


St. Gabriel's Library, Av 

I~ 

qn the Improvement of the Existing 
Error-Control Coding Techniques for 

Deep Space Communications 

\"ERS/]"y 
By ()~ 

~ 
Ms. Koju MATSUZAWA .;. 

/ ,,_. -

Submitted in Partial Fulfillment of the 
Requirement for the Degree of 

Master of Science in 
Telecommunications Science 

Assumption University 

April, 2003 



The Faculty of Science and Technology 

Thesis Title 

By 
Thesis Advisor 
Academic Year 

Master Thesis Approval 

On the Improvement of the Existing Error-Control Coding 
Techniques for Deep Space Communications 

Mr. Koju MATSUZA WA 
Asst.Prof.Dr. Dobri Batovski 
212002 

The Department of Telecommunications Science, Faculty of Science and Technology of 
Assumption University has approved this final report of the twelve credits course. 
TS7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree 
of Master of Science in Telecommunications Science. 

Approval Committee: 

(Asst.Prof.Dr. bri Batovski) 
Advisor 

(Dr. Surat Tanterdtid) 
Committee Member 

Faculty Approval: 

(Asst.Prof.Dr. Chanintom J. Nukoon) 
Program Director 

(Asst.Prof.Dr. Chanintom J. Nukoon) 
Committee Member 

(Asst.Prof.Dr. Surapong Auwatanamongkol) 
Representative of Ministry of 

University Affairs 

April I 2003 

(Ass .R o . Supavadee Nontakao) 
Dean 



ABSTRACT 

The further success in the exploration of the deep space requires reliable communications. 

The error-control coding plays an important role in recovering the transmitted binary 

information over a very long distance. An important aspect of coding in deep space is that 

due to the significant delay in the communication process, the automatic-repeat-request 

(ARQ) schemes become rather inefficient. The requirement for the strongest possible 

protection of the data against severe attenuation and noise raises the problem of modifying 

the existing coding techniques in an appropriate way to improve the performance of the bit 

error rate (BER) waterfall curve below the existing error thresholds. This thesis proposes the 

methods for turbo code error control coding which combines the advantages of the existing 

techniques with the inclusion of a priori information in the binary stream. 
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CHAPTER 1 INTRODUCTION 

1.1 OVERVIEW 

Deep space communications are far more challenging than other kind of communications like 

mobile phone, Earth-orbiting satellites, because it involves radio propagation over very long 

distances. Signals must travel over millions or billions of kilometers between Earth station 

and the spacecraft. In the radio channel, it results noisy that is described as Additive White 

Gaussian Noise (A WGN), burst of errors produced by atmospherics, multi-path fading, 

interferences from other users of the frequency band. Therefore, to attain reliable 

communication in deep space, the use of very powerful error control technique is required. 

The radio signals for deep space communications consists of carrying instructions to 

the spacecraft and data between Earth station and the spacecraft. The data needs to be 

delivered to a distant spacecraft safely and successfully, because if data is incorrectly 

interpreted, it would potentially cause spacecraft to take undesirable actions, including some 

that could result in a critical situation for the spacecraft. To prevent against that kind of 

possibility, the signal is coded with additional redundant data that allows the system to detect 

or correct any corruption in that signal. 

Real communication channels contain a mixture of independent and burst error 

statistics and those channels are described as compound-error channels, and Automatic -

Repeat - Request (ARQ) schemes are often used in packet data communication system. It has 

been most widely used as an effective method for error protection over compound-error 

channels for error control in data communication systems. ARQ system utilizes redundancy 

for error detection by using a start and stop strategy where the transmitter stops and waits 

until it receives acknowledgement of correct reception of code word or request for 

retransmission, which necessitates the use of a return path feedback channel path. However, 
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ARQ scheme only includes error detection strategy rather than both error detection and 

correction, and also requires the feed back channel to be practically noiseless. For long 

distance communications in deep space, transmitter can not wait for an acknowledgement 

from receiver to take another action, therefore ARQ system is not suitable for deep space 

communications. 

The best codes to be used for reliable data transfer have been studied by many 

researchers and is still making progress. 

At the time of Voyager which was lunched in 1977, consists of a short convolutional code 

that is combined with a large block-size Reed-Solomon code with k=7 was chosen as a 

compromise between performance and decoding complexity were used. Evolution of the use 

of codes and decoding equipment has been paced by the evolution of digital processing 

capability. 

Convolutional codes are one of the most widely used channel codes in practical 

communication systems. These codes are developed with a separate strong mathematical 

structure and are primarily used for real time error correction. Convolutional codes convert 

the entire data stream into one single codeword. The encoded bits depend not only on the 

current k input bits but also on past input bits. The main decoding strategy for convolutional 

codes is based on the widely used Viterbi algorithm. As a result of the wide acceptance of 

convolutional codes, there have been many advances to extend and improve this basic coding 

scheme. This advancement resulted in two new coding schemes, namely, trellis coded 

modulation (TCM) and turbo codes. TCM adds redundancy by combining coding and 

modulation into a single operation. The unique advantage of TCM is that there is no 

reduction in data rate or expansion in bandwidth as required by most of the other coding 

schemes. 
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Turbo code was focused in the late 90s as a new and very powerful error control 

technique. This error correcting code is able to transmit information across the channel with 

arbitrary low bit error rate. This code is a parallel concatenation of two component 

convolutional codes separated by a random interleaver. Random coding of long block lengths 

may also perform close to channel capacity, but this code is very hard to decode due to the 

lack of code structure. The performance of a turbo code is partly due to the random 

interleaver used to give the turbo code a random appearance. The big advantage of a turbo 

code is that there is enough code structure from the convolutional codes to decode it 

efficiently. E 
There are two primary decoding strategies for turbo codes. They are based on a 

maximum a posteriori (MAP) algorithm and a soft output Viterbi algorithm (SOVA). 

Regardless of which algorithm is implemented, the turbo code decoder requires the use of 

two component decoders that operate in an iterative manner. -
For further improvement of turbo code, researchers are focusing the issues of improving 

decoder performance and reducing the decoder complexity. 

To improve the decoder performance, channel decoders usually aim at minimizing the 

frame, symbol or residual bit error rate of the source bits. Due to the fact, that coding this 

usually done by frame and also in a time correlation of successive fran1es. The redundancy 

should be used as a priori information at the receiver to improve the decoding result. 

In this thesis, turbo code was used to determine if the residual bit error rate can be 

reduced by using a priori knowledge about the source statistics within the channel decoding, 

and if it helps the source decoder to perform better process by measuring improvement of Bit 

Error Rate (BER) and Frame Error Rate (FER). 
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1.2 IMPORTANCE OF THE TURBO CODE IN DEEP SPACE COMMUNICATIONS 

In deep-space communications, turbo code is the most suitable coding technique, because 

using very large interleavers can maximize the turbo coding gain, and compare to short 

distance communications like mobile phone, the delay is not a big issue in deep space 

communications. Also from the view of implementation, use of more than two elementary 

encoders can be com:bined in many efficient ways to create a very powerful low rate turbo 

code at a slight increase in complexity. 

1.3 USE OF A PRIORI BITS \JER 
The coded data stream of today's powerful source codecs still contains residual redundancy. 

Hence many techniques have been developed, which use the properties of the respective 

source signal to reduce its redundancy and irrelevancy. Source coding is usually done frame 

by frame, but due to requirements of complexity and time delay, source encoders usually 

work only suboptimal. Consequently, the compressed data stream still contains residual 

redundancy, which remains both inside a frame and also in a time correlation of successive 

frames. The redundancy should be used by the source and/or channel decoder as a priori 

information to improve the decoding result. These techniques are known as robust source 

coding or source controlled channel decoding. 

1.4 PROPOSED FRAMEWORK. 

This part describes · the required processes for implementing existing error control coding 

techniques for deep space communication. 

The first section introduces the approaching procedure of using a priori bit inside turbo 

codec. 
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The second section introduces the statistical approach to calculate the possibility of matches 

between random noise and a priori bit with different combinations of size and pattern (Equal 

distance distribution, uniform distribution and Gaussian distribution). The conclusion with 

the criteria is used to identify the best pattern of a priori bit used at the turbo decoder to 

improve its performance. 

The last section presents the simulation software specification and the result of the 

simulation. To evaluate the performance of the proposed implementation, the simulation 

software is used to evaluate the performance in the following criteria. 

• The throughputs of error correction in BER and FER with and without a priori 

information 

• The throughputs where the size and pattern of a priori bit is concerned 

Finally, the result of the simulation is analyzed in terms of the bit error rate and the frame 

error rate. 

The conclusion chapter concludes the advantages and the drawbacks of implementation of a 

turbo code with a priori information. 
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CHAPTER 2: OBJECTIVES 

The objectives of the research are to implement and study the performance of the existing 

turbo coding techniques for deep space communications. The main subject of the research 

focuses on methods combining the advantages of turbo code with the inclusion of a priori 

information in the binary stream. 

A statistical simulation software is used to evaluate the effect of the turbo code 

implementation by using a priori knowledge about the source during the channel decoding, 

and as it will be shown, the source decoder performs better by observing an improvement of 

the Bit Error Rate (BER) and the Frame Error Rate (FER). 
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CHAPTER 3: LJTERA TURE REVIEW 

3.1 Source-Controlled Channel Decoding: Estimation of Correlated 
Parameters (2) 

In this paper, an approach to improve channel and source decoding by using the 

redundancy remains inside one block frame as in time correlation of subsequent frames is 

described. Also described is how the end-to-end quality of parameters can be improved by 

choosing the bit mapping and the protection of bits in channel coding. 

The idea was born in a discussion of 2 universities' common project "Source controlled 

channel decoding" (SCCD) and "Soft bit source decoding"(SBSD): Is it better to exploit the a 

priori information in channel decoding or in source decoding or is it possible to use it twice? -r-
l:at 

Figure 3.1: Transmission System 

In this paper, an effective bit rate of 4, 6 or 8 bit per parameter and an overall blocklength of 

120 bit is considered. This leads to 30, 20 or 15 parameters respectively within one block. 

Furthermore, not only the BER after channel decoding but also the parameter SNR as a 

quality measurement after source decoding is investigated. 
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TABLE 3.1: Bit redundancy, mutual information and mean square error for different 
bit-mappings of 3 bit quantized parameters. 

Bit-mapping 1- H(X) J(X;X\ ,d J(X;X-1) MSE 
natural bin. XO 0.0 0.170 OJ IJ 5.029 

000.001.0I0.011. x1 0.0 0.146 0.029 1.506 
100.101.110.ll I x 2 0.0 0.049 0.0 0.377 

folded bin. XO 0.0 0.0 0.3 13 3 . ~ 7 1 

0 I I .O I 0.00 I .000. •r1 0.125 0.021 0.127 1.506 
100.101.110, 111 x2 0.028 0.021 0.01 2 0.3 77 

Gray code XO 0.0 0.0 0.313 3.871 
000.001.011,010, .Xl 0.125 0.045 0.127 1.876 
I I 0 . 111 , I 01, l 00 x2 0.003 () .()45 0.0 15 0.377 

max. djst. XO 0.038 0.142 0.0 12 5.029 
11 0.000.111.00 l. x1 0.0 0.146 0.0 4.915 
01 0. 100,01 1,101 x2 0.0 0. 14(> 0.029 1.506 

low change XO 0.0 (l.J II OJ IJ 5.047 
I 0 I ,I 00 .11 0 .1 11. .r.1 0.021 0.089 0.066 1.124 
0 l I .OOl ,000.0 JO. x2 0.02 1 0.0:59 0.066 1. 124 
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Figure 3.2: The bit error rate of the 1st bit of a parameter quantized with 3 bits and 
natural binary mapping. 

Figure. 3.2 shows that the bit error rate decreases depending on how a priori information is 

used. A comparison to Table 3. l shows that the bit redundancy and the two mutual 
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informations are a good measurement for the gain m bit error rate by usmg a pnon 

information. 
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Figure 3.3: Bit error rate after channel decoding using a priori information (A WGN
channel at 1 = -3 dB, folded binary mapping). -

In Fig. 3.3 the bit · error rate is shown depending on the bit-position in the trellis. The 

interleaver works in that way that the first bit of each parameter index xi is ordered in the first 

part of the trellis, the second bits are in the second part and the least significant bits are at the 

end of the frame. The unequal error protection here is achieved just by not terminating the 

convolutional code (see CD/no in Figure 3.5). atl 

This paper examined the bit-mapping of quantized parameter indices and have shown the 

influence on channel and source decoding. Dependent, on which criteria a system is 

optimized - either BER or parameter SNR or others - different bit-mappings could deliver 

the best results. 

Due to the properties of convolutional codes, the channel decoding also improves 

uncorrelated parameters if its bits are ordered close to the correlated ones within a block. 

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 9 



3.2 Combined Source/Channel (De-) Coding: Can A Priori Information Be Used 
Twice? [3] 

This paper works on combined source and channel decoding, trying to answer the 

following question: Can a priori information that models the source parameters be used 

twice? : first at the channel decoder and then at the source decoder. 

!'1mrc7-;;;--
c-x1...:r ••• 

; -.r~---- ----t;: 
~( : . . ' 
1 l':.1r; un~t.:•r : 
:c,,1.J..ir tb; 
~ ... ...... ., ... ,..., .. ,.,. ... "'. I 

Fqni\;1km 
Chnnni!I 

fh<llllld 
IJL'COikT 

Figure 3.4: Transmission System 

l,lMl'X 

l~- I 
I~(Ai(m)) 

•, • ..;nu1:z::.7~ 
• • • IJl't:" '<kr 

j-------, - isL) • 
d'ar:1111~1.:•nth .'l 

: lkl' '· 1,kr ;-t"'· 
L--- -- - ~ 

The figure 3.4 shows the transmission system. The channel decoder uses the a priori 

information that mo.dels the bit stream generated by the source coder. This does not capture 

all the details of the source parameter level statistics. By exploiting the a priori knowledge of 

parameters (once more) at the source decoder, it shows that it is possible to achieve better 

reconstruction than if this information was used at either of the decoders. 
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Figure 3.5: Bit error rate for natural binary mapping after channel decoding using a 

priori information (A WGN channel at -3 dB). 

Figure 3.5 shows that the gain in bit error rates for decoding with (CD/AKO+l) is very high, 

especially for the MSBs (pos. 40 .. 59). After "subtracting" the a priori knowledge of the 

parameter itself (CD/ AKO+ 1 2 Ap) the BER increases compared to (CD/ AKO+ 1 ), but there is 

still a big gain in BER. 

14 

~. 12 
ro 

~ 10 
Vl 

4 
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Figure 3.6: Parameter SNR for natural binary bit-mapping with and without a priori 

information. 
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Figure 3.6 shows that the curve with (SD/no, CD/AKO+l) now delivers a better quality. That 

means, if the information is used only once, it should be used in the channel coder. After 

"subtracting", we get another gain of up to 1 dB in the parameter SNR which gives the 

answer to the question "Can A Priori Information be used twice?". This gain can also be 

transmitted to systems where some parameters are redundant and others are not. It can be 

seen in Figure 3.5, where the dummy bits gain also (pos. 0 .. 19, 80 .. 98). 

The above result shows that a priori information can be used twice if it is subtracted after 

channel decoding and not only one correlated parameter is considered. That means, for the 

source decoder, it does not see any a priori information of one parameter itself in the 

reliability information delivered by the channel decoder. The results can be extended to a 

complete speech transmission system, where some parameters are highly correlated and some 

are not. The bit-mapping is quite important in determining what kind of a priori information 

delivers the highest gain in channel decoding. 

Also the mean square error, one possible optimization criterion, changes with the bit

mapping. Therefore, the bit-mapping has to be chosen dependent on the optimization 

criterion. 1at1 
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CHAPTER4:BACKGROUND 

4.1 HISTORY OF TURBO CODES 

Turbo codes have been known since 1993 as a new and very powerful error control technique 

after it is introduced by C. Berrou, A. Glavieux, and P. Thitimajshima, in "Near Shannon 

limit error correcting coding and decoding: Turbo-Codes"[l3]. This error correcting code is 

able to transmit information across the channel with arbitrary low bit error rate. The basic 

principle of the turbo code concept is that message bit is encoded in two different ways by 

two encoders. The decoder is correspondingly divided into two separate decoders, where each 

decoder decodes its concatenated codeword. By using the sophisticated algorithms, the 

decoders can exchange information on their decoding results and find the correct codeword. 

This is one of the key ideas that allow a continuous improvement in correction capability 

when the decoding process is iterated. In the traditional approach, the demodulator block 

makes a hard decision of the received symbol and passes it to the error control decoder block. 

This is equivalent to deciding which of two logical values 0 and I was transmitted. No 

information was passed about how reliable the hard decision was. This led to the 

development of "soft" input decoding algorithms. This was the best solution if only one code 

was used. For the same reason, in the case of combining more codes as explained above, new 

Soft In/Soft Out(SISO) algorithms were developed in order to pass more information from 

the output of one decoder to the input of the next decoder. Soft output decision algorithms 

provide as an output a real number which is a measure of the probability of error in decoding 

a particular bit. This can also be interpreted as a measure of the reliability of the decoder's 

hard decision. This extra information is very important for the next stage in an iterative 

decoding process. The name of turbo code reflects this iterative decoding process. There are 

two important categories of soft output decision algorithms. The first category includes the 
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maximum likelihood decoding algorithms, which minimize the probability of symbol error, 

such as the maximum a posteriori (MAP) algorithm. The second category includes the 

maximum likelihood decoding algorithms, which minimize the probability of word or 

sequence error, such as the Viterbi algorithm or soft output Viterbi algorithm (SOVA). The 

performance of a turbo code is partly due to the random interleaver used to give the turbo 

code a random appearance. The big advantage of a turbo code is that there is enough code 

structure from the convolutional codes to decode it efficiently. Regardless of which algorithm 

is implemented, the turbo code decoder requires the use of two component decoders that 

operate in an iterative manner. For further improvement of turbo code, researchers are 

focusing the issues of improving decoder performance and reducing the decoder complexity. 

4.2 Architecture of Turbo Codes 

Turbo codes use the parallel concatenated encoding scheme. However, the turbo code 

decoder is based on the serial concatenated decoding scheme. The serial concatenated 

decoders are used because they perform better than the parallel concatenated decoding 

scheme due to the fact that the serial concatenation scheme has the ability to share 

information between the concatenated decoders whereas the decoders for the parallel 

concatenation scheme are primarily decoding independently. 

4.3 Block Diagram of the Turbo Codec 

The turbo codec architecture for a parallel concatenated scheme is shown in Figure 4.1. The 

incoming message bits, mO, are encoded by a Rate 1/3 systematic turbo encoder. The outputs 

from the turbo encoder are the systematic message bits mO, the parity bits pl and the parity 

bits p2. The puncturing block determines the actual coding rate. The puncturing function is a 

simple deletion of some parity bits from the pl and the p2 streams. No puncturing is applied 

In the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 14 



'\t. H~hriel's Librarv. Au 

to the message bits mO. The mO and the punctured parity bits pO signals are then modulated 

and sent to the channel. 

Input 
mo 

1--------~-------~ 
____ ,.....,.. ____________ -+---~ 

Output 
mO 

Turbo Encoder Puncturing 

Turbo Codec R 

Turbo Decoder 

mO .----------, 

pt 
p2 

LLR 
Bit Estimater 

mO 

PO 

Modulator 

Channel 

Demodulator 

I -----------------· ~ -
Figure 4.1: Turbo Code Communication System Block Diagram 

At the receiver, after soft decision demodulation, the received mO and pO signals are input to 

the bit estimator blbck. The function of this block is to compute the log-likelihood ratios 

(LLR) for each bit received. The outputs from this block are punctured streams of the 

estimated mO, pl and p2 bits. The turbo decoder does not need to know anything about what 

mapping or modulation scheme was transmitted. The same decoding engine is used to 

produce the decoded bits mO regardless of the modulation or puncturing scheme used. 
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4.4 Turbo Encoder Structures 

The fundamental turbo code encoder is built using two identical recursive systematic 

convolutional (RSC) codes with parallel concatenation. An RSC encoder is typically r = 112 

shown in Figure 4.J. 

4.4.1 Recursive Systematic Convolutional (RSC) Encoder 

The recursive systematic convolutional (RSC) encoder is obtained from the nonrecursive 

nonsystematic (conventional) convolutional encoder by feeding back one of its encoded 

outputs to its input. Figure 4.2 shows a conventional convolutional encoder. The symbol 

~ Represents a D flip-flop and the symbol E9 represents an exclusive-OR gate. 

------------~~·x1 

D D 

* 
X2 

Figure 4.2: Conventional convolutional encoder with r=l/2 and K=3. 

The conventional convolutional encoder is represented by the generator sequences gt =[ 111] 

and gi =[ 101] and can be equivalently represented in a more compact form as G=[g1, gi]. The 

RSC encoder of this conventional convolutional encoder shown in Figure 4.3 is represented 

as G=[l, gz I g1] where the first output (represented by g1) is fed back to the input. In the 

above representation, 1 denotes the systematic output, gi denotes the feedforward output, and 
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g1 is the feedback to the input of the RSC encoder. Figure 4.3 shows the resulting RSC 

encoder. 

Xl 

D D 

X2 

Figure 4.3: The RSC encoder obtained from Figure 3.2 with r=l/2 and K==3. 

4.4.2 Interleaver 

An interleaver is used between the two component encoders. The interleaver is used to 

provide randomness to the input sequences. The interleaver affects the performance of turbo 

codes because it directly affects the distance properties of the code. The interleaver design is 

a key factor which determines the good performance of a turbo code. 

4.4.3 Turbo Encoder 

Figure 4.4 shows a generic turbo encoder. The input sequence of the message bits is 

organised in blocks of length N. The first block of data will be encoded by the ENCl block 

which is a rate half recursive systematic encoder. The same block of message bits is 

interleaved by the interleaver INT, and encoded by ENC2 which is also a rate half systematic 

recursive encoder. 
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mo ..... mo ..... 

..... EN Cl ..... .... ..... Pl 

..... INT ..... ENC2 ..... 

..... ..... .... P2 

Figure 4.4: Generic rate 113 turbo encoder. 

The interleaver block, INT, arranges the order of the message bits for input to the second 

encoder. The main purpose of the interleaver is to increase the minimum distance of the turbo 

code such that after correction in one dimension the remaining errors should become 

correctable error patterns in the second dimension. The outputs of the turbo encoder are the 

message bits sequence mO, together with the corresponding parity sequence pl produced by 

one encoder block, say ENCl, and the parity sequence p2 produced by the second encoder 

block, say ENC2 . These sequences are modulated and sent through the channel. The 

interleaved data sequence is not sent because it can be regenerated at the receiver by 

interleaving the received sequence corresponding to mO. The parity bits pl and p2 can be 

"punctured" as in Figure 4.5 where puncturing is implemented by a multiplexing switch in 

order to obtain higher coding rates. A rate 112 turbo code can be implemented by alternatively 

selecting the outputs of the two encoders. 
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mO mo 

EN Cl 
Pl 

pO 

INT ENC2 
P2 

Figure 4.5: A half rate turbo code. 

Figure 4.6 shows a particular implementation of turbo code using recursive systematic codes 

(RSC). Lower coding rates can be achieved using either less puncturing or more interleaver 

and encoder blocks as shown in Figure 4.6. 

mo mO 

* EN Cl 

INT ENC2 pO 

i----aill>I ENCm 

Figure 4.6: Low rate turbo encoder. 
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4.5 Turbo Decoder Structures 

At the receiver, decoding is performed in an iterative process as shown in Figure 4.7. 

mo DECl Interleaver DEC2 De-Interleaver 

pl --t~----' 

p2----------------------
De-Interleaver 

Output 
Figure 4.7: Generic turbo decoder. 

Decoder DECl provides a soft output which is a measure of the reliability of each decoded 

bit. From this reliability information, the extrinsic information is produced, which does not 

depend on the current inputs to the decoder. This extrinsic information, after interleaving, is 

passed on to DEC2 which uses this information to decode the interleaved bit sequence. From 

the soft outputs of DEC2, the new extrinsic information is fed back to the input of DECl and 

so on. If an error occurs at the output of the first decoder due to a very noisy input, it might 

be corrected by the second decoder. A soft decision decoder outputs a real number which is a 

measure of the probability of a correct decision. This real number is called the a posteriori 

probability (APP). There are two types of soft decision decoding algorithms which are 

typically used, the first being a modified Viterbi algorithm which produces soft outputs and 

hence is called a soft output Viterbi algorithm (SOVA). A second is the maximum a 

posteriori (MAP) algorithm. Estimates put the complexity of the MAP algorithm at two times 

that of the Viterbi algorithm. However, the MAP algorithm results in better performance at 

low SNR due to a more accurate evaluation of the APP. The performance of a turbo coding 

scheme improves as the number of decoder iterations is increased. However, the coding gain 
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from one iteration to another, decreases with the number of iterations. Each iteration involves 

two decoding stages. Therefore, the overall complexity of a turbo decoder depends on how 

efficient the decoding algorithm is implemented. 

The concept of iterative decoding relies on the use of soft-input/soft-output decoders, which 

calculates a posteriori probabilities (APP) based on the received channel sequences and a 

priori information. There are optimal algorithms for computing APP, the BCJR

algorithm[l4], also called the MAP-algorithm and soft-output versions of the Viterbi 

algorithm (SOVA). The MAP algorithm is the ultimate approach, which minimizes the 

probability of an error by maximizing the probability of a symbol occurrence, based on the 

received signal. The decoder processes information one block at a time, there is a decoding 

delay and this latency is further increased by the iteration time of the decoders and the 

increase of block size. 

The algorithm used for the simulations shown in following chapter 7 is based on BCJR-

algorithm, and a full derivation is given in Appendix A. 

4.6 Synchronization of Turbo Code * In any digital wireless communication, good synchronization is essential and must be 

established between transmitter and receiver. The synchronization is accomplished by 

preceding each code block or transfer frame with a fixed-length attached synchronization 

marker. This known bit pattern can be recognized to determine the start of the code blocks or 

transfer frames. The turbo code block synchronization is necessary for proper decoding of 

turbo codes, because the decoding operation needs to know the code block boundaries before 

it can iterate between the unpermuted and permuted data domains. Unlike the frame 

synchronization for Reed-Solomon codes, which is performed after convolutional decoding, 

synchronization for turbo codes must be done in the channel-symbol domain. This requires a 
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rate-dependent attached synchronization marker and synchronization algorithms that operate 

at the symbol rate as opposed to the data rate. Operation of the synchronizer is anticipated to 

be similar to that of the RS frame synchronizer and involves recognition of the marker in the 

coded symbol stream and anticipation of a recurring marker at an interval corresponding to 

the length of the turbo code block, the trellis termination sequence, and the synchronization 

marker. The trellis termination sequence is filled in the symbol output with zeroes in 

anticipation of processing the next block of data during the encoding process and provides a 

known final state (zero) to the turbo decoder. Figure 4.8 shows the structure of the turbo code 

as it appears in the information channel. " E ff , ,.}' 

()"' 
Synchronization Maker 

:E Information and Parity Bits 

Termination Sequence 

Figure 4.8: Turbo Code Structure in the Information Channel 

in the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 22 



CHAPTER 5: IMPLEMENTATION METHOD 

The method of implementation is using a priori knowledge about the source statistics within 

the channel decoding. In source controlled channel coding schemes the decoder uses a priori 

information about the source bit probability in addition to the channel output information in 

order to achieve better performance. The distinction between a priori and a posteriori is that a 

priori is an independent of experience and a posteriori is based on experience. In this thesis 

Turbo Code was implemented to evaluate the bit error rate performance under these 

conditions using BCJR decoder. '"ER 1,.y 
o~ 

5.1 Turbo Encoder Implementation 

The implementation was done by adding same a priori bits at encoding process and decoding 

process as in figure 5.1 shown below. 

A priori Bits 

mO mO 

Pl 

INT ENC2 P2 

Figure 5.1: Rate 1/3 turbo encoder with a priori bits. 

Figure 5.1 shows a priori bits added with different distribution pattern in the message bits 

before the process of interleave and encode. 
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5.2 Turbo Decoder Implementation 

A priori Bits 

mo_ .... _..i DECl Interleaver DEC2 De-Interleaver 

pl 
-------1~~~~~ 

p2-------------------------' 
De-Interleaver 

Output 

Figure 5.2: Turbo decoder with a priori bits. 

Figure 5.2 shows a priori bits added in the received message bits before decoding process. 

This method adds the same a priori information at decoding process as in encoding process as 

it is assumed to improve the decoding performance as received noisy message bits are 

corrected by replacing received a priori bits with original a priori bits. 

C YOY 

In Chapter 6, the relations between occurrences of a priori bit and different patterns of error 

bits by finding matches are studied. This simulation is performed to consider which type of a 

priori distribution can catch more error bits, and to apply its a priori distribution to the 

simulation in chapter 7 to determine if these different distribution patterns of a priori bits can 

effect the performance of turbo code. 
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CHAPTER 6: A PRIORI PATTERN EVALUATION 

6.1 Simulation of a priori bit vs. Error bit Match Probability 

This chapter introduces the simulations of the statistical approach to find the relations 

between occurrences of the different distribution types of a priori bit and a random error bit 

by finding match probability. This simulation is performed to consider the design of turbo 

decoder to estimate the error pattern when it performs the decoding to improve the error rate. 

There are three error bit patterns, single random error bit, multiple random error bits and 

single burst error bits compared to three different distribution of single a priori bit with 

several conditions finding average match probability. 

6.2 Distribution of a Priori Bits 

To catch the uncertain noise pattern, three kinds of distribution are used for a priori bits. 

These a priori bits are compared with three kinds ofrandomly generated error bits for number 

of block, as figures shown in following sections. In the histogram of each distribution, sum of 

a priori bits must be adjusted to have an exact number of blocks. 

6.2.1 Equal Distance of a Priori Bits 

This distribution generates a priori bits in every equal distance, middle of each section. The 

following part shows the procedure for making the histogram of equal distance distribution 

and Figures 5. I shows an example of the histogram of equal distance a priori bits at section = 

100 bits, block number= 1000. 
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void Equal_ Distribution ( long int block_ size, long int apriori, long int *block, 

{ 

long int bit_ number,long int block_ number, long int *distribution) 

long inti; 
i=l ;while (i<=block_size) {block[i]=O;i++;} 
i= 1 ;while (i<=bit_ number) 
{ 

//Generate a priori bit for Equal distance distribution 

} 

1200 

1000 

800 
.:! 
8 600 
iii 

400 

200 

} 

distribution[i]=block _number/block_ size; 
i=i++; 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 

Section (100Bllsl 

Figure 6.1: Equal Distance Distribution (Block_number=l,000) 

6.2.2 Gaussian Distribution of a Priori Bits C 9 6 

To generate the Gaussian distribution a priori bits, following equations is used. 

1: P(x) d.x = 1. 

In this simulation, mean µ, where the peak of the density occurs, is set to the middle of block, 

and the standard deviation a , which indicates the spread or girth of the bell curve, is used for 

the value of cr= 10,20,30,40,50,60, 70,80,90. 
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The following part shows the procedure for making the histogram of Gaussian distribution 

and Figures 5.2 shows an example of the histogram at section=IOO, µ=10012=50, a=lO. As 

euations shown above, sum of all values P(x) generated becomes 1, however to simulate 

same number as block size specified, during the generation process, those generated values 

were multiplied until sum becomes equal or greater than block number. In the case of that 

sum becoming greater than block number, the histogram was adjusted to be same value as 

block number. 

void gaussian _ Distribution(long int priori _interval, long int block_ number, 
long int dispersion, long int mean, long int *distribution, 
long int N, long int *block, long int sumdist, long int multiply, 
long int priori_ no) 

{ long int ij,sum; 
multiply= 1; 
sum=O; 

II Make Gaussian Histgram which sum is same or equal to block number 

while(sum <= block_number) 
{ 
sum=O; 
i=l ;while (i<=priori _interval) { distribution[i]=O;i++;} 

11 Generate Gaussian Distribution Vaues * 
Ir" ol. 

i=l;while (i<=priori_interval) 
{ distribution[i]=long int(0.9999+multiply*( ( ( l .Oldispersion)* 

(sqrt(2*3. l 41592654)))*( exp((-(i-mean)* 
(i-mean))l(2.0*dispersion*dispersion))))); 

} 

} 

sum+= distribution[i]; 
i++; 

multiply ++; 

11 Calculate the total area of histgram 

{ 

} 

sumdist=O; i=l ;while (i<=priori _interval) 

sumdist=sumdist+distribution[i]; 
i++; 
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11 Adjust sum of distribution = block_ number 
i=O; 

} 

40 

35 

30 

.. 25 
-" g 20 

iii 15 

10 

5 

0 

while(sumdist - block_number>O) 

{ if( distribution[i]> 1) 
{ 

} 

} 

distribution[i]--; 
sumdist--; 

if(i =priori_ interval) 
i = O; 

else 
i++; 

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 

Section (100 Bits) 

Figure 6.2: Gaussian Distribution (Block_number=l,000) 

* 
6.2.3 Uniformly Distributed a Priori Bits 

This distribution has same value of a priori bits in each bit position making uniformly 

distributed a priori bits. The following part shows the procedure for making the histogram of 

uniform distribution and Figures 5.3 shows an example of the histogram of uniformly 

distributed a priori bits at section = 100 bits, block number= 1000. 

void uniform_Distribution ( long int priori_interval, long int block_number, 

{ 

long int dispersion, long int mean, long int *distribution, 
long int N, long int *block, long int sumdist, long int multiply, 
long int priori_ no) 
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II Make Uniform Histgram which sum is same or equal to block number 

long int i,j ,sum; 
multiply= 1; 
sum = O; 

while(sum <block_ number) 
{sum = O; 

} 

i=l ;while (i<=priori_interval) {distribution[i]=O;i++;} 
i=l;while (i<=priori_interval) 

{ distribution[i]=multiply; 
sum+= distribution[i]; 
i++; 

} 

II Calculate the total area ofhistgram 
sumdist=O; i= 1 ;while (i<=priori _interval) 

{ sumdist=sumdist+distribution[i]; 
i++; 

} 

II Adjust sum of distribution = block_ number 
i=O; 

} 

.= 

12 

10 

8 

g 6 
iii 

4 

2 

0 

while(sumdist - block_number>O) 

{ if( distribution[i]> 1) 
{ distribution[i]--; 

sumdist--; 
} 

if(i = priori_ interval) 
i = O; 
else 
i++; 
} 

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 

Section (100Bits) 

Figure 6.3: Uniform Distribution (Block_number=l,000) 
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6.3 Generation of Random Bits 

During all the simulations, following random bits generation procedure were used. This 

generator was used for both error bits and a priori bits. The number of a priori bits in a block 

can be changed by random_ no. 

void Random_distribution(long int block_size,long int random_no,long int *random) 
{ 

long int lj; 
i=l;while (i<=block_size) {random[i]=O;i++;} 

II number of random bits in block can be changed by random_no 

} 

i= 1 ;while (i<=random _no) 
{ 

} 
i=O; 

j=(rand( )%(block_size))+ 1; 
if G==O) {j=l ;} 
if (j>block _size) {j=block _size;} 
while (aprioriOJ!=O) 
{ 

j=( rand( )%(block_ size))+ 1 ; 
if (j==O) {j= 1;} 
if G>block _size) {j=block _size;} 

} 
randomOJ=l; 
i++; 

* 
For example, for Gaussian distribution, after making randomly generated distribution, the 

Gaussian histogram is deducted at those randomly generated bits as procedure follows. 

Void Gaussian _Pattern( long int block _size, long int bit_ number, long int * aussian, 
long int *block, long int block _number,long int dispersion, 
long int mean,long int *distribution) 

{ 
//randomly generate a priori bit in each distribution 
long int lj; 

i=O;while (i<=bit_number) { aussian[i]=O;i++;} 

I= O; 
while (I< random_no) 
{ 
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j=rand()%(bit_ number+ 1 ); 

if ( distribution[j]==O) 
{continue;} 

if ( aussian[j]== 1) 
{continue;} 

11 Deduct from the aussian 
distribution[j]--; 

aussian[j] = 1 ; 
i++; 

} 

6.4 A Simulation of a Priori Bit Distributions 

The purpose of this simulation is to find the relations between occurrences of the different 

distribution types of a priori bit and a random error bit by finding match probability. The 

match is counted when a priori bit catches a error bit where a priori bit and the error bit are in 

the same bit position in a block. The match probability is calculated by total number of 

match divided by total number of blocks simulated. The simulations are classified into three 

different cases as 

1. A priori bit with a random single error bits. 

2. A priori bit with a random multiple error bits. 

3. A priori bit with a random single burst error bits. 

A priori bits distributions, equal distance, Gaussian and uniform, used for the simulation is 

show in Figures 6.4. 
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Figure 6.4: A priori Bits Distributions 

81 91 

The result from the simulation related to the purposed 1-3 are shown in Figures 6.5 to 

Figures 6-9, where 

• For the values from 1 to 100 shown as dispersion present the distributions of a priori 

bits. The distributions expressed by the values are 

1 =Equal distance distribution 

10-90 = Gaussian distribution 

100 =Uniform distribution 

• Figure 6.5 presents the relations between the block size, a priori distribution and 

number of blocks. 

• Figure 6.6 presents the relations between the block size, a priori distribution and 

multiple random a priori bits. The multiple random error bits ratio in a block is shown 

by percentages from I to 100%. In Figure 6.7, the relations are compared by block 
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size and a priori bits distributions at fixed multiple random error percentage. For this 

simulation number of block is fixed to 1000 blocks. 

• Figure 6.8 presents the relations between the match values, a priori distribution and 

single burst a priori bit. The single burst error bits ratio in a block is shown by 

percentages from 1 to 100%. In Figure 6.9, the relations are compared by single burst 

error ratio in a block and a priori bits distributions at fixed block size. For this 

simulation number of block is fixed to 1000 blocks. 

Simulation I: A Priori Bit vs. Random Single Error Bits 

The purpose of the simulation is to evaluate match probability of different a priori bits 

distribution and single random bit error. 
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Figure 6.5 (c): 30 Bits 
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Figure 6.5: A Priori Bit vs. Random Single Error Bits 

Dispersion 

From the results shown in figure6.5 , the relations between the block size, a priori distribution 

and number of blocks are concluded as 

~ -
1. The number of block does not effect on the match probably between a priori bit with a 

random single error bits. 

2. As a priori bits distribution changes from the equal distance distribution to the 

uniform distribution or dispersion values increase of Gaussian distribution, the match 

probability also increases, and the uniform distribution has the highest match 

probability. 

3. As block size increases, the difference of match probability between the highest 

match and lowest match decreases which means the a priori bits distributions less 

effect on the match probability. 
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Simulation II: A Priori Bit vs. Random Multiple Error Bits 

The purpose of the simulation is to evaluate match probability of different a pnon bits 

distribution and multiple random bit errors. 

The simulation is based on the same block size equal to 1000 evaluated with the block size 

from 10 to 100 bits. The results of this simulation give same characteristic results for all 

block size, therefore, the result of smallest block size 10 bits and largest block size 100 bits 

are shown in figure 6.6. 
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Figure 6.6: A Priori Bit vs. Random Multiple Error Bits 
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From the result graph shown in figure 6.6, the relations by a priori bits distribution and 

difference by block size can not be evaluated because of scale, so the following graph 6. 7 was 

made to evaluate them. 
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Figure 6.7: A Priori Bit vs. Random Multiple Error Bits in term of Percentage of Error 

From the results shown in figure6. 7, the relations between the block size, a priori distribution 

and multiple random error percentage are concluded as 

1. As number of error increases, the match probability also increases proportionally. 

2. As a priori bits distribution changes from the equal distance distribution to the 

uniform distribution or dispersion values increase of Gaussian distribution, the match 

probability also mcreases, and the uniform distribution has the highest match 

probability. 

3. As block size mcreases, the difference of match probability between the highest 

match and lowest match decreases which means a priori bits distributions have less 

effect on the match probability, however, at smaller dispersion, as block number 

increases the match probability also increases. 
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Simulation III: A priori Bit vs. Random Single Burst Bits 

The purpose of the simulation is to evaluate match probability of different a priori bits 

distribution and single random burst error bit. 

The simulation is based on the same block size equal to 1000 evaluated with the block size 

from 10 to 100 bits. The results of this simulation give same characteristic results for all 

block size, therefore, the result of smallest block size 10 bits and largest block size 100 bits 

are shown in figure 6.8. 
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Figure 6.8 (a): 10 bits 
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Figure 6.8 (b ): 100 bits 

Figure 6.8: A priori Bit vs. Random Single Burst Bits 

From the result graph shown in figure 6.8, the relations by a priori bits distribution and 

difference by the burst error size can not be evaluated because of scale so the following graph 

6.9-6.10 were made to evaluate them. 
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Figure 6.10: A priori Bit vs. Random Single Group of Block Size=lOO bits 
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From the results shown in figure6, the relations between the block size, a priori distribution 

and multiple random error percentage are concluded as 

1. As number of error increase, the match probability also increases proportionally. 

2. As a priori bits distribution changes from the equal distance distribution to the 

uniform distribution or dispersion values increase of Gaussian distribution, the match 

probability also increases, and the uniform distribution has the highest match 

probability. 

3. As the size of burst error increases until 50% of a block size, the match probability 

also increases with the highest match at uniform distribution, however the size of 

burst error increase from 50%, the match probability decreases as the dispersion 

increase. 

6.5 Conclusion 

The simulation result gives relations between occurrences of a priori bit and different types of 

error bits pattern by finding the matches for three different cases, a priori bit with a random 

single error bits, a priori bit with a random multiple error bits, a priori bit with a random 

single burst bits though the compared match probability result between a priori bits 

distributions for each case has very small differences. 
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CHAPTER 7: IMPLEMENTED TURBO CODEC SIMULATION 

This chapter presents the main results of the research. The program simulates a turbo codec 

with different distributions of a priori bits. The simulations were performed with a rate 1/3 

turbo decoder. The results gave the performance changes with BER and the FER for each 

case. 

7.1 Simulation Setup 

The simulation setup is composed of two distinct parts, a priori bits generation and a priori 

bits insertion. For simulations, block size of 128 bits, 256 bits, 512 bits and 1024 bits were 

used for 1E5 operation times. 

~ 
7.1.1 A priori Bits Generation -
Three kinds of a priori bits (Equal, Gaussian and Uniform) were distributed by using same 

code described in chapter 6. In each block, a priori bits were added with different a priori 

inclusion ratio by percentages, 1 %, 5%, 10%, 15%, 20%, of block bits as figures 7 .1, 7 .2and 

7.3 shown below for each distribution pattern. 

Figure 7.1: Histogram of Equal Distribution a priori Bits 
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Figure 7.2: Histogram of Gaussian Distribution a priori Bits 

Figure 7.3: Histogram of Uniform Distribution a priori Bits 

-
7.1.2 A priori Bits Insertion 

,..... 
~ 

The simulation of the turbo code encoder is based on the literature [14]. The simulated turbo 

code encoder is composed of two identical RSC component encoders. These two component 

encoders are separated by a random interleaver. The random interleaver is a random 

permutation of bit order in a bit stream. This random permutation of bit order is stored so that 

the interleaved bit stream can be deinterleaved at the decoder. The output of the turbo code 

encoder is described by three streams, one systematic message (uncoded) bit stream and two 

coded parity bit streams. The first a priori bits before transmission were added into one of the 

output of the turbo encoder, systematic message bits as shown in figure 7.4. 
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Figure 7.4: A priori Bit Insertion at the Encoding Process 

In the simulation, the Gaussian distribution was used as the channel noise, because it is a 

fairly good model for different transmission mediums including deep space communication. 

The Gaussian distribution was constructed with mean of zero and standard deviation of one. 

In order to use this model, the turbo code encoder output bit streams must be mapped from 

{O, I} to {-1, +I} domain. 

The simulation of the turbo code decoder is based on literature [14]. For the received 

systematic message bit stream, the noisy a priori bits are replaced with the same a priori bits 

at encoding process before passing to the component of turbo decoder as shown in figure 7.5. 
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Figure 7.5: A priori Bit Insertion at the Decoding Process 
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7.2 Synoptic scheme of the software implementation 

The program code has been written in C programming language. All the code is in Appendix 

C. Figure 7 .6 gives a brief explanation of the program structure. 

Eh/No N Priori% 

mesg 

mesg 

praityl 

parity2 

MAIN 

PROGRAM 
praity2 

c 

BER FER 

RandomO 

EncodeQ 

InterleaveO 

Priori BitsQ 
• Equal 
• Gaussian 
• Uniform 

GaussianO 

DecodeQ 

lnterleaveO 

DecodeO 

De-InterleaveO 

D De~nes a function called by the 
mamprogram 

Purpose: to generate a random number 
for message bits. 

Purpose: to encode a bit. 

Purpose: to interleave a block of data. 

-
Purpose: to generate priori bits 
distribution. 

Purpose: to generate a Gaussian 
distributed variable as adding noise. 

Purpose: to decode a data block. 

Purpose: to deinterleave a block of data. 

Figure 7.6: Software synoptic 
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This program includes the code so that the simulation can start where it left off if the program 

is stopped for some reason. After each turbo code run, the important variables are saved in a 

file. 

* mesg is the riginal message that is compared after each iteration to the decoded message. 

* channelmesg is the A WGN corrupted message. 

* parityl is the parity bits from the first recursive convolutional encoder. 

* parity2 is the parity bits from the second recursive convolutional encoder and interleaver 

combination. 

* channelparityl is the A WGN corrupted parity bits from the first recursive convolutional 

encoder. 

* channelparity2 is the AWGN corrupted parity bits from the second recursive convolutional 

encoder and interleaver combination. 

* N is the size of the interleaver 
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7.3 Results Analysis 

The purposes of simulation are classified into two different areas such as 

1. To evaluate the error correcting performance with different block size by BER and 

FER. 

2. To evaluate the relationship between a priori bits distribution patterns at defined range 

of SNR. 

The results from the simulation related to the purposes 1 is shown in Figures 7 .5 - Figures 

7.6, where 

1. Figures 7.5 presents the BER performance comparison between different block sizes, 

128, 256, 512, 1024 Bits without a priori bits at decoding process. 

2. Figures 7 .6 presents the FER performance comparison between different block sizes, 

128, 256, 512, 1024 Bits without a priori bits at decoding process. 

The results from the simulation related to the purposes 2 is shown in Figures 7. 7 - Figures 

7.16, where 

1. Figures 7.7 - Figures 7.8 present the BER performance comparison between different 

a priori bits distributions. The ratio of a priori bits in a block is changed by 

percentages 

2. Figures 7.9 - Figures 7.16 present the FER performance comparison between different 

a priori bits distributions. The ratio of a priori bits in a block is are changed by 

percentages 

The next section will describe the simulation detail, in addition with the performance 

analysis for each model. 
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Simulation I: Performance Comparison Between Different Block Sizes without a Priori 

Bits at the Decoding Process. 

The purpose of the simulation is to evaluate the error correcting performance with different 

block size by BER and FER. The evaluation is completed by 

1. Setting up the simulation configuration as follows : 

Simulation I Configuration: 

block size = 128 

SNR= (double dB=O; dB<=2.5; dB+=0.5) 

Number of blocks= 1E5 

2. Running the simulation software with the different block size such as 128, 256, 

512, 1024 Bits to compare the throughput of the simulation by BER and FER. 

3. Investigating the simulation result 

* 
The simulation result is shown in Figure 7.5. The simulation results shown are focused on the 

range of signal to noise ratio between OdB and 2.5dB which is the most considerable range 

for the deep space communication with turbo code. 

From the results obtained in Figure 7.5-7.6, the conclusion for the performance evaluation 

without a priori bits is that as the block size increases the error correcting performance also 

mcreases. 

This result can be used as a reference to compare the simulation results with different 

distributions of a priori bits during the decoding process. 
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Simulation II: Performance Comparison Between Different a Priori Bits Distributions 

The purpose of the simulation is to evaluate the relationship between a priori bits distribution 

patterns at defined range of SNR. The evaluation is complete by 

1. Setting up the simulation configuration as follow : 

Simulation II Configuration: 

block size = 128 

SNR= (double dB=O; dB<=2.5; dB+=0.5) 

Number of blocks= 1E5 

Distribution =Equal Distance, Gaussian (Dispersion = 10), Uniform 

2. Running the simulation software with the different block size such as 128, 256, 

512, 1024 Bits, and different a priori bits distribution to compare the throughput 

of the simulation by BER and FER. 

* 3. Investigating the simulation result ~ 9 6 ..; ol ~~ 

fl1iit1~'6\1;\\S 
From the results shown in Figures 7.11-7.18, the conclusion of the performance evaluation of 

turbo codec with a priori bits can be summarized as follow 

1. Increasing the number of a priori bits, performance of error correcting in both 

BER and FER is improved. 

2. The changes of a priori bit distribution do not significantly affect the error 

correction property of turbo codec, therefore the use of less complicated equal 

distance distribution is recommended to reduce the turbo code complexity. 
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CHAPTER 8: CONCLUSION 

This thesis discussed the approach of implementation and study of the performance of the 

existing turbo coding techniques for deep space communications. The main subject of the 

research focused on methods combining the advantages of turbo code with the inclusion of a 

priori information. A statistical simulation software was used to evaluate the effect of the 

turbo code implementation by using a priori knowledge about the source during the channel 

decoding. 

Though only slight complexity gam was added to the turbo codec by the method of 

combining the original turbo code [11] introduced in 1993 with the inclusion of a priori 

information, the simulation results indicate the advantage which is the clear improvement that 

the source decoder gives better performance by observing an improvement of the Bit Error 

Rate (BER) and the Frame Error Rate (FER). The BER and the FER were improved by 

increasing the block size and the ratio of a priori bits inclusion in a block. The simulation 

results also show a priori bits distribution patterns do not affect significantly on the turbo 

decoding performance, therefore, by using this implementation method, the use of the equally 

distributed a priori bits are recommended to make the computations of decoding process less 

complicated. 

In the real operation of communications, a priori information synchronization must be 

established between the turbo encoder and decoder prior to the data transmission for initial a 

priori bits distribution pattern though the changes of a priori bits distribution pattern during 

communications could be synchronized as using another redundancy in code block during the 

data transmission. 
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The future work in this field would include the development of a priori bits inclusion 

approach in dealing with the turbo codec. The suggested approaches of a priori information 

inclusion are in parity bits after encoding process, the different patterns of a priori 

infonnation in each parity bit. Also at the decoding process, the probability of error 

occurrence from the previous decoding history could be used to estimate the error pattern to 

modify a priori bits distribution pattern during the decoding process. For this self a priori bits 

distribution pattern modification, a priori information synchronization would be done during 

the data communication. A proper inclusion of a priori infonnation and error estimation 

algorithm are to be further developed. 

=·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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APPENDIX A: BCJR ALGORITHM 

The following text has been taken with permission from the lecture file of Coding Theory 

at http://www.s-t.au.ac.th/~Alib/students/TS6313/TS6313 l 7.doc and explains theoretically 

the BCJR algorithm [14] used for Turbo code simulations. 

For a discussion of turbo decoding to be complete, a mathematical exposition of the BCJR 
algorithm for MAP estimation is in order. 

Let x(t) be the input to a trellis encoder at time t. Let y(t) be the corresponding output 
observed at the receiver. Note thaty(t) may include more than one observation; for example, 
a rate l/n code produces n bits for each input bit, in which case we have an n-dimensional 
observation vector. Let the observation vector be denoted by 

Y(l,I) = [y(l),y(2), ... ,y(t)] 
Let Ain(t) denote the probability that a state s(t) of the trellis encoder equals m, where 
m = 1, 2,. .. , M. We may then write 

f..(t) = P(s(t) I y) ,_. 
(10. 77) 

where s(t) and 'A.(t) are both M-by-l vectors. Then, for a rate 1/n linear convolutional code 
with feedback as in the RSC code, the probability that a symbol "I" was the message bit is 
given by 

sef:.1 

(10.78) 
where FA is the set of transitions that correspond to a symbol "I" at the input, and As(t) is 

the s-component of 'A.(t). 

Define the forward estimation of state probabilities as the M-by-1 vector 
a(t) = P( s(t) I y (1,tJ) 
(10.79) 

where the observation vector YCI,t) is defined above. Also define the backward estimation of 
state probabilities as the M-by-1 vector 

~(t) = P(s(t) I YCt,kJ) 
(10.80) 

where 
YU.kl= [y(t),y(t+ l), ... ,y(k)] 

The vectors a(t) and ~(t) are estimates of the state probabilities at time t based on the past 
and future data, respectively. We may then formulate the separability theorem as follows: 
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The state probabilities at time t are related to the forward estimator a(t) and backward 
estimator (3(t) by the vector 

A.(t) = a(t) · IJ(t) 

II a(t) ·PU) 111 

(10.81) 
where a(t) · (3(t) is the vector product of a(t) and (3(t), and II a(t) · (3(t) 11 1 is the L 1 norm of 
this vector product. 

The vector product a(t) · (3(t) (not to be confused with the inner product) is defined in 
terms of the individual elements of a(t) and (3(t) by 

a1 (t)/31 (t) 

a(t) · (3(t) = 

\"ERS/]"y 
(10.82) 0 

and the L1 norm of a(t) · (3(t) is defined by ~ 
M 

II a(t) · (3(t) 111 = Lam(t)/Jm(t) ,A 
m=I 

(10.83) 
The separability theorem says that the state distribution at time t given the past is 
independent of the state distribution at time t given the future, which is intuitively 
satisfying recalling the Markovian assumption for channel encoding, which is basic to the 
BCJR algorithm. Moreover, this theorem provides the basis of a simple way of combining 
the forward and backward estimates to obtain a complete description of the state 
probabilities. 

To proceed further, let the state transition probability at time t be 
Ym ·,m(t) = P(s(t) = m, y(t) I s(t- 1) = m ') 
(I 0.84) 

and denote the M~by-M matrix of transition probabilities as 
r(t) = {Ym',m(t)} 
(10.85) 

We may then formulate the recursion theorem as follows: 

* 

The forward estimate a(t) and backward estimate (3(t) are computed recursively as 

ar(t) = a r (t - l)r(t) 

II a r (t - l)r(t) 111 

(10.86) 
and 

(3T(t) = r(t + J)fJ(t + 1) 
II r(t + I)IJ(t +I) 111 

(I 0.87) 
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where the superscript T denotes matrix transposition. 

The separability and recursion theorems together define the BCJR algorithm for the 
computation of a posteriori probabilities of the states and transitions of a code trellis, given 
the observation vector. Using these estimates, the likelihood ratios needed for turbo 
decoding may then be computed by performing summations over selected subsets of states 
as required. 
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APPENDIX B: DIFFERENTION ENTROPY OF UNIFORM 
DISTRIBUTION 

The result of better matches with uniform distribution in chapter 6 can be proven by 

following mathematical solutions which has been taken with permission from the lecture file 

of Coding Theory at http://www.s-t.au.ac.th/~Alib/students/TS63 l 3/TS63 l 307.doc. 

Problem 2.8.2 A continuos random variable Xis constrained to a peak magnitude M; that is, 
-M<X<M. 
(a) Show that the differential entropy of Xis maximum when it is uniformly distributed, 

as shown by 

1 

2M' 
-M<x<M 

0, otherwise 

(b) Show that the maximum differential entropy of Xis log 2 2M. 

Solution: 
From the fundamental inequality in information theory of Eq. (10.12) to the situation at 
hand, we may write 

oo f (x) M f (x) 
ff y(x)log2 X dx = f f y(x)log2 X dx ::; O 

-oo f y(x) -M f y(x) 

or equivalently 
M M 

- f f y(x)log2 f y(x)dx ::;- f f y(x)log2 f x(x)dx 
-M -M 

The quantity on the left-hand side of Eq.(10.71) is the differential entropy of the 
random variable Y; hence, 

M 
h(Y)~- f fy(x)log 2 fx(x)dx 

-M 
Suppose now the random variable Xis described as follows: 

The random variable Xis uniformly distributed as shown by 
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1 

2M' 
-M<x<M 

0, otherwise 

Hence, substituting the uniform distribution into the inequality, we get 
M 

h(Y) s f fy(x)Iog2(2M)dx 
-M 

We now recognize the following property of the random variable Y: 
M 
f ! y(x)dx = 1 

-M 
We may therefore simplify the inequality as E ff 

h(Y) s Iog2 (2M) 

The quantity on the right-hand side of the inequality is in fact the differential entropy of the 
uniformly distributed random variable X: 

h(X) = Iog2 (2M) ,A 
Finally, we may write 

h(Y) s h(X) {
X: uniformlydidstributed random variable 

Y: another random variable 
where equality holds if, and only if, Y = X. 

We may now summarize the result of this important example as follows: 

1. For a finite interval (-M<x<M), the uni(ormlv distributed random variable X has 
the largest differential entropy h(X) attainable by any random variable Y. 
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APPENDIX C: CODE USED TO SIMULATE THE TURBO CODEC 

All turbo codec simulations are performed by using the code based on following turbo code 

simulator which 1s originally written by Mathys Walma taken from 

http://www.eccpage.com. This codec is using BCJR algorithm[l4], based on the 

pseudocode in W.E.Ryan's tutorial paper[X]. 

Turbo.cpp 

#include <stdio.h> 
#include <math.h> 
#include <string.h> 
#include <stdlib.h> 
#include "random.h". 

canst int SEED=lOOO; 
unsigned int N=128; 
unsigned int ITERA TIONS=20; 
double No; 

I II zero mean RV with variance as given 
double gaussian( double variance); 
II encodes mesg into parity I, and if force it true it modifies mesg to 
II force the encoder to the zero state by the last bit. 
void encode(bool *mesg,bool *parity I ,unsigned size, boo! force); 
void interleave(bool *mesg, unsigned size); 
II binary addition with no carry 
bool add(bool a,bool b); 
void interleave(bool *mesg, unsigned size); 
void deinterleave(bool *mesg, unsigned size); 
void deinterleavedouble(double *mesg, unsigned size); 
void interleavedouble(double *mesg, unsigned size); 
void createinterleave(unsigned size); 
void createencodetable(); 
void inttobool(unsigned state, bool *array, unsigned size); 
void booltoint(bool *array, unsigned size, unsigned *state); 
unsigned decode (double *channelmesg, double *parity!, double *parity2, unsigned size, bool *mesg); 
unsigned *interleavearray; 
unsigned *deinterleavearray; 

II global information about the encoder used by the encoder and the decoder 
II routine 
II how many states are in the encoder (a power of2) 
unsigned numstates; 
11 log2(numstates) 
unsigned memory; 
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II [2] = input, [ 16] = current state, tostate[2][ 16] = next state 
unsigned *tostate[2]; 
II [2] = last input, [ 16] = current state, fromstate[2][ 16] = previous state 
unsigned *fromstate(2]; 
II [2] = input, [ 16] = current state, output[2][ 16] = output of encoder 
boo! *output[2]; 
Random before; 

main() 
{ 

boo! *mesg; 
boo! *parity!; 
boo! *parity2; 
double *channelmesg; 
double *channelparityl; 
double *channelparity2; 

interleavearray =new unsigned[N]; 
deinterleavearray =new unsigned[N]; 
mesg =new bool[N]; 
parity! =new bool[N]; 
parity2 =new bool[N]; 
channelmesg =new double[N]; 
channelparityl =new double[N]; 
channelparity2 =new double[N]; 

II only needs to be done once 
createencodetab I e(); 

bool firstloop=true·; 

II change if you want to loop for other values of dB 
for (double dB=-4.0;dB<=-4.0;dB+=0.5) 
{ 
unsigned totalN=O; 
unsigned totalerrors=O; 
unsigned numiter; 
unsigned totaliter=O; 
unsigned numloops=O; 

II load the previous state 
if (firstloop) 
{ 
FILE *fp; 
char line[30]; 

firstloop = false; 

if((fp = fopen("laststate","r")) !=NULL) 
{ 

fgets(line,30,fp ); 
dB= atof(line); 
fgets(line,30,fp ); 
total errors = atoi(line ); 
fgets(line,30,fp ); 
totalN = atoi(line); 

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 67 



fcl ose( fp); 
} 

fgets(line,30,fp ); 
totaliter = atoi(line); 
fgets(line,30,fp ); 
numloops = atoi(line); 

II dB= IO*log(Eb/No) where Eb is I 
No= llpow(lO.O,dB/10.0); 

boo! keepgoing=true; 

do 
{ 
. (int x=O;x<N;x++) 

mesg[x] = before.boolrandom(); 

II create a random interleaver for each decode trial 
createinterleave(N); 

encode(mesg,parity l ,N,true ); 
interleave(mesg,N); 
encode(mesg,parity2,N ,false); 

II deinterleave for the decoder 
deinterleave(mesg,N); 

for (int x=O;x<N;x++) 
{ 
mesg[x]? channelmesg[x] = 1.0: channelmesg[x]=-1.0; 
parity! [x]? channelparityl [x]=I .0 : channelparityl [x]=-1 .0; 
parity2[x]? channelparity2[x]=l .O : channelparity2[x]=-l .O; 
} 

II add gaussian noise, mean=O, variance=Nol2 
for (int x=O;x<N;x++) 
{ 
channelmesg[x] += gaussian(Nol2); 
channelparityl[x] += gaussian(Nol2); 
channelparity2[ x] += gaussian(No/2); 
} 

numiter =decode( channelmesg, channel parity!, channelparity2,N,mesg); 

unsigned numerrors=O; 

for (int x=O;x<N;x++) 
{ 
boot temp= channelmesg[x] == I ? true: false; 

if(mesg[x] !=temp) 
numerrors++; 
} 

totalerrors += numerrors; 
totalN += N; 
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II open a file for output 

totaliter += numiter; 
numloops++; 

char name[30]; 

sprintf (name, 11%dN%lfdB11,N,dB); 

FILE *fp; 

II if file exists, we will append to it 
fp = fopen(name, 11a11

); 

(
11N=%d, e=%d, totlTER=%d, numITER=%d, No=%lf, tote=%d, totn=%d, 

dB=%lf\n 11 ,N,numerrors,ITERATIONS,numiter,No,totalerrors,totalN,dB); 
fprintf(fp, 11N=%d, e=%d, totlTER=%d, numITER=%d, No=%lf, tote=%d, totn=%d, 
dB=%1f\n 11

, N ,numerrors,ITERA TI ONS,numiter,N o, total errors, to ta IN ,dB); 

fclose(fp ); 

I 
II save this state in case we need to start over again 

, fp = fopen (11 laststate11
,

11w11
); 

fprintf(fp, 11%lf\n 11 ,dB); 
fprintf( fp, 11%u\n 11 ,total errors); 
fpri ntf( fp, 11%u\n 11

, totalN); 
fprintf( fp, 11%u\n 11 ,totaliter); 
fprintf(fp, 11%u\n 11 ,numloops); 

fclose(fp); 

II a number of conditions for stopping the simulation for this dB value 
if (total errors> 1000) 
keepgoing = false; 
else if(totalN>500000 && totalerrors > 100) 
keepgoing = false; 
else if (totalN> I E6 && total errors> I 0) 
keepgoing = false; 
else if(totalN>5E6 && totalerrors > 5) 
keepgoing =false; 
else if (totalN>7.5E6 && total errors> 3) 
keepgoing = false; 
else if(totalN>lE7) 
keepgoing=false; 
} 

while (keepgoing ==true); II 10 million is as high as I'm willing to go 
II I 000 errors should be enough for good stats. 

II add a summary of the last run to the summary file 
FILE *fp; 

fp = fopen( 11 summary", 11a11
); 

I printf( 11dB =%If, N=%ld, error=%ld, avgiter =%If, interleaver size=%d, original encoder\n11 ,dB, 

I 
tota!N ,total errors,( double )totaliterl( double )numloops,N); 
fprintf(fp, 11dB =%If, N=%ld, error=%ld, avgiter =%If, interleaver size=%d, original encoder\n 11 ,dB, 

1 
tota!N, totalerrors,( double )total iterl( double )numloops,N); 
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fclose(fp); 

delete interleavearray; 
delete deinterleavearray; 
delete mesg; 
delete parity!; 
delete parity2; 
delete channelmesg; 
delete channel parity I; 
delete channelparity2; 

void createencodetable() 
{ 

boo! *boolstate; 
boo! *newstate; 

numstates = 16; 
memory= 4; 

I I create arrays used by encode and decode 
output[O] =new bool[numstates]; 
output[!]= new bool[numstates]; 
fromstate[O] =new unsigned[numstates]; 
fromstate[J] =new unsigned[numstates]; 
tostate[O] = new unsigned[ numstates]; 
tostate[ I] =new unsigned[ numstates]; 
boolstate =new bool[memory]; 
newstate =new boo![ memory]; 

for (unsigned input=O;input<2;input++) 
for (unsigned intstate=O;intstate<numstates;intstate++) 
{ 

boo! boolinput = (input == 0) ? false : true; 

NCF 
inttobool(intstate,boolstate,memory); 

II calculate output due to the input 
output[input] [intstate] = add(boolinput,boolstate[O]); 
output[ input] [intstate] = add( output[input][intstate ],boolstate[3]); 
output[ input] [intstate] = add( output[input][intstate ],boolstate[ I]); 
output[ input] [intstate] = add( output[ input] [ intstate ],boolstate[2]); 
[input][intstate] = add( output[ input] [intstate ],boolstate[3]); 

II calculate new states 
newstate[3] = boolstate[2]; 

newstate[2] = boo I state[ I]; 
newstate[l] = boolstate[O]; 

newstate[O] = add(add(boolinput,boolstate[O]),boolstate[3]); 
II from s' to s 

booltoint (newstate,memory,&tostate[input][intstate]); 
II from s to s' 

fromstate[input] [ tostate[input] [intstate]] = intstate; 
} 
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} 

delete boolstate; 
delete newstate; 

void inttobool(unsigned state, bool *array, unsigned size) 
{ 

for (unsigned x=O;x<size;x++) 
{ 
unsigned next= state>> 1; 

if((next <<I)== state) 
array[ x] = false; 
else 
array[x] =true; 
state "° next; 
} 

void booltoint(bool *array, unsigned size, unsigned *state) 
{ 

} 

*state= O; 

for (int x=O;x<size;x++) 
if(array[x] ==true) 
(*state) i= (1 « x); 

unsigned decode (double *mesg, double *parity!, double *parity2, unsigned size, bool *boolmesg) 
{ 

static double **a[2]; 
static double **b[2]; 
static double *L[2]; 
static double **garµma[2][2]; 
static double **gammaE[2][2]; 
static boo! initialized=false; 
static unsigned lastsize=O; 
unsigned returnvalue=ITERA TIONS; 

s 

II minimize new's and delete's to only when needed 
if (size!= lastsize && initialized== true) 
{ 

II delete all the arrays and rebuild 
for (int y=O;y<2;y++) 
for (int x=O;x<2;x++) 
{ 
for (int z=O;z<lastsize;z++) 

{ 
delete gamma[y][x][z]; 
delete gammaE[y][x][z]; 
} 

delete gamma[y][x]; 
delete gammaE[y][x]; 
} 
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11 create L[ encoder #] 
for (int y=O;y<2;y++) 
delete L[y]; 

II create alpha[ encoder #][k][state] 
for (int x=O;x<2;x++) 
{ 

for (int y=O;y<Jastsize;y++) 
{ 

delete a[x][y]; 
delete b[x][y]; 

delete a[x]; 
delete b[x]; 

} 

if(initialized ==false II size!= lastsize) 
{ 

initialized = true; 
lastsize = size; 

II create the arrays dynamically at runtime, delete at end ofroutine 
II create gamma[ encoder #][uk][k][state] 

for (int y=O;y<2;y++) 
for (int x=O;x<2;x++) 
{ 
gamma[y][x] =new double*[ size]; 
gammaE[y][x] =new double*[ size]; 
for (int z=O;z<size;z++) 
{ 
gamma[y][x][z] =new double[numstates]; 
gammaE[y][x][z] =new double[numstates]; 
} 

} 

II create L[encoder #] 
for (int y=O;y<2;y++) 
L[y] ==new double[ size]; 

II create alpha[ encoder #][k][state] 
for (int x=O;x<2;x++) 
{ 
a[x] =new double*[size]; 
b[x] =new double*[ size]; 

II each Yk has 'numstates' values of gamma 
for (int y=O;y<size;y++) 
{ 
a[x][y] =new double[numstates]; 
b[ x ][y] = new double[ numstates]; 
} 

II initialization cif iteration arrays 
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for (int x=O;x<numstates;x++) 
{ 
a[O][O][x] = b[O][size-l][x] = a[l][O][x] = (x==O)? 1.0: 0.0; 

II extrinsic information from 2-1 

II initialization of extrinsic information array from decoder 2, used in decoder I 
for (int x=O;x<size;x++) 

L[l][x] =0.0; 

II 4*Eb!No 
double Le= (4.0*1.0)/No; 

for (int c=O;c<ITERA TIONS;c++) 
{ 

II k from 0 to N-1 instead of l to N 
for (int k=O;k<size;k++) 

{ 
II calculate the gamma(s',s); 

for (int input=O;input<2;input++) 
{ 
double uk = (input == 0) ? -1.0 : 1.0; 

for (int s=O;s<numstates;s++) 

} 
} 

{ 
double xk = (output[input][s] == 0)? -1.0: 1.0; 

gammaE[O] [input] [k][ s ]=exp(0.5 *Lc*parity I [k]*xk); 
gamma[O] [input] [k] [ s ]=exp(O .5*uk*(L[1] [k ]+Lc*mesg[k]) )* gammaE[O] [input] [k] [ s]; 
} 

II calculate the alpha terms 
II from 1 to N-1, 0 is precalculated, N is never used 

for (int k= 1 ;k<size;k++) 
{ 
double temp=O; 

II calculate denominator 
for (int state=O;state<numstates;state++) 
temp+= a[O][k-1 ][fromstate[O][state]]*gamma[O][O][k-1 ][fromstate[O][state]] + 

a[O][k-1] [from state[ 1] [state ]]*gamma[O][ I] [k-1] [ fromstate[ I][ state]]; 

for (int state=O;state<numstates;state++) 
a[O] [k ][state l = (a[O][k-1] [fromstate[O] [state]] *gamma[O][O][k-1 ][ fromstate[O] [state]] + 

//fromN-1 to 

a[O] [k-1] [ fromstate[ 1] [state ]]*gamma[O] [ 1] [k-1 ][ fromstate[ 1] [state ]])/temp; 
} 

for (int k=size-1;k>=1 ;k--) 
{ 

l 
double temp=O; 

II calculate denominator 
_ for (int state=O;state<numstates;state++) 
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temp += a[O][k][ fromstate[O][ state]] *gamma[O][O][k][fromstate[O][state]] + 
a[O] [k][fromstate[ l ][state ]]*gamma[O] [ l ][k][fromstate[ l ][state]]; 

for (int state=O;state<numstates;state++) 
b[O][k-1 ][state] = (b[O][k][tostate[O][state]]*gamma[O][O][k][ state] + 

b[O] [k] [ tostate[ l] [state]] *gamma[O] [ l] [k] [state ])/temp; 

for (int k=O;k<size;k++) 
{ 

double min=O; 

II find the minimum product of alpha, gamma, beta 
for (int u=O;u<2;u++) 
for (int state=O;state<numstates;state++) 

{ 
double temp=a[O] [k] [state] *gammaE[O] [ u] [k] [state] *b[O] [k] [ tostate[ u] [state]]; 

if((temp <min && temp!= 0)11 min== 0) 
min= temp; 

} 

II if all else fails, make min real small 
if(min == 0 II min> I) 
min= lE-100; 

double topbottom[2] ; 

for (int u=O;u<2;u++) 
{ 
topbottom[u]=O.O; 

for(int state=O;state<numstates;state++) 
top bottom[ u] += (a[O][k][state )*gammaE[O) [ u] [k ][state)*b[O] [k] [to state[ u] [state])) ; 
} 

if (topbottom[O] == 0) 
topbottom[O] =min; 
else if(topbottom[l) == 0) 
topbottom[l] =min; 

L[O][k] = (log(topbottom[l]/topbottom[O])); 
} 

interleavedouble(L[O],size); 
II remember to deinterleave for next iteration 

interleavedouble(mesg,size); 

II start decoder 2 
II code almost same as decoder 1, could combine code into one but too lazy 

for (int k=O;k<size;k++) 
{ 

II calculate the gamma(s',s); 
for (int input=O;input<2; input++) 

{ 
double uk = (input== 0) ? -1.0 : 1.0; 
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for (int s=O;s<numstates;s++) 
{ 
double xk = (output[input][s] == 0)? -1.0: 1.0; 

gammaE[ I ][input] [k] [s ]=exp(0.5*Lc*parity2[k] *xk); 

gamma[ I ](input](k]( s]=exp(O.S*uk*(L(O](k]+Lc*mesg[k]))*gammaE[ I ](input](k ]( s ); 
} 

II calculate the alpha terms 
for (int k= 1 ;k<size;k++) 

{ 
double temp=O; 

II calculate denominator 
for (int state=O;state<numstates;state++) 

temp += a( I ][k- I] [fromstate[O][ state ]]*gamma[ I ](O] [k- I] ( fromstate(O][ state]] + 
a( I ][k-1 ][fromstate[I ][state]) *gamma[ I][ I ][k- I] [from state[ I][ state]); 

for (int state=O;state<numstates;state++) 
a[l] [k][state] = (a[l ][k- I][ fromstate[O][state ]]*gamma[ I ][O][k-1 ][fromstate[O][ state]] + 

a[ I] [k- I ][fromstate[ I][ state ]J*gamma[I ][I] [k-1] [fromstate[ I] [state ]])/temp; 

Ii in the first iteration, set b[l][N-I] = a[I][N-I] for decoder 2 
II this decoder can't be terminated to state 0 because of the interleaver 
II the performance loss is supposedly neglible. 

if(c==O) 
{ 
double temp=O; 

II calculate denominator 
for (int state=O;state<numstates;state++) 
temp+= a[l ][size-I ][fromstate[O][state])*gamma[ I ][O][size-1 ][fromstate[O][state]] + 

a[ 1 ][size- I][ from state[ 1] [state ]]*gamma[ I][ 1 ][size- I] [ fromstate[ 1 ][state]]; 

. for (int state=O;state<numstates;state++) 
b[ I][ size- I][ state] =(a[ I][ size- I][ fromstate[O][ state ])*gamma[ I ][OJ[ size- I] 

[fromstate[O][ state]] + a[ I] [size- I ][fromstate[ I][ state]]* 
gamma[ I] [I] [size- I] [ fromstate[ 1] [state ]])/temp; 

for (int k=size-1 ;k>= I ;k--) 
{ 
double temp=O; 

II calculate denominator 
for (int state=O;state<numstates;state++) 
temp+= a[I ][k][fromstate[O][state)J*gamma( l][O][k][fromstate(O][state]] + 

a[ I ][k][fromstate[ I][ state )]*gamma[ I][ I] [k ][from state[ I] [state]]; 

for (int state=O;state<numstates;state++) 
b[ I ][k-1 ][state] = (b[ I ][k] [tostate[O][ state]] *gamma[ I] [O] [k] [state] + 
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b[ l] [k] [tostate[ l] [state ]]*gamma[ 1] [ l ][k] [state ])/temp; 

for (int k=O;k<size;k++) 
{ 
double mih = O; 

II find the minimum product of alpha, gamma, beta 
for (int u=O;u<2;u++) 
for (int state=O;state<numstates;state++) 
{ 
double temp=a[ 1 ][k] [state ]*gammaE[l ][ u][k] [state] *b[ 1] [k] [tostate[ u] [state]]; 

if((temp <min && temp != 0)11 min== 0) 
min =temp; 

} 
II if all else fails, make min real small 

if(min == 0 II min> 1) 
min= lE-100; 

double topbottom[2]; 

for (int u=O;u<2;u++) 
{ 

topbottom[ u]=O.O; 

for( int state=O ;state<n umstates;state++) 
topbottom[ u] += (a[ I] [k ][state] *gammaE[ I][ u ](k] [state] *b[ I ][k] [to state[ u ][state]]); 
} 

if(topbottom[O] == 0) 
topbottom[O] =min; 
else if (topbottom[ l] == 0) 
topbottom[l] =min; 

L[l](k] = (log(topbottom[l]/topbottom[O])); * 
69 ol ~~ 

-;,'V/fl1a tr5'6\i\\I deinterleavedouble( mesg,size ); 
deinterleavedouble(L[ 1 ],size); 

II get L[O] back to normal after decoder 2 
deinterleavedouble(L[O],size); 

boo! temp=true; 
for (int k=O;k<size;k++) 

if(boolmesg[k] != ((Lc*mesg[k] + L[O][k] + L[l][k] > 0.0)? true: false)) 
temp = false; 

II we can quit prematurely since it has been decoded 
if ( temp==true) 

{ 
returnvalue = c; 
c=ITERA TIONS; 
} 

II end decoder 2 

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 76 



II make decisions 
for (int k=O;k<size;k++) 

if((Lc*mesg[k] + L[O][k] + L[l][k]) > 0) 
mesg[k] = l.O; 

else 
mesg[k] = -1.0; 

return returnvalue; 

void deinterleavedouble(double *mesg, unsigned size) 
{ 
double *temp; 

temp= new double[ size] ; 

for (int x=O;x<size;x++) 
temp[x] = mesg[x]; 

for (int x=O;x<size;x++) 
mesg[deinterleavearray[x]] = temp[x]; 

delete temp; 

void interleavedouble(double *mesg, unsigned size) 
{ 
double *temp; 

temp= new double[ size] ; 

for (int x=O;x<size;x++) 
temp[x] = mesg[x]; 

for (int x=O;x<size;x++) 
mesg[interleavearray[x]] = temp[x] ; 

delete temp; 

void interleave(bool *mesg,unsigned size) 
{ 

} 

bool *temp; 

temp = new bool[size]; 

for (int x=O;x<size;x++) 
temp[x] = mesg[x] ; 

for (int x=O;x<size~x++) 
mesg[interleavearray[x]] = temp[x]; 

delete temp; 
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void deinterleave(bool *mesg,unsigned size) 
{ 

} 

boo! *temp; 

temp= new bool[size]; 

for (int x=O;x<size;x++) 
temp[x] = mesg[x]; 

for (int x=O;x<size;x++) 
mesg[deinterleavearray[x]] = temp[x]; 

delete temp; 

void createinterleave(unsigned size) 
{ 

bool *yesno; 

yesno =new bool[size] ; 

for (int x=O;x<N;x++) 
yesno[x]=false; 

II create an interleave array 
for (int x=O;x<N;x++) 

} 

{ 
unsigned val; 

do 
{ 
val=before.longrandom(N); 
} 
while(yesno[val] ==true); 

yesno[val] =true; 
interleavearray[x] =val; 
deinterleavearray[val] = x; 
} 

delete yesno; 

void encode(bool *mesg,bool *parity,unsigned size, bool force) 
{ 

unsigned state=O; 

for (int x=O;x<size;x++) 
{ 

II force the encoder to zero state at the end 
if(x>=size-memory && force) 
{ 
if (tostate[O)[state]& I) 

mesg[x] =true; 
else 
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mesg[x] =false; 

II can't assume the boo I type has an intrinsic value of 0 or 1 
II may differ from platform to platform 

int uk = mesg[x]? 1 : O; 

II calculate output due to new mesg bit 
parity[ x] = output[ uk ][state]; 

II calculate the new state 

} 
} 

state = tostate[ uk ][state]; 

booladd(boola,bool b) 
{ 

return a==b ? false : true; 

:ouble gau,,ian(doublrnrrianoe) \" E R , .,.}' (}. 
1 static becuase we don't want to have it initialized each time we go in ~ 

double returnvalue=O; ....1. 
doublek; " 

k = sqrt(variancel2.0); 

II add 24 uniform RV to obtain a simulation of normality 
for (int x=O;x<24;x++) 
returnvalue += before.doublerandom(); 

return k*(returnvalue-0.5*24); 

Random.cpp 

#include "random.h" 
I* 

~ 
~ -,..... 
~ 

~ 

Long period (? 2 \Theta I 0 18 ) random number generator of L'Ecuyer with Bays-Durham shuffle 
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of 
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not alter 
idum between successive deviates in a sequence. RNMX should approximate the largest floating 
value that is less than I. 

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 79 



*I 
double Random::ran2() 
{ 

intj; 
long k; 
double temp; 

k=(idum)IIQI; 
idum=IA I *(idum-k*IQI )-k*IRI; II Compute idum=(IA l *idum) % IMI without overflows by Schrage's 

method. 
if(idum < 0) 

idum += IMI; 
k=idum21IQ2; 

idum2=IA2*(idum2-k*IQ2)-k*IR2; II Compute idum2=(IA2*idum) % IM2 likewise. 
if (idum2 < 0) 
idum2 += IM2; 
j = iy/NDIV; 
iy=ivLi]-idum2; 

II iy=iv[j]-idum2; II Here idum is shuffled, idum and idum2 are combined to generate output. 
ivLi] = idum; 
if(iy < 1) 

iy+=IMMI; ~ 
if((temp=AM*iy) > RNMX) 

return RNMX; II Because users don't expect endpoint values. 
else 

return temp; 

void Random::init(long seed) 
{ 

idum2= 123456789; 
idum=O; 
iy=O; 

if (seed != 0) 
idum =seed; 

else 
idum= I; 

for (intj=NTAB+7;j >=O;j--) II Load the shuffle table (after 8 warm-ups). 
{ 

Jong k=(idum)/IQ I; 

idum=IA 1 *(idum-k*IQJ )-k*IRI; 
if(idum < 0) 

idum += IMI; 

} 
iy=iv[O]; 

ifU < NTAB) 
iv[j] = idum; 

Random:: Random(long seed) 
{ 
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init(seed); 
} 

Random::Random() 
{ 

time_t t; 

time(&t); 

init((long)t); 
} 

double Random::doublerandom() 
{ 

double t = ran2(); 
return t; 

long Random::longrandom(long range) 
{ 

doublet; 

t = doublerandom(); 
return( (long)(t*( double )range)); 

} 

boo! Random::boolrandom() 
{ 

double t=doublerandom(); 

if (t>0.5) 
return true; 

else 
return false; 

Random.h 

#include <stdlib.h> 
#include <stdio.h> 
#include <values.h> 
#include <math.h> 
#include <time.h> 
#include <limits.h> 
#ifndef RANDOM H 
#define RANDOM H 
#define IMI 2147483563 
#define IM2 2147483399 
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#define AM (l.OIIMI) 
#define IMM! (IMJ-1) 
#define IA l 40014 
#define IA2 40692 
#define IQI 53668 
#define IQ2 52774 
#define IR 1 12211 
#define IR2 3791 
#define NT AB 32 
#define NDIV (l +lMMl/NTAB) 
#define EPS MINDOUBLE 
#define RNMX ( 1.0-EPS) 

II a uniform random number generator between zero and 1. 
class Random 
{ 

} ; 

long idum2; 
long idum; 
long iy; 
long iv[NTAB]; 

unsigned memory; 
void init(long seed); 
double ran2(); 
public: 
Random(long seed); 
Random(); 
double doublerandom(); 
long longrandom(long range); 
boo[ boolrandom(); 

#endif II RANDOM H 
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