching program, Positioner, Slider, and Sensor are normally also important for the completion of welding system using the arc welding robot.

According to the inferential statistic analysis, aimed to find out whether there is a difference among the users toward the product factors of arc welding robots. Although, the results were shown that most of users are countable that they satisfied the product factor of arc welding robots and there are difference among users' satisfaction toward the product factors of arc welding robots; except only "Technical Sophisticate" and "Size" that both male and female have the same level of satisfaction and "Reliability" and "Speed" that all departments have the same level of satisfaction but for the least satisfaction items of product factors, distributors and manufacturers need to improve the product factors of arc welding robots in order to increase the levels of users' satisfaction which is the most important aspect that the researcher would like to make a recommendation from the result of research findings.

Moreover, the distributors and manufacturers of arc welding robots need to know the different satisfaction among the users in various departments toward product factors of arc welding robot. Then, the factors should be improved for making the better or satisfying product to the specific users.

Finally, below are the recommendations based on the level of least satisfaction factors of the arc welding robots to be improved in each department.

Production Department

The key purchase decision-making on arc welding robots is from Production Department, they make purchase requests of arc welding robots through Purchasing Department. From the research findings, the researcher found that Production Department has greater satisfaction on Performance in operation, Reliability, Flexibility and adaptability in use, Size, Weight, Speed, Warranty, and Durability of the arc welding robots than other departments (Administrative, Purchasing, Engineering, Maintenance and Other). However, for the satisfaction toward Technology sophisticate, the users in Production Department have less or the same satisfaction with other departments (Administrative, Purchasing, Engineering, Maintenance and Others). Therefore, the distributors and manufacturers of arc welding robots should improve the Technology sophisticate factor, by focusing on the positioner that should be designed to be synchronized with the arc welding robot, then the sensor for the arc welding robot, the slider should be compatible with the arc welding robot and the Off-Line teaching software (AX-OT) for the arc welding robot, respectively.

Engineering Department

Also in some companies, the key purchase decision-making on the arc welding robots is from Engineering Department, again, they make purchase requests of arc welding robots through Purchasing Department. From the findings, the researcher found that the users in Engineering Department have greater satisfaction only on Size and Speed of the arc welding robots than other departments (Administrative, Purchasing, Production, Maintenance and Other). For the satisfaction toward Performance in operation, Reliability, Technology sophisticate, Flexibility and adaptability in use, Weight, Warranty, and Durability, the users have less or the same satisfaction with other departments (Administrative, Purchasing, Production, Maintenance and Other).

Therefore, the arc welding robots distributors and manufacturers need to improve the Weight factor as the first priority by focusing on the weight of manipulator of the arc welding robot, Warranty factor by focusing on one-year warranty for the arc welding robot, and then Durability factor by focusing on the robot controller's durability of the arc welding robot, respectively.

Purchasing Department

In some companies, the key purchase decision-making on the arc welding robots is directly from Purchasing Department. From the findings, the researcher found that the users in Purchasing Department have greater satisfaction only on Technology sophisticate of the arc welding robots than other departments (Administrative, Production, Engineering, Maintenance and Other). For the satisfaction toward Performance in operation, Reliability, Flexibility and adaptability in use, Weight, Warranty, Speed, Size and Durability, the users have less or the same satisfaction with other departments (Administrative, Production, Engineering, Maintenance and Other).

Therefore, the arc welding robot distributors and manufacturers need to improve the Weight factor as the first priority by focusing on the weight of manipulator of the arc welding robot, then the Warranty factor by focusing on oneyear warranty for the arc welding robot, and then the Flexibility and adaptability in use factor by focusing on changeable arm (Arm side) of manipulator, respectively.

6.4 Suggestions for Further Studies

For the further research, the researcher would like to suggest that:

- The respondents of this research are the customers of Uni Arc Co., Ltd. For further studies, there should be more respondents by, for example, collecting data from all users of arc welding robot in Thailand;
- The scope of this study focuses only arc welding robot in Co2/ MAG/ MIG/ TIG processes which is the most popular in the arc welding industry. For further studies, this study can be applied to other welding processes which can be welded by robots such as resistance (SPOT) welding;
- The scope of this study is limitation with the arc welding robot. For further studies, the study also can be applied to other types of robot application.
- For further studies, some parts of the model, such as users' characteristic profiles and product factors can be applied to study users' satisfaction for other industrial products;
- For further studies, to study marketing mix of the arc welding robots with users' purchase intention is also recommended to study; and
- For further studies, to study the relationship between users' satisfaction toward arc welding robots and repurchase intention is also recommended to study.

BIBLIOGRAPHY

Anderson, G. (1998). Customer satisfaction and its role in quality management.

Journal of Total Quality Management, Vol. 9, NO 4&5, pp. 80-85.

Anderson, G. and Fornell C. (2000). Customer Satisfaction: Dimensions of

customer satisfaction. Journal of Marketing Science, Vol. 32, No. 4, pp. 55-201.

Anderson, G., Fornell C. and Rust R.T. (1997). Customer Satisfaction,

Productivity, and Profitability: Differences between Goods and Services. Journal

of Marketing Science Vol. 16, No. 2, pp. 129-145.

Anderson, G. and Sullivan H. (1993). *Fundamentals of Educational Research*. pp. 202. New York, USA: Routledge.

Ang, H., Assael H. W., and Sheth W.A. (1996). *Product strategy and Management: Dimension of high technology products*. New Jersey, USA: Prentice Hall, Pearson Education International.

Ankel, D.A. (2001). *Marketing Research*. 7th ed. New York, USA: John & Sons Inc.

Assael, H. (1993). *Consumer Behaviour and Marketing Action*. USA: Pws-Kent Publishing Company.

Baker, Michael and Hart, Susan (1999). *Product Strategy and Management*. London: Prentice Hall.

Baker, Michael and Hart, Susan (2007). The Marketing Book. 6th ed. UK:

Butterworth-Heinemann.

Berkowitz, E. N., Kerin, R. A., Hartley, S. W., and Rudelius, W. (2000).

Marketing. 6th ed. USA: McGraw-Hill.

Boulding W. (1990). Model of Customer Satisfaction: A Dynamic Process of Expectations to Customer Satisfaction. *Journal of Marketing Research, Vol. 12*, pp. 7-27.

Burns A.C. and Bush R.F. (2005). Marketing Research. USA: Prentice Hall.

Burns A.C. and Bush R.F. (2007). *Marketing Research*. 2nd ed. USA: Prentice Hall.

Churchill, Jr. G. A. (1991). Marketing Research: Research Designs. USA:

Thomson South-Western Publishers.

Churchill, Jr. G.A. and Brown, T. J. (2007). Basic Marketing Research. 6th ed.

USA: Thomson South-Western Publishers.

Churchill, Jr. G.A., Brown T.J. and Amico, R. (1982). *Marketing Research*. USA: Thomson South-Western Publishers.

Churchill, Jr. G. A. and Iacobucci, D. (2002). Marketing Research:

Methodological Foundations. pp. 56–334. USA: Thomson South-Western Publishers.

CMP Media (2008). Summary of Uni Arc Co., Ltd. *Intermach Times 2008*, *Vol.26*, *No.2*, *February*, p.10.

Daihen Corp (1991). Welding and Cutting. *OTC Principle of Welding & Cutting*(Vol.16, No.1, November). Japan: Daihen Corporation welding products division.
Daihen Corp (2008). *Positioner/Slider: Almega AX Series Peripheral Equipment*.
Japan: Daihen Corporation.

DeLone, W.H and McLean, E.R. (1992). Information systems success: the quest for the dependent variable. *Information Systems Research, Vol. 3, March*, pp.60-95. Dholakia G. R., Sheth J. N., and Luthans F.(1990). *Customer behavior: Consumer Behaviors and Beyond*. Boston: Irwin/McGraw-Hill.

Evans, R. J. and Berman, B. (1982). *Marketing*. 5th ed. pp. 155-162. New York: Macmillan Publishing Company.

Fornell C. (1992). A National Customer Satisfaction Barometer: The Swedish Experience. *Journal of marketing*, *Vol.56*, pp.1-18.

Fornell C., Anderson S.W. and Bounlding L. (1996). Customer Satisfaction:

Between Products and Service. London, UK: Prentice-Hall International.

Garvin, D. A. (1987). Product technology: Competing on the Eight Dimensions of Quality. *Harvard Business Review*, *November 1987*.

Gross, R., Rix, P. and Stantion W.J. (1987). *Consumer Behaviour: Customer Satisfaction Relationship with Personality*. Hong Kong: McGraw-Hill.

Handscombe R. S. (1989). The Product Management Hand book: Technical

Sophiticates. London: McGraw-Hill.

Hanna K. and Wozniak M. (2001). Marketing Management: People, Products, Demographic, and Markets. Westport, Connecticut: Praeger.

Hawkins, H. C., Best, A., and Coney, K. (1998). *Consumer Behaviour: Building Marketing Strategy*. USA: McGraw-Hill.

Hawkins, H. C., Best, A., and Coney, K., (2001). Consumer Behaviour:

Segmentation customers by demographic profile. 2nd ed. New York: McGraw-Hill.

Hayashi T., (2003). Development of Robot Equipped with Full Digital Welding

Power Supply (Welding Engineering). Japan Welding Engineering Society, Vol.

51, No. 1, pp. 72.

Howard G. and Sheth W. A. (1969). *Marketing Handbook: Customer Satisfaction*. 3rd ed. UK: Gower.

Huang, E. and Lin, E.A. (2005). *Marketing Management: The important of customer satisfaction*. London: Thomson.

Jobber D. (2001). *Principles and Practice of Marketing*. UK: McGraw Hill Higher Education.

Jones, L. and Sasser, A. (1995). *Handbook of Marketing Strategy*. California: Sage Publications Inc.

Kawahara M. (2008). *The Global Sales Data of Daihen Corp*. Japan: Daihen Corporation welding products division.

Kotler, P. (1989). Marketing Management. New Jersey: Prentice Hall.

Kotler P. (2000). Marketing Management: Product Differentiate. 10th ed. pp.15-

288. London, UK: Prentice-Hall International.

Kotler, P. (2003). Marketing Management. 11th ed. New Jersey: Prentice-Hall.

Kotler, P. (2004). Marketing Management. 12th ed. New Jersey: Prentice-Hall.

Kotler, P. and Armstrong, G. (1997). *Marketing: An Introduction*. London, UK: Prentice Hall International.

Kotler P. and Keller K.L. (2007). *Marketing Management*. USA: Pearson Prentice Hall.

Kristensen, D. A., Dubrovski D., and Westlund A. (1999). The role of customer satisfaction in achieving business excellence. *Journal of Total Quality Management, Vol. 12, NO* 7&8, pp. 920-925.

Lincoln A. (1994). Arc welding uses a power source to create an electric arc. *The procedure handbook of arc welding, Vol.23, No.6.*

Lovelock C. (2001). *Services Marketing: People, Technology and Strategy*. 4th ed. USA: Prentice Hall.

Mahoney R. (1995). Robotic Products for Rehabilitation: Status and Strategy.

New Jersey, USA: Applied Resources Corporation, Rehabilitation Technologies Division.

Mahoney R. (2006). *Great Expectations for Rehabilitation Mechatronics in the Coming Decade*. Berlin, Germany: Springer.

Malhotra, N. K. (1999). *Marketing Research: United States*. New Jersey, USA: Prentice Hall, Pearson Education International.

Malhotra K. N. (2004). *Marketing Research: Research Design*. pp. 100-145. New Jersey, USA: Prentice Hall, Pearson Education International.

Malhotra K. N. and Peterson M. (2006). *Basic Marketing Research: A Decision Making Approach*. 2nd ed. New Jersey, USA: Prentice Hall, Pearson Education International.

Mandell, M.I. and Rosenberg, L. (1981). *Marketing*. New Jersey, USA: Prentice Hall.

Oliver, R.L. (1977). Response determinants in satisfaction judgment. Journal of Consumer Research, March 1977, pp. 495-507.

Paothong P. (2002). Speed Control of Permanent Magnet Brushless DG Motor Drive (Thesis). Bangkok: Assumption University.

Phomnart, M. (2000). Determinants of Customer Satisfaction in Personal
Computer(PC) Purchase: A Selected Survey on Pantip Plaza Area (Thesis).
Bangkok: Assumption University.

Ranch S. (2007). Marketing of high-technology products and innovations:
competing through weight and size. Upper Saddle River, NJ: Prentice Hall.
Ratsameeuthai M. (2002). A study of the factors influencing consumer's purchase
decision of notebook computers (Thesis). Bangkok: Assumption University.

Rattana S. (2004). *SPSS Analyses: Internal reliability*. London: McGraw-Hill Reed Tradex (2008). Father of Industrial Robots. *Metalex Magazine, Vol.5, No.2, August-September 2008*, pp.52-53.

Saunders, M., Lewis, P. and Thornhill A. (2003). *Research Methods for Business Students*. 3rd ed. UK: Prentice Hall.

Schiffman G.L. and Kanuk L.L. (1997). *Consumer Behavior*. Upper Saddle River, NJ: Prentice Hall.

Schiffman G.L. and Kanuk L.L. (2007). *Consumer Behavior*. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

Sekaran, U. (1992). *Research Methods for Business a Skill-Building Approach*. 2nd ed. New York: John Wiley & Sons.

Shimon Y. Nof (1999). *Handbook of Industrial Robotics*. 2nd ed. New York, USA: John Wiley and Sons.

Shimpo Corporation (2009). Arc Welding Robots: Forecast for 2009. The Japan Welding News for the World, Vol.13, No.46, Winter Issue.

Skinner, J. (1994). Marketing. 2nd ed. Boston: Houghton Mifflin.

Slawsby D.A. (2006). *The product development challenge: competing through speed, quality, and creativity*. Boston: Harvard Business School Press.

Smith, Jane (1996). *Planning and Decision Making*. 1st ed. Oxford: Blackwell Business.

Tanphaibul, D. (2001). Determinants of Customer Satisfaction: The Windmill Park Country Club Case (Thesis). Bangkok: Assumption University.

Uni Arc's service division (2008). Introduction of Arc Welding Robots. Thailand:

Uni Arc Co., Ltd., Service Division.

US Department of Labor (2005). *OSHA Technical Manual (2005): Directory Manual for Robotics*. USA: US Department of Labor, Occupational Safety and Health Administration.

US Department of Labor (2008). *OSHA Technical Manual (2008): Glossary for robotics and robotic systems*. USA: US Department of Labor, Occupational Safety and Health Administration.

Walters D.J. and Bergiel K. (1989). *Marketing management & information technology: Product Technology*. New York: Prentice Hall.

William H. and Slama D. (1989). *Marketing high technology: an insider's view*. New York: Free Press.

Winter R.S. (2007). *Marketing Management*. 3rd ed. USA: Pearson Education Inc.
Yaskawa Electric Corporation (2007). The new robot optimum for arc welding applications. *Pursuit of further efficiency, Robotics Division, February 2007*.
Zikmund W.G. (2000). *Basic marketing*. St. Paul, Minneapolis: West Publishing Company.

Zikmund W.G. (2003). *Basic marketing*. 2nd ed. St. Paul, Minneapolis: West Publishing Company.

Zikmund W.G. and Amico, M. (1996). *Marketing*. 5th ed. St. Paul, Minneapolis: West Publishing Company.

Zikmund W.G., and Amico, M. (2001). *Business Research*. International ed. UK: Prentice Hall.

WEB SITES

JETRO (March 2006). Trends in the Japanese Robotics Industry. *Industrial Reports*. Retrieved May 06, 2008, from The Japan External Trade Organization (JETRO) website: http://www.jetro.go.jp/en/reports/market/pdf/2006_15_c.pdf Litzenberger, G. (2007, October 23). The Robots are coming! *Press' Corner*. Retrieved May 05, 2008, from International Federation of Robotics website: http://www.worldrobotics.org/downloads/20071023_Pressinfo.pdf Piamkulvanich, M. (2004, January 10). Profile and Mission. Retrieved May 5, 2008, from Uni Arc Co., Ltd.

website: http://www.uniarc.com/company_profile.htm

Questionnaire

This questionnaire is designed as the partial fulfillment of thesis subject "Users' Overall Satisfaction for Arc Welding Robot: A Case Study of Uni Arc Co., Ltd.". The survey is conducted for the purpose of the preparation of a Thesis for the completion of Master Degree in Business Administration, Assumption University. All the collected information obtained will only be used for study purpose. Your participation is very much appreciated.

Part 1: Users' Characteristic Profiles Questions

1. (Gender	NIVERSITY			
	Male	Female	0		
2. A	Age				
	Under 22	22-34	35-54		
	55-64	Over 64			
3. I	ncome				
	Below 10,000 baht		10,000 – 20,000 baht		
	20,001 – 30,000 ba	ht	30,001 – 40,000 baht		
	40,001 – 50,000 ba	ht SINCE	Above 50,000 baht		
4. E	Education	้ ^{/วท} ยาลัย	ยอัส ^{สัญ}		
	Below Bachelor's I	Degree	Bachelor's Degree		
	Master's Degree		Doctoral's Degree		
5. De	epartment				
	Administrative		Purchasing		
	Engineering		Production		
	Maintenance Other (Please specify)				

Part 2: Users' Satisfaction Level toward Arc Welding Robots of Uni Arc Co., Ltd. [UNAC].

<u>Please rate your satisfaction on the following topics by marking an X in the appropriate box or boxes.</u>

5 = Very High	4 = High	3 = Neutral	2 = Low	1 = Very Low
Satisfaction	Satisfaction		Satisfaction	Satisfaction

	Performance in Operation	5	4	3	2	1
6.	Satisfaction on the standard manipulator's					
	working area of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
7.	Satisfaction on the long arm manipulator type					
	designed for increasing the working area of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
8.	Satisfaction on the new manipulator (AX-V4)					
	designed for moving into narrow space of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
9.	Satisfaction on the robot motion performance of					
	robot controller of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
10.	Satisfaction on number of axis controlled by					
	robot controller of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
11.	Satisfaction on the memory capacity of robot					
	controller of arc welding robots from Uni Arc					
	Co., Ltd. [UNAC]					
12.	Satisfaction on stable arc provided by welding	1	V			
	power source of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]	5				
13.	Satisfaction on low spatter provided by welding					
	power source of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
14.	Satisfaction on the arc stability at very low					
	current ranges by welding power source of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
15.	Satisfaction on the arc stability at very high					
	welding speeds by welding power source of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
	Reliability	5	4	3	2	1
16.	Satisfaction on the positional repeatability of					
	manipulator of arc welding robots from Uni Arc					
	Co., Ltd. [UNAC]					
17.	Satisfaction on Operational Software (OS) of					
	robot controller of arc welding robots of Uni					
	Arc Co., Ltd. [UNAC]					
18.	Satisfaction on current and voltage precisely					
	controlled and supplied by welding power					
	source of arc welding robots from Uni Arc Co.,					
	Ltd. [UNAC]					
	[]					
	I		1	L		L

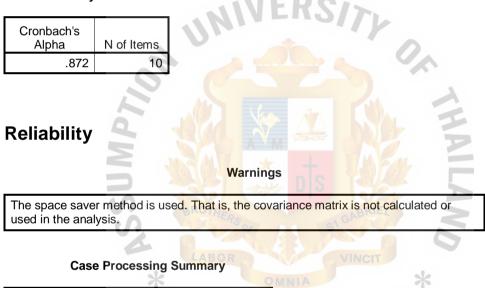
	Technical Sophisticate	5	4	3	2	1
19.	Satisfaction on Off-Line teaching software (AX-					
	OT) for arc welding robots from Uni Arc Co.,					
	Ltd. [UNAC]					
20.	Satisfaction on the positioner designed for					
	synchronized with arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
21.	Satisfaction on the slider designed for					
	synchronized with arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
22.	Satisfaction on the sensor designed for arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
	Flexibility and Adaptability in Use	5	4	3	2	1
23.	Satisfaction on the changeable arm (Arm side)					
	of manipulator of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
24.	Satisfaction on the hanging installation					
	capability (Ceiling/ Wall type) of Manipulator					
	of arc welding robots of Uni Arc Co., Ltd.					
	[UNAC]					
25.	Satisfaction on the manipulator designed for					
	moving into narrow space of arc welding robots	\wedge				
	of Uni Arc Co., Ltd. [UNAC]					
26.	Satisfaction on the built-in coaxial power cable					
	designed for avoiding welding obstacles of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
27.	Satisfaction on the compatibility to abundant					
	applications of robot controller of arc welding					
	robots from Uni Arc Co., Ltd. [UNAC]					
28.	Satisfaction on the Software PLC Function of					
	robot controller of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]					
29.	Satisfaction on Data Management with Ethernet		7			
	of robot controller of arc welding robots from					
	Uni Arc Co., Ltd. [UNAC]	2				
30.	Satisfaction on Field network compatible and					
	reduce cable runs provided by robot controller					
	of arc welding robots from Uni Arc Co., Ltd.					
	[UNAC]					
31.	Satisfaction on the manipulator and robot					
	controller to connect with various welding					
	processes power source (Co2/ MAG/ TIG/ MIG)					
	of arc welding robots from Uni Arc Co., Ltd.					
	[UNAC]					
32.	Satisfaction on the welding capability for					
	various kinds of materials by power supply of					
	arc welding robots from Uni Arc Co., Ltd.					
	[UNAC]					
33.	Satisfaction on the welding capability for					
	various thicknesses of materials by power		1			
	supply of arc welding robots from Uni Arc Co.,		1			
24	Ltd. [UNAC]		1			\vdash
34.	Satisfaction on the welding power source to		1			
	meet various welding needs (provides 32		1			
	welding processes in pulse MAG/MIG, DC		1			
	MIG, Co2/MAG) of welding power source from					

	Uni Arc Co., Ltd. [UNAC]					
	Size	5	4	3	2	1
35.	Satisfaction on the size of manipulator of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					
36.	Satisfaction on the size of robot controller of arc					
	welding robots from Uni Arc Co., Ltd. [UNAC]					<u> </u>
37.	Satisfaction on the size of welding power source					
	of arc welding robots from Uni Arc Co., Ltd.					
	[UNAC] Weight	5	4	2	2	1
38.		3	4	3	2	1
38.	Satisfaction on the weight of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]					
39.	Satisfaction on the weight of robot controller of					
39.	arc welding robots from Uni Arc Co., Ltd.					
	[UNAC]					
40.	Satisfaction on the weight of welding power					
	source of arc welding robots from Uni Arc Co.,					
	Ltd. [UNAC]					
	Speed	5	4	3	2	1
41.	Satisfaction on the speed of manipulator (Air-					
	cut time) of arc welding robots from Uni Arc					
	Co., Ltd. [UNAC]					
42.	Satisfaction on the speed of robot controller					
6	(Processing time) of arc welding robots from					
	Uni Arc Co., Ltd. [UNAC]		_			
43.	Satisfaction on the welding speed of welding					
	power source of arc welding robots from Uni					
	Arc Co., Ltd. [UNAC]	=		2	2	1
	Warranty	5	4	3	2	1
44.	Satisfaction on one-year warranty period for					
	arc welding robots from Uni Arc Co., Ltd.	C	7			
47	[UNAC]					
45.	Satisfaction on customer technical assistance (in	6				
	warranty) from Uni Arc [UNAC] company					
46.	Satisfaction on the on-site robot checking and					
	repairing (in warranty) from Uni Arc Co., Ltd.					
47.	[UNAC] Satisfaction on the period of arc welding					
·••/•	Satisfaction on the period of arc welding					
	robots's Spare Parts Claim from Uni Arc Co., Ltd. [UNAC]					
48.	Satisfaction on the reserved spare parts for					
70.	broken arc welding robots (in warranty) from					
	Uni Arc Co., Ltd. [UNAC]					
	Durability	5	4	3	2	1
49.	Satisfaction on the manipulator's durability of	5		5		-
	arc welding robots of Uni Arc [UNAC]					
	company					
50.	Satisfaction on the controller's durability of arc					
	welding robots of Uni Arc [UNAC] company					
51.	Satisfaction on the welding power source's					
	durability of arc welding robots of Uni Arc Co.,					
	Ltd. [UNAC]					

	Durability	5	4	3	2	1
52.	Satisfaction on the robot welding consumable parts of arc welding robots of Uni Arc Co., Ltd. [UNAC]					
53.	Satisfaction on the robot welding spare parts of arc welding robots of Uni Arc Co., Ltd. [UNAC]					

Thank you for your participation

Warnings


The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		Ν	%
Cases	Valid	30	100.0
	Excluded(a)	0	.0
	Total	30	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

		N	%	CE1060 40
Cases	Valid	30	100.0	201909 20190
	Excluded(a)	0	012.0	ລັຍເວັ ສິ^ດິ
	Total	30	100.0	OT LI LI

a Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.892	3

Warnings

The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		Ν	%
Cases	Valid	30	100.0
	Excluded(a)	0	.0
	Total	30	100.0

a Listwise deletion based on all variables in the procedure.

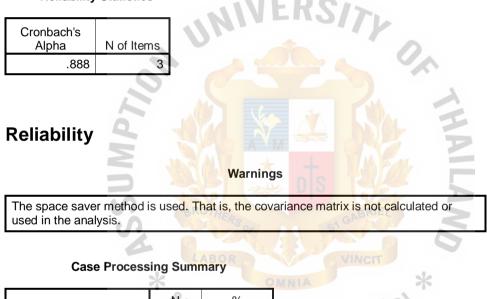
Reliability Statistics

		N	%	CE1060 4C
Cases	Valid	30	100.0	201909 2019
	Excluded(a)	0	012.0	ລັຍເວັສິສິ
	Total	30	100.0	

a Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.885	12

Warnings


The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		Ν	%
Cases	Valid	30	100.0
	Excluded(a)	0	.0
	Total	30	100.0

a Listwise deletion based on all variables in the procedure.

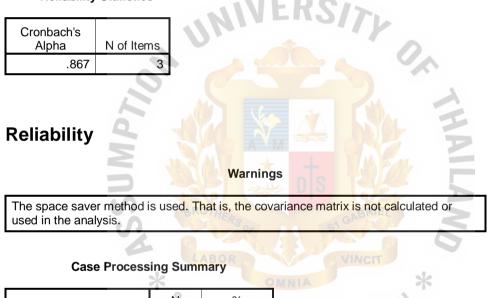
Reliability Statistics

		N	%	CE1060 40
Cases	Valid	30	100.0	201909
	Excluded(a)	0	012.0	ລັຍລັສສ
	Total	30	100.0	

a Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.858	3

Warnings


The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		Ν	%
Cases	Valid	30	100.0
	Excluded(a)	0	.0
	Total	30	100.0

a Listwise deletion based on all variables in the procedure.

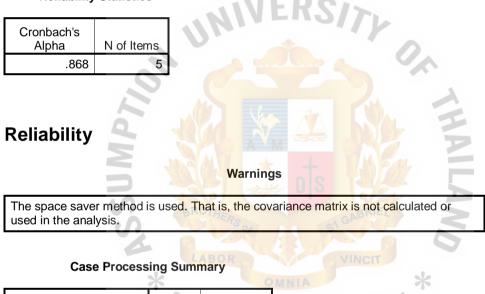
Reliability Statistics

		N	% CIN	CE1060 40
Cases	Valid	30	100.0	201909 × 1909
	Excluded(a)	0	012.0	ລັຍເລັ ສິ^ສິ
	Total	30	100.0	

a Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.837	5

Warnings


The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		Ν	%
Cases	Valid	30	100.0
	Excluded(a)	0	.0
	Total	30	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

		N	%	CE1060 40
Cases	Valid	30	100.0	CE1909 % 9190%
	Excluded(a)	0	0.2	ລັ້ງເວັລິດ
	Total	30	100.0	

a Listwise deletion based on all variables in the procedure.

Cronbach's Alpha	N of Items
.958	48

Frequencies

Frequency Table

Gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Male	288	72.0	72.4	72.4
	Female	110	27.5	27.6	100.0
	Total	398	99.5	100.0	
Missing	System	2	.5		
Total		400	100.0		

Age

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Under 22	52	13.0	13.0	13.0
	22-34	267	66.8	66.9	79.9
	35-54	68	17.0	17.0	97.0
	55-64	10	2.5	2.5	99.5
	Over 64	2	.5	.5	100.0
	Total	399	99.8	100.0	3
Missing	System	1	.3	L	6 ML
Total		400	100.0	ns 🐇	

Income

	~	LABOR Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Below 10,000 baht	97	24.3	24.3	24.3
	10,000-20,000 baht	20 181	INCE45.3	45.3	69.5
	20,001-30,000 baht	93	23.3	23.3	92.8
	30,001-40,000 baht	24	6.0	6.0	98.8
	40,001-50,000 baht	3	.8	.8	99.5
	Above 50,000 baht	2	.5	.5	100.0
	Total	400	100.0	100.0	

Education

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Below Bachelor' s Degree	117	29.3	29.3	29.3
	Bachelor' s Degree	261	65.3	65.4	94.7
	Master' s Degree	21	5.3	5.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Department

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Administrative	37	9.3	9.3	9.3
	Purchasing	69	17.3	D 17.3	26.5
	Engineering	69	17.3	17.3	43.8
	Production	166	41.5	41.5	85.3
	Maintenance	55	13.8	13.8	99.0
	Other	4	1.0	1.0	100.0
	Total	400	100.0	100.0	~

O	the	r

		Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	(397	99.3	99.3	99.3	
	Maketty	1	.3	.3	99.5	\leq
	Owwer	1	.3	.3	99.8	
	Sale	1	LABOR .3	.3	NCIT 100.0	
	Total	400	100.0	OMNIA 100.0	*	

Satisfaction on standard manipulator's working area of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	9	2.3	2.3	2.3
	Neutral satisfaction	117	29.3	29.3	31.6
	High satisfaction	208	52.0	52.1	83.7
	Very High satisfaction	65	16.3	16.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on long arm manipulator type designed for increasing of working area of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	8	2.0	2.0	2.0
	Neutral satisfaction	133	33.3	33.3	35.3
	High satisfaction	212	53.0	53.1	88.5
	Very High satisfaction	46	11.5	11.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on new manipulator (AX-V4) designed for moving into narrow space of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	6	1.5	1.5	1.5
	Neutral satisfaction	134	33.5	33.6	35.1
	High satisfaction	205	51.3	51.4	86.5
	Very High satisfaction	54	13.5	13.5	100.0
	Total	399	99.8	100.0	
Missing	System		.3	NAME OF	
Total		400	100.0	DR EF	P
			+	A SML	

Satisfaction Robot Motion Performance of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	145	MNIA 36.3	36.4	38.9
	High satisfaction	<190	F 1 0 47.5	47.7	86.7
	Very High satisfaction	53	13.3	13.3	100.0
	Total	398	99.5	100.0	
Missing	System	2	.5		
Total		400	100.0		

Satisfaction on number of axis controlled by robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	133	33.3	33.3	36.6
	High satisfaction	192	48.0	48.1	84.7
	Very High satisfaction	61	15.3	15.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on memory capacity of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	144	36.0	36.1	38.6
	High satisfaction	169	42.3	42.4	81.0
	Very High satisfaction	76	19.0	19.0	100.0
	Total	399	99.8	100.0	
Missing	System		.3		
Total		400	100.0	DRUE	P
			+	M S.M.	

Satisfaction on stable arc provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	15	3.8	3.8	3.8
	Neutral satisfaction	135	MNIA 33.8	33.9	37.7
	High satisfaction	193	48.3	48.5	86.2
	Very High satisfaction	55	13.8	13.8	100.0
	Total	398	99.5	100.0	
Missing	System	2	.5		
Total		400	100.0		

Satisfaction on low spatter provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	15	3.8	3.8	3.8
	Neutral satisfaction	140	35.0	35.1	38.8
	High satisfaction	189	47.3	47.4	86.2
	Very High satisfaction	55	13.8	13.8	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on are stability at very low current ranges by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	14	3.5	3.5	3.5
	Neutral satisfaction	153	38.3	38.3	41.9
	High satisfaction	171	42.8	42.9	84.7
	Very High satisfaction	61	15.3	15.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on arc stability at very high welding speeds by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	137	34.3	34.3	37.6
	High satisfaction	199	49.8	49.9	87.5
	Very High satisfaction	50	12.5	12.5	100.0
	Total	399	99.8	100.0	
Missing	System		.3	NA SA	
Total	1	400	100.0	DR. EF	
				THE ML	

Satisfaction on positional repeatability of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	161	MNIA 40.3	40.4	42.9
	High satisfaction	191	F 1 0 47.8	47.9	90.7
	Very High satisfaction	37	9.3	9.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on Operational Software (OS) of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	166	41.5	41.6	44.1
	High satisfaction	174	43.5	43.6	87.7
	Very High satisfaction	49	12.3	12.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on current and voltage precisely controlled and supplied by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	9	2.3	2.3	2.3
	Neutral satisfaction	148	37.0	37.1	39.3
	High satisfaction	192	48.0	48.1	87.5
	Very High satisfaction	50	12.5	12.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on Off-Line teaching software (AX-OT) for arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	22	5.5	5.5	5.5
	Neutral satisfaction	169	42.3	42.4	47.9
	High satisfaction	143	35.8	35.8	83.7
	Very High satisfaction	65	16.3	16.3	100.0
	Total	399	99.8	100.0	
Missing	System		.3		
Total		400	100.0		
			+	MER	

Satisfaction on positioned designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	19	4.8	4.8	4.8
	Neutral satisfaction	180	MNIA 45.0	45.1	49.9
	High satisfaction	c165	F = 41.3	41.4	91.2
	Very High satisfaction	35	8.8	8.8	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on slider designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	18	4.5	4.5	4.5
	Neutral satisfaction	160	40.0	40.0	44.5
	High satisfaction	181	45.3	45.3	89.8
	Very High satisfaction	41	10.3	10.3	100.0
	Total	400	100.0	100.0	

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Very Low satisfaction	1	.3	.3	.3
	Low satisfaction	21	5.3	5.3	5.5
	Neutral satisfaction	178	44.5	44.6	50.1
	High satisfaction	146	36.5	36.6	86.7
	Very High satisfaction	53	13.3	13.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on sensor designed for arc welding robots from Uni Arc Co., Ltd. [UNAC]

Satisfaction on changeable arm (Arm side) of manipulator for arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	14	3.5	3.5	3.5
	Neutral satisfaction	154	38.5	38.5	42.0
	High satisfaction	184	46.0	46.0	88.0
	Very High satisfaction	48	12.0	12.0	100.0
	Total	400	100.0	100.0	

Satisfaction on hanging installation capability (Ceiling/Wall type) of Manipulate if Arc welding robots from Uni Arc Co., Ltd. [UNAC]

	SU	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Low satisfaction	19	4.8	4.8	4.8		
	Neutral satisfaction	143	35.8	35.8	40.5		
	High satisfaction	LABOR 186	46.5	VINCIT 46.5	87.0		
	Very High satisfaction	52	13.0	13.0	100.0		
	Total	400	100.0	100.0			
	SINCE1969						

Satisfaction on manipulator designed for moving into narrow space of Arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	14	3.5	3.5	3.5
	Neutral satisfaction	130	32.5	32.6	36.1
	High satisfaction	209	52.3	52.4	88.5
	Very High satisfaction	46	11.5	11.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on built-in coaxial power cable designed for avoiding welding obstacle of Arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	145	36.3	36.3	38.8
	High satisfaction	191	47.8	47.8	86.5
	Very High satisfaction	54	13.5	13.5	100.0
	Total	400	100.0	100.0	

Satisfaction on compatible to abundant applications of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	12	3.0	3.0	3.0
	Neutral satisfaction	131		32.8	35.8
	High satisfaction	196	49.0	49.1	85.0
	Very High satisfaction	60	15.0	15.0	100.0
	Total	399	99.8	100.0	2
Missing	System		.3		
Total	Q 4	400	100.0		
				A Contraction	

Satisfaction on Software PLC Function of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

	S	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	LABOR 12	3.0	VINCIT 3.0	3.0
	Neutral satisfaction	154	38.5	38.5	41.5
	High satisfaction	177	44.3	44.3	85.8
	Very High satisfaction	57	NCE1439	14.3	100.0
	Total	29400	100.0	100.0	
			10121510		

Satisfaction on Data Management with Ethernet of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	16	4.0	4.0	4.0
	Neutral satisfaction	146	36.5	36.6	40.6
	High satisfaction	189	47.3	47.4	88.0
	Very High satisfaction	48	12.0	12.0	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on Field net work compatible and reduce cable runs provided by robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	148	37.0	37.1	40.4
	High satisfaction	184	46.0	46.1	86.5
	Very High satisfaction	54	13.5	13.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on manipulator and robot controller to connect with various welding processes power source (Co2/ MAG/ TIG/ MIG) of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	11	2.8	2.8	2.8
	Neutral satisfaction	133	33.3	33.3	36.0
	High satisfaction	199	49.8	49.8	85.8
	Very High satisfaction	57	14.3	14.3	100.0
	Total	400	100.0	100.0	4
	L.				

Satisfaction on welding capability for various kinds of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]

	D.S.	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Low satisfaction	ROTHERS 9	2.3	GABRIEL 2.3	2.3		
	Neutral satisfaction	140	35.0	35.0	37.3		
	High satisfaction	LABOR 191	47.8	47.8	85.0		
	Very High satisfaction	60	15.0	15.0	100.0		
	Total	400	100.0	100.0	6		
	SINCE 1969						

Satisfaction on welding capability for various thicknesses of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	144	36.0	36.0	39.3
	High satisfaction	192	48.0	48.0	87.3
	Very High satisfaction	51	12.8	12.8	100.0
	Total	400	100.0	100.0	

Satisfaction on welding power source to meet various welding needs (provides 32 welding processes in pulse MAG/MIG, DC, MIG, Co2/ MAG) of welding power source from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	8	2.0	2.0	2.0
	Neutral satisfaction	151	37.8	37.8	39.8
	High satisfaction	174	43.5	43.5	83.3
	Very High satisfaction	67	16.8	16.8	100.0
	Total	400	100.0	100.0	

Satisfaction on size of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	18	4.5	4.5	4.5
	Neutral satisfaction	156	39.0	39.1	43.6
	High satisfaction	156	39.0	39.1	82.7
	Very High satisfaction	69	17.3	17.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0	-	
				NOL 1	3

Satisfaction on size of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

	D.S.	Frequency	Percent	Valid Percent	Cumulative Percent		
Valid	Low satisfaction	ROTHER 13	3.3	GABRIEL 3.3	3.3		
	Neutral satisfaction	171	42.8	42.8	46.0		
	High satisfaction	ABO 173	43.3	43.3	89.3		
	Very High satisfaction	43	10.8	10.8	100.0		
	Total	400	100.0	100.0			
SINCE1969							

Satisfaction on size of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	133	33.3	33.3	36.6
	High satisfaction	203	50.8	50.9	87.5
	Very High satisfaction	50	12.5	12.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on weight of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	45	11.3	11.3	11.3
	Neutral satisfaction	150	37.5	37.5	48.8
	High satisfaction	143	35.8	35.8	84.5
	Very High satisfaction	62	15.5	15.5	100.0
	Total	400	100.0	100.0	

Satisfaction on weight of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	38	9.5	9.5	9.5
	Neutral satisfaction	125	31.3	31.3	40.8
	High satisfaction	176	44.0	44.0	84.8
	Very High satisfaction	61	15.3	15.3	100.0
	Total	400	100.0	100.0	

Satisfaction on weight of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC] 5

	4 h	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	20	5.0	5.0	5.0
	Neutral satisfaction	151	37.8	37.8	42.9
	High satisfaction	159	39.8	39.8	82.7
	Very High satisfaction	HERS 69	17.3	17.3	100.0
	Total	399	99.8	100.0	
Missing	System	BOR 1	.3	INCIT	
Total	*	400	100.0	*	

Satisfaction on speed of manipulator (Air-cut time) of arc welding robots from Uni Arc Co., Ltd. [UNAC] ทยาลัยอัลจ

2,0

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	8	2.0	2.0	2.0
	Neutral satisfaction	165	41.3	41.3	43.3
	High satisfaction	167	41.8	41.8	85.0
	Very High satisfaction	60	15.0	15.0	100.0
	Total	400	100.0	100.0	

Satisfaction on speed of robot controller (Processing time) of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	5	1.3	1.3	1.3
	Neutral satisfaction	158	39.5	39.5	40.8
	High satisfaction	177	44.3	44.3	85.0
	Very High satisfaction	60	15.0	15.0	100.0
	Total	400	100.0	100.0	

Satisfaction on welding speed provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	142	35.5	35.5	38.0
	High satisfaction	183	45.8	45.8	83.8
	Very High satisfaction	65	16.3	16.3	100.0
	Total	400	100.0	100.0	
	11				1

Satisfaction on 1 Year Warranty Period for arc welding robots from Uni Arc Co., Ltd. [UNAC]

	JN	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Very Low satisfaction	2	.5	.5	.5
	Low satisfaction	DTHEN 20	5.0	BRIEL 5.0	5.5
	Neutral satisfaction	149	37.3	37.3	42.9
	High satisfaction	161	40.3	40.4	83.2
	Very High satisfaction	BOR 67	16.8	NCIT 16.8	100.0
	Total 😽	399	MNIA 99.8	100.0	
Missing	System	SIN	F1060	2.0.	
Total	19	400	100.0	521200	
		- NRU	ลยอลง		

Satisfaction on Customer Technical Assistance (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	143	35.8	35.8	39.0
	High satisfaction	184	46.0	46.0	85.0
	Very High satisfaction	60	15.0	15.0	100.0
	Total	400	100.0	100.0	

Satisfaction on On-site Robot checking and Repairing (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	16	4.0	4.0	4.0
	Neutral satisfaction	142	35.5	35.5	39.5
	High satisfaction	168	42.0	42.0	81.5
	Very High satisfaction	74	18.5	18.5	100.0
	Total	400	100.0	100.0	

Satisfaction on reserved spare part claim of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	17	4.3	4.3	4.3
	Neutral satisfaction	142	35.5	35.5	39.8
	High satisfaction	184	46.0	46.0	85.8
	Very High satisfaction	57	14.3	14.3	100.0
	Total	400	100.0	100.0	
	0				

Satisfaction on reserved spare parts for broken down arc welding robots from Uni Arc Co., Ltd. [UNAC]

	JN	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Very Low satisfaction		· · · · .3	.3	.3
	Low satisfaction	THEN 16	4.0	BRIEL 4.0	4.3
	Neutral satisfaction	134	33.5	33.7	37.9
	High satisfaction	172	43.0	43.2	81.2
	Very High satisfaction	BOR 75	18.8	18.8	100.0
	Total 🛛 😽	398	MNIA 99.5	100.0	
Missing	System	S112	CE1065	2. A.	
Total	- 49	400	100.0	5912100	
		- ngu	ลยอล	04	

Satisfaction on manipulator's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	157	39.3	39.3	41.9
	High satisfaction	177	44.3	44.4	86.2
	Very High satisfaction	55	13.8	13.8	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	10	2.5	2.5	2.5
	Neutral satisfaction	157	39.3	39.3	41.9
	High satisfaction	190	47.5	47.6	89.5
	Very High satisfaction	42	10.5	10.5	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Satisfaction on robot controller's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]

Satisfaction on welding power source's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	13	3.3	3.3	3.3
	Neutral satisfaction	138	34.5	34.6	37.8
	High satisfaction	188	47.0	47.1	85.0
	Very High satisfaction	60	15.0	15.0	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		2
Total		400	100.0		

Satisfaction on robot welding consumable parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]

	S BR	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	9	2.3	2.3	2.3
	Neutral satisfaction	BOR 148	37.0	NCT 37.1	39.3
	High satisfaction	147	36.8	36.8	76.2
	Very High satisfaction	95	23.8	23.8	100.0
	Total	S399	CE1999.8	100.0	
Missing	System	129101	× .3	3315	
Total		400	100.0		

Satisfaction on robot welding spare parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low satisfaction	15	3.8	3.8	3.8
	Neutral satisfaction	134	33.5	33.6	37.3
	High satisfaction	165	41.3	41.4	78.7
	Very High satisfaction	85	21.3	21.3	100.0
	Total	399	99.8	100.0	
Missing	System	1	.3		
Total		400	100.0		

Descriptives

Ltd. [UNAC]

Valid N (listwise)

Ν Minimum Maximum Mean Std. Deviation Satisfaction on standard manipulator's working area 399 2.00 .71895 5.00 3.8246 of are welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on long arm manipulator type designed for increasing of working 399 2.00 5.00 3.7419 .68069 area of are welding robot from Uni Arc Co., Ltd. [UNAC] Satisfaction on new manipulator (AX-V4) designed for moving into narrow space of arc 399 2.00 5.00 3.7694 .69236 welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction Robot Motion Performance of robot controller of arc welding 398 2.00 5.00 3.7186 .72118 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on number of axis controlled by robot controller of arc welding 399 2.00 5.00 3.7544 .74673 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on memory capacity of robot controller .77750 399 2.00 5.00 3.7794 of arc welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on stable arc provided by welding power source of arc welding 5.00 3.7236 .74374 398 2.00 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on low spatter provided by welding power source of arc welding 399 2.00 5.00 3.7118 .74661 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on are stability at very low current ranges by welding power source of 399 2.00 5.00 3.6992 .76662 arc welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on arc stability at very high welding speeds by welding power 399 2.00 5.00 source of arc welding 3.7168 .72118 robots from Uni Arc Co.,

397

Descriptive Statistics

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on positional repeatability of manipulator of arcwelding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6391	.68368
Satisfaction on Operational Software (OS) of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6566	.72285
Satisfaction on current and voltage precisely controlled and supplied by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7093	.70937
Valid N (listwise)	399			0	

Descriptive Statistics

Descriptives

3	ARNTUS	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on Off-Line teaching software (AX-OT) for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6291	.81921
Satisfaction on positioned designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	omnia SINCE1 2.00 ใยาลัย	969 5.00	3.5414	.72130
Satisfaction on slider designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6125	.73053
Satisfaction on sensor designed for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	1.00	5.00	3.5739	.79504
Valid N (listwise)	397				

Ν Minimum Maximum Mean Std. Deviation Satisfaction on changeable arm (Arm side) of manipulator for arc welding 400 2.00 5.00 .73083 3.6650 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on hanging installation capability (Ceiling/Wall type) of Manipulate if Arc welding 400 2.00 5.00 3.6775 .75824 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on manipulator designed for moving into narrow space of Arc 00 3.7193 .70988 399 5.00 welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on built-in coaxial power cable designed for avoiding 400 2.00 5.00 welding obstacle of Arc 3.7225 .72236 welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on compatible to abundant applications of robot controller of arc 399 2.00 5.00 3.7619 .73734 welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on Software PLC Function of robot controller of arc welding 400 2.00 5.00 3.6975 .74658 robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on Data Management with Ethernet of robot controller of arc 399 2.00 5.00 3.6742 .73608 welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on Field net work compatible and reduce cable runs provided 399 2.00 5.00 .73994 3.6992 by robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC] Satisfaction on manipulator and robot controller to connect with various welding processes power source (Co2/ MAG/ TIG/ 400 2.00 5.00 3.7550 .72546 MIG) of arc welding robots from Uni Arc Co., Ltd. [UNAC]

	N	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on welding capability for various kinds of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7550	.72891
Satisfaction on welding capability for various thicknesses of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7025	.72823
Satisfaction on welding power source to meet various welding needs (provides 32 welding processes in pulse MAG/MIG, DC, MIG, Co2/ MAG) of welding power source from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7500	.75094
Valid N (listwise)	396			0	

	N	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on size of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6917	.80682
Satisfaction on size of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00 SINCE	5.00	3.6150	.71977
Satisfaction on size of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	ເລັສລີ 5.00	3.7268	.71808
Valid N (listwise)	398				

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on weight of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.5550	.88540
Satisfaction on weight of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6500	.85106
Satisfaction on weight of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.81243
Valid N (listwise)	399	NER	CI-		

Descriptive Statistics

Descriptives

Descriptive Statistics

0	N	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on speed of manipulator (Air-cut time) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6975	.74322
Satisfaction on speed of robot controller (Processing time) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	BROTHER 400 LABOR	2.00	5.00	3.7300	.72347
Satisfaction on welding speed provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	omnia SIN 2.00 ใยาลัย	969 5.00 മ്രദ്	3.7575	.74839
Valid N (listwise)	400				

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on 1 Year Warranty Period for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	1.00	5.00	3.6792	.82811
Satisfaction on Customer Technical Assistance (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7275	.75144
Satisfaction on On-site Robot checking and Repairing (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7500	.79944
Satisfaction on reserved spare part claim of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7025	.76187
Satisfaction on reserved spare parts for broken down arc welding robots from Uni Arc Co., Ltd. [UNAC]	398	1.00	5.00	3.7638	.80895
Valid N (listwise)	397	×		Call	

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on manipulator's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.73447
Satisfaction on robot controller's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6617	.69695
Satisfaction on welding power source's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7393	.74835
Satisfaction on robot welding consumable parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8221	.81808
Satisfaction on robot welding spare parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8020	.81345
Valid N (listwise)	399	AM			
Descriptives	BROTHER		S		

Descriptive Statistics

Descriptives

*	N	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on standard manipulator's working area of are welding robot from Uni Arc Co., Ltd. [UNAC]	399	SINCE 1	269 26 5.00	3.8246	.71895
Satisfaction on long arm manipulator type designed for increasing of working area of are welding robot from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7419	.68069
Satisfaction on new manipulator (AX-V4) designed for moving into narrow space of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7694	.69236

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction Robot Motion Performance of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	398	2.00	5.00	3.7186	.72118
Satisfaction on number of axis controlled by robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7544	.74673
Satisfaction on memory capacity of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7794	.77750
Satisfaction on stable arc provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	398	2.00	5.00	3.7236	.74374
Satisfaction on low spatter provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7118	.74661
Satisfaction on are stability at very low current ranges by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6992	.76662
Satisfaction on arc stability at very high welding speeds by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	CA 399	2.00	51 GABRIE	3.7168	.72118
Satisfaction on positional repeatability of manipulator of arcwelding robot from Uni Arc Co., Ltd. [UNAC]	399	SINCE1	969 อัสลังใ 5.00	3.6391	.68368
Satisfaction on Operational Software (OS) of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6566	.72285
Satisfaction on current and voltage precisely controlled and supplied by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7093	.70937
Satisfaction on Off-Line teaching software (AX-OT) for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6291	.81921

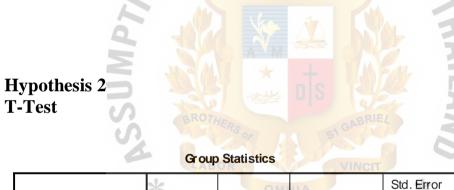
	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on positioned designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.5414	.72130
Satisfaction on slider designed for synchronized with arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6125	.73053
Satisfaction on sensor designed for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	1.00	5.00	3.5739	.79504
Satisfaction on changeable arm (Arm side) of manipulator for arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6650	.73083
Satisfaction on hanging installation capability (Ceiling/Wall type) of Manipulate if Arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6775	.75824
Satisfaction on manipulator designed for moving into narrow space of Arc welding robots from Uni Arc Co., Ltd. [UNAC]	399 8 ^{R0} 7466	2.00	5.00	3.7193	.70988
Satisfaction on built-in coaxial power cable designed for avoiding welding obstacle of Arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7225	.72236
Satisfaction on compatible to abundant applications of robot controller of arc welding robots from Uni Arc	^{&} 399	รกัน เยาลัย ^{2.00}	969 อัสลัม ⁶ 5.00	3.7619	.73734
Co., Ltd. [UNAC] Satisfaction on Software PLC Function of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6975	.74658
Satisfaction on Data Management with Ethernet of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6742	.73608


	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on Field net work compatible and reduce cable runs provided by robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6992	.73994
Satisfaction on manipulator and robot controller to connect with various welding processes power source (Co2/ MAG/ TIG/ MIG) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7550	.72546
Satisfaction on welding capability for various kinds of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7550	.72891
Satisfaction on welding capability for various thicknesses of material by power supply of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7025	.72823
Satisfaction on welding power source to meet various welding needs (provides 32 welding processes in pulse MAG/MIG, DC, MIG, Co2/ MAG) of welding power source from Uni Arc Co., Ltd. [UNAC]	400 ABOR	2.00	S S S S S S S S S S S S S S S S S S S	3.7500	.75094
Satisfaction on size of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	SINCE 1	269 26 (5.00	3.6917	.80682
Satisfaction on size of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6150	.71977
Satisfaction on size of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7268	.71808
Satisfaction on weight of manipulator of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.5550	.88540
Satisfaction on weight of robot controller of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6500	.85106

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on weight of welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.81243
Satisfaction on speed of manipulator (Air-cut time) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.6975	.74322
Satisfaction on speed of robot controller (Processing time) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7300	.72347
Satisfaction on welding speed provided by welding power source of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7575	.74839
Satisfaction on 1 Year Warranty Period for arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	1.00	5.00	3.6792	.82811
Satisfaction on Customer Technical Assistance (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7275	.75144
Satisfaction on On-site Robot checking and Repairing (in warranty) of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00	5.00	3.7500	.79944
Satisfaction on reserved spare part claim of arc welding robots from Uni Arc Co., Ltd. [UNAC]	400	2.00 SINCE1	5.00	3.7025	.76187
Satisfaction on reserved spare parts for broken down arc welding robots from Uni Arc Co., Ltd. [UNAC]	398	(ยาลัย 1.00	ວັດ ດ ວ 5.00	3.7638	.80895
Satisfaction on manipulator's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6942	.73447
Satisfaction on robot controller's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.6617	.69695
Satisfaction on welding power source's durability of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.7393	.74835

	Ν	Minimum	Maximum	Mean	Std. Deviation
Satisfaction on robot welding consumable parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8221	.81808
Satisfaction on robot welding spare parts of arc welding robots from Uni Arc Co., Ltd. [UNAC]	399	2.00	5.00	3.8020	.81345
Valid N (listwise)	384				

	N	Minimum	Maximum	Mean	Std. Deviation
Performance in Operation	397	2.00	5.00	3.7456	.51199
Reliability	399	2.00	5.00	3.6683	.58931
Technical Sophisticate	397	1.75	5.00	3.5894	.63629
Flexibility and Adaptability in use	396	2.00	5.00	3.7155	.50861
Size	398	2.00	5.00	3.6767	.66026
Weight	399	2.00	5.00	3.6332	.76713
Speed	400	2.00	5.00	3.7283	.63988
Warranty	397	2.00	5.00	3.7239	.66161
Durability	399	2.00	5.00	3.7439	.62209
Valid N (listwise)	384		aBl	K	


Hypothesis 1

T-Test

Group Statistics											
					Std. Error						
	Gender	Ν	Mean	Std. Deviation	Mean						
Performance in Operation	Male	285	3.7881	.50609	.02998						
	Female	110	3.6445	.51306	.04892						

Independent Samples Test

			Levene's Test for Equality of Variances		t-test for Equality of Means						
			V	ER	<1.7		Mean	Std. Error	95% Col Interva Differ	of the ence	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Performance in Operation	Equal variances assumed	.041	.839	2.517	393	.012	.14352	.05703	.03141	.25564	
	Equal variances not ass umed			2.502	1 <mark>95.6</mark> 53	.013	.14352	.05737	.03038	.25667	

	Gender	*	Mean	Std. Deviation	Std. Error Mean
Reliability	Male	287	3.7085	.57380	.03387
	Female	110	3.5758	.61730	.05886
			1416	2000	

		Levene's Equality of			t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interval Differ	ofthe		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Reliability	Equal variances assumed	2.761	.097	2.019	395	.044	.13272	.06573	.00350	.26194		
	Equal variances not assumed			1.954	185.398	.052	.13272	.06791	00125	.26669		

Hypothesis 3 T-Test

Group Statistics

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Technical Sophisticate	Male	286	3.6110	.63498	.03755
	Female	109	3.5275	.64311	.06160

	Independent Samples Test											
Levene's Test for Equality of Variances					t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interval Differ	of the		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Technical Sophisticate	Equal variances assumed	.024	.878	1.164	393	.245	.08349	.07173	05753	.22451		
	Equal variances not ass um ed			1.157	193.064	.249	.08349	.07214	05879	.22577		

Hypothesis 4

T-Test

Group Statistics

C C		10	5		Std. Error						
	Gender	N	Mean	Std. Deviation	Mean						
Flexibilityand	Male	285	3.7605	.49344	.02923						
Adaptability in use	Female	109	OM 3.6032	.53491	.05123						
³											

Independent Samples Test

Levene's Test for Equality of Variances			t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interval Differ	of the
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Flexibility and Adaptability in use	Equal variances assumed	.419	.518	2.765	392	.006	.15732	.05690	.04546	.26917
	Equal variances not assumed			2.667	182.392	.008	.15732	.05899	.04093	.27370

Hypothesis 5 T-Test

Group Statistics

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Size	Male	286	3.7156	.63240	.03739
	Female	110	3.5727	.72544	.06917

Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval of the Difference Mean Std. Error Sig. (2-tailed) Difference F Sia df Difference 10% Upper Equal variances Size 4.595 .033 1.931 394 .054 .14289 .07399 -.00257 .28835 assumed Equal variances not assumed .071 1.817 176.272 .14289 .07863 -.01229 .29807

Hypothesis 6 T-Test

Group Statistics Std. Error Gender Ν Mean Std. Deviation Mean Weight Male 288 3.7338 .74570 .04394 Female 109 3.3761 .<mark>76</mark>994 .07375

SINCE1969

Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval of the Std. Error Difference Difference Mean Sig Sig. (2-tailed) Difference F Lower ď Upper Weight Equal variances .52400 .260 .610 4.227 395 .000 .35765 .08461 .19130 assumed Equal variances 4.166 189.317 .000 .35765 .08584 .18831 .52698 notassumed

Hypothesis 7 T-Test

Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
Speed	Male	288	3.7847	.63450	.03739
	Female	110	3.5818	.63925	.06095

Independent Samples Test

		Levene's Equality of	Test for Variances		t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Interval of the Difference		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Speed	Equal variances assumed	.090	.764	2.847	396	.005	.20290	.07126	.06280	.34301	
	Equal variances not assumed		N ^r	2.838	195.928	.005	.20290	.07150	.06189	.34392	

Hypothesis 8 T-Test

Group Statistics Std. Error Gender N Mean Std. Deviation Mean Warranty Male 285 3.8028 .64654 .03830 Female 110 3.5255 .66573 .06348

³ ราวิทยาลัยอัสลังขัง

		Levene's Equality of	Test for Variances		t-test for Equality of Means						
							Mean	Std. Error	95% Cor Interval Differ	of the	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper	
Warranty	Equal variances assumed	.015	.903	3.790	393	.000	.27735	.07318	.13348	.42122	
	Equal variances not assumed			3.741	192.989	.000	.27735	.07413	.13114	.42357	

Hypothesis 9 T-Test

Group Statistics

	Gender	N	Mean	Std. Deviation	Std.Error Mean
Durability	Male	287	3.7882	.62265	.03675
	Female	110	3.6309	.61432	.05857

		Levene's Test for Equality of Variances			t-test for Equality of Means							
							Mean	Std. Error	95% Cor Interval Differ	ofthe		
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Durability	Equal variances assumed	.419	.518	2.260	395	.024	.15724	.06957	.02048	.29401		
	Equal variances not assumed	1		2.274	199.922	.024	.15724	.06915	.02089	.29360		

Hypothesis 10 One way ANOVA

ANOVA

Performance in Operation									
	Sum of								
	Squares	df	Mean Square	F	Sig.				
Between Groups	11.784	4	2.946	12.535	.000				
Within Groups	91.901	391	.235						
Total	103.685	395							

Multiple Comparisons

0

Dependent Variable: Performance in Operation LSD

	9	Mean				
		Difference	16. 4		95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.38096*	.07413	.000	.2352	.5267
	35-54	.60637*	.08 <mark>981</mark>	.000	.4298	.7829
	55-64	.66549*	.16767	.000	.3358	.9951
	Over 64	.62549	.34947	.074	0616	1.3126
22-34	Under 22	38096*	.07413	.000	5267	2352
	35-54	.22541*	.06590	.001	.0958	.3550
	55-64	.28453	.15618	.069	0225	.5916
	Over 64	.24453	.34410	.478	4320	.9211
35-54	Under 22	60637*	.08981	.000	7829	4298
	22-34	22541*	SIN.06590	.001	3550	0958
	55-64	.05912	.16420	.719	2637	.3819
	Over 64	.01912	.34782	.956	6647	.7029
55-64	Under 22	66549*	.16767	.000	9951	3358
	22-34	28453	.15618	.069	5916	.0225
	35-54	05912	.16420	.719	3819	.2637
	Over 64	04000	.37553	.915	7783	.6983
Over 64	Under 22	62549	.34947	.074	-1.3126	.0616
	22-34	24453	.34410	.478	9211	.4320
	35-54	01912	.34782	.956	7029	.6647
	55-64	.04000	.37553	.915	6983	.7783

Hypothesis 11 One way ANOVA

ANOVA

Reliability									
	Sum of								
	Squares	df	Mean Square	F	Sig.				
Between Groups	10.617	4	2.654	8.174	.000				
Within Groups	127.604	393	.325						
Total	138.221	397							

Multiple Comparisons

Dependent Variable: Reliability

LSD				E D c		
		Mean Difference	NIV	спз	95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.44660*	.08640	.000	.2767	.6165
	35-54	.54751*	.10497	.000	.3411	.7539
	55-64	.54359*	.19676	.006	.1568	.9304
	Over 64	.57692	.41060	.161	2303	1.3842
22-34	Under 22	44660*	.08640	.000	6165	2767
	35-54	.10091	.07743	.193	0513	.2531
	55-64	.09699	.18355	.597	2639	.4579
	Over 64	.13033	.40443	.747	6648	.9255
35-54	Under 22	54 <mark>751</mark> *	.10497	.000	7539	3411
	22-34	10 <mark>091</mark>	.07743	.193	2531	.0513
	55-64 🔍	00392	.19299	.984	3833	.3755
	Over 64	.02 <mark>941</mark>	.40880	.943	7743	.8331
55-64	Under 22	54359*	.19676	.006	9304	1568
	22-34	09699	.18 <mark>355</mark>	.597	4579	.2639
	35-54	.00392	.19299	.984	3755	.3833
	Over 64	.03333	.44138	ICE .940	8344	.9011
Over 64	Under 22	57692	.41060	.161	-1.3842	.2303
	22-34	13033	.40443	.747	9255	.6648
	35-54	02941	.40880	.943	8331	.7743
	55-64	03333	.44138	.940	9011	.8344

 $^{\ast}\cdot$ The mean difference is significant at the .05 level.

Hypothesis 12 One way ANOVA

ANOVA

Technical Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.080	4	2.270	5.869	.000
Within Groups	151.238	391	.387		
Total	160.318	395			

Multiple Comparisons

Dependent Variable: Technical Sophisticate LSD

		Mean Difference	И.	VE	95% Confide	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.38227*	.09430	.000	.1969	.5677
	35-54	.54181*	.11532	.000	.3151	.7685
	55-64	.32212	.21475	.134	1001	.7443
	Over 64	.44712	.44815	.319	4340	1.3282
22-34	Under 22	38227*	.09430	.000	5677	1969
	35-54	.15955	.08553	.063	0086	.3277
	55-64	06015	.20033	.764	4540	.3337
	Over 64	.06485	.44142	.883	8030	.9327
35-54	Under 22	54181*	.11532	.000	7685	3151
	22-34	15955	.08553	.063	3277	.0086
	55-64	21970	.21105	.299	6346	.1952
	Over 64	09470	.44638	.832	9723	.7829
55-64	Under 22	32212	.21475	.134	7443	.1001
	22-34	.06015	.20033	.764	3337	.4540
	35-54	.21970	.21105	.299	1952	.6346
	Over 64	.12500	.48175	.795	8221	NCIT 1.0721
Over 64	Under 22	44712	.44815	.319	<mark>-1.32</mark> 82	.4340
	22-34	06485	.44142	.883	9327	.8030
	35-54	.09470	.44638	.832	7829	.9723
	55-64	12500	.48175	.795	-1.0721	.8221
*. The m	nean differen	ce is significar	nt at the .05	evel.	จัยอัสด์	137

Hypothesis 13 One way ANOVA

ANOVA

Flexibility and Adaptability in use									
	Sum of								
	Squares	df	Mean Square	F	Sig.				
Between Groups	8.181	4	2.045	8.487	.000				
Within Groups	93.983	390	.241						
Total	102.164	394							

Elevibility and Adaptability in use

Multiple Comparisons Dependent Variable: Flexibility and Adaptability in use LSD

		Mean		Jus		~
		Difference			95% Confide	ence Interval
(I) Age	(J) Age	🔪 (I-J) 📈	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.30172*	.07448	. <mark>0</mark> 00	.1553	.4481
	35-54	.52509*	.09072	.000	.3467	.7035
	55-64	.3 <mark>3429</mark> *	.16951	.049	.0010	.6676
	Over 64	.51763	. <mark>3</mark> 5373	.144	1778	1.2131
22-34	Under 22	30172*	.07448	.000	4481	1553
	35-54	.22337*	.06715	.001	.0913	.3554
	55-64	.03258	.15815	.837	2784	.3435
	Over 64	.21 <mark>59</mark> 1	.34843	.536	4691	.9009
35-54	Under 22	52 <mark>50</mark> 9*	.09072	.000	7035	3467
	22-34	22337*	.06715	.001	3554	0913
	55-64	.19080	.1 <mark>6642</mark>	A.252	5180	.1364
	Over 64	00746	.35226	.983	7000	.6851
55-64	Under 22	33429*	.16951	.049	6676	0010
	22-34	03258	.15815	.837	3435	.2784
	35-54	.19080	.16642	.252	1364	.5180
	Over 64	.18333	.38025	.630	5643	.9309
Over 64	Under 22	51763	.35373	.144	-1.2131	.1778
	22-34	21591	.34843	.536	9009	.4691
	35-54	.00746	.35226	.983	6851	.7000
	55-64	18333	.38025	.630	9309	.5643

Hypothesis 14 One way ANOVA

ANOVA

Size					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	15.521	4	3.880	9.655	.000
Within Groups	157.550	392	.402		
Total	173.071	396			

Multiple Comparisons

Dependent Variable: Size						
		Mean Difference			95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.49964*	.09615	.000	.3106	.6887
	35-54	.6 <mark>6214</mark> *	.11679	.000	.4325	.8918
	55-64	.74744*	.21891	.001	.3171	1.1778
	Over 64	.98077*	.45682	.032	.0826	1.8789
22-34	Under 22	49964*	.09615	.000	6887	3106
	35-54	.16250	.08618	.060	0069	.3319
	55-64	.24780	.20422	.226	1537	.6493
	Over 64	.48113	44997	.286	ABRIE 4035	1.3658
35-54	Under 22	6 <mark>62</mark> 14*	.11679	.000	8918	4325
	22-34	1 <mark>62</mark> 50	.08618	.060	3319	.0069
	55-64	.08529	.21471	.691	3368	.5074
	Over 64	.31863	.45483	INIA .484	5756	1.2128
55-64	Under 22	74744*	.21891	E 1 0.001	-1.1778	3171
	22-34	24780	.20422	.226	6493	.1537
	35-54	08529	.21471	.691	5074	.3368
	Over 64	.23333	.49107	.635	7321	1.1988
Over 64	Under 22	98077*	.45682	.032	-1.8789	0826
	22-34	48113	.44997	.286	-1.3658	.4035
	35-54	31863	.45483	.484	-1.2128	.5756
* 7	55-64	23333	.49107	.635	-1.1988	.7321

Hypothesis 15 One way ANOVA

ANOVA

Weight					
	Sum of			_	0.
	Squares	df	Mean Square		Sig.
Between Groups	29.051	4	7.263	13.918	.000
Within Groups	205.080	393	.522		
Total	234.131	397			

Multiple Comparisons

Dependent Variable: Weight

LSD				100	-	
		Mean Difference	NI	IER.	95% Confid	ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.41389*	.11039	.000	.1969	.6309
	35-54	.91667*	.13381	.000	.6536	1.1797
	55-64	.93137*	.24983	.000	.4402	1.4225
	Over 64	1.26471*	.52072	.016	.2410	2.2884
22-34	Under 22	413 <mark>89</mark> *	.11039	.000	6309	1969
	35-54	.50277*	.09812	.000	.3099	.6957
	55-64	.51748*	.23268	.027	.0600	.9749
	Over 64	.85081	.51271	.098	1572	1.8588
35-54	Under 22	91667*	.13381	.000	-1.1797	6536
	22-34	50277*	.09812	.000	6957	3099
	55-64	.01471	.24466	.952	4663	.4957
	Over 64	.34804	.51826	.502	6709	1.3669
55-64	Under 22	93137*	.24983	.000	-1.4225	4402
	22-34	51748*	.23268	.027	9749	0600
	35-54	01471	.24466	OM .952	4957	.4663
	Over 64	.33333	.55955	.552	7668	1.4334
Over 64	Under 22	-1.26471*	.52072	.016	-2.2884	2410
	22-34	85081	.51271	.098	-1.8588	.1572
	35-54	34804	.51826	.502	-1.3669	.6709
	55-64	33333	.55955	.552	-1.4334	.7668

Hypothesis 16 One way ANOVA

ANOVA

Speed					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	17.494	4	4.374	11.813	.000
Within Groups	145.870	394	.370		
Total	163.364	398			

Multiple Comparisons

Dependent Variable: Speed

LSD		200 u					_
		Mean Difference	N	VEI	95% Confid	ence Interval	
(I) Age	(J) Age	(I-J)	Std. Error	Sig. 🌧	Lower Bound	Upper Bound	
Under 22	22-34	.55570*	.09223	.000	.3744	.7370	
	35-54	.70928*	.11209	.000	.4889	.9296	
	55-64	.77692*	.21010	.000	.3639	1.1900	1
	Over 64	.57692	.43844	.189	2851	1.4389	
22-34	Under 22	55570*	.09223	.000	7370	3744	
	35-54	.15358	.08265	.064	0089	.3161	
	55-64	.22122	.19598	.260	1641	.6065	F
	Over 64	.02122	.43186	.961	8278	.8703	
35-54	Under 22	70928*	.11209	.000	9296	4889	
	22-34	15358	.08265	.064	3161	.0089	
	55-64	.06765	.20608	.743	3375	.4728	
	Over 64	13235	.43653	.762	9906	.7259	
55-64	Under 22	77692*	.21010	.000	-1.1900	3639	
	22-34	22122	.19598	.260	6065	.1641	
	35-54	06765	4.20608	.743	4728	.3375	
	Over 64	20000	.47131	.672	-1.1266	.7266	
Over 64	Under 22	57692	.43844	.189	-1.4389	.2851	
	22-34	02122	.43186	SIN.961	1060.8703	.8278	
	35-54	.13235	.43653	.762	7259	.9906	
	55-64	.20000	.47131	.672	7266	1.1266	

Hypothesis 17 One way ANOVA

ANOVA

Warranty					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	19.622	4	4.906	12.486	.000
Within Groups	153.615	391	.393		
Total	173.237	395			

Multiple Comparisons

Dependent Variable: Warranty

LSD		-		E D c		
		Mean Difference	NIV	ERS		ence Interval
(I) Age	(J) Age	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Under 22	22-34	.41597*	.09510	.000	.2290	.6029
	35-54	.72149*	.11547	.000	.4945	.9485
	55-64	.77385*	.21643	.000	. <mark>3</mark> 483	1.1994
	Over 64	1.653 <mark>85</mark> *	.45166	.000	.7659	2.5418
22-34	Under 22	41597*	.09510	.000	6029	2290
	35-54	.30553*	.08524	.000	.1379	.4731
	55-64	.35788	.20193	.077	0391	.7549
	Over 64	1.23788*	.44489	.006	.3632	2.1126
35-54	Under 22	72149*	.11547	.000	9485	4945
	22-34	30 <mark>553*</mark>	.08524	.000	.4731	1379
	55-64 🔍	.05235	.21229	.805	3650	.4697
	Over 64	.93 <mark>235</mark> *	.44968	.039	.0482	1.8165
55-64	Under 22	77385*	⁸⁰ .21643	.000	-1.1994	3483
	22-34	35788	.20193	.077	7549	.0391
	35-54	05235	.21229	.805	4697	.3650
	Over 64	.88000	.48552	ICE .0716	0746	1.8346
Over 64	Under 22	-1.65385*	.45166	.000	-2.5418	7659
	22-34	-1.23788*	.44489	.006	-2.1126	3632
	35-54	93235*	.44968	.039	-1.8165	0482
	55-64	88000	.48552	.071	-1.8346	.0746

Hypothesis 18 One way ANOVA

ANOVA

Durability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	16.702	4	4.176	11.952	.000
Within Groups	137.299	393	.349		
Total	154.002	397			

Multiple Comparisons

Dependent Variable: Durability

LSDMean Difference (I-J)Mean Difference (I-J) 95% Confidence Interval Lower Bound 95% Confidence Interval Lower BoundUnder 2222-34.42626*.08959.000.2501.602435-54.70144*.10924.000.4867.916255-64.75308*.20409.000.35181.1543Over 641.17308*.42591.006.33572.010422-34Under 22.42626*.08959.000.6024.250135-54.27517*.08076.001.1164.434055-64.32682.19038.087.0475.7011Over 64.74682.41951.076.07791.571635-54Under 22.70144*.10924.000.9162.486722-34.27517*.08076.001.4340.116455-64.05164.20038.797.3423.4456Over 64.47164.42414.267.36221.305555-64Under 22.75308*.20409.000.1.1543.351822-34.32682.19038.087.7011.047535-54.05164.20038.797.4456.3423Over 64.42000.45784.360.48011.3201Over 64.006.20104.3357.3622.3357Over 64.42000.45784.360.48011.3201Over 64.42000.45784<	LSD	variable: D	urability	10000			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130			NE	1917		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Mean				
Under 22 22-34 .42626* .08959 .000 .2501 .6024 35-54 .70144* .10924 .000 .4867 .9162 55-64 .75308* .20409 .000 .3518 1.1543 Over 64 1.17308* .42591 .006 .3357 2.0104 22-34 Under 22 42626* .08959 .000 6024 2501 35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 4340 1164 55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64						95% Confide	ence Interval
35-54 .70144* .10924 .000 .4867 .9162 55-64 .75308* .20409 .000 .3518 1.1543 Over 64 1.17308* .42591 .006 .3357 2.0104 22-34 Under 22 .42626* .08959 .000 .6024 .2501 35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 .0475 .7011 Over 64 .74682 .41951 .076 .0779 1.5716 35-54 Under 22 .70144* .10924 .000 .9162 .4867 22-34 .27517* .08076 .001 .41450 .1164 55-64 .05164 .20038 .797 .3423 .4456 Over 64 .47164 .42414 .267 .3622 1.3055 55-64 Under 22 .75308* .20409 .000 .11543 3518 22-34 .326	(I) Age	(J) Age 🦷	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
55-64 .75308* .20409 .000 .3518 1.1543 Over 64 1.17308* .42591 .006 .3357 2.0104 22-34 Under 22 42626* .08959 .000 6024 2501 35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 .70144* .10924 .000 9162 4867 22-34 .27517* .08076 .001 .4340 1164 55-64 .05164 .20038 .797 .3423 .4456 Over 64 .47164 .42414 .267 .3622 1.3055 55-64 Under 22 .75308* .20409 .000 -1.1543 .3518 22-34 .32682 .19038 .087 .7011 .0475 35-54 <t< td=""><td>Under 22</td><td>22-34</td><td>.426<mark>26*</mark></td><td>.08959</td><td>.000</td><td>.2501</td><td>.6024</td></t<>	Under 22	22-34	.426 <mark>26*</mark>	.08959	.000	.2501	.6024
Over 64 1.17308* .42591 .006 .3357 2.0104 22-34 Under 22 42626* .08959 .000 6024 2501 35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 .4340 1164 55-64 .05164 .20038 .797 .3423 .4456 Over 64 .47164 .42414 .267 .3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 .3518 22-34 .32682 .19038 .087 .7011 .0475 35-54 .05164 .20038 .797 .4456 .3423 Over 64		35-54	.70144*	.10924	.000	.4867	.9162
22-34 Under 22 42626* .08959 .000 6024 2501 35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 .4340 1164 55-64 .05164 .20038 .797 .3423 .4456 Over 64 .47164 .42414 .267 .3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 .7011 .0475 35-54 .05164 .20038 .797 .4456 .3423 Over 64 .42000 .45784 .360 .4801 1.3201 Over 64		55-64	.75308*	.20409	.000	.3518	1.1543
35-54 .27517* .08076 .001 .1164 .4340 55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 .4340 .1164 55-64 .05164 .20038 .797 .3423 .4456 Over 64 .47164 .42414 .267 .3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 .7011 .0475 35-54 .05164 .20038 .797 .4456 .3423 Over 64 .42000 .45784 .360 .4801 1.3201 Over 64 .42000 .45784 .360 .4801 1.3201 Over 64 Under 22 <		Over 64	1.17308*	.42591	.006	.3357	2.0104
55-64 .32682 .19038 .087 0475 .7011 Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 4340 1164 55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779	22-34	Under 22	42626*	.0 <mark>8</mark> 959	.000	6024	2501
Over 64 .74682 .41951 .076 0779 1.5716 35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 4340 1164 55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 .05164 .20038 .797 .4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 .22-34 .74682 .41951 .076 -1.5716 .0779		35-54	.27517*	.08076	.001	.1164	.4340
35-54 Under 22 70144* .10924 .000 9162 4867 22-34 27517* .08076 .001 4340 1164 55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		55-64	.32682	.19038	.087	0475	.7011
22-34 27517* .08076 .001 4340 1164 55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		Over 64	.74682	.41951	.076	·.0779	1.5716
55-64 .05164 .20038 .797 3423 .4456 Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779	35-54	Under 22	70144*	.10924	.000	9162	4867
Over 64 .47164 .42414 .267 3622 1.3055 55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		22-34	27517*	.08076	.001	4340	1164
55-64 Under 22 75308* .20409 .000 -1.1543 3518 22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		55-64	.05164	.20038	.797	3423	.4456
22-34 32682 .19038 .087 7011 .0475 35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		Over 64	.47164	.42414	.267	3622	1.3055
35-54 05164 .20038 .797 4456 .3423 Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779	55-64	Under 22	75308*	.20409	1060000	-1.1543	3518
Over 64 .42000 .45784 .360 4801 1.3201 Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		22-34	32682	.19038	.087	7011	.0475
Over 64 Under 22 -1.17308* .42591 .006 -2.0104 3357 22-34 74682 .41951 .076 -1.5716 .0779		35-54	05164	.20038	.797	4456	.3423
22-3474682 .41951 .076 -1.5716 .0779		Over 64	.42000	.45784	.360	4801	1.3201
	Over 64	Under 22	-1.17308*	.42591	.006	-2.0104	3357
35-5447164 .42414 .267 -1.3055 .3622		22-34	74682	.41951	.076	-1.5716	.0779
		35-54	47164	.42414	.267	-1.3055	.3622
55-6442000 .45784 .360 -1.3201 .4801		55-64	42000	.45784	.360	-1.3201	.4801

Hypothesis 19 One way ANOVA

ANOVA

Performance in Operation

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	16.943	5	3.389	15.253	.000
Within Groups	86.862	391	.222		
Total	103.805	396			

Multiple Comparisons

Dependent Variable: Performance in Operation						
LSD						
		Mean		101	95% Confide	
(I) Income	(J) Income	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.26954*	.05951	.000	.1525	.3865
Dolon Tojo do Dalik	20,001-30,000 baht	.55179*	.06896	.000	.4162	.6874
	30,001-40,000 baht	.55833*	.10757	.000	.3469	.7698
	40,001-50,000 baht	.70417*	.27634	.011	.1609	1.2475
	Above 50,000 baht	.68750*	.33674	.042	.0255	1.3495
10,000-20,000 baht	Below 10,000 baht	26954*	.05951	.000	3865	1525
, ,	20,001-30,000 baht	.28224*	.06057	.000	.1632	.4013
	30,001-40,000 baht	.28879*	.10239	.005	.0875	.4901
	40,001-50,000 baht	.43462	.27437	.114	1048	.9740
	Above 50,000 baht	.41796	.33512	.213	2409	1.0768
20,001-30,000 baht	Below 10,000 baht	55179*	.06896	.000	6874	4162
	10,000-20,000 baht	28224*	.06057	.000	4013	1632
	30,001-40,000 baht	ROT.00655	.10816	.952	BRIE2061	.2192
	40,001-50,000 baht	.15238	.27657	.582	3914	.6961
	Above 50,000 baht	.13571	.33692	.687	5267	.7981
30,001-40,000 baht	Below 10,000 baht	55833*	.10757	.000	7698	3469
	10,000-20,000 baht	28879*	.10239	.005	NCIT4901	0875
	20,001-30,000 baht	00655	.10816	.952	2192	.2061
	40,001-50,000 baht	.14583	.28863	.614	4216	.7133
	Above 50,000 baht	.12917	.34689	.710	5528	.8112
40,001-50,000 baht	Below 10,000 baht	70417*	.27634	9 0.011	-1.2475	1609
	10,000-20,000 baht	43462	.27437	.114	9740	.1048
	20,001-30,000 baht	15238	.27657	.582	6961	.3914
	30,001-40,000 baht	14583	.28863	.614	7133	.4216
	Above 50,000 baht	01667	.43026	.969	8626	.8293
Above 50,000 baht	Below 10,000 baht	68750*	.33674	.042	-1.3495	0255
	10,000-20,000 baht	41796	.33512	.213	-1.0768	.2409
	20,001-30,000 baht	13571	.33692	.687	7981	.5267
	30,001-40,000 baht	12917	.34689	.710	8112	.5528
	40,001-50,000 baht	.01667	.43026	.969	8293	.8626

Hypothesis 20 One way ANOVA

ANOVA

Reliability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	10.626	5	2.125	6.546	.000
Within Groups	127.595	393	.325		
Total	138.221	398			

Multiple Comparisons

Dependent Variable: Reliability

LSD	,					
		Mean Difference	IER	S17	95% Confide	
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.21735*	.07170	.003	.0764	.3583
	20,001-30,000 baht	.38604*	.08292	.000	.2230	.5491
	30,001-40,000 baht	.56357*	.12990	.000	.3082	.8190
	40,001-50,000 baht	.56357	.33402	.092	0931	1.2203
	Above 50,000 baht	.56357	.40704	.167	2367	1.3638
10,000-20,000 baht	Below 10,000 baht	21735*	.07170	.003	3583	0764
	20,001-30,000 baht	.16869*	.07296	.021	.0253	.3121
	30,001-40,000 baht	.34622*	.12378	.005	.1029	.5896
	40,001-50,000 baht	.34622	.33169	.297	3059	.9983
	Above 50,000 baht	.34622	.40 <mark>513</mark>	.393	4503	1.1427
20,001-30,000 baht	Below 10,000 baht	38604*	.08292	.000	5491	2230
	10,000-20,000 baht	16869*	.07296	.021	3121	0253
	30,001-40,000 baht	.17754	.13060	.175	0792	.4343
	40,001-50,000 baht	.17754	.33429	.596	4797	.8348
	Above 50,000 baht	.17754	.40726	.663	6232	.9782
30,001-40,000 baht	Below 10,000 baht	<u>a e56357*</u>	.12990	.000	8190	3082
	10,000-20,000 baht	34622*	.12378	.005	5896	1029
	20,001-30,000 baht	17754	0.13060	.175	4343	.0792
	40,001-50,000 baht	.00000	.34893	1.000	6860	.6860
	Above 50,000 baht	.00000	.41936	969.000	8245	.8245
40,001-50,000 baht	Below 10,000 baht	56357	.33402	.092	-1.2203	.0931
	10,000-20,000 baht	34622	.33169	.297	9983	.3059
	20,001-30,000 baht	17754	.33429	.596	8348	.4797
	30,001-40,000 baht	.00000	.34893	1.000	6860	.6860
	Above 50,000 baht	.00000	.52015	1.000	-1.0226	1.0226
Above 50,000 baht	Below 10,000 baht	56357	.40704	.167	-1.3638	.2367
	10,000-20,000 baht	34622	.40513	.393	-1.1427	.4503
	20,001-30,000 baht	17754	.40726	.663	9782	.6232
	30,001-40,000 baht	.00000	.41936	1.000	8245	.8245
	40,001-50,000 baht	.00000	.52015	1.000	-1.0226	1.0226

Hypothesis 21 One way ANOVA

ANOVA

Technical Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	9.682	5	1.936	5.026	.000
Within Groups	150.643	391	.385		
Total	160.326	396			

Multiple Comparisons

Dependent Variable: Technical Sophisticate

LSD		1000	Do			
	UN	Mean Difference	K21	4	95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.15903*	.07845	.043	.0048	.3133
	20,001-30,000 b <mark>aht</mark>	.36727*	.09031	.000	.1897	.5448
	30,001-40,000 baht	.50951*	.14410	.000	.2262	.7928
	40,001-50,000 baht	.03125	.36392	.932	6842	.7467
	Above 50,0 <mark>00 baht</mark>	.78125	.44345	.079	0906	1.6531
10,000-20,000 baht	Below 10,000 baht	15903*	.07845	.043	3133	0048
	20,001-30,000 baht	.20824*	.07927	.009	.0524	.3641
	30,001-4 <mark>0,000 baht</mark>	.35048*	.13745	.011	.0803	.6207
	40,001-50,000 baht	12778	.36134	.724	8382	.5826
0	Above 50,000 baht	.62222	.44134	BRIE/ .159	2455	1.4899
20,001-30,000 baht	Below 10,000 baht	36727*	.09031	.000	5448	1897
	10,000-20,000 baht	20824*	.07927	.009	3641	0524
	30,001-40,000 baht	.14224	.14455	.326 ICIT	1419	.4264
	40,001-50,000 baht	33602	. <mark>36</mark> 410	.357	-1.0519	.3798
	Above 50,000 baht	.41398	.44360	.351	4582	1.2861
30,001-40,000 baht	Below 10,000 baht	50951*	0.14410	.000	7928	2262
	10,000-20,000 baht	35048*	.13745	.011	6207	0803
	20,001-30,000 baht	14224	.14455	.326	4264	.1419
	40,001-50,000 baht	47826	.38102	.210	-1.2274	.2708
	Above 50,000 baht	.27174	.45759	.553	6279	1.1714
40,001-50,000 baht	Below 10,000 baht	03125	.36392	.932	7467	.6842
	10,000-20,000 baht	.12778	.36134	.724	5826	.8382
	20,001-30,000 baht	.33602	.36410	.357	3798	1.0519
	30,001-40,000 baht	.47826	.38102	.210	2708	1.2274
	Above 50,000 baht	.75000	.56663	.186	3640	1.8640
Above 50,000 baht	Below 10,000 baht	78125	.44345	.079	-1.6531	.0906
	10,000-20,000 baht	62222	.44134	.159	-1.4899	.2455
	20,001-30,000 baht	41398	.44360	.351	-1.2861	.4582
	30,001-40,000 baht	27174	.45759	.553	-1.1714	.6279
	40,001-50,000 baht	75000	.56663	.186	-1.8640	.3640

Hypothesis 22 One way ANOVA

ANOVA

Flexibility and Adaptability in use

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	14.496	5	2.899	12.895	.000
Within Groups	87.685	390	.225		
Total	102.181	395			

Multiple Comparisons Dependent Variable: Flexibility and Adaptability in use

LSD			-			
(I) Income	(J) Income	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	ence Interval Upper Bound
Below 10,000 baht	10,000-20,000 baht	.20392*	.06004	.001	.0859	.3220
	20,001-30,000 baht	.42798*	.06899	.000	.2923	.5636
	30,001-40,000 baht	.64931*	.10821	.000	.4366	.8621
	40,001-50,000 baht	.31597	.27800	.256	2306	.8625
	Above 50,000 baht	1.07986*	.33876	.002	.4138	1.7459
10,000-20,000 baht	Below 10,000 baht	20392*	.06004	.001	3220	0859
1	20,001-30,000 baht	.22405*	.06067	.000	.1048	.3433
	30,001-40,000 baht	.44538*	.10311	.000	.2427	.6481
	40,001-50,000 baht	1205	.27606	.685	4307	.6548
	Above 50,000 baht	.87594*	.33716	.010	.2130	1.5388
20,001-30,000 baht	Below 10,000 baht	42798*	.06899	.000	5636	2923
	10,000-20,000 baht	22405*	.06067	.000	3433	1048
	30,001-40,000 baht	.2 <mark>2133*</mark>	.10856	.042	.0079	.4348
	40,001-50,000 baht	11201	.27814	.687	6588	.4348
	Above 50,000 baht	.65188	.33887	.055	0144	1.3181
30,001-40,000 baht	Below 10,000 baht	64931*	.10821	.000	8621	4366
	10,000-20,000 baht	44538*	.10311	.000	6481	2427
	20,001-30,000 baht	22133*	.10856	.042	4348	0079
	40,001-50,000 baht	33333	.29037	.252	9042	.2375
	Above 50,000 baht	.43056	.34898	.218	2556	1.1167
40,001-50,000 baht	Below 10,000 baht	31597	.27800	.256	8625	.2306
	10,000-20,000 baht	11205	.27606	.685	6548	.4307
	20,001-30,000 baht	.11201	.27814	.687	4348	.6588
	30,001-40,000 baht	.33333	.29037	.252	2375	.9042
	Above 50,000 baht	.76389	.43285	.078	0871	1.6149
Above 50,000 baht	Below 10,000 baht	-1.07986*	.33876	.002	-1.7459	4138
	10,000-20,000 baht	87594*	.33716	.010	-1.5388	2130
	20,001-30,000 baht	65188	.33887	.055	-1.3181	.0144
	30,001-40,000 baht	43056	.34898	.218	-1.1167	.2556
	40,001-50,000 baht	76389	.43285	.078	-1.6149	.0871

 $^{\ast}\cdot$ The mean difference is significant at the .05 level.

Hypothesis 23 One way ANOVA

ANOVA

Size					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	19.037	5	3.807	9.690	.000
Within Groups	154.034	392	.393		
Total	173.071	397			

Multiple Comparisons

Dapan dant Variables	Sizo					
Dependent Variable: LSD	Size		RS	17.		
	U.	Mean		1	0	
	-	Difference			95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 bah <mark>t</mark>	.29769*	.07922	.000	.1419	.4534
	20,001-30,000 baht	.49530*	.09120	.000	.3160	.6746
	30,001-40,000 baht	.64583*	.14306	.000	.3646	.9271
1	40,001-50,0 <mark>00 baht</mark>	.64583	.36752	.080	0767	1.3684
	Above 50,000 baht	1.64583*	.44784	.000	.7654	2.5263
10,000-20,000 baht	Below 10,000 baht	297 <mark>6</mark> 9*	.07922	.000	4534	1419
	20,001-30,000 baht	.19761*	.08005	.014	.0402	.3550
	30,001-40,000 baht	.34815*	.13622	.011	.0803	.6160
	40,001-50,000 baht	.34815	.36492	.341	3693	1.0656
	Above 50,000 baht	Sec1.34815*	.44571	.003	.4719	2.2244
20,001-30,000 baht	Below 10,000 baht	49530*	.09120	.000	6746	3160
	10,000-20,00 <mark>0 baht</mark>	19761*	.08005	.014	3550	0402
	30,001-40,000 baht	.15054	.14352	.295	1316	.4327
	40,001-50,000 baht	.15054	.36770	.682	5724	.8735
	Above 50,000 baht	1.15054*	.44799	.011	.2698	2.0313
30,001-40,000 baht	Below 10,000 baht	64583*	.14306	.000	9271	3646
	10,000-20,000 baht	34815*	.13622	.011	6160	0803
	20,001-30,000 baht	15054	.14352	.295	4327	.1316
	40,001-50,000 baht	.00000	.38387	1.000	7547	.7547
	Above 50,000 baht	1.00000*	.46135	.031	.0930	1.9070
40,001-50,000 baht	Below 10,000 baht	64583	.36752	.080	-1.3684	.0767
	10,000-20,000 baht	34815	.36492	.341	-1.0656	.3693
	20,001-30,000 baht	15054	.36770	.682	8735	.5724
	30,001-40,000 baht	.00000	.38387	1.000	7547	.7547
	Above 50,000 baht	1.00000	.57223	.081	1250	2.1250
Above 50,000 baht	Below 10,000 baht	-1.64583*	.44784	.000	-2.5263	7654
	10,000-20,000 baht	-1.34815*	.44571	.003	-2.2244	4719
	20,001-30,000 baht	-1.15054*	.44799	.011	-2.0313	2698
	30,001-40,000 baht	-1.00000*	.46135	.031	-1.9070	0930
	40,001-50,000 baht	-1.00000	.57223	.081	-2.1250	.1250

Hypothesis 24 One way ANOVA

ANOVA

Weight					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	29.676	5	5.935	11.403	.000
Within Groups	204.545	393	.520		
Total	234.221	398			

Multiple Comparisons

Dependent Variable: LSD	Weight	NE	RS/	71.		
	201	Mean Difference		0	95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 ba <mark>h</mark> t	.32086*	.09109	.000	.1418	.4999
	20,001-30,000 baht	.65972*	.104 <mark>97</mark>	.000	.4534	.8661
	30,001-40,0 <mark>00 bah</mark> t	.82639*	.16464	.000	.5027	1.1501
	40,001-50,000 baht	.32639	.42298	.441	5052	1.1580
	Above 50,000 baht	1.65972*	.51542	.001	.6464	2.6730
10,000-20,000 baht	Below 10,000 baht	32086*	.09109	.000	4999	1418
	20,001-30,000 baht	.33886*	.09204	.000	.1579	.5198
	30,001-40,000 baht	.50552*	.15672	.001	.1974	.8136
	40,001-50,000 baht	.00552	.41996	BRIE .990	8201	.8312
	Above 50,000 baht	1.33886*	.51294	.009	.3304	2.3473
20,001-30,000 baht	Below 10,000 baht	65972*	.10497	.000	8661	4534
	10,000-20,0 <mark>00 baht</mark>	33886*	.09204	NCIT .000	5198	1579
	30,001-40,000 baht	.16667	.16518	.314	.1581	.4914
	40,001-50,000 baht	33333	.42319	.431	-1.1653	.4987
	Above 50,000 baht	1.00000	.51559	.053	0137	2.0137
30,001-40,000 baht	Below 10,000 baht	82639*	.16464	.000	-1.1501	5027
	10,000-20,000 baht	50552*	.15672	.001	8136	1974
	20,001-30,000 baht	16667	.16518	.314	4914	.1581
	40,001-50,000 baht	50000	.44179	.258	-1.3686	.3686
	Above 50,000 baht	.83333	.53096	.117	2106	1.8772
40,001-50,000 baht	Below 10,000 baht	32639	.42298	.441	-1.1580	.5052
	10,000-20,000 baht	00552	.41996	.990	8312	.8201
	20,001-30,000 baht	.33333	.42319	.431	4987	1.1653
	30,001-40,000 baht	.50000	.44179	.258	3686	1.3686
	Above 50,000 baht	1.33333*	.65858	.044	.0386	2.6281
Above 50,000 baht	Below 10,000 baht	-1.65972*	.51542	.001	-2.6730	6464
	10,000-20,000 baht	-1.33886*	.51294	.009	-2.3473	3304
	20,001-30,000 baht	-1.00000	.51559	.053	-2.0137	.0137
	30,001-40,000 baht	83333	.53096	.117	-1.8772	.2106
	40,001-50,000 baht	-1.33333*	.65858	.044	-2.6281	0386

Hypothesis 25 One way ANOVA

ANOVA

Speed					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	18.616	5	3.723	10.134	.000
Within Groups	144.752	394	.367		
Total	163.368	399			

Multiple Comparisons

Multiple Comparisons							
Dependent Variable:	Speed	114 -	10				
LSD			_				
					2		
		Mean			95% Confide		
(I) Income	(J) Income	Difference	Std. Error	Sig.		Upper Bound	
Below 10,000 baht	10,000-20,000 baht	(I-J) .36682*	.07627	.000	Lower Bound .2169	.5168	
	20,001-30,000 baht	.57396*	.08797	.000	.4010	.7469	
	30,001-40,000 baht	.59994*	.13819	.000	.4010	.8716	
	40,001-50,000 baht	.62772	.35532	.000	0708	1.3263	
	Above 50,000 baht	.73883	.43299	.070	1124	1.5203	
10,000-20,000 baht	Below 10,000 baht	36682*	.07627	.009	5168	2169	
10,000 20,000 ban	20,001-30,000 baht	.20713*	.07733	.000	.0551	.3592	
	30,001-40,000 baht	.23312	.13167	.000	0258	.4920	
	40,001-50,000 baht	.26090	.35284	.460	4328	.9546	
	Above 50,000 baht	.37201	.43096	.389	4753	1.2193	
20,001-30,000 baht	Below 10,000 baht	57396*	.08797	.000	7469	4010	
,	10,000-20,000 baht	20713*	.07733	.008	3592	0551	
	30,001-40,000 baht	.02599	.13877	.852	2468	.2988	
	40,001-50,000 baht	.05376	35555	.880	6452	.7528	
	Above 50,000 baht	.16487	.43318	.704	6868	1.0165	
30,001-40,000 baht	Below 10,000 baht	59994*	.13819	.000	8716	3283	
	10,000-20,000 baht	23312	.13167	.077	4920	.0258	
	20,001-30,000 baht	02599	.13877	.852	2988	.2468	
	40,001-50,000 baht	.02778	.37118	.940	7020	.7575	
	Above 50,000 baht	.13889	.44610	.756	7381	1.0159	
40,001-50,000 baht	Below 10,000 baht	62772	.35532	.078	-1.3263	.0708	
	10,000-20,000 baht	26090	.35284	.460	9546	.4328	
	20,001-30,000 baht	05376	.35555	.880	7528	.6452	
	30,001-40,000 baht	02778	.37118	.940	7575	.7020	
	Above 50,000 baht	.11111	.55332	.841	9767	1.1 989	
Above 50,000 baht	Below 10,000 baht	73883	.43299	.089	-1.5901	.1124	
	10,000-20,000 baht	37201	.43096	.389	-1.2193	.4753	
	20,001-30,000 baht	16487	.43318	.704	-1.0165	.6868	
	30,001-40,000 baht	13889	.44610	.756	-1.0159	.7381	
	40,001-50,000 baht	11111	.55332	.841	-1.1989	.9767	

Hypothesis 26 One way ANOVA

ANOVA

Warranty					
	Sum of	df	Moon Square	L	Sig
	Squares	df	Mean Square	F	Sig.
Between Groups	27.736	5	5.547	14.896	.000
Within Groups	145.606	391	.372		
Total	173.343	396			

Multiple Comparisons

Dependent Variable: Warranty						
	NU N	Mean Difference		14	95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.38235*	.07679	.000	.2314	.5333
	20,001-30,000 baht	.66944*	.08931	.000	.4938	.8450
	30,001-40,000 baht	.73222*	.13912	.000	.4587	1.0057
	40,001-50,0 <mark>00 baht</mark>	.64055	.35773	.074	0628	1.3439
	Above 50,000 baht	1.60722*	.43593	.000	.7502	2.4643
10,000-20,000 baht	Below 10,000 baht	38235*	.07679	.000	5333	2314
	20,001-30,000 baht	.28708*	.07871	.000	.1323	.4418
	30,001-40,000 baht	.34986*	.13257	.009	.0892	.6105
(40,001-50,000 baht	.25820	.35523	.468	4402	.9566
	Above 50,000 baht	1.22486*	.43388	.005	.3718	2.0779
20,001-30,000 baht	Below 10,000 baht	66944*	.08931	.000	8450	4938
	10,000-20,00 <mark>0 baht</mark>	28708*	.07871	.000	4418	1323
	30,001-40,000 baht	.06278	.14019	.655	2128	.3384
	40,001-50,000 baht	02889	.35815	.936	7330	.6752
	Above 50,000 baht	.93778*	.43627	.032	.0800	1.7955
30,001-40,000 baht	Below 10,000 baht	73222*	.13912	.000	-1.0057	4587
	10,000-20,000 baht	34986*	.13257	.009	6105	0892
	20,001-30,000 baht	06278	.14019	.655	3384	.2128
	40,001-50,000 baht	09167	.37370	.806	8264	.6430
	Above 50,000 baht	.87500	.44913	.052	0080	1.7580
40,001-50,000 baht	Below 10,000 baht	64055	.35773	.074	-1.3439	.0628
	10,000-20,000 baht	25820	.35523	.468	9566	.4402
	20,001-30,000 baht	.02889	.35815	.936	6752	.7330
	30,001-40,000 baht	.09167	.37370	.806	6430	.8264
	Above 50,000 baht	.96667	.55707	.083	1286	2.0619
Above 50,000 baht	Below 10,000 baht	-1.60722*	.43593	.000	-2.4643	7502
	10,000-20,000 baht	-1.22486*	.43388	.005	-2.0779	3718
	20,001-30,000 baht	93778*	.43627	.032	-1.7955	0800
	30,001-40,000 baht	87500	.44913	.052	-1.7580	.0080
	40,001-50,000 baht	96667	.55707	.083	-2.0619	.1286

Hypothesis 27 One way ANOVA

ANOVA

Durability					
	Sum of			_	0
	Squares	df	Mean Square	F	Sig.
Between Groups	22.172	5	4.434	13.217	.000
Within Groups	131.851	393	.335		
Total	154.022	398			

Multiple Comparisons

Dependent Variable: Durability						
	701	Mean Difference		10	95% Confide	ence Interval
(I) Income	(J) Income	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below 10,000 baht	10,000-20,000 baht	.29709*	.07296	.000	.1537	.4405
	20,001-30,000 baht	.56060*	.084 <mark>06</mark>	.000	.3953	.7259
	30,001-40,0 <mark>00 bah</mark> t	.79931*	.13205	.000	.5397	1.0589
	40,001-50,000 baht	.53265	.33955	.118	1349	1.2002
	Above 50,000 baht	1.06598*	.41377	.010	.2525	1.8795
10,000-20,000 baht	Below 10,000 baht	29709*	.07296	.000	4405	1537
	20,001-30,000 baht	.26351*	.07397	.000	.1181	.4089
	30,001-40,000 baht	.50222*	.12587	.000	.2548	.7497
	40,001-50,000 baht	.23556	.33719	BRIE .485	4274	.8985
	Above 50,000 baht	.76889	.41184	.063	0408	1.5786
20,001-30,000 baht	Below 10,000 baht	56060*	.08406	.000	7259	3953
	10,000-20,0 <mark>00 baht</mark>	R26351*	.07397	NCTT .000	4089	1181
	30,001-40,000 baht	.23871	.13261	.073	0220	.4994
	40,001-50,000 baht	02796	.33977	.934	6959	.6400
	Above 50,000 baht	50538	.41395	.223	3085	1.3192
30,001-40,000 baht	Below 10,000 baht	79931*	.13205	.000	-1.0589	5397
	10,000-20,000 baht	50222*	.12587	.000	7497	2548
	20,001-30,000 baht	23871	.13261	.073	4994	.0220
	40,001-50,000 baht	26667	.35470	.453	9640	.4307
	Above 50,000 baht	.26667	.42630	.532	5714	1.1048
40,001-50,000 baht	Below 10,000 baht	53265	.33955	.118	-1.2002	.1349
	10,000-20,000 baht	23556	.33719	.485	8985	.4274
	20,001-30,000 baht	.02796	.33977	.934	6400	.6959
	30,001-40,000 baht	.26667	.35470	.453	4307	.9640
	Above 50,000 baht	.53333	.52876	.314	5062	1.5729
Above 50,000 baht	Below 10,000 baht	-1.06598*	.41377	.010	-1.8795	2525
	10,000-20,000 baht	76889	.41184	.063	-1.5786	.0408
	20,001-30,000 baht	50538	.41 395	.223	-1.3192	.3085
	30,001-40,000 baht	26667	.42630	.532	-1.1048	.5714
	40,001-50,000 baht	53333	.52876	.314	-1.5729	.5062

Hypothesis 28 One way ANOVA

ANOVA

Performance in Operation

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	7.542	2	3.771	15.446	.000
Within Groups	95.954	393	.244		
Total	103.497	395			

Multiple Comparisons

Dependent Variable: Performance in Operation

LSD

	VII	Mean Difference	17.		95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.27251*	.05520	.000	.1640	.3810
	Master's Degree	.47122*	.11718	.000	.2408	.7016
Bachelor's Degree	Below Bachelor's Degree	27251*	.05520	.000	3810	1640
	Master's De <mark>gree</mark>	.19871	.11211	.077	0217	.4191
Master's Degree	Below Bachelor's Degree	47122*	.11718	.000	7016	2408
	Bachelor's Degree	1 <mark>98</mark> 71	.11211	.077	4191	.0217

*. The mean difference is significant at the .05 level.

Hypothesis 29 One way ANOVA

ANOVA

Reliability	×		AIMMA	×	
	Sum of Squares	df SIN	Mean Square	S F	Sig.
Between Groups	5.953	392	2.976	8.896	.000
Within Groups	132.158	395	.335		
Total	138.111	397			

Multiple Comparisons

Dependent Variable: Reliability LSD

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.24516*	.06439	.000	.1186	.3718
	Master's Degree	.40456*	.13708	.003	.1351	.6741
Bachelor's Degree	Below Bachelor's Degree	24516*	.06439	.000	3718	1186
	Master's Degree	.15940	.13122	.225	0986	.4174
Master's Degree	Below Bachelor's Degree	40456*	.13708	.003	6741	1351
	Bachelor's Degree	15940	.13122	.225	4174	.0986

Hypothesis 30 One way ANOVA

ANOVA

Technical Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3.243	2	1.621	4.068	.018
Within Groups	156.645	393	.399		
Total	159.888	395			

Multiple Comparisons

Dependent Variable: Technical Sophisticate

LSD

		Mean Difference	C12.		95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.20144*	.07066	.005	.0625	.3404
	Master's Degree	.15326	.15296	.317	1475	.4540
Bachelor's Degree	Below Bachelor's Degree	20144*	.07066	.005	3404	0625
	Master's Degree	04818	.14648	.742	3362	.2398
Master's Degree	Below Bachelo <mark>r's Degree</mark>	15326	.15296	.317	4540	.1475
	Bachelor's Degree	.0481 <mark>8</mark>	.14648	.742	2398	.3362

*. The mean difference is significant at the .05 level.

Hypothesis 31 One way ANOVA

ANOVA

Flexibility and Adaptability in use

	Sum of Squares	df SIN	Mean Square	KEN K	Sig.
Between Groups	4.956	2 2	2.478	10.041	.000
Within Groups	96.733	392	.247	0-	
Total	101.688	394			

Multiple Comparisons

Dependent Variable: Flexibility and Adaptability in use LSD

		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.20596*	.05553	.000	.0968	.3151
	Master's Degree	.42228*	.11781	.000	.1907	.6539
Bachelor's Degree	Below Bachelor's Degree	20596*	.05553	.000	3151	0968
	Master's Degree	.21632	.11273	.056	0053	.4379
Master's Degree	Below Bachelor's Degree	42228*	.11781	.000	6539	1907
	Bachelor's Degree	21632	.11273	.056	4379	.0053

Hypothesis 32 One way ANOVA

ANOVA

Size					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	8.942	2	4.471	10.761	.000
Within Groups	163.697	394	.415		
Total	172.639	396			

Multiple Comparisons

Dependent Variable: Size

LSD						
	INI	Mean Difference	517	4	95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.30698*	.07180	.000	.1658	.4481
	Master's Degree	.47171*	.15276	.002	.1714	.7720
Bachelor's Degree	Below Bachelor's Degree	30698*	.07180	.000	4481	1658
	Master's Degree	.16474	.14625	.261	1228	.4523
Master's Degree	Below Bachelor's Degree	47171*	.15276	.002	7720	1714
	Bachelor's Degree	16474	.14625	.261	4523	.1228

ILAN,

*. The mean difference is significant at the .05 level.

Hypothesis 33 One way ANOVA

ANOVA

Weight		ABOR	VIN	ICIT	
	Sum of Squares	df	Mean Square	E *	Sig.
Between Groups	5.066	S2N	CE192.533	4.376	.013
Within Groups	228.663	395	.579	372	
Total	233.730	397	1951519		

Multiple Comparisons

Dependent Variable: Weight LSD

LOD						
		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.23755*	.08490	.005	.0706	.4045
	Master's Degree	.32841	.18044	.070	0263	.6831
Bachelor's Degree	Below Bachelor's Degree	23755*	.08490	.005	4045	0706
	Master's Degree	.09086	.17258	.599	2484	.4302
Master's Degree	Below Bachelor's Degree	32841	.18044	.070	6831	.0263
	Bachelor's Degree	09086	.17258	.599	4302	.2484

Hypothesis 34 One way ANOVA

ANOVA

Speed					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	10.450	2	5.225	13.564	.000
Within Groups	152.551	396	.385		
Total	163.001	398			

Multiple Comparisons

Dependent Variable: Speed

	. N	Mean Difference	RS	17	95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.34090*	.06905	.000	.2051	.4767
	Master's Degree	.46642*	.14709	.002	.1772	.7556
Bachelor's Degree	Below Bachelor's Degree	34090*	.06905	.000	4767	2051
	Master's Degree	.12552	.14078	.373	1513	.4023
Master's Degree	Below Bachelor's De <mark>gree</mark>	46642*	.14709	.002	7556	1772
	Bachelor's Degree	12552	.14078	.373	4023	.1513

*. The mean difference is significant at the .05 level.

Hypothesis 35 One way ANOVA

ANOVA

Warranty

	Sum of Squares	df	Mean Square	* . E	Sig.
Between Groups	8.893	S2N	CE194.446	10.656	.000
Within Groups	163.992	393	.417	371	
Total	172.884	395	19200		

Multiple Comparisons

NILAND

Dependent Variable: Warranty

LSD

100						
		Mean Difference			95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.31568*	.07196	.000	.1742	.4571
	Master's Degree	.43043*	.15630	.006	.1231	.7377
Bachelor's Degree	Below Bachelor's Degree	31568*	.07196	.000	4571	1742
	Master's Degree	.11475	.14992	.444	1800	.4095
Master's Degree	Below Bachelor's Degree	43043*	.15630	.006	7377	1231
	Bachelor's Degree	11475	.14992	.444	4095	.1800

Hypothesis 36 One way ANOVA

ANOVA

Durability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	10.531	2	5.266	14.539	.000
Within Groups	143.060	395	.362		
Total	153.591	397			

Multiple Comparisons

Dependent Variable: Durability

LSD		De		1	1	
	UNIVE	Mean Difference	Tr		95% Confide	ence Interval
(I) Education	(J) Education	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Below Bachelor's Degree	Bachelor's Degree	.31068*	.06700	.000	.1790	.4424
	Master's Degree	.58559*	.14263	.000	.3052	.8660
Bachelor's Degree	Below Bachelor's Degree	31068*	.06700	.000	4424	1790
	Master' <mark>s De</mark> gree	.27491*	.13653	.045	.0065	.5433
Master's Degree	Belo <mark>w Bachelor' s Deg</mark> ree	58559*	.14263	.000	8660	3052
	Bach <mark>elor's Degree</mark>	2749 <mark>1</mark> *	. <mark>1365</mark> 3	.045	5433	0065

Hypothesis 37 One way ANOVA

ANOVA

Performance in Operation

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	4.989	5	.998	3.948	.002
Within Groups	98.816	391	.253		
Total	103.805	396			

Multiple Comparisons

Dependent Variable: Performance in Operation LSD

		Mean	LDC	H.C.	95% Confide	nco Intonal
(I) Department	(J) Department	Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.18720	.10270	.069	0147	.3891
	Engineering	.13055	.10244	.203	0708	.3319
	Production	07584	.09139	.407	2555	.1038
	Maintenance	.03876	.10770	.719	1730	.2505
	Other	.45338	.26460	.087	0668	.9736
Purchasing	Administraive	18720	.10270	.069	3891	.0147
0	Engineering	05665	.08590	.510	2255	.1122
	Production	26304*	.07238	.000	4053	1207
	Maintenance	14845	.09211	.108	3295	.0327
	Other	.26618	.25865	.304	2423	.7747
Engineering	Administraive	13055	.10244	.203	3319	.0708
	Purchasing	.05665	.08590	.510	1122	.2255
	Production	20639*	.07201	.004	3480	0648
	Maintenance	09180	.09182	.318	2723	.0887
	Other	.32283	.25854	.213	1855	.8311
Production	Administraive	.07584	.09139	.407	1038	.2555
	Purchasing	ABO.26304*	.07238	VINC.000	.1207	.4053
	Engineering	.20 <mark>639*</mark>	.07201	.004	.0648	.3480
	Maintenance	.11459	.07931	.149	0413	.2705
	Other	.52922*	.25437	.038	.0291	1.0293
Maintenance	Administraive	03876	.10770	.719	2505	.1730
	Purchasing	.14845	.09211	.108	0327	.3295
	Engineering	.09180	.09182	.318	0887	.2723
	Production	11459	.07931	.149	2705	.0413
	Other	.41462	.26067	.113	0979	.9271
Other	Administraive	45338	.26460	.087	9736	.0668
	Purchasing	26618	.25865	.304	7747	.2423
	Engineering	32283	.25854	.213	8311	.1855
	Production	52922*	.25437	.038	-1.0293	0291
	Maintenance	41462	.26067	.113	9271	.0979

Hypothesis 38 One way ANOVA

ANOVA

Reliability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	1.255	5	.251	.720	.609
Within Groups	136.966	393	.349		
Total	138.221	398			

Multiple Comparisons

Dependent Variable: Reliability

LSD	able. Renability					
		Mean Difference	IVI	RS	95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.17753	.12060	.142	0596	.4146
	Engineering	.13292	.12029	.270	1036	.3694
	Production	.072 <mark>99</mark>	.10733	.497	1380	.2840
	Maintenance	.074 <mark>86</mark>	.12552	.551	1719	.3216
	Other	.3 <mark>491</mark> 0	.31072	.262	2618	.9600
Purchasing	Administraive	17753	.12060	.142	4146	.0596
	Engineering	04461	.10088	.659	2429	.1537
	Production	10454	.08500	.219	2716	.0626
	Maintenance	10267	.10706	.338	3132	.1078
	Other	.17157	.30373	.572	4256	.7687
Engineering	Administraive	13292	.12029	.270	3694	.1036
	Purchasing	.04461	.10088	.659	1537	.2429
	Production	05992	.08456	.479	2262	.1063
	Maintenance	05806	.10671	.587	2679	.1517
	Other	.21618	.30361	.477	3807	.8131
Production	Administraive	07299	.10733	.497	2840	.1380
	Purchasing 🚽	.10454	.08500	.219	0626	.2716
	Engineering	.05992	.08456	.479	1063	.2262
	Maintenance	.00186	.09185	.984	1787	.1824
	Other	.27610	.29871	.356	3112	.8634
Maintenance	Administraive	07486	.12552	.551	3216	.1719
	Purchasing	.10267	.10706	.338	1078	.3132
	Engineering	.05806	.10671	.587	1517	.2679
	Production	00186	.09185	.984	1824	.1787
	Other	.27424	.30572	.370	3268	.8753
Other	Administraive	34910	.31072	.262	9600	.2618
	Purchasing	17157	.30373	.572	7687	.4256
	Engineering	21618	.30361	.477	8131	.3807
	Production	27610	.29871	.356	8634	.3112
	Maintenance	27424	.30572	.370	8753	.3268

Hypothesis 39 One way ANOVA

ANOVA

Technical S	Sophisticate

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.192	5	1.038	2.617	.024
Within Groups	155.133	391	.397		
Total	160.326	396			

Multiple Comparisons

Dependent Vari	able: Technical Sop	ohisticate	VE	RS	17.	
		Mean Difference			95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.20707	.12868	.108	0459	.4601
	Engineering	.06982	.12835	.587	1825	.3222
	Production	. <mark>21</mark> 982	.11458	.056	0054	.4451
	Maintenance	.00038	.13443	.998	2639	.2647
	Other	.79899*	.33153	.016	.1472	1.4508
Purchasing	Administraive	20707	.12868	.108	4601	.0459
	Engineering	13725	.10763	.203	3489	.0744
	Production	.01275	.09077	.888	1657	.1912
	Maintenance	20670	.11481	.073	4324	.0190
	Other	.59191	.32408	.069	.0452	1.2291
Engineering	Administraive	06982	.12835	.587	3222	.1825
	Purchasing	.13725	.10763	.203	0744	.3489
	Production	.15000	.09030	.098	0275	.3275
	Maintenance	06944	.11444	.544	2944	.1556
	Other 🛛 🗙	.72917*	.32394	.025	.0923	1.3661
Production	Administraive	.21982	.11458	.056	4451	.0054
	Purchasing	01275	S.09077	E19.888	1912	.1657
	Engineering	15000	.09030	.098	3275	.0275
	Maintenance	21944*	.09875	.027	4136	0253
	Other	.57917	.31874	.070	0475	1.2058
Maintenance	Administraive	00038	.13443	.998	2647	.2639
	Purchasing	.20670	.11481	.073	0190	.4324
	Engineering	.06944	.11444	.544	1556	.2944
	Production	.21944*	.09875	.027	.0253	.4136
	Other	.79861*	.32640	.015	.1569	1.4403
Other	Administraive	79899*	.33153	.016	-1.4508	1472
	Purchasing	59191	.32408	.069	-1.2291	.0452
	Engineering	72917*	.32394	.025	-1.3661	0923
	Production	57917	.31874	.070	-1.2058	.0475
	Maintenance	79861*	.32640	.015	-1.4403	1569

 $^{\ast}\cdot$ The mean difference is significant at the .05 level.

Hypothesis 40 One way ANOVA

ANOVA

Flexibility and Adaptability in use

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	5.416	5	1.083	4.366	.001
Within Groups	96.765	390	.248		
Total	102.181	395			

Multiple Comparisons

Dependent Vari LSD	able: Flexibility and	Adaptabilityin	use	RSI		
	5	Mean Difference	1		95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	. <mark>16024</mark>	.10150	.115	0393	.3598
	Engineering	.06212	.10202	.543	1385	.2627
	Production	06985	.09061	.441	2480	.1083
	Maintenance	.04121	.10630	.698	1678	.2502
	Other	.82207*	.26217	.002	.3066	1.3375
Purchasing	Administraive	16024	.10150	.115	3598	.0393
	Engineering	09811	.08543	.252	2661	.0699
	Production	23008*	.07141	.001	3705	0897
	Maintenance	11903	.09050	.189	2970	.0589
	Other	.66184*	.25617	.010	.1582	1.1655
Engineering	Administraive	06212	.10202	.543	2627	.1385
	Purchasing	.09811	.08543	.252	0699	.2661
	Production	13197	.07216	.068	2738	.0099
	Maintenance	02091	.09109	.819	2000	.1582
	Other	.75995*	.25638	.003	.2559	1.2640
Production	Administraive	.06985	S .09061	196.441	1083	.2480
	Purchasing	.23008*	.07141	.001	.0897	.3705
	Engineering	.13197	.07216	.068	0099	.2738
	Maintenance	.11105	.07809	.156	0425	.2646
	Other	.89192*	.25206	.000	.3964	1.3875
Maintenance	Administraive	04121	.10630	.698	2502	.1678
	Purchasing	.11903	.09050	.189	0589	.2970
	Engineering	.02091	.09109	.819	1582	.2000
	Production	11105	.07809	.156	2646	.0425
	Other	.78086*	.25812	.003	.2734	1.2883
Other	Administraive	82207*	.26217	.002	-1.3375	3066
	Purchasing	66184*	.25617	.010	-1.1655	1582
	Engineering	75995*	.25638	.003	-1.2640	2559
	Production	89192*	.25206	.000	-1.3875	3964
	Maintenance	78086*	.25812	.003	-1.2883	2734

Hypothesis 41 One way ANOVA

ANOVA

Size					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	5.151	5	1.030	2.405	.036
Within Groups	167.920	392	.428		
Total	173.071	397			

Multiple Comparisons

Dependent Variable: Size

LSD						
		Mean Difference	IVI	ERS	95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	less Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.09557	.13336	.474	1666	.3578
	Engineering	.15571	.13406	.246	1079	.4193
	Production	.02686	.11899	.821	2071	.2608
	Maintenance	.04472	.13916	.748	2289	.3183
	Other	1.0 <mark>810</mark> 8*	.34448	.002	.4038	1.7583
Purchasing	Administraive	09557	.13336	.474	3578	.1666
	Engineering	.06013	.11226	.592	1606	.2808
	Production	0 <mark>6</mark> 871	.09375	.464	2530	.1156
	Maintenance	05086	.118 <mark>31</mark>	.668	2835	.1817
	Other	.98551*	.33660	.004	.3237	1.6473
Engineering	Administraive	15571	.13406	.246	4193	.1079
	Purchasing	06013	.11226	.592	2808	.1606
	Production	12884	.09473	.175	3151	.0574
	Maintenance	11099	.11909	.352	3451	.1231
	Other	.92537*	.33688	.006	.2631	1.5877
Production	Administraive	02686	.11899	.821	2608	.2071
	Purchasing 🚽	.06871	.09375	.464	1156	.2530
	Engineering	.12884	.09473	.175	0574	.3151
	Maintenance	.01785	.10183	.861	1823	.2181
	Other	1.05422*	.33117	.002	.4031	1.7053
Maintenance	Administraive	04472	.13916	.748	3183	.2289
	Purchasing	.05086	.11831	.668	1817	.2835
	Engineering	.11099	.11909	.352	1231	.3451
	Production	01785	.10183	.861	2181	.1823
	Other	1.03636*	.33894	.002	.3700	1.7027
Other	Administraive	-1.08108*	.34448	.002	-1.7583	4038
	Purchasing	98551*	.33660	.004	-1.6473	3237
	Engineering	92537*	.33688	.006	-1.5877	2631
	Production	-1.05422*	.33117	.002	-1.7053	4031
	Maintenance	-1.03636*	.33894	.002	-1.7027	3700

Hypothesis 42 One way ANOVA

ANOVA

Weight					
	Sum of Squares	df	Mean Square	F	Sig.
	Oquales	u	Mean Oquare	1	oig.
Between Groups	19.120	5	3.824	6.987	.000
Within Groups	215.101	393	.547		
Total	234.221	398			

Multiple Comparisons

Dependent Varia	able: Weight			E D			
LSD		Mean Difference	NIA	ER.	95% Confidence Interval		
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Administraive	Purchasing	00371	.15113	.980	3008	.2934	
	Engineering	.05653	.15075	.708	2398	.3529	
	Production	36693*	.13450	.007	6314	1025	
	Maintenance	10139	.15730	.520	4107	.2079	
	Other	1.06982*	.38939	.006	.3043	1.8354	
Purchasing	Administraive	.00371	.15113	.980	2934	.3008	
	Engineering	.06024	.12642	.634	1883	.3088	
	Production	36322*	.10652	.001	5726	1538	
	Maintenance	09768	.13417	.467	3615	.1661	
	Other	1.07353*	.38063	.005	.3252	1.8219	
Engineering	Administraive	05653	.15075	.708	3529	.2398 🛛	
	Purchasing	06024	.12642	.634	3088	.1883	
	Production	42346*	.10597	.000	6318	2151	
	Maintenance	15793	.13373	.238	4208	.1050	
	Other	1.01329*	.38048	.008	.2653	1.7613	
Production	Administraive	.36693*	.13450	.007	.1025	.6314	
	Purchasing	.36322*	.10652	.001	.1538	.5726	
	Engineering	.42346*	.10597	.000	.2151	.6318	
	Maintenance	.26553*	.11510	.022	.0392	.4918	
	Other	1.43675*	.37434	.000	.7008	2.1727	
Maintenance	Administraive	.10139	.15730	.520	2079	.4107	
	Purchasing	.09768	.13417	.467	1661	.3615	
	Engineering	.15793	.13373	.238	1050	.4208	
	Production	26553*	.11510	.022	4918	0392	
	Other	1.17121*	.38312	.002	.4180	1.9244	
Other	Administraive	-1.06982*	.38939	.006	-1.8354	3043	
	Purchasing	-1.07353*	.38063	.005	-1.8219	3252	
	Engineering	-1.01329*	.38048	.008	-1.7613	2653	
	Production	-1.43675*	.37434	.000	-2.1727	7008	
	Maintenance	-1.17121*	.38312	.002	-1.9244	4180	

Hypothesis 43 One way ANOVA

ANOVA

Speed					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	4.178	5	.836	2.068	.069
Within Groups	159.189	394	.404		
Total	163.368	399			

Multiple Comparisons

Dependent Variable: Speed

LSD						
		Mean Difference	IN I	RS	95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	osig.	Lower Bound	Upper Bound
Administraive	Purchasing	.11751	.12952	.365	1371	.3721
	Engineering	.04505	.12952	.728	2096	.2997
	Production	10 <mark>757</mark>	.11556	.353	3348	.1196
	Maintenance	0 <mark>398</mark> 0	.13515	.769	3 055	.2259
	Other	. <mark>5450</mark> 5	.33456	<mark>.10</mark> 4	1127	1.2028
Purchasing	Administraive	11751	.12952	.365	3721	.1371
	Engineering	07246	.10822	.503	2852	.1403
	Production	22507*	.09105	.014	4041	0461
	Maintenance	15731	.11490	.172	3832	.0686
	Other	.42754	.32690	.192	2152	1.0702
Engineering	Administraive	04505	.12952	.728	2997	.2096
	Purchasing	.07246	.10822	.503	1403	.2852
	Production	15261	.09105	.094	3316	.0264
	Maintenance	08485	.11490	.461	3107	.1410
	Other	.50000	.32690	.127	1427	1.1427
Production	Administraive	.10757	.11556	.353	1196	.3348
	Purchasing 🚽	.22507*	.09105	.014	.0461	.4041
	Engineering	.15261	.09105	.094	0264	.3316
	Maintenance	.06776	.09889	E 1.494	1267	.2622
	Other	.65261*	.32162	.043	.0203	1.2849
Maintenance	Administraive	.03980	.13515	.769	2259	.3055
	Purchasing	.15731	.11490	.172	0686	.3832
	Engineering	.08485	.11490	.461	1410	.3107
	Production	06776	.09889	.494	2622	.1267
	Other	.58485	.32917	.076	0623	1.2320
Other	Administraive	54505	.33456	.104	-1.2028	.1127
	Purchasing	42754	.32690	.192	-1.0702	.2152
	Engineering	50000	.32690	.127	-1.1427	.1427
	Production	65261*	.32162	.043	-1.2849	0203
	Maintenance	58485	.32917	.076	-1.2320	.0623

Hypothesis 44 One way ANOVA

ANOVA

Warranty					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	16.541	5	3.308	8.249	.000
Within Groups	156.801	391	.401		
Total	173.343	396			

Multiple Comparisons

Dependent Variable: Warranty LSD	
LSD	
Mean	
Difference 95% Confidence I	
	er Bound
Administraive Purchasing .20219 .12904 .118	.4559
Engineering .17611 .12904 .1730776	.4298
Production19876 .11519 .0854252	.0277
Maintenance .08822 .13567 .5161785	.3549
Other 1.07973* .33331 .001 .4244	1.7350
Purchasing Administrative20219 .12904 .1184559	.0515
Engineering02609 .10781 .8092381	.1859
Production40095* .09079 .0005794	2225
Maintenance11397 .11567 .3253414	.1134
Other .87754* .32568 .007 .2372	1.5178
Engineering Administraive17611 .12904 .1734298	.0776
Purchasing .02609 .10781 .809 .1859	.2381
Production37486* .09079 .0005534	1964
Maintenance08789 .11567 .4483153	.1395
Other .90362* .32568 .006 .2633	1.5439
Production Administraive .19876 .11519 .0850277	.4252
Purchasing .40095* .09079 .000 .2225	.5794
Engineering .37486* .09079 .000 .1964	.5534
Maintenance .28698* .09999 .004 .0904	.4836
Other 1.27848* .32045 .000 .6485	1.9085
Maintenance Administrative08822 .13567 .5163549	.1785
Purchasing .11397 .11567 .3251134	.3414
Engineering .08789 .11567 .4481395	.3153
Production28698* .09999 .0044836	0904
Other .99151* .32836 .003 .3459	1.6371
Other Administraive -1.07973* .33331 .001 -1.7350	4244
Purchasing87754* .32568 .007 -1.5178	2372
Engineering90362* .32568 .006 -1.5439	2633
Production -1.27848* .32045 .000 -1.9085	6485
Maintenance99151* .32836 .003 -1.6371	3459

Hypothesis 45 One way ANOVA

ANOVA

Durability					
	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups	9.447	5	1.889	5.136	.000
Within Groups	144.576	393	.368		
Total	154.022	398			

Multiple Comparisons

Dependent Varia LSD	able: Durability		ERS			
	-	Mean Differe <mark>nc</mark> e (á.		95% Confide	ence Interval
(I) Department	(J) Department	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Administraive	Purchasing	.25734*	.12359	.038	.0144	.5003
	Engineering	.24865*	.123 <mark>9</mark> 1	.045	.0050	.4922
	Production	02485	.11027	.822	2416	.1919
	Maintenance	.13229	.12896	.306	1213	.3858
	Other	.99865*	.31924	.002	.3710	1.6263
Purchasing	Administraive	257 34*	.12359	.038	5003	0144
	Engineering	00870	.10364	.933	2125	.1951
	Production	28219*	.08688	.001	4530	1114
	Maintenance	12506	.10964	.255	3406	.0905
	Other	.74130*	.31193	.018	.1280	1.3546
Engineering	Administraive	24865*	.12391	.045	4922	0050
	Purchasing	.00870	.10364	.933	1951	.2125
	Production	27349*	.08733	.002	4452	1018
	Maintenance	11636	.10999	.291	3326	.0999
	Other	.75000*	.31206	.017	.1365	1.3635
Production	Administraive	.02485	.11027	.822	1919	.2416
	Purchasing	.28219*	.08688	.001	.1114	.4530
	Engineering	.27349*	.08733	.002	.1018	.4452
	Maintenance	.15713	.09437	.097	0284	.3427
	Other	1.02349*	.30690	.001	.4201	1.6269
Maintenance	Administraive	13229	.12896	.306	3858	.1213
	Purchasing	.12506	.10964	.255	0905	.3406
	Engineering	.11636	.10999	.291	0999	.3326
	Production	15713	.09437	.097	3427	.0284
	Other	.86636*	.31410	.006	.2488	1.4839
Other	Administraive	99865*	.31924	.002	-1.6263	3710
	Purchasing	74130*	.31193	.018	-1.3546	1280
	Engineering	75000*	.31206	.017	-1.3635	1365
	Production	-1.02349*	.30690	.001	-1.6269	4201
	Maintenance	86636*	.31410	.006	-1.4839	2488