

A Conceptual Schema Approach for XML Schema Design

by
Ms. Oviliani Y enty Yuliana

A Thesis of the Twelve-Credit Course
CS 7000 Master Thesis

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science
in Computer Information Systems

Assumption University

November 2004

Thesis Title A Conceptual Schema Approach for XML Schema Design

Name Ms. Oviliani Y enty Yuliana

Thesis Advisor Assoc.Prof.Dr. Suphamit Chittayasothorn

Academic Year November 2004

The Graduate School of Assumption University has approved this final report of the
twelve-credit course, CS 7000 Master Thesis, submitted in partial fulfillment of the
requirements for the degree of Mater of Science in Computer Information Systems.

Approval Committee:

~C--
(Assoc.Prof.Dr. Suphamit Chittayasothom)

Advisor
(Prof.Dr. Srisaksi Charmonman)

Chairman

(Air Marshal Dr. Chulit Meesajjee)
Dean and Co-advisor

------\

(Asst.Prof.Dr. Vichit Avatchanakom)
Member

~ ,I L--1 /·').
__ --..._.., ! l' i

,~---' - I ,

(Assoc.Prof.Somchai Thayarnyong)
CHE Representative

November 2004

ABSTRACT

eXtensible Markup Language (XML) is certainly a hot topic these days because

XML is rapidly becoming the premier method for exchanging and transferring

information across the Internet. The studied of Giga Information Group shows the

highest percentages XML is used in communication and integration. For this purposes

Flat XML is addressed. On the other hand, for presentation data, Hierarchical XML is

used. Another survey shows the usage of XML has been on the upswing. Nevertheless,

the quality of XML Schema conceptual design frequently is still problem. In general the

higher XML Schemas is, the more difficult to maintain. Software tool with a good

conceptual schema approach is needed. Therefore, the research in conceptual approach

for XML is becoming increasingly relevant.

This research p~oject emphasizes on the XML file transfer. The objectives of the

project are to develop a technique reengineering poorly designed XML schemas into

well-normalized ones and to implement the technique in a software tool. The inputs to

the tool are well-formatted Flat XML Schemas and well-formatted and validated Flat

XML Document. The output of the tool is the optimal normal form of Flat XML, as a

main concern of the research, which guarantees not to have redundancies.

The Nijssen's Information Analysis Methodology (NIAM) is used to represent the

XML conceptual schema. The study describes how the Hierarchical XML is

transformed into Flat XML. Moreover, the input Flat XML Schemas is reversed

engineer into the corresponding NIAM conceptual schema using information obtained

from both XML schemas and XML documents. The forward engineering from the

NIAM schema into well-defined XML Schemas and the generation of corresponding

XML Documents are also discussed.

ACKNOWLEDGEMENT

The writer acknowledges with profound gratitude a great many people who have

had constant support and belief in her before and during her studies and her research.

She would like to thank to her husband and her parent for giving her an endless

love. Their spirit of love makes her able to complete the study.

She is also thankful to Association of Christian University and Colleges in Asia,

Assumption University, and Petra Christian University for mental and financial support

and cooperation during her MS CIS program.

She wishes to express her deep appreciation to her thesis advisor, Assoc. Prof.

Dr. Suphamit Chittayasothom, for his continuous assistance, guidance, encouragement,

patient, and support throughout the master program. In addition, he has opened her

mind, inspired, and gave her the best experience to conduct research, to publish paper

in the right way, and to put student in the forefront.

The writer is indebted to the qualifying examination committee: Prof. Dr. Srisaksi

Charmonman, Assoc. Prof. Somchai Thayamyong, Air Marshal Dr. Chulit Meesajjee,

and Asst. Prof. Dr. Vichit A vatchanakorn for their valuable time in providing her with

constructive comments and advice throughout the research.

Finally, she thanks also to her Greater Grace Church friends and Bethany

International Church Bangkok friends for their support in pray. Furthermore, Mr. Sanga

Rujipongpai, Mr. Rangsan Traibutra, Ms. Thanyapom Tansatian, Ms. Myint Myint

Sein, and the Graduate Office staff for their assistance her during the study in MS CIS

program.

11

St. Gabriel's Library, Au

TABLE OF CONTENT

Chapter Page

ABSTRACT

ACKNOWLEDGEMENTS ii

LIST OF FIGURES VI

LIST OF TABLES XI

I. INTRODUCTION 1

1.1 Background of the Thesis 1

1.2 Objectives of the Thesis 4

1.3 Scope of the Thesis 4

1.4 The Professional Significance of the Thesis 6

1.5 Limitations and Assumption of the Thesis 7

1.6 Thesis Plan 7

II. LITERATURE REVIEW 10

2.1 The Hierarchical Data Model 11

2.2 eXtensible Markup Language (XML) 18

2.3 Nijssen's Information Analysis Methodology (NIAM) 40

2.4 Visual Basic (VB).NET and ActiveX Data Objects (ADO).NET 52

2.5 The Sustaining Empirical Literature 61

2.6 The Essential Empirical Literature 64

2.7 Summary 68

III. RESEARCH METHODOLOGY 70

3.1 Determine and Define the Thesis Theme 70

3.2 Research Method 70

lll

Chapter

3.3 Research Design 70

IV. SYSTEM DEVELOPMENT 73

4.1 Comparison Hierarchical Data Model and Hierarchical XML 73

4.2 Comparison NIAM Conceptual Schema and XML Conceptual
Schema 82

4.3 The NIAM Conceptual Metaschema 83

4.4 The Transforming from Hierarchical XML into Flat XML
Algorithms 88

4.5 The Reverse Engineering from XML Schemas into NIAM
Conceptual Schemas Algorithms 98

4.6 The Forward Engineering from NIAM Conceptual Schemas
into XML Schemas Algorithms 105

4.7 Input Design and Output Design Software Tool 123

V. SYSTEM EVALUATION 131

5.1 Evaluate to XML Editors 131

5.2 Evaluate to VB.NET and ADO.NET 131

5.3 Evaluate to Algorithm 133

5.4 Evaluation to the Created XML Schemas and XML Documents 134

VI. CONCLUSION AND RECOMMENDATIONS 137

6.1 Conclusions 137

6.2 Recommendations 139

6.3 Suggestion for Further Research 140

APPENDIX A XML SCHEMAANDXMLDOCUMENTINPUT 141

APPENDIX B XML SCHEMA AND XML DOCUMENT OUTPUT 156

APPENDIX C CHECKED WELL-XML SCHEMA OUTPUT AND
CHECKED WELL-FORMED AND VALIDATED
XML DOCUMENT OUTPUT 165

IV

Chapter

APPENDIX D THE META TABLES

BIBLIOGRAPHY

v

Page

167

170

LIST OF FIGURES

Figure

1.1 The Thesis Schedule 9

2.1 The Suppliers and Parts Database Instances 11

2.2 A Hierarchical Diagram for Part of the COMPANY Database 13

2.3 Tree Representation of the Hierarchical Schema Figure in 2.2 13

2.4 Occurrences of PCR Types 14

2.5 Representing a Many-to-Many Relationship 16

2.6 A Hierarchical Occurrence of the Hierarchical Schema Figure 2.2. 16

2. 7 Hierarchical Sequence for the Occurrence Tree in Figure 2.6. 18

2.8 The Related SGML, HTML, XML, and XHTML 19

2.9 The Listing of One Mortgage XML Document Instance 21

2.10 The Listing of the XML Schema Declaration in XML Document 23

2.11 The Listing of the Complex Type recordType Definition m
Mortgage XML Schema 27

2.12 The Listing of the Complex Type documentType Definition in
Mortgage XML schema 28

2.13 The Listing of Keys and Keys' Reference Definition in
MortgageNew XML Schema 32

2.14 A Visualization Hierarchical Schema for Mortgage XML Schema 34

2.15 The Listing of the myinteger Range 10000-99999 Definition 36

2.16 The Listing of the Simple Type "loanNumberType" Definition 37

2.17 The Listing of the Enumeration Facet Usage 38

2.18 A Visualization Flat Schema for MortgageNew XML Schema 39

2.19 The Listing of a Comparison between the Hierarchical XML
Schema and the Flat XML Schema 41

VI

Figure

2.20 A Reference Type in NIAM 44

2.21 Suppliers and Parts Knowledge Base Diagram 46

2.22 A Quaternary Fact Type That is Splitable (FD Added) 49

2.23 Default Procedure for Mapping One-to-One Fact Types 51

2.24 Suppliers and Parts Relational Mapping from NIAM Conceptual
Schema into Relation Schema 52

2.25 Suppliers and City Relational Mapping for One-to-One Relationship 53

2.26 The Disconnected ADO.NET Objects Hierarchy 54

2.27 A Entity Type SUPPLIER, Its Value Types and Its Corresponding
XML Schema 65

2.28 A NIAM Schema with Many-to-one Relationships and a
Corresponding XML Schema 66

2.29 A NIAM Schema with Many-to-many Relationships and a
Corresponding XML Schema 66

2.30 A NIAM Schema with a Ternary Fact Type and a Corresponding
XML Schema 67

3.1 The Conceptual Framework 71

4.1 Hierarchical Mortgage XML Schema in ADO.NET 74

4.2 Hierarchical Mortgage XML Document in ADO.NET 75

4.3 Hierarchical Supplier-Part-A XML Schema in ADO.NET 76

4.4 Hierarchical Supplier-Part-A XML Document in ADO.NET 76

4.5 Implemented PCR type in Mortgage XML Schema (documentType
Complex Type) 79

4.6

4.7

4.8

Comparison the Many-to-Many Relationship m Hierarchical
Schema

Implementation Many-to-Many Relationship m Supplier-Part-A
Hierarchical XML Schema

The NIAM Conceptual Metaschema

Vll

80

81

86

Figure

4.9 The Meta Tables 87

4.10 Transforming Hierarchical XML Schemas into Flat XML Schemas
Block Diagram 90

4.11 Flat XML Schema Result in DocumentDS 93

4.12 Reference Table for Transformation Hierarchical XML into Flat
XML 94

4.13 Converting Hierarchical XML Documents into Flat XML
Documents Block Diagram 96

4.14 Flat Mortgage XML Document 97

4.15 Flat Supplier-Part XML Document in ADO.NET for Figure 4.6. (a) 99

4.16 Flat Supplier-Part XML Document in ADO.NET for Figure 4.6. (c) 100

4.17 Reverse Engineering Block Diagram 101

4.18 End State Meta Tables (Part of Appendix D) 102

4.19 Supplier Part Conceptual Schema Diagram 103

4.20 Forward Engineering Block Diagram 106

4.21 Grouping the Elementary Fact Types in Meta Tables by the Main
Entity Type 109

4.22 Mapping NIAM Schemas in Meta Tables into Relational Schemas 110

4.23 Grouping Fact Type for the Single Uniqueness Constraints 112

4.24 Grouping Fact Type for the Compound Uniqueness Constraints 113

4.25 Mapping One-to-One Relationship for Supplier and City Meta
Table into Relational Schema 114

4.26 Conversion Data to New Relation Schemas 115

4.27 Filled Normalize the Fifth Normal Form Supplier Part Tables 116

4.28 Writing Flat XML Schema Block Diagram 117

4.29 Defining Key Ref in XML Schema U 9

Vlll

Figure Page

4.30 Defining Supplier Table Schema as a Supplier Complex Type 120

4.31 Defining Key in XML Schema 121

4.32 Writing Flat XML Document Block Diagram 122

4.33 Defining the Instances Supplier Table in XML Document 124

4.34 Main Menu 125

4.35 Analysis Sub Menu 126

4.36 Show Sub Menu 126

4.37 XSD Open File Dialog 127

4.38 Transform the Hierarchical to the Flat XML 127

4.39 XML Schema Information 128

4.40 NIAM Conceptual Schema 128

4.41 Confirmation the Deleting Fact Type 129

4.42 Modification and Con:flrmation Fact Type Information 129

4.43 Displaying the Original XML File 130

4.44 Displaying the Produced XML File 130

5.1 Visualization the Right MortgageNew XML Schema 134

5.2 Visualization the Wrong MortgageNew XML Schema 134

A.I The Listing of the Mortgage XML Schema 141

A.2 The Listing of the Mortgage XML Document 142

A.3 The Listing of the Supplier-Part XML Schema 144

A.4 The Listing of the Supplier-Part XML Document 146

A.5 The Listing of the Supplier-Part-A XML Schema 149

A.6 The Listing of the Supplier-Part-A XML Document 150

A.7 The Listing of the Supplier-Part-C XML Schema 152

IX

Figure Page

A.8 The Listing of the Supplier-Part-C XML Document 153

B.1 The Listing of the MortgageNew XML Schema 156

B.2 The Listing of the MortgageNew XML Document 158

B.3 The Listing of the Supplier-PartNew XML Schema 160

B.4 The Listing of the Supplier-PartNew XML Document 162

C.l Checked Well-Formed MortgageNew XML Schema Output 165

C.2 Checked Well-Formed MortgageNew XML Document Output 165

C.3 Checked Validated MortgageNew XML Document Output 166

C.4 Checked Well-Formed Supplier-PartNew XML Schema Output 166

C.5 Checked Well-Formed Supplier-PartNew XML Document Output 167

C.6 Checked Validated Supplier-PartNew XML Document Output 167

D.1 The Populated Supplier Part Meta Tables 167

x

LIST OF TABLES

Table Page

2.1 Attribute of the <xsd:element> Tag 24

2.2 Datatypes to which Each Facet Applies 25

2.3 Product Middleware 35

2.4 XML-Enabled Databases 36

2.5 Some Basic Symbols Used in Conceptual Schema Diagram 44

2.6 Key Length Check for Ternaries and Longer Fact Types 49

2.7 Properties of the DataColumn Object 57

4.1 Implemented XML Attributes in DataColumn Properties ADO.NET 84

4.2 Correctness Suppliers and Parts Functional Dependency 106

5.1 The Comparison XML File 136

XI

I. INTRODUCTION

1.1 Background of the Thesis

The emergence of the Internet creates a big challenge for research, education,

and scientific communities to share information and do research. In addition, the

Internet opens up in recent years to more commercial uses. With the Internet, a

dedicated connection for exchanging and transferring data is no longer required -

providing both parties are on the Internet. To support exchanging or transferring data

within the Internet, World Wide Web Consortium (W3C) recommended eXtensible

Markup Language (XML). Nevertheless, the quality of conceptual design of XML

Schema that will be transferred frequently is still poor.

XML is certainly a hot topic in the software community these days because

XML is rapidly becoming the premier method for exchanging and transferring

information across the Internet. Nonetheless, at this point of time XML is also being

used to simply exchanging data and integration data between different platforms and

applications. Because XML is a text-based format therefore it can easily be moved

across platforms and can be moved around the existing Internet technologies and

protocols. On the other hand, traditional software integration is difficult to exchange

data between platforms.

A study about XML usage among companies is done by Giga Information Group

in 2001 (Daum 2003). The study shows that XML is used in different areas. XML was

used for: data exchange and messaging, 33%; application integration, 27%; data

integration, 13%; content publishing, 12%; the construction of portals, 6%; other

purposes, 6%. Not surprisingly most areas are somehow connected to communication

and integration (the three highest percentages). Another survey is done by Silicon

I

Valley research firm (Pastore 2001). They say the usage of XML has been on the

upswing, nearly doubling in the last six months. On Dec 9, 2000, developers used

XML 25.7%, according to the survey. Six month latter, on May 9, 2001, the number

increases to 38.2 %. Finally, developers plan to use XML, 53.1 % in 2002.

As the number of XML usage is on the upswing, the number of XML schema

also is grow. If XML Schemas are still in a poor design then maintenance to these

XML Schemas also increase as high as the usage of XML. Maintenance requires

understanding and effort because XML Schema is textual and is described using XML

syntax, this becomes tedious. In general, the larger the XML Schemas need the more

effort to understand and maintain. Software tool with a good conceptual schema

approach is needed. As a result, research in the area conceptual approach for XML is

becoming increasingly relevant.

The most of the problem with many database applications can be traced to a bad

database design (Halpin 1995) because most people only talk about the third normal

form (Becker 1998). Moreover several authors of Systems Analysis and Design text

book state that normalization on conceptual schema design enough until the third

normal form (Dennis 2002) (Hoffer 2002) (Whitten 2004). However, Date (2000) and

Halpin (1995) mention that in the third normal form conceptual schema still possible is

not in Boyce/Codd Normal Form (BCNF). In addition the conceptual schema is still

found Multi Value Dependency (MVD, no full fill the fourth normal form) and the

conceptual schema is still split able (Join Dependency, JD, no full fill the fifth normal

form). Therefore database schema is in a bad design and the redundancy data can not

be avoided. The impacts of redundancy data are certain update anomaly and

inconsistency data. As a solution, Halpin suggested the rich constraints and intuitive

modeling techniques, Nijssen's Information Analysis Methodology (NIAM).

2

The other biggest problem is the human factor. Today, software engineers in the

field of XML come from three directions: the SGML camp, the object-oriented camp,

and the relational camp. Members of the SGML camp, for example, who are used to a

more document-centric design style, will have to adapt to the more data-centric style.

They will also find the concepts such as entity relationship modeling and referential

integrity are exciting new fields where there remains a lot do to. Members of the SQL

camp, in contrast, will miss concepts of referential integrity in XML but will find that

the rich structuring possibilities that exist in XML open a whole new world of database

design. Finally members of the object-oriented camp will be sad because they miss a

behavior model in XML documents. On the other hand, they may find it exciting that

XML actually does make remote procedure calls work across company, platform, and

language boundaries.

To fulfill the human factor, there are two structures of XML, i.e. a Hierarchy

XML and a Flat XML. The Hierarchical XML is used to support HTML for

presentation data with duplication data in sub element. The Flat XML, however, is

used for transportation data. The survey above shows that the biggest percentage XML

is used for communication and integration. At the present time mostly companies

apply relational database application. Therefore, Flat XML is useful for transferring

data between two relational databases. Furthermore, Elmasri (1994) said that in general

the hierarchical model works well for database applications that are naturally

hierarchical. However, when there are many nonhierarchical relationships, trying to fit

those relationships into a hierarchical form is difficult. Also the results are often

unsatisfactory. As a result, while users transfer Hierarchical XML, Software tool must

transform it to Flat one first.

3

The biggest question in the researcher mind is "Can the NIAM conceptual

schema, the Conceptual Schema Design Procedure (CSDP) methodology and the

Relational mapping (Rmap) procedure, is applied meaningfully to improve the poorly

designed XML Schema?"

1.2 Objectives of the Thesis

The objectives that want to reach with this research are

(1) To find a good conceptual modeling technique for XML Schemas design.

In order to improve poorly designed XML schemas to be better ones.

(2) To generate a software tool for reengineering XML Schemas using the

conceptual schema approach.

1.3 Scope of the Thesis

The scope of the thesis comes into view on conceptual framework in Figure 3.1.

The overall objective of the thesis is to improve poorly designed XML schemas to be

better ones. The inputs to the creating software tools are well-formed XML Schemas

and XML Document and validated XML Documents against XML Schemas.

Therefore the creating software tools do not create a sub program for producing XML

Schemas and XML Documents form database and vice versa. Moreover the designing

software tools do not create a sub program for checking well-formed and validated

XML. In addition, because XML Documents is validated by XML Schemas, the

software tool reengineers XML Schemas. If the inputs are Hierarchical XML then the

software tool transforms the inputs into the Flat one first. The input Hierarchical XML

in this study is the hierarchical for transforming data, therefore the sub element is

directly to the main element (see Figure 4.5.).

To improve a poorly designed XML schemas researcher apply NIAM conceptual

schema approach. The NIAM conceptual schema consists of three main sections, i.e.:

4

stored fact types, constraints, and derivation rules. The designing software tool applies

fully stored fact types. However, not all constraints apply in the software tool because

of the limitation of ActiveX Data Object (ADO).NET and time to study the other XML

method. The limitation ADO.NET will be discussed in section 4.2. Constraints that

will implement in the software tool are validation rules or integrity rules (uniqueness

constraint and reference type) and restriction to apply population (max:Occurs and

min Occurs). The other constraints, such as lists various constraints and arithmetic

derivations will not implement. W3C still not define function, operators and rules that

may be used to derive information to support arithmetic derivations. Therefore

derivation rules will not be implemented in the software tool. However, researcher

designs meta tables to capture all information about the stored fact types and the

constraints. Researcher uses Visual Basic (VB).NET and ADO.NET to develop the

software tool.

To reverse engmeenng XML Schemas into NIAM conceptual schemas the

software tool employs the Conceptual Schema Design Procedure (CSDP)

methodology. The NIAM conceptual schemas are stored in meta tables. The software

tool starts from the fourth step CSDP (check uniqueness constraints and arity of fact

types). If the fact type (complex type) is splitable, it automatically does the first

(transforming familiar information examples into elementary facts) and the second

(applying a population check) steps of CSDP, followed with the fifth (add mandatory

role constraints) and the seventh (perform final checks) steps of CSDP. The software

tool requests participation universe of discourse (UoD) expert to complete or modify

fact type, uniqueness constraint, and mandatory constraint. In this study, the CSDP still

not addressed are the third and the sixth steps because of the limitation mentioned

above.

5

To forward engineering NIAM conceptual schemas in the meta tables into

relational schema the software tool applies Relational Map (Rmap) procedure. After

that the software tool creates XML Schemas from relational table schema. Finally the

software tool converts XML Documents into the other XML Documents with the new

XML Schemas. For this sub program, the researcher uses XML method

WriteXmlSchema and WriteXml. WriteXmlSchema is used to write XML Schemas

and WriteXml is used to write XML Document.

The output of the software tool is file and screen. The researcher does not design

output to hard copy. In addition, the file size outputs are not the first main concern in

this research. The first priorities are to find a good conceptual modeling technique for

XML Schema and to generate a software tool for reengineering XML Schemas using

the conceptual schema approach, as mentioned in the objectives of thesis. In other

word to improve the poorly designed XML Schema to become the fifth normal form.

1.4 The Professional Significance of the Thesis

The researcher points out in the background of thesis that the usage of XML on

the upswing. As a result, study in the area conceptual approach for XML is becoming

increasingly relevant. It is expected that the conducted research of "A Conceptual

Schema Approach for XML Schema Design" will contribute the well conceptual

modeling technique for XML Schemas design to improve the normalized XML

Schemas. Therefore, the produced XML Schemas is not only the well formatted and

the validated XML Schemas but also the normalized XML Schemas. As far as the

researcher knows, no the other researchers do it. In addition, the researcher wants to

enrich the existing XML Editors in the market that are not just only editing and

checking well-formed and validated but also normalizing the XML Schemas.

6

1.5 Limitations and Assumption of the Thesis

To conduct the study, researcher assumes that

(1) Available database application and program application have a feature to

transform form database to XML Documents and XML Schemas and vice

versa.

(2) The inputs of designing software tools are in the well-formed and the

validated XML Documents and in the well-formed XML Schemas.

(3) The name of XML Documents is similar to the name of XML Schemas.

(4) XML Documents are significant as a population of elementary facts

checking.

(5) If max:Occurs does not exit m Attribute-Facet Table it means the

max:Occurs is one.

There are limitations that researcher discovers while conducting the research,

such as:

(1) No derivation rules in XML, such as arithmetic and function, therefore

checking derivation rules are not implemented in software tool.

(2) ADO.NET. can not capture all attributes and data facets XML Schema.

(3) VB.NET does not support attribute xsi:schemaLocation in order to connect

XML documents with XML schema.

(4) No attribute to define msdata:IsDataSet="true", therefore the XML

Schema output was still in Hierarchical XML if XML Schema were

written by XmlTextWriter method.

1.6 Thesis Plan

To keep the research on time, the researcher makes a research schedule as shown

in Figure 1.1. The researcher divides the study into four categories of tasks, i.e. thesis

7

preparation, analysis and design software tool, implementation software tool, and

thesis report.

In thesis preparation task, researcher reviews literature to define the topic. After

that the researcher studies intensively about NIAM, XML, VB.NET, and ADO.NET.

Furthermore, the researcher writes statement of problem, proposal of the study,

research question, professional significant, literature review, and research methodology

in proposal. Next, the proposal is submitted. Finally, the researcher defenses the

proposal.

In analysis and design software tool task, the researcher analyzes the

Hierarchical Data Mode and Hierarchical XML, the NIAM conceptual schema and

XML conceptual schema. After that the researcher designs the NIAM conceptual

metaschema. Based on the knowledge of analysis, the researcher designs the

transforming Hierarchical XML into Flat XML algorithm. Then the researcher creates

the reverse engineering from the XML Schema into the NIAM conceptual schema

algorithm and creates the forward engineering from the NIAM conceptual schema into

the XML Schema algorithm, and finally designs input and output software tool.

In implementation software tool task, the researcher realizes all algorithms that

create in the previous task. After each program is almost complete, the researcher tests

and validates the program. Finally, the researcher simulates the software tools with

several XML Schemas and XML Documents.

In the last task, the researcher writes the thesis report and submits it for checking

grammar, as well as edits the thesis report. Finally, the researcher defenses the thesis.

8

No Task Name

1 Thesis Preparation
2 Literature review
3 Study intensive NIAM
4 Study intensive XML
5 . Study intensive VB.NET and ADO.NET

6 Make Proposal
7 Submit Proposal
8 Defense Proposal
9 Analysis and Design Software Tool

Analysis Hierarchical Data Model
10 and Hierarchical XML

Analysis NIAM and XML
11 Conceptual Schema

Design the NIAM Conceptual
12 Meta Schema

Design transforming Hierarchical
13 into Flat XML algorithm
14 Create reverse engineering algorithm
15 Create forward engineering algorithm

16 Design input and output
17 Implementation Software Tool

Generate transforming
18 Hierarchical into Flat XML

Generate reverse engineering
19 program

Generate forward engineering
20 program
21 Test and validate the software tool
22 Simulation the software tool
23 Thesis Report
24 Write the thesis report
25 Submit thesis report
26 Edit the thesis report
27 Defense thesis

Jan Feb Mar
2 3 6 7 8 9 10 11

Figure 1.1. The Thesis Schedule.

Il. LITERATURE REVIEW

This chapter reviews the theoretical literatures and the empirical literatures for

supporting the conceptual framework research that will be conducted. The theoretical

literatures spotlight on the following subject areas hierarchical data model briefly,

Nijssen's Information Analysis Methodology (NIAM) conceptual schema, and

overview of XML Schema and XML document. Moreover several tools and application

programs that will be used in the study, such as XML Writer, Microsoft's Visual Studio

.NET, ActiveX Data Objects and Visual Basic .NET, will be discussed shortly. In

addition the empirical literatures focus on the prior researches that related with

conducted research will be reviewed. Researcher separates the empirical literatures into

two categories. One is the sustaining empirical literature to show what researches have

already been conducted and what are still open. The others are the essential empirical

literature that will be adopted to conduct the research with modification.

In study, the researcher uses two examples. The first example is a popular the

Suppliers and Parts Database (Date 2000). The researcher modifies the status "30" to

"10" for "S3". Figure 2.1. shows many-to-many relationship between Suppliers and

Parts. The second example is a comprehensive enough Mortgage Information XML

Schema and XML Document (Holzner 2004) with modification, hierarchical XML is

used to transform data, therefore the Mortgage sub-element is directly to the Document

main-element (see Figure A.I. and Figure A.2.). The example shows one-to-many

relationship between Document and Mortgage and many-to-one_ relationship between

Document and Mortgagee and between Document and Bank. The researcher uses

another example in hierarchical data model because there are several similarities and

differences between the theoretical hierarchical data model and hierarchical XML.

IO

St. Gabriel's Library, Au

S# SN AME STATUS CITY S# P# QTY
Sl Smith 20 London Sl Pl 300
S2 Jones IO Paris Sl P2 200
S3 Blake IO Paris Sl P3 400
S4 Clark 20 London Sl P4 200
SS Adams 30 Athens Sl PS IOO

(a) Suppliers Table
Sl P6 IOO
S2 Pl 300
S2 P2 400

P# PNAME COLOR CITY S3 P2 200
Pl Nut Red London S4 P2 200
P2 Bolt Green Paris S4 P4 300
P3 Screw Blue Rome S4 PS 400
P4 Screw Red London
PS Cam Blue Paris (c) Suppliers-Parts Table
P6 Cog Red London

(b) Parts Table

Figure 2.1. The Suppliers and Parts Database Instances.

2.1 The Hierarchical Data Model

In this section, the principles behind of the hierarchical model (Elmasri 1994) are

discussed. Firstly, parent-child relationships and how they can be used to form a

hierarchical schema are discussed. Follow by properties of hierarchical schema and

occurrence trees. Lastly, the hierarchical occurrence trees and the common method for

storing the trees are discussed.

(1) Parent-Child Relationships and Hierarchical Schemas

The hierarchical model represents data by emphasizing hierarchical

relationships. The main structures used by the model are record types and

Parent-Child Relationship (PCR) types. Records of the same type are

grouped into record types. A record type is given a name, and its structure

is defined by a collection of named fields or data items. Each field has a

certain data type, such as integer, real, or string.

11

A PCR type defines a hierarchical one-to-many relationship between

a parent record type and a child record type. The record type on the one­

side is called the parent record type of the PCR type, and the one on the

many-side is called the child record type of the PCR type. An occurrence

of the PCR type consists of one record of the parent record type and a

number of records (zero or more) of the child record type. Relationships are

strictly hierarchical in that a record type can participate as child in at most

one PCR type. This restriction makes it difficult to represent a database

where numerous relationships exist.

The hierarchical database schema basically is a tree data structure.

Figure 2.2. shows a hierarchical diagram for a hierarchical schema with six

record types and five PCR types. The record types are DEPARTEMENT,

EMPLOYEE, PROJECT, DEPENDENT, SUPERVISEE, and WORKER.

Field names can be displayed under each record type name. In brevity, the

diagram displays only the record type names. Corresponding to a

hierarchical schema, a number of occurrence trees will exist in the database

(see Figure 2.3.). Researcher uses the hierarchical diagram to visualize

XML Schema with Microsoft Visual Studio .NET. and tree representation

will be used to simplify the schema.

A PCR type in a hierarchical schema is referred by listing the pair

(parent record type, child record type) between parentheses, for example

(DEPARTEMENT, EMPLOYEE) and (DEPARTEMENT, PROJECT).

Each occurrence of the (DEPARTEMENT, EMPLOYEE) PCR type relates

one department record to the records of the many (zero or more) employees

who work in that department. An occurrence of the (DEPARTEMENT,

12

PROJECT) PCR type relates a department record to the records of projects

controlled by that department. Figure 2.4. shows the two PCR occurrences

(or instances) example for each of these two PCR types.

D DEPARTMENT
Level 0:

DNAME I DNUMBER I MGRNAME I MGRSTARTDATE

I

E EMPLOYEE p PROJECT

Level 1:
NAME I SSN I BDATE I ADDRESS PNAME I PNUMBER I PLOCATION

I
I

T DEPENDENT s SUPER VI SEE w WORKER
Level 2:

DEPNAME I SEX I BIRTHDATE NAME I SSN NAME I SSN I HOURS

Figure 2.2. A Hierarchical Diagram for Part of the COMPANY Database.

Figure 2.3. Tree Representation of the Hierarchical Schema Figure in 2.2.

(2) Properties a Hierarchical Schema

The hierarchical schemas of record type and PCR type need the

following properties:

13

St. Gabriel's Library, Au

(a) One record type, called the root of the hierarchical schema, does not

participate as a child record type in any PCR type.

(b) Every record type except the root participates as a child record type in

exactly one PCR type. .

(c) A record type can participate as parent record type in any number

(zero or more) of PCR types.

(d) A record type that does not participate as parent record type in any

PCR type is, called a leaf of hierarchical schema.

(e) If a record type participates as parent in more than one PCR type,

then its child types are ordered. The order is displayed, by

convention, from left to right in a hierarchical diagram.

DEPARTMENT: Research Administration

EMPLOYEE: Smith Wong Narayan English Zelaya Wallace Jabbar

(a) Two occurrences of the PCR type (DEPARTEMENT, EMPLOYEE)

DEPARTMENT: Research Administration

PROJECT: ProductX ProductY ProductZ Computerization Newbenefits

(b) Two occurrences of the PCR type (DEPARTEMENT, PROJECT)

Figure 2.4. Occurrences of PCR Types.

14

The preceding properties of a hierarchical schema mean that every

node, except the root has exactly on parent node. However, a node can have

several child nodes, and in this case they are ordered from left to right. In

Figure 2.2., EMPLOYEE is the first child of DEPARTEMENT, and

PROJECT is the second child. The identified properties also limit the types

of relationships that can be represented in a hierarchical schema. In

particular, many-to-many relationships between record types cannot be

directly represented, because parent-child relationships are one-to-many

relationship, and a record type cannot participate as child in two or more

distinct parent-child relationships.

Elmasri proposes duplication of child record instance or Virtual

Parent-Child Relationship to handle a many-to-many relationship in the

hierarchical model. In the study, because XML implement duplication in

sub-element, this section will discuss shortly the first propose. For example,

consider a many-to-many relationship between EMPLOYEE and

PROJECT, where a project can have several employees working on it, and

an employee can work on several projects. The relationship PROJECT and

EMPLOYEE as PCR type is shown in Figure 2.5. (a). In this case a record

describing the same employee can be duplicated by appearing once under

each project that the employee works for. Alternatively, relationship

EMPLOYEE and PROJECT, see Figure 2.5. (b), in which case project

records may be duplicated. For example, consider the instances of the

EMPLOYEE: PROJECT in Figure 2.6. These instances are stored using the

hierarchical schema of Figure 2.5. (a). There are two occurrences of the

(PROJECT, EMPLOYEE) PCR for each project. The employee records for

15

Zelaya and Jabbar will appear twice each as child records, however,

because each of these employees works on two projects, Computerization

and Newbenefits.

(a) PROJECT

EMPLOYEE PROJECT

(a) One Representation of the Many-to-Many Relationship

(b) Alternative Representation of the Many-to-Many Relationship

Figure 2.5. Representing a Many-to-Many Relationship.

Level 0:
D Administration

Levell: ~~
E Zelaya E Wallace E Jabbar P Computerization P Newbenefits

Leve12: // \ /I ~ /I~
T Abner SZelaya S Jabbar W Wong W Zelaya W Jabbar W Zelaya W Wallace W Jabbar

Figure 2.6. A Hierarchical Occurrence of the Hierarchical Schema Figure 2.2.

(3) Hierarchical Occurrence Trees

Each hierarchical occurrence, also called an occurrence tree, is a tree

structure whose root is a single record from the root record type. The

occurrence tree also contains all the children record occurrences of the root

record, all children record occurrences within the PCRs of each of the child

16

records of the root record, and so on, all the way to records of the leaf

record types.

For example, consider the hierarchical diagram shown in Figure 2.2.

In the occurrence tree, each node is a record occurrence, and each arc

represents a parent-child relationship between two records. In Figure 2.2.

and Figure 2.6., character D, E, P, T, S, and W is used to represent type

indicators for the record types DEPARTMENT, EMPLOYEE, PROJECT,

DEPENDENT, SUPERVISEE, and WORKER, respectively. The indicators

will see significantly in hierarchical sequences (see section 2.1 (4)).

(4) Linearized Form of a Hierarchical Occurrence

A hierarchical occurrence tree can be represented in storage by using

any of a variety of data structures. However, a particularly simple storage

structure that can be used is the hierarchical record, which is a linear

ordering of the records in an occurrence tree in the preorder traversal of the

tree. This order produces a sequence of record occurrence tree known as the

hierarchical sequence (or hierarchical record sequence) of the

occurrence tree. The hierarchical sequence is shown in Figure 2.7. If

hierarchical sequence is used to implement occurrence trees, a record type

indicator with each record is needed to be stored because of the different

record types and the variable number of child records in each parent-child

relationship. The system needs to examine the type of each record as it goes

sequentially through the records. The hierarchical sequence is important for

hierarchical data manipulation, such as in ADO.NET.

17

D Administration
E Zelaya
E Wallace

[~
Abner
Zelaya
Jab bar

E Jab bar

p Computerization

[: Wong
Zelaya
Jab bar

p Newbenefits

[: Zelaya
Wallace
Jab bar

Figure 2. 7. Hierarchical Sequence for the Occurrence Tree in Figure 2.6.

2.2 eXtensible Markup Language (XML)

This section covers the important mechanisms of XML Schema. It describes how

to declare the elements and attribute that appear in XML documents, the distinctions

between simple and complex types, defining complex types, the use of simple type for

element and attribute values, schema annotation, a simple mechanism for reusing

element and attribute definitions. Moreover, a mechanism for specifying uniqueness

among attributes and elements will be explained. Finally, Hierarchical and Flat XML

structure is discussed briefly.

XML has been developed by a working group under the umbrella of the World

Wide Web Consortium (W3C). To solve the problem at its root and to create an open-

ended markup language that could easily accommodate future expansions and

additions, the .w3c created a working group to define such a markup language. Tittel

(2002) says the primary goal of this merry band of technologists is to bring the kinds of

18

capabilities found in SGML to the Web. By February 1998, version 1.0 of the XML

specification has been unleashed on the world, and the XML markup revolution begin

in earnest. XML is not a replacement for HTML. XML enables the Internet industry to

invent a new set of powerful tools for many purposes. XML stores and organizes the

data, and HTML renders it inside browser by using a style sheet. Figure 2.8. shows a

related among SGML, HTML, XML, and XHTML.

HTML

Figure 2.8. The Related SGML, HTML, XML, and XHTML.

Harold (2001) mentions that XML does not a language as the name suggests.

However, it is a set of rules for defining semantic tags that break a document into parts

and identify the different parts of the document. XML is a meta-markup language that

defines a syntax in which other field-specific markup language can be written. The

detail of XML Schema primer, XML Schema structures, and XML Schema datatypes

second edition can be shown respectively in Part 0 (http://www.w3.org/TR/xmlschema-

OD, Part 1 (http://www.w3.org/TR/xmlschema-10, and Part 2

(http://www.w3.org/TR/xmlschema-2Q.

In this research, the other two important terms will be used, i.e.: valid and well-

formed. Valid means a XML Document adhered to the rules outlined in an associated

XML Schema. Well-formed means a XML Document or a XML Schema that adheres

19

to the syntax rules for XML, are explicitly designed to make document easy for a
\

computer to interpret.

(1) XML Document

Consider an instance mortgage document in Figure 2.9., part of

Figure A. l ., Mortgage XML document. It describes an outstanding

mortgage loan held by a real estate investor. The mortgage document

consists of a main-element and sub-elements. The main-element is

document. The sub-elements are comment, mortgagee, mortgages, and

bank. Mortgages sub-elements in turn contain another sub-element, sub

sub-element mortgage. Figure 2.9. and Figure 2.14. show the relationship

between main-element and sub-elements. Elements that contain sub-

elements or carry attributes are said to have complex types, whereas

elements that contain numbers, strings, dates, etc. (built-in) but do not

contain any sub-elements are said to have simple types. Some elements

have attributes; attributes always have simple types.

(2) XML Schema

The Document Type Definition (DTD) language, which has

traditionally been the most common method for describing the structure of

XML instance documents, lacks enough expressive power to properly

describe highly structured data. XML Schema, on the other hand, provides

a much richer set of structures, types and constraints for describing data,

definitions of cardinality and is therefore expected to soon become the most

common method for defining and validating highly structured XML

documents. Therefore, this research conducts on XML Document with

XML Schema.

20

1 <?xml version=ul.Ou encoding=uUTF-8u ?>

87 <document documentDate="2004-07-14">
88 <comment>Good</comment>
89 <mortgagee phone="8702205">
90 <name>Widya</name>
91 <location>Manukan</location>
92 <city>Surabaya</city>
93 </mortgagee>
94 <mortgage>
95 <loanNumber>l2 3122 34</loanNumber>
96 <property>Bungalow</property>
97 <date>2004-07-12</date>
98 <loanAmount>5000</loanAmount>
99 <term>12</term>

100 </mortgage>
101 <bank phone="888.555.8888">
102 <name>XML Bank</name>
103 <location>12 Schema Place</location>
104 <city>New York</city>
105 <state>NY</state>
106 </bank>
107 </document>
108 </Root>

Figure 2.9. The Listing of One Mortgage XML Document Instance.

The purpose of XML Schema is to define a class of XML documents,

and so the term "instance document" is often used to describe an XML

document that conforms to a particular schema. For example, Mortgage

XML schema (see Figure A. I.) consists of a schema element and a variety

of sub-elements, most notably element, complexType, and simpleType

which determine the appearance of elements and their content in instance

documents.

Each of the elements in the schema has a prefix xsd: which is

associated with the XML Schema namespace through the declaration,

xmlns:xsd="http://www.w3.org/2001/XMLSchema", that appears in the

schema element. The prefix xsd: is used by convention to denote the xML

Schema namespace, although any prefix can be used. The same prefix, and

21

St. Gabriel's Lihrarv. An

hence the same association, also appears on the names of built-in simple

types, e.g. xsd:string. The purpose of the association is to identify the

elements and simple types as belonging to the vocabulary of the XML

Schema language.

(3) Declaring the Location and the Name of XML Schema in XML Document

The association of a XML Document is a two-stage process. First, the

name space declaration

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance associates the

namespace prefix xsi with the URI shown. Second, the

xsi:noNamespaceSchemaLocation attribute, which belongs to the

namespace http://www.w3.org/2001/XMLSchema-instance indicates the

location and name of the schema. The xsi:noNamespaceSchemaLocation

attribute can only be used when the xsi namespace prefix has been declared.

The value of the noNamespaceSchemaLocation attribute indicates the

location of the schema (for example see Figure 2.10.). It shows how to

declare Mortgage XML Schema in Mortgage XML Document. In this

example, the location of Mortgage XML Schema and Mortgage XML

Document are in the same folder so it should not declare in the

noN amespaceSchemaLocation attribute.

(4) Complex Type Definitions, Element and Attribute Declarations

In XML Schema, there is a basic difference between complex types

which allow elements in their content and may carry attributes, and simple

types which cannot have element content and cannot carry attributes. There

is also a major distinction between definitions which create new types (both

simple and complex), and declarations which enable elements and attributes

22

with specific names and types (both simple and complex) to appear m

document instances.

1 <Root xmlns:xsi=uhttp://www.w3.org/2001/XMLSchema-instanceu
xsi:noNamespaceSchemaLocation=uMortgage.xsdu>

Figure 2.10. The Listing of the XML Schema Declaration in XML Document.

New complex types are defined using the complexType element and

such def"mitions typically contain a set of element declarations, element

references, and attribute declarations. The declarations are not

themselves types, but rather an association between a name and the

constraints which govern the appearance of that name in documents

governed by the associated schema. Elements are declared using the

element element, and attributes are declared using the attribute element.

Table 2.1. shows a list of the attributes that can be used in the

<xsd:element> element. In addition, Table 2.2. gives an overview of facets

and lists to which datatypes applies. Figure 2.11. shows that recordType is

defined as a complex type, and within the definition of recordType. There

are four element declarations and one attribute declaration.

The consequence of this definition is that any element appearing in an

instance whose type is declared to be recordType must consist of four

elements and one attribute. These elements must be called name, location,

city, and state as specified by the values of the declarations' name

attributes, and the elements must appear in the same sequence (order) in

which they are declared. All of these elements will each contain a string.

23

Table 2.1. Attribute of the <xsd:element> Tag.

Attribute Description

Abstract Boolean value that requires the use of a substitution group

Block Allows developer to control replacement by restriction,

extension, or both derived types

Default Default value for the element

Final Allows
/

developer prevent derivations by restriction,

extension, or both

Fixed A default, but unchangeable, value for the element

Form Used to specify if the qualification of an element is to be

done by a local or global declaration

Id Unique identifier

max Occurs Maximum number of times the element can occur within the

parent element

min Occurs Minimum number of times the element can occurs within the

parent element

Name The name of attribute being created

Nillable Used to specify if an element can contain a nil value (which

is different than not being present)

Ref Allows developer to reference a global element declaration,

and therefore inherit some of its settings

substitutionGroup Allows developer to assign the element to a group whereby

any one element of the group can be substituted for another

element instance

24

Table 2.1. Attribute of the <xsd:element> Tag (Continued).

Attribute Description

type The datatype of value of the element being created

use Optional item that allows developer to specify whether the

attribute is optional, prohibited, or required

Table 2.2. Datatypes to which Each Facet Applies.

Facet Applies to Datatype List

enumeration ENTITIES, ENTITY, ID, IDREF, NCName, NMTOKEN,

NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,

byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,

gMonthDay, gYear, gYearMonth, hexBinary, int, integer, language,

long, negativeinteger, nonNegativeinteger, nonPositiveinteger,

normalizeString, positiveinteger, short, string, time, token,

unsignedByte, unsignedint, unsignedLong, unsignedShort

fractionDigits byte, decimal, int, integer, long, negativeinteger,

length

maxLength

nonNegativeinteger, nonPositiveinteger, positiveinteger, short,

unsignedByte, unsignedint, unsignedLong, unsignedLong

ENTITIES, ENTITY, ID, IDREF, NCName, NMTOKEN,

NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,

hexBinary, language, normalizeString, string, token

ENTITIES, ENTITY, ID, IDREF, NCName, NMTOKEN,

NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,

hexBinary, language, normalize String, string, token

25

Table 2.2. Datatypes to which Each Facet Applies (Continued).

Facet Applies to Datatype List

minExclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,

gMonthDay, gYear, gYearMonth, int, integer, long, negativelnteger,

nonNegativelnteger, nonPositivelnteger, positivelnteger, short, time,

unsignedByte, unsignedlnt, unsignedLong, unsignedShort

minlnclusive byte, date, dateTime, decimal, double, duration, float, gDay, gMonth,

gMonthDay, gYear, gYearMonth, int, integer, long, negativelnteger,

nonNegativelnteger, nonPositivelnteger, positivelnteger, short, time,

unsignedByte, unsignedlnt, unsignedLong, unsignedShort

minLength

pattern

totalDigits

ENTITIES, ENTITY, ID, IDREF, NCName, NMTOKEN,

NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,

hexBinary, language, normalizeString, string, token

ENTITY, ID, IDREF, NCName, NMTOKEN, NOTATION, Name,

QName, anyURI, base64Binary, Boolean, byte, date, dateTime,

decimal, double, duration, float, gDay, gMonth, gMonthDay, gYear,

gYearMonth, hexBinary, int, integer, language, long,

negativelnteger, nonNegativelnteger, nonPositivelnteger,

normalizeString, positivelnteger, short, string, time, token,

unsignedByte, unsignedlnt, unsignedLong, unsignedShort

byte, decimal, int, integer, long, negativelnteger, nonNegativelnteger,

nonPositivelnteger, positivelnteger, short, unsignedByte,

unsignedlnt, unsignedLong, unsignedLong

26

Table 2.2. Datatypes to which Each Facet Applies (Continued).

Facet Applies to Datatype List

white Space ENTITIES, ENTITY, ID, IDREF, NCName, NMTOKEN,

NMTOKENS, NOTATION, Name, QName, anyURI, base64Binary,

boolean, byte, date, dateTime, decimal, double, duration, float, gDay,

gMonth, gMonthDay, gYear, gYearMonth, hexBinary, int, integer,

language, long, negativeinteger, nonN egativeinteger,

nonPositiveinteger, normalizeString, positiveinteger, short, string,

time, token, unsignedByte, unsignedint, unsignedLong, unsignedShort

23 <xsd:complexType name="recordType">
24 <xsd:sequence>
25 <xsd:element name="name" type="xsd:string" />
26 <xsd:element name="location" type="xsd:string" />
27 <xsd:element name="city" type="xsd:string" />
28 <xsd: element name=" state" type="xsd: string" m~~'l-~fi~='''~
29 </xsd:sequence>
30 <xsd:attribute name="phone" type="xsd:string"

form="qualified" />
31 </xsd:complexType>

Figure 2.11. The Listing of the Complex Type record Type Definition in
Mortgage XML Schema.

The recordType definition contains only declarations involving the

simple types: string. In contrast (see Figure 2.12.), the documentType

definition contains element declarations involving complex types, e.g.

recordType, although note that both declarations use the same type

attribute to identify the type, regardless of whether the type is simple or

complex.

27

14 <xsd:complexType name="documentType">
15 <xsd:sequence>

Complex
Type

16 <xsd:element ref="ee~~t'ii17: 11 minOccurs="l"
17 <xsd: element name=';rfl<!,~~~'~'if~~" type=";f-,~,9' />
18 <xsd:element name="mortgage" type="mortgageType"

minOccurs="O" maxOccurs="B"/>
19 <xsd:element name="pa!l.I{" type="lf'~q~J£:S\~YI:>e" />
20 </xsd:sequence>
21 <xsd:attribute name="documentDate" type="xsd:date" />
22 </xsd:complexType>

Figure 2.12. The Listing of the Complex Type documentType Definition in
Mortgage XML schema.

In defining documentType, two of the element declarations, for

mortgagee and bank, associate difJerent element names with the same

complex type, namely recordType. The consequence of this definition is

that any element appearing in an instance document whose type is declared

to be documentType must consist of elements named mortgagee and bank,

each containing the four sub elements (name, location, city, and state) that

are declared as part of recordType. The documentType definition contains a

documentDate attribute declaration, identifies a simple type. In fact, all

attribute declarations must refer simple types because attributes cannot

contain other elements or other attributes.

The element declarations described so far have associated a name

with an existing type definition. Sometimes it is preferable to use an

existing element rather than declare a new element. For example, see

Figure 2.12., element ref comment. The value of the ref attribute must

refer to a global element, i.e. one that has been declared under schema

rather than as part of a complex type definition. The consequence of this

28

declaration is that an element called comment may appear in an instance

document, and its content must be consistent with that element's type.

(5) Occurrence Constraints

The state element is optional within recordType (see Figure 2.11.)

because the value of the minOccurs attribute in its declaration is 0. In

general, an element is required to appear when the value of minOccurs is 1

or more. The maximum number of times an element may appear is

determined by the value of a maxOccurs attribute in its declaration. This

value may be a positive integer such as 41, or the term unbounded to

indicate there is no maximum number of occurrences. The default value

for both the minOccurs and the max:Occurs attributes is 1. Thus, when an

element such as comment is declared without a max:Occurs attribute, the

element may not occur more than once. Be sure that a specify value for

only the minOccurs attribute is less than or equal to the default value of

max:Occurs, i.e. it is 0 or 1. Similarly, a specify value for only the

max:Occurs attribute must be greater than or equal to the default value of

minOccurs, i.e. 1 or more. If both attributes are omitted, the element must

appear exactly once.

Attributes may appear once or not at all, but no other number of

times, and so the syntax for specifying occurrences of attributes is

different than the syntax for elements. In particular, attributes can be

declared with a use attribute to indicate whether the attribute is required.

For example, phone attribute declaration in Figure 2.11. is optional or even

prohibited.

Default values of both attributes and elements are declared using the

29

default attribute, although this attribute has a slightly different

consequence in each case. When an attribute is declared with a default

value, the value of the attribute is whatever value appears as the attribute's

value in an instance document; if the attribute does not appear in the

instance document, the schema processor provides the attribute with a value

equal to that of the default attribute. Note that default values for attributes

only make sense if the attributes themselves are optional, and so it is an

error to specify both a default value and anything other than a value of

optional for use.

(6) Global Elements and Global Attributes

Global elements, and global attributes, are created by declarations

that appear as the children of the schema element. Once declared, a global

element or a global attribute can be referenced in one or more declarations

using the ref attribute as described above. A declaration that references a

global element enables the referenced element to appear in the instance

document in the context of the referencing declaration. So, for example, the

comment element at the same level as the mortgagee, mortgages and bank

elements because the declaration that references comment appears in the

complex type definition at the same level as the declarations of the other

three elements.

One caveat is that global declarations cannot contain references;

global declarations must identify simple and complex types directly. Put

concretely, global declarations cannot contain the ref attribute, they must

use the type attribute. A second caveat is that cardinality constraints

cannot be placed on global declarations, although they can be placed on

30

local declarations that reference global declarations. In other words, global

declarations cannot contain the attributes minOccurs, maxOccurs, or use.

(7) Specifying Uniqueness

XML Schema enables developer to indicate that any attribute or

element value must be unique within a certain scope. To indicate that one

particular attribute or element value is unique, developer use the unique

element first to "select" a set of elements, and then to identify the

attribute or element "field" relative to each selected element that has to be

unique within the scope of the set of selected elements. The selector

element's xpath attribute contains an XPath expression that selects a list

of all the elements in an instance. Likewise, the field element's xpath

attribute contains a second XPath expression that specifies that the

attribute values of those elements must be unique. Note that the XPath

expressions limit the scope of what must be unique.

Developer can also indicate combinations of fields that must be

unique, by specifying that for each item element. The combined values of

its partNum attribute and its productName child must be unique. To define

combinations of values, simply use multiple field elements to identify all

the values.

(8) Defining Keys and Keys' Reference

To define keys and keys' reference researcher uses MortgageNew.xsd

(see Figure B.1.) for the completed schema, because Mortgage.xsd is

hierarchical XML so it does not define key and key reference. Developer

could enforce the constraint using unique, however, developer also want to

ensure that every mortgages element listed under a documentDate has a

31

corresponding document description. The enforce constraint use the key

and keyref elements. The MortgageNew.xsd (see Figure 2.13.) shows that

the key and keyref constructions are applied using almost the same syntax

as unique. The key element applies to the documentDate attribute value of

document elements that are children of the document element. This

declaration of documentDate as a key means that its value must be unique

and cannot be set to nil (i.e. is not nillable), and the name that is associated

with the key, documentKey, makes the key referenceable from elsewhere.

To ensure that the document_mortgage elements have

corresponding document descriptions, developer says that the

documentDate attribute (<field xpath="documentDate"/>) of those

elements (<selector xpath=" .//mortgage"/>) must reference the

documentKey key. The documentDate declaration as a keyref does not

mean that its value must be unique, but it means there must exist a

documentKey with the same value.

52 <xsd: key name="documentKey">
53 <xsd:selector xpath=".//document" />
54 <xsd:field xpath="documentDate" />
55 </xsd: key>

64 <xsd:key name="mortgageKey">
65 <xsd:selector xpath=".//mortgage" />
66 <xsd:field xpath="loanNumber" />
67 </xsd: key>

76 <xsd: keyref name="document mortgage" refer="documentKey">
77 <xsd: selector xpath=". I imQ'.~~V~" />
78 <xsd:field xpath="documentDate" />
79 </xsd: keyref>

Figure 2.13. The Listing of Keys and Keys' Reference Definition in
MortgageNew XML Schema.

32

(9) XML Editor and XML Checkers

XML Schemas and XML Documents can be created by using any

XML editor (Holzner 2004) (Wyke 2002), such as XML Pro

(http://www.vervet.com), Microsoft's Visual Studio .NET, Turbo XML

(http://www.extensibility.com/ downloads/trial_ downloads.htm), XML Spy

(http://www.xmlspy.com), XML Writer (http://xmlwriter.net), and XML

Notepad (http://www.webattack.com/get/xmlnotepad.shtml). Several XML

editors give a feature to validate an instance document against a schema.

They can spot basic XML syntax error and can indicate that the syntax is

well-formed, but are incapable of providing information about the

correctness or incorrectness of a created schema. An online XSD schema

checking service is available using XML schema validator provided at the

W3C Web site. The schema validation service for the May 2001

Recommendation is located at www.w3.org/2001/03/webdata/xsv.

Essentially, the schema needs to be accessible via a URL in order to be

validated.

Researcher will use XML Writer and Microsoft's Visual Studio .NET

m study because each has the different capability. For checking well­

formed and validated researcher prefer XML Writer. For instance, Figure

C. l. shows the checked well-formed MortgageNew XML schema output

and Figure C.3. shows the checked validated MortgageNew Xml document

output. However, for visualization XML schema and XML document the

researcher desire Microsoft's Visual Studio .NET. For example, see Figure

2.14., the visualization of XML Schema in Figure A.l.

33

St Gabriel's lJhrary, Au

all<«

.___M_a_in_E_l_em_e_n_t ~' \ r

w .. --------
1

Sub \
Sub-Elom: j A

r
Q!i I

I lo
Q!i

I

Figure 2.14. A Visualization Hierarchical Schema for Mortgage XML Schema.

However, beside XML Editors that mentioned above, several

database application over a feature to transform database to XML and vice

versa. In general database type products are relational, however, a view as

hierarchical or ISAM. In this occasion, researcher shows product categories

middleware (see Table 2.3.) and XML-enabled databases (see Table 2.4.).

The complete product categories can be shown m

http://www/rpbourret.com/xml/XMLDatabaseProds.htm. As a note,

middleware means that software can be called from application to transfer

data between XML documents and databases. Likewise, XML-enabled

database is the database with extensions for transferring data between XML

documents and themselves.

(10) Simple Types

Some of these simple types, such as string and decimal (the complete

simple type built in XML Schema and example to define simple type see

http://www.w3.org/TR/2004/PER-xmlschema-0-20040318, page 20 until

page 29), are built in to XML Schema, while others are derived from the

34

built-in's. New simple types are defined by deriving them from existing

simple types (built-in's and derived). In particular, developer can derive a

new simple type by restricting an existing simple type, in other words, the

legal range of values for the new type are a subset of the existing type's

range of values. Developer uses the simpleType element to define and

name the new simple type. Developer uses the restriction element to

indicate the existing (base) type, and to identify the "facets" that

constraint the range of values. A complete list of facets is provided in

Table 2.2.

Table 2.3. Product Middleware.

Product Developer License DB Type DB7XML XML7DB

ADO Microsoft Commercial Relational x x

Attunity Attunity Ltd. Commercial Relational, x x

Connect hierarchical

Data Junction Data Junction, Commercial Relational, x x

Inc. ISAM

iWayXML iWay Commercial Relational, x x

Transformatio Software hierarchical

n Engine

(iXTE)

XML SPI Ltd. Commercial Relational, x x

Gateway Excel,

Word, text

files

35

Table 2.4. XML-Enabled Databases.

Product Developer License DB Type

Access 2002 Microsoft Commercial Relational

Informix IBM Commercial Relational

Oracle 8i and 9i Oracle Commercial Relational

SQL Server 2000 Microsoft Commercial Relational

Matisse Matisse Software Commercial Object-oriented

Suppose a developer wishes to create a new type of integer called

mylnteger whose range of values is between 10000 and 99999 (inclusive).

The developer bases our definition on the built-in simple type integer,

whose range of values also includes integers less than 10000 and greater

than 99999. To define mylnteger, the developer restricts the range of the

integer base type by employing two facets called minlnclusive and

maxlnclusive (see Figure 2.15.).

<xsd:simpleType name="mylnteger">
<xsd:restriction base="xsd:integer">

<xsd:minlnclusive value=" 10000"/>
<xsd:maxlnclusive value="99999"/>

</xsd:restriction>
</xsd:simpleType>

Figure 2.15. The Listing of the mylnteger Range 10000-99999 Definition.

The example shows one particular combination of a base type and

two facets used to define my Integer, but a look at the list of built-in simple

36

types and their facets should suggest other viable combinations.

The loanNumber schema contains another, more elaborate, example

of a simple type definition. A new simple type called loanNumberType is

derived (by restriction) from the simple type string. Furthermore, developer

constraint the values of loanNumber using a facet called pattern in

conjunction with the regular expression "\d{2} \d{4} \d{2}" that is read

"two digits followed by a space followed by four digits followed by a space

finally followed by two digits" (see Figure 2.16.).

<xsd:simpleType name="loanNumberType">
<xsd:restriction base="xsd:string">

<xsd:pattem value="\ d{2} \d{4} \d{2}"/>
</xsd:restriction>

</xsd:simpleType>

Figure 2.16. The Listing of the Simple Type "loanNumberType" Definition.

XML Schema defines twelve facets which are listed in Table 2.2.

Among these, the enumeration facet is particularly useful and it can be used

to constraint the values of almost every simple type, except the boolean

type. The enumeration facet limits a simple type to a set of distinct values.

For example, developr can use the enumeration facet to define a new simple

type called USState, derived from string, whose value must be one of the

standard US state abbreviations (see Figure 2.17.).

USState would be a good replacement for the string type currently

used in the state element declaration. By making this replacement, the legal

values of a state element, i.e. the state sub-elements of state, would be

37

limited to one of AK, AL, AR, etc. Note that the enumeration values

specified for a particular type must be unique.

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>
<!-- and so on ... -->

</xsd:restriction>
</xsd:simpleType>

Figure 2.17. The Listing of the Enumeration Facet Usage.

There are two possibilities to represent data structure in XML (Daum 2003), i.e.

Hierarchical XML or Flat XML. In Hierarchical XML, the relations between the

data elements are represented through the implicit hierarchical relations between

parent and child elements. For instance, see Figure 2.14. The figure visualizes

Hierarchical Mortgage XML Schema in Figure A. I. The structure allows duplication

child element data in XML Document in order to support HTML for presentation data

easily.

Ramakrishnan (2003) in his book discusses mapping XML Schemas to Relation

Schemas. Implicitly he shows how to mapping Hierarchical XML Schemas to Relation

Schemas using hierarchical sequence, as mentioned by Elmasri (see section 2.1. (4)).

The mapping for Hierarchical Mortgage XML Schemas in Figure 2.14. are

DOCUMENT (documentDate, Comment, document_ld), MORTGAGEE (name,

location, city, state, phone, document_Id), BANK (name, location, city, state, phone,

document_ld), and MORTGAGE (property, date, loanAmout, term, loanNumber,

document_ Id).

38

Flat XML, however, the relations between the data elements are represented

through the relations explicitly via key and keyref elements. The structure of the

document is established via matching key and keyref, for instance (see Figure 2.18.).

The figure visualizes Flat MortgageNew XML Schema in Figure B. l. This is done in a

way similar to relational database. The data is normalized and finally represented as an

interrelated network of "flat" elements. Flat XML is suitable for data transfer Daum

(2003) and Bourret (2004). The advantage of the Flat XML is that can use the well-

known relational techniques to keep the design of such a documents sound. The

disadvantage is that the XML Document is hard to read. Also it is nor shorter that the

original document-on the contrary, it is longer. Constructing such a XML Schema also

requires some bookkeeping (to allocate unique keys to elements), and retrieving

information from such a document requires much cross-referencing and joining.

tmec "'°'t~l.
t 11<operty sbiN;J
E de.<> &t<!
E loanArna<rt detimlll
E term inl:e9""

'Vt· ~- sbll>;j
E ~\.flWlrtl)., diltll .!'..J

i11t.xune<t)
E totri'!llOl'1l sbJl"9

'ill: tb:tmert().a date
E """"" <t111>;1

f ~ ~tr"'9 ..:J

m;;i; .. [bri)
'&'t:nome ~
t &;.;~kn i!ril'!9
10 cty :Wi!l9

ID;t~ trnut~) .
°"Enall'le' w~
E Jocati:t'I str~

[<1.y str~

Figure 2.18. A Visualization Flat Schema for MortgageNew XML Schema.

Researcher wants to show the differences in defining Hierarchical XML Schema

and Flat XML Schema. For example, the comparison of Hierarchical Mortgage XML

Schema and F:lat MortgageNew XML Schema is shown in Figure 2.19. The key point

is line 2 in Figure 2.19. (a). To become the Flat one see line 2 and 3 in Figure 2.19. (b).

39

Furthermore, complex type definition on line 14 until line 22 in Figure 2.19. (a)

become complex type definition on line 4 until line 58 in Figure 2.19. (b) with

additional key point line <xsd:choice maxOccurs="unbounded"> and </xsd:choice>

resprectively in line 5 and 57. In addition, generally Hierarchical XML is used to

exchange one instance main-element and several sub-elements. Therefore, many text

books do not discuss how to exchange or transfer several main-elements instance

(forest). Since still having several product type hierarchical (see Table 2.2.), the

researcher tries to give a proposed solution (see Figure 2.19. (a) line 8 until line 13 and

Figure A.2. for full listing of Hierarchical Mortgage XML Document). Without line 8

until line 13 only one instance can be saved in the XML Document, the researcher uses

XML Writer as an editor and a validator in experiment.

2.3 Nijssen's Information Analysis Methodology (NIAM)

There are several reasons the researcher choose the NIAM. First, the NIAM is a

well established conceptual schema model. Second, the NIAM pays attention to details,

such as functional dependencies between attributes because the NIAM is a fact-oriented

conceptual schema model (see section 2.3 (2)). Finally, the NIAM has a transformation

algorithm to transform the NIAM conceptual schema into fifth normal form relational

schemas (see section 2.3 (3)).

In addition, Halpin (1995) mentions that the NIAM can simplify the design

process by using natural language, intuitive diagrams and examples, and by examining

the information in terms of simple or elementary facts. By expressing the model in

terms of natural concepts, like objects and roles, it provides a conceptual approach for

modeling. The NIAM has been originally developed by Professors G. M. Nij ssen and

E. D. Falkenberg. Latter T.A. Halpin has revised and extended the NIAM.

40

1 <?xml version="l.0" encoding="UTF-8" ?>
2 <xsd: schema xmlbs :xsd="httpi://~. w3. org/2001/X~L$chema ">

8
9

10
11

<xsd:element name="Root" type="documents" />
<xsd:complexType name="documents">

....

<xsd:sequence>
<xsd:element narne="document"

minOccurs="O" maxOccurs="unbounded"

To become
type="documentType" >a Forest
/> document

12 </xsd:sequence>
13~~<~/_x_s_d~:_c_o_m~p_l_e_x_T~y~p~e_>~~~~~~~~~~~~~~~~~~~J"--~~~
14 <xsd:complexType name="documentType">
15 <xsd:sequence>
16 <xsd:element ref="comment" minOccurs="l" />
17 <xsd:element name="mortgagee" type="recordType" />
18 <xsd:element name="mortgage" type="mortgageType"

minOccurs="O" max0ccurs="8"/>
19 <xsd:element name="bank" type="recordType" />
20 </xsd:sequence>
21 <xsd:attribute name="documentDate" type="xsd:date" />
22 </xsd:complexType>
'---~~~~~-=-~~~~~~~~~~~~~~~~~~~~~~~~~~

23

31
32

52

<xsd:complexType name="recordType">

</xsd:complexType>
<xsd: complexType name="mo.rtgageType">

</xsd:complexType>

59 </xsd: schema>

(a) Listing Hierarchical Mortgage XML Schema

Figure 2.19. The Listing of a Comparison between the Hierarchical XML Schema
and the Flat XML Schema.

An information system for a given application may be looked at three levels, i.e.:

conceptual, external, and internal. At each level the formal model or knowledge base

comprises a schema which describes the structure or design of the universe of discourse

(UoD), and a database which is populated with the fact instances. Each schema

specifies what states and transitions are permitted for its database. The conceptual

schema does this in terms of simple, human-oriented concepts.

A conceptual schema comprises three main sections, i.e.: stored fact types,

constraints, and derivation rules. Fact types are indicated by what kinds of the object

41

there are, how these are referred and what roles it plays. Each role in a relationship is

played by only one object type. The simplest kind of object is a value. Entities are real

or abstract objects which are identified by their relationship to values. Constraints

restrict the populations and transitions of the fact types. Derivation rules enable further

facts to be derived from the facts that are stored.

1 <?xml version="l.O" ?>
2 <xsd: schema xmlns: xsd="http: I /www. w3. org/2001/XMLSchema"

xmlns :ms,d,ata"="urn: schem:as-:microsoft-com: XJ:rll-msdata ">
3 <xsd: e~~ment name=".NIAW' 'msdata: IsDabi'Set="trua" >
4
5
6

15
16

26
27

<xsd:element name="document">

</xsd:element>
<xsd:element name="mortgagee">

</xsd:element>
<xsd:element name="bank">

37 </xsd:element>
38 <xsd:element name="mortgage">

49 </xsd:element>
50
51 </xsd:complexType>
52 <xsd:key name="documentKey">
53 <xsd:selector xpath=".//document" />
54 <xsd:field xpath="documentDate" />
55 </xsd:key>
56 <xsd:key name="mortgageeKey">
57 <xsd:selector xpath=".//mortgagee" />
58 <xsd:field xpath="name" />

To change
Complex Type
document in
Listing 2.9 (a)

68 <xsd:keyref name="document mortgagee" refer="mortgageeKey">
69 <xsd:selector xpath=".//document" />
70 <xsd:field xpath="name" />
71 </xsd:keyref>

80 </xsd:element>
81 </xsd: schema>

(b) Listing Flat MortgageNew XML Schema

Figure 2.19. The Listing of a Comparison between the Hierarchical XML Schema
and the Flat XML Schema (Continued).

42

Main concepts in the NIAM include entity types, label types (or value types), fact

types, and reference types (or bridge type) (see Table 2.5.). Similar to other semantic

data model, the entity in the NIAM is an object of interest. Entities which have the

same properties form entity types. However, there are no concepts of attribute. Instead,

there are label types which are types of label or values associated with each entity type.

A relationship between an entity type and a label type is called a reference type.

Each entity type may have more than one reference type associated with it but there

must be at least one one-to-one reference type for identification purpose. A selected

one-to-one reference type is called the unique identifier. Figure 2.20. shows the entity

type Supplier with its unique identifier Snumber and a many-to-one reference type with

the label type Sname. A fact type is a relationship between entity types. Fact type must

be elementary (can not be further decomposed) since each of it is based on a deep

structured natural language sentence. Fact types and reference types can be collectively

called relationship type.

(1) Unique Identifier

A unique identifier is a minimal combination of columns where no

duplicates are allowed. The guideline for select the unique identifier when

two or more candidate identification schemes exist: first, minimize the

number of labels needed. Secondly, favor an identifier which is more

stable. The third criterion for selecting an identifier is easy for user to

recognize. Selecting a primary identifier from two or more candidate

identifiers might be regarded as an implementation decision rather than as a

conceptual issue.

43

Table 2.5. Some Basic Symbols Used in Conceptual Schema Diagram.

Symbol Explanation

e Entity type Supplier

--- --- --- --- Label types or value type Sname
Sname
----------- -

Supplier identified by means of 1:1 reference type
Supplier

(Snurnber)
Sn umber

I R I I
Binary predicate R (2 roles)

IR I I I

Ternary predicate R (3 roles), etc.

..----. Uniqueness constraint on left role of R, N: 1 association
IR I I

..----. Uniqueness constraint on right role of R, 1 :N association

IR I I
::- Uniqueness constraint on combination of roles, N:M

IR I I
association

• Uniqueness constraint on each role, 1: 1 association
IR I I

Uniqueness constraint on role pair 1-3

IR I I I

8---CJ=J Role optional for population of Supplier

~ Role mandatory for population of Supplier

... ... -- -,

Supplier ' '

(Snumber) \ Sname '
' -has ' ' --

Figure 2.20. A Reference type in NIAM.

44

(2) Conceptual Schema Design Procedure (CSDP) Methodology

CSDP can be employed to describe the UoD in terms of a conceptual

schema. There are seven steps in the CSDP, i.e.:

(A) Transform familiar information examples into elementary facts, and

apply quality checks.

(B) Draw the fact types, and apply a population check.

(C) Check for entity types that should be combined, and note any

arithmetic derivations.

(D) Add uniqueness constraints, and check arity of fact types.

(E) Add mandatory role constraints, and check for logical derivations.

(F) Add value, set comparison and sub typing constraints.

(G) Add other constraints and perform final checks.

In this section, the researcher applies CSDP to the Suppliers and Parts

Database example in Figure 2.1., to show how the procedure usually works.

The first steps: transform information in Figure 2.1. into elementary facts,

such as: the supplier with supplier number "S l" has a name "Smith", the

supplier with supplier number "S l" stay in a city name "London", the city

with name "London" has a status number "20", the part with part number

"Pl" has a name "Nut", the part with part number "Pl" is stored in a city

with name "London", the part with part number "Pl" has a color "Red",

and the stock for the supplier with supplier number "S l" and the part with

part number "Pl" is "300".

The second step: draw a conceptual schema diagram which shows all

the fact types mentioned above (see Figure 2.21.). The diagram illustrates

the relevant object types, predicates, and references schemas. Next task in

45

this step applies a population check. As a checking the diagram is correct,

each fact type on the diagram must be populated with the original fact

instances. To do this is, by adding a fact table for each fact type and

entering the values in the relevant columns of this table. The resulting

diagram is called a knowledge base diagram, since it shows both schema

and a sample database (see Figure 2.21.).

Sname Sn umber

Smith SJ

Jones S2

Blake S3

Clark S4

Adams SS

has!

City Name Sn umber

London SJ

Paris S2

Paris SJ

London S4

Athens SS

Status Num City Name

30 Athens

20 London

IO Paris

Sn umber Pnumber No of Item

SJ Pl JOO

SJ P2 200

SJ PJ 400

SJ P4 200

SI PS JOO

SI P6 JOO
S2 Pl JOO
S2 P2 400
SJ P2 200
S4 P2 200
S4 P4 300
S4 PS 400

Pnumber Pname

Pl Nut

P2 Bolt

P3 Screw

P4 Screw

P5 Cam

P6 Cog

-
Pnumber ColorName

Pl Red

P2 Green

P3 Blue

P4 Red

PS Blue
P6 Red

Figure 2.21. Suppliers and Parts Knowledge Base Diagram.

Pname

The third step: check for entity types which should be combined, and

check fact types can be derived from the others by arithmetic computation.

For example, the entity type supplier name and the entity type product

name can be combined. Since no fact types can be derived from arithmetic

46

computation, it can be shown.

The fourth steps: add uniqueness constraints, and check arity of fact

types. See Figure 2.21, the uniqueness constraints appears as an arrow-

tipped bar on the upper of fact type. The result of this step plays a pivotal

role when the conceptual schema is later mapped onto a relational schema.

Once uniqueness constraints have been added to a fact type, some further

checks are made to see whether the fact type is of the right arity or length.

In particular, there is a simple check based on uniqueness which shows that

certain kinds of fact types are not elementary and hence should be split. The

role will be adopted for reverse engineering on the propose software tools.

The fifth step: add mandatory role constraints and check for logical

derivation. Basically, these indicate which roles must be played by the

population of an object type, and which are optional. Once mandatory role

constraints have been specified, a check is made to see if some fact types

may be logically derived from others. A role is mandatory if and only if,

for all states of the knowledge base, the role must be played by every

member of the population of the attached object type; otherwise the role is

optional. See Figure 2.21., dot show as a mandatory.

The sixth step: add value, set comparison and sub typing constraints.

In this step, the value constraints (i.e. restriction on value types) are

defined. For example, in Suppliers and Parts database about color products

the values of Color might be restricted to "R" "G" and "B" (for Red
' ' '

Green, and Blue). This step also specifies a format pattern, for instance:

<c20> for supplier name, it means that a sting of a most 20 characters. The

last step CSDP, add other constraints and performs final checks. The final

47

check to ensure the information model is consistent and free from

redundancy.

The developer might declare fact type too long or too short in the first

step CSDP. The problem will be fixed in the fourth step. Too long means

that the arity of fact type is higher than it should be - the predicate has too

many roles. In this case the fact type must be split into two or more simple

fact types. Too short, means that the arity of some fact types is too small. In

this case, the relevant fact types are combined into one of higher arity. As a

guideline sees Table 2.6., an n-ary fact type has a key length of at least

n-1. Halpin says if this rule is violated, the fact type is not elementary, and

hence should be split by using functional dependency concept.

By pessimistic, all columns become one fact type. The researcher

shows how CSDP is adopted in the process reverse engineering. The

CSDP does not start from the first step as usual, however, the CSDP will be

start from the fourth step, add uniqueness constraints and check arity of

fact types, with assumption XML Document is significant. For example,

see Figure 2.22. The figure shows quaternary fact type with one uniqueness

constraint, Snumber. See Table 2.6., fact type with 4 arity must have

minimum key length 3. It means too long, therefore the fact type must be

split using functional dependency concept, such as Snumber 7 Sname,

Snumber 7 City_Name, and Snumber 7 Status_Num. Basically, every

produced functional dependency is the fact type that must be created in the

CSDP first step. For example, Snumber 7 Sname the fact type means the

supplier with supplier number "Sl" has a name "Smith". After that the

48

step will be followed by the CSDP second, third, fifth, sixth, and seventh

step.

Table 2.6. Key Length Check for Ternaries and Longer Fact Types.

Arity of fact type Minimum key length Illegal key lengths

3 2 1

4 3 1, 2

5 4 1, 2, 3

...

N N-1 1, ... ,N-2

Figure 2.22. A Quaternary Fact Type That is Splitable (FD Added).

(3) Relational Mapping (Rmap) Procedure

With the Rmap procedure, Halpin (1995) guarantees a redundancy-

free relational design, and includes strategies to restrict the number of

tables. The Rmap extends and refines an older mapping procedure known

as the optimal normal form algorithm. Although the Rmap procedure is not

necessarily but the last word in table design is extremely valuable since it

guarantees a safe and reasonably efficient design. Recall that redundancy is

49

St. Gabriel's I~ihrarv Au ..

repetition of an elementary fact. Having gone into the trouble of ensuring

that conceptual fact types are elementary, it can very easily avoid

redundancy in relational tables.

Since each relational table stores one or more elementary fact types, it

can automatically avoid redundancy by ensuring that each fact type maps

into only one table, in such a way that its instances appear only once. To

achieve this, there are two rules, as follows:

(A) Fact types with compound uniqueness constraints ITIJ map to

separate tables.

(B) Fact types with functional roles attached to the same object type

0--C:C are grouped into the same table, keyed on the object

type's identifier.

Group of fact types with functional roles attached to the same object

type or group of fact types with the same compound uniqueness constraints,

in the study is called main entity type. The two rules above show how to

map main entity type into table schemes. Any predicate, other than an

objectified predicate, which has a uniqueness constraint spanning two or

more of its roles must map to a table by itself. Hence many-to-many

binaries, and all n-aries (n >= 3) on the conceptual schema, map to a

separate table.

A fourth option for one-to-one case uses two tables, but include the

one-to-one binary in both, with a special equality constraint to control the

redundancy. A default procedure is summarized in Figure 2.23. Each one-

to.,.one fact type maps to only one table:

if only one object type in the one-to-one predicate has another

50

else if

else if

functional role

then group on its side {case (a)}

both object types have other functional roles and only one role

in the one-to-one is explicitly mandatory

then group on its side {case (b)}

no object type has another function role

then map the one-to-one to a separate table

else grouping choice is up to developer

(a)

(b}

Figure 2.23. Default Procedure for Mapping One-to-One Fact Types.

The researcher applies the roles to Suppliers and Parts schema

diagram in Figure 2.21., as a result see Figure 2.24. To make clear

understanding, the researcher has separated the schema diagram into

category role, single uniqueness constraints and compound uniqueness

constraints. The left side figure applies the first role and the right side

figure applies the second role. Convention in the study, the underlined is

the primary key and the italic is the foreign key.

There is no one-to-one in Suppliers and Parts database, however, the

researcher just wants to explain how to implement. The researcher shows in

51

fact type between entity Supplier and City. In case, one supplier can exist in

only one City and also one City only has one Supplier (see Figure 2.25.). In

brief, the one-to-one relationship mandatory is very important in mapping.

/ Sname -•..)

has!
-~ ,,''

has2

Supplier (Snumber, Sname, City_ Name)

Status
(Status_Num)

City (City Name, Status_Num)

has4

has5

,- Pname -.,)

', ~"

Part (Pnumber, Pname, Color_Name)

Supplier_Part (Snurnber Pnurnber. No_of_Itern)

P_Loc

Part_ Loe (Pnumber, Loe Num)

Figure 2.24. Suppliers and Parts Relational Mapping from NIAM Conceptual Schema
into Relation Schema.

2.4 Visual Basic (VB).NET and ActiveX Data Objects (ADO).NET

There are several reasons the researcher chooses VB.NET and ADO.NET to

support the study. First, VB.NET is an easier-to-use integrated development

environment. Second, VB.NET supports Web Forms and XML Web Services.

Therefore, in. VB.NET, the researcher can use ADO.NET to read and write XML

simply. Lastly, VB.NET has a feature Windows Forms that provide a clear, object-

52

oriented, extensible set of classes enabling the researcher to develop rich Window

applications. In addition, with Microsoft's Visual Studio .NET, the researcher can edit,

validate, and visualize XML Schema and XML Document.

XML is one of the hot technologies in the development world right now. At

present, developers need to build more powerful applications. For example, more and

more developers want to work with XML data. ADO.NET is designed to support XML,

to disconnect data access easily, to more control over updates, and to greater update

flexibility. One major goal of the ADO.NET development team is to bridge the gap

between XML and data access so that developer can easily integrate the two

technologies. Loading data from an XML document into an ADO.NET DataSet and

vice-versa is simply.

..
has I has2 has3

--
,'

Sname Status
' :-

(Status_ Num) ,,_
/ has I has2 has3

City(Citv Name Snumber, Status_Num) Supplie~ Sname) or

City(Citv Name. Status_Num) Supplier(Snumber. City_Name, Sname)

has2

City(City Name Status_Num) Supplier(Snumber, City_Name, Sname)

---.
(Sname ',:
"·-- ,-'

has2

City(Citv Name Snumber, Status_Num) Supplier(~ Sname)

Figure 2.2~. Supplier and City Relational Mapping for One-to-One Relationship.

53

ADO.NET is a set of libraries included with the Microsoft .NET framework that

helps developers to communicate with various data stores from .NET applications

(Sceppa 2002). The ADO.NET objects are divided into Connected Objects and

Disconnected Objects. The Connected Objects libraries include classes for connecting

to a data source, submitting queries, and processing results (see Figure 2.26.).

Moreover, it can also use as a robust, hierarchical, disconnected data cache to work

with data off line. The creating software tools use disconnected ADO.NET because the

researcher assumes that the transferred XML Schemas and XML Documents have

already created disconnect to the data source.

Data View

Data Row

Data Column

Constraint

DataRelation

Figure 2.26. The Disconnected ADO.NET Objects Hierarchy.

(1) Dataset

The central disconnected-object ADO.NET is Dataset object. As its

name indicates, it contains a set of data. It has several features that allow

developers to write it to and read it from a file or an area of memory. In

54

addition, DataSet allows the developer to sort, search, filter, store a pending

change, and navigate through hierarchical data. Furthermore, the DataSet

also includes a number of features that bridge the gap between traditional

data access and XML development. Developers can now work with XML

data through traditional data access interfaces and vice-versa.

The ADO .NET DataSet has been built from the ground up to work

with XML. Developer can save and load the contents of a DataSet to and

from files as XML documents. In discussion, DataSet will be called by

Dataset name, for instance DocumentDS Dataset will be called by

DocumentDS. DS is the abbreviation DataSet. The DataSet also lets

developers separate the schema information (table, column, and constraints

information) into an XML ·schema file.

In ADO.NET, DataSet objects and XML documents are almost

interchangeable. It is easy to move from one data structure to the other.

This duality allows developers to use the interfaces most comfortable. XML

programmers can work with DataSet objects as XML documents, and

database programmers can work with XML documents as Dataset objects.

The DataSet object has a series of methods that let developer examine

the contents of XML, as well as load XML data into the DataSet. The

DataSet object's WriteXml method is used to write the contents of

Dataset to a f"tle or to an object that implements the Stream, TextWriter,

or XmlWriter interfaces. The dataset object has a ReadXml method as

well to load data into DataSet. It can read XML data from a f'Ile or from an

object that implements the Stream, TextReader, or XmlReader

interfaces.

55

The dataSet object also exposes ReadXm.ISchema and

WriteXm.ISchema methods that allow developers to read and write the

schema information for DataSet. Each method supports working with f°Iles

and objects that implement the Stream, TextReader, or XmlReader

interface.

(2) DataTable

The ADO.NET DataTable object allows developers to examine data

through collection of rows and columns. For instance, the contents of a

DataTable can be accessed through its Rows property, which returns a

collection of DataRow objects. The structure of a DataTable can be

examined through Columns property. The DataTable class also lets to

define constraints, such as primary key.

Each DataTable has a collection, which is a container for

DataColumn objects. As its name implies, a DataColumn object

corresponds to a column in a table. It stores information about the

structure of the column. This type of information, data about data, is

called metadata. For example, a DataColumn exposes a type property that

describes the data type (such as string or integer) that the column stores.

The DataColumn has other properties such as readOnly, AllowDBNull,

Unique, Default, and Autolncrement that allow developers to control

whether the data in the column can be updated, restrict what can be stored

in the column, or dictate how values should be generate for new rows of

data. The other properties see Table 2.7.

56

Table 2.7. Properties of the DataColumn Object.

Property Data Type Description

AllowDBNull Boolean Controls whether the column will accept

null values

Auto Increment Boolean Controls whether ADO.NET will generate

new autoincrement values for the column

AutoincrementSeed Integer Controls what value ADO.NET use for the

first new autoincrement value

AutolncrementStep Integer Controls the value ADO.NET will use to

generate subsequent autoincrement values

Caption String Controls the caption of the column when

displayed in a bound data grid

ColumnMapping Mapping Type Controls how ADO.NET will store the

contents of the column in an XML

document

Expression String Controls how ADO.NET will generate

values for expression-based columns

Data Type Type Controls the data type that ADO.NET will

use to store the contents of the column

ColumnName String Contains the name of the DataColumn

object

Default Value Object Controls the default value that ADO.NET

will use to populate this column for new

rows

57

Table 2.7. Properties of the DataColumn Object (Continued).

Property Data Type Description

ExtendedProperti PropertyCollectio Contains a collection of dynamic properties

es n and values

MaxLength Integer Specifies the maximum length of the string

that the column can contain

Namespace String

Ordinal Integer

Prefix String

Read Only Boolean

Table Data Table

Unique Boolean

Contains the namespace that ADO .NET will

use when it writes the content of the

Dataset to XML when it loads XML data

into DataSet

Return the index of the DataColumn within

the DataTable object's columns collection

Contains the prefix for the namespace that

ADO.NET will use when it writes the

contents of the DataSet to XML when it

loads XML data into Dataset

Controls whether the contents of the column

are read-only

Returns the DataTable to which the

DataColumn belongs

Controls whether ADO.NET requires that the

values for the column be unique within the

Data Table

58

The DataTable class also provides a way to place constraints on the

data. For example, developers can build a Constraint object that ensures

the values in a column or multiple columns are unique within the

DataTable. Constraint objects are maintained in a DataTable object's

Constraints collection.

To access the actual value stored in a DataTable object, developer

use the object's Rows collection, which contains a series of DataRow

objects. To examine the data stored in a specific column of a particular row,

developers use the Item property of the appropriate DataRow object to read

the value for any column in that row. The DataRow class provides several

overloaded definitions of its Item property. Developers can specify which

column to view by passing the column name, index value, or associated

DataColumn object to a DataRow object's Item property. Item is the default

property of the DataRow object so developers can use it implicitly.

Related with XML Schemas which will be reengineering with the

NIAM conceptual schema, every complex type in XML Schemas becomes

a DataTable in ADO.NET and every element in complex type becomes a

DataColumn of DataTable in ADO.NET. Therefore, the term main

element in XML Schemas becomes parent table in ADO.NET and equally

for sub element becomes child table (see section 2.2 (1) and (2)) for

Hierarchical XML. However, for Flat XML every complex type becomes

a DataTable and every element become a DataColumn. Furthermore,

related with XML Documents that validate with the XML Schemas, all

elements instant in a complex type become a DataRow of DataTable in

ADO.NET.

59

(3) DataView

Once data stored into DataTable object, developers can use a

DataView object to view the data in different ways. ADO.NET

DataView objects allow developers filter, sort, and search the contents of

DataTable objects, but they are not SQL queries. Developers cannot use a

Data View to join data between two Data Table objects, nor can developers

use a Data View to view only certain columns in a Data Table. Data View

objects do support filtering rows based on dynamic in a DataTable.

Data View objects do support filtering rows based on dynamic criteria, but

they can access only a single DataTable, and all columns in the DataTable

are available through the Data View.

Developers can also locate a DataRow in a DataTable based in the

row's primary key values. The Find method is used to perform a search

of the contents of the Data Table based on the primary key value. Although

the Find Method is designed for Data Table objects, it is actually exposed by

the DataRowCollection class. The Find method accepts an object that

contains the primary key value for the row you want to locate. Because

primary key values are unique, the find method can return at most one

DataRow. The DataTable object's Select method is powerful and flexible,

but it is not always the best solution.

(4) DataRelation

DataSet class defines a Relations property, which is a collection of

DataRelation objects. A DataRelation object to indicate a relationship

between different DataTable object in DataSet. The other functions of

DataRelation object to enforce constraints on the related DataTable

60

objects. Related with Hierarchical XML Schemas, every implicit

relationship between parent table and child table (see section 2.2) becomes

a DataRelation in ADO.NET by childColurnns or parentColurnns. In

addition, the related with Flat XML Schemas, every key ref definition (see

section 2.2 (8)) becomes a DataRelation in ADO.NET.

2.5 The Sustaining Empirical Literature

There are several prior researches related with the conducting research. One of

researches has been conducted by Leung (1987) on "From a NIAM Conceptual

Schema into the Optional SQL Relational Database Schema". The focus of studies

is to know how to transform a well-formed NIAM conceptual schema into an SQL

Optimal Normal Form (ONF) database schema. Relations in an ONF schema are at

least in the fifth Normal form. The NIAM conceptual schema is selected to describe the

UoD as it fulfills all the requirements. On the other hand, SQL (a relational language) is

selected for describing the internal schema due to the fact it has become a de-facto

standard for relational language.

Besides, the research above, Becker (1998) illustrates the similar concept in his

studies on "Normalization and ORM". He mentions that ORM is vastly superior to

any other modeling technique at the conceptual level. In addition, it is also rich

constraints and intuitive approach leading to better models. At the logical level, ORM

still prevails as it generates equivalent fully normalized schemas without ever

wondering what a functional dependency was. In his paper, he proves using external

uniqueness constraint to solve the problem of Boyce-Codd Normal Form without losing

a business rule.

As well, Suciu (2001) conducts a study on "On Database Theory and XML".

Suciu says over the years the connection between database theory and database practice

61

has weakened. She argues that the new challenges posed by XML and its application

are strengthening this connection today. XML' s semistructured data model represents

paradigm shift for theoretical database research to practical database research.

The empirical literature on the purpose of Document Type Definition (DTD) is

"On XML Integrity Constraints in the Presence of DTDs" has been conducted by

Fan and Leonid (2001). They investigate XML documents specifications with DTDs

and integrity constraints, such as keys and foreign keys. They have studied the

consistency problem of checking whether a given specification is meaningful: that is,

whether there exist an XML document that both conforms to the DTD and satisfies the

constraints. They show that DTDs interact with constraint in a highly intricate way and

as a result, the consistency problem in general is undesirable. When it comes to unary

keys and foreign keys, the consistency problem is shown to be NP-complete. This is

done by coding DTDs and integrity constraints with linear constraints on the integers.

Another empirical literature on the purpose of DTD is "A Normal Form for

XML Documents" conducted by Arenas and Leonid (2002). XML documents may

contain redundant information, and may be prone to update anomalies. Furthermore,

such problems are caused by certain functional dependencies among paths in the

documents. Their goal is to find a way of converting an arbitrary DTD into a well­

designed one that avoids these problems. They first introduce the concept of a

functional dependency for XML, and define its semantics via a relational representation

of XML. They then define an XML normal form that avoids update anomalies and

redundancies. They study its properties and show that it generalizes BCNF and a

normal form for nested relations when those are appropriately coded as XML

documents. Finally, they present a lossless algorithm for converting any DTD into

XML normal form.

62

The other approach has been conducted by Arenas and Leonid (2003) in their

paper with the title "An Information-Theoretic Approach to Normal Forms for

Relational and XML Data". Their goal is to provide a set of tools for testing when a

condition on a database design, specified by a normal form, corresponds to a good

design. They use techniques of information theory, and define a measure of information

content of elements in a database with respect to a set of constraints. They first test this

measure in the relational context, providing information-theoretic justification for

familiar normal forms such as BCNF, 4NF, PJINF, 5NFR, DK.INF. They then show

that the same measure is applied in the XML context, which gives us a characterization

of a recently introduced XML normal form. They also propose normalization

algorithm.

The interesting empirical literature on the purpose of XML Schema and Unified

Modeling Language (UML) is "UML and XML Schema" conducted by Routledge,

Linda, and Andrew (2002). They build on the approach by defining a mapping between

the UML class diagram and XML Schema using the traditional three level database

design approach (i.e. using conceptual, logical, and physical design levels). In their

approach, the conceptual level is represented using the standard UML class notation,

annotated with a few additional conceptual constraints. The logical level is represented

in UML, using a set of UML stereotypes. And XML Schema itself represents the

physical level. The goal of this three level design methodology is to allow conceptual

level UML class models to be automatically mapped into the logical level, while

minimizing redundancy and maximizing connectivity. They propose the methodology

to mapping, logical level to physical levels, such as: (1) Generate type definitions, (2)

Determine class groupings, (3) Build the complex type nesting, and (4) Create a root

element.

63

The other researchers who work on XML Schema and UML is "UML

Documentation Support for XML Schema" conducted by Salim et al. (2004). The

research presents in their paper aims to: (1) assist understanding and documentation of

XML Schema by converting them to graphical form, i.e. UML, and (2) to adopt a

transformation approach that does not require additional training beyond standard

UML.

2.6 The Essential Empirical Literature

This section discusses the most closely related works that involve XML Schemas

and a conceptual framework NIAM, such as (Chankuang 2003) and (Chankuang 2004).

Another research involves XML Schemas but uses Object Role Modeling (ORM) as a

conceptual framework, conducted by Bird (2000). The researcher adopts their works

with modification and revision related with the research that will be conducted.

First, Chankuang and Suphamit (2003) on "A Software Tool for Object and

XML Schemas Generation" use a conceptual metaschema for design meta tables. The

NIAM conceptual metaschema is a NIAM conceptual schema which describes

components of a NIAM conceptual schema. Their software tool captures user's

conceptual schemas from the screen and populated the details of the conceptual

schemas into the meta tables. Second, the same researchers, Chankuang and Suphamit

(2004), on their paper with the title "An Object and XML Database Schemas Design

Tool" use the NIAM conceptual schemas model as a conceptual framework for an

XML Schema. Moreover, they transform from the NIAM schema to XML database

schema. Furthermore, they introduce a software tool that allows users to enter the

NIAM conceptual schemas and generate corresponding XML Schemas which

guarantee minimum redundancy. They use the popular Supplier-Part database to

explain the transformation, Date (2000), as shown in Figure 2.21. In Practice, a NIAM

'64.

conceptual schema will be created first. After that, it will be transformed into a

corresponding XML schema. They propose the transformation steps are as follow:

(A) Specify a root element name of the XML schema.

(B) Each label type and leaf-node entity type is transformed into and XML

simple type (see Figure 2.27.).

<simpleType name="SnumberType">
<sp:restriction base="sp:string">

<sp:length value="5"/>
<sp:pattem value="[A-Z]{ 1 }-\d{3 }"/>

</sp:restriction>
</simple Type>
<simpleType name="SnameType">

<sp:restriction base="sp:string">
<sp:pattem value="[A-Z][a-z] *" />

</sp:restriction>
</simple Type>

has

.. ..
(-~numb~~'--;

has
',,~ ,,''

Figure 2.27. A Entity Type SUPPLIER, Its Value Types and Its Corresponding XML
Schema.

(C) Each main entity type is transformed into an XML complex type. Many-to-

one and one-to-one binary relationship types that main entity type is

involved transform into elements of the complex type. Each corresponding

element name is either the unique identifier of participating entity types or

label types (see Figure 2.28.).

(D) Each binary many-to-many fact type is transformed into an XML complex

type (see Figure 2.29.).

(E) Each n-ary fact type is transformed into an XML complex type (see Figure

2.30.).

65

St Gabriel's l.ihrary~ Au

(,--Sname-->.
'',, ,i .. -·

<complexType name="SupplierType">
<element name="Snumber" type="SnumberType" />
<element name="Sname" type="SnameType" />
<element name=" City_ Name" type="City _ NameType" I>

</complex Type>

Figure 2.28. A NIAM Schema with Many-to-one Relationships and a Corresponding
XML Schema.

P_Loc

<complexType name="P _ LocType">
<element name="Pnumber" type="PnumberType" />
<element name="Loc_Num" type="Loc_NumType"/>

</complexType>

Figure 2.29. A NIAM Schema with Many-to-many Relationships and a
Corresponding XML Schema.

(F) The unique identifier of each main entity type is transformed into an XML

schema key, see listing below:

<key name="SnumberKey">
<selector>Supplier _Part/Supplier</selector>
<field> ./Snumber</field>

</key>

(G) The uniqueness constraint on roles of a binary many-to-many fact type or

an n-ary fact type is transformed into an XML unique constraint, see listing

below:

66

<unique name="SupplyKey">
<selector>Supplier _ Part/Supplier</selector>
<field> ./Snumber</field>
<field> ./Pnumber</field>

</unique>

<complexType name="SupplyType">
<element name="Snumber" type="SnumberType"/>
<element name="Pnumber" type="PnumberType"/>
<element name="No_of_Item" type="No_of_ItemType"/>

</complexType>

Figure 2.30. A NIAM Schema with a Ternary Fact Type and a Corresponding
XML Schema.

(H) Fact types between main entity types form XML schema key references,

see listing below:

<keyref name="Supply _Supplier Ref!" refer="SnumberKey">
<selector>Supplier _Part/Supply</selector>
<field> ./Snumber</field>

</keyref>

<keyref name="Supply _ SupplierRet2" refer="PnumberKey">
<selector>Supplier _Part/Supply</selector>
<field> ./Pnumber</field>

</keyref>

Lastly, the other researcher who works in XML Schema although use ORM is

"Object Role Modeling and XML Schema" conducted by Bird, Andrew, and Terry

(2000). They investigate the use of ORM, a conceptual modeling method, as a mean for

designing XML Schemas. By using ORM, they are able to model a rich variety of data

constraints, and delay decisions about the tree-structure of the conceptual analysis

67

phase. They estimate that encoding an ORM schema in XML Schema has benefits

beyond facilitating the exchange of schemas between different CASE tools and

repositories. They propose algorithm for generating an XML Schema from ORM

diagram: (1) Generate a type definition for each ORM object type, (2) Build a complex

type definition for each major fact type grouping, and (3) Create a root element for the

whole schema and add keys and key references.

2.7 Summary

The literature review has provided an insight about various critical dimensions of

NIAM, XML Schema, and XML Document. Leung has just studied how to transform a

well-formed NIAM conceptual schema into an SQL ONF database schema.

Additionally, Becker mentions the NIAM riches constraints and intuitive approaches

lead to fully normalization schemas without ever wondering what a functional

dependency is. The above researches are around theory database. Suciu argues that the

new challenges posed by XML open connection between database theory and database

practice research.

After W3C recommended XML, many researchers conduct researches in this

area. Fan and Leonid conduct research integrity constraint and consistency XML

documents with DTD. Furthermore, Arenas and Leonid study to convert DTD into a

well-designed one in order to avoid update anomalies and redundancies. Moreover,

Arenas and Leonid use techniques of information theory create XML normal form. The

other researcher, Routledge et al., build on the approach by defining a mapping

between the UML class diagram and XML Schema using conceptual, logical, and

physical design levels. The last researchers, Salim et al., study to convert from XML

Schema to graphical form, i.e. UML.

The most closely related works that involve XML Schemas and a conceptual

68

framework NIAM, firstly Chankuang and Suphamit use a conceptual metaschema for

design meta tables. Halpin (1995) mentions there are many possible solutions which

produce difference metaschema. Researchers use metaschema to reengineering XML

Schema therefore the metaschema should modify. In another paper, they use the NIAM

conceptual schemas model as a conceptual framework for an XML Schema.

Furthermore, they transform from the NIAM schema to XML database schema. The

researcher will adopt with modifying the transformation one-to-one relationship.

Despite many researches related with XML, ORM, NIAM, normalization or

combination among of them having been conducted, the important fundamental issues

related with the finding a good conceptual modeling technique for XML conceptual

schema design is still not addressed, as far as research knows. Therefore it is a

challenge and opportunity study.

69

ID. RESEARCH METHODOLOGY

3.1 Determine and Def"me the Thesis Theme

The researcher explores the empirical literatures from the international

proceedings and the international journals in order to determine what conceptual

schemas have been and have not been conducted by the prior researches. In addition, to

support conducting conceptual framework, the researcher explores the theoretical

literatures from library and Internet, and finally defines the theme for the thesis.

One remarkable issue remaining uninvestigated is the applying NIAM conceptual

schema for improving poorly designed the XML Schema to be the normalized XML

Schema and the normalized XML Document. Therefore, the researcher defines the

thesis title "A Conceptual Schema Approach for XML Schema Design". Apply

NIAM conceptual schema to reengineering XML Schema.

3.2 Research Method

The research type conducted is an applied research. The aims of the thesis are to

find a good conceptual modeling technique for XML Schema and to create software

tool for reengineering XML Schemas using the NIAM conceptual schema. The

research is conducted by building a model (software tool) and a simulation. Methods

for construction of software tools are creating algorithms and generating software tools.

Once the software tool is built, tested and validated the model faithfully captures

the relevant aspects of the modeled system. Finally, simulation experiments are tested

to prove that software tools have already been free from bugging.

3.3 Research Design

A conceptual framework for developing software tool in this research is shown at

Figure 3.1. In this study, the researcher assumes that the XML Schema and the XML

70

Document have already produced with well-formed and validated by editor or tools

from a database. Likewise, at the end of the process, the researcher assumes that the

process is finished after the normalized XML Schema and the normalized XML

Document are produced. Many tools in the market can be used to transform them back

into database schema and database data respectively (see section 2.2 (9)). To develop

software tools the researcher uses Microsoft VB.NET and ADO.NET ..

1 .. Scope of the Thesis ..
Hierarchical

XML
Schema

Transfonning from

Editor Hierarchical XML
into Flat XML

Reverse NIAM

Engineering
Conceptual

Schema

Database
Transfonn

(tools) Editor

Flat XML Modification
Document As a population NIAM

Conceptual
Schema

Editor

UoD
Normalized Expert

XML
Schema Normalized

NOnnalized Transfonn Forward NIAM
Database (tools) Engineering Conceptual

Normalized
Schema

same/different XML

platfonn Document

Flat XML
Document

Figure 3 .1. The Conceptual Framework.

71

Step by step for developing application tools are:

(1) Identify Hierarchical Data Model and Hierarchical XML.

(2) Identify NIAM Conceptual Schema and XML Conceptual Schema.

(3) Create the NIAM Conceptual metaschema.

(4) Create the transforming from Hierarchical XML into Flat XML algorithms.

(5) Generate the reverse engineering from XML Schemas into NIAM

conceptual schemas algorithms. This algorithm applies NIAM CSDP.

(6) Create the forward engineering from NIAM conceptual schemas into XML

Schemas algorithms. This algorithm applies NIAM Rmap.

(7) Create the writing Flat XML Schemas algorithms.

(8) Create the writing Flat XML Document algorithms.

(9) Build a software tool for implementing all of algorithms with Microsoft

Visual Basic .NET. The built software tool must have ability to evaluate

and revise the XML Schema and the XML document using NIAM

conceptual schema to become optimal normal.

(10) Test and validate the building software tool.

(11) Perform simulation experiments to test that software tool has already been

free from bug. For example use XML Writer to check and validate XML

Schema and XML Document created are well-formatted and validated.

72

IV. SYSTEM DEVELOPMENT

This chapter discusses about companson Hierarchical Data Model and

Hierarchical XML. Additionally, the chapter discusses about comparison NIAM

conceptual schema and XML conceptual schema. Moreover, the chapter presents the

NIAM Conceptual metaschema which meta tables will be used to record the NIAM

conceptual schema in the created software tool. Furthermore, the chapter presents the

overview and demonstrates algorithm by example for transforming from Hierarchical

XML into Flat XML algorithms, reverse engineering from XML Schemas into NIAM

conceptual schemas algorithms, and forward engineering from NIAM conceptual

schemas into XML Schemas algorithms. Finally, the chapter presents input and output

design for software tool.

4.1 Comparison Hierarchical Data Model and Hierarchical XML

In this section, the researcher compares between Hierarchical Data Model (see

section 2.1) and Hierarchical XML in order to analyze a Hierarchical XML (see section

2.2) and proposes several alternative solutions for handling the Hierarchical XML. The

research must comprehend the theoretical Hierarchical Data Model and the

hierarchical, which are implemented in XML. There are similarities and differences

between them. To identify XML data structures, the researcher explores two examples

Hierarchical XML Schema and XML Document, Mortgage and Suppliers Parts.

The first similarity between Hierarchical Model Data and Hierarchical XML,

both of them can be displayed as a hierarchical diagram. For example, Figure 2.2.

shows a hierarchical diagram for the hierarchical schema of COMPANY Database in

Hierarchical Model Data. Similarly, Hierarchical Mortgage XML Schema can be

displayed as a hierarchical diagram (see Figure 2.9.).

73

The second similarity between Hierarchical Model Data and Hierarchical XML,

both of them use hierarchical sequence in order to produce a sequence of record

occurrence tree, record type indicator (see section 2.1 (4)). To identify the XML

Schemas, the researcher uses ADO.NET as tools. ADO.NET provides a result as shown

in Figure 4.1. for Figure A. l. The table shows additional column, it calls record type

indicator. In ADO.NET, it calls CbildColumns or ParentColumns. It is the same

idea with Ramakrishnan (2003) (see the last section 2.2). The record type indicator

writes with bold font style in Figure 4.1. For example, column document_Id is added

into table Document, Mortgagee, Mortgage, and Bank. To better understand with

hierarchical sequence, the researcher uses ADO.NET once more to overview Figure

A.2. The result appears in 4.2. Equally, the researcher identifies Figure A.5., the result

appears in Figure 4.3. Additionally, the researcher explores Figure A.6., see Figure 4.4.

as a result.

.... ColumnNafue.\; ~Coluil:'ln:JJT
documentDate date
comment strin
document Id lnt32

(a) Document Table

.··· Column Name · Cfoh.imtill'Y:i:>ez
name string
location strim~
city string
state string
phone string
document Id Int32

(b) Mortgagee Table

property string
date date
loanAmout decimal
term integer
loanNumber string
document Id Int32

(c) Mortgage Table

Cofiunhi:Name
name strin
location strin
cit strin
state strin
hone strin

document ID lnt32

(d) Bank Table

Figure 4.1. Hierarchical Mortgage XML Schema in ADO.NET.

74

documentDate comment document Id

2005-03-02 Good risk 0
2004-07-11 Good 1
2004-07-14 Good 2

(a) Document Table

name location city state phone document Id

James Blandings 1234 299th St New York NY 888.555.1234 0
Hans Schmidt 123 Hallgarten Berlin 870.220.5678 1
Hans Schmidt 123 Hallgarten Berlin 870.220.5678 2

(b) Mortgagee Table

Property date loanAmount term loanNumber document Id

The Hackett Place 2005-03-01 80000 15 66 7777 88 0
123 Acom Drive 2005-03-01 90000 15 11 8888 22 0
99 West Pocusset St 2005-03-02 100000 30 33 4444 11 0
19 Johnson Place 2005-03-02 110000 30 55 3333 88 0
345 Notingham Court 2005-03-02 120000 30 22 6666 99 0
Vila 2004-07-12 55000 12 11 2233 44 1
House 2004-12-25 95000 24 11 1222 33 1
Bungalow 2004-07-12 50000 12 12 3122 34 2

(c) Mortgage Table

name location City state phone document Id

XML Bank 12 Schema Place New York NY 888.555.8888 0
Niaga 56 Sweet Street Berlin 811.110.1234 1
XML Bank 12 Schema Place New York NY 888.555.8888 2

(d) Bank Table

Figure 4.2. Hierarchical Mortgage XML Document in ADO.NET.

The third similarity between Hierarchical Model Data and Hierarchical XML,

both of them allow duplication data of child record instance to implement many-to-

many relationship (see section 2.1 (2)). For example, Figure 4.4. (b) shows Pnumber,

"Pl" appears two times, "P2" appears four times, "P4" appears two times, and "P5"

appears two times.

75

Column Name Column Name Column Type
Sn umber strin Pnumber string
Sname strin Pname string
Status Num strin ColorName string

Loe Num string
Int32 No of Item integer

Suuulier Id lnt32
(a) Supplier Table

(b) Part Table

Figure 4.3. Hierarchical Supplier-Part-A XML Schema in ADO.NET.

Sn umber Sname Status Num City Name Suoulier Id
SI Smith 20 London 0
S2 Jones 10 Paris 1
S3 Blake 10 Paris 3
S4 Clark 20 London 4
SS Adams 30 Athens Null

(a) Supplier Table

Pnumber Pname ColorName Loe Num
?Dbhd~rli~f~;;
Paris

P3 Screw Rome 400 0
P4 London 200 0
PS Paris 100 0

100

Pans·

•Paris
Paris

P4 Screw London 300 4
PS Cam Blue Paris 400 4

(b) Part Table

Figure 4.4. Hierarchical Supplier-Part-A XML Document in ADO.NET.

76

The first difference between Hierarchical Model Data and Hierarchical XML is in

hierarchical relationship def"mition. Naturally, in Hierarchical Model Data, a PCR

type defines a hierarchical one-to-many relationship between parent record type and

child record type (see Section 2.1 (1)). For example, Figure 4.5. (c) shows

DUCUMENT as parent record type and MORTGAGEE, MORTGAGE, and BANK as

child record type. By PCR type definition, it means that one DUCUMENT record type

has many MORTGAGEE record types and also one DUCUMENT record type has

many BANK record types. Nevertheless, those do not appropriate with a case problem

(see preface chapter 2). While DUCUMENT record type has many MORTGAGE

record types is right by PCR type definition.

However, in XML Schemas, the implementation of PCR type does not always

define a hierarchical one-to-many relationship between main-element and sub-element.

It depends on maxOccurs that defines at element in XML Schema and dupliCation or

induplication instance in sub-element. For example, Figure 4.5. (a) shows that all

element definitions in the documentType complex type, both minOccurs and

maxOccurs are one, although they do not write them down (see convention in section

2.2 (5)). The minOccurs and the maxOccurs are presented by

(minOccurs:maxOccurs), for illustration see Figure 4.5. (b). In XML Schemas, a sub­

element does not always as a child record type (see explanation in the next paragraph).

The second difference between Hierarchical Model Data and Hierarchical XML

is in the purpose of duplication child record instance. In Hierarchical Model Data,

duplication instance in child record type is to implement many-to-many relationship

(see section 2.1 (2)). In Hierarchical XML duplication child record instance do not only

to implement many-to-many relationship but also to implement many-to-one

relationship. However many-to-one does not discuss in Hierarchical Model Data. For

77

example, see the definition of mortgagee in Figure 4.5. (a) line 17, max Occurs is 1 and

see the instance in Figure 4.2. (b), "Hans Schmidt" is recorded double. Similar with

bank, see the definition of mortgagee in Figure 4.5. (a) line 19, max Occurs is 1 and see

the instance in Figure 4.2. (d), "XML Bank" is recorded double. The duplication is not

wrong because they relate with different document. From that example the researcher

briefs there are duplications in many-to-one. In this case the sub-element becomes the

parent of record type. Furthermore, Duplication instance in sub-element is symbolist

with positive sign (+) and induplication is symbolist with negative sign (-), for example

see Figure 4.5. (b).

The third difference between Hierarchical Model Data and Hierarchical XML is

in implement many-to-many relationship between parent record type and child record

type. Elmasri's suggestion is shown in Figure 4.6. (a). Based on literature review, the

researcher observes all authors and examples in Schema Part 0 (primer) write XML

Schema like Figure 4.6. (b). It is estimated that they just give an example how to create

and to display one instance in XML Document. However, the XML file in this research

is used to transfer database, therefore the researcher implements many-to-many

relationship of Elmasri solution (see Figure 4.6. (a)) in software tool.

The researcher tries to define maxOccurs directly in element as the first propose

solution. For example see Figure 4.7. (a) line 15. See Figure A.5. and Figure A.6.

respectively for full listing XML Schema and XML Document. The researcher defines

minOccurs="O" maxOccurs="unbounded" directly in element Part in main-element

Supplier. Therefore Part becomes a sub-element of Supplier. On the other hand, there

is also limitation editor (see section 2.2 (9)). The researcher proposes another solution

for many-to-many relation as the second proposed solution, especially while the middle

node has the other element except record type indicator (see Figure 4.6. (c)). The

78

second proposed XML Schema and XML Document is listed in Figure A.7. and Figure

A.8. respectively.

14 <xsd:complexType name="documentType">
15 <xsd:sequence>
16 <xsd:element ref="comment" minOccurs="l" />
17 <xsd:element name="mortgagee" type="recordType" /> ~ (1:1)
18 <xsd:element name="mortgage" type="mortgagesType" minOccurs="O"

maxOccurs="B"/> ~ (0:8)
19 <xsd:element name="bank" type="recordType" /> ~ (1:1)
20 </xsd:sequence>
21 <xsd:attribute name="documentDate" type="xsd:date" />
22 </xsd:complexType>

(a) documentType Complex Type of Mortgage XML Schema in Figure A.I.

MORTGAGEE MORTGAGE BANK

(b) A Hierarchical Schema for DocumentType Complex Type

DOCUMENT DOCUMENT 0

(1:1) MORTGAGES 0

MORTGAGE (0 8) MORTGAGE 0
(1) N (2)

(c) A Tree Representation for DocumentType Complex Type

Figure 4.5. Implemented PCR type in Mortgage XML Schema
(DocumentType Complex Type).

79

N N N N

SUPPLIER PART SUPPLIER 0 SUPPLIER

PART

(a) M

(I: I) 0 (O:N)

SUPPLIER (O:N) PART 0 (I: 1) PART

M (b) M (c) M

(a) Elmasri's Solution for Many-to-Many Relationship

(b) Implementation Many-to-Many in XML Schema

(c) Alternative Many-to-Many Solution in XML Schema

0

0

0

Figure 4.6. Comparison the Many-to-Many Relationship in Hierarchical Schema.

In short, those are similarity between Hierarchical Data Model and Hierarchical

XML, in hierarchical diagram appearance, hierarchical sequence, and duplication data

of child record instance to implement many-to-many relationship. In addition, those are

also differentiates between Hierarchical Data Model and Hierarchical XML in

hierarchical relationship definition, the purpose of duplication child record instance,

and implementation many-to-many relationship. The key points from this section is

maxOccurs, it plays important role in hierarchical relationship definition. If max:Occurs

is declared more than one and no duplication in sub element it means one-to-many

relationship. On the other of hand, it means many-to-many relationship. In addition,

while maxOccurs is declared one and no duplication in sub element it means one-to­

one relationship. Duplication in sub element, however, it means many-to-one

relationship. The knowledge from this section is used to transform from Hierarchical

80

XML Schemas into Flat XML Schemas algorithms.

4
5
6

7
8
9

14

15
16
17
18
19
26

<sp:complexType name="Supply_Part DataBases">
<sp:sequence>

<sp:element name="Suppl~· e " type="Supply_PartType"
maxOccurs="unbounded" />

</sp:sequence>
</sp:complexType>
<sp:complexType name="Sup _PartType">

<sp:element name="Part" t~oe="PartType" minOccurs="O"
maxOccurs="unboundedt' I

</sp:sequence>
<sp:attribute name="Snumb " type=" xsd:string " />

</sp:complexType>
<sp:complexType name="Part ype">

</sp:complexType>

(a) Listing to Implement Many-to-Many Relationship in
Supplier-Part-A in XML Schema

m~L"' r:
E
F
f:

A

~uw1 . .:l'"''-o.:itae-si
,·

m'"· ,,
E .

E

l:

E

A

(b) Hierarchical Diagram to Show the Implement Many-to-Many Relationship
in Supplier-Part-A XML Schema

Figure 4.7. Implementation Many-to-Many Relationship in
Supplier-Part-A Hierarchical XML Schema.

81

4.2 Comparison the NIAM Conceptual Schema and the XML Conceptual
Schema

This section discusses a comparison between the NIAM conceptual schema and

the XML conceptual schema in order to answer the research question "Can the NIAM

CSDP and the NIAM Rmap apply meaningfully to improve the poorly designed

XML Schema?" From literatures review, the researcher acquires knowledge about

NIAM conceptual schema and XML. The NIAM conceptual schema comprises three

main sections, i.e.: stored fact types, constraints, and derivation rules. There are

similarities and difference between NIAM conceptual schema and XML conceptual

schema. The similarities are in stored fact types and in constraints and differentiation is

in derivation rules.

First, the similarity in stored fact types, a main entity type (see section 2.3 (3)) in

the NIAM is similar with a complex type in the XML. In addition, a label type or value

type in the NIAM is analogous with an element XML. Furthermore, a main entity type

comprises several label types or value types similar to a complex type. A complex type

consists of several elements.

Second, the similarity in constraints, validation rules or integrity rules in the

NIAM is.implemented with uniqueness constraint and reference type (see section 2.3.).

In XML, validation rules or integrity rules are applied with key and keyref (see section

2.2 (8)). There are correspondences between uniqueness constraint and key and

between reference type and keyref. Additionally, another constraint, lists various

constraint or restriction that apply to population of the NIAM fact type is like data facet

in simple type. The example how to define value constraints in XML is discussed in

section 2.2 (10). The other important constraints beside key and keyref are minOccurs

and maxOccurs. minOccurs and maxOccurs in the NIAM is useful in mandatory roles.

82

St. Gabriel's lJhrary~ An

Related with XML, minOccurs and max:Occurs are useful in content models.

Lastly in derivation rules, although both NIAM and XML have derivation rules,

they are used for different function. In NIAM, derivation rules provide a list of

function, operators and rules that may be used to derive information not explicitly

stored in database. These may involve mathematical calculation or logical inference. In

XML, on the other hand, derivation rules are used to deriving types by extension,

deriving complex type by restriction.

In short, from the discussion above, the NIAM conceptual schema generally can

be applied to improve the poorly designed the XML conceptual schema, except

derivation role. It is not too significant. Therefore in step two CSDP, check any

arithmetic derivations, should not apply in reverse engineering algorithms.

4.3 The NIAM Conceptual Metaschema

In section 4.2, the researcher compares between the NIAM and the XML

conceptual schema. Therefore, the researcher knows what the NIAM sections can and

can not be applied in the XML conceptual schema. This section observes stored fact

types and constraints in ADO.NET as a tool in the study. Moreover, the section

presents the NIAM conceptual metaschema with the aim of creating meta tables. The

meta table will be used in the research to record fact type in reverse engineering

process and to map back the NIAM conceptual schema into the relational schemas,

XML Schema.

Section 2.4 (2) discussing every complex type in XML Schemas becomes a

DataTable in ADO.NET and every element in complex type becomes a DataColumn of

DataTable in ADO.NET. This section continues the discussion with the topic of

interest, property. The researcher compares between properties attribute in XML (see

Table 2.1.) and DataColurnn ADO.NET (see Table 2.7.) aiming to store fact types.

83

Based on two tables, the researcher examines there are several Attributes in XML,

which can be captured in DataColumn ADO.NET but quite a lot can not be captured.

The XML Attributes that can be captured in DataColumn ADO.NET are default, id,

fixed, name, nillable, and type. A correspondence between the captured XML attributes

name and properties name ofDataColumn ADO.NET is shown in Table 4.1. The XML

Attributes, however, unable to implement in DataColumn ADO.NET are abstract,

block, final, maxOccurs, minOccurs, ref, substitutionGroup, and use.

Table 4.1. The Implemented XML Attributes in DataColumn Properties ADO.NET.

XML Attribute Name Properties Name DataColumn ADO.NET

default Default Value

id Autolncrement, AutolncrementSeed, AutolncrementStep

fixed Read Only

name ColumnName

nillable AllowDBNull, minOccurs

type Data Type

Furthermore, the researcher also compares the XML facet element (see Table

2.2.) with properties DataColumn ADO.NET (see Table 2.7.). Based on two tables, the

researcher examines there is only one facet element in XML which can be implemented

in DataColumn ADO.NET but quite a lot can not be captured. The XML facet element

that can be captured in DataColumn ADO.NET is maxLength only, with the sama

name. The XML facet element, however, can not be captured in DataColumn

ADO.NET are enumeration, fractionDigits, length, maxExclusive, maxlnclusive,

84

minExclusive, minlnclusive, minLength, pattern, totalDigits, and whiteSpace.

The researcher discusses in section 4.2, how important the constraints minOccurs

and maxOccurs, beside key and keyref, in the NIAM and in the XML. In addition, there

are many XML attribute and XML facet element can be not applied in DataColumn

ADO.NET. In short, ifXmlSchemaRead which is one of ADO.NET methods is used to

read the schema into DataSet than a lot XML attributes and XML facets will be lost.

Although ADO.NET is powerful enough in conversion XML into database and vice

versa, data sort, data filter but it does not full support XML. To capture XML attribute

and XML facet element that can be not applied in DataColumn ADO.NET, it needs use

XmlTextReader method.

Furthermore, the researcher designs a NIAM conceptual metaschema to record

stored fact types and constraints. Figure 4.8. shows the created NIAM conceptual

metaschema. Later, the researcher transforms the NIAM conceptual metaschema to

meta tables that will be used in designing software tool in next section. As additional

note, meta tables are saved in myDS. Figure 4.9. appears the created meta tables. Meta

tables consist of two categories. First category is used to record XML Schema, such as

SysComplex, SysComplexElement, RelationRef, and Attribute-Facet. The second

category is used to record the NIAM conceptual schema of reengineering XML

Schema, such as Object, Fact Type, and Role.

One of category meta tables to record XML Schema is SysComplex Table. The

table is used to record every complex type in XML Schemas. The contents of

SysComplex Table are complex type name (as primary key), number of element in the

complex type, and key of complex type. In addition, SysComplexElement Table is

used to save every element in the complex type. The table consists of code element (as

a primary key), name of complex type, element name, and label type. Label type will

85

be used as reference to Object Table, to combine entity type in CSDP third step.

Moreover, RelationRef Table is used to record the table name that will be related (as

primary key), the parent table name, the primary key of parent table, the child table

name, and the primary key of child table. The other purpose of RelationRef Table is to

record documentation of the different column names from parent table and child table,

which have the same entity type. Lastly, Attribute-Facet Table is used to record

attribute elements and facets that are not covered in ADO.NET, except minOccurs. It

will be recorded in Role table. Moreover, only more than one maxOccurs should be

saved in the table. With assumption, if maxOccurs does not exit in Attribute-Facet

Table is one, the table consists of code element and code attribute or facet (as primary

keys), and value of attribute or facet.

ElementOlt:omplexType
(Element Name)

(~omplex Type'•,, '·.. __ ,,

,.··· ·-..
(PredicateName -~:·

Has predicate

Has Fact Typet Save in

<. Value ·.

"· ... --

1 Has mandatmy

Has wtiqueness

Figure 4.8. The NIAM Conceptual Metaschema.

86

Coding for Attribute-Facet Table are abstract -7 1, block -7 2, final -7 3,

max.Occurs -7 4, ref -7 5, substitutionGroup -7 6, use -7 7, enumeration -7 8,

fractionDigits -7 9, length -7 10, max.Exclusive -7 11, max.Inclusive -7 12,

minExclusive -7 13, minlnclusive -7 14, minLength -7 15, pattern -7 16, totalDigits

-7 17, and whiteSpace -7 18.

Column Name Column Type

ComJ!lexTvDe string

NumberOfColumns string
Primary Key string

(a) SysComplex Table (e) Object Table

Column Name Column Name

ElementCode PredicateCode strin
PredicateName strin
N oteFD strin
Com lexGoal strin

(b) SysComplexElement Table (f) Fact Type Table

Column Name Column Name
RoleCode

(c) RelationRef Table (g) Role Table

Column Name Column Type

ElementCode integer

Code integer
Value string

(d) Attribute-Facet Table

Figure 4.9. The Meta Tables.

87

One of category meta tables to record the NIAM conceptual schema is Object

Table. The table is used to record object type, such as entity type name, label type name

(as primary key), and data type of label type. Another table is Fact Type Table. The

table is used to save NIAM fact type of reengineering XML Schema. The table

comprises of predicate code (as primary key), predicate name, functional dependency

note, and complex type name (for forward engineering). The most important table is

Role Table. The purpose table is used to record documentation of the role that will be

played by every entity type or value type, uniqueness constraints and mandatory role

constraints. The table consists of role code, predicate code and element code as primary

keys, uniqueness, and minimum cardinality (minOccurs).

4.4 The Transforming from Hierarchical XML into Flat XML Algorithms

Duplication instances in the sub-element in Hierarchical XML cause problems of

wasting storage and maintaining consistent. In addition, at present, most companies

apply relational database application, as reference see the homepage

http://www/rpbourret.com/xml/XMLDatabaseProds.htm. Furthermore, Elmasri (1994)

says that in general the hierarchical model works well for database applications which

are naturally hierarchical. However, when there are many nonhierarchical relationships,

trying to fit those relationships into a hierarchical form is then difficult. Also the results

are often unsatisfactory. The researcher agrees with Elmasri's opinion, therefore the the

algorithm is proposed to transform the Hierarchical XML into Flat XML one in this

section.

The transformation from Hierarchical XML into Flat XML algorithms will be

separated into two major steps, i.e. transforming from Hierarchical XML Schemas into

Flat XML Schemas algorithms and converting from Hierarchical XML Documents into

Flat XML Documents algorithms. In general, the Hierarchical to Flat transformation

88

algorithm will start from level 0 (root table) to one level before the last level and from

left to right child table. In this study, a processed table in the present level is called

parent table. For example, see Figure 4.10. the top left, assume the present level is level

1. As a parent table is CHILD 12. A parent of CHILD 12 is ROOT which is called grand

parent and a child of CHILD12 is CHILD21 which is called child.

The first major step of transformation from Hierarchical XML into Flat XML

algorithms is transforming from Hierarchical XML Schema into Flat XML Schema. To

make easily inclusive about the related XML Schema, ADO.NET, and the transforming

hierarchical XML schema into flat XML schema algorithm, see Figure 4.10. For the

next discussion, the researcher draws simple block diagram as shown in the bottom of

the diagram block. The input of the process is Hierarchical XML Schemas and the

outputs of the process are DocumentDS and myDS. DocumentDS is used to record the

created Flat XML.

The algorithms to transform from Hierarchical XML Schemas into Flat XML

Schemas are:

Step 1: Read XML schema using ReadXmISchema method into OldSchemaDS.

Then load XML document into OldDocumentDS using ReadXml method. In

addition, record every attribute and facet into Attribute-Facet Table. Finally,

create a RelationReftable (see section 4.3).

Step2: In order to transform implicit to explicit relationship between element and sub­

element, aquire primary key for every complec type from the user. Follow by

save a parent table name in the level 0 into ParentNodeArr array.

Step3: Check the content ParentNodeArr array because the content in the bottom

array will be used as the processed parent table in the present level. Moreover,

it will be used as a condition loop, if the array does not empty then do step 4

89

else terminate process.

Level 0:

Level I:

Level 2:

I
I

/
/

/

0N

\
(1:1) I

/

CfllLD21

[QM
I
I

HIERARCfllCAL
XML SCHEMAS

HIERARCHICAL
XML

DOCUMENTS

._. , :I XmlTntReader H myDS (

\
(l:N) \

ADO.NET
ReadXmlSchema

ReadXml

I

I
I
I

I
I

I
I

· ReadXmlSchema
- XmlTextReader

Read Documents:
-ReadXml

Data Set
(OldScbemaDS)

Data Table Data View

I DataRow I
I DataCdumn I
I Constr&nt I

DataRelation

Figure 4.10. Transforming Hierarchical XML Schemas into
Flat XML Schemas Block Diagram.

Step 4: Read the content at the bottom of ParentNodeArr array, as a parent table

name. Then read the parent table schemas from OldSchemaDS. Furthermore,

create a new table in DocumentDS with the same name and schema as parent

table schemas in OldSchemaDS, except ChildColumns or ParentColumns

not included. Finaly, set the primary key on the new table schema with the

primary key parent table in OldSchema.

Step 5: Get every child table of the parent table in the next level. There are two

possibility statuses of the child table, as a leaf table or not as a leaf table.

Therefore, this step should check the status of the child table. Furthermore,

90

process every child from the left child table until the end of right child table

through step 6 until step 11.

Step 6: If the child table is a leaf table, then read the child table schemas from

OldSchema and create new table with the same name and schema in

DocumentDS, except ParentColumns. After that, set the primary key on the

new table schemas as the primary key child table on the OldSchema.

Afterward, check the maxOccurrs of the child table.

Step 7: If the child table is a leaf table and the maxOccurrs of the child table is

defined one then save the primary key new table into parent table as foreign

key. As well, the program must check the column name in the parent table

because the same column name can not exist in a table. For that purpose and

mapping relationship between, RelationRef table (see section 4.3) is used,

then go to Step 11.

Step 8: If the child table is a leaf, the maxOccurs of the child table is defined more

than one and duplication instance in the child table then save the primary key

of parent table into the new table as part of the primary key of the new table,

then go to Step 11.

Step 9: If the child table is a leaf, the maxOccurs of the child table is defined more

than one and induplication instance in the child table then save the primary

key of parent table into the new table as a foreign key of the new table, then go

to Step 11.

Step 10: If the child table is not a leaf table then only save the name of the child table

into ParentNodeArr for next process.

Step ll:Save the relationship between the parent table and the child table m

RelationRef table.

91

Step ll:After all child table have already been processed then delete the bottom

content of ParentNodeArr. Next, go to Step 3.

The researcher demonstrates the algorithm to Mortgage information, which XML

Schema created by Holzner. In the first step, Programs read XML schema using

ReadXmlSchema method into OldSchemaDS. Then, load XML document into

OldDocumentDS. ADO.NET will save XML schema into DataColumn. After this

process, the term complex type becomes table and term element becomes column (see

section 2.4 (2)). Finally, create a RelationRef (see table schema in Figure 4.9. (c)).

In the second step, the programs acquire primary key table from the user because

the Hierarchical XML does not define key (see the end of section 2.2). The primary key

for every table i.e.: documentDate for document table, name for mortgagee table,

loanNumber for mortgage, and name for bank Followed by save a parent table name

in the level 0, in this case, is DOCUMENT into ParentNodeArr array.

In the fourth step, document table is in the present level (level 0). Then,

programs create document table in DocumentDS. Include all columns names of the

document table from OldSchemaDS, except document_ld (see Figure 4.1. (a)). The

result document table schema shows at Figure 4.11. (a), until this process the contents

of document table are documentDate and comment. After that software tool set

documentDate as a primary key.

In the fifth step, the programs get all the child tables (the tables on level 1) of the

document table. There are three child tables, i.e. mortgagee, mortgage, and bank In

this step, the child table has two possibilities. First, the child table is a leaf, for example

mortgagee, mortgage, and bank tables. Second, the child table is not a leaf. After that,

programs process every child from the most left child table until the most right child

table through step 6 until step 11.

92

The first child, the Mortgagee table is processed along step 6 until step 11.

Because Mortgagee table is a leaf then the step sixth is processed. Programs create

Mortgagee table in DocumentDS and save all Mortgagee column names, except the

document_Id column from OldSchemaDS. In addition, programs set primary key

"name" in the creating table, Mortgagee. See Figure 4.1. (b) as a table source and

Figure 4.11. (b) as a result table. MaxOccurs Mortgagee table is defined one, therefore

programs save the primary key Mortgagee table "name" into Document table as

foreign key in the step seventh. Furthermore, in the step eleventh, save the relationship

between Document table and Mortgagee table in RelationRef table (see Figure 4.12.

(b) the first line).

Colilnm'::Nairie'·r: .. Columnr¥t>e~J::i..}
comment strin property string
documentDate date date date
name loanAmout decimal
bankname term integer

(a) Document date
loanNumber String
documentDate

(c) Mortgage

name strin
location strin
ci strin name strin
state strin location strin
hone strin ci strin

(b) Mortgagee
state strin
hone strin

(d) Bank

Figure 4.11. Flat XML Schema Result in DocumentDS.

The second child, the Mortgage table is processed along step 6 until step 11.

Since Mortgages table is a leaf then programs process the sixth step. Programs create

93

Mortgagee table in DocumentDS and save all Mortgage column names, except the

document_Id column from OldSchemaDS. In addition, programs set primary key

"loanNumber" in the creating table, Mortgage. See Figure 4.1. (c) as a table source

and Figure 4.11. (c) as a result table. MaxOccurs Mortgagee table is defined by eight

and induplication instance, then programs save the primary key Document table

"documentDate" into Mortgage table as foreign key in the step seventh. Furthermore,

in the step eleventh, save the relationship between Document table and Mortgage table

in RelationReftable (see Figure 4.12. (b) the third line).

TableName Prim
document documentDate

mort a ee name
bank name
mort a e loanNumber

(a) Table Complex Type

Relation ParentComplex ParentKey ChildComplex ChildKey

document mort2a2ee mortgagee name document name

document bank Bank name document bankname

Document mort£a2e document documentDate mortgage loanNumber

(b) Table Relational Reference

Figure 4.12. Reference Table for Transformation Hierarchical XML into Flat XML.

The third child, the Bank table is processed along step 6 until step 11. Because

Bank table is a leaf then the step sixth is processed. The programs create Bank table in

DocumentDS and save all Bank column names, except the document_Id column from

OldSchemaDS. In addition, the programs set primary key in the created table, Bank.

94

Figure 4.1. (d) shows a source table and Figure 4.11. (d) shows a result table. Because

maxOccurs Bank table is defined one, then the programs save the primary key bank

table "name" into document table as foreign key in the step seventh. However, the

column name "name" has already existed in document table so programs change the

column name to become "bankname". The end state of the document table schema is

in Figure 4.11. (a). Next step, eleventh, save the relationship between document table

and bank table in table RelationRef (see Figure 4.12. the second line).

In the twelfth step, because all child tables have already been processed then the

programs delete the bottom content of ParentNodeArr array. In this case program will

delete document in the array. The array is empty therefore programs stop the process.

The second major step of transformation from Hierarchical XML into Flat XML

algorithms is converting Hierarchical XML Documents into Flat XML Documents

algorithms. Once the Flat XML Schemas have already been created in DocumentDS,

as the table schema, they are ready to receive the data conversion (see Figure 4.13. as a

block diagram of the algorithms). The Inputs for this process are DocumentDS as table

schemas created in the previous process and OldDocumentDS that Hierarchical

Document is saved. The output of the process is filled data table schemas in

DocumentDS (see Figure 4.14.). ADO.NET DataRow will be used to get the data in a

Data Table.

The algorithms to convert Hierarchical XML Document into Flat XML

Document are:

Step 1: Get and save a parent table name on the level 0 that will be converted into

ParentNodeArr array.

Step 2: Check the content ParentNodeArr array, if the content of array is empty then

terminate the process.

95

myDS

OldDocumentDS

converting
Hierarchical XML
Documents into
Flat XML
Documents

DocumentDS

Figure 4.13. Converting Hierarchical XML Documents into
Flat XML Documents Block Diagram.

Step 3: Read parent table name in ParentNodeArr array as a present level. Repeat

Step 4 to Step 10 until all parent table data have already been read.

Step 4: Read a row data from the parent table in OldDocumentDS. After that, get the

primary key from the parent table in DocumentDS. The primary key is used

to validate the row data from OldDocumentDS. If the data still do not exit

than write the data into the table in DocumentDS, except ChildColumns and

ParentColumn.

Step 5: Check all the child tables of the parent table on the present level 'from left to

right because the child table has two possibilities state, either as a leaf table or

not as a leaf table. Therefore, this step should check the status of child table.

Step 6: If the child table is not a leaf table, then save the name of child table into

ParentNodeArr array. After all siblings are processed, the table just saved

into ParentNodeArr array will become parent table for next loop.

96

St. Gabriel's I .ihr~ry~ Au

documentDate Comment name bankname

2004-07-11 Good Hans Schmidt Niaga

2004-07-14 Good Hans Schmidt XML Bank

2005-03-02 Good risk James Blandin/ls XML Bank

(a) Document Table

name location city state phone

Hans Schmidt 123 Hallgarten Berlin 870.220.5678

James Blandino 1234 299th St New York NY 888.555.1234

(b) Mortgagee Table

Property date loanAmount term loanNumber documentDate

Bungalow 2004-07-12 50000 12 12 312234 2004-07-14

Vila 2004-07-12 55000 12 112233 44 2004-07-11

The Hackett Place 2005-03-01 80000 15 667777 88 2005-03-02
123 Acom Drive 2005-03-01 90000 15 11888822 2005-03-02

House 2004-12-25 95000 24 11122233 2004-07-11
99 West Pocusset St 2005-03-02 100000 30 33 444411 2005-03-02
19 Johnson Place 2005-03-02 110000 30 553333 88 2005-03-02

345 Notingham Court 2005-03-02 120000 30 22 666699 2005-03-02

(c) Mortgage Table

name location City state phone

Nial& 56 Sweet Street Berlin 811.110.1234
XML Bank 12 Schema Place New York NY 888.555.8888

(d) Bank Table

Figure 4.14. Flat Mortgage XML Document.

Step 7: If the child table is a leaf table, then read a row data from the child table in

OldDocumentDS. After that, get the primary key for the table in

DocumentDS. The primary key is used to validate the row data from

97

OldDocumentDS. If the data still does not exit then write the data into child

table in DocumentDS, except ParentColumns or ChildColumns. In addition,

use a DataRelation object to know the relation name between the parent

table and the child table. The relation name is used to find the column

mapping in RelationRef table. Furthermore, this step must check the

maxOccurs child table.

Step 8: If the maxOccurs child table defines one then save the primary key child

table into parent table.

Step 9: If the maxOccurs child table defines many then save the primary key parent

table into child table:-

Step lO:Delete the bottom content of ParentNodeArr array and go to step 2.

The researcher applies the transforming from Hierarchical XML into Flat XML

algorithms to Supplier-Part-A XML Schemas which the tree diagram shows in Figure

4.6. (a). The result is shown in Figure 4.15. The researcher also applies algorithms to

Supplier-Part-C XML Schemas which the tree diagram shows in Figure 4.6. (c). The

result is shown in Figure 4.16. The different while creating table schema is in Step 4

because Supplier_Part table has another column No_of_Item except ChildColumns

and ParentColumns then the program create a table ofSupplier_Part.

4.5 The Reverse Engineering from XML Schemas into NIAM Conceptual
Schemas Algorithms

A reverse engineering block diagram is shown in Figure 4.17. The inputs to

reverse engineering process are the well-formatted· XML Schemas and the well-

formatted XML Documents and also the XML Documents have already been validated

by XML Schemas (see introduced section 2.2). The CSDP procedure is used for the

reverse engineering process. The reverse engineering process employs meta tables (see

98

section 4.2 and Figure 4.9., as the output of the process see Figure 4.18.).

8number Sname Status Num City Name
81 Smith 20 London
82 Jones 10 Paris

83 Blake 10 Paris

84 Clark 20 London
8S Adams 30 Athens

(a) Supplier Table

Pnumber Pname ColorName Loe Num No of Item 8number
Pl Nut Red London 300 Sl
Pl Bolt Green Paris 200 81
P3 Screw Blue Rome 400 81
P4 Screw Red London 200 81
PS Cam Blue Paris 100 81
P6 Cog Red London 100 81
Pl Nut Red London 300 82
Pl Bolt Green Paris 400 82
Pl Bolt Green Paris 200 83
Pl Bolt Green Paris 200 84
P4 Screw Red London 300 84
PS Cam Blue Paris 400 84

(b) Part Table

Figure 4.15. Flat Supplier-Part XML Document in ADO.NET for Figure 4.6. (a).

The essential coding in the meta table are Uniqueness code and MinCardinality

code in Role Table because these codes importantly play in the forward engineering.

There are tree codes that will be used for Uniqueness code. "O" is to show the role in

the fact type. is not unique and "l" is to show the role in the fact type is single

uniqueness constraints. The last is "2" to show that the role is part of the compound

99

uniqueness constraints, with the other role make uniqueness fact type. For example

see Figure 4.18. and Figure 4.19., PredicateCode "Pl". "RI" has Uniqueness code "1"

and "R2" has Uniqueness code "O". Another example, see PredicateCode "P9", "RI 7"

and "RI 8" having Uniqueness code "2". It means compound uniqueness constraints.

Snumber Sname Status Num City Name Pnumber Pname ColorName Loe Num
Sl Smith 20 London Pl Nut Red London
Sl Jones IO Paris Pl Bolt Green Paris
S3 Blake IO Paris P3 Screw Blue Rome
S4 Clark 20 London P4 Screw Red London
SS Adams 30 Athens PS Cam Blue Paris

(a) Supplier Table P6 Cog Red London
Pl Nut Red London

Snumber Pnumber No of Item Pl Bolt Green Paris

Sl Pl 300 Pl Bolt Green Paris

Sl Pl 200 Pl Bolt Green Paris

Sl P3 400 P4 Screw Red London

Sl P4 200 PS Cam Blue Paris

Sl PS IOO (c) Part Table

Sl P6 100
Sl Pl 300
Sl Pl 400
S3 Pl 200
S4 Pl 200
S4 P4 300
S4 PS 400

(b) Supplier_Part Table

Figure 4.16. Flat Supplier-Part XML Document in ADO.NET for Figure 4.6. (c).

The other coding is MinCardinality code. There are two codes. "l" is used to

indicate mandatory and "O" is used to indicate optional. For example, see Figure 4.18.

and Figure 4.19., PredicateCode "Pl", "RI" is mandatory then set "l" in

MinCardinality. Moreover, see PredicateCode "Pl2" MinCardinality code for "R24"

is "O" as well "R25".

100

XML
SCllEMAS

XML
DOCllMIH._"tS

St. G::thrir l'o; T ihr'lr v. An

Rud Schemas:
• ReadXmlSchcma
• XmlTextReader

RClld OoaJmcnis:
-ReadXml

Transfonnation
from
Hierarchical
XML into Fl111 j

L XMI.. algorhhms - - .. - ..
I

DooumcnoDS REVERSE
ENOINEERINO

Figure 4.17. Reverse Engineering Block Diagram.

The proposed reverse engineering process will be started by checking the

u:niqueues.s comtraints, CSDP step 4. foUowed by checking key length, i.n order to

decide split fact type into an elementary fact type (see the end of section 2.3 (2)).

The algorithms to reverse engineering from XML Schemas into NlAM

conceptual schemas are:

Step 1: Read XML Schema and XML Document into Docwne.ntDS.

Step 2: Check the existing keys and references definition in XML Schema. If they

exist then go Step 4. On the other hand, if they do not exist then the programs

must discover the candidate key for every comple){ type. The discovered key

mu.~l be a minimal combination of columns where no duplicates are allowed.

To create the candidate keys, the programs use XML document as instances.

They check the possibility of the candidate keys from the first elemenl to the

end element complex type. If with one element Lhe wliqueness still does not

101

acquire then use the combination elements.

PredicateCode PredicateN rune NoteFD ComplexGoal

Pl Has Snumber 7 Sname

P3 has Snumber 7 City _Name

P6 has Status_Num ~ City_Name

P9 has Snumber+Pnumber 7 No of Item

PlO has Pnumber 7 Pname

Pll has Pnumber 7 ColorName

Pl2 has Pnumber ~7 Loe Num

(a) Fact Type Table

RoleCode PredicateCode LabelTvue Uniqueness Min Cardinality
Rl Pl Snumber 1 1
R2 Pl Sname 0 0
RS P3 Sn umber 1 1
R6 P3 City_Name 0 0
Rll P6 Status Num 0 0
R12 P6 City Name 1 1
R17 P9 Sn umber 2 0
Rl8 P9 Pnumber 2 0
R19 P9 No of Item 0 0
R20 PlO Pnumber 1 1
R21 PlO Pname 0 0
R22 Pll Pnumber 1 0

R23 Pll ColorName 0 0
R24 Pl2 Pnumber 2 0
R25 Pl2 Loe Num 2 0

(b) Role Table

Figure 4.18. End State Meta Tables (Part of Appendix D).

102

(_ Sname ~::·

Status
(Status_Nwn)

-
R2

R20 R21 __ Pname _)

Pl

RI! Rl2
has3

P6

Figure 4.19. Supplier Part Conceptual Schema Diagram.

Step 3: Request the user to decide the key from the candidate key for every complex

type.

Step 4: Check the key length for every complex type to slit the complex type, in order

to create elementary fact types. For this purpose, the functional dependency

will be employed among elements, between elements key and element non-

key, and between element part of keys and element non-key.

Step 5: Check the created elementary fact type with data from XML Document. If

functional dependency data is right then save it in the meta tables in myDS.

Step 6: Request the user to check, modify, and complete them. If users delete an

elementary fact type, then the programs delete it in the Fact Type table. After

that they delete all related rows in the Role table. If users change the

mandatory of elementary fact type, then the programs save the modification

row in the Role table. However, if users change the uniqueness of elementary

fact type, then the programs save the modification row not only in the Role

table but also save the modification row in the Fact Type table.

103

To make clear understanding, the researcher demonstrates the algorithms to

Supplier-Part XML Schema and Supplier-Part XML Document (see Figure A.3. and

Figure A.4. respectively). In the first step, the programs load XML Schema and XML

Document into DocumentDS.

In the second step, the programs check keys and references definition in XML

Schema. The XML Schema has already defined key for every complex type. For

instance, Snumber is a key for Supplier and Pnumber is a key for Part complex type.

Moreover the compound key, Snumber and Pnumber, is declared for Supplier_Part

complex type. In case the XML Schemas do not define the key, the program must

discover the candidate key. By using Data View facilities to sort the table by the first

column until the key find then the programs check the uniqueness column in the table.

In the third step, request the user to decide the key from the candidate key for

every complex type.

In the fourth, check the key length for every table. For example, Supplier table

has four columns (Snumber, Sname, Status_Num, and City_Name) and the key length

of Supplier table is one, Snumber. Therefore, the table is splitable. The possibilities

functional dependencies are Snumber -7 Sname, Snumber -7 Status_ Num, Snumber -7

City_Name. In addition, it is also possible to have functional dependency among

columns non key. Therefore, the checking will do to Sname -7 Status_Num, Sname

-?City_Name, Sname -7 Snumber, Status_Num -7 City_Name, Status_Num -7

Snumber, Status_Num -7 Sname, City_Name -7 Snumber, City_Name -7 Sname, and

City_Name -7 Status_Num. Actually functional dependency to realize the first step

CSDP, transform familiar information examples into elementary facts, and apply

quality checks. For example, Snumber -7 Sname, it is elementary fact the supplier with

supplier number "S 1" has a name "Smith" (see Section 2.3 (2)).

104

In the step fifth, check the created elementary fact type with data from XML

Document, the task to implement the second CSDP. If the relationship between entity

types is functional dependency then save it in the meta tables (see Appendix E for the

whole the instances meta tables).

Finally, in the step sixth, request the user to check, modify, and complete every

elementary fact types because not all of functional dependencies are semantically

correct, for instance see Table 4.2. For this task, user must have knowledge NIAM

conceptual framework and understand the UoD (see Figure 4.19.). The user can delete

the functional dependencies that are not semantically correct. "V'' is used to mark the

correct functional dependency. Moreover, the user also can change the relationship

between columns, for example, the application tool discovers relationship between

Snumber and Sname is one-to-one, Snumber ~~ Sname. The user can change to one-to-

many, Smimber ~ Sname. The changed meta tables are shown in Table 4.2. The final

meta tables are shown in Figure 4.18.

4.6 The Forward Engineering from NIAM Conceptual Schemas into XML
Schemas Algorithms

This section discusses the essential idea of the forward engineering process, see

Figure 4.20. as an illustration of forward engineering block diagram. The forward

engineering from NIAM conceptual schemas into XML Schemas algorithms will be

separated into four major steps, i.e. transforming the NIAM conceptual schema in the

Meta Tables into the relation schemas, converting the XML Documents in

DocumentDS to the relations schemas, writing XML Schemas, and writing XML

Documents.

105

St. Gabriel'<; Library, Au

Table 4 .2. Correcmess Suppliers and Parts Functional Dependency.

Table Name

Suppliers

Suppliers-
Parts

Parts

Note FD Correct

Snumber ~7 Snarne

Snumber 7 Status_Num

Snumber 7 City_Name

Sname 7 Status_Num

Sname 7 City_Name

Status_Num ~7 City_Name

Snumber+Pnumber 7 No_of_ltcm

!'number 7 Pname

Pnumber 7 ColorName

Pnumbcr 7 Loc_Num

r ---,
I REVERSB L _ _ Doc:umcruDS
IENGTNEERl'NGI
-- ,-J

mrD$:
SyaCompfa
Sy•ComploxEJament
Rolo(lon,._,
Allrib!l ... F...i
o~
FOCI TyPo

R<>I•

FORWARD
£NGJNEERING

OS

v

v

v

v

v

v

v

Correction FD

Snumber 7 Sname

Status_Num ~ City_Name

Pnumber ~7 Loc_Num

XML
SCHEMAS

(New)

XML
OOCUMENTJ

(Now)

Figure 4.20. Forward Engineering Block Diagram.

106

The first major step of forward engineering from NIAM conceptual schemas into

XML Schemas algorithms is transforming the NIAM conceptual schema from the

Meta Tables into the relation schemas. The created Meta Tables in myDS and XML

Schema and XML Document in DocumentDS from the reverse engineering process

are the input to the forward engineering process. Rmap procedure is used for the

process transformation. The transformed XML Schema and the converted XML

Document are temporarily saved in DS before they are written into XML Schema and

XML Document.

Conceptually the Rmap procedure works by grouping fact type into table schema

(see Section 2.3 (3) and Figure 4.21.). Figure 4.21. gives an illustration how Rmap

procedure is adopted in this research. Moreover, Figure 4.22. shows how to map the

NIAM Schemas in Meta Tables into Relational Schemas.

The transforming NIAM conceptual schema in the Meta Tables into the relation

schemas algorithms are:

Step 1: Create a DataView with the name MainObject from Role Table for single

uniqueness constraints. To create the single uniqueness constraints,

MainObject must be sorting and flltering. Sort the Role Table by

LabelType, Uniqueness, and MinCardinality columns with descending

order. In addition, fllter the table by criteria "Uniqueness=l". The group of

rows by LabelType in MainObject will become a main entity type.

Step 2: Create the other Data View with the name ObjectType from Role Table in

order to search out all entity types of a main entity type.

Step 3: Create a table for every main entity type. Every row in ObjectType, without

dupli'cation LabelType, will become a column in the created table. For this

purpose, check the mandatory, if it is "O" then the row directly become a

107

column. Otherwise check whether object type has another functional role.

Based on LabelType in ObjectType find column name and type in

SysComplexElement Table. Then save the created table in FactType Table,

column ComplexGoal. Finally create a pnmay key for every

Uniqueness="l ".

108

M.Cb.i:

RI

R2

1111

~*'
Pl

Pl

P.l

Rdc(blc ~i L>lxfl\g

Rta .· · ~
RI? .. P9 •. .
Rl9 IPJ b rLllan

' - \....flUTRll-9!---i-f
-· ~ ·

... -
-.~

(h llUrc

SU1f1,1t
(~~u,_N11m)

Pl
, .. t.• . .

l :• ,. . . I

(I

((

Rl2

... , ••
:

.. .
•
I

~·

c
I

I

PIO

Pl I
~

IUO . f'IO
lt.ll PIO

IW Ptl

l l.K.lllOI\
!l.ot, S•l!l)

Figure 4.21 Grouping the Elemenla!) Facr Types in Meta Tables by the Main Entity Type.

-
I I
0 0

......
0

Single Uniqueness Constrains

Role
RoleCode -~-.,·~- Unioueness MinCardin"1'*"'
R22 Pll Pnurrber 0
R20 PIO Pnunt>er
Rl2 P6 Nam:
RI Pl Snuni>er
R5 Pl SnunDcr

Compound Uniqueness Constraints
Role

RoleCode
R24 Pl2 Pnunix:r
R25 P12 Loe Num
R17 P9 Snunix:r
R18 P9 Pnunt>er

SvsComplexElement
El;ment!:;ode ComplexType ElementOfComplexType

1 Suoolier Sn umber
2 Supplier Sname
3 Suoolier Status Num

4 Supplier City Name

5 Supplier Part Sn umber

6 Supplier Part Pnumber

7 Suoplier Part No of Item

8 Part Pnumber

9 Part Pname

10 Part ColorName

11 Part Loe Num

Grouping elementary Fact Type per Main Entity Type
(NIAM Conceptual Schemas as Meta Tables)

Part Main Entity Type

RoleCode PrcdicateCode ~ Uniqueness MinCardinahty

iµ:<i/:>::: ~i~:::::::::::::: ptj~;;.;.;;i:::::: ::::::::>>>i ::::::::<::::::::<1
R21 PIO Pname

R23 Pll ColorName

City Main Entity Type

Relational Schemas

Part Table

Colunn Nrun: e
Pn mber Strin
Pnrun: Strin
ColorNrun: Strin

City Table

RoleCode PredjcatcCode---i 1 - 1--1T-·-- Uniqueness MinCardinality I Column Name
~i.i:::<::< ~~:::::::<::::-:r,:,~;:1'(~;;.:~:: :-::>:::<:::i: :>>:<:::>:<<::(::: itv N·-·

Cohnnn Tvne I
Strim1

RI! P6 Status Num !Status Nwn IStrin11

Supplier Main Entity Type Supplier Table

RoleCode PrcdicateCode ~ Uniqueness MinCardinality Column Name Colmnn Tvne
iti<:: :::: :: :: i>i< <<·:-:-:-:-: •ifi.bii.~t'.:'.:: :-:-:::-::: ·: ·i· · >>::: :::: · :-:-: <1 l-:S-:'·n~wn=:1h::.:oer===-1-:S;:tn:.;,n:::111=::...:.=:...i
R2 Pl Sname o o;,...l-'s,,,n::ame::=,----1.:;Stri::..;::'" .._a __ 4
R6 P3 City Name ._C._i""-tv._N_.ame-'-''---"'S._tn_'n_,111~---'

P Loe Main Entitv Tv Je P_LocTable

RoleCode PredicateCode ~ Uniqueness MinCardinality _ I Column Name I Column Tvoe I
- Pnumber IStrin2

ILoc Num IStrin2

Supplier_Part Table
Column Name ColumnTvoe

Snwnber Strin2
Pnumber Strine

Rl9 P9 No of Item
No of Item lnt64

Fact Tvne

ElementTyoe LabelTvne !'nl!li~ateCode PredicateName Note FD ComplexGoal

Svstem.Strin• Sn umber Pl Has Snumber 7 Sname Sunn lier

System.Strin2 Sname P3 has Snumber 7 City Name Snnnlier

Svstem.String Status Num P6 has Status Num ~ City Name Suoolier

Svstem.String Citv Name P9 has Snumber+Pnumber 7 No of Item Sunnlier Part

System.String Sn umber PIO has Pnumber 7 Pname Part

Svstem.Strin2 Pnumber Pll has Pnumber 7 ColorName Part

System.Jnt64 No of Item Pl2 has Pnumber ~7 Loe Num p Loe

Svstem.Strin2 Pnumber

Svstem.Strin2 Pname

System.String Color Name

Svstem.Strin2 Loe Num

Figure 4.22. Mapping NIAM Schemas in Meta Tables into Relational Schemas.

Step 4: Create a Data View with the name MainObject from Role Table for

coumpound uniqueness constraints. To create the coumpound uniqueness

constraints, MainObject must be sorting and filtering. Sort the Role Table

by PredicateCode and LabelType columns with ascending order. In

addition, filter the table by criteria "Uniqueness=2". The group of rows by

PredicateCode in MainObject will become a main entity type.

Step 5: Create the other DataView with the name ObjectType from Role Table for

every main entity type with compound uniqueness constraints in MainObject.

Step 6: Create a table for every main entity type. Every row, without duplication

LabelType, in ObjectType will become a column in the created table. Based

on LabelType in ObjectType, find table name, column name, and column

type in SysComplexElement Table. After that, save the created table name in

FactType Table, column ComplexGoal. Finally create compound primary

key based on the row with Uniqueness="2".

The researcher demonstrates the algorithms to meta tables in myDS. In the first

step, since each relational table stores one or more elementary fact types, therefore, the

software tool must know what elementary fact types have functional roles that attached

to the same object type, and the main entity type. For this purpose, the Role Table is

sorted and filtered. For example, to find the main entity types with single uniqueness

constraint, sort the Role Table by LabelType, Uniqueness, and MinCardinality

columns with descending order. In addition, filter the table by criteria

"Uniqueness=l". Figure 4.23. (a) shows the result of the process. There are tree

groups, i.e. group with LabelType "Pnumber", "City_Name", and "Snumber".

Moreover, the Figure shows the first group has two fact types with PredicateCode

"Pll" and "PlO". However, the second group only has one fact type with

111

PredicateCode "P6". The third group also has two fact types with PredicateCode

"Pl" and "P3". Furthermore, the table showing the LabelType will become a primary

key, indicated by Uniqueness "l".

RoleCode PredicateCode LabelTvne Uniqueness Min Cardinality

R22 Pll Pnumber 1 1
R20 PIO Pnumber 1 1

R12 P6 City_Name 1 1

Rl Pl Sn umber 1 1
RS P3 Sn umber 1 1

(a) Main Entity Types with Single Uniqueness Constraints

RoleCode PredicateCode LabelTvne Uniqueness Min Cardinality
R20 PIO Pnumber 1 1
R22 Pll Pnumber 1 0
R21 PIO Pname 0 0
R23 Pll ColorName 0 0

(b) Main Entity Type for the First Group (LabelType "Pnumber")

} First
Group

Se cond Group

>-
Second
Group

Figure 4.23. Grouping Fact Type for the Single Uniqueness Constraints.

In the second step, to discover all elementary fact types, for instance the first

group with LabelType "Pnumber", filter the Role Table with the PredicateCode in

the first group. See Figure 4.23. (b) as a result of the process.

The third step, the table is used as base to transform Meta Tables into relational

schemas. Al1 MinCardinality are "0" except the first line. The first line, with

Uniqueness and MinCardinality "l", is the uniqueness constraint. The other lines

directly become a column of table.

In the step fourth, to find the main entity types with compound uniqueness

112

constraint, sort the Role Table by PredicateCode and LabelType columns with

ascending order. In addition, filter the table by criteria "Uniqueness=2". Figure 4.24.

(a) shows the result of the process. There are two groups, i.e. group with

PredicateCode "Pl2" and "P9". Every row with Uniqueness=2 will become part of

compound uniqueness constraints key. The table is used as base to transform Meta

Tables into relational schemas in the step sixth. At the end of the algorithms, relational

schema in the fifth normal form in the most top right Figure 4.22 is created.

RoleCode PredicateCode LabelTvoe Uniqueness Min Cardinality

R25 P12 Loe Num 2 0
R24 P12 Pnumber 2 0

.
R18 P9 Pnumber 2 0
R17 P9 Sn umber 2 0

(a) Main Entity Types with Compound Uniqueness Constraints

RoleCode PredicateCode LabelTvDe Uniqueness MinCardinality
R18 P9 Pnumber 2 0
R17 P9 Sn umber 2 0
R19 P9 No of_ltem 0 0

(b) Main Entity Type for the Second Group (PredicateCode "P9")

>-
First
Group

>-
Second
Group

Figure 4.24. Grouping Fact Type for the Compound Uniqueness Constraints.

As mentioned in section 2.7, the researcher adopts the transformation of NIAM

conceptual schema into XML Schema with modifying the one-to-one relationship

transformation proposed by Chankuang and Suphamit. Figure 4.25. shows how to map

one-to-one relationship from conceptual schema diagram to relational schema. It is

discussed in section 2.3 (3) Figure 2.16. In this discussion, the researcher wants to

113

St. Gabriel's I Jhrary, Au

shows how map one-to-one relationship from meta table to relational schema with

considering default procedure for mapping one-to-one fact type.

Pl

R2 RI

has I

RoleCode
RI Pl
R5 P3
R2 Pl
R6 P3

Pl

Sname R2 RI

has!

Pl

Pl

••
R5 R6 Rl2

has2

Uni ueness Min Cardinali
I

0 RoleCode PredicateCode La I
R6 P3
R.12:::;::::~:::;:;:;:::;:;::

Pl
• 4

R5 R6 Rl2

has2

RoleCode J>o....Ai ... <>+J"""n.de 1 •'-eITvne Uninueness MinCardinalrtv
RI Pl Sommer I I
R5 P3 Snurrber I 0
R2 Pl Snarne 0 0

R6 P3 I""' N·~ I 0

City(City Name S""mber, Status_Num) Supplier(~ Snarne) or

City(City Name Status_Num) Supplier(~ Clty_Name, Sname)

Pl

P6

Rll

bas3

P6

Rll

has3

P6

R5 R6 Rl2 RI!

has2 has3

RoleCode PredicateCode Labe!Tun• Uniaueness MinCardinalitv
RI Pl Snumber I I IRoleCodelPredic~_,..-del labeITune IUniauenesslMinCardinalitvl
t-R5---+-p-3---~s"""nu'""m"'b-'-er'---+----+-----1""i-+-Jl~f:::;:: ::IJif:< ::::/~iiiTj;j;t::::;:i;;>:;:::;:: 'IT:: :;:;:;: ': :;)I
i.:R2=-----+'P:..:l ___ -+:S:::•::::•me=---1----0"l------"lo IRS IPJ lsnurrber I .11. 11
R6 P3 Citv Name 0

City(City Name Status_Num) Supplier(Snumber Clty_Name, Snarne)

Pl P3
• 4

R2 R5 R6

P6 -Rl2 Rll

has2 has3

RoleCode Predicat-"-•e I oho[fune Uniaueness MinCardinalitv
RI Pl Snurrber I I
R5 PJ Snurrber O I RoleCode I PredicateCodo I Lah•rfun• I Uniaueness IMinCardinalitv I
R2 Pl Snarne O O IR6 IPJ Wrtv Narne l il 1 I
~R6;;;:__-=P3'------'-"a~·1v<...:.,;N=arne=-...._ __:.i.. ___ __..:J1!J---t"i!!!~''S''i'''W'~~::s''i':i:::i::j:::i::1':1 ~·9:~"-J:i\i.i~:"~;;,;;"t":J::1t:'2>s·::i::i:::~:']'lli::i"i"j'''i"i::i::ill)I

City(Cjty Name S""mber, Status_Num) Supplier(~ Snarne)

Pl Pl P6
4 • 4

Snarne R2 RI Rl2 Rll

has I has3

City(Cjty Name Status_Num) Supplier(~ City_Name, Snarne)

Figure 4.25. Mapping One-to-One Relationship for Supplier and City Meta Table
into Relational Schema.

114

While MinCardinality is "1" then the software tool must check whether the object

type (LabelType) in the one-to-one predicate has another functional role. If it has

another functional role, then group on its side.

The second major step of forward engineering from NIAM conceptual schemas

into XML Schemas algorithms is converting the XML Documents in DocumentDS to

the relations schemas (see Figure 4.26.). Once the relational schemas created from the

previous major algorithms, they are ready to receive the data conversion. The XML

Documents that have already loaded into DocumentDS from reverse engineering

process as the input of the conversion process, whereas, the output of the process is the

filled tables in DS (see Figure 4.27.).

Sunnlicr-Part Table
Snuml.. """""' No Gfllan
SI Pl 300
SI P2 "" SI P3 "" SI "' 20(

SI PS '" SI P6 100
Part Table
Pnumbor Pname Colo.Name Loe Num
Pl Nut Red Londoo S2 Pl 300

P2 Boll Green Paria S2 P2 400

P3 &niw Blue Rome S3 P2 20()

P4 Screw Red London S4 P2 20()

PS Cam Blue Paria S4 "' 300
P6 Cna Red London S4 PS 400

DocurnentDS

FORWARD
ENGINEERING

lpsy Name I status Num I
!squmbsr)Ppumber INo of Item I

IPnumber IPname IColorNamel

IPnumbedLoc Num I

Figure 4.26. Conversion Data to New Relation Schemas.

Converting the XML Documents m DocumentDS to the created relations

schemas algorithms are:

Step 1: Obtain the table name, the table schemas, and the table primary key that will

be filled, and the table name of the source data.

Step 2: Validate the rows source data by the primary key in the filled table. While they

are still not existing in the filled table then save the columns source data in the

115

corresponding columns of the filled table.

Sn umber Sname City Name Snumber Pnumber No of Item

Sl Smith London Sl Pl 300
S2 Jones Paris Sl P2 200

S3 Blake Paris Sl P3 400

S4 Clark London Sl P4 200
SS Adams Athens Sl PS 100

(a) Supplier Table Sl P6 100
S2 Pl 300

Citv Name Status Num S2 P2 400

London 20 S3 P2 200

Paris 10 S4 P2 200

Athens 30 S4 P4 300
S4 PS 400

(b) City Table
(d) Supplier_Part Table

Pnumber Pname ColorName
Pl Nut Red Pnumber Loe Num
P2 Bolt Green Pl London
P3 Screw Blue P2 Paris

P4 Screw Red P3 Rome

PS Cam Blue P4 London
P6 Cog Red PS Paris

P6 London
(c) Part Table

(e) P Loe Table

Figure 4.27. Filled Normalize the Fifth Normal Form Supplier Part Tables.

The third major steps of forward engineering from NIAM conceptual schemas

into XML Schemas algorithms is writing XML Schema algorithm. Figure 4.28. shows

the block diagram for writing XML Schema from DS. The input to this process is DS

and myDS created from two previous algorithms. The output of the process is XML

Schemas (see Figure B.3. and Figure B.4. for the created Supplier-PartNew XML

Schema and the created Supplier-PartNew XML Document respectively).

116

OS

myDS

Writing XML
Schema

XML
Schema

Figure 4.28. Writing Flat XML Schema Block Diagram.

The algorithm for writing XML Schemas:

Step 1: Define XML declaration.

Step 2: Define <xsd:schema> element, which is the element root of all XSD schema

documents. In addition, on the <xsd:schema> element a namespace declaration

for the XSD schema namespace is also declared. By default in software tool

the name of element is "NIAM"

Step 3: Define complex type for every table in DataTable. The table name becomes

the complex type name. Moreover, very column in DataColumn for each table

in DataTable becomes element name of the complex type. In addition, very

data type column in DataColumn for each table in DataTable will become

element type of the complex type.

Step 4: Define the end tag element root, i.e.: </xsd:choice> and </xsd:complexType>.

Step 5: Define the key for every complex type with the following sub step, first define

the name attribute of key element with the complex type name and additional

suffix Key. After that, define selector element with assigning xpath attribute

with the complex type name. Finally, define field element with assigning

xpath attribute with the attribute name of the elements, which are assigned·. as

117

primary key. In case a complex type has composite key, it has just defined

field element more than one.

Step 6: Define references for every complex type with the following sub step. First,

define the name attribute of keyref element with the relation name (as source

see Figure 4.29. (a), Relation column), followed by defining refer attribute

with the name attribute of the key element that will be referred (as source see

Figure 4.29. (a), ParentComplex column with additional suffix Key). After

that, define selector element with assigning xpath attribute with the name of

child complex (as source s~e Figure 4.29. (a), ChildComplex column). Finally,

define field element with assigning xpath attribute with the name of child key

(as source see Figure 4.29. (a), ChildKey column).

Step 7: Define the end tag schema, i.e.: </xsd:element> and </xsd:schema>.

The researcher demonstrates how algorithm work, it is discussed by example with

difference approach conducted by Chankuang and Suphamit (see section 2.6). They use

conceptual schema diagram while the researcher uses relational table created from meta

tables, but it is similar (see Figure B.3. for full listing of Supplier_PartNew XML

Schema). The researcher will separate the lines of listing into group of lines, as they are

discussed in the step.

The first step, the software tool writes XML document declaration, such as:

<?xml version="l.O" encoding="utf-8" ?>,in the first line of XML Schema.

The second step, the software tool writes the <xsd:schema> element looks like

below:

2 <xsd: schema xmlns: xsd="http: I /www. w3. org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

3, <xsd:element name="NIAM" msdata:IsDataSet="true"
msdata:EnforceConstraints="true">

4 <xsd:complexType>
5 <xsd:choice maxOccurs="unbounded">

118

Relation ParentComplex ParentKey ChildComplex ChildKey

Suoolier Suoolier Part Supplier Sn umber Supplier Part Sn umber
Supplier Part Part Part Pnumber Supplier Part Pnumber
Supplier City City City Name Supplier City Name
P Loe Part Part Pnumber P Loe Pnumber

(a) RelationRefTable in ADO.NET

73 <xsd:keyref name="Supplier_Supplier_Part" refer="SupplierKey">
74 <xsd:selector xpath=".//Supplier_Part" />
75 <xsd:field xpath="Snumber" />
76 </xsd:keyref>
77 <xsd:keyref name="Supplier_Part_Part" refer="PartKey">
78 <xsd:selector xpath=".//Supplier_Part" />
79 <xsd:field xpath="Pnuritber" />
80 </xsd:keyref>
81 <xsd:keyref name="Supplier_City" refer="CityKey">
82 <xsd:selector xpath=".//Supplier" />
83 <xsd:field xpath="City_Name" />
84 </xsd:keyref>
85 <xsd:keyref name="P_Loc_Part" refer="PartKey">
86 <xsd:selector xpath=".//P_Loc" />
87 <xsd: field :{path="Pnumber" />
88 </xsd:keyref>

(b) KeyRefDefinition for Relation Definition in XML Schema

Figure 4.29. Defining KeyRef in XML Schema.

The third step, the software tool creates a complex type schema for every table

schema in DataColumn DS (see Figure 4.30. (a)), Supplier table has column

Snumber, Sname, and City_ Name. The columns name becomes name attribute for each

element (see Figure 4.30. (b)). Furthermore, columns type become type attribute (see

Figure 4.30. (b)). To write the other complex type schemas use the same way, see

Figure 4.22 the top most right tables, Relational Schema 5NF. To write Part complex

type, see the first schema table and the XML schema see Figure B.3. line 15 until line

23. Next, to write City complex type, see the second schema table and the XML

119

schema see Figure B.3. line 24 until line 31. In addition, to write Supplier_Part

complex type, see the last schema table and the XML schema see Figure B.3. line 32

until line 40. Finally, to write P _Loc complex type, see the fourth schema table and the

XML schema see Figure B.3. line 41 until line 48.

Column Name Column Type
Sn umber String
Sname String
City Name String

(a) Supplier Table Schema in ADO.NET

6 <xsd:element name="Supplier">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="Snumber" type="xsd:string"/>

10 <xsd:element name="Sname" type="xsd:string" />
11 <xsd:element name="City_Name" type="xsd:string" />
12 </xsd:sequence>
13 </xsd:complexType>
14 </xsd:element>

(b) Supplier Table Schema in XML Schema

Figure 4.30. Defining Supplier Table Schema as a Supplier Complex Type.

The fifth step, define the key for every complex type. For instance see Figure

4.31. (a) the first line, the table name is Supplier and the primary key for that table is

Snumber. The software tool writes XML Schema such as in Figure 4.31. (b) line 51

until 54. It writes key element with name attribute of Supplierkey, and after that,

writes selector element with xpath attribute "J/Supplier". Finally, it writes field

element with xpath attribute Snumber. To define the other key use the same way

above.

120

The last major steps of forward engineering from NIAM conceptual schemas into

XML Schemas algorithms is writing XML Document algorithms. Figure 4.32. shows

the block diagram for writing XML Document from DS. The input to this process is DS

created from the two first major steps of forward engineering from NIAM conceptual

schemas into XML Schemas algorithms. The output of the process is XML Documents.

The algorithm for writing Flat XML Document are:

TableName Primary Key

Supplier Sn umber

Part Pnumber

City City Name

Supplier Part Snumber+ Pnumber

P Loe Pnumber+ Loe Num -

(a) ComplexType Table in ADO.NET

51 <xsd:key name="SupplierKey">
52 <xsd:selector xpath=".//Supplier" />
53 <xsd:field xpath="Snurnber" />
54 </xsd:key>
55 <xsd:key name="PartKey">
56 <xsd:selector xpath=".//Part" />
57 <xsd:field xpath="Pnumber" />
58 </xsd:key>
59 <xsd:key name="CityKey">
60 <xsd:selector xpath=".//City" />
61 <xsd:field xpath="City_Name" />
62 </xsd:key>
63 <xsd:key name="Supplier_PartKey">
64 <xsd:selector xpath=".//Supplier_Part" />
65 <xsd:field xpath="Snumber" />
66 <xsd:field xpath="Pnumber" />
67 </xsd:key>
68 <xsd: key name="P _ LocKey">
69 <xsd:selector xpath=".//P_Loc" />
70 <xsd:field xpath="Pnumber" />
71 <xsd:field xpath="Loc_Num" />
72 </xsd:key>

(b) Key Definition in XML Schema

Figure 4.31. Defining Key in XML Schema.

121

Step 1: Define XML document declaration, i.e. version, encoding, and standalone.

Step 2: Define the start root element with the name of DS, followed with the name

space of XMLSchema-instance and lastly the location and name of XML

Schema.

Step 3: Define a complex type instance for every row in DataTable alongside with

each complex type schema. The table name will become the start and end tag

complex type name. Moreover, every column name in DataColumn for each

table in DataTable will become the start and end tag element name of the

complex type.

Step 4: Define the end root element, i.e.: <NIAM>. As a notice the name of end root

element must same with start root element.

DS Writing XML
Document

XML
Document

Figure 4.32. Writing Flat XML Document Block Diagram.

To show how algorithm works, the research discusses it by example. See Figure

B.4. for the full listing of Supplier_PartNew XML Document. The researcher will

separate the lines of listing into group of lines, as they are discussed in the step.

The first step, the software tool writes XML document declaration, such as:

<?xml version=" LO" encoding="utf-8" standalone="yes"?>, in the first line of XML

Document.

The second step, the software tool writes the start root element in the second line

122

of XML Document, such as: <NIAM xmlns:xsi=http://www.w3.org/2001/XMLSchema

-instance xsi:noNamespaceSchemaLocation="MortgageNew.xsd">. It gives the name

of root element "NIAM", however the value of noNamespaceSchemaLocation depend

on the name of XML Schema processing.

The third step, the software tool creates a complex type instance for every row in

DataTable alongside with each complex type schema. For example, Figure 4.33. (a)

shows the instances in Supplier table. The table has column names, i.e. Snumber,

Sname, and City_Name. The column name is used as the start and end tag element, as

a container for a column data, for instance <Sname> ... </Sname>. Furthermore, the

table name will become the start and end tag complex type name, as a container for a

row data, for example <Supplier> ... </Supplier>. Figure 4.33. shows the definition of

the instances Supplier table in XML Document. To define the other instances see

Figure 4.27 and Figure B.4. To define instance City, see Figure 4.27. (b) and XML

Document line 58 until line 69. Next, to define instance Part, see Figure 4.27. (c) and

XML Document line 28 until line 57. Moreover, define instance Supplier_Part, see

Figure 4.27. (d) and XML Document line 70 until line 129. Finally, to define instance

P_Loc, see Figure 4.27. (e) and XML Document line 130 until line 153.

4. 7 Input Design and Output Design Software Tool

This section discusses input and output design to support designing software tool.

There are two kinds of design, i.e. input design and output design. The input designs

are Main Menu, Analysis Sub Menu, Show Sub Menu, XDS Open File Dialog,

Fransform Hierarcy to Flat XML, XML Schema Information, NIAM Conceptual

Schema, Confirmation Deletetation Fact Type, and Modifying and Confirmation Fact

Type Information. The output design is Display XML File.

123

Snumber Sname City Name

Sl Smith London

S2 Jones Paris
S3 Blake Paris

S4 Clark London
SS Adams Athens

(a) Supplier Table Instance in ADO.NET

3 <Supplier>
4 <Snumber>Sl</Snumber>
5 <Sname>Smith</Sname>
6 <City_Name>London</City_Name>
7 </Supplier>
8 <Supplier>
9 <Snumber>S2</Snumber>

10 <Sname>Jones</Sname>
11 <City_Name>Paris</City_Name>
12 </Supplier>
13 <Supplier>
14 <Snumber>S3</Snumber>
15 <Sname>Blake</Sname>
16 <City_Name>Paris</City_Name>
17 </Supplier>
18 <Supplier>
19 <Snumber>S4</Snumber>
20 <Sname>Clark</Sname>
21 <City_Name>London</City_Name>
22 </Supplier>
23 <Supplier>
24 <Snumber>S5</Snumber>
25 <Sname>Adams</Sname>
26 <City_Name>Athens</City_Name>
27 </Supplier>

(b) Supplier Instance from Figure B.4. Supplier_PartNew XML Document

Figure 4.33. Defining the Instances Supplier Table in XML Document.

Main menu software tool appears in Figure 4.34. The main menu content two sub

menu, i.e. analysis and show, see Figure 4.35. and Figure 4.36. respectively. From sub

menu analysis, users can select the XML Schemas file that will be analyzed through

XSD Open File Dialog in Figure 4.37. Software tools analyze the selected XML

124

St. GahrirJ's Lihrary, Au

Schemas to know Hierarchy or Flat XML. If software tools detect the file is Hierarchy

then software tools ask the user to select key for every complex type (see Figure 4.38.).

To show XML Schema Information and if it is needed the user is requested to select the

key for every complex type (see Figure 4.39.). Furthermore, the reverse engineering is

shown in Figure 4.40, NIAM Conceptual Schema Screen. That screen also can delete

or modify fact type. To confirm deleted Fact Type the user must answer the dialog that

shows in Figure 4.41. Users can modify uniqueness and mandatory constraint in the

screen that shows in Figure 4.42.

In this software tools, the researcher only designs output to the screen. There are

several reasons. First, the output XML Schema and XML Document are not used for

documentation but they will be transferred. Second, because XML Schema and XML

Document are text file therefore they can be printed by every word processing.

--

A CowcepthullilD Sclln®mlil App:rolilclh1
foir XML §clb1emmlil De~ngim

\\lelcomaloA.~Schmn&~fu>OotLSchlimaSdtw.nTook

;(,";" '"",· ! ~

Figure 4.34. Main Menu.

125

•

Cop)'r!xht 2004
Chila.111 Yeaty Y •
• <\sloe. rrot Dr. Svphamlt C.

A Coimc<.epthlnanB Sclhltemmm Appiromclhl
ir®Il" XML §clln<.emman Dte§B~

•
Figure 4.35. Analysis Sub Menu.

A CoIID~<epthlnanD Sclhl<emmftll Appiroftllclh1
ir®ir XML §cllneman D®§fi~

Wllkome to A Conceplual Scheme Approach for XML Scheme S~ T oob •
Figure 4.36. Show Sub Menu.

126

Ct>p)'rigbt 2004
CMllalll\'tatyV.
Anoe. Prof. Dr. SupUmtr C.

Copyright 2004
ChtliAai \'taay Y.
!\decc, Prof. Dr. Suph11mlt (',

looi:;., lu""'' .:J <lo ~ct&:!·

' \\jl\>~ud

~ a-~x.i
lolyR...,. ~S.-·P¥1. «d
D...-. ~~.P~t.-.»"'lloM""'V'A~'J4

LJ "1~ P0tt"°"'ro:·1>->1 c....i
~-P•U<-w.osd

Dctl:l.., !:i~·••t<l<l•<d

1-1
"''°"'

"'~
'.).
~

"'"~
, .. _ • o,.,.

Pb<e<
Rosol~ fJGDit.1fndj ::!] !:-'

Figure 4.37. XSD Open File Dialog.

Complex Twes: Simple TypllS/Aaribule5:

do~OI<> -----.........

Figure 4.38. Transform the Hierarchical to !he Flat XML.

U7

"(l<Jll>ell!ll~IY.!•""·~~- -----~--------- _ -·- _ --~------....,...~ ~

_ .. 1 1 - J

i5:... -
•

..,., ~.-.=~------

•
"

~.r no•.­-_ •1-- ~ ~
""""" -......., __
.....,...,_
"" -.......
"' --"" ...__

Figure 4.39. XML Schema Information.

- .. 1 1 I
,.__.,.._ .,.,., ___...._, t
_l ~

-....... , ...

·--

-- ~:--·! ..

Figure 4.40. NIAM Conceptual Schema.

128

......... ~ -·­·­·­-----,_., ._ ... --
'"""r ---c..i.---........ ----...,..

J

~.I:~i::::::::::::::;;=::::::::::::::;:::::::::::========i:=::LlLiE:::a~
! - ' ,_I -·

, ,...

·--

• r.,.-.. ~
~· -."-.. - ·­~""""·"""' ,..

::ri!,HJ ~l·~r ""'L"""-"- 1 _ .·ro :· _ J

Figure 4.41. Confim1ation the Deleting Fae! Type .

... ~ .. I - I

,,.. .__ ...

r

fii.ifO& ij tr J '

,-~
· ... re .. c:~

-
ifJill!P , 141 'F'H ;:e ~.¢? ii 1

Figure 4.42. Modification and Confinnation Fact Type Information.

129

1W&M'%1

Figure 4.43. Displaying the Original XML File.

Figure 4.44. Displaying the Produced XML File.

130

V. SYSTEM EVALUATION

5.1 Evaluation to XML Editors

The recent XML Editors give a basic XML syntax error to indicate the XML

Schemas and XML Documents are well-formed. Several XML Editors give a feature to

validate an XML Document against a XML Schema. However, no XML Editor has

capability to provide information about the correctness or incorrectness of the created

XML Schema nor normalizes the XML Schema.

In this study, the researcher uses XMLwriter as XML Editors to check well­

formed the XML Schemas and to check well-formed and validate the XML

Documents. The XML writer is quite good for checking, however it does not have

feature to convert data from database to XML Schemas and XML Documents and also

it is not good to visualize XML Schemas and XML Documents. To visualize them, the

researcher uses Microsoft's Visual Studio .NET.

With limitation XML Editors, in evaluation to the created XML Schemas and

XML Documents the researcher just can prove the outputs are well-formed and

validated. The researcher can not prove the correctness of XML Schema. However,

since the researcher follows the recommended XML Schema by W3C, it is guaranteed

that the outputs are correct. Moreover, while XML Editors nor Database application is

not over the feature to normalize the XML Schema, it is a good opportunity and

challenge for researcher to enrich them.

5.2 Evaluation to VB.NET and ADO.NET

First problem, the researcher discusses attribute and data facet XML that can not

be captured into DataColumn using ReadXmlSchema method ADO.NET in section 4.2.

There are several attributes in XML can be captured in DataColurnn ADO.NET but

131

quite a lot can not be captured. In addition, there is only one facet element in XML can

be captured in DataColumn ADO.NET but quite a lot can not be captured. Therefore

some information will be lost. For example, maxOccurs and minOccurs attributes can

not be captured in DataColumn. However, maxOccurs attribute plays important role in

transforming Hierarchical XML to Flat XML. Furthermore, minOccurs is very

important in forward engineering process.

The second problem, Holzner (2004) says that not many XML processors support

schemaLocation attribute yet, such as VB.NET but Internet Explorer and

XMLwriter do. With defining· XML Schemas in XML Documents while XML

Documents is loaded to Dataset using Read.Xml method and XmIReadMode "Auto".

VB.NET automatically loads XML Schemas. However, VB.NET does not

automatically load XML Schemas. Therefore, XML Documents become text file and

do not mind the defined data type in element. In addition, the researcher also can not

validate XML Document against with XML Schema in Microsoft's Visual Studio

.NET.

The first advantage of ADO.NET is DataTable that can be accessed by

DataColumn and DataRow. Using Read.XmlSchema method, ADO.NET can load

XML Schemas into DataColumn and using Read.Xml method, ADO.NET can load

XML Documents into DataRow. Therefore, accessing XML Schemas and XML

Documents are not as a text file anymore but as a relational table. Furthermore, to

access child rows, just use GetChildRow method. On the other hand to get parent row,

just use GetParentRow method.

The second advantage of ADO.NET is Data View. With Data View, the researcher

can filter, sort, and search the contents of DataTable (see section 2.4 (3)). The

sorting Data View supports the researcher to check the uniqueness identifier. In

132

addition, filtering, sorting, and searching Data View support the researcher in reverse

engineering XML Schema (split complex type element), forward engineering XML

Schema (grouping element in complex element), and converting XML Documents to

the new schema of XML Documents.

5.3 Evaluation to Algorithm

As mentioned in the scope of study in Chapter I about limitation and what will be

implemented, the transforming from Hierarchical XML into Flat XML algorithms, the

reverse engineering from XML Schemas into NIAM conceptual schemas algorithms,

and the forward engineering from NIAM conceptual schemas into XML Schemas

algorithms have already been implemented in software tool well. Later, the researcher

tests, validates, and performs simulation to software tool.

The researcher tried two methods for writing XML Schemas from DataSet,

WriteXm.ISchema method ADO.NET and Xm.ITextWriter method. The

WriteXm.ISchema method is implemented with one statement, mention the DataSet

name and the XML Schema name that will be written to, for example,

NewDs.WriteXmlSchema("MortgageNew.xsd"). It will write XML Schemas

automatically, for instance see the output in Listing B.1. and the visualization of XML

Schema is shown in Figure 5.1. The Xm.ITextWriter method, however, the researcher

must mention into several statements, such as WriteStartDocument, WriteStartElement,

WriteAttributeString, WriteElementString, WriteEndElement, WriteEndDocument,

ElementKey, etc. With XmlTextWriter method the researcher can write data facets that

can not do with WriteXmlSchema ADO.NET. The visualization of XML Schema

crested with this method is shown in Figure 5.2. The figure shows as the hierarchical

schema, actually should be the flat schema. It causes that researcher can not write

133

msdata:IsDataSet="true". No attributes in XML Schema define it. This problem is

another reason in the study that the researcher concerns only on stored fact type.

m."' .. '"'""·~:-
'(t r1i>'»..C ·~H'JftQ .1

·I I k<<>ll'.<i S'Jf'~

I I (~ ,,,.,..,.
I ~'.,!(~ <h"r.j
[r.h:-r-'!' ~rf'1~ :J

w;op,.,,-1: JIS:r<>T~)
f t~t !J:'r'?

VY 1ki.1J'r~#{l.14 :~ti

f ("~ ?.n''(f

' t:...r~JW{IC v..~w-~

""l'l'"l'! !~11>9!')
t "C,.iofltf Sh:ff}

I a.t• d.'1•
I -~.rt ~

l ~tf!'I ~t~

)'!· w1•..-t<1< W"'I

.I
~1

~

.

r ~v~(:IJ ~~ -=.]

m::l>W ... '"'"'Q-*~1
""~ <'.r<>; &

<l>
...

r l)~.Yl(,rl st.rni1
t r,ty \:frl"l!J

r ~v .. ~~ dt1"i.-J

l ii'"'" Sbt,:; . --

Figure 5.1. Visualization the Right MortgageNew XML Schema

ma~
t4'./'f.:~

:i fi')f1'i}¥7-"

~·-· '"""'-

lM.:..""1'1
vm.r•tI
!l"Mp~r'i

1Pv~J

(r:-nt~t

c·-·---·-··············· ·····--···-·--·--,····-···-··---·J __ ~ -------------·----,
1 l I

m::·~~ J"'9t'#'otMoll

J·
,,.. ... ,.. ~t~J'M'J m ... f!wij -11"""!'--.-.-"""lb m:~~ t:::¥v~l

·_-~)': : :.7h ::9 ' ~tr .. '*"~ ¢•"" tt- •"4frr'>f!

'f'rdcic1Tr~t_f .,..,. • '1!?$0\;'lf\

I f\.;l''-e- ~,rq . ~tr-
I -.. -rt.•hl -~ t µ-~·~ . """"

-.. """ Wrq

""';
+t.~y.;)

il't'f''<Q .::J

l

~f".s'r-11!"

' i{.(¥:".,T.

t (£')'

' ,,.,~

t ""f"'

"""',,..,
:;;tl l

~f.-.~

t~~,-~,.,~­

t ~'e'l.'l> <t~r,;

..!] '¥tY:.Jffl;~fh'r>;I
f'X<~'1'~it- _:

Figure 5.2. Visualization the Wrong MortgageNew XML Schema

5.4 Evaluation to the Created XML Schemas and XML Documents

First, the researcher checks the created XML Schemas and XML Documents in

well-formed and validated using XML Writer. Then, the researcher checks the created

MortgageNew Xml Schema in well-formed. The schema is well-formed, see Figure

C.l. Moreover, the researcher checks the created MortgageNew XML Document in

well-formed and validated to MortgageNew Xml Schema. The well-formed document

134

St. GahrieJ's Library~ Au

and validated document are shown in Figure C.2. and Figure C.3. respectively. Second,

the researcher checks the created Supplier-PartNew Xml Schema in well-formed. The

well-formed schema is shown in Figure C.4. In addition, the researcher checks the

created Supplier-PartNew XML Document in well-formed and validated to Supplier­

PartNew Xml Schema. The well-formed document and validated document are shown

in Figure C.5. and Figure C.6. respectively.

Second, the researcher compares file size of the XML Schemas source and file

size of the created XML Schemas. See Table 5.1., in general the biggest size of XML

Schemas is the Flat XML Schema normalized and the smallest size one is Hierarchical

XML Schema. The reason is in Flat XML Schema the relationship among data

elements are represented explicitly via key and keyref elements. In Hierarchical XML

Schema, however, the relationships among data elements are represented implicitly via

relationship parent and child elements (see the end of section 2.2). To define keys and

keys reference need tags which increase the file size. Moreover, usually the tag is

created that is understandable by people.

Third, the researcher compares file size of the XML Documents source and file

size of the created XML Documents. Similar trend with XML Schemas, generally the

biggest size of XML Documents is the Flat XML Documents normalized and the

smallest size one is Hierarchical XML Documents. The reason in the normalized Flat

XML Documents split the non normalized complex type into several normalized ones.

To relate the split complex type needs duplication element which functions as a foreign

key. Moreover, the split complex types need tags to define keys and keys reference.

Nevertheless, in created Flat XML Documents with NIAM conceptual schema

duplication data is guaranty minimum, only in the foreign key. Moreover, certain

135

update anomalous and inconsistent data can be omitted. Therefore, file sizes can not be

used as a measure to the created software tool.

Table 5.1. The Comparison XML File.

File Name Hierarchy XML Non Normalized Normalized

Mortgage-A.xml 3KB

Mortgage-A.xsd 2KB

Mortgage-B.xml 3KB

Mortgage-B.xsd 3KB

Mortgage-BNew.xml 4KB

Mortgage-BNew.xsd 3KB

Supplier-Part.xml 3KB

Supplier-Part.xsd 3KB

Supplier-Part-A.xml 3KB

Supplier-Part-A.xsd 2KB

Supplier-Part-B.xml 3KB

Supplier-Part-B.xsd 2KB

Supplier-Part-C.xml 4KB

Supplier-Part-C.xsd 2KB

Supplier-PartNew.xml 4KB

Supplier-PartNew.xsd 4KB

136

VI. CONCLUSION AND RECOMMENDATIONS

6.1 Conclusions

After conducting study of XML Schema design with conceptual schema

approach, the researcher concludes,

(1) The NIAM conceptual schema generally can be applied meaningfully to

improve the poorly designed XML conceptual schema, except derivation

role. However, it is not too significant.

(2) The good conceptual ~odeling techniques for XML Schemas design have

already found. Therefore, users who create XML Schema have a conceptual

framework. In addition, users who want to create XML Document now

have a well-structured XML Schema to follow. Furthermore, the designers

who will create a XML Editor or Database application feature have the new

conceptual modeling techniques for a XML Schema design. The conceptual

modeling techniques are

(A) The maxOccurs plays the important role in hierarchical relationship

definition in XML Schema. Therefore, in Hierarchical XML Schemas

obtain one-to-one, many-to-one, one-to-many, and many-to-many

relationship. Duplication data in child instance elements is not only

for many-to-many relationship but also for many-to-one relationship.

Where many-to-one relationship and duplication child instance

elements for many-to-one relationship do not discuss in Hierarchical

Database Model. In Hierarchical XML, the relations between the data

elements are represented through the implicit hierarchical relations

between parent and child elements. In addition, to mapping

137

Hierarchical XML Schemas to Relation Schemas using hierarchical

sequence. However, the relations between the data elements are

represented through the relations explicitly via key and keyref

elements. The knowledge above is used to create Hierarchical XML

Schemas and to transform from Hierarchical XML Schemas into Flat

XML Schemas algorithms.

(B) The CSDP procedure can be used to reverse engineering from a XML

Schema into a NIAM conceptual schema. However, CSDP will be

started from tho fourth step by checking the uniqueness constraints.

Follow by checking key length, in order to decide splitable fact type

into an elementary fact type. The reverse engineering process

employs meta tables. The essential coding in the meta table are

Uniqueness code and MinCardinality code in Role Table because

these codes play importantly in the forward engineering.

(C) Rmap procedure can be used for transforming the NIAM conceptual

schema in the meta tables into the relation schemas. Conceptually the

Rmap procedure works by grouping fact type into table schema. In

Rmap procedure, the minOccurs plays the important role in

transforming one-to-one relationship. After that a XML Schema can

be built from the created relation schemas. In addition, a XML

Document can be converted to a new XML Document against with

the new XML Schema.

(3) A software tool for reengineering XML Schemas using the conceptual

schema approach have already generated with several limitations.

Therefore, the software tool is ready to reengineering XML Schemas which

138

usage is upswing Q?Wadays.

6.2 Recommendations

There are several recommendations to solve the limitations that have already

implemented as well as unimplemented, i.e.

(1) XMLwriter can be used as XML Editors to check well-formed the XML

Schemas and to check well-formed and validate the XML Documents.

(2) Microsoft's Visual Studio .NET can be used to visualize XML Schemas

and XML Documents.

(3) To define more than ·one instance in a XML Document should define the

forest (see Figure Listing 2.9. (a)). This definition can declare Hierarchical

XML such as Figure 4.5. (c) (1) or Figure 4.6. (a).

(4) Because VB.NET does not support attribute xsi:schemaLocation in order to

connect XML documents with XML schema, load the XML Schema first

into DataSet using ReadXmlSchema method. After loading XML

Document into DataSet, use Read.Xml method and Xm.IReadMode

"lgnoreSchema".

(5) To fully implement stored fact type and constraint NIAM conceptual

schema in XML Schema, use Xm.ITextReader and Xm.ITextWriter

methods. In addition, meta tables can be used directly because the

researcher creates it to capture all information.

(6) To concern with the size of file output by means of implement derivation

rule and implement constraint, first, define global element in XML Schema

therefore it can be reused by ref attribute (see section 2.2 (4)). Second, by

setting ColumnMapping property, see Table 2.7. In this study, the

researcher uses the default ColumnMapping setting,

139

Column.ColumnMapping=MappingType.Element. The .result is shown

in Figure 4.33 (b). To reduce XML Document, set the property with

Column.ColumnMapping=MappingType.Attribute. The result will

become:

<Supplier Snumber="S l" Sname="Smith" City_ Name="London" />
<Supplier Snumber="S2" Sname="Jones" City_Name="Paris" />

<Supplier Snumber="S5" Sname=" Adams" City_ Name=" Athens"/>

(7) If XML Documents is less significant, then the software tool needs more

participated UoD expert to decide whether the population is significant by

common sense.

6.3 Suggestion for Further Research

The suggestion for further researcher is to complete the software tool with

implementing the derivation rules NIAM conceptual schema in XML Schema, such as

checking arithmetic derivation and entity types that should be combined, and the third

step CSDP. In addition, implement the other constraints, such as lists various

constraints, the sixth step CSDP. To solve the limitations of ADO.NET,

Xm.ITextReader and Xm.ITextWriter methods can be used. To generate elementary

fact type the other method can be used, except functional dependency. Moreover, the

next research should concern with the size of file output. Moreover, the researcher

suggests the free programming language, such as Java.

140

APPENDIX A

XML SCHEMA AND XML DOCUMENT INPUT

1 <?xml version="l.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:annotation>
4 <xsd:documentation>
5 Mortgage record XML schema.
6 </xsd:documentation>
7 </xsd:annotation>
8 <xsd:element name="Root" type="documents" />
9 <xsd:complexType name="documents">

10 <xsd:sequence>
11 <xsd:element name="document" type="documentType"

minOccurs="O" maxOccurs="unbounded" />
12 </xsd:sequence>
13 </xsd:complexType>
14 <xsd:complexType name="documentType">
15 <xsd:sequence>
16 <xsd:element ref="comment" minOccurs="l" />
17 <xsd:element name="mortgagee" type="recordType" />
18 <xsd:element name="mortgage" type="mortgageType"

minOccurs="O~ max0ccurs="8" />
19 <xsd:element name="bank" type="recordType" />
20 </xsd:sequence>
21 <xsd:attribute name="documentDate" type="xsd:date" />
22 </xsd:complexType>
23 <xsd:complexType name="recordType">
24 <xsd:sequence>
25 <xsd:element name="name" type="xsd:string" />
26 <xsd:element name="location" type="xsd:string" />
27 <xsd:element name="city" type="xsd:string" />
28 <xsd:element name="state" type="xsd:string" minOccurs="O"/>
29 </xsd:sequence>
30 <xsd:attribute name="phone" type="xsd:string" use="optional"

form="qualified" />
31 </xsd:complexType>
32 <xsd:complexType name="mortgageType">
33 <xsd:sequence>
34 <xsd:element name="loanNumber" type="loanNumberType" />
35 <xsd:element name="property" type="xsd:string" />
36 <xsd:element name="date" type="xsd:date" minOccurs="O" />
37 <xsd:element name="loanAmount" type="xsd:decimal" />
38 <xsd:element name="term" type="termType" />
39 </xsd:sequence>
40 </xsd:complexType>
41 <xsd:simpleType name="loanNumberType">
42 <xsd:restriction base="xsd:string">
43 <xsd:pattern value="\d{2} \d{4} \d{2}" />
44 </xsd:restriction>
45 </xsd:simpleType>
46 <xsd:simpleType name="termType">
47 <xsd:restriction base="xsd:integer">
48 <xsd:maxinclusive value="30" />
49 </xsd:restriction>
50 </xsd:simpleType>
51 <xsd:element name="comment" type="xsd:string" />
52 </xsd:schema>

Figure A.1. The Listing of the Mortgage XML Schema.

141

1 <?xml version="l.0" encoding="UTF-8" ?>
2 <Root xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNamespaceSchemaLocation="Mortgage-A.xsd" >
3 <document documentDate="2005-03-02">
4 <comment>Good risk</comment>
5 <mortgagee phone="888.555.1234">
6 <name>James Blandings</name>
7 <location>l234 299th St</location>
8 <city>New York</city>
9 <state>NY</state>

10 </mortgagee>
11 <mortgage>
12 <loanNumber>66 7777 88</loanNumber>
13 <property>The Hackett Place</property>
14 <date>2005-03-01</date>
15 <loanAmount>80000</loanAmount>
16 <term>l5</term>
17 </mortgage>
18 <mortgage>
19 <loanNumber>ll 68B8 22</loanNumber>
20 <property>123 Acorn Drive</property>
21 <date>2005-03-01</date>
22 <loanAmount>90000</loanAmount>
23 <term>15</term>
24 </mortgage>
25 <mortgage>
26 <loanNumber>33 4444 11</loanNumber>
27 <property>99 West Pocusset St</property>
28 <date>2005-03-02</date>
29 <loanAmount>lOOOOO</loanAmount>
30 <term>30</term>
31 </mortgage>
32 <mortgage>
33 <loanNumber>55 3333 88</loanNumber>
34 <property>19 Johnson Place</property>
35 <date>2005-03-02</date>
36 <loanAmount>llOOOO</loanAmount>
37 <term>30</term>
38 </mortgage>
39 <mortgage>
40 <loanNumber>22 6666 99</loanNumber>
41 <property>345 Notingham Court</property>
42 <date>2005-03-02</date>
43 <loanAmount>120000</loanAmount>
44 <term>30</term>
45 </mortgage>
46 <bank phone="888.555.8888">
47 <name>XML Bank</name>
48 <location>12 Schema Place</location>
49 <city>New York</city>
50 <state>NY</state>
51 </bank>
52 </document>
53 <document documentDate="2004-07-ll">
54 <comment>Good</comment>

Figure A.2. The Listing of the Mortgage XML Document.

142

55 <mortgagee phone="8702205">
56 <name>Widya</name>
57 <location>Manukan</location>
58 <city>Surabaya</city>
59 </mortgagee>
60 <mortgage>
61 <loanNumber>ll 2233 44</loanNumber>
62 <property>Bungalow</property>
63 <date>2004-07-12</date>
64 <loanArnount>5000</loanArnount>
65 <term>12</term>
66 </mortgage>
67 <mortgage>
68 <loanNumber>ll 1222 33</loanNumber>
69 <property>House</property>
70 <date>2004-12-25</date>
71 <loanArnount>3000</loanArnount>
72 <term>24</term>
73 </mortgage>
74 <mortgage>
75 <loanNumber>12 3122 34</loanNumber>
76 <property>Bungalow</property>
77 <date>2004-07-12</date>
78 <loanArnount>5000</loanArnount>
79 <term>12</term>
80 </mortgage>
81 <bank phone="8111101">
82 <name>Niaga</name>
83 <location>Tunjungan</location>
84 <city>Surabaya</city>
85 </bank>
86 </document>
87 <document documentDate="2004-07-14">
88 <comment>Good</comment>
89 <mortgagee phone="8702205">
90 <name>Widya</name>
91 <location>Manukan</location>
92 <city>Surabaya</city>
93 </mortgagee>
94 <mortgage>
95 <loanNumber>12 3122 34</loanNumber>
96 <property>Bungalow</property>
97 <date>2004-07-12</date>
98 <loanArnount>5000</loanArnount>
99 <term>12</term>

100 </mortgage>
101 <bank phone="888.555.8888">
102 <name>XML Bank</name>
103 <location>12 Schema Place</location>
104 <city>New York</city>
105 <state>NY</state>
106 </bank>
107 </document>
108 </Root>

Figure A.2. The Listing of the Mortgage XML Document (Continued).

143

1 <?xml version="l. 0" encoding="utf-8" ?>
2 <xsd: schema xmlns: xsd="http: I /www. w3. org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-cem:xml-msdata">
3 <xsd:element name="NIAM" msdata:IsDataSet="true"

msdata:EnforceConstraints="true">
4 <xsd:complexType>
5 <xsd:choice maxOccurs="unbounded">
6 <xsd:element name="Supplier">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="Snumber" type="xsd:string" />

10 <xsd:element name="Sname" type="xsd:string" />
11 <xsd:element name="Status_Num" type="xsd:string" />
12 <xsd:element name="City_Name" type="xsd:string" />
13 </xsd:sequence>
14 </xsd:complexType>
15 </xsd:element>
16 <xsd:element name="Part">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd: element. name="Pnumber" type="xsd: string" />
20 <xsd:element name="Pname" type="xsd:string" />
21 <xsd:element name="ColorName" type="xsd:string" />
22 <xsd:element name="Loc Num" type="xsd:string" />
23 </xsd:sequence>
24 </xsd:complexType>
25 </xsd:element>
26 <xsd:element name="Supplier Part">
27 <xsd:complexType>
28 <xsd:sequence>
29 <xsd:element name="Snumber" type="xsd:string" />
30 <xsd:element name="Pnumber" type="xsd:string" />
31 <xsd:element name="No of Item" type="xsd:integer" />
32 </xsd:sequence>
33 </xsd:complexType>
34 </xsd:element>
35 </xsd:choice>
36 </xsd:complexType>
37 <xsd:key name="SupplierKey">
38 <xsd:selector xpath=".//Supplier" />
39 <xsd: field xpath="Snumber" />
40 </xsd:key>
41 <xsd:key name="PartKey">
42 <xsd:selector xpath=".//Part" />
43 <xsd:field xpath="Pnumber" />
44 </xsd:key>
45 <xsd:key name="Supplier_PartKey">
46 <xsd:selector xpath=".//Supplier_Part" />
47 <xsd:field xpath="Snumber" />
48 <xsd:field xpath="Pnumber" />
49 </xsd:key>
50 <xsd:keyref name="Supplier_Supplier_Part" refer="SupplierKey">

Figure A.3. The Listing of the Supplier-Part XML Schema.

144

51 <xsd:selector xpath=".//Supplier Part" />
52 <xsd:field xpath="Snumber" />
53 </xsd:keyref>
54 <xsd:keyref name="Supplier_Part Part" refer="PartKey">
55 <xsd:selector xpath=".//Supplier_Part" />
56 <xsd:field xpath="Pnumber" />
57 </xsd:keyref>
58 </xsd:element>
59 </xsd: schema>

Figure A.3. The Listing of the Supplier-Part XML Schema (Continued).

145

1 <?xml version="l.O" encoding="utf-8" ?>
2 <NIAM xmlns: xsi="http: I /www. w3. org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Supplier-Part.xsd">
3 <Supplier>
4 <Snumber>Sl</Snumber>
5 <Sname>Smith</Sname>
6 <Status Num>20</Status Num>
7 <City_Name>London</City_Name>
8 </Supplier>
9 <Supplier>

10 <Snumber>S2</Snumber>
11 <Sname>Jones</Sname>
12 <Status Num>lO</Status Num>
13 <City_Name>Paris</City_Name>
14 </Supplier>
15 <Supplier>
16 <Snumber>S3</Snumber>
17 <Sname>Blake</Sname>
18 <Status Num>lO</Status Num>
19 <City_Name>Paris</City_Name>
20 </Supplier>
21 <Supplier>
22 <Snumber>S4</Snumber>
23 <Sname>Clark</Sname>
24 <Status Num>20</Status Num>
25 <City_Name>London</City_Name>
26 </Supplier>
27 <Supplier>
28 <Snumber>S5</Snumber>
29 <Sname>Adams</Sname>
30 <Status Num>30</Status Num>
31 <City_Name>Athens</City_Name>
32 </Supplier>
33 <Part>
34 <Pnumber>Pl</Pnumber>
35 <Pname>Nut</Pname>
36 <ColorName>Red</ColorName>
37 <Loc_Num>London</Loe_Num>
38 </Part>
39 <Part>
40 <Pnumber>P2</Pnumber>
41 <Pname>Bolt</Pname>
42 <ColorName>Green</ColorName>
43 <Loe Num>Paris</Loe Num>
44 </Part>
45 <Part>
46 <Pnumber>P3</Pnumber>
47 <Pname>Serew</Pname>
48 <ColorName>Blue</ColorName>
49 <Loe Num>Rome</Loc Num>
50 </Part>
51 <Part>
52 <Pnumber>P4</Pnumber>
53 <Pname>Serew</Pname>

Figure A.4. The Listing of the Supplier-Part XML Document.

146

54 <ColorName>Red</ColorName>
55 <Loe Num>London</Loe Num>
56 </Part>
57 <Part>
58 <Pnumber>P5</Pnumber>
59 <Pname>Cam</Pname>
60 <ColorName>Blue</ColorName>
61 <Loe Num>Paris</Loe Num>
62 </Part>
63 <Part>
64 <Pnumber>P6</Pnumber>
65 <Pname>Cog</Pname>
66 <ColorName>Red</ColorName>
67 <Loe Num>London</Loe Num>
68 </Part>
69 <Supplier_Part>
70 <Snumber>Sl</Snumber>
71 <Pnumber>Pl</Pnumber>
72 <No of Item>300</No of Item>
73 </Supplier Part>

-
74 <Supplier Part>
75 <Snumber>Sl</Snumber>
76 <Pnumber>P2</Pnumber>
77 <No of Item>200</No of Item>
78 </Supplier_Part>
79 <Supplier_Part>
80 <Snumber>Sl</Snumber>
81 <Pnumber>P3</Pnumber>
82 <No of Item>400</No of Item>
83 </Supplier Part>
84 <Supplier_Part>
85 <Snumber>Sl</Snumber>
86 <Pnumber>P4</Pnumber>
87 <No of Item>200</No of Item>
88 </Supplier_Part>
89 <Supplier_Part>
90 <Snumber>Sl</Snumber>
91 <Pnumber>P5</Pnumber>
92 <No of Item>lOO</No of Item>
93 </Supplier_Part>
94 <Supplier Part>
95 <Snumber>Sl</Snumber>
96 <Pnumber>P6</Pnumber>
97 <No of Item>lOO</No of Item>
98 </Supplier_Part>
99 <Supplier Part>

100 <Snumber>S2</Snumber>
101 <Pnumber>Pl</Pnumber>
102 <No of Item>300</No of Item>
103 </Supplier_ Part>
104 <Supplier Part>
105 <Snumber>S2</Snumber>
106 <Pnumber>P2</Pnumber>
107 <No of Item>400</No of Item>
108 </Supplier Part> -

Figure A.4. The Listing of the Supplier-Part XML Document (Continued).

147

109 <Supplier_Part>
110 <Snumber>S3</Snumber>
111 <Pnumber>P2</Pnumber>
112 <No of Item>200</No of Item>
113 </Supplier_Part>
114 <Supplier Part>
115 <Snumber>S4</Snumber>
116 <Pnumber>P2</Pnumber>
117 <No of Item>200</No of Item>

- - -
118 </Supplier_Part>
119 <Supplier_Part>
120 <Snumber>S4</Snumber>
121 <Pnumber>P4</Pnumber>
122 <No of Item>300</No of Item>
123 </Supplier_Part>
124 <Supplier_Part>
125 <Snumber>S4</Snumber>
126 <Pnumber>P5</Pnumber>
127 <No of Item>400</No of Item>
128 </Supplier Part>
129 </NIAM>

Figure A.4. The Listing of the Supplier-Part XML Document (Continued).

148

St. GahrieJ's Library~ Au

1 <?xml version="l.0" encoding="utf-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="Root" type="Supply_Part_DataBases" />
4 <xsd:complexType name="Supply_Part_DataBases">
5 <xsd:sequence>
6 <xsd:element name="Supplier" type="Supply_PartType"

maxOccurs="unbounded" />
7 </xsd:sequence>
8 </xsd:complexType>
9 <xsd:complexType name="Supply_PartType">

10 <xsd:sequence>
11 <xsd:element name="Sname" type="xsd:string" />
12 <xsd:element name="Status_Num" type="xsd:string" />
13 <xsd:element name="City_Name" type="xsd:string" />
14 <xsd:element name="Part" type="PartType" minOccurs="O"

maxOccurs="unbounded" />
15 </xsd:sequence>
16 <xsd:attribute name="Snumber" type="xsd:string" />
17 </xsd:complexType>
18 <xsd:complexType name="PartType">
19 <xsd:sequence>
20 <xsd:element name="Pname" type="xsd:string" />
21 <xsd:element name="ColorName" type="xsd:string" />
22 <xsd:element name="Loc_Num" type="xsd:string" />
23 <xsd:element name="No_of_Item" type="xsd:integer" />
24 </xsd:sequence>
25 <xsd:attribute name="Pnumber" type="xsd:string" />
26 </xsd:complexType>
27 </xsd: schema>

Figure A.5. The Listing of the Supplier-Part-A XML Schema.

149

1 <?xml version="l.O" encoding="utf-8" ?>
2 <Root xmlns: xsi="http: I /www. w3. org/2001/XMLSehema-instance"

xsi:noNamespaceSchemaLocation="Supplier-Part-A.xsd">
3 <Supplier Snumber="Sl">
4 <Sname>Smith</Sname>
5 <Status Num>20</Status Num>
6 <City_Name>London</City_Name>
7 <Part Pnumber="Pl">
8 <Pname>Nut</Pnarne>
9 <ColorNarne>Red</ColorName>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<Loe Nurn>London</Loc Num>
<No of Itern>300</No of Item>

</Part>
<Part Pnumber="P2">

<Pname>Bolt</Pname>
<ColorName>Green</ColorNarne>
<Loe Nurn>Paris</Loc Num>

- -
<No of Item>200</No of Item>

</Part>
<Part Pnumber="P3.">

<Pnarne>Serew</Pname>
<ColorNarne>Blue</ColorName>
<Loe Nurn>Rorne</Loc Num>
<No of Item>400</No of Item>

</Part>
<Part Pnumber="P4">

<Pnarne>Serew</Pname>
<ColorName>Red</ColorName>
<Loe Num>London</Loe Num>

- -
<No of Itern>200</No of Item>

</Part>
<Part Pnumber="P5">

<Pnarne>Carn</Pnarne>
<ColorNarne>Blue</ColorNarne>
<Loe Num>Paris</Loc Num>
<No of Itern>lOO</No-of Item>

</Part>
<Part Pnumber="P6">

<Pnarne>Cog</Pnarne>
<ColorNarne>Red</ColorName>
<Loe Nurn>London</Loc Nurn> - -
<No of Item>lOO</No of Item>

</Part>
</Supplier>
<Supplier Snumber="S2">

<Sname>Jones</Sname>
<Status Nurn>lO</Status Nurn>
<City_Narne>Paris</City=Name>
<Part Pnumber="Pl">

<Pnarne>Nut</Pname>
<ColorName>Red</ColorName>
<Loe Nurn>London</Loe Nurn>

- -
<No of Itern>300</No of Item>

</Part>

Figure A.6. The Listing of the Supplier-Part-A XML Document.

150

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

<Part Pnumber="P2">
<Pname>Bolt</Pname>
<ColorName>Green</ColorName>
<Loe Num>Paris</Loe Num>

- -
<No of Item>400</No of Item>

</Part>
</Supplier>
<Supplier Snumber="S3">

<Sname>Blake</Sname>
<Status Num>lO</Status Num>
<City_Name>Paris</City_Name>
<Part Pnumber="P2">

<Pname>Bolt</Pname>
<ColorName>Green</ColorName>
<Loe Num>Paris</Loe Num> - -
<No of Item>200</No of Item>

</Part>
</Supplier>
<Supplier Snumber="S4">

<Sname>Clark</Sname>
<Status Num>20</&tatus Num>
<City_Name>London</City_Name>
<Part Pnumber="P2">

<Pname>Bolt</Pname>
<ColorName>Green</ColorName>
<Loe Num>Paris</Loe Num> - -
<No of Item>200</No of Item>

</Part>
<Part Pnumber="P4">

<Pname>Serew</Pname>
<ColorName>Red</ColorName>
<Loe Num>London</Loe Num>

- -
<No of Item>300</No of Item>

</Part>
<Part Pnumber="P5">

<Pname>Cam</Pname>
<ColorName>Blue</ColorName>
<Loe Num>Paris</Loe Num>

- -
<No of Item>400</No of Item>

</Part>
</Supplier>
<Supplier Snumber="S5">

<Sname>Adams</Sname>
<Status Num>30</Status Num>
<City_Name>Athens</City_Name>

</Supplier>
</Root>

Figure A.6. The Listing of the Supplier-Part-A XML Document (Continued).

151

1 <?xml ve~sion="l.0" encoding="utf-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="Root" type="Supply_Part_DataBases" />
4 <xsd:complexType name="Supply_Part DataBases">
5 <xsd:sequence>
6 <xsd:element name="Supplier" type="Supply_PartType"

maxOccurs="unbounded" />
7 </xsd:sequence>
8 </xsd:complexType>
9 <xsd:complexType name="Supply_PartType">

10 <xsd:sequence>
11 <xsd:element name="Sname" type="xsd:string" />
12 <xsd:element name="Status_Num" type="xsd:string" />
13 <xsd:element name="City_Name" type="xsd:string" />
14 <xsd:element name="Supplier_Part" type="Supplier_PartType"

minOccurs="O" maxOccurs="unbounded" />
15 </xsd:sequence>
16 <xsd:attribute name="Snumber" type="xsd:string" />
17 </xsd:complexType>
18 <xsd:complexType name="Supplier PartType">
19 <xsd:sequence>
20 <xsd:element name="Part">
21 <xsd:complexType>
22 <xsd:sequence>
23 <xsd:element name="Pname" type="xsd:string" />
24 <xsd:element name="ColorName" type="xsd:string" />
25 <xsd:element name="Loc_Num" type="xsd:string" />
26 </xsd:sequence>
27 <xsd:attribute name="Pnumber" type="xsd:string" />
28 </xsd:complexType>
29 </xsd:element>
30 <xsd:element name="No of Item" type="xsd:integer" />
31 </xsd:sequence>
32 </xsd:complexType>
33 </xsd: schema>

Figure A.7. The Listing of the Supplier-Part-C XML Schema.

152

1 <?xml version="l.O" eneoding="utf-8" ?>
2 <Root xmlns:xsi="http://www.w3.org/2001/XMLSehema-instanee"

xsi:noNamespaeeSehemaLocation="Supplier-Part-C.xsd">
3 <Supplier Snumber="Sl">
4 <Sname>Smith</Sname>
5 <Status Num>20</Status Num>
6 <City_Name>London</City_Name>
7 <Supplier_Part>
8 <Part Pnumber="Pl">
9 <Pname>Nut</Pname>

10 <ColorName>Red</ColorName>
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<Loe Num>London</Loc Num>
</Part>
<No of Item>300</No of Item>

</Supplier_Part>
<Supplier_Part>

<Part Pnumber="P2">
<Pname>Bolt</Pname>
<ColorName>Green</ColorName>
<Loe Num>Pari~</Loe Num>

</Part>
<No of Item>200</No of Item>

</Supplier_Part>
<Supplier_Part>

<Part Pnumber="P3">
<Pname>Screw</Pname>
<ColorName>Blue</ColorName>
<Loe Num>Rome</Loe Num>

</Part>
<No of Item>400</No of Item>

</Supplier Part>
<Supplier Part>

<Part Pnumber="P4">
<Pname>Screw</Pname>
<ColorName>Red</ColorName>
<Loe Num>London</Loc Num>

- -
</Part>
<No of Item>200</No of Item>

</Supplier_Part>
<Supplier Part>

<Part Pnumber="P5">
<Pname>Cam</Pname>
<ColorName>Blue</ColorName>
<Loe Num>Paris</Loe Num>

</Part>
<No of Item>lOO</No of Item>

- - - -
</Supplier Part>
<Supplier_Part>

<Part Pnumber="P6">
<Pname>Cog</Pname>
<ColorName>Red</ColorName>
<Loe Num>London</Loc Num>

</Part>
<No of Item>lOO</No of Item>

Figure A.8. The Listing of the Supplier-Part-C XML Document.

153

54 </Supplier Part>
55 </Supplier>
56 <Supplier Snumber="S2">
57 <Sname>Jones</Sname>
58 <Status Num>lO</Status Num>
59 <City_Name>Paris</City Name>
60 <Supplier_Part>
61 <Part Pnumber="Pl ">
62 <Pname>Nut</Pname>
63 <ColorName>Red</ColorName>
64 <Loe Num>London</Loe Num>
65 </Part>
66 <No of Item>300</No of Item>
67 </Supplier_Part>
68 <Supplier_Part>
69 <Part Pnu1nber="P2">
70 <Pname>Bolt</Pname>
71 <ColorName>Green</ColorName>
72 <Loe Num>Paris</Loe Num>
73 </Part>
74 <No of Item>400</No of Item>
75 </Supplier Part>
76 </Supplier>
77 <Supplier Snumber="S3">
78 <Sname>Blake</Sname>
79 <Status Num>lO</Status Num>
80 <City_Name>Paris</City_Name>
81 <Supplier_Part>
82 <Part Pnumber="P2">
83 <Pname>Bolt</Pname>
84 <ColorName>Green</ColorName>
85 <Loe Num>Paris</Loe Num>
86 </Part>
87 <No of Item>200</No of Item>
88 </Supplier_Part>
89 </Supplier>
90 <Supplier Snumber="S4">
91 <Sname>Clark</Sname>
92 <Status Num>20</Status Num>
93 <City_Name>London</City_Name>
94 <Supplier_Part>
95 <Part Pnumber="P2">
96 <Pname>Bolt</Pname>
97 <ColorName>Green</ColorName>
98 <Loe Num>Paris</Loe Num>
99 </Part>

100 <No of Item>200</No of Item>
101 </Supplier_Part>
102 <Supplier_Part>
103 <Part Pnumber="P4 ">
104 <Pname>Serew</Pname>
105 <ColorName>Red</ColorName>
106 <Loe Num>London</Loe Num>

- -
107 </Part>
108 <No of Item>300</No of Item>

Figure A.8. The Listing of the Supplier-Part-C XML Document (Continued).

154

109 </Supplier_Part>
110 <Supplier_Part>
111 <Part Pnumber="P5">
112 <Pname>Cam</Pname>
113 <ColorName>Blue</ColorName>
114 <Loe Num>Paris</Loc Num>
115 </Part>
116 <No of Item>400</No of Item>
117 </Supplier_Part>
118 </Supplier>
119 <Supplier Snumber="S5">
120 <Sname>Adams</Sname>
121 <Status Num>30</Status Num>
122 <City_Name>Athens</City_Name>
123 </Supplier>
124 </Root>

Figure A.8. The Listing ohhe Supplier-Part-C XML Document (Continued).

155

APPENDIX B

XML SCHEMA AND XML DOCUMENT OUTPUT

1 <?xml version="l. 0" ?>
2 <xsd: schema xmlns: xsd="http://www. w3. org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
3 <xsd:element name="NIAM" msdata:IsDataSet="true"

msdata:EnforceConstraints="true">
4 <xsd:complexType>
5 <xsd:choice maxOccurs="unbounded">
6 <xsd:element name="document">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="comment" type="xsd:string" />

10 <xsd:elernent name="documentDate" type="xsd:date" />
11 <xsd:element name="name" type="xsd:string" />
12 <xsd:element name="banknarne" type="xsd:string" />
13 </xsd:sequence>
14 </xsd:cornplexType>
15 </xsd:element>
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

<xsd:elernent name="mortgagee">
<xsd:cornplexType>

<xsd:sequence>
<xsd:elernent name="narne" type="xsd:string" />
<xsd:element name="location" type="xsd:string" />
<xsd:element name="city" type="xsd:string" />
<xsd:element name="state" type="xsd:string"

minOccurs="O" />
<xsd:element name="phone" type="xsd:string" />

</xsd:sequence>
</xsd:cornplexType>

</xsd:element>
<xsd:elernent name="bank">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="name" type="xsd:string" />
<xsd:elernent name="location" type="xsd:string" />
<xsd:element name="city" type="xsd:string" />
<xsd:elernent name="state" type="xsd:string"

rninOccurs="O" />
<xsd:element name="phone" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:elernent name="rnortgage">

<xsd:cornplexType>
<xsd:sequence>

<xsd:element narne="property" type="xsd:string" />
<xsd:element name="date" type="xsd:date" />
<xsd:element name="loanAmount" type="xsd:decimal" />
<xsd:element name="terrn" type="xsd:integer" />
<xsd:elernent name="loanNumber" type="xsd:string" />
<xsd:elernent name="documentDate" type="xsd:date" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
50 </xsd:choice>

Figure B.1. The Listing of the MortgageNew XML Schema.

156

St. Gabriel's Library, Au

51 </xsd:complexType>
52 <xsd:key name="documentKey">
53 <xsd: selector :{path=". I /document" />
54 <xsd:field xpath="documentDate" />
55 </xsd:key>
56 <xsd:key name="mortgageeKey">
57 <xsd:selector xpath=".//mortgagee" />
58 <xsd:field xpath="name" />
59 </xsd:key>
60 <xsd:key name="bankKey">
61 <xsd:selector xpath=".//bank" />
62 <xsd:field xpath="name" />
63 </xsd:key>
64 <xsd:key name="mortgageKey">
65 <xsd:selector xpath=".//mortgage" />
66 <xsd: field xpath="loanNumber" />
67 </xsd:key>
68 <xsd:keyref name="document_mortgagee" refer="mortgageeKey">
69 <xsd:selector xpath=".//document" />
70 <xsd:field xpath="name" />
71 </xsd:keyref>
72 <xsd:keyref name="document bank" refer="bankKey">
73 <xsd:selector xpath=".//document" />
74 <xsd:field xpath="bankname" />
75 </xsd:keyref>
76 <xsd:keyref name="mortgage document" refer="documentKey">
77 <xsd:selector xpath=".//mortgage" />
78 <xsd:field xpath="documentDate" />
79 </xsd:keyref>
80 </xsd:element>
81 </xsd:schema>

Figure B.1. The Listing of the MortgageNew XML Schema (Continued).

157

1 <?xml version="l.0" encoding="utf-8" standalone="yes" ?>
2 <NIAM xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Mortgage-BNew.xsd">
3 <document>
4 <cornrnent>Good risk</cornrnent>
5 <documentDate>2005-03-02</documentDate>
6 <name>James Blandings</name>
7 <bankname>XML Bank</bankname>
8 </document>
9 <document>

10 <cornrnent>Good</cornrnent>
11 <documentDate>2004-07-ll</documentDate>
12 <name>Hans Schmidt</name>
13 <bankname>Niaga</bankname>
14 </document>
15 <document>
16 <cornrnent>Good</cornrnent>
17 <documentDate>2004-07-14</documentDate>
18 <name>Hans Schmidt</name>
19 <bankname>XML Bank</bankname>
20 </document>
21 <mortgagee>
22 <name>James Blandings</name>
23 <location>1234 299th St</location>
24 <city>New York</city>
25 <state>NY</state>
26 <phone>888.555.1234</phone>
27 </mortgagee>
28 <mortgagee>
29 <name>Hans Schmidt</name>
30 <location>123 Hallgarten</location>
31 <city>Berlin</city>
32 <phone>870.220.5678</phone>
33 </mortgagee>
34 <bank>
35 <name>XML Bank</name>
36 <location>12 Schema Place</location>
37 <city>New York</city>
38 <state>NY</state>
39 <phone>888.555.8888</phone>
40 </bank>
41 <bank>
42 <name>Niaga</name>
43 <location>56 Sweet Street</location>
44 <city>Berlin</city>
45 <phone>811.110.1234</phone>
46 </bank>
47 <mortgage>
48 <property>The Hackett Place</property>
49 <date>2005-03-01</date>
50 <loanAmount>80000</loanArnount>
51 <term>15</term>
52 <loanNurnber>66 7777 88</loanNumber>
53 <documentDate>2005-03-02</documentDate>
54 </mortgage>

Figure B.2. The Listing of the MortgageNew XML Document.

158

55 <mortgage>
56 <property>l23 Acorn Drive</property>
57 <date>2005-03-01</date>
58 <loanAmount>90000</loanAmount>
59 <term>l5</term>
60 <loanNumber>ll 8888 22</loanNumber>
61 <documentDate>2005-03-02</documentDate>
62 </mortgage>
63 <mortgage>
64 <property>99 West Pocusset St</property>
65 <date>2005-03-02</date>
66 <loanAmount>lOOOOO</loanAmount>
67 <term>30</term>
68 <loanNumber>33 4444 11</loanNumber>
69 <document0ate>2005-03-02</document0ate>
70 </mortgage>
71 <mortgage>
72 <property>l9 Johnson Place</property>
73 <date>2005-03-02</date>
74 <loanAmount>llOOOO</loanAmount>
75 <term>30</term>
76 <loanNumber>55 3333 88</loanNumber>
77 <documentDate>2005-03-02</documentDate>
78 </mortgage>
79 <mortgage>
80 <property>345 Notingham Court</property>
81 <date>2005-03-02</date>
82 <loanAmount>l20000</loanAmount>
83 <term>30</term>
84 <loanNumber>22 6666 99</loanNumber>
85 <documentDate>2005-03-02</documentDate>
86 </mortgage>
87 <mortgage>
88 <property>Bungalow</property>
89 <date>2004-07-12</date>
90 <loanAmount>55000</loanAmount>
91 <term>l2</term>
92 <loanNumber>ll 2233 44</loanNumber>
93 <documentDate>2004-07-ll</documentDate>
94 </mortgage>
95 <mortgage>
96 <property>House</property>
97 <date>2004-12-25</date>
98 <loanAmount>95000</loanAmount>
99 <term>24</term>

100 <loanNumber>ll 1222 33</loanNumber>
101 <documentDate>20.0 4-07-11 <I documentDa te>
102 </mortgage>
103 <mortgage>
104 <property>Bungalow</property>
105 <date>2004-07-12</date>
106 <loanAmount>50000</loanAmount>
107 <terrn>l2</term>
108 <loanNumber>l2 3122 34</loanNumber>
109 <docurnentDate>2004-07-14</docurnentDate>
110 </mortgage>
111 </NIAM>

Figure B.2. The Listing of the MortgageNew XML Document (Continued).

159

1 <?xml version="l. 0" encoding="utf-8" ?>
2 <xsd: schema xmlns: xsd="http://www. w3. org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
3 <xsd:element name="NIAM" msdata:IsDataSet="true"

msdata:EnforceConstraints="true">
4 <xsd:complexType>
5 <xsd:choice maxOccurs="unbounded">
6 <xsd:element name="Supplier">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="Snumber" type="xsd:string" />

10 <xsd:element name="Sname" type="xsd:string" />
11 <xsd:element name="City_Name" type="xsd:string" />
12 </xsd:sequence>
13 </xsd:complexType>
14 </xsd:element>
15 <xsd:element name="Part">
16 <xsd:complexType>
17 <xsd:sequence>
18 <xsd:element name="Pnumber" type="xsd:string" />
19 <xsd:elemen~ name="Pname" type="xsd:string" />
20 <xsd:element name="ColorName" type="xsd:string" />
21 </xsd:sequence>
22 </xsd:complexType>
23 </xsd:element>
24 <xsd:element name="City">
25 <xsd:complexType>
26 <xsd:sequence>
27 <xsd:element name="City_Name" type="xsd:string" />
28 <xsd:element name="Status Num" type="xsd:string" />
29 </xsd:sequence>
30 </xsd:complexType>
31 </xsd:element>
32
33
34
35
36
37
38
39
40

<xsd:element name="Supplier Part">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Snumber" type="xsd:string" />
<xsd:element name="Pnumber" type="xsd:string" />
<xsd:element name="No of Item" type="xsd:integer" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
41 <xsd:element name="P Loe">
42 <xsd:complexType>
43 <xsd:sequence>
44 <xsd:element name="Pnumber" type="~sd:string" />
45 <xsd:element name="Loc Num" type="xsd:string" />
46 </xsd:sequence>
47 </xsd:complexType>
48 </xsd:element>
49 </xsd:choice>
50 </xsd:complexType>
51 <xsd:key name="SupplierKey">
52 <xsd:selector xpath=".//Supplier" />
53 <xsd:field xpath="Snumber" />

Figure B.3. The Listing of the Supplier-PartNew XML Schema.

160

54 </xsd:key>
55 <xsd:key name="PartKey">
56 <xsd:selector xpath=".//Part" />
57 <xsd:field xpath="Pnumber" />
58 </xsd:key>
59 <xsd:key name="CityKey">
60 <xsd:selector xpath=".//City" />
61 <xsd: field xpath="City_Name" />
62 </xsd:key>
63 <xsd:key name="Supplier_PartKey">
64 <xsd:selector xpath=".//Supplier_Part" />
65 <xsd:field xpath="Snumber" />
66 <xsd: field xpath="Pnumber" />
67 </xsd:key>
68 <xsd:unique name="P_LocKey">
69 <xsd:selector xpath=".//P_Loc" />
70 <xsd:field xpath="Pnumber" />
71 <xsd:field xpath="Loc_Num" />
72 </xsd:unique>
73 <xsd:keyref name="Supplier_Supplier_Part" refer="SupplierKey">
7 4 <xsd: selector xpa..th=". I /Supplier _Part" />
75 <xsd:field xpath="Snumber" />
76 </xsd:keyref>
77 <xsd:keyref name="Supplier_Part Part" refe:::-="PartKey">
78 <xsd:selector xpath=".//Supplier_Part" />
79 <xsd: field xpath="Pnumber" />
80 </xsd:keyref>
81 <xsd:keyref name="Supplier_City" refer="CityKey">
82 <xsd:selector xpath=".//Supplier" />
83 <xsd:field xpath="City_Name" />
84 </xsd:keyref>
85 <xsd:keyref name="P Loc_Part" refer="PartKey">
86 <xsd: selector xpath=". //P_Loc" />
87 <xsd: (ield xpath="Pnumber" />
88 </xsd:keyref>
89 </xsd:element>
90 </xsd:schema>

Figure B.3. The Listing of the Supplier-PartNew XML Schema (Continued).

161

1 <?xml version="l.O" encoding="utf-8" ?>
2 <NIAM xmlns: xsi="http: I /www. w3. org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Supplier-PartNew.xsd">
3 <Supplier>
4 <Snumber>Sl</Snumber>
5 <Sname>Smith</Sname>
6 <City_Name>London</City_Name>
7 </Supplier>
8 <Supplier>
9 <Snumber>S2</Snumber>

10 <Sname>Jones</Sname>
11 <City_Name>Paris</City_Name>
12 </Supplier>
13 <Supplier>
14 <Snumber>S3</Snumber>
15 <Sname>Blake</Sname>
16 <City_Name>Paris</City_Name>
17 </Supplier>
18 <Supplier>
19 <Snumber>S4</Snumber>
20 <Sname>Clark</Sname>
21 <City_Name>London</City_Name>
22 </Supplier>
23 <Supplier>
24 <Snumber>S5</Snumber>
25 <Sname>Adams</Sname>
26 <City_Name>Athens</City_Name>
27 </Supplier>
28 <Part>
29 <Pnumber>Pl</Pnumber>
30 <Pname>Nut</Pname>
31 <ColorName>Red</ColorName>
32 </Part>
33 <Part>
34 <Pnumber>P2</Pnumber>
35 <Pname>Bolt</Pname>
36 <ColorName>Green</ColorName>
37 </Part>
38 <Part>
39 <Pnumber>P3</Pnumber>
40 <Pname>Screw</Pname>
41 <ColorName>Blue</ColorName>
42 </Part>
43 <Part>
44 <Pnumber>P4</Pnumber>
45 <Pname>Screw</Pname>
46 <ColorName>Red</ColorName>
4 7 </Part>
48 <Part>
49 <Pnumber>P5</Pnumber>
50 <Pname>Cam</Pname>
51 <ColorName>Blue</ColorName>
52 </Part>
53 <Part>

Figure B.4. The Listing of the Supplier-PartNew XML Document.

162

54 <Pnumber>P6</Pnumber>
55 <Pname>Cog</Pname>
56 <ColorName>Red</ColorName>
57 </Part>
58 <City>
59 <City_Name>London</City Name>
60 <Status Num>20</Status Num>
61 </City>
62 <City>
63 <City_Name>Paris</City Name>
64 <Status Num>lO</Status Num>
65 </City>
66 <City>
67 <City_Name>Athens</City Name>
68 <Status Num>30</Status Num>
69 </City>
70 <Supplier Part>
71 <Snumber>Sl</Snumber>
72 <Pnumber>Pl</Pnumber>
73 <No of Item>300</No of Item>

-
74 </Supplier_Part>
75 <Supplier Part>
76 <Snumber>Sl</Snumber>
77 <Pnumber>P2</Pnumber>
78 <No of Item>200</No of Item>

-
79 </Supplier_Part>
80 <Supplier Part>
81 <Snumber>Sl</Snumber>
82 <Pnumber>P3</Pnumber>
83 <No of Item>400</No of Item> -
84 </Supplier_Part>
85 <Supplier Part>
86 <Snumber>Sl</Snumber>
87 <Pnumber>P4</Pnumber>
88 <No of Item>200</No of Item>

- -
89 </Supplier_Part>
90 <Supplier Part>
91 <Snumber>Sl</Snumber>
92 <Pnumber>P5</Pnumber>
93 <No of Item>lOO</No of Item>
94 </Supplier_Part>
95 <Supplier Part>
96 <Snumber>Sl</Snumber>
97 <Pnumber>P6</Pnumber>
98 <No of Item>lOO</No of Item>
99 </Supplier_Part>

100 <Supplier Part>
101 <Snumber>S2</Snumber>
102 <Pnumber>Pl</Pnumber>
103 <No of Item>300</No of Item>
104 </Supplier_Part>
105 <Supplier Part>
106 <Snumber>S2</Snumber>
107 <Pnumber>P2</Pnumber>
108 <No of Item>400</No of Item>

Figure B.4. The Listing of the Supplier-PartNew XML Document (Continued).

163

109 </Supplier_Part>
110 <Supplier Part>
111 <Snumber>S3</Snumber>
112 <Pnumber>P2</Pnumber>
113 <No of Item>200</No of Item>
114 </Supplier_Part>
115 <Supplier_Part>
116 <Snumber>S4</Snumber>
117 <Pnumber>P2</Pnumber>
118 <No of Item>200</No of Item>
119 </Supplier_Part>
120 <Supplier_Part>
121 <Snumber>S4</Snumber>
122 <Pnumber>P4</Pnumber>
123 <No of Item>300</No of Item>
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
14 6
147
148
149
150
151
152
153
154

</Supplier_ Part>
<Supplier Part>

<Snumber>S4</Snumber>
<Pnumber>P5</Pnumber>
<No of Item>400</No of Item> - - - -

</Supplier_Part>
<P Loe>

<Pnumber>Pl</Pnumber>
<Loe Num>London</Loe Num>

</P Loe>
<P Loe>

<Pnumber>P2</Pnumber>
<Loe Num>Paris</Loe Num>

</P Loe>
<P Loe>

<Pnumber>P3</Pnumber>
<Loe Num>Rome</Loe Num> - -

</P Loe>
<P Loe>

<Pnumber>P4</Pnumber>
<Loe Num>London</Loe Num>

</P Loe>
<P Loe>

<Pnumber>P5</Pnumber>
<Loe Num>Paris</Loe Nurn> - -

</P Loe>
<P Loe>

<Pnumber>P6</Pnumber>
<Loe Nurn>London</Loe Nurn>

</P Loe>
</NIAM>

Figure B.4. The Listing of the Supplier-PartNew XML Document (Continued).

164

APPENDIX C

CHECKED WELL-XML SCHEMA OUTPUT AND CHECKED WELL-FORMED

AND VALIDATED XML DOCUMENT OUTPUT

r>«lJJ'.r~Ji:~.xr:x~.j~:~-~J'kt;*~~~t~0'.;~~~;1;,: ·.
tt-,; '[ff ~ J'.pe [,-,,;Jt<': ~ kl~~· $",.... li>..:.4 ~' t:tc*>

•
~

'" ..

....... 'I ••t"I'·,. v1>1:-.·•'"~J•"•,•~1 '~'·}· · .,._"·tr· 1-•:'."'t,
... { .. ,,,.,. ••• "''7"""' ·'1'i f 1 ~- ')'~ ~ "t> ~ "'i -.• "<17°~ • "'~.., ;,....•· ... , •• '\..,• • · t~ ! .. r "..., :-~·"-f .. •t ;-,• ;--~• ~

{ ~. ,.._;- -?,<' ,,.,,.,.. ~ ••• ,,..,, ... ~~-~ -~·.1 ·•

•,~•;, _.,..,.,f>·,.I,> l•!U-.1'.._,..·,~,, ~-•<l'l•";.,.,,.~ '·'.'!"1.,.~"YI

Figure C.1. Checked Well-Formed MortgageNew Xml Schema Output.

'l"'.>'>":"~·.u:;;c:r.t~:>

3.-:'iX~t.~)G:o,od t::i2'k<:-'~·:':MCt',!'H~t~
: ,,1.~~:1.u-f!"'H hv. r:-·,.J:1'.'ttJ,>C1:t-1);t.'-/ J.t >.· 1~·1~. t;iiv.~ /

')"'~-,.J~t J!.tL-.m4Jih-ll!:!'/'1'"'l"'~'

'IL'.!>~ ~·~HH t1
i· i• ·; fk .- 't•t'X . .- i' ·~ ~ ;,•'

:ii":,'1•.i:>NY< ·,,.~"1>:.r-.'

pf-:•,.f,"''.!•~-~55.l!Ji..:> thunn"'

•,!"!"J":!'

x

~~
~"it

"

Figure C.2. Checked Well-Formed MortgageNew XML Document Output.

165

,1
~· ~t.,,,

.·~ .
n
u
i;i
~
ti
i;
21
n
;t5
:ti

"'"

,-,,-· ,!s·~ ~ I:! t r,,i.) 1.;;~
, :?::.o!t. t\/\~.k. ' ,_,."' ;. l.: ,-

,.·;,_,y-,,i

,>~-,.• ! .,~,,, ,,'l,H'<f-1,_,·,·"~t

J' • .'o;v>, H·u·.:!' ~<,·}..in . .:!:!!..

I '•f,)l;t 'l.:i·"' ~t!"it'J>"I· : •,~.f"! ')' ·''

',i''«)':".

"~i· .J"°'"""-" O/.uto.,!1~1+,;.: ;.,,~

'"t<:·:··N11v Yzc'k·.:"'\l.'!.\''
tlY' ,' '.~" (I:"'~·

;.t <,·1,~ -21:.'l'S'S. t:.H,

, ,. .. ,,,

Figure C.3. Checked Validated MortgageNew Xml Document Output.

' »: ·re;< ~ t• l v:t .«' ' <' to "'-'t 4" "' "' ,~

• l<,~>jj•,<-'~f'l J~/7'.'J:.'~'

- ,, .

..~~ . ·:,. "l<

Figure C.4. Checked Well-Formed Supplier-PartNew Xml Schema Output.

166

IHfi e5 *#U4<@t\Ui%flc:t AA2it= !ilf-~.\~Jf;;~:;y;:;s.~{~:;;,(·

.. : f. .. tdl - - ~ i;,w,1>< ~ loo" - ~
• 1i¥ • w::; • to; II,.! 1:1 :.· r Ii;# :. 'f-.\ ";; "" ... 'A ti? 0:.1 •

rn[~':".J:~
l ...

;.i ~

~~. ::1
4

lw;. :

.;;!:.-;

'1 · I l ~ _.. '

D ~i; l .--;.

~--,~·-"- t ~"""•:~ '-"'.<,,.._~,,, ~

) r; / h"I-;~,;. 'f ~~ 1 'f!•' ·"' ,l> t. >' i;l'l,M't'

·, ·i~ l

''~'"..sJ'.:'£.rt >$i .';\;r.1~ ~t:·
~~~,.._.,,.. <:l~r~.,:~;1>"\~·~, 

:::.-i·.u,,:i:,·;r !i!-,•:.:n•..;;>t:rt1 
"~1,00 • ..,- Ad~• '~>r~IU¥", 

~ .~ 1o;.·· l'\f'41""'. i..~b'!"n.."'! '·~ ~t .. -~,ti'l.~.O"!" 
; ; ··.,,I;.. t _;i--f, 

Figure C.5. Checked Well-Formed Supplier-PartNew Xml Document Output. 

i!'l;V•r'~~ .. ~··1" ... ~'~ XllC!l&··~•.1* 
f) Jd. "' . ..:; ~" .}\ ~•·1·a,, :tt:: · ·· • ~ " 

. l,l,;;!l\<J"t j . 

1:1t".\t'4'.ftl:l?'.' 

'/H«i;.~·.«: -~f'l'l',l\' /S'H-1\l'"it!"' 

~ t.<·M·:•::"t' t<:. t ·r .. ,i~k":: 

Figure C.6. Checked Validated Supplier-PartNew Xml Document Output. 

167 

. . ....W.~ 
.;90x 

" 



APPENDIX D 

THE META TABLES 



ComolexTvoe NumberOfColumns Primary Key 

Supplier 4 Snumber 

Part 4 Pnumber 

Supplier Part 3 Snumber+Pnumber 

(a) SysComplex Table 

ElementCode Complex Type ElementOfComplexType LabelType 

1 Supplier Sn umber Snumber 

2 Supplier Sname Sname 

3 Supplier Status Num Status Num 

4 Supplier City_Name City_Name 

5 Supplier_Part Snumber Sn umber 

6 Supplier_Part. Pnumber Pnumber 

7 Supplier_ Part No of Item No of Item - - - -
8 Part Pnumber Pnumber 

9 Part Pname Pname 

10 Part ColorName ColorName 

11 Part Loe Num Loe Num 

(b) SysComplexElement Table 

Relation ParentComplex ParentKey ChildComplex ChildKey 

document mortgaa;ee mortgagee name document name 

document bank Bank name document bankname 

Document mortgage document documentDate mortgage loanNumber 

(c) Relational Reference Table 

Figure D.1. The Populated Supplier Part Meta Tables. 

168 



Entity Type LabelTyge ElementType 
EntityType I Sn umber System.String 
EntityType2 Sname System. String 
EntityType3 Status Num System. String 
EntityType4 City_Name System.String 
EntityTypeS Pnumber System.String 
EntityType6 No of Item System.lnt64 - -
EntityType7 Pname System.String 
EntityType8 Color Name System. String 

EntityType9 Loe Num System.String -

(d) Object Table 

PredicateCode PredicateN rune . NoteFD ComplexGoal 

Pl Has Snumber ~7 Sname 

P2 Has Snumber 7 Status Num 

P3 Has Snumber ~7 City_Name 

P4 Has Sname 7 Status Num 

PS Has Sname ~7 City_Name 

P6 Has Status_Num ~7 City_Name 

P7 Has No of Item 7 Snumber 

P8 Has Pnumber 7 No of Item 

P9 Has Snumber+Pnumber 7 No of Item 

PIO Has Pnumber ~ 7 Pname 

Pll Has Pnumber 7 ColorName 

Pl2 Has Pnumber 7 Loe Num 

P13 Has Pname 7 ColorName 

Pl4 Has Pname 7 Loe Num 

PIS Has Loe Num 7 ColorName 

(e) Fact Type Table 

Figure D. l. The Populated Supplier Part Meta Tables (Continued). 

169 



RoleCode PredieateCode LabelTye:g Uniqueness Min Cardinality 

Rl Pl Sn umber 1 1 

R2 Pl Snarne 1 1 

R3 P2 Snumber 1 1 

R4 P2 Status Num 0 0 

R5 P3 Snumber 1 1 

R6 P3 City_Name 1 1 

R7 P4 Snarne 1 1 

R8 P4 Status Num 0 0 

R9 PS Snarne 1 1 

RlO PS City_Name 1 1 

Rll P6 Status Num 1 1 

Rl2 P6 City_Name 1 1 

R13 P7 Sn umber 0 0 

Rl4 P7 No of Item 1 1 - -
RlS P8 Pnumber 1 1 

Rl6 P8 No of Item 0 0 - -
Rl7 P9 Snumber 2 1 

Rl8 P9 Pnumber 2 1 

Rl9 P9 No of Item 0 0 - -
R20 PlO Pnumber 1 1 

R21 PlO Pnarne 1 1 

R22 Pll Pnumber 1 1 

R23 Pll Color Name 0 0 

R24 Pl2 Pnumber 1 1 

R2S Pl2 Loe Num 0 0 

R26 P13 Pnarne 1 1 

R27 P13 ColorName 0 0 

R28 Pl4 Pnarne 1 1 

R29 Pl4 Loe Num 0 0 

R30 PlS ColorNarne 0 0 

R31 PlS Loe Num 1 1 

(f) Role Table 

Figure D. l. The Populated Supplier Part Meta Tables (Continued). 

170 



BIBLIOGRAPHY 

English Reference 

1. Arenas, Marcelo and Leonid Libkin. "A Normal Form for XML Documents," 
ACM PODS 2002, June 3-6, 2002, Wisconsin, USA. 

2. Arenas, Marcelo and Leonid Libkin. "An Information-Theoretic Approach to 
Normal Forms for Relational and XML Data," PODS 2003, June 9-12, 2003, San 
Diego, CA. 

3. Becker, Scot A. "Normalization and ORM," Journal of Conceptual Modeling, 
Issue: 4, August 1998, www.inconcept.com/jcm. 

4. Bird, Linda, Andrew Goodchild, and Terry Halpin. "Object Role Modeling and 
XML-Schema", Proceedihg of 19th International Conference on Conceptual 
Modeling (ER2000), Utah, USA (October 2000):1-14. 

5. Bourret, Ronald. "XML Database Products," September 1, 2004. 
http://www/rpbourret.com/xml/XMLDatabaseProds.htm. 

6. Chankuang, Narudol and Suphamit Chittayasothorn. "An Object and XML 
Database Schemas Design Tool," Proceeding of International Conference on 
Information Technology: Coding and Computing (ITCC'04) Volume 2, Las 
Vegas, Nevada (April 2004): 421-424. 

7. Chankuang, Narudol and Suphamit Chittayasothorn. "A Software Tool for Object 
and XML Schemas Generation," Proceeding of Pacific Rim Conference on 
Communications, Computers, and Signal Processing (PACRIM'03), Victoria, 
Canada (August 2003): 675-678. 

8. Date, C. J. An Introduction to Database Systems, 7th Edition. NY: Addison 
Wesley Longman Incorporation, 2000. 

9. Daum, Berthold and Udo Merten. System Architecture with XML. CA: Morgan 
Kaufmann Publishers, 2003. 

10. Dennis, Alan, Barbara Haley Wixon, and David Tegarden. Systems Analysis and . 
Design an Object-Oriented Approach with UML, 1st Edition. NY: John Wiley 
and Sons Incorporation, 2002. 

11. Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems, 
2nd Edition. CA: The Benjamin/Cummings Publishing Company, 1994. 

12. Fan, Wenfei and Leonid Libkin. "On XML Integrity Constraints in the Presence 
ofDTDs," PODS 2001, California, USA. 

13. Halpin, Terry. Conceptual Schema and Relational Database Design, zn<l Edition. 
Sydney: Prentice-Hall Incorporation, 1995. 

171 



14. Harold, Elliotte Rusty. XML Bible, Gold Edition. NY: Hungry Minds 
Incorporation, 2001. 

15. Hoffer, Jeffrey A., Joey F. George, and Joseph S. Valacich. Modem Systems 
Analysis and Design, 3th Edition. NJ: Prentice-Hall International Incorporation, 
2002. 

16. Holzner, Steven. Sams Teach Yourself XML m 21 Days, 3th Edition. 
Indianapolis: Sams Publishing, 2004. 

17. Leung, C. M. R. and G. M. Nijssen. "From a NIAM Conceptual Schema into the 
Optimal SQL Relational Database Schema," Australian Computer Journal 19, no. 
2 (1987): 69-75. 

18. Ramakrishnan, Raghu and Johannes Gehrke. Database Management Systems, 3rd 
Edition. NY: McGraw-Hill Companies, 2003. 

19. Routledge, Nicholas, Linda Bird, and Andrew Goodchild. "UML and XML 
Schema," Proceedings of the Thirteenth Australasian Conference on Database 
Techologies (ADC2002) Volume 5, Melbourne, Victoria, Australia (January 
2002): 157-166. 

20. Salim, Flora Dilys, Rosanne Price, Shonali Krishnaswamy, and Maria lndrawan. 
"UML Documentation Support for XML Schema," Proceeding of International 
Conference on Information Technology: Coding and Computing (ASWEC'04) 
Volume 2, Las Vegas, Nevada (April 2004): 421-424. 

21. Sceppa, David. Microsoft ADO.NET: core reference, 1st edition. Washington: 
Microsoft Corporation, 2002. 

22. Singer, Michael. "XML Use Almost Doubled In 6 Months Says Survey," May 9, 
2001, http://siliconvalley.intemet.com/news/article.php/762281 

23. Suciu, Dan. "On Database Theory and XML," SIGMOD Record 30, no.3 (2001): 
39-45. 

24. Tittel, Ed., Natanya Pitts, and Frank Boumphrey. XML for Dummies, 3rd Edition. 
NY: Hungry Minds Incorporation, 2002. 

25. Whitten, Jeffery L., Lonnie D. Bentley and Kevin C. Dittman. Systems Analysis 
and Design Methods, 6th Edition. NY: McGraw-Hill Companies, 2004. 

26. Wyke, R. Allen and Andrew Watt. XML Schema Essentials, 1st Edition. Canada: 
John Wiley and Sons Incorporation, 2002. 

Website Reference 

1. Fallside, David C. XML Schema Part 0: Primer First Edition, 2 May 2001, 
http://www.w3.org/TR/xmlschema-O. 

172 



2. Beech, David, Murray Maloney, Henry S. Thompson, and Noah Mendelsoh. 
XML Schema Part 1: Structures First Edition, 2 May 2001, 
http://www. w3 .org/TR/xmlschema-1. 

3. Malhotra, Ashok and Paul V. Biron. XML Schema Part 2: Datatypes First 
Edition, 2 May 2001, http://www.w3.org/TR/xmlschema-2 . 

. 4. Walmsley, Priscilla and David C. Fallside. XML Schema Part 0: Primer Second 
Edition, 28 October 2004, http://www.w3.org/TR/xmlschema-0/. 

5. Beech, David, Murray Maloney, Henry S. Thompson, and Noah Mendelsoh. 
XML Schema Part 1: Structures Second Edition, 28 October 2004, 
http://www.w3.org/TR/xmlschema-1/. 

6. Malhotra, Ashok and Paul V. Biron. XML Schema Part 2: Datatypes Second 
Edition, 28 October 2004, http://www.w3.org/TR/xmlschema-2/. 

7. XML Spy, http://www.xmlspy.com/ 

8. XMLwriter, http://xmlwriter.net/ 

~t. Gabriel's Library, Au 

173 




	Cover and Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Chapter I : Introduction
	Chapter II : Literature Review
	Chapter III : Research Methodology
	Chapter IV : System Development
	Chapter  V : System Evaluation
	Chapter VI : Conclusion and Recommendations
	Appendix : A
	Bibliography



