

St. Gabriel's Library, Av

I~

qn the Improvement of the Existing
Error-Control Coding Techniques for

Deep Space Communications

\"ERS/]"y
By ()~

~
Ms. Koju MATSUZAWA .;.

/ ,,_. -

Submitted in Partial Fulfillment of the
Requirement for the Degree of

Master of Science in
Telecommunications Science

Assumption University

April, 2003

The Faculty of Science and Technology

Thesis Title

By
Thesis Advisor
Academic Year

Master Thesis Approval

On the Improvement of the Existing Error-Control Coding
Techniques for Deep Space Communications

Mr. Koju MATSUZA WA
Asst.Prof.Dr. Dobri Batovski
212002

The Department of Telecommunications Science, Faculty of Science and Technology of
Assumption University has approved this final report of the twelve credits course.
TS7000 Master Thesis, submitted in partial fulfillment of the requirements for the degree
of Master of Science in Telecommunications Science.

Approval Committee:

(Asst.Prof.Dr. bri Batovski)
Advisor

(Dr. Surat Tanterdtid)
Committee Member

Faculty Approval:

(Asst.Prof.Dr. Chanintom J. Nukoon)
Program Director

(Asst.Prof.Dr. Chanintom J. Nukoon)
Committee Member

(Asst.Prof.Dr. Surapong Auwatanamongkol)
Representative of Ministry of

University Affairs

April I 2003

(Ass .R o . Supavadee Nontakao)
Dean

ABSTRACT

The further success in the exploration of the deep space requires reliable communications.

The error-control coding plays an important role in recovering the transmitted binary

information over a very long distance. An important aspect of coding in deep space is that

due to the significant delay in the communication process, the automatic-repeat-request

(ARQ) schemes become rather inefficient. The requirement for the strongest possible

protection of the data against severe attenuation and noise raises the problem of modifying

the existing coding techniques in an appropriate way to improve the performance of the bit

error rate (BER) waterfall curve below the existing error thresholds. This thesis proposes the

methods for turbo code error control coding which combines the advantages of the existing

techniques with the inclusion of a priori information in the binary stream.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications I

ACKNOWLEDGEMENT

The research would not have been possible without several people who have provided

assistance and support. First of all, I would like to express my appreciation to Asst. Prof. Dr.

Dobri Atanassov Batovski, my advisor, for his guidance, recommendation and unlimited

patience: giving me the background in my limited C Language which is used for the

simulation software and also the mathematical proofs.

I would like to express my special thanks to the thesis committee members, especially, to

Asst. Prof. Dr. Chanintorn Jittawiriyanukoon, Dr. Surat Tanterdtid and Asst. Prof. Dr.

Surapong Auwatanamongkol for their constructive comments and invaluable suggestions.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications II

St. Gabriel's Library, Au

TABLE OF CONTENTS

Page

ABSTRACT I

ACKNOWLEDGEMENTS II

LIST OF FIGURE

LIST OF TABLES

CHAPTER 1 INTRODUCTION \"ERS/]"y 1

1.1 Overview

1.2 Importance of the turbo code in Deep Space Communication 4

1.3 Use of priori redundancy 4

1.4 Proposed Framework 4

CHAPTER 2 OBJECTIVES 6

CHAPTER 3 LITERATURE REVIEW 7

3 .1 Source-Controlled Channel Decoding: Estimation of Correlated 7

Parameters

3 .2 Combined Source/Channel (De-) Coding: Can A Priori 10

Information Be Used Twice?

CHAPTER4BACKGROUND 13

4.1 History of Turbo Code 13

4.2 Architecture of Turbo Code 14

4.3 Block Diagram of Turbo Codec 14

4.4 Turbo Encoder Structures 16

4.4.1 Recursive Systematic Convolutional (RSC) 16

Encoder

4.4.2 Interleaver 17

4.4.3 Turbo Encoder 17

4.5 Turbo Decoder Structures 20

4.6 Synchronization of Turbo Code 21

CHAPTER 5 Implementation Method 23

5.1 Turbo Encoder Implementation 23

5.2 Turbo Decoder Implementation 24

CHAPTER 6 Priori Pattern Evaluation 25

6.1 Simulation of a priori bit vs. Error bits Matches 25

6.2 Distribution of a Priori Bits 25

6.2.1 Equal Distance of a Priori Bits 25

6.2.2 Gaussian Distribution of a Priori Bits 26

6.2.3 Uniformly Distributed a Priori Bits 28

6.3 Generation of Random Bits 30

6.4 A Simulation of a Priori Bit Distributions 31

Simulation I: A Priori Bit vs. Random Single Error Bits 33

Simulation II: A Priori Bit vs. Random Multiple Error Bits 35

Simulation III: A priori Bit vs. Random Single Burst Bits 37

6.5 Conclusion 40

CHAPTER 7 Implemented Turbo Codec Simulation 41

7 .1 Simulation Setup 41

7 .1.1 A priori Bits Generation 41

7 .1.2 A priori Bits Insertion 42

7.2 Synoptic scheme of the software implementation 45

7.3 Results Analysis 47

Simulation I: Performance Comparison Between Different 48

Block Sizes without a Priori Bits at the Decoding Process

Simulation II: Performance Comparison Between Different 50

a Priori Bits Distributions

CHAPTER 8 CONCLUSION SS

REFERENCES S7

APPENDIX A: BCJR ALGORITHM 61

APPENDIX B: DIFFERENTION ENTROPY OF UNIFORM 64

DISTRIBUTION

APPENDIX C: CODE USED TO SIMULATE THE TURBO CODEC 66

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

LIST OF FIGURES

Transmission System

The bit error rate of the 1st bit of a parameter

quantized with 3 bits and natural binary mapping

Bit error rate after channel decoding using a priori

information (AWGN-channel at 1 = -3 dB, folded

binary mapping)

Transmission System
ER Ir

Bit error rate for natural binary mapping after

channel decoding using a priori information (AWGN

channel at -3 dB)

Parameter SNR for natural binary bit-mapping with

and without a priori information

Turbo Code Communication System Block Diagram

Conventional convolutional encoder with r=l/2 and

K=3

The RSC encoder obtained from Figure 3.2 with

r=l/2 and K=3

Generic rate 1/3 turbo encoder

A half rate turbo code

Low rate turbo encoder

Generic turbo decoder

Turbo Code Structure in the Information Channel

Page

7

8

9

10

11

11

15

16

17

18

19

19

20

22

Figure 5.1 . Rate 1/3 turbo encoder with a priori bits 22

Figure 5.2 Turbo decoder with a priori bits 23

Figure 6.1 Equal Distance Distribution (Block_ number= 1,000) 25

Figure 6.2 Gaussian Distribution (Block_ number=l ,000) 27

Figure 6.3 Uniform Distribution (Block_number=l,000) 28

Figure 6.4 A priori Bits Distributions 31

Figure 6.5 A Priori Bit vs. Random Single Error Bits 32-33

Figure 6.5 (a): IO Bits 32

· Figure 6.5 (b): 20 Bits ERS/]"y 32

Figure 6.5 (c): 30 Bits 32
()~

Figure 6.5 (d): 40 Bits 32

Figure 6.5 (e): 80 Bits 33

Figure 6.5 (f): 100 Bits 33

Figure 6.6 A Priori Bit vs. Random Multiple Error Bits 34

Figure 6.6 (a): IO Bits 34

Figure 6.6 (b): 100 Bits * 34

Figure 6.7 · A Priori Bit vs. Random Multiple Error Bits in term 35

of Percentage of Error

Figure 6.7 (a): Error 10 % 35

Figure 6.7 (b): Error 80 % 35

Figure 6.8 A priori Bit vs. Random Single Burst Bits 36

Figure 6.8 (a): 10 bits 36

Figure 6.8 (b): 100 bits 36

Figure 6.9 A priori Bit vs. Random Single Group of Block Size 37

. = 10 Bits

Figure 6.9 (a): Group of 1, 10, and 20 bits 37

Figure 6.9 (b): Group of 30 and 40 bits 37

Figure 6.9 (c): Group of 50 to 100 bits 37

Figure 6.10 A priori Bit vs. Random Single Group of Block 3.8

Size= 100 bits

Figure 6.10 (a): Group of 1 and 10 bits 38

Figure 6.10 (b): Group of 20 to 40 bits 38

Figure 6.10 (c): Group of 50 to 100 bits 38

Figure 7.1 Histogram of Equal Distribution a priori Bits 40

Figure 7.2 Histogram of Gaussian Distribution a priori Bits 41

Figure 7.3 Histogram of Uniform Distribution a priori Bits 41

Figure 7.4 A priori Bit Insertion at the Encoding Process 42

Figure 7.5 A priori Bit Insertion at the Decoding Process 43

Figure 7.6 Software synoptic 44

Figure 7.7 BER without a priori bits 48

Figure 7.8 FER without a priori bits * 48

Figure 7.9 BER at Block Size=128 bits 96-J ~o\ 50
°" 'lt$,,S

Figure 7.10 BER at Block Size=256 bits
tlil 50

Figure 7.11 . BER at Block Size=5 l 2 bits 51

Figure 7.12 BER at Block Size= 1024 bits 51

Figure 7.13 FER at Block Size= 128 bits 52

Figure 7.14 FER at Block Size=256 bits 52

Figure 7.15 FER at Block Size=512 bits 53

Figure 7.16 FER at Block Size=l024 bits 53

LIST OF TABLES

Page

Table 3.1 Bit redundancy, mutual information and mean square 8

error for different bit-mappings of 3 bit quantized

parameters

CHAPTER 1 INTRODUCTION

1.1 OVERVIEW

Deep space communications are far more challenging than other kind of communications like

mobile phone, Earth-orbiting satellites, because it involves radio propagation over very long

distances. Signals must travel over millions or billions of kilometers between Earth station

and the spacecraft. In the radio channel, it results noisy that is described as Additive White

Gaussian Noise (A WGN), burst of errors produced by atmospherics, multi-path fading,

interferences from other users of the frequency band. Therefore, to attain reliable

communication in deep space, the use of very powerful error control technique is required.

The radio signals for deep space communications consists of carrying instructions to

the spacecraft and data between Earth station and the spacecraft. The data needs to be

delivered to a distant spacecraft safely and successfully, because if data is incorrectly

interpreted, it would potentially cause spacecraft to take undesirable actions, including some

that could result in a critical situation for the spacecraft. To prevent against that kind of

possibility, the signal is coded with additional redundant data that allows the system to detect

or correct any corruption in that signal.

Real communication channels contain a mixture of independent and burst error

statistics and those channels are described as compound-error channels, and Automatic -

Repeat - Request (ARQ) schemes are often used in packet data communication system. It has

been most widely used as an effective method for error protection over compound-error

channels for error control in data communication systems. ARQ system utilizes redundancy

for error detection by using a start and stop strategy where the transmitter stops and waits

until it receives acknowledgement of correct reception of code word or request for

retransmission, which necessitates the use of a return path feedback channel path. However,

)n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 1

ARQ scheme only includes error detection strategy rather than both error detection and

correction, and also requires the feed back channel to be practically noiseless. For long

distance communications in deep space, transmitter can not wait for an acknowledgement

from receiver to take another action, therefore ARQ system is not suitable for deep space

communications.

The best codes to be used for reliable data transfer have been studied by many

researchers and is still making progress.

At the time of Voyager which was lunched in 1977, consists of a short convolutional code

that is combined with a large block-size Reed-Solomon code with k=7 was chosen as a

compromise between performance and decoding complexity were used. Evolution of the use

of codes and decoding equipment has been paced by the evolution of digital processing

capability.

Convolutional codes are one of the most widely used channel codes in practical

communication systems. These codes are developed with a separate strong mathematical

structure and are primarily used for real time error correction. Convolutional codes convert

the entire data stream into one single codeword. The encoded bits depend not only on the

current k input bits but also on past input bits. The main decoding strategy for convolutional

codes is based on the widely used Viterbi algorithm. As a result of the wide acceptance of

convolutional codes, there have been many advances to extend and improve this basic coding

scheme. This advancement resulted in two new coding schemes, namely, trellis coded

modulation (TCM) and turbo codes. TCM adds redundancy by combining coding and

modulation into a single operation. The unique advantage of TCM is that there is no

reduction in data rate or expansion in bandwidth as required by most of the other coding

schemes.

111 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 2

Turbo code was focused in the late 90s as a new and very powerful error control

technique. This error correcting code is able to transmit information across the channel with

arbitrary low bit error rate. This code is a parallel concatenation of two component

convolutional codes separated by a random interleaver. Random coding of long block lengths

may also perform close to channel capacity, but this code is very hard to decode due to the

lack of code structure. The performance of a turbo code is partly due to the random

interleaver used to give the turbo code a random appearance. The big advantage of a turbo

code is that there is enough code structure from the convolutional codes to decode it

efficiently. E
There are two primary decoding strategies for turbo codes. They are based on a

maximum a posteriori (MAP) algorithm and a soft output Viterbi algorithm (SOVA).

Regardless of which algorithm is implemented, the turbo code decoder requires the use of

two component decoders that operate in an iterative manner. -
For further improvement of turbo code, researchers are focusing the issues of improving

decoder performance and reducing the decoder complexity.

To improve the decoder performance, channel decoders usually aim at minimizing the

frame, symbol or residual bit error rate of the source bits. Due to the fact, that coding this

usually done by frame and also in a time correlation of successive fran1es. The redundancy

should be used as a priori information at the receiver to improve the decoding result.

In this thesis, turbo code was used to determine if the residual bit error rate can be

reduced by using a priori knowledge about the source statistics within the channel decoding,

and if it helps the source decoder to perform better process by measuring improvement of Bit

Error Rate (BER) and Frame Error Rate (FER).

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 3

1.2 IMPORTANCE OF THE TURBO CODE IN DEEP SPACE COMMUNICATIONS

In deep-space communications, turbo code is the most suitable coding technique, because

using very large interleavers can maximize the turbo coding gain, and compare to short

distance communications like mobile phone, the delay is not a big issue in deep space

communications. Also from the view of implementation, use of more than two elementary

encoders can be com:bined in many efficient ways to create a very powerful low rate turbo

code at a slight increase in complexity.

1.3 USE OF A PRIORI BITS \JER
The coded data stream of today's powerful source codecs still contains residual redundancy.

Hence many techniques have been developed, which use the properties of the respective

source signal to reduce its redundancy and irrelevancy. Source coding is usually done frame

by frame, but due to requirements of complexity and time delay, source encoders usually

work only suboptimal. Consequently, the compressed data stream still contains residual

redundancy, which remains both inside a frame and also in a time correlation of successive

frames. The redundancy should be used by the source and/or channel decoder as a priori

information to improve the decoding result. These techniques are known as robust source

coding or source controlled channel decoding.

1.4 PROPOSED FRAMEWORK.

This part describes · the required processes for implementing existing error control coding

techniques for deep space communication.

The first section introduces the approaching procedure of using a priori bit inside turbo

codec.

)n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 4

The second section introduces the statistical approach to calculate the possibility of matches

between random noise and a priori bit with different combinations of size and pattern (Equal

distance distribution, uniform distribution and Gaussian distribution). The conclusion with

the criteria is used to identify the best pattern of a priori bit used at the turbo decoder to

improve its performance.

The last section presents the simulation software specification and the result of the

simulation. To evaluate the performance of the proposed implementation, the simulation

software is used to evaluate the performance in the following criteria.

• The throughputs of error correction in BER and FER with and without a priori

information

• The throughputs where the size and pattern of a priori bit is concerned

Finally, the result of the simulation is analyzed in terms of the bit error rate and the frame

error rate.

The conclusion chapter concludes the advantages and the drawbacks of implementation of a

turbo code with a priori information.

)n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 5

CHAPTER 2: OBJECTIVES

The objectives of the research are to implement and study the performance of the existing

turbo coding techniques for deep space communications. The main subject of the research

focuses on methods combining the advantages of turbo code with the inclusion of a priori

information in the binary stream.

A statistical simulation software is used to evaluate the effect of the turbo code

implementation by using a priori knowledge about the source during the channel decoding,

and as it will be shown, the source decoder performs better by observing an improvement of

the Bit Error Rate (BER) and the Frame Error Rate (FER).

the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 6

CHAPTER 3: LJTERA TURE REVIEW

3.1 Source-Controlled Channel Decoding: Estimation of Correlated
Parameters (2)

In this paper, an approach to improve channel and source decoding by using the

redundancy remains inside one block frame as in time correlation of subsequent frames is

described. Also described is how the end-to-end quality of parameters can be improved by

choosing the bit mapping and the protection of bits in channel coding.

The idea was born in a discussion of 2 universities' common project "Source controlled

channel decoding" (SCCD) and "Soft bit source decoding"(SBSD): Is it better to exploit the a

priori information in channel decoding or in source decoding or is it possible to use it twice? -r-
l:at

Figure 3.1: Transmission System

In this paper, an effective bit rate of 4, 6 or 8 bit per parameter and an overall blocklength of

120 bit is considered. This leads to 30, 20 or 15 parameters respectively within one block.

Furthermore, not only the BER after channel decoding but also the parameter SNR as a

quality measurement after source decoding is investigated.

the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 7

TABLE 3.1: Bit redundancy, mutual information and mean square error for different
bit-mappings of 3 bit quantized parameters.

Bit-mapping 1- H(X) J(X;X\ ,d J(X;X-1) MSE
natural bin. XO 0.0 0.170 OJ IJ 5.029

000.001.0I0.011. x1 0.0 0.146 0.029 1.506
100.101.110.ll I x 2 0.0 0.049 0.0 0.377

folded bin. XO 0.0 0.0 0.3 13 3 . ~ 7 1

0 I I .O I 0.00 I .000. •r1 0.125 0.021 0.127 1.506
100.101.110, 111 x2 0.028 0.021 0.01 2 0.3 77

Gray code XO 0.0 0.0 0.313 3.871
000.001.011,010, .Xl 0.125 0.045 0.127 1.876
I I 0 . 111 , I 01, l 00 x2 0.003 () .()45 0.0 15 0.377

max. djst. XO 0.038 0.142 0.0 12 5.029
11 0.000.111.00 l. x1 0.0 0.146 0.0 4.915
01 0. 100,01 1,101 x2 0.0 0. 14(> 0.029 1.506

low change XO 0.0 (l.J II OJ IJ 5.047
I 0 I ,I 00 .11 0 .1 11. .r.1 0.021 0.089 0.066 1.124
0 l I .OOl ,000.0 JO. x2 0.02 1 0.0:59 0.066 1. 124

0.2

0.1

0.05

0.02

0.01

0.005
::::t:::

0.002 w
0::

0.00 1

5· Io .. ~

2·10-4

I ·10·4

-6 -5 -4 -~ -2 -I 0

E. /,' I 1·,.1r11
''•'..: \0 ~ D .

Figure 3.2: The bit error rate of the 1st bit of a parameter quantized with 3 bits and
natural binary mapping.

Figure. 3.2 shows that the bit error rate decreases depending on how a priori information is

used. A comparison to Table 3. l shows that the bit redundancy and the two mutual

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 8

informations are a good measurement for the gain m bit error rate by usmg a pnon

information.

0.15 .------r--~---.-----.--~-~

ll 8J
0.07
0.06
0.05
0.04

0::
w 0.0.~
to

. -
I • I ' ~L~r-r-

:_::·::=i~~~~~l~~~~~~~~j:~~: :
"...Y! ! ! - /',) ! ! ····yr···· ·:·············-·t·····-······· ··t·t· - -··1····· ··········1·· .. -·······

Ii i i /1 r<· ! :
~~;------·· ·r·····---···-·-·t:· . ·-:-··-- --:---·· ·--·------:------.. ····

J: : . : : : :
------·- --- - ~----------- r··----···--T ·r··· --------·r··--------

0.02 ---- -- · ··i .. ···-·····----i---·--········-i·-····--· CD/no -----: : :
! ! i CD/.\KO --·--··
j j j CD/AK I ---·-·
: : : CD:AKO+I --

0.01
I) JO 20 30 40 50 59

bit 11u111 ber

Figure 3.3: Bit error rate after channel decoding using a priori information (A WGN­
channel at 1 = -3 dB, folded binary mapping). -

In Fig. 3.3 the bit · error rate is shown depending on the bit-position in the trellis. The

interleaver works in that way that the first bit of each parameter index xi is ordered in the first

part of the trellis, the second bits are in the second part and the least significant bits are at the

end of the frame. The unequal error protection here is achieved just by not terminating the

convolutional code (see CD/no in Figure 3.5). atl

This paper examined the bit-mapping of quantized parameter indices and have shown the

influence on channel and source decoding. Dependent, on which criteria a system is

optimized - either BER or parameter SNR or others - different bit-mappings could deliver

the best results.

Due to the properties of convolutional codes, the channel decoding also improves

uncorrelated parameters if its bits are ordered close to the correlated ones within a block.

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 9

3.2 Combined Source/Channel (De-) Coding: Can A Priori Information Be Used
Twice? [3]

This paper works on combined source and channel decoding, trying to answer the

following question: Can a priori information that models the source parameters be used

twice? : first at the channel decoder and then at the source decoder.

!'1mrc7-;;;--
c-x1...:r •••

; -.r~---- ----t;:
~(: . . '
1 l':.1r; un~t.:•r :
:c,,1.J..ir tb;
~, ... ,..., .. ,.,. ... "'. I

Fqni\;1km
Chnnni!I

fh<llllld
IJL'COikT

Figure 3.4: Transmission System

l,lMl'X

l~- I
I~(Ai(m))

•, • ..;nu1:z::.7~
• • • IJl't:" '<kr

j-------, - isL) •
d'ar:1111~1.:•nth .'l

: lkl' '· 1,kr ;-t"'·
L--- -- - ~

The figure 3.4 shows the transmission system. The channel decoder uses the a priori

information that mo.dels the bit stream generated by the source coder. This does not capture

all the details of the source parameter level statistics. By exploiting the a priori knowledge of

parameters (once more) at the source decoder, it shows that it is possible to achieve better

reconstruction than if this information was used at either of the decoders.

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 10

0.1
0.09

0.08

0.1)7

0.06

0.05

O!'. 0 .1)4
l.!J
ro

0.0.~

St. Gabriel's Library, Au

2;l?
~ 1

CD/no ----­
CD!AKO+I -Ap ------­

CD.•AK + I
0 .rJ2 L___J _ __l _ _L _ _L_Lll.J.OJ.._....t:=::::t:::=:t==:t:::::::::::l

0 I 0 20 JO 40 50 60 70 SO 91)

bit nmnber

Figure 3.5: Bit error rate for natural binary mapping after channel decoding using a

priori information (A WGN channel at -3 dB).

Figure 3.5 shows that the gain in bit error rates for decoding with (CD/AKO+l) is very high,

especially for the MSBs (pos. 40 .. 59). After "subtracting" the a priori knowledge of the

parameter itself (CD/ AKO+ 1 2 Ap) the BER increases compared to (CD/ AKO+ 1), but there is

still a big gain in BER.

14

~. 12
ro

~ 10
Vl

4

-4 -2 -1

EJ./~Yo (dB)

0 ' .!.

Figure 3.6: Parameter SNR for natural binary bit-mapping with and without a priori

information.

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 11

~t- fiahriers Lihrarv. Au

Figure 3.6 shows that the curve with (SD/no, CD/AKO+l) now delivers a better quality. That

means, if the information is used only once, it should be used in the channel coder. After

"subtracting", we get another gain of up to 1 dB in the parameter SNR which gives the

answer to the question "Can A Priori Information be used twice?". This gain can also be

transmitted to systems where some parameters are redundant and others are not. It can be

seen in Figure 3.5, where the dummy bits gain also (pos. 0 .. 19, 80 .. 98).

The above result shows that a priori information can be used twice if it is subtracted after

channel decoding and not only one correlated parameter is considered. That means, for the

source decoder, it does not see any a priori information of one parameter itself in the

reliability information delivered by the channel decoder. The results can be extended to a

complete speech transmission system, where some parameters are highly correlated and some

are not. The bit-mapping is quite important in determining what kind of a priori information

delivers the highest gain in channel decoding.

Also the mean square error, one possible optimization criterion, changes with the bit­

mapping. Therefore, the bit-mapping has to be chosen dependent on the optimization

criterion. 1at1

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 12

CHAPTER4:BACKGROUND

4.1 HISTORY OF TURBO CODES

Turbo codes have been known since 1993 as a new and very powerful error control technique

after it is introduced by C. Berrou, A. Glavieux, and P. Thitimajshima, in "Near Shannon

limit error correcting coding and decoding: Turbo-Codes"[l3]. This error correcting code is

able to transmit information across the channel with arbitrary low bit error rate. The basic

principle of the turbo code concept is that message bit is encoded in two different ways by

two encoders. The decoder is correspondingly divided into two separate decoders, where each

decoder decodes its concatenated codeword. By using the sophisticated algorithms, the

decoders can exchange information on their decoding results and find the correct codeword.

This is one of the key ideas that allow a continuous improvement in correction capability

when the decoding process is iterated. In the traditional approach, the demodulator block

makes a hard decision of the received symbol and passes it to the error control decoder block.

This is equivalent to deciding which of two logical values 0 and I was transmitted. No

information was passed about how reliable the hard decision was. This led to the

development of "soft" input decoding algorithms. This was the best solution if only one code

was used. For the same reason, in the case of combining more codes as explained above, new

Soft In/Soft Out(SISO) algorithms were developed in order to pass more information from

the output of one decoder to the input of the next decoder. Soft output decision algorithms

provide as an output a real number which is a measure of the probability of error in decoding

a particular bit. This can also be interpreted as a measure of the reliability of the decoder's

hard decision. This extra information is very important for the next stage in an iterative

decoding process. The name of turbo code reflects this iterative decoding process. There are

two important categories of soft output decision algorithms. The first category includes the

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 13

maximum likelihood decoding algorithms, which minimize the probability of symbol error,

such as the maximum a posteriori (MAP) algorithm. The second category includes the

maximum likelihood decoding algorithms, which minimize the probability of word or

sequence error, such as the Viterbi algorithm or soft output Viterbi algorithm (SOVA). The

performance of a turbo code is partly due to the random interleaver used to give the turbo

code a random appearance. The big advantage of a turbo code is that there is enough code

structure from the convolutional codes to decode it efficiently. Regardless of which algorithm

is implemented, the turbo code decoder requires the use of two component decoders that

operate in an iterative manner. For further improvement of turbo code, researchers are

focusing the issues of improving decoder performance and reducing the decoder complexity.

4.2 Architecture of Turbo Codes

Turbo codes use the parallel concatenated encoding scheme. However, the turbo code

decoder is based on the serial concatenated decoding scheme. The serial concatenated

decoders are used because they perform better than the parallel concatenated decoding

scheme due to the fact that the serial concatenation scheme has the ability to share

information between the concatenated decoders whereas the decoders for the parallel

concatenation scheme are primarily decoding independently.

4.3 Block Diagram of the Turbo Codec

The turbo codec architecture for a parallel concatenated scheme is shown in Figure 4.1. The

incoming message bits, mO, are encoded by a Rate 1/3 systematic turbo encoder. The outputs

from the turbo encoder are the systematic message bits mO, the parity bits pl and the parity

bits p2. The puncturing block determines the actual coding rate. The puncturing function is a

simple deletion of some parity bits from the pl and the p2 streams. No puncturing is applied

In the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 14

'\t. H~hriel's Librarv. Au

to the message bits mO. The mO and the punctured parity bits pO signals are then modulated

and sent to the channel.

Input
mo

1--------~-------~
____ ,.....,.. ____________ -+---~

Output
mO

Turbo Encoder Puncturing

Turbo Codec R

Turbo Decoder

mO .----------,

pt
p2

LLR
Bit Estimater

mO

PO

Modulator

Channel

Demodulator

I -----------------· ~ -
Figure 4.1: Turbo Code Communication System Block Diagram

At the receiver, after soft decision demodulation, the received mO and pO signals are input to

the bit estimator blbck. The function of this block is to compute the log-likelihood ratios

(LLR) for each bit received. The outputs from this block are punctured streams of the

estimated mO, pl and p2 bits. The turbo decoder does not need to know anything about what

mapping or modulation scheme was transmitted. The same decoding engine is used to

produce the decoded bits mO regardless of the modulation or puncturing scheme used.

>n the Jmprovement of the Existing Error-Control Coding Techniques for Deep Space Communications 15

4.4 Turbo Encoder Structures

The fundamental turbo code encoder is built using two identical recursive systematic

convolutional (RSC) codes with parallel concatenation. An RSC encoder is typically r = 112

shown in Figure 4.J.

4.4.1 Recursive Systematic Convolutional (RSC) Encoder

The recursive systematic convolutional (RSC) encoder is obtained from the nonrecursive

nonsystematic (conventional) convolutional encoder by feeding back one of its encoded

outputs to its input. Figure 4.2 shows a conventional convolutional encoder. The symbol

~ Represents a D flip-flop and the symbol E9 represents an exclusive-OR gate.

------------~~·x1

D D

*
X2

Figure 4.2: Conventional convolutional encoder with r=l/2 and K=3.

The conventional convolutional encoder is represented by the generator sequences gt =[111]

and gi =[101] and can be equivalently represented in a more compact form as G=[g1, gi]. The

RSC encoder of this conventional convolutional encoder shown in Figure 4.3 is represented

as G=[l, gz I g1] where the first output (represented by g1) is fed back to the input. In the

above representation, 1 denotes the systematic output, gi denotes the feedforward output, and

1 11 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 16

g1 is the feedback to the input of the RSC encoder. Figure 4.3 shows the resulting RSC

encoder.

Xl

D D

X2

Figure 4.3: The RSC encoder obtained from Figure 3.2 with r=l/2 and K==3.

4.4.2 Interleaver

An interleaver is used between the two component encoders. The interleaver is used to

provide randomness to the input sequences. The interleaver affects the performance of turbo

codes because it directly affects the distance properties of the code. The interleaver design is

a key factor which determines the good performance of a turbo code.

4.4.3 Turbo Encoder

Figure 4.4 shows a generic turbo encoder. The input sequence of the message bits is

organised in blocks of length N. The first block of data will be encoded by the ENCl block

which is a rate half recursive systematic encoder. The same block of message bits is

interleaved by the interleaver INT, and encoded by ENC2 which is also a rate half systematic

recursive encoder.

'11 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 17

mo mo

..... EN Cl Pl

..... INT ENC2

..... P2

Figure 4.4: Generic rate 113 turbo encoder.

The interleaver block, INT, arranges the order of the message bits for input to the second

encoder. The main purpose of the interleaver is to increase the minimum distance of the turbo

code such that after correction in one dimension the remaining errors should become

correctable error patterns in the second dimension. The outputs of the turbo encoder are the

message bits sequence mO, together with the corresponding parity sequence pl produced by

one encoder block, say ENCl, and the parity sequence p2 produced by the second encoder

block, say ENC2 . These sequences are modulated and sent through the channel. The

interleaved data sequence is not sent because it can be regenerated at the receiver by

interleaving the received sequence corresponding to mO. The parity bits pl and p2 can be

"punctured" as in Figure 4.5 where puncturing is implemented by a multiplexing switch in

order to obtain higher coding rates. A rate 112 turbo code can be implemented by alternatively

selecting the outputs of the two encoders.

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 18

mO mo

EN Cl
Pl

pO

INT ENC2
P2

Figure 4.5: A half rate turbo code.

Figure 4.6 shows a particular implementation of turbo code using recursive systematic codes

(RSC). Lower coding rates can be achieved using either less puncturing or more interleaver

and encoder blocks as shown in Figure 4.6.

mo mO

* EN Cl

INT ENC2 pO

i----aill>I ENCm

Figure 4.6: Low rate turbo encoder.

111 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 19

4.5 Turbo Decoder Structures

At the receiver, decoding is performed in an iterative process as shown in Figure 4.7.

mo DECl Interleaver DEC2 De-Interleaver

pl --t~----'

p2----------------------
De-Interleaver

Output
Figure 4.7: Generic turbo decoder.

Decoder DECl provides a soft output which is a measure of the reliability of each decoded

bit. From this reliability information, the extrinsic information is produced, which does not

depend on the current inputs to the decoder. This extrinsic information, after interleaving, is

passed on to DEC2 which uses this information to decode the interleaved bit sequence. From

the soft outputs of DEC2, the new extrinsic information is fed back to the input of DECl and

so on. If an error occurs at the output of the first decoder due to a very noisy input, it might

be corrected by the second decoder. A soft decision decoder outputs a real number which is a

measure of the probability of a correct decision. This real number is called the a posteriori

probability (APP). There are two types of soft decision decoding algorithms which are

typically used, the first being a modified Viterbi algorithm which produces soft outputs and

hence is called a soft output Viterbi algorithm (SOVA). A second is the maximum a

posteriori (MAP) algorithm. Estimates put the complexity of the MAP algorithm at two times

that of the Viterbi algorithm. However, the MAP algorithm results in better performance at

low SNR due to a more accurate evaluation of the APP. The performance of a turbo coding

scheme improves as the number of decoder iterations is increased. However, the coding gain

In the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 20

from one iteration to another, decreases with the number of iterations. Each iteration involves

two decoding stages. Therefore, the overall complexity of a turbo decoder depends on how

efficient the decoding algorithm is implemented.

The concept of iterative decoding relies on the use of soft-input/soft-output decoders, which

calculates a posteriori probabilities (APP) based on the received channel sequences and a

priori information. There are optimal algorithms for computing APP, the BCJR­

algorithm[l4], also called the MAP-algorithm and soft-output versions of the Viterbi

algorithm (SOVA). The MAP algorithm is the ultimate approach, which minimizes the

probability of an error by maximizing the probability of a symbol occurrence, based on the

received signal. The decoder processes information one block at a time, there is a decoding

delay and this latency is further increased by the iteration time of the decoders and the

increase of block size.

The algorithm used for the simulations shown in following chapter 7 is based on BCJR-

algorithm, and a full derivation is given in Appendix A.

4.6 Synchronization of Turbo Code * In any digital wireless communication, good synchronization is essential and must be

established between transmitter and receiver. The synchronization is accomplished by

preceding each code block or transfer frame with a fixed-length attached synchronization

marker. This known bit pattern can be recognized to determine the start of the code blocks or

transfer frames. The turbo code block synchronization is necessary for proper decoding of

turbo codes, because the decoding operation needs to know the code block boundaries before

it can iterate between the unpermuted and permuted data domains. Unlike the frame

synchronization for Reed-Solomon codes, which is performed after convolutional decoding,

synchronization for turbo codes must be done in the channel-symbol domain. This requires a

In the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 21

rate-dependent attached synchronization marker and synchronization algorithms that operate

at the symbol rate as opposed to the data rate. Operation of the synchronizer is anticipated to

be similar to that of the RS frame synchronizer and involves recognition of the marker in the

coded symbol stream and anticipation of a recurring marker at an interval corresponding to

the length of the turbo code block, the trellis termination sequence, and the synchronization

marker. The trellis termination sequence is filled in the symbol output with zeroes in

anticipation of processing the next block of data during the encoding process and provides a

known final state (zero) to the turbo decoder. Figure 4.8 shows the structure of the turbo code

as it appears in the information channel. " E ff , ,.}'

()"'
Synchronization Maker

:E Information and Parity Bits

Termination Sequence

Figure 4.8: Turbo Code Structure in the Information Channel

in the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 22

CHAPTER 5: IMPLEMENTATION METHOD

The method of implementation is using a priori knowledge about the source statistics within

the channel decoding. In source controlled channel coding schemes the decoder uses a priori

information about the source bit probability in addition to the channel output information in

order to achieve better performance. The distinction between a priori and a posteriori is that a

priori is an independent of experience and a posteriori is based on experience. In this thesis

Turbo Code was implemented to evaluate the bit error rate performance under these

conditions using BCJR decoder. '"ER 1,.y
o~

5.1 Turbo Encoder Implementation

The implementation was done by adding same a priori bits at encoding process and decoding

process as in figure 5.1 shown below.

A priori Bits

mO mO

Pl

INT ENC2 P2

Figure 5.1: Rate 1/3 turbo encoder with a priori bits.

Figure 5.1 shows a priori bits added with different distribution pattern in the message bits

before the process of interleave and encode.

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 23

'\f_ liahriel's Librarv. An

5.2 Turbo Decoder Implementation

A priori Bits

mo_ _..i DECl Interleaver DEC2 De-Interleaver

pl
-------1~~~~~

p2-------------------------'
De-Interleaver

Output

Figure 5.2: Turbo decoder with a priori bits.

Figure 5.2 shows a priori bits added in the received message bits before decoding process.

This method adds the same a priori information at decoding process as in encoding process as

it is assumed to improve the decoding performance as received noisy message bits are

corrected by replacing received a priori bits with original a priori bits.

C YOY

In Chapter 6, the relations between occurrences of a priori bit and different patterns of error

bits by finding matches are studied. This simulation is performed to consider which type of a

priori distribution can catch more error bits, and to apply its a priori distribution to the

simulation in chapter 7 to determine if these different distribution patterns of a priori bits can

effect the performance of turbo code.

n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 24

CHAPTER 6: A PRIORI PATTERN EVALUATION

6.1 Simulation of a priori bit vs. Error bit Match Probability

This chapter introduces the simulations of the statistical approach to find the relations

between occurrences of the different distribution types of a priori bit and a random error bit

by finding match probability. This simulation is performed to consider the design of turbo

decoder to estimate the error pattern when it performs the decoding to improve the error rate.

There are three error bit patterns, single random error bit, multiple random error bits and

single burst error bits compared to three different distribution of single a priori bit with

several conditions finding average match probability.

6.2 Distribution of a Priori Bits

To catch the uncertain noise pattern, three kinds of distribution are used for a priori bits.

These a priori bits are compared with three kinds ofrandomly generated error bits for number

of block, as figures shown in following sections. In the histogram of each distribution, sum of

a priori bits must be adjusted to have an exact number of blocks.

6.2.1 Equal Distance of a Priori Bits

This distribution generates a priori bits in every equal distance, middle of each section. The

following part shows the procedure for making the histogram of equal distance distribution

and Figures 5. I shows an example of the histogram of equal distance a priori bits at section =

100 bits, block number= 1000.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 24

void Equal_ Distribution (long int block_ size, long int apriori, long int *block,

{

long int bit_ number,long int block_ number, long int *distribution)

long inti;
i=l ;while (i<=block_size) {block[i]=O;i++;}
i= 1 ;while (i<=bit_ number)
{

//Generate a priori bit for Equal distance distribution

}

1200

1000

800
.:!
8 600
iii

400

200

}

distribution[i]=block _number/block_ size;
i=i++;

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Section (100Bllsl

Figure 6.1: Equal Distance Distribution (Block_number=l,000)

6.2.2 Gaussian Distribution of a Priori Bits C 9 6

To generate the Gaussian distribution a priori bits, following equations is used.

1: P(x) d.x = 1.

In this simulation, mean µ, where the peak of the density occurs, is set to the middle of block,

and the standard deviation a , which indicates the spread or girth of the bell curve, is used for

the value of cr= 10,20,30,40,50,60, 70,80,90.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 25

The following part shows the procedure for making the histogram of Gaussian distribution

and Figures 5.2 shows an example of the histogram at section=IOO, µ=10012=50, a=lO. As

euations shown above, sum of all values P(x) generated becomes 1, however to simulate

same number as block size specified, during the generation process, those generated values

were multiplied until sum becomes equal or greater than block number. In the case of that

sum becoming greater than block number, the histogram was adjusted to be same value as

block number.

void gaussian _ Distribution(long int priori _interval, long int block_ number,
long int dispersion, long int mean, long int *distribution,
long int N, long int *block, long int sumdist, long int multiply,
long int priori_ no)

{ long int ij,sum;
multiply= 1;
sum=O;

II Make Gaussian Histgram which sum is same or equal to block number

while(sum <= block_number)
{
sum=O;
i=l ;while (i<=priori _interval) { distribution[i]=O;i++;}

11 Generate Gaussian Distribution Vaues *
Ir" ol.

i=l;while (i<=priori_interval)
{ distribution[i]=long int(0.9999+multiply*(((l .Oldispersion)*

(sqrt(2*3. l 41592654)))*(exp((-(i-mean)*
(i-mean))l(2.0*dispersion*dispersion)))));

}

}

sum+= distribution[i];
i++;

multiply ++;

11 Calculate the total area of histgram

{

}

sumdist=O; i=l ;while (i<=priori _interval)

sumdist=sumdist+distribution[i];
i++;

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 26

11 Adjust sum of distribution = block_ number
i=O;

}

40

35

30

.. 25
-" g 20

iii 15

10

5

0

while(sumdist - block_number>O)

{ if(distribution[i]> 1)
{

}

}

distribution[i]--;
sumdist--;

if(i =priori_ interval)
i = O;

else
i++;

5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Section (100 Bits)

Figure 6.2: Gaussian Distribution (Block_number=l,000)

*
6.2.3 Uniformly Distributed a Priori Bits

This distribution has same value of a priori bits in each bit position making uniformly

distributed a priori bits. The following part shows the procedure for making the histogram of

uniform distribution and Figures 5.3 shows an example of the histogram of uniformly

distributed a priori bits at section = 100 bits, block number= 1000.

void uniform_Distribution (long int priori_interval, long int block_number,

{

long int dispersion, long int mean, long int *distribution,
long int N, long int *block, long int sumdist, long int multiply,
long int priori_ no)

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 27

II Make Uniform Histgram which sum is same or equal to block number

long int i,j ,sum;
multiply= 1;
sum = O;

while(sum <block_ number)
{sum = O;

}

i=l ;while (i<=priori_interval) {distribution[i]=O;i++;}
i=l;while (i<=priori_interval)

{ distribution[i]=multiply;
sum+= distribution[i];
i++;

}

II Calculate the total area ofhistgram
sumdist=O; i= 1 ;while (i<=priori _interval)

{ sumdist=sumdist+distribution[i];
i++;

}

II Adjust sum of distribution = block_ number
i=O;

}

.=

12

10

8

g 6
iii

4

2

0

while(sumdist - block_number>O)

{ if(distribution[i]> 1)
{ distribution[i]--;

sumdist--;
}

if(i = priori_ interval)
i = O;
else
i++;
}

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Section (100Bits)

Figure 6.3: Uniform Distribution (Block_number=l,000)

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 28

6.3 Generation of Random Bits

During all the simulations, following random bits generation procedure were used. This

generator was used for both error bits and a priori bits. The number of a priori bits in a block

can be changed by random_ no.

void Random_distribution(long int block_size,long int random_no,long int *random)
{

long int lj;
i=l;while (i<=block_size) {random[i]=O;i++;}

II number of random bits in block can be changed by random_no

}

i= 1 ;while (i<=random _no)
{

}
i=O;

j=(rand()%(block_size))+ 1;
if G==O) {j=l ;}
if (j>block _size) {j=block _size;}
while (aprioriOJ!=O)
{

j=(rand()%(block_ size))+ 1 ;
if (j==O) {j= 1;}
if G>block _size) {j=block _size;}

}
randomOJ=l;
i++;

*
For example, for Gaussian distribution, after making randomly generated distribution, the

Gaussian histogram is deducted at those randomly generated bits as procedure follows.

Void Gaussian _Pattern(long int block _size, long int bit_ number, long int * aussian,
long int *block, long int block _number,long int dispersion,
long int mean,long int *distribution)

{
//randomly generate a priori bit in each distribution
long int lj;

i=O;while (i<=bit_number) { aussian[i]=O;i++;}

I= O;
while (I< random_no)
{

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 29

j=rand()%(bit_ number+ 1);

if (distribution[j]==O)
{continue;}

if (aussian[j]== 1)
{continue;}

11 Deduct from the aussian
distribution[j]--;

aussian[j] = 1 ;
i++;

}

6.4 A Simulation of a Priori Bit Distributions

The purpose of this simulation is to find the relations between occurrences of the different

distribution types of a priori bit and a random error bit by finding match probability. The

match is counted when a priori bit catches a error bit where a priori bit and the error bit are in

the same bit position in a block. The match probability is calculated by total number of

match divided by total number of blocks simulated. The simulations are classified into three

different cases as

1. A priori bit with a random single error bits.

2. A priori bit with a random multiple error bits.

3. A priori bit with a random single burst error bits.

A priori bits distributions, equal distance, Gaussian and uniform, used for the simulation is

show in Figures 6.4.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 30

1000
900
800

:i; 700
-e6oo
g5oo
~1400
8300
m200

100
0

1 11 21

A Priori Bits Distribution

31 41 51 61
Bit_number

71

Figure 6.4: A priori Bits Distributions

81 91

The result from the simulation related to the purposed 1-3 are shown in Figures 6.5 to

Figures 6-9, where

• For the values from 1 to 100 shown as dispersion present the distributions of a priori

bits. The distributions expressed by the values are

1 =Equal distance distribution

10-90 = Gaussian distribution

100 =Uniform distribution

• Figure 6.5 presents the relations between the block size, a priori distribution and

number of blocks.

• Figure 6.6 presents the relations between the block size, a priori distribution and

multiple random a priori bits. The multiple random error bits ratio in a block is shown

by percentages from I to 100%. In Figure 6.7, the relations are compared by block

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 31

size and a priori bits distributions at fixed multiple random error percentage. For this

simulation number of block is fixed to 1000 blocks.

• Figure 6.8 presents the relations between the match values, a priori distribution and

single burst a priori bit. The single burst error bits ratio in a block is shown by

percentages from 1 to 100%. In Figure 6.9, the relations are compared by single burst

error ratio in a block and a priori bits distributions at fixed block size. For this

simulation number of block is fixed to 1000 blocks.

Simulation I: A Priori Bit vs. Random Single Error Bits

The purpose of the simulation is to evaluate match probability of different a priori bits

distribution and single random bit error.

0.102

0.1

0.098

0.096

0.094

0.092

0.088

0.086

Bit_number=10

§§!:l~§~88S<
Elock number Cl) m §

Figure 6.5 (a): 10 Bits

Match

0.034

0.0335

0.033

Bit_number-30

0.0325 FR1'5f-+::J.;:f=,~

0.032

0.0315

0.031

§§~~§~~g~§
Elock_number ~

Match

0.051
0.0505

0.05
0.0495

0.049
0.0485 ·

0.048
0.0475

0.047
0.0465

0.046
80S< S<

,_. -,....

~~ ... ~~~88~
Elock_number ,._"' §

Figure 6.5 (b): 20 Bits

Bit_number=40

0.0257

0.0252

0.0247 .

0.0242 ·

0.0232

§~~~§~~g~§
Elock_num ber ~

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 32

Figure 6.5 (c): 30 Bits

0.0131

0.0129

0.0127

0.0125

0.0123

0.0117

Bit_number-80

§~~~§~~~~§
Elock_num ber

Figure 6.5 (e): 80 Bits

Dispersion

Figure 6.5 (d): 40 Bits

0.0108
0.0106
0.0104 -
0.0102

0.01

0.0092

Bit_number=100

§~~~§~~~~§
Elock_num ber

Figure 6.5 (f): 100 Bits

Figure 6.5: A Priori Bit vs. Random Single Error Bits

Dispersion

From the results shown in figure6.5 , the relations between the block size, a priori distribution

and number of blocks are concluded as

~ -
1. The number of block does not effect on the match probably between a priori bit with a

random single error bits.

2. As a priori bits distribution changes from the equal distance distribution to the

uniform distribution or dispersion values increase of Gaussian distribution, the match

probability also increases, and the uniform distribution has the highest match

probability.

3. As block size increases, the difference of match probability between the highest

match and lowest match decreases which means the a priori bits distributions less

effect on the match probability.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 33

~t.. (;ahriel's Librarv. Au

Simulation II: A Priori Bit vs. Random Multiple Error Bits

The purpose of the simulation is to evaluate match probability of different a pnon bits

distribution and multiple random bit errors.

The simulation is based on the same block size equal to 1000 evaluated with the block size

from 10 to 100 bits. The results of this simulation give same characteristic results for all

block size, therefore, the result of smallest block size 10 bits and largest block size 100 bits

are shown in figure 6.6.

Bit_number=10, Bits Block_number=1000

0.9
0.8
0 .7
0 .6

Match 0.5

0.4

Dispersion

Figure 6.6 (a): 10 Bits

Error(%)

• 0.9-1

•0.8-0.9

00.7-0.8

• 0.6-0.7

• 0.5-0.6

• 0.4-0 .5

D 0.3-0.4

D 0.2-0.3

•0.1 -0 .2

• 0-0 .1

0.9
0.8
0.7

Match o.5
0.5

Bit_number=100, Bits Block_number=1000

N(Figure 6.6 (b): 100 Bits

Figure 6.6: A Priori Bit vs. Random Multiple Error Bits

• 0.9-1

• 0.8-0.9

a o.7-0.8

• 0.6-0 .7

• 0.5-0.6

• 0.4-0.5

D 0.3-0 .4

D 0.2-0 .3

•0.1-0 .2

• 0-0.1

From the result graph shown in figure 6.6, the relations by a priori bits distribution and

difference by block size can not be evaluated because of scale, so the following graph 6. 7 was

made to evaluate them.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 34

Error-10% Error-80%

0.805

-+-10Bits 0.8 -+- 10Bits

0.098 -- 20Bits --20Bits

30Bits 0.795 30Bits

:B 0.096 ---- 40Bits .c ---- 40Bits B 0.79 .. -lll- 50Bits .. -lll- 50Bits :;: :;:
0.094 -+-60Bits 0.785 -+-60Bits

-t- 70Bits -t- 70Bits
0.092 - 80Bits 0.78 - 80Bits

0.09
- 90Bits

0.775
- 90Bits

10 20 30 40 50 60 70 80 90 100 100Bits 10 20 30 40 50 60 70 80 90 100 100Bits

Dispersion Dispersion

Figure 6.7 (a): Error 10 % Figure 6.7 (b): Error 80 %

Figure 6.7: A Priori Bit vs. Random Multiple Error Bits in term of Percentage of Error

From the results shown in figure6. 7, the relations between the block size, a priori distribution

and multiple random error percentage are concluded as

1. As number of error increases, the match probability also increases proportionally.

2. As a priori bits distribution changes from the equal distance distribution to the

uniform distribution or dispersion values increase of Gaussian distribution, the match

probability also mcreases, and the uniform distribution has the highest match

probability.

3. As block size mcreases, the difference of match probability between the highest

match and lowest match decreases which means a priori bits distributions have less

effect on the match probability, however, at smaller dispersion, as block number

increases the match probability also increases.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 35

Simulation III: A priori Bit vs. Random Single Burst Bits

The purpose of the simulation is to evaluate match probability of different a priori bits

distribution and single random burst error bit.

The simulation is based on the same block size equal to 1000 evaluated with the block size

from 10 to 100 bits. The results of this simulation give same characteristic results for all

block size, therefore, the result of smallest block size 10 bits and largest block size 100 bits

are shown in figure 6.8.

Bit_number=10, Bits Block_number=1000

0.9
0.8

0.7
0.6

Match 0.5
0.4
0.3
0.2
0.1

Dispersion

aJOO
60

• 0 .9-1

•0.8-0.9

00.1-0.e

•0.6-0.7

• 05-0.6

• 0.4-0 .5

a O.l-0 .4

00.2-0.3

40 .0.1-0.2

1
20 Burst_error(%) •D-0.1

Figure 6.8 (a): 10 bits

0.9
0.8
0.7
0.6

Match 0.5
0 .4
0.3
0.2
0.1

0

• O.S.1
•0.8-0.9

0 0.7-0.8

• 0 .6-0.7

• 0 .5-0.6

• 0.4-0.5
100

6
30 o o.3-0.4

40 0 0.2-0.3
20 Burst_ error • 0 1-0 2 1

(%) .o:0.1.

Figure 6.8 (b): 100 bits

Figure 6.8: A priori Bit vs. Random Single Burst Bits

From the result graph shown in figure 6.8, the relations by a priori bits distribution and

difference by the burst error size can not be evaluated because of scale so the following graph

6.9-6.10 were made to evaluate them.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 36

0.19

0.17

.c 0.15
~ ..
:::E

0.11

0.09

Bit_number=10Bits Block_number-1000

10 20 30 40 50 60 70 80 90 100

Dispersion

Figure 6.9 (a): Group of 1, 10, and 20 bits

.c
~ ..
:::E

0.9

0.8

0.7

0 .6

0.5

Bit_number=10Bits Block_number-1000

10 20 30 40 50 60 70 80 90 100

Dispersion

Figure 6.9 (c): Group of 50 to 100 bits

0.41

0.39

0.37

0.35

.c
~ • :::E

0.33

0.31

0.29

0.27

Bit_number=10Bits Block_number-1000

Burst_ error(%)

10 20 30 40 50 60 70 80 90 100

Dispersion

F=3o1
l=--4-QJ

Figure 6.9 (b): Group of 30 and 40 bits

Figure 6.9: A priori Bit vs. Random Single Group of Block Size= 10 Bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 3 7

Bit_number=100Bits Block_number=1000 Bit_number=100Bits Block_number=1000

Burst_error(%1

0.1 [3 0

0

0.08

0.06
.c .c
~ ~ ..
~ ~

0.04

0.02

0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Dispersion Dispersion

Figure 6.10 (a): Group of 1and10 bits Figure 6.10 (b): Group of20 to 40 bits

Bit_number=100Bits Block_number=1000

0.9

0.8

0 .7

0.6

0.5
10 20 30 40 50 60 70 80 90 100

Dispersion

Figure 6.10 (c): Group of 50 to 100 bits

Figure 6.10: A priori Bit vs. Random Single Group of Block Size=lOO bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 38

From the results shown in figure6, the relations between the block size, a priori distribution

and multiple random error percentage are concluded as

1. As number of error increase, the match probability also increases proportionally.

2. As a priori bits distribution changes from the equal distance distribution to the

uniform distribution or dispersion values increase of Gaussian distribution, the match

probability also increases, and the uniform distribution has the highest match

probability.

3. As the size of burst error increases until 50% of a block size, the match probability

also increases with the highest match at uniform distribution, however the size of

burst error increase from 50%, the match probability decreases as the dispersion

increase.

6.5 Conclusion

The simulation result gives relations between occurrences of a priori bit and different types of

error bits pattern by finding the matches for three different cases, a priori bit with a random

single error bits, a priori bit with a random multiple error bits, a priori bit with a random

single burst bits though the compared match probability result between a priori bits

distributions for each case has very small differences.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 39

CHAPTER 7: IMPLEMENTED TURBO CODEC SIMULATION

This chapter presents the main results of the research. The program simulates a turbo codec

with different distributions of a priori bits. The simulations were performed with a rate 1/3

turbo decoder. The results gave the performance changes with BER and the FER for each

case.

7.1 Simulation Setup

The simulation setup is composed of two distinct parts, a priori bits generation and a priori

bits insertion. For simulations, block size of 128 bits, 256 bits, 512 bits and 1024 bits were

used for 1E5 operation times.

~
7.1.1 A priori Bits Generation -
Three kinds of a priori bits (Equal, Gaussian and Uniform) were distributed by using same

code described in chapter 6. In each block, a priori bits were added with different a priori

inclusion ratio by percentages, 1 %, 5%, 10%, 15%, 20%, of block bits as figures 7 .1, 7 .2and

7.3 shown below for each distribution pattern.

Figure 7.1: Histogram of Equal Distribution a priori Bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 41

Figure 7.2: Histogram of Gaussian Distribution a priori Bits

Figure 7.3: Histogram of Uniform Distribution a priori Bits

-
7.1.2 A priori Bits Insertion

,.....
~

The simulation of the turbo code encoder is based on the literature [14]. The simulated turbo

code encoder is composed of two identical RSC component encoders. These two component

encoders are separated by a random interleaver. The random interleaver is a random

permutation of bit order in a bit stream. This random permutation of bit order is stored so that

the interleaved bit stream can be deinterleaved at the decoder. The output of the turbo code

encoder is described by three streams, one systematic message (uncoded) bit stream and two

coded parity bit streams. The first a priori bits before transmission were added into one of the

output of the turbo encoder, systematic message bits as shown in figure 7.4.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 42

Priori Bits I_
I

I

messageO __, ______________________________ ~

EN Cl

INT ENC2

messageO

Parityl

Parity2

Figure 7.4: A priori Bit Insertion at the Encoding Process

In the simulation, the Gaussian distribution was used as the channel noise, because it is a

fairly good model for different transmission mediums including deep space communication.

The Gaussian distribution was constructed with mean of zero and standard deviation of one.

In order to use this model, the turbo code encoder output bit streams must be mapped from

{O, I} to {-1, +I} domain.

The simulation of the turbo code decoder is based on literature [14]. For the received

systematic message bit stream, the noisy a priori bits are replaced with the same a priori bits

at encoding process before passing to the component of turbo decoder as shown in figure 7.5.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 43

m0 _ _._--11.i DECl Interleaver De-Interleaver
pl ______ __ ____.

p2----------------------------~- De-Interleaver

Output

Figure 7.5: A priori Bit Insertion at the Decoding Process

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 44

7.2 Synoptic scheme of the software implementation

The program code has been written in C programming language. All the code is in Appendix

C. Figure 7 .6 gives a brief explanation of the program structure.

Eh/No N Priori%

mesg

mesg

praityl

parity2

MAIN

PROGRAM
praity2

c

BER FER

RandomO

EncodeQ

InterleaveO

Priori BitsQ
• Equal
• Gaussian
• Uniform

GaussianO

DecodeQ

lnterleaveO

DecodeO

De-InterleaveO

D De~nes a function called by the
mamprogram

Purpose: to generate a random number
for message bits.

Purpose: to encode a bit.

Purpose: to interleave a block of data.

-
Purpose: to generate priori bits
distribution.

Purpose: to generate a Gaussian
distributed variable as adding noise.

Purpose: to decode a data block.

Purpose: to deinterleave a block of data.

Figure 7.6: Software synoptic

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 45

~t- <;ahrieJ's Lihrarv. Au

This program includes the code so that the simulation can start where it left off if the program

is stopped for some reason. After each turbo code run, the important variables are saved in a

file.

* mesg is the riginal message that is compared after each iteration to the decoded message.

* channelmesg is the A WGN corrupted message.

* parityl is the parity bits from the first recursive convolutional encoder.

* parity2 is the parity bits from the second recursive convolutional encoder and interleaver

combination.

* channelparityl is the A WGN corrupted parity bits from the first recursive convolutional

encoder.

* channelparity2 is the AWGN corrupted parity bits from the second recursive convolutional

encoder and interleaver combination.

* N is the size of the interleaver

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 46

7.3 Results Analysis

The purposes of simulation are classified into two different areas such as

1. To evaluate the error correcting performance with different block size by BER and

FER.

2. To evaluate the relationship between a priori bits distribution patterns at defined range

of SNR.

The results from the simulation related to the purposes 1 is shown in Figures 7 .5 - Figures

7.6, where

1. Figures 7.5 presents the BER performance comparison between different block sizes,

128, 256, 512, 1024 Bits without a priori bits at decoding process.

2. Figures 7 .6 presents the FER performance comparison between different block sizes,

128, 256, 512, 1024 Bits without a priori bits at decoding process.

The results from the simulation related to the purposes 2 is shown in Figures 7. 7 - Figures

7.16, where

1. Figures 7.7 - Figures 7.8 present the BER performance comparison between different

a priori bits distributions. The ratio of a priori bits in a block is changed by

percentages

2. Figures 7.9 - Figures 7.16 present the FER performance comparison between different

a priori bits distributions. The ratio of a priori bits in a block is are changed by

percentages

The next section will describe the simulation detail, in addition with the performance

analysis for each model.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 47

Simulation I: Performance Comparison Between Different Block Sizes without a Priori

Bits at the Decoding Process.

The purpose of the simulation is to evaluate the error correcting performance with different

block size by BER and FER. The evaluation is completed by

1. Setting up the simulation configuration as follows :

Simulation I Configuration:

block size = 128

SNR= (double dB=O; dB<=2.5; dB+=0.5)

Number of blocks= 1E5

2. Running the simulation software with the different block size such as 128, 256,

512, 1024 Bits to compare the throughput of the simulation by BER and FER.

3. Investigating the simulation result

*
The simulation result is shown in Figure 7.5. The simulation results shown are focused on the

range of signal to noise ratio between OdB and 2.5dB which is the most considerable range

for the deep space communication with turbo code.

From the results obtained in Figure 7.5-7.6, the conclusion for the performance evaluation

without a priori bits is that as the block size increases the error correcting performance also

mcreases.

This result can be used as a reference to compare the simulation results with different

distributions of a priori bits during the decoding process.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 48

1.00E+OO
--+-- N=128 bits

1.00E-01 ---- N=256 bits

1.00E-02
N=512 bits

~N=1024 bits

1.00E-03

a:
1.00E-04 w

ID

1.00E-05

1.00E-06

1.00E-07

1.00E-08

Figure 7.7: BER without a priori bits

1.00E+OO
--+-- N= 128 bits

---- N=256 bits
1.00E-01 -

N=512 bits

1.00E-02

ffi 1.00E-03 u..

1.00E-04

1.00E-05

1.00E-06

Eb/No

Figure 7.8: FER without a priori bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 49

Simulation II: Performance Comparison Between Different a Priori Bits Distributions

The purpose of the simulation is to evaluate the relationship between a priori bits distribution

patterns at defined range of SNR. The evaluation is complete by

1. Setting up the simulation configuration as follow :

Simulation II Configuration:

block size = 128

SNR= (double dB=O; dB<=2.5; dB+=0.5)

Number of blocks= 1E5

Distribution =Equal Distance, Gaussian (Dispersion = 10), Uniform

2. Running the simulation software with the different block size such as 128, 256,

512, 1024 Bits, and different a priori bits distribution to compare the throughput

of the simulation by BER and FER.

* 3. Investigating the simulation result ~ 9 6 ..; ol ~~

fl1iit1~'6\1;\\S
From the results shown in Figures 7.11-7.18, the conclusion of the performance evaluation of

turbo codec with a priori bits can be summarized as follow

1. Increasing the number of a priori bits, performance of error correcting in both

BER and FER is improved.

2. The changes of a priori bit distribution do not significantly affect the error

correction property of turbo codec, therefore the use of less complicated equal

distance distribution is recommended to reduce the turbo code complexity.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 50

1 006-01

1006-02

1 006-03

a:
w
m

1.006-04

1 006-05

1.006-06

a:: w
Ill

128 Bits

B:Jr>.b=OdB{Gaussianl)

13:11No=0.5dB(Gausslanl)

Eb'No=1.0d8(Gaussian)

- Bl/No=1.0dB(lMorm)

Eb'No=1.5dB(Gaussian)

Figure 7.9: BER at Block Size=128 bits

256 Bits

Priori Bits Percentage

~.OdB(gausslan)

- EbJNo=1.0dB(l.k'tiform)

Eh'J'.b=1.5dB(Gaussian)

Figure 7.10: BER at Block Size=256 bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 51

1.00E-02

1.00E-03

1.00E-04

a::
w m

1.00E-05

1.00E-06

1.00E-07

1.00E-08

512 Bits

EblN:>=OdB(Gaussian)

--.-BllNo=()dB(UlWorm)

EblNo=O.SdB(Gausslan)

B>INo=1.0dB(Gaussian)

- Bl/No=1 Odll(Uiiform)

EM«>=1.5d8(Gaussian)

Figure 7.11: BER at Block Size=512 bits

1.00E-05
a::
w m

1024 Bits

Priori Bits Percentage

Eblf\0=1.0dB(Geussian)

- Bl/No=1.0dB(lhform)

--+-Bl1No=1 .5d8(~1)

Eb't-.b=1 5d8(Gaussian)

--...- Bl/No=1 5d8(Uiiform)

Figure 7.12: BER at Block Size=1024 bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 52

a: w
LL

a: w
LL

128 Bits

~B(Gaussi:an)

-+- B>No=()dB(l.>1W0<m)

--- - .5dB(f<lual)

~.SdB(Gausskan)

Eb'No=1 . OdB(Gaussian)

- El>'No=1 .0dB(l.>1W0<m)

--+-- El>'No=1 .5dB(Equal)

Eb'f\tl=1.5dB(Gaussian)

-+- El>'No=1 .5dB(l.>1W0<m)

Figure 7.13: FER at Block Size=128 bits

256 Bits

Priori Bits Percentage

Figure 7.14: FER at Block Size=256 bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 53

1.00E--01

1.00E--02

a:
w
LL

1.00E-03

1.00E-04

1.00E-05

Eb'N:>=OdB(Gaussian)

__.,_ Blll'b=OdB(Ulifoml)

Eb'No=0.5dB(Gausslan)

8:VNo=1 .0dB(Gausslan)

- -=1 OdB(Ul•orm)

B:lll\b=1 .5dB(Gaussian)

Figure 7.15: FER at Block Size=512 bits

1024 Bits

-+-Blll'b=OdB(EQual)

Eh'No=OdB(Gaussian)

__.._ Blll'b=OdB(iliform)

---B»b=O.SdB(EQual)

Eb'No=0.5dB(Gausslan)

~ Eh'No=0.5d8(Uliform)

---B»b=1.0d8(EQual)

B:VN:>=1 .0d8(Gaussian)

- B>'No=1.0d8(Uliform)

-+- B»b=1.5d8(EQual)

B:VNo=1 .5dB(Gaussian)

., B»b=1.5d8(U1Worm)

Figure 7.16: FER at Block Size=1024 bits

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 54

t\f. CT:ihriel's Lihrarv. Au

CHAPTER 8: CONCLUSION

This thesis discussed the approach of implementation and study of the performance of the

existing turbo coding techniques for deep space communications. The main subject of the

research focused on methods combining the advantages of turbo code with the inclusion of a

priori information. A statistical simulation software was used to evaluate the effect of the

turbo code implementation by using a priori knowledge about the source during the channel

decoding.

Though only slight complexity gam was added to the turbo codec by the method of

combining the original turbo code [11] introduced in 1993 with the inclusion of a priori

information, the simulation results indicate the advantage which is the clear improvement that

the source decoder gives better performance by observing an improvement of the Bit Error

Rate (BER) and the Frame Error Rate (FER). The BER and the FER were improved by

increasing the block size and the ratio of a priori bits inclusion in a block. The simulation

results also show a priori bits distribution patterns do not affect significantly on the turbo

decoding performance, therefore, by using this implementation method, the use of the equally

distributed a priori bits are recommended to make the computations of decoding process less

complicated.

In the real operation of communications, a priori information synchronization must be

established between the turbo encoder and decoder prior to the data transmission for initial a

priori bits distribution pattern though the changes of a priori bits distribution pattern during

communications could be synchronized as using another redundancy in code block during the

data transmission.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 55

The future work in this field would include the development of a priori bits inclusion

approach in dealing with the turbo codec. The suggested approaches of a priori information

inclusion are in parity bits after encoding process, the different patterns of a priori

infonnation in each parity bit. Also at the decoding process, the probability of error

occurrence from the previous decoding history could be used to estimate the error pattern to

modify a priori bits distribution pattern during the decoding process. For this self a priori bits

distribution pattern modification, a priori information synchronization would be done during

the data communication. A proper inclusion of a priori infonnation and error estimation

algorithm are to be further developed.

=·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 56

REFERENCES

[l]K. Andrews, V. Stanton, S. Dolinar, V. Chen, J. Bemer, and F. Pollara, "Turbo-Decoder

Implementation for the Deep Space Network (2002)'', JPN PR 42-148, October-December

2001, pp. 1-20, February 15, 2002.

[2]Thomas Hindelang, Joachim Hagenauer, Stefan Heinen, "Source-Controlled Channel

Decoding: Estimation of Correlated Parameters (2000)", 3rd ITG Conference Source and

Channel Coding, Milnchen, Januar 2000 S.251-258

[3]Tim Fingscheidt, Thomas Hindelang_, Richard V. Cox, Nambi Seshadri, "Combined

Source/Channel Decoding: When Minimizing Bit Error Rate is Suboptimal (2000)", in Proc.

Of rd ITO Conference Source and Channel Coding, Munich, Germany, January 2000.

[4] T. Hindelang, T. Fingscheidt, N. Seshadri, R.V. Cox, "Combined Source/Channel (De-)

Coding:Can A Priori Information Be Used Twice?" ICC (3) 2000: 1208-1212

~

[5] M. Kaindl, T. Hindelang, "Estimation Of Bit Error Probabilities Using A Priori

Information (1999)'', in proc. of IEEE GLOBECOM'99, Rio de Janeiro, Brazil, Dec 1999,

Vol.5, pp.2422-2426.

[6] Oscar Y Takeshita, Oliver M. Collins, Peter C. Massey, and Daniel J. Costello, "On the

frame Error Rate of Turbo-Codes (1998)", Proc. ITW 1998, Killamey, Ireland, pp.118-119,

June 22-26, 1998.

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 57

[7] D. Divsalar and. F. Pollara "Turbo Codes for Deep-Space Communications (1995)'', JPL

TOA Progress Report 42-120, Feb. 15, 1995.

[8] Johan Hokfelt, "On The Design Of Turbo Code (2000)" ISSN1402-8662:17, ISBN 91-

7874-061-4, Lund University, Sweden, August 2000.

[9] Charles Wang, Dean Sklar, and Diana Johnson "Forward Error-Correction Coding

(2002)'', Crosslink Volume 3, Number 1 (Winter 2001/2002)

http://www.aero.org/publications/crosslink/winter2002/04.html

[10] Oscar Y. Takeshita, Member, IEEE, and Daniel J. Costello , Jr., Fellow, IEEE, "New

Deterministic Interleaver Designs for Turbo Codes (2000)'', IEEE Transactions on

Information Theory, VOL. 46, NO. 6, 1988-2006, SEPTEMBER 2000

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error correcting

coding and decoding: Turbo- Codes," ICC'93, Geneva, Switzerland, pp. 1064-1070, May

1993.

[12] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for

minimizing symbol error rate," IEEE Transactions on Information Theory, vol. IT-20, pp.

284-287, March 1974.

[13] J. Hagenauer and P. H"oher, "A Viterbi algorithm with soft-decision outputs and its

applications," in Globecom, pp. 1680-1686, IEEE, November 1989.

1 the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 58

[14] William E. Ryan, "A Turbo Code Tutorial," http://telsat.nrnsu.edu/~wryan/turbo2c.ps

[15] J. Hagenauer, P. Roberston and L. Papke, "Iterative (turbo) decoding of systematic

convolutional codes with the MAP and SOVA algorithms," ITG Conj, Frankfurt, Germany,

Oct. 1994.

(16] D. Divsalar and F. Pollara, "On the design of turbo codes,;' JPL TDA Progress Report,

vol. 42-123, pp. 99-121, July-Sep. 1995.

[17] C. E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. J, vol.27,

pp. 379-423, July 1948 and pp. 623-656, Oct. 1948.

[18] X. Wang and S. B. Wicker, "A soft output decoding algorithm for concatenated

systems," submitted to IEEE Transactions on Information Theory, Dec. 1994.

[19] P. Robertson, "Improving decoder and code structure of parallel concatenated recursive

systematic (Turbo) codes," 3rd Int. Conference on Universal Personal Communication, San

Diego, California, pp. 183-187, Sep. 1994.

[20] S. Benedetto and G. Montorsi, "Performance evaluation of turbo codes," Electron. Lett.,

vol. 31, No. 3, pp. 163-165, Feb. 1995.

(21] P. L. McAdam, L. R. Welch, and C. L. Weber, "M.A.P. Bit Decoding of Convolutional

Codes" (Abstract), 1972 International Symposium on Iriformation Theory, Asilomar,

California, p. 91, May 1972.

)n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 59

~t~ f1'1hriel's Librarv. An

[22] B. Mielczarek, "Synchronization in Turbo Coded systems", PhD thesis, Chalmers

University of Technology, Sweden, April 2000.

[23] Guido Masera, Gianluca Piccinini, Massimo Ruo Roch, and Maurizio Zamboni, "VLSI

Architectures for Turbo Codes'', IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 7, No; 3, September 1999.

)n the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 60

APPENDIX A: BCJR ALGORITHM

The following text has been taken with permission from the lecture file of Coding Theory

at http://www.s-t.au.ac.th/~Alib/students/TS6313/TS6313 l 7.doc and explains theoretically

the BCJR algorithm [14] used for Turbo code simulations.

For a discussion of turbo decoding to be complete, a mathematical exposition of the BCJR
algorithm for MAP estimation is in order.

Let x(t) be the input to a trellis encoder at time t. Let y(t) be the corresponding output
observed at the receiver. Note thaty(t) may include more than one observation; for example,
a rate l/n code produces n bits for each input bit, in which case we have an n-dimensional
observation vector. Let the observation vector be denoted by

Y(l,I) = [y(l),y(2), ... ,y(t)]
Let Ain(t) denote the probability that a state s(t) of the trellis encoder equals m, where
m = 1, 2,. .. , M. We may then write

f..(t) = P(s(t) I y) ,_.
(10. 77)

where s(t) and 'A.(t) are both M-by-l vectors. Then, for a rate 1/n linear convolutional code
with feedback as in the RSC code, the probability that a symbol "I" was the message bit is
given by

sef:.1

(10.78)
where FA is the set of transitions that correspond to a symbol "I" at the input, and As(t) is

the s-component of 'A.(t).

Define the forward estimation of state probabilities as the M-by-1 vector
a(t) = P(s(t) I y (1,tJ)
(10.79)

where the observation vector YCI,t) is defined above. Also define the backward estimation of
state probabilities as the M-by-1 vector

~(t) = P(s(t) I YCt,kJ)
(10.80)

where
YU.kl= [y(t),y(t+ l), ... ,y(k)]

The vectors a(t) and ~(t) are estimates of the state probabilities at time t based on the past
and future data, respectively. We may then formulate the separability theorem as follows:

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 61

The state probabilities at time t are related to the forward estimator a(t) and backward
estimator (3(t) by the vector

A.(t) = a(t) · IJ(t)

II a(t) ·PU) 111

(10.81)
where a(t) · (3(t) is the vector product of a(t) and (3(t), and II a(t) · (3(t) 11 1 is the L 1 norm of
this vector product.

The vector product a(t) · (3(t) (not to be confused with the inner product) is defined in
terms of the individual elements of a(t) and (3(t) by

a1 (t)/31 (t)

a(t) · (3(t) =

\"ERS/]"y
(10.82) 0

and the L1 norm of a(t) · (3(t) is defined by ~
M

II a(t) · (3(t) 111 = Lam(t)/Jm(t) ,A
m=I

(10.83)
The separability theorem says that the state distribution at time t given the past is
independent of the state distribution at time t given the future, which is intuitively
satisfying recalling the Markovian assumption for channel encoding, which is basic to the
BCJR algorithm. Moreover, this theorem provides the basis of a simple way of combining
the forward and backward estimates to obtain a complete description of the state
probabilities.

To proceed further, let the state transition probability at time t be
Ym ·,m(t) = P(s(t) = m, y(t) I s(t- 1) = m ')
(I 0.84)

and denote the M~by-M matrix of transition probabilities as
r(t) = {Ym',m(t)}
(10.85)

We may then formulate the recursion theorem as follows:

*

The forward estimate a(t) and backward estimate (3(t) are computed recursively as

ar(t) = a r (t - l)r(t)

II a r (t - l)r(t) 111

(10.86)
and

(3T(t) = r(t + J)fJ(t + 1)
II r(t + I)IJ(t +I) 111

(I 0.87)

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 62

where the superscript T denotes matrix transposition.

The separability and recursion theorems together define the BCJR algorithm for the
computation of a posteriori probabilities of the states and transitions of a code trellis, given
the observation vector. Using these estimates, the likelihood ratios needed for turbo
decoding may then be computed by performing summations over selected subsets of states
as required.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 63

APPENDIX B: DIFFERENTION ENTROPY OF UNIFORM
DISTRIBUTION

The result of better matches with uniform distribution in chapter 6 can be proven by

following mathematical solutions which has been taken with permission from the lecture file

of Coding Theory at http://www.s-t.au.ac.th/~Alib/students/TS63 l 3/TS63 l 307.doc.

Problem 2.8.2 A continuos random variable Xis constrained to a peak magnitude M; that is,
-M<X<M.
(a) Show that the differential entropy of Xis maximum when it is uniformly distributed,

as shown by

1

2M'
-M<x<M

0, otherwise

(b) Show that the maximum differential entropy of Xis log 2 2M.

Solution:
From the fundamental inequality in information theory of Eq. (10.12) to the situation at
hand, we may write

oo f (x) M f (x)
ff y(x)log2 X dx = f f y(x)log2 X dx ::; O

-oo f y(x) -M f y(x)

or equivalently
M M

- f f y(x)log2 f y(x)dx ::;- f f y(x)log2 f x(x)dx
-M -M

The quantity on the left-hand side of Eq.(10.71) is the differential entropy of the
random variable Y; hence,

M
h(Y)~- f fy(x)log 2 fx(x)dx

-M
Suppose now the random variable Xis described as follows:

The random variable Xis uniformly distributed as shown by

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 64

1

2M'
-M<x<M

0, otherwise

Hence, substituting the uniform distribution into the inequality, we get
M

h(Y) s f fy(x)Iog2(2M)dx
-M

We now recognize the following property of the random variable Y:
M
f ! y(x)dx = 1

-M
We may therefore simplify the inequality as E ff

h(Y) s Iog2 (2M)

The quantity on the right-hand side of the inequality is in fact the differential entropy of the
uniformly distributed random variable X:

h(X) = Iog2 (2M) ,A
Finally, we may write

h(Y) s h(X) {
X: uniformlydidstributed random variable

Y: another random variable
where equality holds if, and only if, Y = X.

We may now summarize the result of this important example as follows:

1. For a finite interval (-M<x<M), the uni(ormlv distributed random variable X has
the largest differential entropy h(X) attainable by any random variable Y.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 65

APPENDIX C: CODE USED TO SIMULATE THE TURBO CODEC

All turbo codec simulations are performed by using the code based on following turbo code

simulator which 1s originally written by Mathys Walma taken from

http://www.eccpage.com. This codec is using BCJR algorithm[l4], based on the

pseudocode in W.E.Ryan's tutorial paper[X].

Turbo.cpp

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "random.h".

canst int SEED=lOOO;
unsigned int N=128;
unsigned int ITERA TIONS=20;
double No;

I II zero mean RV with variance as given
double gaussian(double variance);
II encodes mesg into parity I, and if force it true it modifies mesg to
II force the encoder to the zero state by the last bit.
void encode(bool *mesg,bool *parity I ,unsigned size, boo! force);
void interleave(bool *mesg, unsigned size);
II binary addition with no carry
bool add(bool a,bool b);
void interleave(bool *mesg, unsigned size);
void deinterleave(bool *mesg, unsigned size);
void deinterleavedouble(double *mesg, unsigned size);
void interleavedouble(double *mesg, unsigned size);
void createinterleave(unsigned size);
void createencodetable();
void inttobool(unsigned state, bool *array, unsigned size);
void booltoint(bool *array, unsigned size, unsigned *state);
unsigned decode (double *channelmesg, double *parity!, double *parity2, unsigned size, bool *mesg);
unsigned *interleavearray;
unsigned *deinterleavearray;

II global information about the encoder used by the encoder and the decoder
II routine
II how many states are in the encoder (a power of2)
unsigned numstates;
11 log2(numstates)
unsigned memory;

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 66

II [2] = input, [16] = current state, tostate[2][16] = next state
unsigned *tostate[2];
II [2] = last input, [16] = current state, fromstate[2][16] = previous state
unsigned *fromstate(2];
II [2] = input, [16] = current state, output[2][16] = output of encoder
boo! *output[2];
Random before;

main()
{

boo! *mesg;
boo! *parity!;
boo! *parity2;
double *channelmesg;
double *channelparityl;
double *channelparity2;

interleavearray =new unsigned[N];
deinterleavearray =new unsigned[N];
mesg =new bool[N];
parity! =new bool[N];
parity2 =new bool[N];
channelmesg =new double[N];
channelparityl =new double[N];
channelparity2 =new double[N];

II only needs to be done once
createencodetab I e();

bool firstloop=true·;

II change if you want to loop for other values of dB
for (double dB=-4.0;dB<=-4.0;dB+=0.5)
{
unsigned totalN=O;
unsigned totalerrors=O;
unsigned numiter;
unsigned totaliter=O;
unsigned numloops=O;

II load the previous state
if (firstloop)
{
FILE *fp;
char line[30];

firstloop = false;

if((fp = fopen("laststate","r")) !=NULL)
{

fgets(line,30,fp);
dB= atof(line);
fgets(line,30,fp);
total errors = atoi(line);
fgets(line,30,fp);
totalN = atoi(line);

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 67

fcl ose(fp);
}

fgets(line,30,fp);
totaliter = atoi(line);
fgets(line,30,fp);
numloops = atoi(line);

II dB= IO*log(Eb/No) where Eb is I
No= llpow(lO.O,dB/10.0);

boo! keepgoing=true;

do
{
. (int x=O;x<N;x++)

mesg[x] = before.boolrandom();

II create a random interleaver for each decode trial
createinterleave(N);

encode(mesg,parity l ,N,true);
interleave(mesg,N);
encode(mesg,parity2,N ,false);

II deinterleave for the decoder
deinterleave(mesg,N);

for (int x=O;x<N;x++)
{
mesg[x]? channelmesg[x] = 1.0: channelmesg[x]=-1.0;
parity! [x]? channelparityl [x]=I .0 : channelparityl [x]=-1 .0;
parity2[x]? channelparity2[x]=l .O : channelparity2[x]=-l .O;
}

II add gaussian noise, mean=O, variance=Nol2
for (int x=O;x<N;x++)
{
channelmesg[x] += gaussian(Nol2);
channelparityl[x] += gaussian(Nol2);
channelparity2[x] += gaussian(No/2);
}

numiter =decode(channelmesg, channel parity!, channelparity2,N,mesg);

unsigned numerrors=O;

for (int x=O;x<N;x++)
{
boot temp= channelmesg[x] == I ? true: false;

if(mesg[x] !=temp)
numerrors++;
}

totalerrors += numerrors;
totalN += N;

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 68

II open a file for output

totaliter += numiter;
numloops++;

char name[30];

sprintf (name, 11%dN%lfdB11,N,dB);

FILE *fp;

II if file exists, we will append to it
fp = fopen(name, 11a11

);

(
11N=%d, e=%d, totlTER=%d, numITER=%d, No=%lf, tote=%d, totn=%d,

dB=%lf\n 11 ,N,numerrors,ITERATIONS,numiter,No,totalerrors,totalN,dB);
fprintf(fp, 11N=%d, e=%d, totlTER=%d, numITER=%d, No=%lf, tote=%d, totn=%d,
dB=%1f\n 11

, N ,numerrors,ITERA TI ONS,numiter,N o, total errors, to ta IN ,dB);

fclose(fp);

I
II save this state in case we need to start over again

, fp = fopen (11 laststate11
,

11w11
);

fprintf(fp, 11%lf\n 11 ,dB);
fprintf(fp, 11%u\n 11 ,total errors);
fpri ntf(fp, 11%u\n 11

, totalN);
fprintf(fp, 11%u\n 11 ,totaliter);
fprintf(fp, 11%u\n 11 ,numloops);

fclose(fp);

II a number of conditions for stopping the simulation for this dB value
if (total errors> 1000)
keepgoing = false;
else if(totalN>500000 && totalerrors > 100)
keepgoing = false;
else if (totalN> I E6 && total errors> I 0)
keepgoing = false;
else if(totalN>5E6 && totalerrors > 5)
keepgoing =false;
else if (totalN>7.5E6 && total errors> 3)
keepgoing = false;
else if(totalN>lE7)
keepgoing=false;
}

while (keepgoing ==true); II 10 million is as high as I'm willing to go
II I 000 errors should be enough for good stats.

II add a summary of the last run to the summary file
FILE *fp;

fp = fopen(11 summary", 11a11
);

I printf(11dB =%If, N=%ld, error=%ld, avgiter =%If, interleaver size=%d, original encoder\n11 ,dB,

I
tota!N ,total errors,(double)totaliterl(double)numloops,N);
fprintf(fp, 11dB =%If, N=%ld, error=%ld, avgiter =%If, interleaver size=%d, original encoder\n 11 ,dB,

1
tota!N, totalerrors,(double)total iterl(double)numloops,N);

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 69

fclose(fp);

delete interleavearray;
delete deinterleavearray;
delete mesg;
delete parity!;
delete parity2;
delete channelmesg;
delete channel parity I;
delete channelparity2;

void createencodetable()
{

boo! *boolstate;
boo! *newstate;

numstates = 16;
memory= 4;

I I create arrays used by encode and decode
output[O] =new bool[numstates];
output[!]= new bool[numstates];
fromstate[O] =new unsigned[numstates];
fromstate[J] =new unsigned[numstates];
tostate[O] = new unsigned[numstates];
tostate[I] =new unsigned[numstates];
boolstate =new bool[memory];
newstate =new boo![memory];

for (unsigned input=O;input<2;input++)
for (unsigned intstate=O;intstate<numstates;intstate++)
{

boo! boolinput = (input == 0) ? false : true;

NCF
inttobool(intstate,boolstate,memory);

II calculate output due to the input
output[input] [intstate] = add(boolinput,boolstate[O]);
output[input] [intstate] = add(output[input][intstate],boolstate[3]);
output[input] [intstate] = add(output[input][intstate],boolstate[I]);
output[input] [intstate] = add(output[input] [intstate],boolstate[2]);
[input][intstate] = add(output[input] [intstate],boolstate[3]);

II calculate new states
newstate[3] = boolstate[2];

newstate[2] = boo I state[I];
newstate[l] = boolstate[O];

newstate[O] = add(add(boolinput,boolstate[O]),boolstate[3]);
II from s' to s

booltoint (newstate,memory,&tostate[input][intstate]);
II from s to s'

fromstate[input] [tostate[input] [intstate]] = intstate;
}

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 70

}

delete boolstate;
delete newstate;

void inttobool(unsigned state, bool *array, unsigned size)
{

for (unsigned x=O;x<size;x++)
{
unsigned next= state>> 1;

if((next <<I)== state)
array[x] = false;
else
array[x] =true;
state "° next;
}

void booltoint(bool *array, unsigned size, unsigned *state)
{

}

*state= O;

for (int x=O;x<size;x++)
if(array[x] ==true)
(*state) i= (1 « x);

unsigned decode (double *mesg, double *parity!, double *parity2, unsigned size, bool *boolmesg)
{

static double **a[2];
static double **b[2];
static double *L[2];
static double **garµma[2][2];
static double **gammaE[2][2];
static boo! initialized=false;
static unsigned lastsize=O;
unsigned returnvalue=ITERA TIONS;

s

II minimize new's and delete's to only when needed
if (size!= lastsize && initialized== true)
{

II delete all the arrays and rebuild
for (int y=O;y<2;y++)
for (int x=O;x<2;x++)
{
for (int z=O;z<lastsize;z++)

{
delete gamma[y][x][z];
delete gammaE[y][x][z];
}

delete gamma[y][x];
delete gammaE[y][x];
}

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 71

11 create L[encoder #]
for (int y=O;y<2;y++)
delete L[y];

II create alpha[encoder #][k][state]
for (int x=O;x<2;x++)
{

for (int y=O;y<Jastsize;y++)
{

delete a[x][y];
delete b[x][y];

delete a[x];
delete b[x];

}

if(initialized ==false II size!= lastsize)
{

initialized = true;
lastsize = size;

II create the arrays dynamically at runtime, delete at end ofroutine
II create gamma[encoder #][uk][k][state]

for (int y=O;y<2;y++)
for (int x=O;x<2;x++)
{
gamma[y][x] =new double*[size];
gammaE[y][x] =new double*[size];
for (int z=O;z<size;z++)
{
gamma[y][x][z] =new double[numstates];
gammaE[y][x][z] =new double[numstates];
}

}

II create L[encoder #]
for (int y=O;y<2;y++)
L[y] ==new double[size];

II create alpha[encoder #][k][state]
for (int x=O;x<2;x++)
{
a[x] =new double*[size];
b[x] =new double*[size];

II each Yk has 'numstates' values of gamma
for (int y=O;y<size;y++)
{
a[x][y] =new double[numstates];
b[x][y] = new double[numstates];
}

II initialization cif iteration arrays

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 72

for (int x=O;x<numstates;x++)
{
a[O][O][x] = b[O][size-l][x] = a[l][O][x] = (x==O)? 1.0: 0.0;

II extrinsic information from 2-1

II initialization of extrinsic information array from decoder 2, used in decoder I
for (int x=O;x<size;x++)

L[l][x] =0.0;

II 4*Eb!No
double Le= (4.0*1.0)/No;

for (int c=O;c<ITERA TIONS;c++)
{

II k from 0 to N-1 instead of l to N
for (int k=O;k<size;k++)

{
II calculate the gamma(s',s);

for (int input=O;input<2;input++)
{
double uk = (input == 0) ? -1.0 : 1.0;

for (int s=O;s<numstates;s++)

}
}

{
double xk = (output[input][s] == 0)? -1.0: 1.0;

gammaE[O] [input] [k][s]=exp(0.5 *Lc*parity I [k]*xk);
gamma[O] [input] [k] [s]=exp(O .5*uk*(L[1] [k]+Lc*mesg[k]))* gammaE[O] [input] [k] [s];
}

II calculate the alpha terms
II from 1 to N-1, 0 is precalculated, N is never used

for (int k= 1 ;k<size;k++)
{
double temp=O;

II calculate denominator
for (int state=O;state<numstates;state++)
temp+= a[O][k-1][fromstate[O][state]]*gamma[O][O][k-1][fromstate[O][state]] +

a[O][k-1] [from state[1] [state]]*gamma[O][I] [k-1] [fromstate[I][state]];

for (int state=O;state<numstates;state++)
a[O] [k][state l = (a[O][k-1] [fromstate[O] [state]] *gamma[O][O][k-1][fromstate[O] [state]] +

//fromN-1 to

a[O] [k-1] [fromstate[1] [state]]*gamma[O] [1] [k-1][fromstate[1] [state]])/temp;
}

for (int k=size-1;k>=1 ;k--)
{

l
double temp=O;

II calculate denominator
_ for (int state=O;state<numstates;state++)

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 73

temp += a[O][k][fromstate[O][state]] *gamma[O][O][k][fromstate[O][state]] +
a[O] [k][fromstate[l][state]]*gamma[O] [l][k][fromstate[l][state]];

for (int state=O;state<numstates;state++)
b[O][k-1][state] = (b[O][k][tostate[O][state]]*gamma[O][O][k][state] +

b[O] [k] [tostate[l] [state]] *gamma[O] [l] [k] [state])/temp;

for (int k=O;k<size;k++)
{

double min=O;

II find the minimum product of alpha, gamma, beta
for (int u=O;u<2;u++)
for (int state=O;state<numstates;state++)

{
double temp=a[O] [k] [state] *gammaE[O] [u] [k] [state] *b[O] [k] [tostate[u] [state]];

if((temp <min && temp!= 0)11 min== 0)
min= temp;

}

II if all else fails, make min real small
if(min == 0 II min> I)
min= lE-100;

double topbottom[2] ;

for (int u=O;u<2;u++)
{
topbottom[u]=O.O;

for(int state=O;state<numstates;state++)
top bottom[u] += (a[O][k][state)*gammaE[O) [u] [k][state)*b[O] [k] [to state[u] [state])) ;
}

if (topbottom[O] == 0)
topbottom[O] =min;
else if(topbottom[l) == 0)
topbottom[l] =min;

L[O][k] = (log(topbottom[l]/topbottom[O]));
}

interleavedouble(L[O],size);
II remember to deinterleave for next iteration

interleavedouble(mesg,size);

II start decoder 2
II code almost same as decoder 1, could combine code into one but too lazy

for (int k=O;k<size;k++)
{

II calculate the gamma(s',s);
for (int input=O;input<2; input++)

{
double uk = (input== 0) ? -1.0 : 1.0;

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 74

for (int s=O;s<numstates;s++)
{
double xk = (output[input][s] == 0)? -1.0: 1.0;

gammaE[I][input] [k] [s]=exp(0.5*Lc*parity2[k] *xk);

gamma[I](input](k](s]=exp(O.S*uk*(L(O](k]+Lc*mesg[k]))*gammaE[I](input](k](s);
}

II calculate the alpha terms
for (int k= 1 ;k<size;k++)

{
double temp=O;

II calculate denominator
for (int state=O;state<numstates;state++)

temp += a(I][k- I] [fromstate[O][state]]*gamma[I](O] [k- I] (fromstate(O][state]] +
a(I][k-1][fromstate[I][state]) *gamma[I][I][k- I] [from state[I][state]);

for (int state=O;state<numstates;state++)
a[l] [k][state] = (a[l][k- I][fromstate[O][state]]*gamma[I][O][k-1][fromstate[O][state]] +

a[I] [k- I][fromstate[I][state]J*gamma[I][I] [k-1] [fromstate[I] [state]])/temp;

Ii in the first iteration, set b[l][N-I] = a[I][N-I] for decoder 2
II this decoder can't be terminated to state 0 because of the interleaver
II the performance loss is supposedly neglible.

if(c==O)
{
double temp=O;

II calculate denominator
for (int state=O;state<numstates;state++)
temp+= a[l][size-I][fromstate[O][state])*gamma[I][O][size-1][fromstate[O][state]] +

a[1][size- I][from state[1] [state]]*gamma[I][1][size- I] [fromstate[1][state]];

. for (int state=O;state<numstates;state++)
b[I][size- I][state] =(a[I][size- I][fromstate[O][state])*gamma[I][OJ[size- I]

[fromstate[O][state]] + a[I] [size- I][fromstate[I][state]]*
gamma[I] [I] [size- I] [fromstate[1] [state]])/temp;

for (int k=size-1 ;k>= I ;k--)
{
double temp=O;

II calculate denominator
for (int state=O;state<numstates;state++)
temp+= a[I][k][fromstate[O][state)J*gamma(l][O][k][fromstate(O][state]] +

a[I][k][fromstate[I][state)]*gamma[I][I] [k][from state[I] [state]];

for (int state=O;state<numstates;state++)
b[I][k-1][state] = (b[I][k] [tostate[O][state]] *gamma[I] [O] [k] [state] +

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 75

b[l] [k] [tostate[l] [state]]*gamma[1] [l][k] [state])/temp;

for (int k=O;k<size;k++)
{
double mih = O;

II find the minimum product of alpha, gamma, beta
for (int u=O;u<2;u++)
for (int state=O;state<numstates;state++)
{
double temp=a[1][k] [state]*gammaE[l][u][k] [state] *b[1] [k] [tostate[u] [state]];

if((temp <min && temp != 0)11 min== 0)
min =temp;

}
II if all else fails, make min real small

if(min == 0 II min> 1)
min= lE-100;

double topbottom[2];

for (int u=O;u<2;u++)
{

topbottom[u]=O.O;

for(int state=O ;state<n umstates;state++)
topbottom[u] += (a[I] [k][state] *gammaE[I][u](k] [state] *b[I][k] [to state[u][state]]);
}

if(topbottom[O] == 0)
topbottom[O] =min;
else if (topbottom[l] == 0)
topbottom[l] =min;

L[l](k] = (log(topbottom[l]/topbottom[O])); *
69 ol ~~

-;,'V/fl1a tr5'6\i\\I deinterleavedouble(mesg,size);
deinterleavedouble(L[1],size);

II get L[O] back to normal after decoder 2
deinterleavedouble(L[O],size);

boo! temp=true;
for (int k=O;k<size;k++)

if(boolmesg[k] != ((Lc*mesg[k] + L[O][k] + L[l][k] > 0.0)? true: false))
temp = false;

II we can quit prematurely since it has been decoded
if (temp==true)

{
returnvalue = c;
c=ITERA TIONS;
}

II end decoder 2

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 76

II make decisions
for (int k=O;k<size;k++)

if((Lc*mesg[k] + L[O][k] + L[l][k]) > 0)
mesg[k] = l.O;

else
mesg[k] = -1.0;

return returnvalue;

void deinterleavedouble(double *mesg, unsigned size)
{
double *temp;

temp= new double[size] ;

for (int x=O;x<size;x++)
temp[x] = mesg[x];

for (int x=O;x<size;x++)
mesg[deinterleavearray[x]] = temp[x];

delete temp;

void interleavedouble(double *mesg, unsigned size)
{
double *temp;

temp= new double[size] ;

for (int x=O;x<size;x++)
temp[x] = mesg[x];

for (int x=O;x<size;x++)
mesg[interleavearray[x]] = temp[x] ;

delete temp;

void interleave(bool *mesg,unsigned size)
{

}

bool *temp;

temp = new bool[size];

for (int x=O;x<size;x++)
temp[x] = mesg[x] ;

for (int x=O;x<size~x++)
mesg[interleavearray[x]] = temp[x];

delete temp;

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 77

void deinterleave(bool *mesg,unsigned size)
{

}

boo! *temp;

temp= new bool[size];

for (int x=O;x<size;x++)
temp[x] = mesg[x];

for (int x=O;x<size;x++)
mesg[deinterleavearray[x]] = temp[x];

delete temp;

void createinterleave(unsigned size)
{

bool *yesno;

yesno =new bool[size] ;

for (int x=O;x<N;x++)
yesno[x]=false;

II create an interleave array
for (int x=O;x<N;x++)

}

{
unsigned val;

do
{
val=before.longrandom(N);
}
while(yesno[val] ==true);

yesno[val] =true;
interleavearray[x] =val;
deinterleavearray[val] = x;
}

delete yesno;

void encode(bool *mesg,bool *parity,unsigned size, bool force)
{

unsigned state=O;

for (int x=O;x<size;x++)
{

II force the encoder to zero state at the end
if(x>=size-memory && force)
{
if (tostate[O)[state]& I)

mesg[x] =true;
else

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 78

mesg[x] =false;

II can't assume the boo I type has an intrinsic value of 0 or 1
II may differ from platform to platform

int uk = mesg[x]? 1 : O;

II calculate output due to new mesg bit
parity[x] = output[uk][state];

II calculate the new state

}
}

state = tostate[uk][state];

booladd(boola,bool b)
{

return a==b ? false : true;

:ouble gau,,ian(doublrnrrianoe) \" E R , .,.}' (}.
1 static becuase we don't want to have it initialized each time we go in ~

double returnvalue=O;1.
doublek; "

k = sqrt(variancel2.0);

II add 24 uniform RV to obtain a simulation of normality
for (int x=O;x<24;x++)
returnvalue += before.doublerandom();

return k*(returnvalue-0.5*24);

Random.cpp

#include "random.h"
I*

~
~ -,.....
~

~

Long period (? 2 \Theta I 0 18) random number generator of L'Ecuyer with Bays-Durham shuffle
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not alter
idum between successive deviates in a sequence. RNMX should approximate the largest floating
value that is less than I.

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 79

*I
double Random::ran2()
{

intj;
long k;
double temp;

k=(idum)IIQI;
idum=IA I *(idum-k*IQI)-k*IRI; II Compute idum=(IA l *idum) % IMI without overflows by Schrage's

method.
if(idum < 0)

idum += IMI;
k=idum21IQ2;

idum2=IA2*(idum2-k*IQ2)-k*IR2; II Compute idum2=(IA2*idum) % IM2 likewise.
if (idum2 < 0)
idum2 += IM2;
j = iy/NDIV;
iy=ivLi]-idum2;

II iy=iv[j]-idum2; II Here idum is shuffled, idum and idum2 are combined to generate output.
ivLi] = idum;
if(iy < 1)

iy+=IMMI; ~
if((temp=AM*iy) > RNMX)

return RNMX; II Because users don't expect endpoint values.
else

return temp;

void Random::init(long seed)
{

idum2= 123456789;
idum=O;
iy=O;

if (seed != 0)
idum =seed;

else
idum= I;

for (intj=NTAB+7;j >=O;j--) II Load the shuffle table (after 8 warm-ups).
{

Jong k=(idum)/IQ I;

idum=IA 1 *(idum-k*IQJ)-k*IRI;
if(idum < 0)

idum += IMI;

}
iy=iv[O];

ifU < NTAB)
iv[j] = idum;

Random:: Random(long seed)
{

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 80

init(seed);
}

Random::Random()
{

time_t t;

time(&t);

init((long)t);
}

double Random::doublerandom()
{

double t = ran2();
return t;

long Random::longrandom(long range)
{

doublet;

t = doublerandom();
return((long)(t*(double)range));

}

boo! Random::boolrandom()
{

double t=doublerandom();

if (t>0.5)
return true;

else
return false;

Random.h

#include <stdlib.h>
#include <stdio.h>
#include <values.h>
#include <math.h>
#include <time.h>
#include <limits.h>
#ifndef RANDOM H
#define RANDOM H
#define IMI 2147483563
#define IM2 2147483399

On the Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 81

#define AM (l.OIIMI)
#define IMM! (IMJ-1)
#define IA l 40014
#define IA2 40692
#define IQI 53668
#define IQ2 52774
#define IR 1 12211
#define IR2 3791
#define NT AB 32
#define NDIV (l +lMMl/NTAB)
#define EPS MINDOUBLE
#define RNMX (1.0-EPS)

II a uniform random number generator between zero and 1.
class Random
{

} ;

long idum2;
long idum;
long iy;
long iv[NTAB];

unsigned memory;
void init(long seed);
double ran2();
public:
Random(long seed);
Random();
double doublerandom();
long longrandom(long range);
boo[boolrandom();

#endif II RANDOM H

On the. Improvement of the Existing Error-Control Coding Techniques for Deep Space Communications 82

~St. Gahriel's Lihrarv;-G

	Cover and Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Chapter 2 : Objectives
	Chapter 3 : Literature Review
	Chapter 4 : Background
	Chapter 5 : Implementation Method
	Chapter 6 : A Priori Pattern Evaluation
	Chapter 7 : Implemented Turbo Codec Simulation
	Chapter 8 : Conclusion
	References
	Appendix : A
	Appendix : B
	Appendix : C

