

MS(CIS)
St. Gabriel Library, Au

Generating DVR Data Model for Data Warehouse
d' /

by

Eaisarn Trakulsuk
/

A Doctoral Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of Doctor Philosophy

in Computer Information Systems

Dissertation Committee:

Name
Nationality
Previous degree

Prof.Dr. Srisakdi Charmonman (Chairperson)
Assoc.Prof. Somchai Thayarnyong

Asst.Prof.Dr. Vichit A vatchanakom (Advisor)

Air Marshal Dr. Chulit Meesajjee
Dr. Chamnong Jungthirapanich

Asst.Prof.Dr. Ouen Pin-ngem

Assoc.Prof.Dr. Suphamit Chittayasothom

Dr. Boonyarit Phokrud

Mr. Paisarn Trakulsuk
Thai
B.B.A. (Business Computer),

Assumption University

M.S. (CIS), Assumption University

Assumption University

Bangkok, Thailand
October 2000

Submitted to:

Submitted on:

Submitted by:

Ph.D. Program
Dissertation

Generating DVR Data Model for Data Warehouse

Prof.Dr. Srisakdi Charmonman (Chairperson)
Assoc.Prof. Somchai Thayarnyong

Asst.Prof.Dr. Vichit Avatchanakom (Advisor)

Air Marshal Dr. Chulit Meesajjee

Dr. Chamnong Jungthirapanich

Asst.Prof.Dr. Ouen Pin-ngem

Assoc.Prof.Dr. Suphamit Chittayasothom
Dr. Boonyarit Phokrud

October 2000

Paisarn Trakulsuk

A Doctoral Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

in Computer Information Systems

Assumption University

Bangkok Thailand

October 2000

Generating DVR Data Model for Data Warehouse

by
Mr. Paisam Trakulsuk

A Doctoral Dissertation

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy
in Computer Information Systems

Assumption University

October 2000

RESEARCH TITLE Generating DVR Data Model for Data
Warehouse

CANDIDATE NAME Mr. Paisarn Trakulsuk

ADVISOR NAME Asst.Prof Dr. Vi chit A vatchanakorn

ACADEMIC YEAR October 2000

The Graduate School of Assumption University had approved this final dissertation as
a partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Computer Information Systems.

� _c_· .. CA--- -- -
(ProfDr. Srisakdi Charmonman)

Chairperson of Examination Committee

(Asst.ProfDr.Vichit A vatchanakorn)

Advisor

(Dr. Ch!:;;a�a�anich)

Member

(Assoc.ProfDr. Suphamit Chittayasothorn)

Member

(Assoc.Prof Somchai Thayarny�ng)

MUA Representative

(Air Marshal Dr.Chulit Meesajjee)

Member

;;..:.;=­
(Asst.ProfDr. Ouen Pin-ngern)

Member

(Dr.Boonyarit Phokrud)

Member

ABSTRACT

The valuable information from multiple data sources in warehouse database is

summarized in form of multidimensional data model, generally implemented in

relational database. This research presents a procedure to generate the Dimension,

Variable, and Relative Dimension of multidimensional data model used in the

Multidimensional On-Line Analytical Processing (MOLAP) concept.

The proposed model is presented in two concepts: (1) Building DVR model of

warehouse database, the proposed procedure consists of classification, partitioning, and

clustering modules. (2) The DVR data model design using graph model, the proposed

design shows how to provide data support intelligence through multidimensional data

analysis when there are huge amount of online data. This design also represents a fact

scheme that integrates relative information and external sources, as well as extends the

algorithms to build DVR patterns of multidimensional data model.

ACKNOWLEDGEMENTS

Several People have made contribution to this research. The writer would like to

acknowledge their efforts and thank them for their contributions.

He would like to gratefully acknowledge to parent who motivated him for

studying Ph.D. Program in Assumption University. In Particular he would like to thank

Asst.Prof.Dr. Vichit A vatchanakom, his project advisor, who gave the idea and advice

given in to preparation of this research.

He would like to thank to Prof.Dr. Srisakdi Chamonman, chairman of Ph.D.

Program, and the committees, Air Marshal Dr. Chulit Meesajjee, Assoc.Prof. Somchai

Thayamyong, Asst.Prof.Dr. Ouen Pin-ngem, Assoc.Prof.Dr. Suphamit Chittayasothom,

Dr. Chamnong Jungthirapanich, and Dr. Boonyarit Phokrud for their valuable

suggestions and shared the ideas of significant mentions to develop his research.

He extend his sincere thank to Mr. Jaime Cabrara who helped him to check and

prove the contents and grammar of his research. Lastly he would like to thank you the

reader, and hope you find the content of its useful and easy to read .

. - .

1 1

A

00

NOMENCLATURE

For any attribute x, ...

Index key of attribute x

Data Property or Characteristics of attribute x

Union, Or

Dimension from attribute x of data entity i

Variable from attribute x of data entity i

The mapped data set of A

Join Function (e.g. a1 00 a2 is attribute a1

joined with attribute a2.)

Related Function.

Associated Function.

Query process in which m represents the SQL
aggregate functions (i.e. count, sum, max, min
etc.) and n is grouped according attribute.

1 1 1

LIST OF FIGURES

Figure Page

1.1 Data Warehouse Architecture 3

1.2 Data Warehouse Structure 5

1.3 Multidimensional Database Model Sample 6

1.4 Relational and Multidimensional Data Presentation 7

1.5 Relational and Multidimensional Data Consolidation 8

2.1 A sample of ER Modeling 21

2.2 A dimensional data structure 23

2 .3 Data Dimensions in Graph Form 27

2.4 Multidimensional Variables on a Bidimensional Graph 28

2 .5 A Relative Dimension 29

3 .1 The Research Paradigm 37

3 .2 DVR Data Structure Generating Process 38

3 . 3 Data Model Relocation Process 67

4.1 Sample Graph Model Form 77

4.2 Graph model of PRODUCT data entity 82

4.3 a) Analyzing data in 3D in the SALEMAN dimension 83

b) Analyzing data in 3D in the MANUFACTURER dimension 83

c) A 3-D graph model. 83

4.4 A Hypercube Data Strncture 84

4.5 Linking Related Graph Structures. 86

4.6 Combining Order Date and Date Data Entity 87

4.7 SALE and COST Data Entities in Graph Form 91

VI

Figure Page

5 .1 The Engine Cost E/R Scheme 95

5.2 Data Cleansing and Transformation 98

5 .3 Example of Classification Process in Program prototype 100

5 .4 Example of Partition Process in Program prototype 101

5.5 Example of Clustering Process 107

5.6 Engine Cost Database in 2D Conceptual Model 109

6.1 Data Access of DVR Data Model 111

Vll

LIST OF TABLES

Table Page

2.1 The Similarities and Differences in OLTP and OLAP 34

3.1 SALE Data Entity 41

3 .2 COST Data Entity 41

3.3 Mapping Table of Partitioning Module 43

3.4 SALE Data Entity and DVR Indicator 47

3.5 Data Element of SALE Data Entity 48

3.6 Sample Data of SCODE Dimension 50

3.7 D1.SCODE => Vi.SALEVAL, V2.COMM 50

3.8 D1.SCODE H R,.SNAME 50

3.9 D2.ACODE => Vi.SALEVAL, V2.COMM 50

3 .10 D1.SCODE 00D2.ACODE => Vi.SALEVAL, Vi.COMM 51

3.11 COST Data Entity and DVR Indicator 51

3 .12 An Example of a Clustering Module 55

3 .13 Data Sets from ECP 57

3 .14 Mapping Data Set of Example 3 58

3 .15 New Data Set of Example 3 61

4.1 Data Entity of PRODUCT Information 73

4.2 Data Entity of SALESMAN Information 73

4.3 Sample Data Elements of Table 4.1 73

4.4 The Example of Order Date 88

4.5 SALE Data Entity 88

4.6 COST Data Entity 88

Vlll

Table Page

4.7 SALE Data Entity and DVR Indicator 89

4.8 COST Data Entity and DVR Indicator 89

5. 1 ENGCOST Data Entity 99

5.2 SUPPLIER Data Entity 99

5.3 Example Data Mapping of Clustering Process 1 04

lX

St. Gabriel Library,Ao

TABLE OF CONTENTS

Chapter Page

ABSTRACT

ACKNOWLEDGEMENTS 11

NOMENCLATURE iii

LIST OF FIGURES vi

LIST OF T ABLES viii

I. INTRODUCTION

1.1 Introduction 1

1.2 Overview of Data Warehousing 2

1.3 Overview of Multidimensional Databases 6

1.4 Literature Reviews 9

1.5 Data Structure Design Problems 13

1.6 Scope and Objectives of the Research 15

l.7 Organization of the Research 18

II. DATA STRUCTURE MODELING 19

2.1 Introduction 19

2.2 Approaches to Data Architecture 20

2.3 The DVR Model 25

2.4 OLAP Methodology 29

2.5 Conclusion 34

Ill. DVR DATA MODEL GENERATION 36

3.l Introduction 36

3.2 Generating the DVR Data Structure 38

3.3 Conclusion 68

lV

Chapter Page

N. DVR DATA MODEL DESIGN VIA GRAPH MODEL 69

4.1 Introduction 69

4.2 Designing Data Model via Graph Model 70

4.3 Conclusion 92

v. APPLICATION TO ENGINE COST SYSTEM 93

5.1 Introduction 93

5.2 Data Sources 94

5.3 Definitions of Data Codes 95

5.4 A DVR Model Example 99

5.5 Conclusion 110

VI. CONCLUSIONS AND RECOMMENDATIONS 111

APPENDIX A DATA TRANSFORMATION AND DATA LOADING 116

BIBLIOGRAPHY 122

v

I. INTRODUCTION

1.1 Introduction

The database system, one of the most essential aspects of computational sciences,

is applied in various fields such as commerce, education, arts, and the sciences. Since

1946 when the first mainframe ENIAC was created, the approaches to manipulating

databases developed in many ways. In the ?O's, IBM introduced a significant

development in early database management systems, the data management component

of the Information Management System (IMS). Dr. E. F. Codd's 1970 model for

managing data, the relational model, was followed by �o�mercial relational DBMS's,

even as IBM developed the hierarchical database in IMS systems. The hierarchical data

structure is a parent-child relationship between pairs of record types. A hierarchical

database is defined as a hierarchical schema or a definition tree [134]. Microcomputer

DBMS's developed in 1980, due to increased systems functionality and new data

structures, most interesting of which are the Multidimensional Database (MDDB) and

Data Warehouse (DW).

Throughout the history of system development, there are two fundamental

requirements: operational and analysis systems. The operational systems need

performance whereas analysis systems need flexibility and broad scope. Today's data

warehousing systems provide the analytical functions that are most successful designing

with the overall business structure rather than specific requirements. This significant

influence on evolution of data warehousing science is the fundamental changes in

business organization and structure during late eighties and early nineties.

1.2 Overview of Data Warehousing

The data warehouse is a collection of integrated, subject-oriented database

systems designed to support the decision support systems (DSS) function. [20] . Inmon

redefined the data warehouse as a "subject-oriented, integrated, time-variant, non­

volatile collection of data to support managerial decision-making."

As a collection of computer-based information, the data warehouse is critical in

the success of enterprise initiatives. Designed for enterprise-wide access, it deviates

from the more classical process orientation of applications organized by operational

systems. While most operational systems are designed around specific applications and

functions such as inventory, payroll, and human resources, the data warehouse is

organized around broader subjects such as customers, suppliers, products, and activities.

Data flow from original sources to the data warehouse involves access,

transformation, distribution, and storage in relational data form [1 72] (Figure 1 .1), with

operational and external databases as sources of historical and up-to-date data. The DSS

analyst relies on such informatiou to access the data warehouse layer.

Data access (also called Data access layer) is the process of reading, seeking, or

writing data on a storage unit. On the other hand, data transformation (also known as

data scrubbing or data cleansing) is creating information from data by decoding data

and merging records from multiple DBMS formats. Data transformation and

distribution are executed whenever the warehouse data is updated. This involves

selection, editing, summarizing, combining and loading data from operational and/or

external database. In data transformation, complex programming processes are used:

data analysis, filtering, identifying patterns, and data structuring. To facilitate the

process, data warehousing tools are also created.

2

ln the data warehouse layer, data is primarily used for infoanation. In a physical

data warehouse. copies of operational and external data arc stored in highly flexible and

accessible fonns. Increasing volume of lhc data warehouse demands summarization of

data in multidimensional view patterns for archiving. Summarizing or transforming data

may use additional modules or programs to build the multidimensional data structure.

which is designed lo be usable to other data levels.

To sum up, storing information effC(:tively in the data warehouse entails much

work, specialized programming. and recording in metadata all data descriptions. types,

sources, and other peninent infonnation The goal is interoperability, which is vital to

data warehousing.

1,\lfTADATA

llA TA A CC ES"

- -

DA1l.t TRANSFORMATION & DlSTlUBUTIO.N

...- _,..

WAREUOl/Sf;
D.ATAIJASE

Figure I. I. Data Warehouse Architecture.

3

The data warehouse system integrates operational data from various sources into a

single and coherent structure. The goal is to support analysis and decision-making

processes within an enterprise. An accurate data warehouse allows time-variant data to

show up in key structures such as day, week, and month. Because data in the data

warehouse do not change, loading data from operational systems into the warehouse

database is easily done.

There are different ways to integrate data sources of operational systems. For

example, the SEX attribute may be represented in different encoding applications: as

Male and Female in Application A, 'M' and 'F' in Application B , 'O' and '1 ' in

Application C, and, 'x' and 'y' in Application D. However, when the SEX attribute is

loaded into the data warehouse, all data is converted into one standard format.

Harry Singh's Data Warehouse Concepts classifies data warehouse structures into

four: current data, older data, summarized data, and metadata. In the warehouse

structure, the Current Data level has the lowest level of granularity. Data enters this

level frcm various operational applications, and are mostly stored in disks for faster

access. At this level, data is voluminous and should be purged, summarized, and

archived to the data warehouse. Disk storage should be very large. To avoid data

crowding, infrequently-used data are stored on alternative storage media (i.e.,

cartridges, tapes or diskettes), called the Older Data level. To access data from this

level, the storage media is reloaded, linked, or coupled to the user's unit.

Quick data analysis in management decision-making requires summarized data.

There are two types: lightly summarized and highly summarized data. The former is a

compiled set of data (e.g. sales volume of product group during January to December)

while the latter is more compact, accessible, and usually stored in the data warehouse.

Outside data sources may be used for high-performance analysis (i.e. , standard man-

4

hour maintenance costs. average cost of repaired engines among top five

manufactw·crs).

Metadata identifies da'ta in the data warehouse [18]. IL include� data contents.

structures, formulas, calculations, sources. and locations. IL is Lhe data directory that

helps DSS analysts find data. fl is a mapping guide for warehousing operational data.

HIGHLY .., l9I ... 191
SU�T�ZF,D Iii Iii Iii ...

LIGHTLY • 1:1 SUMMARJZED D
DATA

CURRENT
DETAILED

DATA

Ql,DER
DATA

RDBMS

•

METADATA

Figure 1.2. Data Warehouse Scrucmre.

Figure 1.2 illustrates the levels in a data warehouse structure and the database

types used in each level. Current detailed data are occasionally stored in a relational

databa�e that allows the management of large volumes of data Data access is possible

through high-performance query tools or other statistical application software.

Highly-summarized and ligbtly-summarfaed data are stored in a

multidimensional format in a relational or a rnuhidimensional database. The

multidimensional database is designed for efficient data management in

5

multidimensional view patterns, widely used today. Older data are stored in tapes or

diskettes.

1.3 Overview of Multidimensional Databases

To improve performance analysis, data must be viewed in multidimensional

patterns. The database may store data in either relational or multidimensional formats.

Although both can be viewed in multidimensional patterns, the relational database is is

difficult to translate data formats into hypercube structures, and cannot support the drill-

down or roll-up methods.

Hypercube is a data structure m three or more flat-sided dimensions, each

dimension at right angles to the others.

The Multidimensional Database (MDDB) is a computer software system designed

for efficient and convenient storage and retrieval of large volumes of data. Hypercube

patterns allow the fastest data access. It also allows rotating the data figure as desired.

For example, Figure 1 .3 illustrates various perspectives of the consumption

volume of three specific spare parts used by three engines in three types of Boeing

aircraft. Here, data is stored in three-dimensional array patterns (hypercubes).

Usage Consumption
Volume

Engine
Structurer-�-r�-,..__��

CF6·50

CF6·80

CF6·BOR

8737 8747 8777

Aircraft Type

Spare Part
BOLT/

NUTS
WASHER

Figure 1.3. Multidimensional Database Model Sample.

6

Multidimensionality refers to a database technology that enables faster data

analysis. The spreadsheet format helps users to view data in various perspectives.

A multidimensional database is easier and faster to use than a relational database.

A relational database is organized around a list of records, each containing related

information that is organized into fields or attributes. On the other hand, a

multidimensional database records data as arrays, each composed of at least one

dimension and fact or measure. These are represented in patterns of at least two

dimensional matrices.

ENGINE STRUCTURE
PART ENGINE QTY
BOLT CF6-50 90

BOLT CF6-80 120

BOLT CF6-80R 140

NUTS CF6-50 50

NUTS CF6-80 60

NUTS CF6-80R 100

SCREWS CF6-50 40 • 50 60 NUTS

120 BOLT 90

SCREWS 40 70

SCREWS CF6-80 70
WASHER 20 IO

SCREWS CF6-80R 80

WASHER CF6-50 20

WASHER CF6-80 10

WASHER CF6-80R 30 I

Figure 1 .4. Relational vs Multidimensional Data Presentation.

140

100

80

30

Figure 1 .4 shows data arranged in relational and multidimensional formats. The

relational format presents data in three modules while the multidimensional format

employs a two-dimensional matrix. The latter gives a , hence a. A two-dimensional

matrix is a more fluid data structure.

7

St. Gabriel Library,Au

ENGINE STRUCTURE

PART ENGINE QTY
ST_QTY

DOLT CF6-SO 90 st:u:cr SUM(QTYl

DOLT CF6-80 120
FROM €NGIN£

350 \VRERF.: PART= 'BOLT'

801,T 0'6-80R 140

NUTS CF6-SO 50
St:l.ECT SUM(QTV)

NOTS CF6-80 60 VROM ENGIN'& 210

NOTS CF6-80R 100
WILER£ PAl<T �·NUTS' ...

SCREWS CF6-50 40 SEI.EC"r SUM(QTY)

SCREWS CF6-80 70
FROM ENGTNt:

190 \VfJF,Q& PAl<T= 'SCRt:WS'
SCRF. WS CF6-80R 80

W,\SHER CF6-50 20 SELECT SUM(QTY)
WASHER CF6-80 10 fROM£NClNE 350

WASHER CF6-80R 30 WlfEI\& PART= •WASHER'

�BNGINB'STR�
?pil� MCF6-'5 "'c:Fi;.so·· •! .. I-' cF6-80R t '.'<:Tolim -

l20 350
-

BOLT 90 140

NUTS 50 60 100 210

SCREWS 40 70 80 190

WASHER 20 JO 30 60

TOTAL 200 260 350 810

Figure J .S. Relatio11al VS Mullidimensiooal Data Consolidation.

TOT_QTY

810

For a m1Jre consistent response, system designers consolidate data and reload

them into the database (Figure 1.5). In tbe relational format, precomputed 1otals speed

up response. The rel alionaJ process creates new summarized data using Standard Query

Language (SQL). On the other band, a multidimensional database consolidates data

faster by simply adding up the row and column totals.

Botb fonnalS were developed for more efficient data delivery to users, but a

multidimensional database complements data warehousing strategies. When n

mullidimensionaJ database and a daca warehouse work together. tbey enhance tbe

quality, speed and efficiency of delivering corporate data to end users.

Dr. Kenan Sabin, president and CEO of Kenan Systems Corporation, defines the

two ft111ctions of a multidimensional database when used as a data warehouse: (I) the

8

warehouse retailer model which provides user-friendly access and (2) the OLTP retailer

model, which front-ends one or more OLTPs as well as open OLTP data to users.

To tum data into useful business information, a multidimensional database should

have analysis tools, data integration and cleansing properties, as well as transparent data

extraction from data warehouses. Many popular MDDB products in the market today

share such properties: Arbor Software's Essbase, Comshare's Commander, Dimensional

Insight's CrossTarget, Holistic Systems' Holos, Information Advantage's Axsys, Kenan

Technologies' Accummate, MicroStrategy's DSS/Server, Oracle Personal Express, Pilot

Software's LightShip Server, Planning Sciences' Gentium, Redbrick Systems' Redbrick

Warehouse, Sniper's TM/I, and Standford Technology Group's Metacube.

A multidimensional database provides answers very fast. Aside from the fact that

data are stored in coarser grains, another interesting aspect is that the information is

stored in arrays, making updating possible without affecting the index. These features

make multidimensional databases perfect for read-write applications.

1.4 Literature Reviews

In 1980, data warehousing began as a repository for data collection, then evolved

into a business tool in information analysis. Today, due to a highly dynamic business

environment, data warehousing is a decision-making tool because it offers fast,

consistent and accurate information flow.

The data model is but one part in the data warehouse building process that creates

the material views of management. [16] ; [69] ; [76] ; [101] ; [108] ; [110] ; [117] ; [121] ;

[148] ; [175] ; [176] . A data structure is a graphic representation of data for a specific

area of interest [171] , which may be as broad as all data requirements of an

organization, or as focused as a single business area or application. A data structure's

9

function is to convey clearly data, data relationships, data attributes, data definitions and

the business rules that govern data.

Data models are the accepted way of representing and designing databases. Two

data structuring approaches often used in a data warehousing are dimensional modeling

(data structure), and ER modeling (conceptual structure) [17].

Data structuring is of two types: logical and physical [29]. A logical data structure

is not a physical database but a graphic representation of the information requirements

of a business area. It is pyramidal, enterprise-wide in scope and generic to all

applications in the lower levels of the pyramid. It contains the identification and

definition of all entities, relationships, and attributes. On.the other hand, the physical

data structure applies physical constraints, performance, and data distribution. This

model is used to design actual physical implementation [150].

The two types of referring databases in the design of the data structures are the

relational database [153]; [131] and the multidimensional database.

Various researches have defined the multidimensiono.l data structure and the

OLAP concept. [15]; [38]; [48]; [81]; [91]; [95]; [117]; [138]; [148]; [155]; [165];

[178]; [186]. These researches also review data structures in the form of applications,

[1]; [10]; [11]; [102]; [112]; [127]; [130]; [167]; [185], analysis processes [28]; [49];

[63]; [129]; [136]; [164]; [187], and as other applied technical theories [2]; [30]; [34];

[106]; [114]; [133]; [140]; [168]; [177]; [192]. Past researches have also focussed on

logical data structures [29]; [53], as well as on physical data structures [150]. Various

researches on the physical data structure confirm the use of SQL language as query

process in data loading, transformation, aggregation and summary [5]; [11]; [21]; [27];

[31]; [66]; [70]; [77]; [91]; [122]; [127]; [137]; [141]; [156]; [195].

10

MS(CIS)
St. Gabriel Library ,Au

30220 e·1
Conceptual modeling is used to assist communication between analysts and end-

users during data acquisition and specification verification. Modeling captures

knowledge about the universe of discourse (uod) and represents it so as to enable a

system developer to reason about this knowledge, communicate his/her understanding

to end-users for verification and modify the model accordingly. The use of conceptual

data structures must be guided by generic procedures so that developers may use the

model's constructs in a standard approach within and across organizations.

Traditionally, conceptual models have paid more attention to the structural aspects

of an application [3]; [14]; [33]; [38]; [74]; [177], giving rise to Semantic Data

structures. The development of conceptual data structures has benefited from

contributions from the fields of databases [10]; [127]; [167], artificial intelligence [119],

programming languages [14]; [27]; [119], and software engineering [46]; [52]; [181].

In conceptual modeling, database, and case reference, there are three famous data

structuring orientations: semantic data modeling, process modeling, and event

mudding.

1.4.1. Semantic Data Modeling

Semantic data modeling approaches are concerned with the static aspects of an

information system (i.e. objects, relationships, and integrity constraints). The basic

approaches that dominate data modeling are: the ER diagram, graphic approaches, and

binary-relationship approaches.

Various researches have focused on ER formalism [26]; [33]; [123]; [160], and on

the binary-relationship approach [3]; [55]; [74]; [131]; [162]; [173]. Matteo Golfarelli,

for instance, proposed a conceptual model for data warehouse design and a semi-

automated methodology for deriving it from E/R documentation, which describes the

l l

information system of the enterprise [17]. He also presents the design steps for E/R

schemes for a typical health-care information system.

1.4.2. Process Modeling

Process modeling refers to data flow models, which are concerned with the

specifications of activities in an application area of the uod. An activity is informally

defined as a set of partially ordered sub-activities which themselves can be further

decomposed. Activities are mainly concerned with modeling a uod in terms of flows of

information in either direction [14]; [155].

1.4.3. Event Modeling

A major aspect of the relationship between time arid. information is that there are

many such relationships. Two of these received the most attention: event time (real

world time) at which a fact becomes valid, and transaction time (the time when this fact

is recorded in the database). The most widely used definition of event modeling is "an

instantaneous happening of interest to the enterprise" [26]; [46]; [52]; [119]; [123];

[160]; [131].

Most researches on data warehousing concepts focus on maintaining the

warehouse with efficiency [59]; [73]; [82]; [83]; [98]; [100]; [85]; [84]; [124]; [145];

[146]; [147]; [189]; [190]; [191], and on warehouse performance c"'onsistency [94];

[196]; [197]; [198]; [199]; [200]. Nam Huyn, for instance, proposes a process of

preserving views and keeping them consistent without updating the warehouse [85];

[84] by using an algorithm to generate SQL queries. The answers to the queries

determine if a view can be maintained in a given situation. The answers also generate

SQL updates that maintain the view. This is one process of view design that achieves a

combination of good query performance and low view maintenance [94]. A framework

is presented to highlight issues of materialized view design in a distributed data

12

warehouse environment. On the other hand, Yue Zhuge, et al presents three layers of

consistency for materialized views in a distributed environment [196]; [199]; [200].

This consistency develops simple and scalable algorithms for achieving multiple views

consistency (MVC) in a warehouse database.

The design of the data structure in multidimensional cubes is of pnmary

importance prior to handling or maintaining the multidimensional views process. The

lack of a data model will limit analysis to two-dimensional associations. On the other

hand, an incomplete data model will result in error contamination in analytical

procedures. The design of data structures have many other purposes [69]; [94]; [101];

[112]; [197]; [198], including algorithms and other methodologies to design either

physical or logical data models of structures or metrics.

1.5 Data Structure Design Problems in Data Warehouse

Designing a hypercube database involves three major steps: First, the user decides

on what particular business aspect to feature in the model. Second, the user identifies

and assigns values, mostly numeric. Third, the user identifies data granularity, the

lowest detail to be recorded. These three elements (business aspect, values, data

granularity) are the three dimensions of a database constructed in hypercube.

The complicated design phases include: (1) preparing data from the warehouse,

(2) designing the data structure for multidimensional views analysis, (3) developing the

programs for loading data and other processes, (4) data distribution and data testing.

Designing a multidimensional database model requires the careful study of data in

the existing operational system to prevent data incompatibility. Problems in the design

phase include difficulty in handling large database, expertise required, and user

requirement ambiguity.

13

1.5 .1 Difficulty in Handling Large Databases

A data warehouse is a high-volume database, a repository fed by various sources

with a data life-span of about five years. Transforming and distributing data results in an

updated version of the warehouse database. The greatest activity involving the

warehouse database is the extraction of data from relational databases into

multidimensional databases.

Due to the huge amount of data inside a data warehouse, manual checking of data

becomes a very complex task checking for errors is difficult. For example, the 'SEX'

field is reserved only for 'M' or 'F' entries, but some entries are invalid. Manual

checking of data in the voluminous warehouse is next to impossible. However, the

automatic program proposed in this research will show all errors in a data warehouse in

seconds.

1.5.2 Expertise Required

Data warehousing is a recent technology that requires a high degree of knowledge

of various concepts of design and implementation of a modem and effici�nt data

warehouse project. The manual design of a multidimensional data structure requires a

high technical skiJls of human expertise. The data warehouse team is composed of

Executive sponsors, Business Analysts, End-user Support, Technical Support, and MIS.

Proper training, mentoring, planning, motivation, organization, and patience can help

ensure that data warehouse team is position to provide the highest level of support,

returning the highest return on investment to the organization. To solve the problems of

a well designed data warehouse, the technical skills are required while the project time

is limited. This research reduces the dependence on human expertise in designing a data

structure by presenting a system that reviews data and automatically designs a

multidimensional structure for the data.

14

St. Gabriel Library ,Au

1.5.3 User Requirement Ambiguity

The successful data warehouse project reqmres the involvement and the

collaborative efforts of top executives, middle management, or professional leaders. The

main problem with data warehousing is that most companies are creating data

warehouse in a vacuum; identify and analyze key activities that are not essential to

business missions, missing significant data items that served the user requirement, no

building data models that support business factors of user requirements, etc. During

process analysis and design, participants identify the specific data entities and attribute

to support each process. Process is then mapped to legacy data sources and entities

before the warehouse project moves forward to defining· the physical data structure, this

structure should initially built data model in support of the present and future business

strategies of the organization.

Modest projects that may seem simple often are not. Managing user expectations

and establishing acceptable compromises must be accomplished before expending a

major portion of the budget and time. These projects must be carefully planned and the

pattern of data presentation designed. Designing the data model and creating prototype

may be a good idea if the user community understand what a data model proves and,

more importantly, does noi"prove.

1.6 Scope and Objectives of the Research

The interconnected parts in Figure 1.1 are organized from various types of

software tools and programmmg processes. The operational database and external

database serve as the sources of up-to-date and historical data for analysts.

The Data Access Layer (DAL) allows the Information Access Layer to

communicate with the Operational Database Layer. The DAL contents (i.e. data

description, data type, source of data, etc.) are recorded into metadata or the Data

1 5

Directory Layer. The Data Staging Layer includes all process necessary to select, edit,

summarize, combine and load data from operational and/or external databases. At this

layer, there is complex programming in to create filters that identify patterns and data

structures for meaningful data analysis. An increasing number of data warehousing

tools are being created to help this process.

Finally, the Data Warehouse Layer is where the data is used by end users. In a

physical data warehouse, many copies of operational and external data are actually

stored in a form that is flexible and easy to access. Here, the volume of data increases

all the time. To condense the data for easy archiving, it is rearranged in

multidimensional view patterns. The process also cleans, fransforms, and distributes the

accumulating data from operational and/or external sources to the warehouse database.

The complicated process is so delicate that only DSS analysts are allowed to handle

them. They aggregate the interrelated layers into one, or sometimes distribute the

processes to other responsible functions.

This research fol:uses on the part of the Data Access Layer that automatically

generates a data structure to serve the specified multidimensional concept. The

objectives and scope of this research are as follows:

1 .6.1 Research Objectives

This research aims to provide two methods of creating a multidimensional data

structure: dimensional modeling and graphs modeling. Instead of being individually

designed by DSS analysts, both are automatically generated by computers to ensure a

high-performance multidimensional database. This is needed especially in OLAP

concepts.

The proposed research presents the three modules for automatic building of the

logical DVR model of a warehouse database. A DVR model consists of a finite set of

16

grouping relationships. It is a combination of dimension attributes, variable attributes,

and/or relative dimension attributes for decision-support requirements. The DVR model

is used to create a hypercube that has the efficiency required for supporting OLAP

applications.

This research also introduces the input-output design phases from the relational

format into the multidimensional format using graph model. The research actually

generates a logical multidimensional data structure in a graph presentation that is easily

understood by end-users.

The proposed techniques in this research mainly focuses on 1) creating a logical

multidimensional data structure to meet user requirements, 2) designing a routine that

automatically creates a database format, 3) speeding up the multidimensional database

input-output design phases, and 4) minimizing human errors and workload.

1.6.2 Research Scope

Related literature confirms that the two mam modeling techniques for data

warehousing processes today are dimension and E/R modeling, which can be used in

relational or multidimensional formats.

This research delineates the steps to generate a DVR logical data model that is a

multidimensional data structure, using MOLAP concepts. The scope of this research

includes processes of creating logical data structures from current data level into

summarized data level (Figure 1.2). This research also stresses three important

components: dimensions, variables, and relative dimensions. All are vital relationships

in the DVR model.

In the scope of building the data model concept, this research provides three

modules for creating the DVR model: Classification, Partitioning, and Clustering

Modules. These modules automatically create logical data structures from the relational

1 7

format in a warehouse database into the multidimensional format. In the scope of design

phase using graph model, the designing of DVR data model is basically creating

relationship of attributes in patterns of two-dimensional graph diagrams. Users are able

to replace this pattern with a multidimensional graph diagram. This diagram will

automatically generate the data structure in the same was as the prior concept. However,

users can also modify the outcome of the logical data structure easily before

transforming the data structure into a multidimensional database.

1. 7 Organization of the Research

Chapter One presents background literature on data warehousing and architecture,

database systems, multidimensional databases, and related research. It also presents the

definition of the problem and the research scope and objectives.

Chapter Two presents the data structure and the On-Line Analytical Processing

(OLAP) concept. The chapter also defines Dimensions, Variables, and Relative

dimensions (DVR), vital in multidimensional database structuring.

Chapter Three presents the DVR model automatic generation procedure using

three modules: classification, partitioning, and clustering. The DVR is a data structure

in multidimensional hypercube.

Chapter Four presents a high-volume data processing procedure for transforming

warehoused data into multidimensional form. To set up a data structure, a graph is

designed to meet the particular needs of a specific group that will use the data.

Chapter Five presents other tasks to synchronize the various modules and

summarizes the data structuring procedures for the automatic generation of a

multidimensional database structure.

Data Transformation and data loading are in the appendix.

18

II. DATA STRUCTURE MODELING

2.1 Introduction

Big businesses accumulate so much data today that they become useless in speedy

decision-making, even as the complexity of relationships between data increases the

difficulty of analysis. Today, business needs a system that stores a great volume of data

in multidimensional relationships and allows effective analysis of the relationships

between them.

Data structure modeling refers to the creation of any of the various types of

multidimensional database structures in order to meet specific data warehouse and end­

user requirements.

Today, the process of changing relationship patterns from bidimensional to

multidimensional continues to be done via manual interface. However, the increasing

size and complexity of corporate databases as well as the need for faster analysis of

highly complex patterns requires that the process be automated.

This research uses two DVR model-building concepts in a computer-generated

program of data structure modeling that automatically transforms warehouse data into

multidimensional DVR structures. The automatic process minimizes human errors.

DVR structures are vital to fast and accurate decisions based on extremely large

volumes of data.

This chapter discusses the following:

(1) Dimensions, Variables, and Relative dimensions (DVR)

(2) The DVR logical data structure

(3) Using OLAP tools to design data structures

(4) Designing the DVR data structure model

1 9

2.2 Approaches to Data Architecture

The DVR structure is a multidimensional database designed for storing and

retrieving large volumes of data. Users access such data using the interactive OLAP

tools. OLAP has many other applications, and one relevant to this research is its

functions in creating data structure models.

The two most common data structuring techniques in data warehousing are ER

(Entity Relationship) modeling and Dimensional Modeling [16]. ER modeling produces

a specific data structure by using two basic concepts: entities and the relationships

between those entities (109]; [110]; [112]; [115]. Detailed ER structures contain

attributes, and properties of either entities or relationships. As an abstraction tool, the

ER model is used to simplify and understand ambiguous data relationships in complex

systems environments.

On the other hand, dimensional modeling uses measures, facts, and dimensions,

and is effective in representing the requirements of user of database tables. Both ER and

dimensional modeling can be used to create an abstract model of a specific subject, but

each has a limited set of modeling approaches, concepts, and notation conventions.

Thus, semantic representation techniques also differ.

2.2.1 Basic Entity-Relationship Modeling Concepts

An entity relationship (ER) structure is represented by an ER diagram, which uses

three graphic symbols to represent the data: entity, relationship, and attribute (Figure

2.1).

20

(ENTITY

PRODUCT MODEL
PARTID (PK) CHAR(6) PARTID
DESCRIPTION CHAR(25) MODELID
PRICE NUM(8.2) SIZE

DIMENSION

�RELATIONSHIP
COLOR

ITEMDATE

STORE
PARTID (PK) CHAR(6)

STORE (PK) CHAR(�
STOCK QTY NUM(S)

RSVDQTY NUM (5)

OS QTY NUM(S)

UPDDATE DATE

ATTRIBUTE

.-/

..
Figure 2.1. A Sample of ER Modeling.

(1) Entity

(PK) CHAR(6)

(PK) CHAR(3)

CHAR(25)

CHAR(20)

CHAR(lO)

DATE

An entity is defined as a person, place, thing, or event, which may be

relevant to the business or organization. An entity may also represent a class of

tangible objects with their own properties and characteristics.

An entity usually has its own characteristics and limitations. In a practical

modeling project, the project members share a single definition template for an

integrated and consistent entity definition. In high-level business, entity modeling

can be very generic but must be specific in the detailed logical structure.

In ER modeling, naming entities is essential, which is normally done by

using nouns over verbs. An entity name should be a unique identifier and should

represent the characteristics and scope of the entity very well. Called candidate

keys, these unique identifiers form a set from which the primary (most common)

key is selected.

21

(2) Relationship

Relationships are shown as lines between entities to depict the interaction

and association among entities in a model or structure. A relationship is

designated grammatically by a verb.

The relationship between two entities can be defined in terms of cardinality.

This is the maximum number of instances that one entity can be related to a single

instance in another table, and vice versa. The cardinalities may be: one-to-one

(1: I), one-to-many (I :M), or many-to-many (M:M). In a detailed (normalized) ER

model, M:M relationships are not shown; these are resolved to an associative

entity.

(3) Attributes

Attributes are the characteristics or properties of the entities. Attribute

naming conventions are very important. An attribute name should be unique and

self-explanatory. In ER modeling, if the maximum cardinality of an attribute is

more than 1, the modeler will try to normalize the entity and finally elevate the

attribute to another entity. Therefore, the normal maximum cardinality of an

attribute is 1 .

2.2.2 Basic Dimensional Modeling Concepts

Dimensional modeling is a technique for conceptualizing and visualizing data

models described by common elements. It is especially useful in data summary and

rearrangement, as well as in data presentation for later analysis. Dimensional structures

focus on numeric data, such as values, counts, weights, balances, and occurrences.

Dimensional modeling has three basic concepts (Figure 2.2): facts, dimensions, and

measures (variables).

22

(1) Fact

ENGINE TYPE

GE
Engine

CF6-50
CF6-80

CF6-80R

AIRCRAFT TYPE

MEASUREMENT

(Demand Quantity)

TIME

tDIMENSION
.--B-73_ 7_,,-87_4_7......-A-36-0-.-···---·---\

) FACT AIRBUS -

·
-

·---��'./ BOEING

Figure 2.2. A Dimensional Data Structure.

A fact is a collection of related data items, consisting of measures and

context data. Each fact typically represents a business item, a business transaction,

or an event that can be used in analyzing the business or business processes. In a

data warehouse, facts are implemented in the core tables in which all of the

numeric data is stored.

(2) Dimension

A dimension is a collection of members or units of the same type of views.

In a diagram, a dimension is usually represented by an axis. In a dimensional

model, every data point in the fact table is associated with one member from each

of the multiple dimensions. That is, dimensions determine the contextual

background for the facts. Many analytical processes are used to quantify the

impact of dimensions on the facts. Dimensions are the parameters for Online

Analytical Processing (OLAP). In a database analyzing product sales, for

instance, the common dimensions could be time, location or region, customers,

salespersons, or scenarios such as actual, budgeted, or estimated numbers.

23

Dimensions can usually be mapped to nonnumeric, informative entities such as

branch or employee.

(a) Dimension Members: A dimension contains many dimension members. A

dimension member is a distinct name or identifier used to determine a data

item's position. For example, all months, quarters, and years make up a time

dimension, while all cities, regions, and countries constitute a geography

dimension.

(b) Dimension Hierarchies: The members of a dimension can be arranged into

one or more hierarchies, each possibly having multipl� hierarchy levels.

This is because a dimension member may be present in several hierarchy

structures. For example, the time dimension may have two hierarchies

because a week can span two months, a quarter, and so on. Therefore,

weeks cannot be added up to equal a month, for instance. If it is not

practical to analyze the data on a weekly basis, then it is not necessary to

assign another week hierarchy.

(3) Measurement

A measure is a numeric attribute of a fact, representing the performance or

behavior of the business relative to the dimensions. The actual numbers are called

variables, which may be expressed in terms of cash sales, sales volume, quantity

supplied, supply cost, or transaction amount. A measure is determined by

combinations of the members of the dimensions, and is located under facts.

Of the two most commonly used data models today, dimensional modeling

is the simpler way of designing multidimensional views of OLAP applications.

The discussion of DVR models in Chapter 3 includes the automatically-generated

24

St. Gabriel Library , Au

dimensional structuring process, which transforms data from relational to

multidimensional database using MOLAP tools.

On the other hand, Entity-Relationship modeling represents data stmcture

models in graphical symbols related to ER diagrams. Some users may find it

difficult to interpret ER diagrams. To make interpretation easier, the data structure

is simply changed to one using a B-tree diagram.

The Chapter 4 discussion of logical DVRs using graph models explains the

applications of ER modeling techniques in designing and translating

multidimensional views into Graphical User Interface (GUI). Here, users can have

a general view of the overall complexity of information inside a warehouse

database. These techniques significantly minimize error contamination and human

workload in designing database structures.

2.3 The DVR Model

The DVR structure model is a multidimensional database design for storing and

retrieving large volumes of data. It is a finite set of grouping relationships that combine

dimension attributes, variable attributes, and/or relative dimension attributes. This

combination creates a structure of data storage, which is multidimensional in design.

There are three basic components in a multidimensional data structure.

A dimension is a logical grouping of attributes with a common atomic key

relationship [2]. The grouping is subject-oriented: i. e. , product, location, and time.

A variable is fact or a measure that is normally stored as a numeric symbol,

utilized to support investigation procedures [2] .

The relative dimension or associated data description of a dimension is simply a

relationship with an ordinary attribute of a group of data.

25

2.3.1 Dimensions

A dimension is a logical grouping of attributes with common atomic key

relationships (Singh 1998). It i s defined over a dimensional schema, a set of

functionally interrelated dimensional attributes. The simple dimensional schema for

customer dimension may consist of the attributes Customer, Location, and Country. The

functional dependencies of customer dimension are presented as Customer � Location

� Country.

Normally, dimensions are roughly equivalent to attributes in a relational database.

For example, the attributes q_f engine structure shown in Figure 1.3 . In a

multidimensional database, "part" and "engine type" are dimensions; they are the key

factors of business functions. A set of dimension grouping presents the relationships

that interact to the variable (quantity attribute). The number at the interaction of each

part and engine type occupies a cell, as in a spreadsheet, which is the result of

combinations.

Each dimension has its own hierarchy that rolls up into only one total. In time

dimension, the simple hierarchy is presented as monthly � quarterly � yearly. This

means that each month belongs to only one quarter and each quarter belongs to only one

year, and so on. Such concepts are useful to the end-user in that they allow the use of

the hierarchies to "drill down" or "roll u p" to successive levels of detail. OLAP

applications today support these drill-down, roll-up functions.

Dimension has two main functions: as a subject-oriented grouping, and as

decision-making elements.

As a subject-oriented grouping related to the variable dimensions can be any

specific grouping of data, i.e., product, location, time.

26

The Order Number attribute is an example of dimension as a primary indexed key

field, which is not a key factor in decision-making because number attributes have only

the lowest level of granularity in the database.

As key factors in management decision-making, consider these questions of a

manager:

(1) How many suppliers of shrimp are needed during the low tourist season?

(2) Which of the company's shrimp suppliers are in the top five rank?

(3) What month has the least passengers flying to New York City?

(4) Which top ten customers have over 10 million baht worth of orders this

year?

(5) Which of these data has not changed over five-years?

The underlined words are the subjects for the decision-making process. Figure 2.3

shows three dimensions in a graph.

Product: SCREW
2000 (Usage Volume)

Q l ,2000 Q2,2000 Q3.2000 Q4,2000

Chieng Mai 40 70 52 1 4
North

Chieng Rai 30 57 45 23
Product m Time

Location

Figure 2.3 . Data Dimensions in Graph Form.

2.3.2 Variables

Variables are numeric measures similar to value fields in a relational database

(Figure 2.4). , "Cost," "Revenue," and "Expense," are examples of variables. A variable

should correspond to specific dimensions in the database. For example, "Cost" might

27

be dimensioned by Time, Products, and Vendors. "Revenue," on the other hand, might

be identical for all Products, Time, and Customers.

In designing a data structure model, a variable should be connected to the correct

dimensions. This is the case in some OLAP products, where variables can have complex

mathematical relationships to other variables. In this case, they are called complex

variables.

A variable should be able to have very complex mathematical relationships

between other variables. These relationships can include complex arithmetic operations,

computed averages, time-lagged relationships, and even simultaneous equations.

When variables are summed up, they follow the rules of consolidation. For

example, when costs are rolled up from Product to Total Product, the amounts are

arithmetically added.

A derived variable appears to be a variable to the user but is actually computed on

the fly at run time. For instance, Product Cost comes from calculations of product

quantity and price attributes. It is a derived variable (also called measurement) because

the value is computed using the formula (Cost = Quantity X Price). The measurement

takes up no space in the multidimensional database because it will be stored only as a

formula in metadata. This technique shrinks the size of a database and reduces

consolidation time at the price of a small amount of overhead at run time performance.

Product: SCREW
2000 (Usage Volume

North

Q4,2000

Chieng Mai 14

Chieng Rai

Figure 2.4. Multidimensional Variables on a Bidimensional Graph.

28

Time

2.3.3 Relative Dimension

A relative dimension is the description variable, or text descriptions of dimension

values (Figure 2.5) . This is particularly useful when a dimension contains code values

that are not meaningful to the user. Users prefer descriptive data over coded data.

A relative dimension is created the same way data variables are, and is normally

stored in text format; some are in numeric form. However, a relative dimension relates

to only one dimension while a variable relates to two or more dimensions.

An example of a relative dimension is the Product Name attribute that is directly

associated with Product Code attribute.

BLDE lOl BLADESET

BLDE102 BLADESET-SIZE M

BLDE103 BLADESET-SIZE L

SCRWO l SCREW 1 x 2 INCH.

PRICE QTY

Figure 2.5 . A Relative Dimension.

2.4 OLAP Methodology

In 1992, Codd first introduced OLAP, an acronym for On-Line Analytical

Process. It is a software technology that allows fast, consistent, and interactive access to

information so that people can make sense out of large volumes of data [1 13] ; [1 14].

OLAP is often confused with decision support. In fact, OLAP reformulates

relational data (flat files) into a multidimensional data store (hypercube). It stores data

along specific dimensions that makes data easier to analyze and manipulate. OLAP uses

29

a wide range of views to transform raw data. This reveals other aspects of a business as

understood by a user.

In sum, OLAP applications are characterized by the flexibility with which users

can view and report data in any way they want; to perform new ad hoc analyses, to do

large-scale complex calculations, and to perform dynamic reporting from large

databases. A 1999 report of independent vendors and industry experts declared OLAP

as a Fast Analysis of Shared Multidimensional Information (FASMI) [203] .

Fast means the system delivers most responses to user requests within seconds, to

minutes. This speed is hard to achieve in manipulating large volumes of data because a

number could depend on millions of others. There are many techniques to solve this

problem, including special forms of data storage, specific hardware requirements and

extensive pre-calculations.

Analysis means the system copes with any business logic and statistical analysis

that a user needs to use. A user is able to create new ad hoc calculations and to report on

the data in any way without doing any programming. The various forms of analysis

most relevant to business users include "slice and dice", "drill down", and "drill up. "

Shared means that system implements all security requirements for confidentiality

and concurrent access or locks at the appropriate levels.

Multidimensional means the system provides a multidimensional view of the data,

including full support for hierarchies and multiple perspectives.

Information includes all data and derived data whenever these are needed or

stored, and however much is required for an application.

OLAP and data warehousing are complementary; a data warehouse stores and

manages physical data while OLAP transforms its data into strategic information. As

decision-makers exercise more advanced OLAP capabilities, they move from data

30

access, to information, to knowledge. The key indicator of a successful OLAP

application is its ability to provide information as needed, i. e. , its ability to provide

"just-in-time" information for effective decision-making. This requires more than a base

level of detailed data. OLAP systems have the ability to answer "who" and "what"

questions, but what sets them apart from data warehouse is their ability to answer "what

if' and "why" questions. OLAP also enables decision-making about future data via the

following processes:

(1) Slicing and Dicing

Slice and dice processes enable end-users to cut or rotate a particular

piece of data along any dimension. For example, "what product line

generated the highest sales revenue in this country last year?"

(2) Drilling

The drill-down process allows users to navigate through information

to get more detail and helps end-users answer "why" questions such as

"Why did air tickets sales in the Asian region drop during the first and

second quarters of 1998?" OLAP products allow access to various levels of

detail within a dimension hierarchy. This is executed in many ways,

including drill-down, drill-up, drill-across, and drill-around.

(3) Rotating

OLAP products allow a user to select one or more individual

dimensions from one axis to the other. For example, one can flip the X and

Y axes on a report with a click of a button.

(4) Ranking

Most OLAP allows a user to sort the output of a query from high to

low or vice-versa.

3 1

(5) Paging

Paging allows a user to display a report in multiple page format. For

example, a report can be made to show sales by product and by month, with

a month' s results on each page. The user tabs between pages to see each

month' s data. This function is particularly useful when viewing data in

graph form because it is difficult to portray more than two dimensions on a

single page of a graph.

(6) Filtering

A basic OLAP filter enables the user to limit the results for a query to

a specific subset of the database. For example, a query can be as specific as

this: "Show me sales by product, but only for the month of March".

Codd, et. al. [113] gave a 12-point criterion for evaluating OLAP products:

(1) Multidimensional Conceptual View. A user can view the records of a

business multi-dimensionally and can manipulate such multidimensional

data structure more easily and intuitively than a single-dimension data

structure.

(2) Transparency. The OLAP application has an open system architecture that

allows embedding anywhere the user desires.

(3) Accessibility. The OLAP application performs analysis based on a common

conceptual schema of the business database.

(4) Consistent Reporting Performance. To maintain ease-of-use and simplicity

the OLAP application has a consistent reporting performance even when

dimensions or database volume increase.

32

(5) Client-Server Architecture. The OLAP applications or products operate in a

client-server environment. OLAP tools in a server allows several users at the

same time with minimal integration programming.

(6) Generic Dimensionality. Every data dimension is equivalent in both its

structure and operational capabilities; the basic data structure, formulae, and

reporting formats are not biased toward any data dimension.

(7) Dynamic Sparse Matrix Handling. The OLAP tools' physical schema adapt

fully to the specific analytical model being created to provide optimal sparse

matrix handling.

(8) Multi-user Support. The OLAP applications provide concurrent access,

integrity, and security.

(9) Unrestricted Cross-Dimensional Operations. The OLAP tools infer the

associated calculations and do not require users to define inherent

calculations.

(10) Intuitive Data Manipulation. Manipulations (i .e. , consolidate, drill down,

zoom) are accomplished via direct action upon the cells of the analytical

model, and should do not require menus or multiple trips across the user

interface.

(1 1) Flexible Reporting. Analysis and presentation of data is simpler when rows,

columns, and cells are arranged in proximity or by some logical grouping.

Rows, columns, or page headings are each capable of containing or

displaying from zero to n dimensions, where n is the number of dimensions

in the entire analytical model.

33

St. Gabriel Library, Au

(12) Unlimited Dimensions and Aggregation Levels. The OLAP applications

accommodate unlimited numbers of data dimensions within a common

analytical model.

Compared to OLTP (On-Line Transaction Processing), OLAP does more reading

and aggregating high-volume data. It is different from OLTP applications, which does

relatively simple transactions [2] such as retrieving and updating a small number of

records in several tables simply related to each other. Examples of OLTP applications

are inventory systems, human resource systems, bookkeeping, and payroll systems. The

following table [2] compares OLTP and OLAP applications:

Table 2.1.The similarities and differences in OLTP and OLAP.

Description OLTP Data Warehouse (OLAP)

Purpose Run daily operations Information retrieval and analysis

Structure RDBMS RDBMS

Data Model Normalized Multidimensional

Access SQL SQL plus data analysis extensions

Type of Data Data that runs the business Data to analyze the business

Condition of Data Changing, incomplete Historical, descriptive

2.5 Conclusion

Because of the voluminous information that big corporations handle, decision

making is more difficult today, so much so that there is a felt need for an automated,

error-free storage system that allows effective and speedy analysis of the relationships

between all that data. A DVR structure allows fast and accurate decisions based on

extremely large volumes of data.

34

This chapter presents the DVR model and how it is constructed using OLAP. It

discusses how data relationships are changed using a computer-generated program that

creates any desired data structure as well as automatically transforms warehouse data

into multidimensional DVR structures (hypercubes).

35

III. DVR DATA MODEL GENERATION

3.1 Introduction

This chapter discusses how to generate multidimensional DVR data structures

using fast and efficient data mining technology and procedures. DVR is a program for

storing data in multidimensional hypercube. The acronym means Dimensions,

Variables, and Relative dimensions.

Warehoused data is a large collection of information in a computer. To compress,

store, access, and analyze these data in relation to other data in the warehouse, the

author stored data in a structure that allows very fluid manipulation. This structure is

called hypercube, a multidimensional format. However, changing flat data in a

warehouse into hypercube is a time-consuming routine that invites human errors. This

research presents the process of creating data model that does the job faster, and with

less human input. This chapter explains the automatic procedure for generating a DVR

data structure using three data mining modules: classification, partitioning, and

clustering. The process yields faster analysis of more complex patterns, as well as

screens out data that are not relevant to the analysis.

Without a DVR data structure in multidimensional cubes, analysis is limited to

two-dimensional associations, while an incomplete DVR model causes errors m

analysis. An MDDB or multidimensional database effectively avoids such problems.

36

faislini: S}$ttm: Manuo:I Processin� for Errors

Op<ratlonal 1---...i 01i.b1\C

Opentlon•l 1---...i
Oatab1111e

PARADIGM OF THE RESEARCH

Figure 3.1. The Research Paradigm.

Figure 3 l , the paradigm of the research. shows the processes of transforming nat

warehoused data into a multidimensional database. First, various operational databases

feed data into a warehouse database and store the data in relational formal Second. at

the data access layer. various tools or programs transform or screen the data. At this

point, data is voluminous because of low-level granularity. To analyze the database for

errors, manual processing is needed. This research proposes an automatic process for

generating OVR, which summarizes data into MDDBs. This process is faster and less

error-prone. but does not allow manual processing for errors. However, corrections to

the original data or the procedure may be done manually at the two interlace nodes

(Figur.: 3.2)

37

3.2 Generating the DVR Data Structure

Figure 3 .2 shows the steps in generating a DVR data structure from data stored in

bidimensional form into data in multidimensional form. Data in the warehouse

databases undergo classification, partitioning, and clustering to be transformed into the

DVR structure. The transformed data is then relocated and loaded. Two interface nodes

in the automated generating process allows for manual data or procedural corrections.

Initial Product

Warehouse Database

Attribute in
Relational

form

Automated Generating Process
Classification Partitioning Clustering

a) Candidate
dimension

b) Candidate
variable

- Mapping - Grouping
Data sets relation sets

- ICP execution - ECP execution

Interface Node I Interface Node 2

Figure 3 .2. DVR Data Structure Generating Process.

End Product

DVR Model

Attribute in
Multidimensional

form

Data Model
Relocation

and
Data Loading

Process

(1) The Classification Module. This module inspects all data types for indexed

keys and verifies the data entity and the candidate dimension of

multidimensional cubes. If the attribute is verified as numeric, the data is

classified as variables.

(2) The Partitioning Module. To form mappmg data sets, the candidate

dimensions from the classification module are used as bases for mapping

with the other attributes of the same data entity. The data sets are

manipulated using the Internal Comparison Process (ICP), in which each

attribute in the data set is assigned as actual dimension, variable or relative

dimension. The module produces a DVR data model of each data entity.

38

(3) The Clustering Module. The clustering module uses data sets of particular

entities as bases for mapping with other data sets of various data entities. To

generate a new data set that shows the relationship between the base data

and the rest of the data sets, the mapped data sets are processed using the

External Comparison Process (ECP). This module generates new DVR data

model of multidimensional cubes using a union function of DVR data

models from various data entities.

The resulting DVR model is analyzed for suitability to user needs and satisfaction.

This guides the consequent refining process. Inaccuracies in the original data as well as

corrections in the procedure may be done manually at the·two interface nodes. Finally,

the generated DVR data structure guides the creation of new DVR data structures.

3 .2 . 1 Classification Module

The classification module first indicates the candidate dimensions (variables) of

each attribute in the data entity. Then, to establish the DVR indication, it compares the

attribute with the definite rule of the DVR model. (This moduie is currently limited to

classifying candidate dimension and variable.) For simplicity of notation, this research

denotes the candidate dimension as Dx; and the candidate variable as V/, corresponding

to an attribute x at data entity, or data entity i in the research respectively.

(1) Candidate Dimension Selection

A dimension is a group of attributes with a common relationship

[172]. The grouping is subject-oriented: i .e., product, location and time.

When an attribute in a data entity is established for creating a DVR model,

its data type is classified as candidate dimension and recorded in the data

definition. Any candidate dimension is reclassified as actual dimension in

the partitioning module. The propositional function, a formal way of

39

representing knowledge in terms of declarative sentences [97], shows this

procedure:

For any attribute x of a data entity, if attribute x is an index key field or its

data is either in character or date format, attribute x is defined as candidate

dimension. Thus,

Where, Jy; is the index key format, normally stored as key field,

bx is the type of data property is equivalent to character format (c), or

date/time format (t), and

n: is the attribute x within dimension of data entity i , when i > 0.

(2) Candidate Variable Selection

A variable is a fact or a measure normally stored as a numeric field.

This has been the focus of a decision-support investigation [1 72]. After the

candidate dimensions are indicated, the remaining attributes dictate the

selection of candidate variables. The propositional function expresses this

process:

For any attribute x, if numeric (binary, integer, or decimal), define attribute

x as "candidate variable," thus:

where 8n is data type equals to numeric format (denoted by "n"), and

v; is attribute x within the variable of data entity i ' when i > 0.

The term relative dimension, or associated data description of a dimension, is

simply a relationship with an ordinary attribute of a grouping relation. Initially, it is too

40

complicated to be classified by the argument that the alternative is to convert it into a

candidate dimension.

The last step of the partitioning module repeatedly predicates the characteristic of

actual and relative dimensions.

The following subroutines present a sample criterion for selecting candidate

dimension and candidate variable using Basic Programming. These subroutines select

the database, identify the data type of each attribute within a data entity, then display the

output into a listbox. The database is from Microsoft Access 97, the programming

language is Visual Basic (Microsoft, Version 5 .0).

Example 1 : The data entity SALE and data entity COST in a warehouse database is

shown as relational tables (see Table 3 . 1 , Table 3 .2) :

Table 3 . 1 . SALE Data Entity.

Attribute Name
Data

Length
Type

SCODE (Saleman code) [Index key] CHAR 5

SNAME (Saleman Name) CHAR 30
ACODE (Area code) [Foreign key] CHAR 3
SAL EV AL (Sale value) NUM 1 0.2
COMM (Commission) NUM 1 0.2

Table 3 .2. COST Data Entity.

Attribute Name
Data

Length
Type

CCODE (Customer code) [Index key] CHAR 6
PCODE (Product Code) [Index key] CHAR 5
PNAME (Product Name) CHAR 30
SCODE (Saleman code) [Foreign key] CHAR 5
SAL EV AL (Sale value) NUM 1 0.2
COSTVAL (Cost value) NUM 10 .2

When the fundamental characteristics of the attributes SCODE, SNAME, A CODE

are presented in the index-key field and/or character formats of data entity SALE, these

41

characteristics are defined as candidate dimension. Since the data types of attributes

SALEVAL and COMM are in the numeric format, these characteristics are classified as

candidate variable.

The COST data entity's attributes of CCODE, PCODE, PNAME, and SCODE are

in the index-key field and/or character formats and thus defined as candidate dimension.

On the other hand, the data types of attributes SALEVAL and COSTVAL are numeric and

are defined as candidate variable.

3 .2.2 The Partitioning Module

In the classification module, all attributes of data entities are categorized as

candidate dimension and candidate variable, relevant
·
to the grouping of associated

attributes in the partitioning module. The partitioning module process includes

mapping, and internal comparison process (ICP).

The mapping process assigns candidate dimensions as base attributes and maps

these with the same data entity attributes for mapping data sets. The mapping data sets

are then manipulated with the ICP to achieve the actual dimension, variable, and

relative dimension. The following illustrates the entire process of mapping data sets.

Consider a warehouse database denoted as DBj. Assume the data entities in DBi

are A, B, C: (DBi = A, B, C); Suppose A = i a1, a1, aJ, a4 r , B = i a1, as, a6 r and C = i as,

a7 r where a is an attribute. Assume a1 and a2 in data entity A are candidate dimensions,

while a3 and a4 are candidate variables. Attributes a1 and a2 are mapped together with

other attributes in data entity A . Let A be the mapped data sets of A.

This concept is presented thus:

A =

{(a 1 ooa2), (a 1 ooa3), (a1 ooa4), (a1 ooa2ooa3), (a, ooa2 ooa4), (a 1 ooa3ooa4), (a1 ooa2ooa3ooa4),

(a2 c:oa1), (a2 ooa3), (a2 ooa4), (a2 ooa1 ooa3), (a2 c:oa1 ooa4), (a2ooa3ooa4), (a2 ooa1 ooa3ooa4)

42

To prove the mapping of data set A , base attributes and consequence attributes

are substituted into a mapping table as shown below (see Table 3 .3) .

Table 3 .3 . Mapping table of partitioning module.

,;
Base Attributes of A Mapping

Attributes a1 a2 a3 a-1 Data Set

a1 - x - - a1 oo a2
a1 - - x - G/ 00 G3
a1 - - - x a1 oo a4
a1 - x x - a1 oo a2 oo a3
a1 - x - x a1 oo a2 oo a4
a1 - - x x a1 oo a3 oo a4
a1 - x x x a1 oo a2 oo a3 oo a4
a2 x - - - a2 oo a1
a2 - - x - G2 00 G3
a2 - - - x a2 oo a4
a2 x - x - a2 oo a1 oo a3
a2 x - - x a2 oo a1 oo a4
a2 - - x x a2 oo a3 oo a4
a2 - - x x a2oo a1 oo a3 oo a4

The mapping data sets are then manipulated using ICP, in which each data set is

validated to form the DVR model. The ICP processes follows.

PROCESS 1: According to the commutativity of classical set operations, when

mapping data sets are symmetric and represent similar attributes, a data set is invited to

form a DVR model.

Process 1 follows the basic concepts of classical set theory. Assuming data sets

(a1 oo al) and (a2 oo a1) are accomplished, this proves that the attributes of both data sets

are similar and they belong to equal sets. Accordingly a data set is accessed in

uniqueness. The execution of process 1 is:

{(a, coa2), (a1ooa3), (a1coa4), (a1 coa2coa3), (a1 coa2coa4), (a,coa3coa4),
Pi =

(a2coa3), (a2coa4), (a2ooa3coa4), (a1coa2coa3coa4)

43

PROCESS 2: The base attribute of a data set must become a candidate dimension,

otherwise the data set is disregarded.

The first attribute of a data set in Process 2 should only be a candidate dimension.

Consequent attributes may be either candidate dimension or candidate variable. Process

2 does not allow the replacement of a first attribute with a candidate variable because

the variable is related to at least one dimension. The execution of process 2 is:

PJ
=
{{a1ooa2), {a1ooa3), (a1ooa4), (a1ooa2ooa3), (a1ooa2ooa4), (a1ooa3ooa4),

- {a2ooa3), {a2ooa4), {a2ooa3ooa4), {a1ooa2ooa3ooa4)

PROCESS 3: After completing Process 1 , if the attributes in the data set are candidate

dimensions, check each of the characters using the SQL process to count the value of

each attribute and compare them. If the values of two attributes are similar, proceed to

Process 4. Otherwise, split each attribute into independent dimensions.

Assuming data set (a1 oo a2) is achieved, attributes a1 and a2 sift the volume of

data items using the SQL structure (select-joint predicates) in order to compare their

relationships. The simple comparison of data set (a1 oo a2) is predicated by SQL

function that is presented as rc';;,1111 (DIST(aJ) = rc':,1111 (DIST(a_J), where the symbol rm n

means query process in which m represents the SQL aggregate functions (i. e. count,

sum, max, min) and n is grouped according to attribute.

The SQL computation shows that aggregated data value a1 is x and aggregated

data value a2 is y. When the aggregated data value x is equivalent to data value y, this

proves a relationship between attribute a1 and a2 in the data entity. Thus, a data set is

predicated as a grouping relation set that is composed of actual and relative dimensions.

On the other hand, when the aggregated data value x is dissimilar to y, and

attributes a1 and a2 are predicated as candidate dimensions, the program divides them

into new actual dimensions.

44

PROCESS 4 : Since the data set of Process 3 may result in two attributes that are

identified to be actual dimension and relative dimension. Examine the data set to find

the attribute present in the index key and classify that as actual dimension. Classify the

other as relative dimension. Replace the joint function symbol (oo) with the related

function symbol (�) .

Process 4 indicates the data property of attributes in a data set. Assuming that data

set (a1 oo a2) is the grouping relation set and defined as candidate dimension in the

classification module, when the data type of attribute a1 is an index-key field (primary

or foreign key) and the data type of attribute a2 isn't, attribute a1 is defined as actual

dimension (D.J. Attribute a2 is defined as relative dimension (RJ of actual dimension

(DJ. The data set (a1 oo a2) becomes (a1 � a2). If the attributes are index-key fields,

they are divided into new actual dimensions. Assuming a2 is a relative dimension, the

execution of process 4 is:

{{a1 � a2), {a1ooa3), {a1ooa4), {a1ooa2ooa3), {a1ooa2ooa4), {a1ooa3ooa4), p4
= {a2ooa3), (a2cca4), {a2cca3coa4), {a1C/)a2coa3coa4)

PROCESS 5 : Process 4 yields a data set that presents actual and relative dimensions.

Other data sets with the same attributes as the relative dimensions will be deleted.

For example, when data set (a1 � a2) is processed, all remaining data sets

composed of attribute a1, such as data sets (a1 oo a2 oo a3) (a1 oo a2 oo a4), are erased. The

execution of process 5 is:

PROCESS 6: When the consequent attributes are indicated as candidate variables, the

mapping data set is superseded and the joint function (oo) is replaced with the associated

function (=>) .

45

In the example of data set (a1 oo a3), when a3 is predicated as candidate variable, it

replaces the joint function symbol with the associated function symbol: (a1 � a3). The

execution of process 6 is:

PROCESS 7: To prevent duplication of data sets, whenever the homogeneous base

attributes indicate a dimension and consequent attributes are indicated as variables in

any data set, only one completed data set is retained. The rest are deleted.

The various data sets such as (a1 � a3), (a1 � a4) and (a1 � a3 ,a4) in which base

attributes are similar (attribute a1) and the latter attribu�es_ are variables, then (a1 � a3

, a4) is the completed data set that includes variables a3 and a4. To prevent data set

duplication, data sets (a1 � a3) and (a1 � a4) are deleted. The execution of Process 7 is:

PROCESS 8: Attributes represented as dimensions are replaced by Dx, where x is the

dimension number. The sign V x replaces the attributes that are represented as variable,

where x is the variable number. Finally, the sign Rx replaces the attributes that are

represented as relative dimension, where x is the relative dimension number. The

execution of Process 8 is:

The following example illustrates the ICP steps of building a logical DVR model:

46

St. Gabriel Library, Au

Example 2 . 1 : Assume data entity 1 of warehouse database is SALE data entity

consisting of attributes SCODE (Saleman Code), SNAME (Saleman Name), ACODE

(Area Code), SALEVAL (Sale Value), and COMM (Commission Value) shown in Table

3 .4.

Table 3.4. SALE Data Entity and DVR Indicator.

Attribute Name
Data

Length
DVR

Type Forms
1 . SCODE (Index Key) Char 5 D
2. SNAME Char 30 D
3. ACODE (Foreign Key) Char 3 D
4. SALEVAL Num 1 0.2 v
5 . COMM Num 1 0.2 v

First, let attribute SCODE be a1, attribute SNAME be a2, attribute ACODE be a3,

attribute SALEVAL be a4, and attribute COMM be a5. Each candidate dimension (eg. a1,

a2, a3) is used as base attributes and performs mapping with other attributes of SALE

data entity.

The result of mapping data sets is:

A = A1 u A2 u A3

(a1ooa2), { a1 ooa3), (a1 ooa4), (a1ooa5), { a1 ooa2 ooa3), (a1 ooa2ooa4), {a1 ooa2 ooa5),

A 1 = (a 1 ooa3 ooa 4), {a 1 ooa3ooa5), (a1 ooa4 ooa5), (a 1 ooa2 ooa3 ooa4), {a 1 ooa2 ooa3 ooa5),

{a 1 ooa3ooa 4 ooa5), { a1 ooa2 ooa3 ooa4 ooa5)

(a2ooa1), (a2ooa3), (a2ooa4), (a2ooa5), (a2ooa1 ooa3), (a2ooa1ooa4), (a2ooa1ooa5),

A2 = (a2ooa3ooa4), (a2ooa3ooa5), (a2ooa4ooa5),(a2ooa1ooa3ooa4), (a2ooa1ooa3ooa5),

(a2ooa3ooa4ooa5), (a2ooa1ooa3ooa4ooa5)

(G{IJQ1), (a3ooa2), (a3ooa4), (a3ooa5), (a3ooa1ooa2), (a3coa1ooa4), (a3ooa1ooa5),

A3 = (a3ooa2ooa4), (Gf:tJa2ooa5), (a3ooa4ooa5), (a3ooa1ooa2ooa4), (a3ooa1 ooa2ooa5),

(a3ooa2ooa4ooa5), (a3ooa1ooa2ooa4ooa5)

47

Assume that the sample data elements are as shown in Table 3 .5 below.

Table 3 .5 . Data Element of SALE Data Entity.

Rec. SCODE SN AME A CODE SALEVAL COMM
1 10200 John Smith EAST $200, 000. 00 $1, 000.00

2 10200 John Smith WEST $150, 000. 00 $750. 00

3 10200 John Smith NORTH $ 750, 000. 00 $3, 750. 00

4 10210 Caroline Jone SOUTH $59, 000. 00 $295. 00

5 10210 Caroline Jone WEST $650, 000. 00 $3,250. 00

6 1 0240 Tom Hogan WEST $410, 000. 00 $2, 050. 00

The result of A is prepared for access in ICP in order to validate the DVR

structure. In the case of duplicate data sets, Process 1 selects one and deletes the rest.

When data sets (a1 ex:> a2) and (a2 ex:> a1) are found similar, one data set is selected, the

rest deleted:

A =

(a 1 ooa 2), (a 1 ooa 3), (a 1 ooa 4 1 (a 1 ooa 5), (a 1 ooa 2 ooa 3), (a 1 ooa 2 ooa 4), (a 1 ooa 2 ooa s 1
(a 1 ooa 3 ooa 4), (a 1 ooa 3 ooa 5), (a 1 ooa 4 ooa 5), (a 1 ooa 2 ooa 3 ooa 4), (a 1 ooa 2 ooa 3 ooa 5),
(a 1 ooa 3 ooa 4 ooa 5), (a 1 ooa 2 ooa 3 ooa 4 ooa 5), (a 2 ooa 3), (a 2 ooa 4), (a 2 ooa 5), (a 2 ooa 3 ooa 4),

(a 2 ooa 3 ooa 5), (a 2 ooa 4 ooa 5), (a 2 ooa 3 ooa 4 ooa 5), (a 3 ooa 4), (a 3 ooa 5), (a 3 ooa 4 ooa 5)

The A data sets undergo Process 3 . In the example of data set (a1 ex:> a2), both are

verified as candidate dimensions by the classification module. The comparison of

attributes a1 and a2 in data set (a1 ex:> a2) use this query process:

SELECT count(*)
FROM SALE
GROUP BY SCODE
ORDER BY SCODE

SELECT count(*)
FROM SALE
GROUP BY SNAME
ORDER BY SNAME

The values of r«;;,,n1 (D1Sr(ai)) = 3 and r;;,,,An1sr(a2)) = 3 , show that the attributes a1

and a2 are related. Therefore, this data set accesses the next algorithm. If the solution of

attributes a1 and a3 of data set (a1 ex:> a3) is dissimilar, the process automatically

represents them as dimensions: attribute a1 as D1 (D1.SCODE) and attribute a3 as D2

(D2.ACODE).

In data set (a1 ex:> a2), when the data type of attribute a1 is an index-key field, the

process automaticaily represents attribute a1 as a dimension (D1.SCODE) and attribute

48

a2 as a relative dimension (R1.SNAME). The data set is filled in for new data set (a1 �

a2). In Process 2, when attribute a2 is represented as relation, then the mapping of data

sets in which attribute a2 is used as base is cancelled.

In Processes 5 and 6, the existing data sets composed of relative dimensions

(attribute a2) are erased. An example is data sets (a1 co a2 co a3), (a1 co a2 cxi a4), (a1 co a2

(a2 co a4 co a5), (a2 co a3 co a4 co a5). When the remaining data sets that are composed of

dimensions and variables are replaced by the symbol (=>), the results are:

{ (a 1 � a 2), (a 1 oo a 3), (a 1 => a 4), (a 1 => a 5),

A = (a 1 oo a 3 => a 4), (a 1 oo a 3 => a 5), (a 1 => a 4
.

, � 5), (a 1 oo a 3 => a 4 , a 5 }

(a 3 => a 4), (a 3 => a 5 } (a 3 => a 4 , a 5)

The different data values of any dimension in mapping data sets are integrated

into unique data sets in Process 7. For example, data sets (a1 => a4) and (a1 => as) are

integrated as (a1 => a4 ,a5) and thus become:

As attributes a1 and a3 are used as dimensions in any steps of JCP, they are

represented as actual dimensions. The correspondence of the SQL statement of the data

set (a1 => a4 ,a5) is presented as:

SELECT distinct SCODE, sum(SALEVAL),sum(COMM)

FROM SALE

ORDER BY SCODE

GROUP BY SCODE

49

Where attribute a1 is replaced with SCODE, attribute a4 is replaced with

SALEVAL, and attribute a5 is replaced with COMM, the elements of dimension

D1.SCODE and associated data values Vi.SALEVAL, Vi.COMM are presented as Table

3 .6 :

Table 3 .6. Sample Data of SCODE Dimension.

Rec. SCODE SALEVAL COMM
I 10200 $ 1, 100, 000. 00 $5, 500. 00

2 1 02 1 0 $709, 000. 00 $3, 545. 00

3 1 0240 $410, 000. 00 $2, 050. 00

The results of the data sets are replaced with the sign of a D VR structure from

Process 8, represented as: D1.SCODE, R1.SNAME, D2 . . ACODE, Vi. COMM. The

following are DVR models of this example (see Table 3 .7, 3 .8, 3 .9, 3 . 1 0):

Table 3 .7. D1.SCODE � Vi.SALEVAL, Vi. COMM

SC ODE SALEVAL COMM
10200 $/, 100, 000 $5, 500

10210 $709, 000 $3,545

10240 $41 0, 000 $2, 050

Table 3 .8 . D1.SCODE � R1.SNAME.

SCODE SN AME
10200 John Smith
10210 Caroline Jone
10240 Tom Hogan

Table 3 .9. D2.ACODE � Vi.SALEVAL, Vi.COMM

A CODE SALEVAL COMM
EAST $200, 000 $1, 000

NORTH $750, 000 $3, 750

SOUTH $59, 000 $295

WEST $1,210, 000 $6, 050

50

Table 3 . 1 0. D1.SCODE oo D2.ACODE ==> Vi.SALEVAL, V2. COMM

SC ODE A CODE SALEVAL COMM
/ 0200 EAST $200,000 $1, 000

/ 0200 WEST $150, 000 $750

10200 NORTH $750,000 $3, 750

/ 0210 SOUTH $59, 000 $295

1 0210 WEST $650, 000 $3,250

1 0240 WEST $4 1 0,000 $2,050

The above samples are data values actually generated from D VR models. Data

analysts may modify DVR structures manually at any of the two interface nodes (Figure

3.2).

Example 2.2: Assume data entity 2 of warehouse database is COST and consists of

attributes CCODE (Customer Code), PCODE (Product Code), PNAME (Product

Name), SCODE (Saleman Code), SALEVAL (Sale Value), and COSTVAL (Cost Value)

as shown in Table 3 . 1 1 .

Table 3 . 1 1 . COST Data Entity and DVR Indicator.

Attribute Name
Data

Length
DVR

Type Forms
CCODE (Customer code) CHAR 6 D
PCODE (Product Code) CHAR 5 D
PNAME (Product Name) CHAR 30 D
SCODE (Saleman code) CHAR 5 D
SA LEV AL (Sale value) NUM 1 0.2 v
COSTVAL (Cost value) NUM 1 0.2 v

Let attribute CCODE be a1, attribute PCODE be a2, attribute PNAME be a3,

attribute SCODE be a4, attribute SALEVAL be a5, and attribute COSTVAL be a6• Each

candidate dimension (e.g. a1, a2, a3, a4) is used as base attribute and maps with other

attributes of SALE data entity. The data sets mapping results follow.

5 1

(a1ooa2), (a1ooa3 1 (a1ooa4), {a1ooa5), (a1ooa6), (a1ooa2ooaJ, (a1ooa2ooa41 (a1ooa2ooa51
{a1ooa2ooa6), (a1ooa3ooa4), (a1ooa3ooa5), (a1ooa3ooa6), {a1ooa4ooa5), (a1ooa4ooa6), (a1ooa5ooaJ,

A1 = (a1ooa2ooa3ooa4), (a1ooa2ooa3ooa5), (a1ooa2ooa3ooa6), (a1ooa3ooa4ooa5), {a1ooa3ooa4ooa6),
(a1ooa4ooa5ooa6), (a1ooa2ooa3ooa4ooa5), (a1ooa2ooa3ooa4ooa6), {a1ooa3ooa4ooa5ooa6),
(a1ooa2ooa3ooa4ooa5ooa6)

{a2ooa1), (a2ooa3), (a2ooa4 1 (a2ooa5), (a2ooa6), (a2ooa1ooa3), (a2ooa1ooa4), (a2ooa1ooa5),

(a2ooa1ooa6), (a2ooa3ooa4), (a2ooa3ooa5), (a2ooa3ooa6), {a2ooa4ooa5), (a2ooa4ooa6 1 (a2ooa5ooa6 1

A2 = (a2ooa1ooa3ooa4 1 {a2ooa1ooa3ooa5 1 (a2ooa1ooa3ooa6 1 (a2ooa3ooa4 ooa5 1 (a2ooa3ooa4ooa6 1

{a2ooa4 ooa5ooa6 t (a2ooa1ooa3ooa4ooa5), (a2ooa1ooa3ooa5ooa6 1 (a2ooa1ooa4ooa5ooa6 1

(a2ooa1ooa3ooa4ooa5ooa6)

(a3ooa1), (a3ooa2), {a3ooa41 (a3ooa5), (a3ooa6), (a3ooa1ooa21 (a3ooa1ooa41 (a3ooa1ooa51
(a3ooa1ooa6), (a3ooa2ooa41 (a3ooa2ooa51 (a3ooa2ooa6), (a3ooa4ooa5), (a3ooa4ooa6), (a3ooa5ooa61

� = (a3ooa1ooa2ooa4), (a3ooa1ooa2ooa5), (a3ooa1ooa2ooaJ, (�ooa2ooa4ooa5), (a3ooa2ooa4ooa6),
(a3ooa4ooa5ooa6), {a3ooa1ooa2ooa4ooa51 {a3ooa1ooa2ooa4ooa61 (a3ooa1ooa4ooa5ooa61
(a3 ooa1 ooa2 ooa4 ooa5 ooa6)

(a4ooa1 1 (a4ooa21 (a4ooa3 1 (a4ooa51 (a4ooa61 (a4ooa1ooa21 (a4ooa1ooa31 (a4ooa1ooa51
(a4ooa1ooa61 (a4ooa2ooa3 1 (a4ooa2ooa5 1 (a4ooa2ooa61 (a4ooa3ooa51 (a4ooa3ooa61 (a4ooa5ooa6),

A4 = (a4ooa1ooa2ooa31 (a4ooa1ooa2ooa51 (a4ooa1ooa2ooa61 (a4ooa2ooa3ooa5 1 (a4ooa2ooa3ooa61
(a4ooa3ooa5ooa61 (a4ooa1ooa2ooa3ooa51 (a4ooa1ooa2ooa3ooa61 (a4ooa1ooa3ooa5ooa61
(a4ooa1ooa2ooa3ooa5ooa6)

To identify the relationship of each attribute, the mapping of data sets is executed

by ICP (see previous example). The first process involves the elimination of similar

data sets from the comparative process, also known as the Classical Set Theory. The

next process inspects the mapped data sets and eliminates all with variable attributes.

The results follow.

(a1ooa2), (a1ooa3), (a1ooa4), (a1ooa5), (a,ooa61 (a2ooa3), (a2ooa4), (a2ooa5), (a2ooa61 (a3ooa4),
(a3ooa5), (a3ooa6), (a4ooa5), (a4ooa6), (a1ooa2ooa3), (a1ooa2ooa4), (a1ooa2ooa5),
(a1ooa2ooa6), (a1ooa3ooa41 (a1ooa3ooa5), (a1ooa3ooa61 (a1ooa4ooa5), (a1ooa4ooa61 (a1ooa5ooa6),
(a2ooa3ooa4), (a2ooa3ooa5), (a2ooa3ooa6), (a2ooa4ooa5), (a2ooa4ooa6), (a2ooa5ooaJ,

A,e.rnt1 = (a3ooa4ooas), (a3ooa4ooa6), (a3ooasooa61 {a4ooa5ooa6),

(a1ooa2ooa3ooa4), (a1ooa2ooa3ooa5), {a1ooa2ooa3ooaJ, (a1ooa3ooa4ooa5), (a1ooa3ooa4ooa61
(a1ooa4ooa5ooa6), (a2ooa3ooa4ooa5), (a2ooa3ooa4ooa6), (a2ooa4ooa5ooa6), (a3ooa4ooa5ooa6),
(a1ooa2ooa3ooa4ooa5), (a1ooa2ooa3ooa4ooa6), (a1ooa2ooa4ooa5ooa6), (a1 ooa3ooa4ooa5ooa6),
(a2ooa3ooa4ooa5ooa6), (a1ooa2ooa3ooa4ooa5ooa6)

52

Process 3 uses the SQL process to compare the relationship of each attribute. The

mapping of data sets executed by Process 3 are composed of (a1 co a2), (a1 co a3), (a1 co

co a6), (a4 co a5), and (a4 co a6). The relation attributes of Process 4 proceeds to classify

the actual and relative dimensions. Any indexed key field is immediately tagged as

actual dimension, the rest are tagged as relative dimension. Process 5 eliminates the rest

of the mapped data sets that are included in the relative dimension attribute. The results

follow.

{a1coa21 (a1coa4 1 {a1coa51 {a1coa61 (a2 B a3), (a2coa4 1 {a2coa5 1 {a2coa61
(a4coa51 {a4coa61 (a1coa2coa4 1 {a1coa2coa5 1 (a1coa2coa6.1 (a1coa4coa5),

A,..,1111 = {a1coa4coa61 {a1coa5coa61 {a2coa4coa5), {a2coa4coa61 {a2coa5ooa61
(a4coa5coa6), {a1coa2coa4coa51 {a1coa2coa4coa61 (a1coa2coa5coa61
(a1 coa4 coa5coa6), (a2coa4 coa5coa6), (a1coa2coa4 coa5coa6)

Process 6 tags the mapped data sets as either candidate variables or actual

dimensions, and replaces the joint function symbol with the associate function symbol:

(a1 => a5), (a1 => aJ, (a2 B a3), (a2 => a5), (a2 => aJ
{a4 => a51 (a4 => a61 (a1coa2 =:> a51 (a1coa2 =:> a6), (a1coa4 =:> a51

A,.._,,,11 = (a1coa4 => aJ, (a1 =:> a5 , a6 l (a2coa4 =:> a5 1 (a2coa4 =:> a6 1 (a2 =:> a5 , a6 1
(a4 => a5 , a6), (a1coa2 => a5 , a61 (a1coa4 =:> a5 , a6), (a2coa4 => a5 , a6 1
(a1coa2coa4 =:> a5 , a6 1

Process 7 eliminates the mapped data sets which are duplicates :

A =
{(a. => as , a6 1 (a2 B a3 1 (a2 => as , a6), (a4 => as ,a6 1

resllll (alcoa2 => a5 , a6), (alcoa4 => a5 , a6), (a2coa4 => a5 , a6 1 (a.coa2coa4 => a5 , a6)

The final process replaces the mapped data sets with data models represented by

D as dimension, V as variable, and R as relative dimension:

53

D1.CCODE � Vi.SALEVAL, V2.COSTVAL
D2.PCODE � R1.PNAME
D2.PCODE � Vi.SALEVAL, V2.COSTVAL
D3.SCODE � Vi.SALEVAL, V2.COSTVAL
D1.CCODE oo D2.PCODE � Vi.SALEVAL, Vi.COSTVAL
D1.CCODE oo D3.SCODE � Vi.SALEVAL, V2.COSTVAL
D2.PCODE oo D1.SCODE � Vi.SALEVAL, V2.COSTVAL
D1.CCODE oo D2.PCODE oo D3.SCODE � Vi.SALEVAL, V2.COSTVAL

3 .2.3 Clustering Module

While the partitioning module transforms flat data into multidimensional DVR

structures, a warehouse database contains a number of relevant data entities and data-

sharing capabilities from external sources. Thus, the relationships among relative

dimensions of numerous entities must link with associated attributes.

As in partitioning modules, there are two particular steps in the clustering module

process: First, the arrangement of grouping relation set is done through the mapping

process. Second, the aggregation of the grouping relation sets is done through the

External Comparison Process (ECP). The grouping relation set is presented in data set

format.

Data sets are arranged in series to verify the relationships in the mapping table,

which is composed of base and related data sets. One of these data sets is assigned as a

base data set and is compared with other data sets to establish relationships. Once a

relationship between base and related data sets is discovered, a new data set is generated

(The process is described in the next part of this research). During the process, a

particular data set may be removed from the series to avoid repetitive comparison.

Another data set is sequentially assigned as the next base data set, and the process

continues until there is no base data set left, or until the related data set is empty.

For example, a warehouse database denoted as DBi has three data entities: A, B,

and C, assigned into DVR models in a partitioning module. Data entity A contains the

attribute i a1, a2, a3, a4 r and rebuilds into data sets (a1 => a3, a4), (a2 => a3, a4). Data

54

Entity B contains the attribute i a1, a5, a6 r and rebuilds into data sets (a1 � a6), (a5 �

a6). Data entity C contains the attribute i a5, a7 r and rebuilds into data sets (a5 � a7).

Consequently, the data sets of DBi are assigned as: (a1 � a3, a4), (a2 � a3, a4), (a1 �

a6), (a5 � a6), (a5 � a7). Data set (a1 � a3, a4) is first assigned as base data set and the

others as related data sets. The execution of ECP from (a1 � a3, a4) as base data set

yields:

(a, :::::> a3, a.J u (a2 :::::> a3, a-1)
(a1 :::::> a3, a.J u (a1 :::::> arJ
(a, :::::> a1, a.J u (a5 :::::> arJ
(a1 :::::> a3, a.J u (a5 :::::> a-)

sets yields the following results (see Table 3 . 1 2) :

Table 3 . 1 2. An Example of a Clustering Module.

Base Related Mapping
Data Set Data Set Data Set

(a, :::::> a3, a-1) (a1 :::::> a3, a-1) (a, :::::> a3, a-1) u (a2 :::::> a3, a-1)
(a1 :::::> arJ (a1 :::::> a3, a4) u (a1 :::::> arJ
(a5 :::::> a6) (a, :::::> a3, a-1) u (a5 :::::> a6)
(a5 :::::> a-) (a, :::::> a3, a-1) u (a5 :::::> a-)

(a2 :::::> a3, a-1) (a1 :::::> arJ (a2 :::::> a3, a4) u (a1 :::::> arJ
(G5 :::::> a6) (a2 :::::> a3, a-1) u (a5 :::::> a6)
(a5 :::::> a-) (a2 :::::> a3, a-1) u (a5 :::::> a�)

(a1 :::::> arJ (a5 :::::> a6) (a, :::::> a6) u (a5 :::::> a6)
(a5 :::::> a-) (a, :::::> arJ u (a5 :::::> a�)

(G5 :::::> a6) (a5 :::::> a-) (a5 :::::> a6) u (a5 :::::. a-)
(a5 :::::> a-) <End of file> <End of Execution>

·-

The following processes introduce the supplement ECP algorithms to form new

data sets.

PROCESS 1 : Referring to the Aggregation Rule, when dimension attributes in data

entities are similar, the associate data values of dimension attributes are integrated into

one data set.

55

To simplify the data set, the algorithm aggregates the dispersion of variable

attributes where dimension attributes are alike. For example, when data sets (a1 � a3

,a4) and (a1 � a6) are represented in the same dimension attribute that is defined in the

data dictionary, then variable attributes are integrated into a grouping relation that is set

into a new data set (a1 � a3 ,a4 , a6).

PROCESS 2: Any data set that exists in the same data entity skips the comparison

process. In Process 7 of the partitioning module, data sets with similar dimension

attributes are deleted, retaining only one data set.

Data sets with similar data entities are not compared in this process. Data sets that

are segregated by dimension attributes are grouped together to minimize data set

duplication. For example, when data sets (a1� a6), (a1� a3, a4) and (a1� a3 , a4 ,a6)

are grouped together, the process retains only one data set (a1� a3 ,a4 ,a6). The rest are

deleted.

PROCESS 3 : Dimension attributes which are absolutely unrelated to other dimensions

(Dxi <:::. Dh skips the comparison process.

For example, data sets (a1� a3 ,a4 ,a6) and (a2� a5) are compared. When results

prove that data set (a1� a3 ,a4 ,a6) is not consistent with data set (a2� a5), then the

comparison process skips these data sets and proceeds to the next data sets.

PROCESS 4: To drill down the level of granularity, the dimension attribute that is a

component of data sets is considered in the grouping relation. To combine related

dimensions, the query process r;,;�a, (v'Y) is intuitively used to store data values in the

data loading process.

56

Multidimensional databases do not support the logical joining of multiple

multidimensional arrays. Its inability to join databases requires the classification of

relationships and combinations of any variable before generating the MDDB [1 0] .

For example, dimension attribute a1 is to be related to data set (ax==> a5) in data

entity A. Furthem1ore, data set (a1 oo a1 ==> a1) is the data entity of B. The data sets are

thus combined as (a2==> as) u (a1 oo a1 ==> a1) and the result is a new data set, (a1 oo a1 ==>

a3 , a5). Data loading will automatically generate an SQL query process that joins data

entities A and B. Using ECP, the resulting sets follow (see Table 3 . 1 3).

Table 3 . 1 3 . Data Sets from ECP.

Base Related Mapping ECP
Data Set Data Set Data Set Results

(a1 ==> a1, a-1) (a2 ==> a1, a-1) (a, ==> a1, a-1) u (a2 ==> a1, a-1) -

(a1 ==> a� (a1 ==> a3, a-1) u (a1 ==> a6) (a1 ==> a1, a-1 ,a,J
(a5 ==> a6) (a1 ==> a1, a-1) u (a5 ==> a6) -

(as ==> a-) (a, ==> a1, a-1) u (as ==> a-) -

(a2 ==> a1, a-1) (a1 ==> a� (a2 ==> a1, a-1) u (a1 ==> a6) -

(a5 ==> a6) (a2 ==> a1, a-1) u (a5 ==> a6) -

(a5 ==> a-) (a2 ==> a1, a-1) u (as ==> a-) -

(a1 ==> a,J (as ==> a6) (a1 ==> a6) u (as ==> a6) -

(a5 ==> a-) (a1 ==> a,J u (as ==> a-) -

(as ==> a6) (as ==> a-) (as ==> a6) u (as ==> a�) (as ==> a6 ,a-)
(a5 ==> a-) <End of file> <End of Execution> -

Example 3 : In examples 2. 1 and 2.2, when the data sets are already assigned as DVR

models in the partitioning module, the actual dimensions of the SALEMAN code and

AREA code are examined to find associations between them.

The actual variables of COMMISSION value and SALE value are examined if they

can be integrated when actual dimensions are related. The attributes of data entity A are

transformed into a DVR strncture:

-- D/SCODE ==> V/SALEVAL, V/.COMM
-- D/SCODE � R/SNAME (Not mention)

-- D/ACODE ==> V/SALEVAL, V/COMM
-- D/SCODE oo D/ACODE ==> V/SALEVAL, V/.COMM

57

Additional data sets and their sample data elements from data entities B, C are

assumed to completely form the DVR models:

-- D/. CCODE => V/.SALEVAL, V/ COSTVAL
-- D/.PCODE B R/.PNAME(Not mentioned)
-- D/.PCODE => V/.SALEVAL , V/COSTVAL
-- D/.SCODE => V/.SALEVAL, V/ COSTVAL
-- D/ CCODE oo D/.PCODE => V/. SALEVAL, V/. COSTVAL
-- D/. CCODE oo D/.SCODE => V/. SALEVAL, V/. COSTVAL
-- D/.PCODE oo D/.SCODE => V/.SALEVAL, V/ COSTVAL
-- D/CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL

The following table presents the sequential arrangement of DVR models and the

mapped data sets (see Table 3 . 1 4) :

Table 3. 14. Mapping Data Set of Example 3 .

Based and Related Data Set Mapping Data Set

f!_/SCODE =:> V{SALEVAL, V{COMM
D/ACODE =:> V/.SALEVAL, V/COMM (D/.SCODE => V/.SALEVAL, V/COMM) u (D/.ACODE

=> V/.SALEVAL. V/COMM)

D/.SCODE oo D/ACODE => V/.SALEVAL. V/COMM (D/.SCODE => V/.SALEVAL, V/.COMM) u (D/.SCODE oo
D/.ACODE => V/.SALEVAL, V/COMM)

D/.CCODE => V/.SALEVAL. V/COSTVAL (D/.SCODE=> V/.SALEVAL, V/.COMM) u (D/.CCODE
=> V/.SALEVAL, V/COSTVAL)

D/.PCODE => V/.SALEVAL . V/COSTVAL
(D/.SCODE => V/.SALEVAL. V/COMl•vf) u (D/.PCODE
=> V/.SALEVAL , V/.COSTVAL)

D/SCODE => V/.SALEVAL, V/.COSTVAL (D/.SCODE => V/SALEVAL, V/COMM) u (D/.SCODE =>
V/SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.PCODE => V/.SALEVAL. V/COSTVAL (D/.SCODE => V/.SALEVAL, V/.COMM) u (D/.CCODE oo
D/PCODE => V/SALEVAL, V/.COSTVAL)

D/CCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL (D/.SCODE => V/.SALEVAL, V/COMM) u (D/.CCODE oo
D/.SCODE => V/SALEVAL, V/.COSTVAL)

D/PCODE oo D/SCODE => V/.SALEVAL, V/.COSTVAL (D/.SCODE => V/.SALEVAL, V/COMM) u (D/.PCODE oo
D/SCODE => V/SALEVAL, V/.COSTVAL)

D/.CCODE oo D/PCODE oo D/.SCODE => V/SALEVAL,
(D/.SCODE => V/.SALEVAL, V/COMM) u (D/CCODE oo

V/COSTVAL
D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)

58

St. Gabriel Library, Au

Table 3 . 1 4. Mapping Data Set of Example 3 (continued).

Based and Related Data Set Mapping Data Set

Q{ACODE => V{SALEVAL, V/.COMM
D,'.SCODE oo D/.ACODE => V/.SALEVAL, V/.COMM (D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.SCODE oo

D/.ACODE => V/.SALEVAL, V/.COMM)

D/.CCODE => V/SALEVAL. V/.COSTVAL (D/.ACODE => V/.SALEVAL, V/.COMM) u (D/CCODE
=> V/.SALEVAL, V/.COSTVAL)

D/.PCODE => V/SALEVAL , V/.COSTVAL (D/.ACODE => V/. SALEVAL, V/.COMM) u (D/.PCODE
=> V/.SALEVAL . V/.COSTVAL)

D/.SCODE=> V/SALEVAL, V/.COSTVAL
(D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.SCODE
=> V/.SALEVAL, V/.COSTVAL)

D/CCODE oo D/PCODE => V/.SALEVAL, V/.COSTVAL (D/ACODE => V/.SALEVAL, V/.COMM) u (D/CCODE oo
D/.PCODE => V/.SALEVAL, V/.COSTVAL)

D/CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL (D/.ACODE => V/.SALEVAL, V/.COMM) u (D/CCODE oo
D/.SCODE => V/.SALEVAL, V/.COSTVAL)

D/.PCODE oo D/.SCODE => V/SALEVAL. V/.COSTVAL (D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.PCODE oo
D/.SCODE => V/SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL, (D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.CCODE oo

V/.COSTVAL D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)

Q{SCODE oo D:i_'.ACODE => V{SALEVAL, V/.COMM
D/.CCODE => V/.SALEVAL. V/.COSTVAL (D/.SCODE oo D/.ACODE => V/.SALEVAL. V/COMM) u

(D/.CCODE => V/.SALEVAL. V/.COSTVAL)

D/.PCODE => V/.SALEVAL . V/.COSTVAL (D/.SCODE oo D/.ACODE => V/.SALEVAL, V/.COMM) u
(D/.PCODE => V/.SALEVAL . V/.COSTVAL)

D/.SCODE => V/.SALEVAL. V/.COSTVAL (D/.SCODE oo D/.ACODE => V/.SALEVAL. V/.COMM) u
(D/.SCODE => V/.SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL (D/.SCODE oo D/ACODE => V/SALEVAL, V/COMM) u
(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL)

U/.CCODE oo D/SCODE => V/.SALEl-'AL. l"/.COSTVAL (D/.SCODE oo D/.ACODE => V/.SALEVAL. V/.COMM) u
(D/.CCODE oo D/.SCODE => V/.SALEVAL. V/.COSTVAL)

D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL (D/.SCODE oo D/ACODE => V/.SALEVAL, V/.COMM) u
(D/.PCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL)

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL. (D/.SCODE oo D/ACODE => V/.SALEVAL, V/.COMM) u

V/.COSTVAL (D/CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/.COSTVAL)

D/.CCODE => V/.SALEVAL, V/.COSTVAL
D/.PCODE => V/.SALEVAL , V/.COSTVAL (D/.CCODE => V/SALEVAL, V/.COSTVAL) u

(D/.PCODE => V/.SALEVAL , V/.COSTVAL)

D/.SCODE => V/.SALEVAL, V/.COSTVAL (D/.CCODE => V/.SALEVAL, V/.COSTVAL) u
(D/.SCODE => V/.SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL (D/CCODE => V/.SALEVAL, V/.COSTVAL) u
(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL
(D/CCODE => V/.SALEVAL, V/.COSTVAL) u
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)

D/PCODE oo D/SCODE => V/.SALEVAL, V/COSTVAL (D/.CCODE => V/.SALEVAL, V/.COSTVAL) u
(D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL, (D/.CCODE => V/.SALEVAL, V/.COSTVAL) u
V/.COSTVAL (D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL,

V/.COSTVAL)

59

Table 3 . 1 4. Mapping Data Set of Example 3 (continued).

Based and Related Data Set

D/.PCODE => V{SALEVAL , V/. COSTVAL
D/.SCODE => V/SALEVAL. V/COSTVAL

D/.CCODE oo D/.PCODE => V/SALEVAL, V/COSTVAL

D/.CCODE oo D/.SCODE => V/SALEVAL, V/.COSTVAL

D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL

D/.CCODE oo D/PCODE oo D/.SCODE => V/SALEVAL,
V/.COSTVAL

f!/SCODE => V/.SALEVAL, V{ COSTVAL
D/CCODE oo D/PCODE => V/SALEVAL, V/COSTVAL

D/CCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL

D/.PCODE oo D/SCODE => V/SALEVAL, V/COSTVAL

D/.CCODE oo D/PCODE oo D/.SCODE => V/.SALEVAL.
V/COSTVAL
Q{CCODE oo D/.PCODE => V/.SALEVAL, V{COSTVAL
D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL

D/PCODE oo D/.SCODE => V/.SALEVAL. V/COSTVAL

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL.
V/.COSTVAL

Q{CCODEoo D/.SCODE => V/SALEVAL, V{COSTVAL
D/PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/.COSTVAL

Q{PCODE oo D/.SCODE => V/.SALEVAL, V{COSTVAL
D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/.COSTVAL

D/.CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL,
v?.COSTVAL - - -

Mapping Data Set

(D/PCODE => V/.SALEVAL , V/COSTVAL) u
(D/SCODE => V/.SALEVAL, V/.COSTVAL)
(D/.PCODE => V/.SALEVAL , V/.COSTVAL) u
(D/CCODE oo D/.PCODE => V/.SALEVAL, V/COSTVAL)
(D/PCODE => V/.SALEVAL , V/COSTVAL) u
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL)
(D/.PCODE => V/.SALEVAL , V/COSTVAL) u
(D/.PCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL)

(D/PCODE => V/.SALEVAL , V/COSTVAL) u
(D/CCODE oo D/.PCODE oo D/.SCODE => V/SALEVAL,
V/COSTVAL)

(D/.SCODE => V/.SALEVAL, V/.COSTVAL) u
(D/CCODE oo D/PCODE => V/SALEVAL, V/COSTVAL)
(D/.SCODE => V/.SALEVAL, V/COSTVAL) u
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL)
(D/.SCODE => V/.SALEVAL, V/.COSTVAL) u (D/.PCODE
oo D/.SCODE => V/SALEVAL, V/COSTVAL)
(D/.SCODE => V/.SALEVAL, V/COSTVAL) u
(D/.CCODE oo D/PCODE oo D/.SCODE => V/SALEVAL,
V/.COSTVAL)

(D/.CCODE oo D/PCODE => V/.SALEVAL, V/.COSTVAL)
u (D/.CCODE oo D/SCODE => V/SALEVAL,
V/.COSTVAL)
(D/CCODE oo D/PCODE => V/.SALEVAL, V/COSTVAL)
u (D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/.COSTVAL)
(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL)
u (D/.CCODE oo D/.PCODE oo D/.SCODE =>
V/SALEVAL, V/COSTVAL)

(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)
u (D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/COSTVAL)
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL)
u (D/.CCODE oo D/.PCODE oo D/.SCODE =>
V/.SALEVAL, V/COSTVAL)

(D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)
u (D/.CCODE oo D/.PCODE oo D/.SCODE =>
V/SALEVAL, V/.COSTVAL)

-

From partitioning module, the twelve data models (Examples 2. 1 and 2.2) are

rearranged in series called grouping relation set. The first data set (Q/scoDE => v/sALEVAL,

f./COMM), which is the base data set, is mapped with other data sets until the end of

grouping relation set. The next data set, then replaces the previously used based data set,

60

and so on, until the last data set (Q/CCODE 00 D{PCODE 00 D/.SCODE => V/SALEVAL, V/. COSTVAL).

The mapped data sets are then processed by ECP to form new data sets (see Table 3 . 1 5) :

Table 3 . 1 5 : New Data Set of Example 3 .

Mapping data set New data set from ECP

(D/.SCODE => V/.SALEVAL, V/COMM) u (D/ACODE -

=> V/.SALEVAL, V/.COMM)
(D/.SCODE => V/.SALEVAL, V/.COMM) u (D/.SCODE oo -

D/.ACODE => V/.SALEVAL, V/.COMM)
(D/.SCODE => V/.SALEVAL, V/.COMM) u (D/.CCODE

-

=> V/.SALEVAL, V/.COSTVAL)
(D/.SCODE => V/.SALEVAL, V/.COMM) u (D/.PCODE
=> V/.SALEVAL I V/.COSTVAL)

-

(D/.SCODE => V/.SALEVAL, V/. COMM) u (D/.SCODE =>
D/.SCODE => V/.SALEVAL, V/.COMM, V/.COSTVAL V/.SALEVAL, V/.COSTVAL)

(D/.SCODE => V/.SALEVAL, V/. COMM) u (D/.CCODE oo -

D/.PCODE => V/SALEVAL, V/. COSTVAL)
(D/.SCODE => V/.SALEVAL, V/.COMM) u (D/CCODE oo D/.CCODE oo D/SCODE => V/.SALEVAL, V/.COMM,
D/.SCODE => V/.SALEVAL, V/.COSTVAL) V/.COSTVAL
(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.PCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COMM,
D/.SCODE => V/SALEVAL, V/.COSTVAL) V/COSTVAL
(D/.SCODE => V/.SALEVAL, V/.COMM) u (D/CCODE oo -

D/.PCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL
(D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.SCODE oo -

D/ACODE => V/.SALEVAL, V/COMM)
(D/.ACODE => V/.SALEVAL, V/COMM) u (D/.CCODE -

=> V/.SALEVAL, V/.COSTVAL)
(D/.ACODE => V/.SALEVAL, V/COMM) u (D/.PCODE

-

=> V/.SALEVAL I V/.COSTVAL)
(D/.ACOD£ => V/.S;fl£VAL, V/. COMM) u (D,'.SCODE
=> V/.SALEVAL. V/.COSTVAL)

-

(D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.CCODE oo
D/.PCODE => V/.SALEVAL. V/.COSTVAL) -

(D/ACODE => V/.SALEVAL, V/COMM) u (D/CCODE oo -

D/.SCODE => V/SALEVAL. V/. COSTVAL)
(D/.ACODE => V/.SALEVAL, V/.COMM) u (D/.PCODE oo -

D/.SCODE => V/SALEVAL, V/.COSTVAL)
(D/.ACODE => V/.SALEVAL, V/. COMM) u (D/CCODE oo -

D/.PCODE oo D/.SCODE => V/SALEVAL, V/.COSTVAL)

61

Table 3 . 1 5 : New Data Set of Example 3 (continued).

Mapping data set New data set from ECP

(D/.SCODE oo D/ACODE � V/.SALEVAL, V/.COlv/Af) v -

(D/.CCODE � V/.SALEVAL, V/.COSTVAL)
(D/.SCODE oo D/.ACODE � V/.SALEVAL, V/.COMM) v -

(D/.PCODE � V/.SALEVAL , V/COSTVAL)
(D/SCODE oo D/ACODE � V/SALEVAL, V/COMM) v D/.SCODEoo D/.ACODE � V/.SALEVAL, V/.COMM,
(D/.SCODE � V/.SALEVAL, V/.COSTVAL) V/. COSTVAL

(D/.SCODE oo D/ACODE � V/.SALEVAL, V/. COMM) v -

(D/.CCODE oo D/.PCODE � V/.SALEVAL, V/.COSTVAL)
(D/.SCODE oo D/.ACODE � V/.SALEVAL, V/.COMM) v D/CCODE oo D/.SCODE oo D/ACODE � V/SALEVAL, (D/.CCODE oo D/.SCODE � V/.SALEVAL, V/.COSTVAL) V/. COMM, V/COSTVAL
(D/.SCODE oo D/.ACODE � V/.SALEVAL, V/.COMM) v D/.PCODE oo D/.SCODE oo D/.ACODE � V/.SALEVAL, (D/.PCODE oo D/.SCODE � V/.SALEVAL, V/.COSTVAL) V/.COMM, V/.COSTVAL
(D/.SCODE oo D/.ACODE � V/.SALEVAL, V/COMM) v D/.CCODE oo D/.PCODE oo D/.SCODE oo D/.ACODE �
(D/.CCODE oo D/.PCODE oo D/.SCODE � V/.SALEVAL, V/.SALEVAL, V/.COMM, V/.COSTVAL
V/.COSTVAL)
(D/.CCODE � V/.SALEVAL, V/COSTVAL) v -

(D/PCODE � V/.SALEVAL . V/.COSTVAL)
(D/.CCODE � V/.SALEVAL, V/.COSTVAL) v -

(D/SCODE � V/.SALEVAL, V/.COSTVAL)
(D/.CCODE � V/.SALEVAL, V/.COSTVAL) v

-

(D/.CCODE oo D/.PCODE � V/.SALEVAL, V/.COSTVAL)
(D/.CCODE � V/.SALEVAL, V/.COSTVAL) v
(D/.CCODE oo D/SCODE � V/.SALEVAL, V/.COSTVAL)

-

(D/.CCODE � V/.SALEVAL. V/.COSTVAL) v
(D/PCODE oo D/SCODE � V/.SALEVAL, V/.COSTVAL) -

(D/.CCODE � V/SALEVAL, V/.COSTVAL) v
(D/.CCODE oo D/.PCODE oo D/SCODE � V/.SALEVAL, -

V/.COSTVAL)
(D/PCODE � V/.SAL£VAL , V/COSTVAL) v -

(D/SCODE � V/.SALEVAL, V/.COSTVAL)
(D/.PCODE � V/.SALEVAL , V/.COSTVAL) v -

(D/.CCODE oo D/.PCODE � V/.SALEVAL, V/.COSTVAL)
(D/PCODE � V/.SALEVAL , V/.COSTVAL) v

-

(D/.CCODE oo D/.SCODE � V/.SALEVAL, V/.COSTVAL)
(D/.PCODE � V/.SALEVAL , V/.COSTVAL) v
(D/.PCODE oo D/.SCODE � V/.SALEVAL, V/.COSTVAL)

-

(D/.PCODE � V/.SALEVAL , V/.COSTVAL) v
(D/.CCODE oo D/.PCODE oo D/.SCODE � V/.SALEVAL, -

V/.COSTVAL)
(D/SCODE � V/.SALEVAL, V/.COSTVAL) v -

(D/.CCODE oo D/.PCODE � V/.SALEVAL, V/.COSTVAL)
(D/SCODE � V/.SALEVAL, V/.COSTVAL) v -

(D/.CCODE oo D/.SCODE � V/.SALEVAL, V/.COSTVAL)
(D/SCODE � V/.SALEVAL, V/.COSTVAL) v (D/.PCODE

-

oo D/.SCODE � V/SALEVAL, V/. COSTVAL)
(D/SCODE � V/SALEVAL, V/.COSTVAL) v
(D/.CCODE oo D/PCODE oo D/SCODE � V/.SALEVAL,

-

V/.COSTVAL)

62

Table 3 . 1 5 : New Data Set of Example 3 (continued).

Mapping data set New data set from ECP

(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL) -

v (D/.CCODE oo D/.SCODE => V/. SALEVAL,
V/.COSTVAL)
(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/. COSTVAL)
v (D/.PCODE oo D/.SCODE => V/.SALEVAL,

-

V/.COSTVAL)
(D/.CCODE oo D/.PCODE => V/.SALEVAL, V/. COSTVAL)
v (D/.CCODE oo D/.PCODE oo D/.SCODE => -

V/.SALEVAL, V/.COSTVAL)
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL) -

v (D/.PCODE oo D/.SCODE => V/.SALEVAL,
V/.COSTVAL)
(D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL)
v (D/.CCODE oo D/.PCODE oo D/.SCODE =>

-

V/.SALEVAL, V/.COSTVAL)
(D/.PCODE oo D/.SCODE => V/.SALEVAL, V/. COSTVAL)
v (D/. CC ODE oo D/.PCODE oo D/SCODE => -

V/.SALEVAL, V/.COSTVAL)

Initially used as the first base data set, the data set (D/SCODE :::::> V/SALEVAL,

V/. COMM) is compared with the existing grouping relation sets:

(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.ACODE => V/.SALEVAL,
V/COMM)

(D/.SCODE => V/.SALEVAL, V/. COMM) u (D/.SCODE oo D/ACODE =>
Vi1.SALEVAL, V/COMM)

(D/.SCODE => V/SALEVAL, V/COMM) u (D/.CCODE => V/.SALEVAL,
V/.COSTVAL)

(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.PCODE => V/.SALEVAL,
V/.COSTVAL)

(D/SCODE => V/.SALEVAL, V/COMM) u (D/SCODE => V/.SALEVAL,
V/.COSTVAL)

(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.CCODE oo D/.PCODE =>
V/.SALEVAL, V/.COSTVAL)

(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.CCODE oo D/.SCODE =>
V/.SALEVAL, V/COSTVAL)

(D/SCODE => V/. SALEVAL, V/COMM) u (D/.PCODE oo D/.SCODE =>
V1

2.SALEVAL, V/.COSTVAL)
(D/.SCODE => V/.SALEVAL, V/COMM) u (D/.CCODE oo D/.PCODE oo
D/.SCODE => V/.SALEVAL, V/.COSTVAL

Both data sets (D/.SCODE B R/SNAME) and (D/.PCODE B R/PNA ME) are

not examined for relationships because any relative attributes depend on one dimension

attribute.
63

The mapped data set (D/.SCODE => V/.SALEVAL, V/COMM) u (D/.SCODE =>

V/.SALEVAL, V/.COSTVAL) represents the same dimension attribute (SCODE). Process 1

aggregates these data sets into new data sets: D/SCODE => V/.SALEVAL, V/COMM,

V/COSTVAL.

Process 2 ignores the mapped data set (D/.SCODE => V/SALEVAL, V/COMM) u

(D/.SCODE oo D/.ACODE => V/.SALEVAL, V/COMM) which resulted from same data

entity in the partitioning module.

When there is no relationship between dimension attributes D/SCODE and

D/.PCODE in mapped data set (D/SCODE => V/.SALEVAL, V/COMM) u (D/.PCODE

=> V/.SALEVAL, V/. COSTVAL), Process 3 skips these data ·sets.

Finally, the mapped data set (D/SCODE => V/SALEVAL, V/ COMM) u

(D/.PCODE oo D/SCODE => V/SALEVAL, V/.COSTVAL) is considered. When data

set (D/SCODE => V/. SALEVAL, V/. COMM) and (D/.PCODE oo D/SCODE =>

V/SALEVAL, V/.COSTVAL) are compared in Process 4, dimension attribute SCODE

is found to be similar to definitions in the data dictionary, the new data set (D/.PCODE

oo D/SCODE => V/SALEVAL, V/ COMM, V/. COSTVAL) is automatically

generated.

ECP processes (D/SCODE => V/SALEVAL, V/. COMM) as base data set and

yields the following:

I I I '
D, .SCODE => Vi .SALEVAL, V2 .COMM, v2-.COSTVAL

D/.CCODE oo D/SCODE => V/.SALEVAL, V/COMM, V/.COSTVAL

D/.PCODE oo D/.SCODE => V/SALEVAL, V/. COMM, V/.COSTVAL

After the clustering module process is completed, the grouping relation set is:

-- D/SCODE => V/SALEVAL. V/COMM

-- D/SCODE B R/SNAME

-- D/.ACODE => V/.SALEVAL, V/COMM

64

-- D/.SCODE oo D/.ACODE => V/.SALEVAL, V/.COMM

-- D/.CCODE => V/SALEVAL, V/. COSTVAL

-- D/PCODE B R/.PNAME

-- D/.PCODE => V/.SALEVAL , V/. COSTVAL

-- D/.SCODE => V/SALEVAL, V/COSTVAL

-- D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL

-- D/.CCODE oo D/SCODE => V/.SALEVAL, V/.COSTVAL

-- D/.PCODE oo D/.SCODE => V/.SALEVAL, V/.COSTVAL

-- D/CCODE oo D/.PCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL

-- D/.SCODE => V/.SALEVAL, V/COMM, V/.COSTVAL

-- D/.CCODE oo D/.SCODE => V/.SALEVAL, V/COMM, V/.COSTVAL

-- D/.PCODE oo D/.SCODE => V/.SALEVAL, V/. COMM, V/. COSTVAL

-- D/.SCODEoo D/ACODE => V/.SALEVAL, V/COMM, V/. COSTVAL

-- D/.CCODE oo D/.SCODE oo D/.ACODE => V/.SALEVAL, V/.COMM,
V/COSTVAL

-- D/.PCODE oo D/.SCODE oo D/.ACODE => V/.SAJ,EVAL, V/.COMM,
V/.COSTVAL

-- D/.CCODE oo D/.PCODE oo D/.SCODE oo D/ACODE => V/.SALEVAL,
V/.COMM, V/COSTVAL

The groupmg relation sets of partitioning modules and combined groupmg

relation sets of clustering modules are represented in the form of logical DVR models,

which can be modified at designated interface nodes (Figure 3 .2). The resulting DVR

structures automatically generate an SQL statement in order to import data values. The

process is described in the next section.

3 .2 .4 Building a Physical DVR Model

The three modules (classification, partitioning, and clustering) transform data in

DVR structures, which are carefully reviewed for error contamination. In addition to

archiving data volumes, analysts may approve missing dimensions or change the

relation set of dimensions at any of the designated interface nodes. In the next step,

grouping relation sets rearranges the order of dimensions to the satisfaction of the

analysts. In order to crosscheck for data errors, random sample data from the relational

database verify the achieved DVR structures.

65

(I) Data Model Relocation Process

The order of dimensions affects the variable's layout in a table or report.

The first dimension listed in the variable bears the fastest access data, and

the last has the slowest.

Assume the combined grouping relation set is D/SCODE oo D/.ACODE oo

D/PCODE => V/SALEVAL, V/. COMM The dimension attribute SCODE

appears on the first order following A CODE and PCODE. Thus, dimension

SCODE is the first access data to appear in the columns. Dimension

ACODE next appears in rows, and dimension PCODE appears last in the

page (Figure 3a) .

Assuming that the dimension attribute PCODE is desired to be in the

column-level (Figure 3b), then the grouping relation set is modified as

4 COD J C 2 1 1
D1 .P E oo D1 .S ODE oo D1 .ACODE => Vi . SALEVAL, Vi . COMM

Although the series of dimensions in a grouping relation set are not

significant in conceptual view, it is easy to rotate the multidimensional cube.

66

n: SCCDEooE{AC'ODEooDi.PCODE => �;1 S.4LEEA.L Yi CO ALM
PCOOE : Al51IO

EAST 200,000 1,000 0 0 0 0

NOR1H 0 0 0 0 0 0
SOIJl'H 0 0 0 0 0 0

WEST 150,000 150 0 0 410,000 2,050

_li'igure 3a Original grouping reiation set

D1� .PCODJiJ:Ddi.SCODEooD1l.ACODE =>Vi1.SALEVAL.Vf.COMM
ACODE : EA�T

ACODE : NOR1H
ACODE : SOU1H

A2100 A2200 A2500
150,000 750 0 0 0 0

10210 0 0 0 0 650,000 3,250

102<1l 410,000 2.050 0 0 0 0

lii gure 3b Rlil-o.�der grouping ."f1!ation ::;f!t

Figure 3.3. Data Model Relocation Process.

(2) Data Loading and Building the Physical Data Model

The sample data from the warehouse database may be transferred into DVR

model forms using the import command of OLAP tools. These tools

organize one portion of data output to test data consistency and accuracy.

To build the physical DVR model, SQL statement needs to be automatically

generated and executed to create data values before it can be automatically

downloaded into the DVR models.

The appendix section has examples of building a data model and of the data

loading process.

67

3.3 Conclusion

Related literature shows a senous gap m the field of database management,

particularly in minimizing human errors in database maintenance. The errors result from

the current manual interface process of transforming relationship patterns in a database

from a bidimensional to a multidimensional pattern for multidimensional or DVR

analysis. This chapter fills the gap by proposing an automated process that identifies,

corrects, summarizes, and screens out errors in a large mass of data by using

multidimensional relationship programs. This research explains the basic process of

creating DVR models validated by propositional functions. Each process is illustrated

by examples and each procedure is stated in algorithms.

This research also illustrates how to relocate data models and efficiently load data

in MDDB. The procedure designs DVR models in MOLAP via three data mining

techniques: classification, partitioning, and clustering modules. Classification modules

verify an attribute of data entity as candidate dimension or a variable of

multidimensional cubes. Partitioning modules use candidate dimensions as bases for

mapping with other attributes of the same data entity to form mapped data sets. This

module uses the Internal Comparison Process (ICP) to manipulate data set to validate

the DVR model . Finally, the clustering module uses External Comparison Process

(ECP) to manipulate DVR models in the partitioning modules in order to group the

related dimensions and associated data values.

These modules work together to generate the multidimensional patterns of

relationships using logical formulas that classify, map, and group variables in the data

sets. The procedure is applicable to warehouse databases for automatic generation of

DVR models for MDDB to function.

68

St. Gabriel Library , Au

IV. DVR DATA MODEL DESIGN VIA GRAPH MODEL

4.1 Introduction

The growing complexity of organizational structures result in complex data

interrelationships within an information network, rendering inadequate existing data

processing routines. Chapter three presents the DVR model automatic generation

procedure using three modules: classification, partitioning, and clustering module. This

chapter presents the design of creating DVR model via graph representation. The

routine automatically transforms relational database in a data warehouse into a

multidimensional database.

The routine uses MOLAP applications to generate graphs of the results. The

procedures detail how resulting DVR and graph structures are validated by OLAP

methodology. After the routine is completed, the physical data in the multidimensional

database can still be modified.

Since the user's view of the enterprise' s umverse is multi-dimensional, the

analyst's conceptual view of OLAP models should also be multi-dimensional . This

conceptual schema dictates the design and construction of the model structure and of the

dimensional calculations, as well as the analysis of the resulting data relationship

patterns.

For better visualization, the graph model is used in presenting data. Analysts find

it easy to design while users find it easy to understand. One way of viewing data in

graph form is the Entity-Relationship (ER) diagram, a tool used in designing data

structures. Detailed ER models have attributes and lines that show relationships

between sets of data. In this way, it simplifies complex data relationships. The diagram

is also used to analyze business requirements as well as the design of the resulting data

structure. It uses specialized programming language and requires trained personnel.

69

The accuracy of conceptual design is vital in building an information system so

that it responds fully to user requirements. This research presents a graph model that

shows a routine for processing voluminous data from various sources into groups of

related dimensions and associated data values. The graph model describes how data

entities are collected from a database through three symbols: center nodes, branch

nodes, and rectangle nodes. A primary attribute is presented in a center-node. Foreign

keys or character format attributes, and associated dimensions are presented in branch­

nodes. Numeric format attributes are data values or variables presented in rectangle­

node. Curved lines show MDD relationships. Dashes show links between dimensions

that support the OLAP drill-down concept. In complex ·data the lines overlap to rotate

and compare information. The finished graph structure fact scheme is reorganized into

MDD models of a hypercube in terms of a standard SQL form supported by algorithms.

4.2 Designing Data Model via Graph Model

The definition of graph theory, published by N.L.Biggs, E.K.Lloyd and

R.J.Wilson in 1 736, is a finite set of dots called vertices (or nodes) connected by links

called edges (or arcs). A graph model is simply a set of unordered pairs of distinct

elements of vertices called edges. Sometimes a pair of vertices are connected by

multiple edge yielding a multi-graph.

The graph model is gratefully applied to various concepts of statistical

information, data mining functions, simulation and visualization. The research applies

graph model to design DVR model. There are two basic steps going into the creation of

a multidimensional (MDD) structure. First, the relational structure is changed into a

graph structure. Then, the relational data elements are converted into dimensional fact

elements of nodes and rectangles to represent data dimensions. The result is an MDD

structure called a hypercube.

70

In sum, the graph structure is simply a two-dimensional representation of the

hypercube. The multidimensionality of the hypercube is illustrated by links that connect

the various dimensions and associated data values. The graph structure on research

represents this multidimensionality with basic MDD components and relationships

between the various groupings. The MDD structure shows dimensions and logical

grouping of attributes with a common atomic key relationship.

A variable represents facts or measures. A relative dimension represents datum

associated with dimensional attributes. The relationships between the dimension

attributes and their associated data values are called grouping relation set.

A mass of data is first converted into a graph model. Then, it is automatically

generated into an MDD structure. Steps to the automatic processing of mass data from

relational to MDD format follow.

The design of DVR data model from relational data using graph as:

(1) Defining candidate dimensions and variables. This step inspects all data

types for indexed keys and verifies the data entity and the candidate

dimension of multidimensional cubes. If the attribute is verified as numeric,

the data is classified as variables.

(2) Building the DVR data model in graph form.

(a) Identifying actual and relative dimensions and variables. The

candidate dimensions and variables are manipulated usmg

comparative process to be assigned as actual dimensions, variables,

and relative dimensions.

(b) Defining the main dimensions and sub-dimensions. The indexed key

field is labeled as main dimensions, the other actual dimensions are

labeled as sub-dimensions.

7 1

(c) Drawing the graph structure. The relationships of actual dimensions,

variables, and relative dimensions are drawn as graphs with symbols,

such as circle nodes and boxes, which are connected with lines,

dashes, or arrows.

(d) Linking related graph structures. When dimension attributes of

various data entities are related, A dotted line is linked to connect the

related dimension attributes.

The graph structures are converted into logical DVR data models, the further task

1s data transformation and data loading into multidimensional database shown in

appendix A.

Example 1 presents the fact tables and data of warehouse database including

PRODUCT and SALEMAN data entities, this example will be described in the next two

sections (example 2 and example 3) .

Example 1 : In a warehouse database (DB1) are data entities PRODUCT and

SALES�MAN D denotes the candidate dimension, V denotes the candidate variable, and

R denotes the relative dimension.

Each attribute a; of PRODUCT a data entity is a candidate dimension denoted as

D/RODucr. Each attribute a; of PRODUCT data entity is a candidate variable denoted as

v/RODUCT' where i is the attribute of PRODUCT data entity. The information in the

PRODUCT and SALESMAN data entities is illustrated in the following tables (see

Tables 4. 1 , 4.2, 4.3).

72

Table 4. 1 . Data Entity of PRODUCT Information.

Attribute Data Type Indexed Unique
Key

1 . Product Char (8) Primary Yes

2. Category Char (2) - -

3 . Size Char (1 0) - -

4. Salesman Code Char (5) Foreign -

5 . Manufacturer Code Char (5) Foreign -

6. Customer Code Char (5) Foreign -

7. Shipment Code Char (2) Foreign -

8. Order Date DMY - -

9. Order Qty Num (6, 0) - -

I 0. Price Num (1 0, 2) - -

Table 4.2. Data Entity of SALESMAN Information.

Attribute Data Type Indexed Unique
Key

1 . Salesman Code Char (5) Primary Yes

2. Area Char(5) - -

3 . Function Char(8) - -

4. Commission Rate Num(4,2) - -

Table 4.3. Sample Data Elements of Table 4. 1 .

Cate- Manu- Custo- Ship-
Order

Order
Product Size Sales-man Date Price

gory facturer mer ment
MM/YY Qty

AOO I Audio Medium SEOOI 20M54 C32 1 5 B l 1 011 998 4 $ 1 85.00
Au02 Audio Large SEOO I 20M54 C l 20 1 82 1 1 /1998 2 $290.00
A002 Audio Large SE002 20M54 C3 1 50 B2 1 1 /1 998 I $290.00
T029 TV lnch29 NRO l 4 2 1 SO I C2 1 45 D I 1 0/1 998 I $900.00
T02 1 TV lnch2 1 NR0 1 4 2 1 S0 1 C23 1 9 D I 1 1/1 998 3 $550.00
T021 TV Inch2 1 SEOOI 2 1 SO I C l 201 B l 1 1 / 1 998 4 $550.00
TO l 4 TV Inch l 4 NR0 1 4 2 1 SO I C32 1 5 D I 1 2/ 1 998 6 $ 1 99.00
T0 1 4 TV Inch l 4 SE002 2 1 S0 1 C3 150 B2 1 1 /1 998 5 $ 1 99.00
TO l 4 TV Inch l 4 WS023 2 1 SO I C l 32 1 C l 1 0/ 1 998 4 $ 1 99.00
V034 VDO Mono WS021 2 1 SO I C3 1 24 C l 1 1/ 1 998 I $2 1 0.00

4.2 . 1 Defining Candidate Dimension and Variable

The propositional function is an algorithm that describes the selection process

which automatically identifies dimensions and variables in a great mass of data.

A set of candidate dimensions must be verified before they are classified as actual

dimension. The process entails careful comparison of the algorithms' various attributes.

73

A variable is a fact, or measure, usually stored as a numeric field [1 72]. Several

variables are contained within each group of data, and it is important to identify the

most relevant ones, and to screen out the irrelevant variables in order to prevent errors

in data analysis. This is also done automatically.

The term dimension refers to the logical grouping of attributes with a common

atomic key relationship [1 72] . This is a subject-oriented grouping that includes product,

location and time.

(1) Identifying Candidate Dimensions

Each data group has a large number of dimensions. Among these, and

the useful data are called actual dimensions,' identified using two automatic

programs that first finds candidate dimensions, then screens and labels them

as actual dimensions.

(a) Classification. When an attribute in a data entity is verified as part of

an MDD model, the attribute is automatically classified as candidate

dimension.

The propositional function [97] specifies that any attribute x of a

data format is classified as a candidate dimension if the attribute is an

index key field or its data is expressed as a character or a date. Thus,

Ix is the index key format, normally stored as a key field,

Ox is the type of data property which is equivalent to a character

format (denoted as c) or date/time format (denoted as t), and D; is the x

attribute x within the dimension of data entity i , when i > 0.

(b) Reclassification. Second, any candidate dimension is automatically

reclassified as actual dimension using a comparative algorithm. This

74

procedure is described in Section 4.4, which outlines the steps m

building the DVR data model.

(2) Identifying Candidate Variables

After the candidate dimensions are identified, the remaining attributes

are screened for candidate variables. The propositional function of

identifying candidate variables follows.

Any attribute x is defined as a candidate variable if its data type is

numeric, whether in binary, integer, or decimal form:

On is data type in numeric format (denoted by "n"), and

v; is attribute x within the variable of data entity i, where i > O.

The term relative dimension refers to the description of the associated data of a

dimension. It defines the relationships of an ordinary attribute to a grouping relation.

The first step of defining the relative dimension is to convert it into a candidate

dimension. The next step is to repeatedly predicate the characteristic of actual

dimension and relative dimension (Section 3 .2).

Example 2 : Defining candidate dimensions and variables of the data entity PRODUCT.

Table 4.1 shows that the attribute PRODUCT is the primary key field of the data

entity. This is thus identified as candidate dimension.

Other attributes (SALESMAN, MANUFACTURER, CUSTOMER, and

SHIPMENT) are the foreign key fields of the data entity. These attributes are therefore

identified as candidate dimensions corresponding to the PRODUCT attribute.

The attributes of CATEGORY, SIZE, and ORDER DA TE are labeled as candidate

dimensions because they are in character or date formats.

75

The attributes of ORDER QUANTITY and PRICE are classified as candidate

variables because they are in numeric format. The result is:

[) PRODUCT [) PRODUCT [) PRODUCT [) PRODUCT [) PRODUCT
product ' salesman ' manufacturer ' customer ' shipment '

[) PRODUCT [) PRODUCT V PRODUCT V PRODUCT
category ' size . ' orderquantity ' price

4.2.2 Building the Graph Model of the MDD Structure

The previous section discussed the automated process of identifying candidate

dimensions and variables from a mass of high-volume data. This section presents the

process of changing candidate dimensions and variables into actual dimensions and

variables.

The MDD is a finite set of grouping relations. A grouping relation is a

combination of the attributes of dimension, variable, and/or relative dimension. It

contains dimension such as base attributes that carry useful information. The variable

attributes and relative dimension are derived from the base attributes and are related to

associated attributes.

The candidate dimension, which is the primary index of a data entity, is labeled as

main dimension, the starting point of the Graph Model. The starting point of a tree

structure is also the main dimension, which is represented by a center node. From this,

other candidate dimension attributes (sub-dimensions) follow in the form of smaller

circles. For instance, elements of Table 4. 1 are shown in Figure 4. 1 as lines that

delineate relationships between the main dimension PRODUCTS and the sub-

dimension's attributes. There are no relationships between the sub-attributes.

76

D im ensions

Figure 4. 1 . Sample Graph Model Form.

This example shows the advantages of multidimensional over bidimensional data

analysis. The columnar form of Table 4. 1 and the Graph · Model in Figure 4. 1 contain

the same data. However, the multidimensional graph model of Figure 4. 1 shows the

many relationships between elements, which are vaguely presented on the

bidimensional Table 4. 1 .

The greater the number of relationships between data attributes, the more

comprehensive the information wili be in an MDD structure, and this makes decision­

making a more precise process.

(1) Identifying Actual DVRs

After automatically categorizing data entities, thorough comparison

must be made. This repeated predication is important for further

verification of the candidate dimensions and variables, as well as DVRS

(actual dimensions, variables, and relative dimensions).

77

The comparative process follows:

(a) Select one data entity from the warehouse database.

(b) From the data entity, select and label one candidate dimension as primary

index key.

(c) Use this primary index key to start a data map.

(d) Map the primary index key with the other attributes in the data entity.

(e) Use a comparative algorithm to manipulate the characteristic of each

attribute.

(f) Program the algorithm to identify each attribute in each data set as either

actual dimension, variable, or relative dimension. Commercial software

such as Personal Express Tool™ or Metacube™ may be used instead.

(g) Execute the program.

Data is now ready to be analyzed for relationships among the attributes of one

data entity. The Graph Model incorporates the element of relationship between the

primary and other attributes: the small white circles indicate sub-dimensions whiie the

black circles indicate relative dimensions (Section 5 .2).

78

Comparative Algorithm:

At each data mapping:

);;>- Initially, set VL1, VL2 to empty.
);;>- Count data values of first attribute (a1) of data mapping into VL1 .
);;>- Do while data mapping is not empty

);;>-);;>- If second attribute (a2) of data mapping is candidate dimension.
-- Performed SQL process of second attribute

--- Count data values into VL2
);;>-);;>-);;>- If VL1 equal to VL2

---- Set a2 to be relative dimension.
Else ---- Set a2 to be actual dimension.

Else -- Performed SQL process of second attribute
);;>-);;>-);;>- If VL1 equal to VL2

---- Set a2 to be relative dimension.
Else --- Set a2 to be actual variable

);;>-);;>- VL2 is set to empty.
End Do

End Algorithm

Example 3 : A comparative algorithm program for identifying Actual DVRs.

(I) Extract the file PRODUCT data entity from the warehouse database.

(2) From the file 's many attributes, select Dproduct as the primary index key.

(3) Compare Dproduct with the other attributes.

(4) Map the data as follows: {Dproduct u Dsalesman} , {Dproduct u Dmanufacturer} , {Dproduct

U Dcustomer} , {Dproduct U Dshipment} , {Dproduct U Dcategory} , {Dproduct U Dsize} ,

{ Dproduct U Varderquantity} , { Dproduct U Vprice}

(5) Execute the comparative algorithm.

This program executes a routine that counts the item number of Dproduct attribute

by aggregate function (e.g. sum, avg, min, count) into variable VL1 . The routine is

executed until the data mapping set is empty. At the first data mapping set, the

comparative algorithm represents the difference between Dproduct and Dsalesman as

candidate dimension. The Dsalesman attribute is counted by aggregate function of the SQL

process and recorded into variable VL2•

79

(1) Identify actual and relative elements.

The program executes a routine that compares the variables VL 1 and

VL2. If the results show absolute dissimilarity, then the Dsalesman attribute is

labeled as actual dimension. If the results show similarity, then, the attribute

is labeled as relative dimension. The program executes the routine to

process the candidate dimensions of MANUFACTURER, CUSTOMER, and

SHIPMENT with the PRODUCT attribute and then label them as actual

dimensions.

If the Step 6 routine shows a similarity of relationships, the candidate

dimensions are labeled as relative dimension. If dissimilar, they are labeled

as actual dimension. When the candidate variables of PRICE are found to be

similar to PRODUCT, PRICE is then labeled as a relative dimension. The

candidate variable of ORDER QUANTITY is automatically labeled as actual

variable.

(2) Defining Main and Sub-dimensions

Figure 4. 1 shows the relationship between main and sub dimensions,

both labeled as actual dimension. An actual dimension or a primary index

key is labeled as main dimension. The other actual dimensions are labeled

as sub-dimensions.

For instance, a Dproduct attribute is a primary index key of the data

entity labeled as PRODUCT. The process labels PRODUCT attribute as

main dimension, the finest aggregation of the tree structure and represented

by a large circle. On the other hand, SALESMAN, MANUFACTURER,

CUSTOMER, SHIPMENT, and ORDER DA TE attributes are labeled as sub-

80

dimension represented by tiny circles that are attached to the major circle.

At this step, the routine may be programmed as follows:

DEFINE product DIMENSION TEXT WIDTH 8
DEFINE salesman DIMENSION TEXT WIDTH 5
DEFINE manufacturer DIMENSION TEXT WIDTH 5
DEFINE customer DIMENSION TEXT WIDTH 5
DEFINE shipment DIMENSION TEXT WIDTH 2
DEFINE order date DIMENSION TEXT WIDTH 1 0

This is an example of creating dimension attributes in multidimensional database

via Personal Express Tools™. Small, black circles connected solely to the major circle

represent relative dimension attributes. SIZE, PRICE, and CATEGORY attributes are

linked directly to the primary key, PRODUCT. The .program may be compiled as

follows:

DEFINE size VARIABLE TEXT <product>
DEFINE price VARIABLE DECIMAL <product>
DEFINE category VARIABLE TEXT <product>

(3) Drawing the Graph Model

MDD models are drawn as graphs with symbols, such as circle nodes

and boxes, which are connected with lines, dashes, or arrows. A large circle

shows the main dimension as a center node in the Graph Model. Sub-

dimensions are shown as branch nodes represented as small circles. Relative

dimensions are solid black and connected solely to the center node; actual

dimensions are white and may be connected to either the center node or to

branch-nodes.

Actual variables are boxes labeled with attribute names in numeric

format and linked solely with the center node. Measurements, in boxes

linked to the actual variables, are separated from the actual variable box

8 1

since they are formulas, and not physical data values, which may be stored

in actual variable boxes. An example follows in Figure 4.2.

Size Dimensions

Customer

Shipment

Order Date Order Qty

Amount

Figure 4.2. Graph Model of PRODUCT Data Entity.

As a result of the multiplication of the attributes ORDER QUANTITY and PRICE,

assume that the measurement of the attribute AMOUNT is included in this graph. The

graph shows a box with the attribute name linked by a related actual variable. This is an

example of a graph model utilizing only bidimensional (2D) relationships. Here, the

SALESMAN branch node and the PRODUCT center node represent only a row-and­

column relationship associated with a tabulated form of quantity and price value.

However, a graph model can be made to show an MDD view simply by

connecting lines into the desired nodes. The following model shows a 2D graph adapted

into a 3 D graph.

82

Manufacturer

O ··
··· ····· ..

Customer

O····· ·
Shipment · ·· ·

O ······
····

·
···· · ..

······
···

... ·····················
... ··

Q······
·

· ·· ·· Manufacturer

Order Date
Customer

Shipment

Size

Product

Order Date

Fig. 4 .3a. Analyzing data in 3D in the SALESMAN dimension.

Size

Saleman
Q Saleman

Product

Order Date C ustomer
Order Date

Fig. 4.3b. Analyzing data in 3D in the MANUFACTURER dimension.

Manufacturer

O····· · ········
Customer · ····· · .. . O·····
Shipment ..

O················ · ······
···

·· ...
.. ········· ··

···········
O··· · · ·· ·

Order Date

Size

Fig. 4.3c. A 3-D Graph Model.

83

Order Qty

Amount

Figure 4.2 uses a 2D graph model, similar to a table. The result of ORDER QTY

is summarized by {Dproduct u Dsalesman} , {Dproduct u Dmanufacturer} , {Dproduct u Dcustomer} ,

{Dproduct u Dshipment} , and {Dproduct u Dorderdate } (see Figure 4.3a).

Figures 4.3a and 4.3b show similar results by simply shifting the focus of analysis

from SALESMAN to MANUFACTURER. The multidimensionality of the data analysis is

in the flexibility of shifting focus of analysis as desired.

Figure 4.3c shows the summary of ORDER QUANTITY as processed by {Dproduct

U Dsalesman U Dmamifacturer}, {Dproduct U Dsalesman U Dcustomer}, {Dproduct U Dsalesman U

DshipmeniJ, and {Dproduct u Dsatesman u DarderdateJ. The results of processing AMOUNT and

the ORDER QUANTITY are the same.

{DPRoou-rU D,.11.£1L1.vU D1L 1s1;F. 1L-rc·RR => VoRDERouvm· l
{DPRooccrU D,11.£1£.1.vU Dasro.\/E11=> VoRDERQc;.,-,,.r l
{DPRoot·cru D,,LE.w.vU D�mP.1IF.w=> VoRDERQn.,m· l
{DPRooccrU D"L£wvU Do110F11_0.m: => VoRoF.11Qc1.rnT}

PRODUCT
me

u
A S

T
B 0
c 3 M

a II c E
R

SALESMAN

PRODUCT

A
B
c

SALESMAN

Figure 4.4. A Hypercube Data Structure.

Figure 4.4 shows Figure 4.3c in hypercube. The data structure · of variable

ORDERQUANTITY is generated into four hypercubes via this algorithm:

{ Dproduct U Dsalesman U Dmamifacturer} ,
{ Dproduct U Dsalesman U Dcustomer} ,

{Dproduct u Dsatesman u Dshipmen1} , and
{ Dproduct U Dsalesman U Dorderdate} ·

84

Variable Process: To transform a graph model into an MDD model using Personal

Express Tool™, the variable routine is:

DEFINE orderqty_Ol VARIABLE <product salesman manufacturer>
LD Orderqty of product-salesman-manufacturer dimension
DEFINE orderqty_02 VARIABLE <product salesman customer>
LD Orderqty of product-salesman-customer dimension
DEFINE orderqty_03 VARIABLE <product salesman shipment>
LD Orderqty of product-salesman-shipment dimension
DEFINE orderqty_04 VARIABLE <product salesman orderdate>
LD Orderqty of product-salesman-orderdate dimension

Measurement Process: To transform a graph model into an MDD model using

Personal Express Tool™, the measurement routine is:

DEFINE amount_Ol FORMULA orderqty_Ol *Price
LD amount of product-salesman-manufacturer dimension
DEFINE amount_02 FORMULA orderqty_02*Price
LD amount of product-salesman-customer dimension
DEFINE amount_ 03 FORMULA orderqty _ 03*Price
LD amount of product-salesman-shipment dimension
DEFINE amount_ 04 FORMULA orderqty _ 04 *Price
LD amount of product-salesman-orderdate dimension

Creating an MOD structure based on the graph model as shown in Figure 4.3, the

researcher finds that a 3D graph model is insufficient to completely analyze the data. In

such a case, the model may be reorganized into as many dimensions as desired.

4.2.3 Linking Related Graph Models

Related dimension attributes of various data may use dotted lines to connect

related dimension attributes. An example follows.

85

St. Gabriel Library,Au

Size
Price

Customer

Commission

Product
···--......._

-·�
Shipment

Manufacturer ·°"' ..
.�--,,..i:�;=;;,""".:;;:; Order Oa\e

Figure 4.5. Linking Related Graph Structures.

'
'\

Order Qty

Amount

There are three graph structures in Figure 4.5: PRODUCT. SALES/llJAN, and

DATE. lo Table 4.2 the graph with the base attribute SALESMAN is associated with the

same attribute in the PRODUCT graph. The connection of the two graph models result

in broader dimensional analysis.

For example, management may want lo know how much commission crune out of

the purchases of customer X. The analysis is completed when two graph models are

combined: {Dprottucr u D,.,.,,,,,,,,v Dcusrom.,v Dorr1<ird01e = Vcommi.uion }.

(I) Additional Aids

Other multidimensional views (e.g. roll-ups, drill-downs) arc useful in

presenting levels of hierarchical data, as they create attributes for each level

on the hierarchy. For instance, an ORDER DATE attribute may be defined

into levels of WEEK, MONTH. QUARTER. and YEAR. The attribute AREA

may be divided i.nt0 geographical levels as CONTINENT, COUNTRY.

86

REGION, CITY. Users are able to concurrently roll-up or drill down through

multiple dimensioas.

The MOD data structure can incorporate these additional procedures

and existing databases can be processed using these add-ons. The MDD

model can be reprogrammed to automatically process these new

dimensions. This not only widens the range of analysis, it also allows local

programmers to utilize routines developed elsewhere lo enrich their

processing functions.

For example, the year 1998 of ORDER DATE attribute is connected to

year 1998 in DATE data entity. The QUARTER sublevc.1 of year 1998 is

divided into Q/98. Q298. Q398, and Q498. The MONTH sublevel of QJ98

is divided into JAN98, FEB98, and MAR98, all embedded as aggregation of

detailed levels and summed up to tl1e highest level as follows (see Figure

4.6):

Order dou· D11n t-n sie>11 A!lr;/>ule Dot� Dula Er:lity

nrdcr O�tc Yco..IOrdcr Dar e. Year Ouar1er Month
1(){1998 1998 1 998 0198 Jan98
IU l998 1 998 1998 0198 Fcb98

1211998 1998 : :
1 998 0498 Oc198
1998 0498 Nov98
1998 0498 Dec98

Par� nL ordudot�

Order Date PlltCilt
1998 NIA

0498 1998
Oct 98 ""98
Nov 98 ""'98
Dcc98 0498

Figure 4.6. Combining Order Date and Dace Data Entity.

87

The routine may be programmed thus:

DEFINE parenr.orderdate RELATION orderdate <orderdate>
CALL execution J
ROLL UP orderqty 04 OVER orderdate USING parent.orderdate
ROLLUP amount_04 OVER orderdate USING parent.orderdate

The system will automatically aggregate values of actual data to the

higher level. as follows (see Table 4.4):

Table 4.4. The Example of Order Date.

Shipment 1998 9498 �198 Nov98 Doc98

B1 !:2940.00 52940.0£1 $740.00 !:2200.00 0.00
B2 51865.00 $1865.00 0.00 $1865.00 0.00
C1 't1006.00 !:1006.00 !:796.00 '-210.00 0.00
01 $3744.00 $3744.00 $900.00 $1650.00 $1194.00

Example 4: ln Example I of chapter 3, there are two data entities: SALES and COST

(see Table 4.5, 4.6). To identify the characteristics of data structure, the canrudate

dimension and variable phases are first identified.

Table 4.5. SALE Data EntiLy.

Attribute Name
Oat a

Length
Type

SCOOE (Saleman code) [Index key] CIJAR 5
SNAME (Saleman Name) CHAR 30
ACODE (Area code) [Foreign keyl CHAR 3
SALEV AL (Sale value) NUM 10.2
COMM {Commission) NUM 1 0.2

Table 4.6. COST Data Entity.

Attribute Name
Data

Length
Type

CCODE (Customer code) [Index key] CHAR 6
PCOOE {Product Code) (Index key] CHAR 5
PNAME (Product Name) CHAR 30
SCOOE (Saleman code) [Foreign key.I CHA R s
SALEV AL (Sale value) NUM 1 0.2
COSTV AL (Cost value) NUM I 0.2

lo tbe SALE data entity, SCODE, SNA1\tfE, and ACODE attributes are labeled as

candidate dimensions while SALEVAL and COMM attributes are labeled as candidate

variables. In the COST data entity, CCODE, PCODE. /'NAME. and SCODE attributes

88

are labeled as candidate dimensions while SALEVAL and COSTVAL attributes are

labeled as candidate variables. SCODE is structured as an index key field of SALE data

entity and labeled as a candidate dimension. In the SNAME attribute, the data type is in

character format, so it is labeled as a candidate dimension. ACODE, CCODE, PCODE,

and PNAME attributes of both data entities are processed the same way as SC ODE and

SNAME. All are labeled as candidate dimensions. Meanwhile, SALEVAL, COSTVAL,

and COMM attributes become candidate variables because of the numeric data. The

results are generated as tables below, where D means candidate dimension and V means

candidate variable.

Table 4.7. SALE Data Entity and DVR Indicator. ·

Attribute Name
Data

Length DVR
Type

SCODE (Saleman code) [Index key] CHAR 5 D
SNAME (Saleman Name) CHAR 30 D
ACODE (Area code) [Foreign key] CHAR 3 D
SALEVAL (Sale value) NUM 1 0.2 v
COMM (Commission) NUM 1 0.2 v

Table 4.8. COST Data Entity and DVR Indicator.

Attribute Name
Data

Length DVR
Type

CCODE (Customer code) [Index key] CHAR 6 D
PCODE (Product Code) [Index key] CHAR 5 D
PNAME (Product Name) CHAR 30 D
SCODE (Saleman code) [Foreign key] CHAR 5 D
SAL EV AL (Sale value) NUM 1 0.2 v
COSTVAL (Cost value) NUM 1 0.2 v

The above tables (Table 4.7, 4.8) show the resulting DVR indicators of each

attribute, all translated in data model structures using the following algorithm:

DSALE DSALE DSALE V SALE V SALE
SCODE ' SNAME ' ACODE ' SALEVAL ' COMM

DCOST DCOST DCOST DCOST V COST V COST
CCODE ' PCODE ' PNAME ' SCODE ' SALEVAL ' COSTVAL

89

Identifying DVR: The steps to identifying the actual dimension, variable, and

relative dimension using the comparative process follow.

Choose one data entity from the warehouse database. Process SALE data entity,

followed by COST data entity.

From the data entity, choose one candidate dimension as primary index key. At

SALE data entity, SCODE attribute is selected because its data structure is a primary

indexed key field of SALE data entity. At COST data entity, both CCODE and PCODE

attributes are selected for the same reason.

Use this primary index key field to start a data map. Map the data in two data

entities: SALE data entity and COST data entity.

Map the primary index key with the other attributes in the data entity. SCODE

attribute is assigned as base and mapped with other attributes within SALE data entity.

The following algorithm processes items in SALE data entity:

{D SCODE u D SNAME ' D SCODE u DA CODE '}
DMSALE =

DSCODE u vS. lLEV.4L ' DscODE u VCO!vlH

The following algorithm processes items in COST data entity:

{D CCODE u D PCODE ' DCC ODE u D PNAME 'D CCODE u D SCODE , }
DMcosr = DCCODE u VSALEVAL , DCCODE u VCOSTVAL 'DPCODE u DPNAME '

D PCODE u D SCODE ' D PCODE u VSALEVAL 'D PCODE u VCOSTVAL

Where DM.--c is Data Mapping of x data entity.

(1) Use a comparative algorithm to manipulate the characteristics of attributes.

This step reveals that the number of unique items in dimension

SCODE are equal to the number of unique items in dimension SNAME

within the SALE data entity. This proves that dimension SNAME is related

to dimension SCODE. Therefore, dimension SNAME is labeled as a relative

dimension SNAME.

90

Mapping PCODE and PNAME shows a number of similarities, so

PCODE is assigned as relative dimension to PNAME. This is a process that

identifies the real DVRs in a database.

(2) The following program is executed to create both graphic and DVR data

structures. The actual and relative dimensions are first defined into a

multidimensional database, where relationships are modified if necessary,

and then variables are generated.

DEFINE scode DIMENSION TEXT WIDTH 5
LD Salesman code
DEFINE acode DIMENSION TEXT WIDTH 3
LD Area code
DEFINE ccode DIMENSION TEXT WIDTH·6 ·

LD Customer code
DEFINE pcode DIMENSION TEXT WIDTH 5
LD Product code
DEFINE sname VARIABLE TEXT <scode>
LD Salesman Name
DEFINE pname VARIABLE TEXT <pcode>
LD Product Name

The following graph presentation shown in Figure 4.7 introduces a DVR data

model of SALE and COST data entities.

PNAME

l

s��-······ · · · ····· · · · .5.°�� .
...

.

.........

....
l.

.
.

.
���OE

A CODE SCODE •
•

•
•. o····......................... ·········.. PCODE ·••

•
·

•
•
• ' \ ·· ... \

SALEVAL

SA LEVAL
COMM

COSTVAL

Figure 4.7. SALE and COST Data Entities in Graph Form.

This routine checks the descriptions in metadata (or data directory) and links

SCODE in SALE and SCODE in COST. This process searches data connections in one

data entity to others. The data structure is generated as a graph, using this algorithm:
9 1

{DscoDE u DAcODE => VsALEVAL, VcoMM}
{ DscoDE � RsNAMd
{DccoDE u DpcoDE u DscoDE => VsALEVAL, VcosrvAL}
{DpcoDE � RPNAMd
{ DccoDE u DpcoDE u DscoDE u DAcODE => VsALEVAL , VcosrvAL , VcoMM }

The following items are Oracle Personal Express commands to create variables of

a data structure { DccoDE u DpcoDE u DscoDE u DAcoDE => VsALEVAL , VcosrvAL

, VcoMM } :

DEFINE SALEVAL VARIABLE <CCODE PCODE SCODE ACODE>
LD Sale Values Information

DEFINE COMM VARIABLE <CC ODE PC ODE SC ODE ACODE>
LD Commission Values Information

DEFINE COSTVAL VARIABLE <CCODE PCODE SCODE ACODE>
LD Cost Values Information

An example of an algorithm for loading relational format data from a warehouse

into a multidimensional database is as follows:

SQL Process: Select A. CCODE, A.PCODE, A.SCODE, B.ACODE, sum
(A.SALEVAL), sum(B. COMM), sum(A. COSTVAL)

4.3 Conclusion

From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A. CCODE, A.PC ODE, A,SCODE, B.ACODE
Order by A. CCODE, A.PCODE, A,SCODE, B.ACODE

This chapter presents a graph model that shows a routine for processmg

voluminous data from various sources into graph of related dimensions and associated

data values. The routine is also expressed by fact schemes that integrate relative

information and external sources, as well as extends the algorithm to build DVR

patterns in standard SQL form. This schema is based on the basic Multidimensional

Data Model elements. This model uses three symbols: a center node represents the

fastest variable dimension, the branch nodes represent associate dimension attributes,

and rectangles represent data value indexing and measurements.

92

V. APPLICATION TO ENGINE COST SYSTEM

5.1 Introduction

A critical aspect of the airline business is its technical department, where aircraft

maintenance, a major concern, is conducted in four sections: light aircraft, heavy

aircraft, engine, and component maintenance. To manage engine cost, top-management

planning is required for areas such as engine module per aircraft, man-hours, usage of

engine cycle per flight periods, and long-term investment plans. All are done using

current Management Information System (MIS). However, the increasing complexity of

organizational structure result in more complex data. interrelationships that renders

inadequate existing data processing routines. This research presents a program that not

only creates more dimensional data storage structures, but also wider and more fluid

capabilities for data analysis.

Admittedly, an airline company needs to upgrade its data structure and analytical

procedures, but it cannot afford to suspend operations or support changes to the

detriment of its business operations. The typical project duration is one year, which

includes preliminary study, data collection, data analysis, design, programming and

implementation. Due to document analyses and data descriptions, the data collection

phase takes the longest time. To conserve time and to reduce duplication, design and

programming work are distributed into sub-workgroups.

The bulk of the activity is centered on reprogramming the data access layer and

begins with the organization of data structures using DVR data models. In this layer, the

DVR data model is automatically generated by the procedure, which uses algorithms to

map and aggregate data (Chapter 3). The DVR data models are then converted into

physical data structures. Finally, the warehouse data volumes are loaded into the

physical data structure of the multidimensional database.

93

Chapter Five concludes the discussion on automatic generation of

multidimensional database structures by applying the program to analyze the database

of a technical department in an airline company. More specifically, engine cost is used

as a pilot subject to test the DVR data model as well as the design process. This chapter

explains the technical department's data sources, how data are delivered into its

operational data warehouse, how the database is cleansed, the nomenclature of

attributes, and other tasks essential to the procedure.

5.2 Data Sources

An airline's engine maintenance department's database includes engme cost,

engme cycles per flight hours, manpower, as well as
.
special services for engine

maintenance. This research focuses on the database relevant to engme costing m

particular. The fact attributes of engine cost comes from various departments within the

airline company (e.g. Materials, Production, Accounting) as well as from external

sources (e.g. IATA, SITA, Boeing, and Airbus databases). The automatic data feeding

process uses the IBM Mainframe platform.

However, not all the incoming data are useful to the engine maintenance

department. To screen data, a routine is programmed to allow an airline executive (i .e.,

the vice-president for technical affairs) to specify required attributes of a criterion. After

the data is screened, the data entities are integrated using the joint function (oo) . A

software program (tapestry product) then clears the data for inconsistencies. The

cleared data is stored into the current data level of the department's database.

The E/R scheme shown in Figure 5 . 1 shows how engine cost data, particularly

engine structures and maintenance, is gathered, screened, and stored.

94

SUPNAME PTNO SUPCD REPQTY

(n, 1)

SUPCD WIPNO RONO REPVAL y
(1 ,n)

I

(n. 1)

/issue

(1 ,n)
DESC PRICE SPC

i

� NGSTR

(1 ,n) '

(1 , 1)

Request

FUNCTION

CPLDTE (n, 1)
f-------< Has

FUNCTION

(1 , 1)

QTY DMD DTE

PTNO

Figure 5. 1 . The Engine Cost E/R Scheme.

5.3 Definitions of Data Codes

PTNO

The first step in preparing operational data stores is classifying the valuable

attributes of each data entity. The definitions of the data entities follow:

(1) ENGCUR is the data entity that records the current detailed engme

maintenance process in a year. The key attributes of engine cost include:

(a) Engine structures code (ENGSTR), which shows the engine serial

number that is being reassembled in the maintenance process, the

cause of damage, or the end of the cycle hour.

(b) Work-in-Process Number (WIPNO), the job card issued for any

maintenance work.

(c) Part Number (PTNO), which records the components of the engine

module.

95

(d) Shop order type (SOTYP), which shows the status code of each part.

For instance, code INK means the part has been scrapped, while VEN

means the part has been sent for repair outside the company.

(e) Shop order quantity (ISOQTY), which is the quantity of the

reassembled part.

(f) Complete Date (CPLDTE), which is the date of issuing WIPNO.

(g) Function code (FUNCTION), which records the division or

department responsible for activating an engine module.

(h) Actual man-hour (ACMAN), which records the lead-time (in hour)

activation of the engine module.

(2) REPAIR is the data entity that records data on repairs. It includes;

(a) the part number (PTNO),

(b) the supplier or subcontractor code (SUPCD),

(c) the repair quantity (REPQTY),

(d) the repair values (REPV AL),

(e) the completed date (CPDDTE),

(f) the repair order number (RONO), and

(g) the work-in-progress number (WIPNO).

(3) SUPPLIER is the data entity that stores the supplier code (SUPCD) and

supplier name (SUPNAME), which are also present in the warehouse

database as a parameter table.

(4) PART is the data entity that stores data on engine spare parts. This includes:

(a) the part number (PTNO),

(b) the description (DESC), and

(c) the price, and

96

(d) spare part classifications (SPC): SPC l indicates a consumable part,

SPC2 indicates a repairable part, SPC3 indicates a rotable part, SPC5

indicates a Mod Kit, SPC7 indicates a recoverable part, and SPC9

indicates a raw material.

(5) DEMAND is the data entity that stores material requisitions from shop

mechanics. This includes:

(a) the part number (PTNO),

(b) the demand date (DMDDTE), and

(c) the demand quantity (QTY).

(6) MHRA TE is the data entity that stores the man-hour rate per function. This

is used to calculate the man-hour cost per shop visit.

Two main components of data on engine costing are parts and suppliers. Data on

engine parts suppliers is indicated by the entity SUPPLIER, while data on engine spare

parts is indicated by the entity PART. Other components of engine costing are targets,

user requirements, proposals, costs, man-hours, and subcontractors, al l of ¥.rhich are

recorded as historical data, which also includes the entities ENGCUR, DEMAND,

MHRA TE, and REP AIR. Figure 5 . 1 shows in E/R form the data entities and their

relationship to each other.

The next step involves data cleansing and transforming it into the warehouse

database (Figure 5 .2). This is done in four distinct subroutines:

(1) Use details of the ENGCUR entity as base data

(2) Merge related data entities to derive repair-cost and material cost

(3) Store the resulting data into the new entity ENGCOST

(4) Use SQL functions to manipulate associated data to summarize and store

into EN GCOST

97

SUPNAME

I SUPiUER I
SUPCD

!

l WIPNO

"------.. ENGSTR

SPC

PT�:
PLD" TTI FUNCTI N

WI PNO j ENGSTR
ACMANHR

l

MANHRCOST SUPCD

SOTYP MHCOST PTNO SUPCD REPQTY

~ � CPDD"

J
FUNCTION WIPNO RONO REPVAL __ _/

PTNO

V
Figure 5 .2 . Data Cleansing and Transformation.

Data entity ENGCUR is selected as base data because it contains most of the data

related to the other data entities (i.e., engine cost information, used parts number, time

consumed). All attributes are recorded into the new data entity ENGCOST.

Data resulting from aggregation are also recorded into entity ENGCOST. For

example, MANHRCOST comes from calculating ISOQTY multiplied by MHCOST.

The program for generating MANHRCOST follows:

SELECT A.ENGSTR, A. WIPNO, SUM(A. ISOQTY * B.MHCOST)
FROM ENGCUR A MHRA TE B
ORDER BY A.ENGSTR, A. WIPNO
GROUP BY A. ENGSTR, A. WJPNO

98

The resulting data is stored in the warehouse database, and added to the entities

PART and SUPPLIER as parameter table, where it is accessible for future reference.

5.4 A DVR Data Model Example

Building a DVR data model from a warehouse includes classification,

partitioning, and clustering reorganize data from relational format into metric or cubic

patterns. However, users should first modify or validate the data model before

generating the physical structure of multidimensional database. The Visual Basic

program is written to solve the methodology of building DVR data model as prototype,

the engine cost data are transformed into Microsoft Access'97 database format. This

prototype demonstrates any process of building DVR data model at presentation.

The data entities of ENGCOST database include ENGCOST and SUPPLIER

(Figure 5 . 1) . The structure of data entities and their characteristics follows in Table 5 . 1

and Table 5.2:

Table 5. 1 . ENGCOST Data Entity.

·-

Attribute Name
Data

Length
Type

ACTDTE (Action Date) [Index key] CHAR 7
ENGSTR (Engine Structure Serial Number) CHAR 8

[Index key]
PTNO (Part Number) [Index key] CHAR 7
SUPCD (Subcontractor Code) CHAR 5
WIPNO (Work In Process Number) [Index key] CHAR 4
MANHRCOST (Man-hour Cost) NUM 12 .2
MA TCOST (Material Cost) NUM 1 2.2
REPCOST (Repaired Cost) NUM 1 2.2

Table 5 .2 . SUPPLIER Data Entity.

Attribute Name
Data

Length
Type

SUPCD (Subcontractor Code) [Indexed key] CHAR 5
SPNAME (Subcontractor Name) CHAR 30

99

5.4. 1 Example of DVR data model generation

The steps of generating DVR data model from engme cost database into

multidimensional form shown in Figure 3 .2 are composed of classification, partitioning,

and clustering module. This example reviews any processes and steps of activities to

build DVR data model, and finally solves the statement of the problems of this research.

(1) Data Classification

The classification module indicates the candidate dimensions or candidate

variables from the attributes of warehouse databases using data type or

characteristics of any attributes.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

engcost data entity
1. ENGSTR Char[S] [PK]
2. PTNO Char[7) [PK)
3. WIPNO Char[4) [PK]
4. SUPCD Char[5) [PK)
5. REPCOST Num[8)
6. MATCOST Num[S)
7. MANHRCOST Num[8J

' 8. ACTDTE Char[?] [PK)

engcost data entity
1 . ENGSTR (DJ
2. PTNO (DJ
3. WIPNO (DJ
4. SUPCD (DJ
5. REPCOST (VJ
6. MATCOST (VJ
7. MANHRCOST (VJ
8. ACTDTE (DJ

supplier data entity
l SUPCD (DJ
2. SUPNAME (DJ
•• PROCESS COMPLETED. ••

Figure 5 .3 . Example of Classification Process in Program prototype.

Figure 5.3 shows input and output screen of classification process using

Visual Basic Program as prototype to indicate candidate dimension and variable.

When the fundamental characteristics of attribute ENGSTR, PTNO, WIPNO,

SUPCD, and ACTDTE in ENGCOST data entity are presented in the index-key

fields, these characteristics are defined as candidate dimensions (show indicator

'D' in Figure 5 .3). The characteristic of attribute SUPCD of SUPPLIER data

entity also presented as index-key field will be defined as candidate dimension.

1 00

The data type of attribute SNAME in SUPPLIER data entity is presented as

Character format will be defined as candidate dimension. On the other hand, the

data types of attributes REPCOST, MATCOST, and MANHRCOST of

ENGCOST data entity are numeric, they are defined as candidate variables (show

indicator 'V' in Figure 5 .3).

(2) Data Partition

The partitioning module provide the two steps: data mapping and Internal

Comparison Process (ICP) to assign the actual dimension, variable, and relative

dimension (DVR) and transform data set into DVR data model.

In the mapping process, the candidate dimensions of ENGSTR, PTNO,

WIPNO, SUPCD, and ACTDTE are defined as base attributes and map with other

attributes of ENGCOST data entity. The mapping data sets, yield from data

mapping, are then manipulated using ICP algorithms in the next process.

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

engcost data entity
1. ACTDTE (DJ
2. ENGSTR (D) i 3. PTNO · (D)

1. 4. SUPCD (DJ
I. 5. WIPNO (DJ I
i 6. MANHRCOST (VJ
I 7. MATCOST (VJ

8. REPCOST (VJ
xxxxxxxxxxxxxxxxxxxxxxxxxxxx

..

engcost data entity
1. ACTDTE + ENGSTR
2. ACTDTE + PTNO
3. ACTDTE + SUPCD
4. ACTDTE + WIPNO
5. ACTDTE + MANHRCOST
6. ACTDTE + MAT COST
7. ACTDTE + REPCOST
8. ENGSTR + PTNO
9. ENGSTR + SUPCD
10. ENGSTR + WIPNO
11. ENGSTR + MANHRCOST
12. ENGSTR + MATCOST

Figure 5 .4 . Example of Partition Process in Program prototype.

Figure 5.4 shows the mapping data sets of ENGCOST data entity. The

candidate dimension ACTDTE is assigned to be base and mapped with other

attributes, the mapping data sets are shown as follows:

ACTDTE + ENGSTR. ACTDTE + PTNO, ACTDTE + SUPCD, ACTDTE + WIPNO,
ACTDTE + MANHRCOST, ACTDTE + MATCOST, ACTDTE + REPCOST,

1 0 1

ACTDTE + ACTDTE, ACTDTE + ENGSTR + PTNO, ACTDTE + ENGSTR + SUPCD,
ACTDTE + ENGSTR + WIPNO, ACTDTE + ENGSTR + MANHRCOST,
ACTDTE + ENGSTR + MATCOST, ACTDTE + ENGSTR + REPCOST,
ACTDTE + ENGSTR + PTNO + SUPCD, ACTDTE + ENGSTR + PTNO + WIPNO,
ACTDTE + ENGSTR + PTNO + MANHRCOST, ACTDTE + ENGSTR + PTNO + MATCOST,
ACTDTE + ENGSTR + PTNO + REPCOST, ACTDTE + ENGSTR + SUPCD + WIPNO,
ACTDTE + ENGSTR + SUPCD + MANHRCOST, ACTDTE + ENGSTR + SUPCD + MATCOST,
ACTDTE + ENGSTR + SUPCD + REPCOST, ACTDTE + ENGSTR + WIPNO + MANHRCOST,
ACTDTE + ENGSTR + WIPNO + MATCOST, ACTDTE + ENGSTR + WIPNO + REPCOST,
ACTDTE + ENGSTR + MANHRCOST + MATCOST, ACTDTE + ENGSTR + MANHRCOST +
REPCOST, ACTDTE + ENGSTR + MATCOST + REPCOST, ACTDTE + ENGSTR + PTNO + SUPCD
+ WIPNO, ACTDTE + ENGSTR + PTNO + SUPCD + MANHRCOST, ACTDTE + ENGSTR + PTNO +
SUPCD + MA TCOST, ACTDTE + ENGSTR + PTNO + SUPCD + REPCOST, ACTDTE + ENGSTR +
PTNO + SUPCD + WIPNO + MANHRCOST, ACTDTE + ENGSTR + PTNO + SUPCD + WIPNO +
MA TCOST, ACTDTE + ENGSTR + PTNO + SUPCD + WIPNO + REPCOST, ACTDTE + ENGSTR +
PTNO + SUPCD + MANHRCOST + MA TCOST, ACTDTE + ENGSTR + PTNO + SUPCD +

MANHRCOST + REPCOST, ACTDTE + ENGSTR + PTNO + SUPCD + MANHRCOST + MATCOST
+ REPCOST

The other candidate dimensions are also assigned to be bases and mapped

with attributes of data entity. There are 1 70 mapping data sets resulted from

engine cost database example.

The mapping data sets are prepared for access in ICP to validate the actual

dimension, variable, and relative dimension. Process 1 of ICP selects only one of

the mapping data sets that are similar, and deletes the rest. For example, mapping

data set of ACTDTE + ENGSTR and ENGSTR + ACTDTE, process 1 will select

only one mapping data set (ACTDTE + ENGSTR) and delete the mapping data

set (ENGSTR + ACTDTE).

Process 2 deletes the mapping data sets that candidate variables are assigned

to be base attributes, e.g. MANHRCOST + ACTDTE, MA TCOST + ACTDTE, or

REPCOST + ACTDTE, etc.

Process 3 and Process 4 indicate the relation attributes of mapping data sets.

The mapping data sets (ACTDTE + ENGSTR, ACTDTE + PTNO, ACTDTE +

SUPCD, ACTDTE + WIPNO, ACTDTE + MANHRCOST, ACTDTE +

MATCOST, ACTDTE + REPCOST) of ENGCOST data entity undergo Process3 ,

the comparison of attributes use the SQL query process to count the value items

and inspect the relation. The solution of candidate dimensions shows the different

1 02

count value items and all of them are index-key fields, so the process

automatically represents them as actual dimensions (D1.ACTDTE, D2.ENGSTR,

D3.PTNO, D4.SUPCD, D5. WIPNO). While the solution of candidate variables

show the different count value items that may be related to each candidate

dimensions, the process also represents them as actual variables

(Vi.MANHRCOST, Vi.MATCOST, V;.REPCOST). On the other hand, the mapping

data sets (SUPCD + SUPNAME) of SUPPLIER data entity undergo process 3 , the

count value items of SUPCD and SUPNAME are similar. The data type of

SUPCD is index-key field, then attribute SUPCD is assigned to be actual

dimension, and attribute SUPNAME is assigned to be relative dimension. Process

4 presents the relationship of this mapping data set as D4.SUPCD �

R1.SUPNAME.

The mapping data set (SUPNAME + SUPCD) is erased in Process 5

because the attribute SUPNAME is assigned to be relative dimension. Process 6

replaces the joint function symbol of mapping data sets to be associated function

symbol . Process 7 deletes the duplication of mapping data set, e.g. data sets

(D1.ACTDTE� Vi.MANHRCOST, Vi.MATCOST, V;.REPCOST; D1.ACTDTE�

Vi.MANHRCOST,· D1.ACTDTE� Vi.MATCOST; D1.ACTDTE� V3.REPCOST),

the mapping data sets (D1.ACTDTE� Vi.MANHRCOST; D1.ACTDTE�

Vi.MATCOST,· D1.ACTDTE� V3.REPCOST) are deleted.

Process 8 replaces the mapping data sets into DVR data models, the

outcome of this process results in the 32 mapping data sets. The DVR data models

are shown as follows:

- D1.ACTDTE � Vi.MANHRCOST, V2.MATCOST, V,.REPCOST
- D2.ENGSTR � Vi.MANHRCOST, V2.MATCOST, V3.REPCOST
- D3.PTNO � Vi.MANHRCOST, V2.MATCOST, V3.REPCOST
- D,.SUPCD � v,.MANHRCOST, V2.MATCOST, v,.REPCOST
- D5. WIPNO � Vi.MANHRCOST, V2.MATCOS7; V3.REPCOST

1 03

St. Gabriel Library , Au

- D1.ACTDTE + D1.ENGSTR => Vi.MANHRCOST, Vz.MA TCOST, V1.REPCOST
- D1.ACTDTE + D3.PTNO => Vi.MANHRCOST, V1.MATCOST, Vi.REPCOST
- D1.ACTDTE + D,.SUPCD => Vi.MANHRCOST, Vz./vfATCOST, V1.REPCOST
- D1.ACTDTE + DJ. WJPNO => Vi.MANHRCOST, Vz.MA TCOST, Vi.REPCOST
- D1.ENGSTR + D3.PTNO => Vi.MANHRCOST, V1.MA TCOST, V1.REPCOST
- D1.ENGSTR + D,.SUPCD => Vi.MANHRCOST. Vz.MA TCOST, V1.REPCOST
- D1. ENGSTR + DJ. WJPNO => Vi.MANHRCOST, V1.MATCOST, V1.REPCOST
- DJ.PTNO + D4.SUPCD => Vi.MANHRCOST, V2.MA TCOST, VJ.REPCOST
- D3.PTNO + DJ. WIPNO => Vi.MANHRCOST, Vz.MA TCOST, Vi.REPCOST
- D,.SUPCD + DJ. WJPNO => Vi.MANHRCOST. V1.MA TCOST, Vi.REPCOST
- D1.ACTDTE + D1.ENGSTR + D3.PTNO => Vi.MANHRCOST. V1.MA TCOST, V1.REPCOST
- D1.ACTDTE + D1.ENGSTR + D,.SUPCD => Vi.MANHRCOST, Vz.MA TCOST, Vi.REPCOST
- D1.ACTDTE + D1.ENGSTR + DJ. WJPNO => V,.MANHRCOST, Vz.MATCOST, Vi.REPCOST
- D1.ACTDTE + D3.PTNO + D-1-SUPCD => Vi.MANHRCOST, Vz.MATCOST, VJ.REPCOST
- D1.ACTDTE + D3.PTNO + DJ. WIPNO => Vi.MANHRCOST, V1.MA TCOST, V1.REPCOST
- D1.ACTDTE + D4.SUPCD + Ds. WIPNO => Vi.MANHRCOST, Vz.MATCOST, V1.REPCOST
- D1.ENGSTR + D3.PTNO + D-1-SUPCD => V1.MANHRCOST, Vz.MATCOST, V1.REPCOST

- D1.ENGSTR + D3.PTNO + DJ. WIPNO => Vi.MANHRCOST, Vz.MA TCOST, V1.REPCOST
- D1.ENGSTR + D4.SUPCD + Ds. WJPNO => Vi.MANHRCOST. V1.MATCOST, Vi.REPCOST
- D3.PTNO + D4.SUPCD + DJ. WIPNO => V1.MANHRCOST, V1.MATCOST, VJ.REPCOST
- D1.ACTDTE + D1.ENGSTR + D3.PTNO + D4.SUPCD => Vi.MANHRCOST, Vz.MA TCOST, V1.REPCOST
- D1.ACTDTE + D1.ENGSTR + D3.PTNO + Ds. WJPNO => Vi.MANHRCOST, Vz.MATCOST, V,.REPCOST
- D1.ACTDTE + D1.ENGSTR + D-1-SUPCD + DJ. WIPNO => Vi.MANHRCOST, Vi.MA TCOST, V3.REPCOST
- D1.ACTDTE + D3.PTNO + D,.SUPCD + DJ. WIPNO => V1.MANHRCOST, V1.MA TCOST, V3.REPCOST
- D1.ENGSTR + D3.PTNO + D,.SUPCD + DJ. W/PNO => V1.MANHRCOST, Vi.MA TCOST, V3.REPCOST
- D1.ACTDTE + D1.ENGSTR + DJ.PTNO + D4.SUPCD + DJ. WIPNO => V1-MANHRCOST, V1.MATCOST, V3.REPCOST
- D,.SUPCD � D8.SUPNAME

(3) Data Clustering

The last step of clustering process rearranges the 32 mapping data sets of

partitioning process, and performs the mapping table. The first mapping data set is

assigned to be base data set and mapped with other mapping data sets (see Table

5.3). The mapping processes are __ activated until the last of the mapping data set is

assigned to be base data set or related data set is empty.

Table 5.3. Example Data Mapping of Clustering Process.

Base Data Set: D,.ACTDTE => Vi.MANHRcosr. Vz.MATcosr. Vi.REPCOST

Related Data Set

D1.ENGSTR => Vi.MANHRCOST, V1.MA TCOST,
Vi.REPCOST

D1.PTNO => Vi.MANHRCOST, Vz.MATCOST,
Vi.REPCOST

D,.SUPCD => Vi.MANHRCOST, V1.MA TCOST,
Vi.REPCOST

D5. WIPNO => Vi.MANHRCOST, V1.MA TCOST,
V3.REPCOST

D1.ACTDTE + D,.ENGSTR => Vi.MANHRCOST,
V1.MA TCOST, Vi.REPCOST

Grouping Relation Set

D1.ACTDTE => Vi.MANHRCOST, V1.MA TCOST, V3.REPCOST v
D1.ENGSTR => Vi.MANHRCOST, V1.MA TCOST, V3.REPCOST

D1.ACTDTE => V1.MANHRCOST, Vz.MA TCOST, Vi.REPCOST v
D3.PTNO => Vi.MANHRCOST, V1.MA TCOST, Vi.REPCOST

D1.ACTDTE => Vi.MANHRCOST, Vz.MA TCOST, v_ •. REPCOST v
D4.SUPCD => Vi.MANHRCOST, Vz.MA TCOST, V3.REPCOST

D,.ACTDTE => v,.MANHRCOST, Vz.MA TCOST, v,.REPCOST v
D5. WJPNO => V1.MANHRCOST, V1. MA TCOST, Vi.REPCOST

D1.ACTDTE => Vi.MANHRCOST, V1.MATCOST, V3.REPCOST v
D1.ACTDTE + D2.ENGSTR => Vi.MANHRCOST, V2.MA TCOST,
V3.REPCOST

1 04

Table 5.3. Example Data Mapping of Clustering Process (continued).

Base Data Set: D,.ACTDTE => Vi.MANHRcosr, V1.MATcosr, Vi.REPcosr

Related Data Set Grouping Relation Set

D1.ACTDTE + D3.PTNO => Vi.MANHRCOST, D1.ACTDTE => Vi.MANHRCOST, V1.MATCOST, V3.REPCOST v
V2.MA TCOST, V1.REPCOST D1.ACTDTE + D3.PTNO => Vi.MANHRCOST, Vi.MATCOST,

Vi.REPCOST

D1.ACTDTE + D,.SUPCD => Vi.MANHRCOST, D1.ACTDTE => Vi.MANHRCOST, Vi.MA TCOST, Vi.REPCOST v
V1.MATCOST, Vi.REPCOST D,.ACTDTE + D,.SUPCD => Vi.MANHRCOST, V1.MATCOST,

V1.REPCOST

D1.ACTDTE + DJ. WJPNO => Vi.MANHRCOST, D1.ACTDTE => Vi.MANHRCOST, V1.MATCOST, Vi.REPCOST v
V1.MA TCOST, VJ.REPCOST D1.ACTDTE + DJ. WJPNO => Vi.MANHRCOST, V1.MA TCOST,

Vi.REPCOST
D1.ACTDTE => V,.MANHRCOST, Vi.MATCOST, Vi.REPCOST v

D1.ENGSTR + D3.PTNO => V1.MANHRCOST, Dz.ENGSTR + D1.PTNO => V1.MANHRCOST, V1.MATCOST.
V1.MA TCOST, V3.REPCOST Vi.REPCOST

D1.ENGSTR + D,.SUPCD => V1.MANHRCOST, D1.ACTDTE => V1.MANHRCOST. V1.MATCOST, Vi.REPCOST v
V1.MATCOST, V1.REPCOST D1.ENGSTR + D,.SUPCD => V1.MANHRCOST, V1.MATCOST,

V1.REPCOST

D1.ENGSTR + DJ. WIPNO => V1.MANHRCOST, D1.ACTDTE => V1.MANHRCOST, Vi.MATCOST, V3.REPCOST v
V1.MA TCOST. Vi.REPCOST D1.ENGSTR + D5. WIPNO => V1.MANHRCOST, V1.MA TCOST,

V1.REPCOST

D3.PTNO + D,.SUPCD => V1.MANHRCOST.
D1.ACTDTE � V1. MANHRCOST, V;.MA TCOST, Vi.REPCOST v

V1.MATCOST. V1. REPCOST
D3.PTNO + D,.SUPCD => V,.MANHRCOST, Vi.MATCOST, Vi.REPCOST

D1.PTNO + Ds. WIPNO => Vi.MANHRCOST,
D1.ACTDTE => V1.MANHRCOST, V1.MATCOST, V3.REPCOST v

V1.MATCOST, V1.REPCOST
D1.PTNO + D5. WIPNO � Vi.MANHRCOST, V1.MA TCOST, V3.REPCOST

D1.ACTDTE => V1.MANHRCOST, Vi.MA TCOST, Vi.REPCOST v

D,.SUPCD + D5. WIPNO => V1.MANHRCOST, D,.SUPCD + D5. WIPNO => V1.MANHRCOST, V1.MA TCOST,

V1. MATCOST, Vi.REPCOST Vi.REPCOST

D1.ACTDTE + D1.ENGSTR + D3.PTNO => D1.ACTDTE => Vi.MANHRCOST, V1.MA TCOST, V3.REPCOST v

V1.MANHRCOST, V1.MA TCOST. Vi.REPCOST D1.ACTDTE + D2.ENGSTR + D3.PTNO => V1.MANHRCOST,
V2.MA TCOST, Vi.REPCOST

D1.ACTDTE + D2.ENGSTR + D,.SUPCD => D1.ACTDTE ==> V1.MANHRCOST, V2. MATCOST, Vi.REPCOST v

Vi.MANHRCOST, Vi.MA TCOST, Vi.REPCOST D,.ACTDTE + D1.ENGSTR + D,.SUPCD � V1.MANHRCOST,
Vi.MA TCOST, V3.REPCOST

D1.ACTDTE + D2.ENGSTR + DJ. WIPNO � D1.ACTDTE � V1.MANHRCOST, V2.MA TCOST, V3.REPCOST v
Vi.MANHRCOST. V2.MA TCOST, V3.REPCOST D,.ACTDTE + D1.ENGSTR + Ds. WIPNO => V1.MANHRCOST,

Vi.MA TCOST, V1.REPCOST

D1.ACTDTE + D3.PTNO + D,.SUPCD � D1.ACTDTE => V,.MANHRCOST, V1.MA TCOST, Vi.REPCOST v
Vi.MANHRCOST, V1.MA TCOST, V3.REPCOST D1.ACTDTE + D3.PTNO + D,.SUPCD => V1.MANHRCOST,

V2.MA TCOST, Vi.REPCOST

D1.ACTDTE + D3.PTNO + D5• WIPNO => Di.ACTDTE => Vi.MANHRCOST, V2.MA TCOST, V3.REPCOST v
V1.MANHRCOST, V2.MA TCOST, V3.REPCOST D1.ACTDTE + D3.PTNO + D5. WIPNO => V1.MANHRCOST,

V2. MA TCOST, Vi.REPCOST

D1.ACTDTE + D,.SUPCD + Ds. WIPNO => D1.ACTDTE => Vi.MANHRCOST, V2.MATCOST, V3.REPCOST v
Vi.MANHRCOST, V1.MA TCOST, Vi.REPCOST D1.ACTDTE + D,.SUPCD + D5. WIPNO => Vi.!v/ANHRCOST,

V2. MA TCOST, V3.REPCOST

D1. ENGSTR + D3.PTNO + D,.SUPCD => D1.ACTDTE => Vi.MANHRCOST, V2.MATCOST. Vi.REPCOST v
V1.MANHRCOST, V2. MA TCOST. Vi.REPCOST D2. ENGSTR + D1.PTNO + D,.SUPCD => V1.MANHRCOST.

V2 . . MA TCOST, Vi.REPCOST

1 05

Table 5 .3 . Example Data Mapping of Clustering Process (continued).

Base Data Set: D1.ACTDTE => Vi.MANHRcosr, V1.MATcosr, Vi.REPCOST

Related Data Set Grouping Relation Set

D1.ENGSTR + D1.PTNO + DJ. WIPNO => D1.ACTDTE => Vi.MANHRCOST, V1.MA TCOST, V1.REPCOST u
V1.MANHRCOST, V1.MATCOST, V1.REPCOST D1.ENGSTR + D1.PTNO + DJ. WIPNO => V1.MANHRCOST, V1.MA TCOST,

V1.REPCOST

D1.ENGSTR + D,.SUPCD + DJ. WJPNO => D1.ACTDTE => V1.MANHRCOST, V1.MATCOST, V1.REPCOST u
Vi.MANHRCOST, V2.MA TCOST, V1.REPCOST D2.ENGSTR + D,.SUPCD + DJ. WIPNO => Vi.MANHRCOST,

V1.MA TCOST, V1.REPCOST

D1.PTNO + D,.SUPCD + DJ. WIPNO => D1.ACTDTE => Vi.MANHRCOST, Vz.MA TCOST, V1.REPCOST u
V1.MANHRCOST, Vz.MA TCOST, VJ. REPCOST D1.PTNO + D,.SUPCD + DJ. WJPNO => Vi.MANHRCOST, V2.MATCOST,

VJ.REPCOST

D1.ACTDTE + D2.ENGSTR + D1.PTNO + D1.ACTDTE => Vi.MANHRCOST, V1.MA TCOST, V1.REPCOST u
D,.SUPCD => V1.MANHRCOST, V2.MA TCOST, D1.ACTDTE + D1.ENGSTR + DJ.PTNO + D.,.SUPCD =>
Vi.REPCOST Vi.MANHRCOST, V1.MATCOST, Vi.REPCOST

D1.ACTDTE + D2.ENGSTR + D1.PTNO +
D1.ACTDTE => V1.MANHRCOST, V1.MA TCOST, V1.REPCOST u
D1.ACTDTE + D1.ENGSTR + D1.PTNO + DJ. WIPNO =>

DJ. WIPNO => Vi.MANHRCOST, V1.MA TCOST, Vi.MANHRCOST, Vz.MATC:OST, V1. REPCOST
Vi.REPCOST

D1.ACTDTE + D1.ENGSTR + D.,.SUPCD +
D1.ACTDTE => Vi.MANHRCOST, V2.MA TCOST, VJ.REPCOST u
D1.ACTDTE + D2.ENGSTR + D.,.SUPCD + DJ. WIPNO =>

DJ. WJPNO => Vi.MANHRCOST, V2.MATCOST, V1.MANHRCOST, Vz.MATCOST, V1.REPCOST
V1.REPCOST

D1.ACTDTE + D1.PTNO + D,.SUPCD +
D1.ACTDTE => V1.MANHRCOST, V2.MA TCOST, V1.REPCOST u
D,.ACTDTE + D1.PTNO + D,.SUPCD + DJ. WIPNO => V1.MANHRCOST,

DJ. WJPNO => V1.MANHRCOST, V1. MA TCOST,
Vz.MATCOST, V1.REPCOST

V1.REPCOST

D1.ENGSTR + D1.PTNO + D,.SUPCD +
D1.ACTDTE => V1.MANHRCOST, V1.MATCOST, V1.REPCOST u

DJ. WIPNO => V1.MANHRCOST, V1.MA TCOST, Dz.ENGSTR + D1.PTNO + D,.SUPCD + DJ. WIPNO => V1.MANHRCOST,

V1.REPCOST
V1.MA TCOST, V1.REPCOST

D1.ACTDTE + Di.ENGSTR + D1.PTNO + D1.ACTDTE => V1.MANHRCOST, V1.MA TCOST, V1.REPCOST u

D,.SUPCD + DJ. WJPNO => Vi.MANHRCOST, D1.ACTDTE + D1.£NGSTR t D1.PTll'O + D,.SUPCD + DJ. WIPNO =>

Vz.MATCOST, Vi.REPCOST V1.MANHRCOST, V1.MA TCOST, Vi.REPCOST

D,.SUPCD � Ds.SUPNAME D1.ACTDT£ => V1.MANHRCOST, Vz.MATCOST, Vi.REPCOST u
D,.SUPCD � D8.SUPNAME

There are 496 grouping relation sets from the mapping process, the grouping

relation sets are then manipulated in External Comparison Process (ECP) algorithms to

form new data sets. All grouping relation sets mainly come from ENGCOST data entity,

so there are no more relations occurring in this engine cost example, the final DVR data

models are composed of:

- D1 ACTDTE => Vi.MANHRCOST, V1.MATCOST, V1.REPCOST
- D1.ENGSTR => Vi.MANHRCOST, V1.MA TCOST, V1.REPCOST
- D3.PTNO => Vi.MANHRCOST, Vz.MATCOST, Vi.REPCOST
- D,.SUPCD => Vi.M,.JNHRCOST, V1.MA TCOST, V3.REPCOST
- D5. WIPNO => Vi.MANHRCOST, Vz.MATCOST, V3.REPCOST
- D,.ACTDTE + Dz.ENGSTR => V,.MANHRCOST, V1.MATCOST, V3.REPCOST
- D1.ACTDT£ + D1.PTNO => Vi.MANHRCOST, V1.MATCOST, V3.REPCOST
- D1.ACTDTE + D,.SUPCD => Vi.MANHRC'OST, V1.MATCOST, V3.REPCOST

1 06

• D, AC'f()T£ + D, W/PNO = v,.•£4NHRCOST. •·,.;tATCOST. f»RLPCOST
• D, £,\GSTR + D,Pr>:O => Y, AIA VHRCDSr 1·, 1£17t:OST V, RLPCOST

n, nGSTR + D,SUPCD= v,,ltANllRCOST. v,.ltA11:'0ST. 1,R£PCOST
• o,F.NG!iTR + o, WJPNO = V1.MANHRCOST. v,MATCOST. lj,R£PCOST
• 01 /'TNO + o.SUPCD => V1.MAN/IF!COST. v,MA /COST. v, RRPCO!.T
. o. Pr.YO+ D. WJl'NO => v,MANHRCOST. v,M�TCOST. v,Rf.PCOST

• D.SUl'CD + D, H1/'NO => V, M�NllRCOST >'1AIATCDSr I, RFl'CDSr
• D1 .�CTUT£ +I), F.liGsTI! + (),f"TNO = 111.MANllRCOST. 1',.1£111:'0ST. v, Rl.J'COST
• o,.ACTDTf: + o,f.l>C.sTR + D.SUl'CD= v,.MANHRCO�T. v,AIATCOST. "· R£1'COST
• o, ACTDTE. + n, £,VGSTR + D. WI/WO= v,.MAN/IRCOST. v,MATCOST. Y>R£PCOST
• o, ACTDTf: + D, PrNO + D.SUPCD = v, MANHRCOST. v,.;urcosr. v,REPCOST
• D, ACTDTE -D, l'TNO + D, Wfl'NO = Y1MANHRCOST. l',�UTCOST. P,REl'COST
• D;ACTDTE + D,SUl'CD + D,Wll'.'10= 1'1.�UNHRCOST. 1',JJATCOST. I', R£1'COST
• D1ENGSTR • D,l'THO + D,SUl'CD=> Y1 AIAN/IRCOST. l',MATCOST. V,REl'COST
• o, F'.NGSTR r D,,PTNO + D,WJPND= v,.MANllRCOST. v,.•IATCOST. l',REPCOST
• D1F.:NGSTll • D.SUPCD + D, WIPNO::> 1'1 MANHRCOST. Y1.llATCOST. V,RF.PCOST
• (),!'THO+ o.suPCD + D,Wfl'NO= V,MANHRCOST V,)UTCOST. V,Jl£PCOST
• 01.ACTDTE + 01 £NGSTR + o, l'TNO + D.SUl'CD => I' ..MANllRCOST. I' ,U.TCOST. I' ,.REl'COST
. fhACTDTE + o, F.NGSTR + D,rrNO + D,11'/PNO= v, MANllllCOST. v,u.rcosr. "• REPCOST
• D,.ACTDTE + D1ENGSTR + D.SUPCD + o, W/l'NO=> v,.MANHRCOST. v,MATCOST. v,.R£1'COST
• D1 ACTDTE + D,l'TNO + D.liUPCD + o,1nPNO .. v,.M.ffllfRCOS'f. v,.;urcosr. Y,RLPCOST
• D,ENGSTR + o.PTNO + D.SUPCD + o,W/PNO = l',.M.411/IRCOST. v,.;urcosr. 1',RLPCosr
• (), ACTDT£ + D1£NGSTR + D1 l'TNO + D.SUl'CD + 01 Wll'NO => Y,,1£111/lllCOST. 1'1,\IA TCOST. I' ,Jl£/'COl>T
• O;SUl'CD-+ D..SUl'NAJo/£

' .

15. � NO • SUPCD • 'vrrf';l'NO-OMANHACOSl.MATCOST .RE�T
4G. N:IDIE • EllGSIA • F'INO • SIJl'CD,.MAHllRCOSl.MAI COSl .R E PIDSI
V. ACIDIE · El<GSIA • F'INO · 1'llPl<0 .,�1 .MAICOSl.R£1'COSI
2& ACI D ![• ENGSTR • SUf'CD • - .. �1.MAICOSI .REPIX!S I
2S ICIOIE • Pl*> • '-flCO • 'WIPHO->MNHW:IJSl ;&AT(J)SfJtlPmsl
.. lNGSt R • PTNO • SlJICD •�fWl llCOST�1CD51,MfCOS1
31 N:TJ)I[• tNiiSlA • l'IMl • SUPCD • loM'N0->-1.MATCOST)l[PIDSI

..... ""."""'
l suPCO»SUPHAM!

C !l!S fPtGS1A • FrnO •SIJPCD • \tJlf'N().)Jit,AA'HRDlS TJMTCUST.RtPCCSJ U $VPCD·>SlAU..M (
.t!!6 ACl0T£ • CNGSTA t "PTOO • S:uPCD • WIPN0 4MMl4Rt0$1 MA fCX)S T .AEPCO:ST U SUPCD.,, SUPNAME

Figure 5.5. Example of Clustering Process.

107

Figure 5.5 shows the example of clustering process using two steps: mapping

process and ECP execution. The output of ECP execution lists the DVR data models of

engine cost example. This concludes the procedural descriptions for building a DVR

data model from a warehouse database using three processes of classification,

partitioning, and clustering reorganize data from relational format into metric or cubic

patterns. The next step is transforming the DVR data model into physical data structure

of multidimensional database and using SQL commands to load data into physical

structure.

5 .4.2 DVR Data Model Design via Graph Model

In designing DVR data model of graph representation, any attributes of

warehouse database are defined to be candidate dimension or variable in the same way

as classification process (see Figure 5 .3). The results of ENGCOST data entity are as

follows: DnNo , DENGSTR , DsuPcD , Dw1PN0 , DAcTDTE , VMANHRcosr , VMATCosr , VREPCOST .

The results of SUPPLIER data entity are: DsuPcD , DsuPNAME .

In the process of identifying actual dimension, relative dimension and �ctual

variable, the comparative process firstly assigns the primary index key as a base for

mapping. The indexed key fields of ENGCOST data entity are composed of PTNO,

ENGSTR, SUPCD, WIPNO, and ACTDTE attributes. Assigning the PTNO attribute as

primary indexed key field, PTNO is defined to be based attributes and mapped with

other attributes. The outcome of data mapping is:

{DnNo u DENasTR} , { DnNo U DsuPCD } , { Dpmo u Dw1PN0} ,

{DnNo u DAcTDTE } , { Dpmo u VMANHRcosr} ,

{DnNo U VMATCOST } , {DnNo U VREPCOST }

Use a comparative algorithm to screen the data type and relation and assign to be

actual dimension, relative dimension, and actual variable. This step reveals that the

number of unique items in dimension PTNO is different from the other attributes. This

1 08

proves that dimension PTNO is not dependent on other attributes, then assigned

dimension ENGSTR, SUPCD, WIPNO, and ACTDTE are actual dimensions, and

assigned variable MANHRCOST, MATCOST, and REPCOST are actual variables. The

SUPPLIER data entity is then executed using comparative algorithm. This step proves

that SUPCD has a relationship with SUPNAME due to the similarity of the count value

items. The dimension SUPNAME is assigned to be relative dimension.

The following graph presentation shown in Figure 5 .6 introduces a DVR data

model of ENGCOST and SUPPLIER data entities.

ENGSTR

SUPCD

� .
.

7

PCD ••

SUPNAME SU •• • •• •• ••
•

• / (�,
~ '-__/

KEYWORD

Figure 5.6. Engine Cost Database in 2D Conceptual Model.

The indexed keys of ENGCOST data entity comprise the ENGSTR, PTNO,

SUPCD, WIPNO, and ACTDTE attributes. The PTNO attribute is selected as the main

dimension and the other candidate dimension is attributed as sub-dimensions. The

resulting graphic representation is shown in Figure 5.6. The SUPPLIER data entity

connects the ENGCOST data entity's attributes, which show the relationship between

data entities. Other ways, such as time series in drill down or drill up, can show other

perspectives in the multidimensional cubes.

1 09

5.5 Conclusion

This chapter uses the methodologies described in Chapters 3 and 4 on an airline's

database related to engine cost in particular. In doing so, the data model and graph

model formats are illustrated, as well as the process of generating a DVR data model.

The process includes classification module, partitioning module, clustering module and

graph model applications to automatically generate the DVR data model. Finally, these

models are tested by transforming them into an OLAP software package (Oracle

Personal Express) to view screen layout patterns.

1 1 0

VJ. CONCLUSlONS AND RECOMMENDATIONS

This research is to present a process thal automatically generates a

multidimensional data structure called DVR. useful in improving storage and analysis

of great amoWits of corporate daia. The process tranSforms the current way of storing

flat data in relational form in a warehouse database, so that it is re-stored in a form

where all its possible relationships to other data are interconnected. This allows the

most creative analytical queries even in huge masses of stored data.

The research presents a design process for a multidimensional data storage

strucrure shown in Figure 6.1. To test the program algorithms, a prototype was used:

engine cost in an airline.

DVR Oat• l\lodel 0aw�"''*'-'otrrlltlfHl
Genonlioa 1+��������������

Clauiriacion

Partitio.,ing

/)I H /JoJuJ.tnJd

DVR O..ign
via

Craph Modtl

·-.

(Rf>U.\IS)
\Varchou'c

0:Jf:th:1'C

Oatn Loading

·­

Figure 6.1. Data Access of OVR data model.

The research also presents a method of automating the process of generating

multid1mcnsional relationships patterns in a database. This process yields more complex

patterns as well as screens out irrelevant data. lt also minimizes human input and human

errors in the processing of voluminous amounts of dma. These objectives are all

1 1 I

accomplished. The research successfully submits a procedure for generating logical data

structures automatically, the design for the process, and the input-output schema for

multidimensional data storage structure design.

In the DVR data model generation, building a DVR data model via methodology

of classification, partitioning, and clustering procedure first clears all elements in the

data entities, transforms them into a multidimensional format, builds a model of the

multidimensional structure, and then loads the data into the physical multidimensional

structure. These procedures provide:

(1) The classification module screens, identifies, and labels each attribute in the

data entity as either a candidate dimension or a-variable of hypercubes.

(2) Formation of mapped data sets, the partitioning module selects a candidate

dimension as a base for mapping with the other attributes inside the data

entity. This module uses the Internal Comparison Process (ICP) to

manipulate data sets that validate the multidimensional format.

(3) Finally, grouping of related dimensions and their associated data values.

The clustering module uses the External Comparison Process (ECP) to

manipulate all multidimensional data structures in the partitioning module.

The design of a DVR data model using the graph model approach provides data

support intelligence through multidimensional data analysis when there are huge

amounts of online data by transforming a data warehouse into a multidimensional

storage format.

The design approach uses a graph model data catalog that generates the DVR

structure in the form of a multidimensional cube, called a hypercube. The graph

structure's center node represents the fastest varying dimension, several branch nodes

represent associate dimension attributes, and rectangles represent index data values and

1 1 2

measurements. These may also be represented on fact schemes that integrate relative

information and external sources, as well as extend the algorithms to build DVR

patterns in standard SQL form.

The prototype developed in this research shows how workload is reduced and

details the input-output design phases of a Multidimensional Database (MDDB). This

model is created with this four-point focus: (1) to create a DVR that meets user

requirements more accurately, (2) to design a routine that automatically creates an

MDDB database format, (3) to speed up the input-output design phase, and (4) to

minimize human error. The advantage of the two approaches solves the statement of

problems as follows:

(1) Ease of handling large database.

Data volume is often the first issue that comes to mind when

evaluating warehouse cost and benefit. The handling of huge amount of data

in the warehouse database is a big task. So the automatic generating data

model may reduce the assignment of the designing phase, m<lking a greater

and faster progress in solving the volume problem, and perform loading and

querying process that is affordable and flexible. It also provides ease-of-use

of the data model and query tools. Users are able to check the error of data

from data model that consists of missing data, data characteristics, and their

relations. For example, the distinction between relative attributes is the same

as Supplier Code and Supplier Name. The data model shows the different

data volumes of Supplier Code compared with Supplier Name. Users check

the error occurred in the warehouse database and correct them.

1 1 3

(2) Reduce the technical expertise required in the designing phase.

The system automatically generates the DVR data model supporting

user requirements and also reduces the technical skill of analyst in the

designing phase. The DVR data model shows the easiest way to manipulate

and transform the physical data structure in pattern of hypercube form. End­

users well understand the pattern of analysis format in graph model before

loading data and generating the physical structure of multidimensional

database. Any mistaken forms are corrected manually. These processes will

also reduce the cost and the time of the designing phase.

(3) Support user requirement.

The automatic generating DVR data model procedures are developed

to manipulate the current detailed data level of warehouse database, which

store the significant data required from users, into patterns of

multidimensional forms. These procedures identify the valuable data in the

frame of dimensional model that shov1s the logical grouping relation of

dimensions, fact or measures, and the dimensional matrices. The output data

model comes from the original source of warehouse database, analysts are

not certain to design the hypercube patterns with learning the characteristic

and relation of any attributes and data entities in relational warehouse

databases. The DVR data model may be served the effective and efficient

DSS process to responsive managers.

The designing processes of DVR data model of two approaches are developed to

prove DVR data model by using engine cost example. The research also focuses on the

logical data structure in the form of hypercube pattern, the data transformation and data

loading are preferred to any type of databases (e.g. Oracle DBMS, IBM OS/2, Informix

114

DBMS, Sybase DBMS, etc.) that require computer programs or JCL programs in data

access layer. Further task requires applying DVR data model in the form of star-schema,

snowflake, and other newest concepts to serve DSS functions. Finally, the additional

function that requires more DVR data model is generating hierarchical level of

dimensions. The relation of attributes may be attached to the same dimension. For

example, Part Number and Spare Part Class attributes may be set to be the level of

PART dimension. The high level of PART dimension shows the spare part class of part

information, the next level of each spare part class shows the part numbers.

115

DATA TRANSFORMATION AND DATA LOADING

This session presents the transformation between logical data model and physical

data structure of multidimensional database. The majority of research shows the

processes of building DVR model (see Figure 6. 1), however the next steps of

transformation are summarized in appendix A using data model of Example 3 .

For building physical data model, the system will automatically replace logical

DVR model with the pattern of multidimensional database related to OLAP

applications. This research uses Oracle Personal Express tools as prototype to substitute

data model into physical data model. The data model of example 3 will be replaced as

follows:

(1) Dimension

The system automatically generates the SCODE, ACODE, CCODE, and PCODE

dimensions in the form of express command using descriptive data in data directory or

metadata such as length of data, data description etc. Data are then loaded from

relational database using SQL process into multidimensional database.

D
. . I SCQ I 2 2
1mens1ons: D1 . 'DE, D1 .ACODE, D1 . CCODE, D2 .PCODE

Personal Express Command:

DEFINE SCODE DIMENSION TEXT WIDTH 5
LD Salesman Code
DEFINE A CODE DIMENSION TEXT WIDTH 3
LD Area Code
DEFINE CCODE DIMENSION TEAT WIDTH 6
LD Customer Code
DEFINE PCODE DIMENSION TEXT WIDTH 5
LD Product Code

1 1 6

(2) Variable

After dimensions are already created, the next proceeding automatically

generates the SALEV AL, COMM, and COSTV AL variables as follows:

Variables or Measures: V/.SALEVAL, V/. COMM, V/.COSTVAL

Relationship: D/.CCODE oo D/PCODE oo D/SCODE oo D/.ACODE =>

V/.SALEVAL, V/.COMM, V/COSTVAL

DEFINE SALEVAL VARIABLE <CCODE PCODE SCODE ACODE>
LD Sale Values Information

DEFINE COMM VARIABLE <CCODE PCODE SCODE ACODE>
LD Commission Values Information

DEFINE COSTVAL VARIABLE <CCODE PCODE SCODE ACODE>
LD Cost Values Information

(3) Relative Dimension

The relative dimension of SNAME, and PNAME attributes are continuously

created as follows:

Relative Dimensions: R/.SNAME, R/.PNAME

Relationship: D/.SCODE B R/.SNAME, D/.PCODE B R/.PNAME

Personal Express Command:

DEFINE SNAME VARIABLE TEXT <SCODE>
LD Salesman Name
DEFINE PNAME VARIABLE TEXT <PCODE>
LD Product Name

(4) Data Loading

To load the large volume of data from relational database into physical structure

of multidimensional data model, the above data models of example 3 will be generated

into SQL statement as follows:

1 1 7

Data Model: D/.SCODE => V/.SALEVAL, V/COMM

SQL Process: Select SCODE, sum(SALEVAL), sum(COMM)
From SALE
Group by SCODE
Order by SCODE

Data Model: D/.SCODE B R/.SNAME

SQL Process: Select SCODE, SNAME
From SALE
Order by SC ODE

Data Model : D/ACODE => V/.SALEVAL, V/COMM

SQL Process: Select ACODE, sum(SALEVAL), sum(COMM)
From SALE
Group by ACODE
Order by A CODE

Data Model: D/.SCODE oo D/.ACODE => V/.SALEVAL, V/COMM

SQL Process: Select SCODE, A CODE, sum(SALEVAL), sum(COMM)
From SALE
Group by SCODE, ACODE
Order by SCODE, A CODE

Data Model: D/.CCODE => V/SALEVAL, V/COSTVAL

SQL Process: Select CCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by CCODE
Order by CCODE

Data Model: D/PCODE B Ri2.PNAME

SQL Process: Select PCODE, PNAME
From COST
Group by PCODE

Data Model: D/PCODE => V/.SALEVAL , V/COSTVAL

SQL Process: Select PCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by PCODE

1 1 8

Data Model:

SQL Process:

Data Model :

SQL Process:

Data Model:

SQL Process:

Data Model:

SQL Process:

Data Model:

Order by PCODE

D/.SCODE => V/.SALEVAL, V/. COSTVAL

Select SCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by SCODE
Order by SCODE

D/.CCODE oo D/.PCODE => V/.SALEVAL, V/.COSTVAL

Select CCODE, PCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by CCODE, PCODE
Order by CCODE, PCODE

D/.CCODE oo D/SCODE => V/.SALEVAL, V/.COSTVAL

Select CCODE, SCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by CCODE, SCODE
Order by CCODE, SCODE

D/.PCODE oo D/.SCODE => V/.SALEVAL, V/COSTVAL

Select PCODE, SCODE, sum(SALEVAL), sum(COSTVAL)
From COST
Group by PCODE, SCODE
Order by PC ODE, SC ODE

2 ? 2 2 D1 .CCODE oo D1-.PCODE oo D3 .SCODE => Vi .SALEVAL,

V/.COSTVAL

SQL Process: Select CCODE, PCODE, SCODE, sum(SALEVAL),
sum(COSTVAL)
From COST
Group by CCODE, PCODE, SCODE
Order by CCODE, PCODE, SCODE

Data Model: D/.SCODE => V/SALEVAL, V/ COMM, V/.COSTVAL

SQL Process: Select A.SCODE, sum(A.SALEVAL), sum(B. COMM),
sum(B. COSTVAL)

1 1 9

St. Gabriel Library , Au

From SALE A, COST B
Where A.SCODE = B.SCODE
Group by A.SCODE
Order by A.SCODE

Data Model: D/.CCODE oo D/.SCODE => V/.SALEVAL, V/.COMM,

V/.COSTVAL

SQL Process: Select A. CCODE, A.SCODE, sum(B.SALEVAL), sum(B. COMM),
sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A. CCODE, A.SCODE
Order by A. CCODE, A.SCODE

Data Model: D/.PCODE oo D/.SCODE => V/SALEVAL, V/.COMM,

V/COSTVAL

SQL Process: Select A.PCODE, B.SCODE, sum(B.SALEVAL), sum(B. COMM),
sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A.PCODE, B.SCODE
Order by A.PCODE, B.SCODE

Data Model: D/.SCODE oo D/.ACODE => V/.SALEVAL, V/COMM,

V/COSTVAL

SQL Process: Select A.SCODE, B.ACODE, sum(B.SALEVAL), sum(B. COMM),
sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A.SCODE, B.ACODE
Order by A.SCODE, B.ACODE

Data Model: D/CCODE oo D/.SCODE oo D/.ACODE => V/.SALEVAL,

V/COMM, V/COSTVAL

SQL Process: Select A. CCODE, A.SCODE, B.ACODE, sum(A.SALEVAL),
sum(B. COMM), sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A. CC ODE, A.SCODE, B.ACODE

1 20

Order by A. CC ODE, A.SCODE, B.ACODE

Data Model: D/PCODE oo D/SCODE oo D/ACODE ::::::> V/.SALEVAL,

V/COMM, V/COSTVAL

SQL Process: Select A.PC ODE, A.SCODE, B.ACODE, sum(A.SALEVAL),
sum(B. COMM), sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A.PCODE, A.SCODE, B.ACODE
Order by A.PCODE, A.SCODE, B.ACODE

Data Model: D/.CCODE oo D/PCODE oo D/SCODE oo D/ACODE ::::::>

V/. SALEVAL, V/COMM, V/.COSTVAL

SQL Process: Select A. CCODE, A.PCODE, A.SCODE, B.ACODE,
sum(A.SALEVAL), sum(B. COMM), sum(A. COSTVAL)
From COST A, SALE B
Where A.SCODE = B.SCODE
Group by A. CC ODE, A.PC ODE, A,SCODE, B.ACODE
Order by A. CC ODE, A.PCODE, A,SCODE, B.ACODE

1 2 1

BIBLIOGRAPHY

· i . A . H. M. ter Hofstede, H . A. Proper, Th. P. van der Weide, "Data Modeling in
Complex Application Domains", CaiSE, Manchester, UK, pp. 364-377, 1 992.

2. Aberer, Karl & Klemens Hemm, "A Methodology for Building a Data Warehouse
in a Scientific Environment", pp.90- 1 0 1 , 1 996.

3. Abrial J.R., "Data Semantics Database Management", Klimnie & Koffinan eds.,
North-Holland, 1 974.

4. Adriaans, Pieter & Dolf Zantinge, Data Mining, Addison-Wesley Publishing,
1 996.

5. Agarwal, S. & Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F.
Naughton, Raghu Ramakrishnan, Sunita Sarawagi, "On the Computation of
Multidimensional Aggregates", VLDB, Bombay, India, 1 996.

6. Agosti, Maristella & Robert Colotti, Girolamo Gradenigo, "A Two-Level
Hypertext Retrieval Model for Legal Data", SIGIR, pp. 3 16-325, 1 99 1 .

7 . Agrawal, Divyakant & Amr El Abbadi, Ambuj K. Singh, Tolga Yurek, "Efficient
View Maintenance at Data Warehouses", SIGMOD Conference, Tucson, Arizona,
pp.41 7-427, 1 997.

8. Akinde, Micheal 0. & Ole Guttorm Jensen, Michael H. Bohlen, "Minimizing
Detail Data in Data Warehouses", EDBT, Valencia, Spain, pp.293-307, 1 998.

9. Alalouf, Carole Hybrid OLAP: The best of both worlds, A white paper by
speed ware corporation, 1 997.

1 0. Albano A., Orsini R., "A Software Engineering Approach for Database Design:
The GALILEO Project, Computer Aided Database Design", North-Holland, 1 985.

1 1 . Albrecht, Jens & Wolfgang Sporer, "Aggregate-Based Query Processing in a
Parallel Data Warehouse Server", DEXA Workshop, Florence, Italy, pp.40-44,
1 999.

1 2. Arbor Software, "The Role of the Multidimensional Database in a Data
Warehousing Solution".

1 3. Astrahan, Morton M. & Edward B . Altman, P. L. Fehder, Michael E. Senko,
"Concepts of a Data Independent Accessing Model", SIGFIDET Workshop, pp.
349-382, 1 972.

14. Atkinson M. & Chisholm K., Cockshott P., "PS-ALGOL: An ALGOL with a
Persistent Heap", SIGPLAN Notices, 1 7(7), 1 982.

1 22

1 5. Bachman, Charles W. & Manilal Daya, "The Role Concept in Data Models",
VLDB, Tokyo, Japan, pp.464-476, 1 977.

1 6. Baekgaard, Lars "Event-Entity-Relationship Modeling in Data Warehouse
Environments", DOLAP, Kansas City, Missouri, USA, pp.9- 1 4, 1 999.

1 7. Ballard, Chuck & Dirk Herreman, Don Schau, Rhonda Bell, "Data Modeling
Techniques for Data Warehousing", International Technical Support Organization
ofIBM, February 1 998.

1 8. Barquin, Ramon & Herb Edelstein, Building, Using, and Managing the Data
Warehouse, The Data Warehousing Institute Series from Prentice Hall PTR, New
Jersey, 1 997.

1 9. Batini C. & G.D. Battista, "A Methodology for Conceptual Documentation and
Maintenance", Information Systems 1 3(3), pp.297-3 1 8, 1 988.

20. Bischoff, Joyce & Ted Alexander, Data Warehouse: Practical Advice from the
Experts, Prentice Hall, New Jersey, 1 997.

2 1 . Bosworth, Adam & Andrew Layman, Hamid Pirahesh, "Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total",
SIGMOD, Seattle, Washington, 1 998.

22. Boufaida, Mahmoud & Zizette Boufriche-Boufaida, "On Extending a Semantic
Data Model with some Aspects of Rules and Objects.", KRDB, Seattle,
Washington, USA, pp. 5 . 1 -5 .7, 1 998.

23. Bouzeghoub M. "Using Expert Systems m Schema Design'', Conceptual
Modeling, Database and Case, N.Y., 1992.

24. Bouzeghoub M. & G. Gardarin, et al, "Database Design Tools - An Expert
System Approach", Very Large Data Base Conference, Stockholm, 1985.

25. Bouzeghoub M. & I . Comyn-Wattian, "View Integration by Semantic Unification
and Transformation of Data Structures'', ER Approach, Elsevier Science
Publisher, 199 1 .

26. Buchmann, Dayal U. & McCarthy D., "Rules are Object too: A Knowledge
Model for an Active, Object-Oriented Database Management System", Proc. 2"d

International Workshop on Object-Oriented Database System, 1 988.

27. Buneman O.P., Frankel R.E., "FQL-A Functional Query Language'', ACM
SIGMOD, Boston, May 1 979.

28. Cardenas, Alfonso F. & James P. Sagamang, "Modeling and Analysis of Data
Base Organization. The doubly chain tree structure", IS, pp.57-67, 1 975.

29. Carkenord, Barbara A. "Why Build A Logical Data Model", Embarcadero
Technologies, Inc. San Francisco.

1 23

30. Catarci, Tiziana & Giovanna D' Angiolini, Maurizio Talamo, "Conceptual
Language for Statistical Data Modeling", DKE 1 7, pp.93-125, 1 995.

3 1 . Chan C-Y, Ioannidis Y., "Hierarchical Prefix Cubes for Range-Sum Queries", 25th

International Conference on Very Large Data Bases, Scotland, September 1 999.

32. Chaudhuri, Surajit & Umeshwar Dayal, "Data Warehousing and OLAP for
decision support", DOOD, Montreux, Switzerland, pp.33-34, 1 997.

33. Chen P.P., "The Entity-Relationship Model - Toward a Unified View of Data",
ACM Transactions on Database Systems, Vol. I, No. I, pp.9-38, 1 976.

34. Chen, I-Min A. & Victor M. Markowitz, "Modeling Scientific Experiments with
an Object Data Model", ICDE, Taipei, Taiwan, pp.391 -400, 1 995.

35 . Chen, Peter P. " The Entity-Relationship Model: Toward a Unfied View of Data",
VLDB, Framingham, Massachusetts, pp. 1 73 , 1 975.

36. Choobineh J. & M. Mannino, et al, "An Expert P�tabase Design System Based
on Analysis of Forms", pp.242-253, 1 988.

37. Codd E. F. and S.B. Codd, OLAP with TM/1 E. F. Codd & Associates, On-Line
Analytical Processing (OLAP) White Paper, 1 994.

38 . Codd E.F., "Extending the Database Relational Model to Capture More
Meaning'', ACM TODS, Arizona, USA, Vol.4, pp.397-434, 1 979.

39. Colby, Latha S. & Richard L. Cole, Edward Haslam, Nasi Jazayeri, Galt Johnson,
William J. McKenna, Lee Schumacher, David Wilhite, "Redbrick Vista:
Aggregate Computation and Management'·, ICDE, Orando, 1 998.

40. Cooper, Richard & Zhenzhou Qin, "A Graphical Data Modeling Program with
Constaint Specification and Management.", BNCOD, Aberdeen, Scotland,
pp. 1 92-208, 1 992.

4 1 . Covvet C . & C . Proix, et al, "ALECSI: An Expert System for Requirements
Engineering", CaiSE'9 1 , Norways, 1 99 1 .

42. Cui, Y. and J. Widom, "Lineage Tracing in a Data Warehousing System",
Proceedings of the Sixteenth International Conference on Data Engineering, San
Diego, California, Feb. 2000.

43. Cui, Y. J. Widom, and J. L. Wiener, "Practical Lineage Tracing in Data
Warehouses", Proceedings of the 1 6th International Conference on Data
Engieering, San Diego, California, February 2000.

44. Cui, Y. J. Widom, and J.L. Wiener, "Tracing the Lineage of View Data in a Data
Warehousing Environment", Technical Report, Standford University, Stanford,
CA, 1997.

1 24

45. Czuchry A.J. & D.R. Harris, "A New Paradigm for Requirement Engineering",
IEEE Expert, Winter, pp.2 1 -34, 1 988.

46. De Antonellis V. & Zonta B., "A Tool for Modeling Dynamics in Conceptual
Design", In Computer Aided Database Design, A. Albano et al., North Holland,
1987.

47. De Troyer, Olga & Rene Janssen, "On Modularity for Conceptual Data Models
and the Consequences for Subtyping, Inheritance & Overriding", ICDE, Vienna,
Austria, pp. 678-685, 1993.

48. Delobel, Claude "Data Base Theory and Modeling - Theoretical and Practical
Aspects", VLDB, West Berlin, Germany, pp. 1 12, 1 978.

49. Dubois, Eric & Jacques Hagelstein, Eugene Lahou, Andre Rifaut, Fiona Williams,
"A Data Model for Requirements Analysis", ICDE, New Orleans, Louisiana, pp.
646-653, 1 986.

50. Duong, Toncan & John Hiller, Uma Srinivasan, ''.A Unifying Model of Data,
Metadata and Context", DEXA, Prague, Czech Republic, pp. 68-79, 1 993.

5 1 . Edelstein, Herb & Ramon Barquin, Planning and Designing the Data Warehouse,
The data warehousing institute series from Prentice Hall PTR, New Jersey, 1997.

52. Eder J., "BIER - the Behavior Integrated Entity-Relationship Approach", 5th

International Conference on Entity Relationship Approach, North-Holland, 1 986.

53. Egenhofer, Max J. & Andrew U. Frank, Jeffrey P. Jackson, "A Topological Data
Model for Spatial Databases", SSD, Santa Barbara, California, pp. 271 -286, 1 989.

54. Eick C.F. & P.C. Lockemann, "Acquisition of Terminological Knowledge Using
Database Design Techniques", ACM SIGMOD, Austin, Texas, 1985.

55. Falkenberg E., "Concepts for Modeling Information", Modeling in DBMS, North­
Holland, 1 976.

56. Falkenberg E.D.H. & V. Kempen, "Knowledge-Based Information Analysis
Support", Artificial Intelligence in Database and Information System, Guangzhou,
China, 1988.

57. Farias de Souza, Marcio & Marcus Costa Sampaio, "Efficient Materialization and
Use of Views in Data Warehouses", SIGMOD28(1), Philadelphia, PA, pp.78-83,
1999.

58. Francis Day, Young & Serhan Dagtas, Mitsutoshi Lino, Ashfaq Khokhar, Arif
Ghafoor, "An Object-Oriented Conceptual Modeling of Video Data", ICDE,
Taipei, Taiwan, pp.401 -408, 1 995 .

59. Motschnig-Pitrik, Renate "The Semantics of Parts Versus Aggregates in Data/
Knowledge Modeling", CaiSE, Paris, France, pp.352-373 , 1 993 .

125

60. Geffner, S. & Divyakant Agawal, Amr El Abbadi, Terence R. Smith, "Relative
Prefix Sums: An Efficient Approach for Querying Dynamic OLAP Data Cubes'',
ICDE, Sydney, Australia, 1 999.

6 1 . Gelenbe, Erol & Georges Hebrail, "A Probability Model of Uncertainty in Data
Bases", ICDE, Los Angeles, California, pp. 328-333, 1 986.

62. Gingras, Frederic & Laks V. S. Lakshmanan, "A Multi-dimensional Language for
Interoperability and OLAP'', VLDB, New York City, USA, pp. 1 34-1 45, 1 998.

63. Goil, Sanjay and Alok Choudhary, "An Infrastructure for Scalable Parallel
Multidimensional Analysis", Northwestern University, International Conference
on Scientific and Statistical Database Management, July 1 999.

64. Golfarelli, Matteo & Dario Maio, Stefano Rizzi, Conceptual Design of Data
Warehouses from E/R Scheme, Published in the Proceeding of the Hawaii
International Conference On System Sciences, January 6-9, 1 998.

65. Golfarelli, Matteo & Stefano Rizzi, "Methodological Framework for Data
Warehouse Design", DOLAP, Bethesda, Maryland, 1 998.

66. Gray, Jim & S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F . Pellow, H. Pirahesh, "Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-tab, and Sub Total", Data Mining and Knowledge
Discovery 1 , Tucson, Arizona, 1 997.

67. Greenfield, Larry "Infrastructure Technology Vendors", LGI System
Incorporated, 1 999.

68. Grosz G. & C. Rolland, "Using Artificial Intelligence Techniques to Formalize
the Information System Design Process", Database and Expert System
Application, DEXA 90, Vienna, Austria, 1990.

69. Gupta H. and I. Mumick, "Selection of Views to Materialize in a Data
Warehouse", Proceedings of the International Conference on Database Theory
(ICDT), Greece, January 1 997.

70. Gupta, A. & V. Harinarayan, D. Quass, "Aggregate-Query Proceeding in Data
Warehousing Environments", Proceedings of the 2 1 st VLDB Conference, Zurich,
Switzerland, Sept. 1995.

7 1 . Gupta, Arnamath & Terry E. Weymouth, Ramesh Jain, "An Extended Object­
Oriented Data Model for Large Image Bases", SSD, Zurich, Switzerland, pp. 45-
6 1 , 199 1 .

72. Gyssens, Marc & Jan Paredaens, Dirk Van Gucht, "A Grammar-Based Approach
Towards Unifying Hierarchical Data Models'', SIGMOD Conference, Portland,
Oregon, pp. 263-272, 1 989.

73 . Gupta H. and I .S .Mumick, "Incremental Maintenance of Aggregate and Outerjoin
Expressions", Technical Report, Standford University, Stanford, CA, 1 999.

1 26

74. Hammer H., McLead D., "The Semantic Data Modeling: A Modeling Mechanism
for Database Applications", Proc. ACM SIGMOD Conference, Austin, Texas,
1 978.

75. Han, Jiawei "OLAP Mining: Integration of OLAP with Data Mining", DS-7,
Leysin, Switzerland, 1997.

76. Hanson, Joseph H. & Mary Jane Willshire, "Modeling a Faster Data Warehouse",
IDEAS, Montreal, Canada, pp.260-268, 1997.

77. Hou, Wen-Chi "A Framework for Statistical Data Mining On Summary Tables'',
Southern Illinois University at Carbondale, International Conference on Scientific
and Statistical Database Management, July 1 999.

78. Hsu, Cheng & Alvaro Perry, M'hamed Bouziane, Waiman Cheung, "TSER: A
Data Modeling System Using the Two-Stage Entity-Relationship Approach", ER,
New York, USA, pp.497-5 1 4, 1 987.

79. Hurtado, Carlos A. & Alberto 0. Mendelzon, Alejandro A. Vaisman,
"Maintaining Data Cubes Under Dimension Updates", ICDE, Sydney, Australia,
1 999.

80. Hurtado, Carlos A. & Alberto 0. Mendelzon, Alejandro A. Vaisman, "Updating
OLAP Dimensions", DOLAP, Kansas City, Missouri, USA, pp.60-66, 1 999.

8 1 . Hurtado, Carlos A. & Alberto 0. Mendelzon, Alejandro A. Vaisman,
"Multidimensional Data Modeling for Complex Data", ICDE, Sydney, Australia,
1 999.

82. Huyn, N. "Efficient Self-Maintenance of Materialized Views", Technical Report,
Standford University, Stanford, CA, 1996.

83 . Huyn, N. "Efficient View Self-Maintenance", Proceedings of the ACM Workshop
on Materialized Views: Techniques an.d Applications, Montreal, Canada, June
1996.

84. Huyn, N. "Exploiting Dependencies to Enhance View Self-Maintainability"
Technical Report, Standford University, Stanford, CA, 1 997.

85. Huyn, N. "Multiple-View Self-Maintenance in Data Warehousing Environments",
Proceedings of the 23rd VLDB Conference, Athens, Greece, 1 997.

86. J.A. Bubenko JR. & B. Wangler, "Research Directions in Conceptual
Specification Development", Conceptual Modeling, Database, and Case, pp.49-
68, 1 992.

87. Jagadish H.V. & Kapitskaia 0., Ng R.T. & Srivastava D., "Multi-Dimensional
Substring Selectivity Estimation", 25th International Conference on Very Large
Data Bases, Scotland, September 1 999.

1 27

88. Jeusfeld, Manfred A. & Christoph Quix, Matthias Jarke, "Design and Analysis of
Quality Information for Data Warehouses", ER, Singapore, pp.349-362, 1 998.

89. Johannesson, B. M. & C. Sundblad, "View Integration - A Knowledge Problem,
SYSLAB", Stockholm University, Stockholm, 1 987.

90. Johansson, Olof "Using an Extended ER-Model Based Data Dictionary to
Automatically Generate Product Modeling Systems", ADB, Vadstena, Sweden,
pp. 42-61 , 1994.

9 1 . Johnson, R. R. "Modeling Summary Data", SIGMOD Conference, Ann Arbor,
Michigan, pp. 93-97, 198 1 .

92. Jurgens, Marcus & Hans-J. Lenz, "The R-Tree: An Improved R-tree with
Materialized Data for Supporting Range Queries on OLAP Data", DEXA
Workshop, Vienna, Austria, pp. 1 86- 1 9 1 , 1 998.

93. Kamel, Nabil & Roger King, "A Model of Data Distribution Based on Texture
Analysis.", SIGMOD, Austin, Texas, pp. 3 1 9-325, . 1 985.

94. Kawaguchi, A. & D. Lieuwen, I. Murnick, D. Quass, K. Ross, "Concurrency
Control Theory for Deferred Materialized Views", Proceeding of the Conference
on Database Theory, Athens, Greece, Jan. 1 997.

95. Kenan Technologies, "An Introduction to Multidimensional Database
Technology".

96. Kimball, Ralph "A Dimensional Modeling Manifesto", DBMS Magazine, August
1 997.

97. Klir, George J. & Ute H. St. Clair and Bo Yuan, Fuzzy Set Theory: Foundations
and Applications., Prentice-Hall International, Inc. , New Jersey, 1 997

98. Labio, W. & J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom, "Performance
Issues in Incremental Warehouse Maintenance", Technical Report, Standford
University, Stanford, CA, 1 999.

99. Labio, W. J. & J. Wiener, H. Garcia-Molina, V. Gorelik, "Efficient Resumption of
Interrupted Warehouse Loads", Technical Report, Standford University, Stanford,
CA, 1 998.

1 00. Labio, W. J. & R. Yemeni, and H. Garcia-Molina, "Shrinking the Warehouse
Update Window", Proceedings of the ACM SIGMOD Conference, Philadelphia,
PA, May 1999.

1 0 1 . Labio, Wilburt & Dallan Quass, Brad Adel berg, "Physical Database Design for
Data Warehouses", Proceedings of the International Conference on Data
Engineering (ICDE), Birmingham, UK. 1 997.

,,,

1 28

1 02. Lahlou, Youssef & Noureddine Mouaddib, "Relaxing the Instantiation Link:
Towards a Content-Based Data Model for Information Retrieval", CaiSE, Crete,
Greece, pp. 540-561 , 1 996.

1 03 . Lazimy, Rafael "ER Model and Object-Oriented Representation for Data
Management, Process Modeling, and Decision Support", ER, Toronto, Canada,
pp. 129- 1 5 1 , 1989.

1 04. Lee, Kyuchul & Sukho Lee, "An Object-Oriented Approach to Data/Knowledge
Modeling Based on Logic", ICDE, Los Angeles, California, pp. 1 1 - 1 9, 1 990.

1 05 . Lehner, W. "Modeling Large Scale OLAP Scenarios", EDBT, Valencia, Spain,
March 1 998.

1 06. Lenz, Hans-J. & Arie Shoshani, "Summarizability in OLAP and Statistical Data
Bases'', SSDBM, Berlin, Germany, pp. 1 32- 143, 1 997.

1 07. Leonard,Michel & Ian Prince, "A Framework for Literate Data Modeling",
CaiSE, Manchester, UK, pp. 239-256, 1 992.

1 08. Lewerenz, Jana & Klaus-Dieter Schewe, Bernhard Thalheim, "Modeling Data
Warehouses and OLAP Applications by Means of Dialogue Objects" ER, Paris,
France, pp.354-368, 1 999.

1 09. Li Chang and X. Sean Wang, George Mason University, A Data Model for
Supporting On-Line Analytical Processing, CIKM, Rockville, Maryland, pp. 8 1 -
88, 1996.

1 1 0. Li J., Rotem D. & Srivastava J., "Aggregation Algorithms for Very Large
Compressed Data Warehouses", 25th International Conference on Very Large
Data Bases, Scotland, September 1 999.

1 1 1 . Lubars, M.D. & M.T. Harandi, "Intelligent Support for Software Specification
and Design", IEEE Expert, USA, 1 986.

1 1 2. Lyngbaek, Peter & William Kent, "A Data Modeling Methodology for the Design
and Implementation of lnformation Systems'', OODBS, Pacific Grove, California,
USA, pp. 6-1 7, 1986.

1 1 3 . Mangisengi, 0. & A. Min Tjoa, "A Multidimensional Modeling Approach for
OLAP within the Framework on the Relational Model Based on Quotient
Relations", DOLAP, Bethesda, Maryland, 1 998.

1 1 4. Mani, D. R. & Jame Drew, Andrew Betz, Piew Datta, "Statistics and Data Mining
Techniques for Lifetime Value Modeling'', KDD, San Diego, California, USA,
pp.94- 103, 1999.

1 1 5 . Marques, Paolo & Paula Furtado, Peter Baumann, "An Efficient Strategy for
Tiling Multidimensional OLAP Data Cubes", Workshop Data Mining and Data
Warehousing, pp. 13-24, 1 998.

1 29

St. Gabriel Library� Au

1 1 6. Mattos, Nelson Mendonca "The Basis for Data and Knowledge Modeling'', ER,
Rome, Italy, pp. 473-492, 1 988 .

1 1 7. McGuff, Frank "Data Modeling for Data Warehouses", Oct 1 996.

1 1 8. McLeod, Dennis "On Conceptual Database Modeling" Workshop on Data
Abstraction, Databases and Conceptual Modeling, pp. 1 6 1 - 1 63, 1980.

1 1 9. Meleod D. & Hammer M., "Database Description with SDM: Semantic Database
Model", ACM TODS 6(3), Arizona, USA, Sept 1 98 1 .

120. Miyamoto, Isao "Hierarchical Performance Analysis Models for Data Base
Systems", VLDB, Framingham, Massachusetts, pp.322-352, 1 975.

1 2 1 . Mohan, Narendra "DWMS: Data Warehouse Management System", VLDB,
Bombay, India, 1996.

1 22. Motschnig-Pitrik, Renate "The Semantics of Parts Versus Aggregates in Data/
Knowledge Modeling'', CaiSE, Paris, France, pp.3.5�-373, 1 993 .

1 23 . Muck T. & Vinek G., "Modeling Dynamic Constraints in Database'', Expert
Systems and Knowledge Representation, Proc. 1 st Workshop on Expert System,
1 984.

1 24. Mumick, I. & D. Quass, B. Mumick, "Maintenance of Data Cubes and Summary
Tables in a Warehouse'', Proceedings of the ACM SIGMOD Conference, Tuscon,
Arizona, May 1997.

125 . Mumick, Inderpal Singh & Dalian Quass, Barinderpal Singh Mumick,
"Maintenance of Data Cubes and Summary Tables in a Warehouse'', SIGMOD
Conference, Tucson, Arizona, pp.4 1 7-2 1 7, 1 997.

126. Muntz, Alice H. & Christian T. Ramiller, "A Requirement-Based Approach to
Data Modeling and Re-engineering", VLDB, Santiago de Chile, Chile, pp.643-
654, 1 994.

1 27. Mylopoulos J., Bernstein P.A., Wong H.K.T, "A Language Facility for Designing
Database Intensive Applications", ACM TODS Arizona, USA, Vol . 1 5, No.2,
1 980.

1 28 . Mylopoulos, J. "Conceptual Modeling and Telos", Conceptual Modeling,
Database, and Case, pp.49-68, 1 992.

1 29. Nah, Yunmook & Sukho Lee, "Two-level Modeling Schemes for Temporal­
Spatial Multimedia Data Representation.", DEXA, Valencia, Spain, pp. 102-1 07,
1992.

1 30. Nicolle, Christophe & Djamal Benslimane, Kokou Y etongnon, "Multi-Data
Models Translations in Interoperable Information Systems", CaiSE, Crete,
Greece, pp. 176- 192, 1 996.

1 30

1 3 1 . Nijssen and Halpin, "Conceptual Schema and Relational Database Design - A
Fact-Oriented Approach", Prentice-Hall, 1 989.

1 32. Oracle Corporation, Oracle Express Database Design and Cotrol Manual, Oracle
Corporation Publisher, 1995 .

1 33 . Oren, Ole & Frode Aschim, "Statistic for the Usage of a Conceptual Data Model
as a Basis for Logical Data Base Design", VLDB, Rio de Janeiro, Brazil , pp. 1 40-
145, 1979.

1 34. Ozkarahan, Esen "Database Management Concept, Design, and Practice",
Prentice Hall, New Jersey, 1 990.

1 35. P. O'Neil & D. Quass, "Improved Query Performance with Variant Indexes",
Proceedings of the ACM SI GM OD Conference, Tuscon, Arizona, May 1 997.

1 36. Pedersen B.T., Jensen C. S. & Dyreson C. E., "Extending Practical Pre­
Aggregation in On-Line Analytical Processing", 25th International Conference on
Very Large Data Bases, Scotland, September 1 99� . .

1 37. Pedersen, Torben Bach "Supporting Imprecision in Multidimensional Databases
Using Granularities", Aalborg University, Denmark, International Conference on
Scientific and Statistical Database Management, July 1 999.

1 38. Pedersen, Torben Bach & Christian S. Jensen, "Multidimensional Data Modeling
for Complex Data", ICDE, Sydney, Australia, pp.336-345, 1999.

1 39. Pietri F. & P.P. Puncello, "ASPIS: A Knowledge-Based Environment for
Software Development (ESPRIT)", Proceeding ESPRIT' 87, Brussels, Belgium,
1 987.

140. Pokorny, Jaroslav "Conceptual Modeling of Statistical Data", DEXA Workshop,
Zurich, Switzerland, pp.377-382, 1 996.

141 . Poosala, Viswanath & Bell Laboratories, Venkatesh, Ganti, "Fast Approximate
Answers to Aggregate Queries on a Data Cube", University of Wisconsin,
International Conference on Scientific and Statistical Database Management, July
1999.

1 42. Pourabbas, Elaheh & Maurizio Rafanelli, "Characterization of Hierarchies and
Some Operators in OLAP Environment'', DOLAP, Kansas City, Missouri, USA,
pp.54-59, 1999.

143 . Punchello P.P. & P. Torrigiani, "ASPIS: A Knowledge-based CASE
Environment", March, pp. 58-65, 1 988.

144. Qadah, Ghassan Z. "An Inference Model and a Tree-Structured Multicomputer
System for Large Data-Intensive Logic-Bases", IWDM, Tokyo, Japan, pp. 503-
5 1 6, 1987.

1 3 1

1 45. Quass D. and J. Widom, "On-Line Warehouse View Maintenance for Batch
Updates'', Proceedings of the ACM SIGMOD Conference, Tuscon, Arizona, May
1 997.

146. Quass, D. "Maintenance Expressions for Views with Aggregation'', Proceedings
of the ACM Workshop on Materialized Views: Techniques and Applications,
Montreal, Canada, June 1 996.

1 47. Quass, D. & A. Gupta, I . Mumick, and J. Widom, "Making Views Self­
Maintainable for Data Warehousing", Proceedings of the Conference on Parallel
and Distributed Information Systems, Miami Beach, FL, December 1996.

1 48. Raden, Neil "Modeling the Data Warehouse", Information Week, Jan. 1 996.

1 49. Ramakrishnan, R. & K. A. Ross, D. Srivastava, S. Sudarshan, "Efficient
Incremental Evaluation of Queries with Aggregation", International Symposium
on Logic Programming, Nov. 1994.

1 50. Ramsak, Frank & Volker Markl, Rudolf Bayer, "Physical Data Modeling for
Multidimensional Access Methods", Grundlagen von Datenbanken, pp.97- 1 0 1 ,
1999.

1 5 1 . Rauh, Otto "Some Rules for Handling Derivable Data m Conceptual Data
Modeling'', DEXA, Valencia, Spain, pp. 500-505, 1 992.

1 52 . Rea, Alan Queen's University of Belfast, Data Mining - Introduction and
Concept, Parallel Computer Centre, December 1 995.

1 53. Read, Robert L. & Donald S. Fussell, Abraham Silberschatz, "A Multi-Resolution
Reiational Data Model", VLDB, Vancouver, British Columbia, Canada, pp. 1 39-
1 50, 1992.

1 54. Rolland, C. & C. Canvet, "Trends and Perspectives in Conceptual Modeling",
Conceptual Modeling, Databases, and Cases, John Wiley and Sons Inc., p.27-48,
1992.

1 55. Ross D.T., Schoman K.E., "Structured Analysis for Requirements Definition",
IEEE Trans. SE(3/1), pp. 1 -65, 1977.

1 56. Ross, K. A. & D. Srivastava, D. Chatziantoniou, "Complex Aggregation at
Multiple Granularities", International Conference on Extending Database
Technology, March 1 998.

1 57. Ross, K. A. & D. Srivastava, P. J. Stuckey, S . Sudarshan, "Foundations of
Aggregation Constraints", Theoretical Computer Science, pp. 1 49- 1 79, Feb 1 998.

1 58. Roussopoulos, Nick "Materialized Views and Data Warehouses", KRDB, Athens,
Greece, pp. 1 2 . 1 - 1 2 .6, 1 997.

1 59. Roussopoulos, Nick "Materialized Views and Data Warehouses", SIGMOD
Record 27(1), Seattle, Washington, pp.21 -26, 1998.

1 32

1 60. Rumbaugh J., "Object-Oriented Modeling and Design", Prentice-Hall, 1 99 1 .

1 6 1 . Schiel, Ulrich "An Abstract Introduction to the Temporal-Hierarchic Data Model
(THM)", VLDB, Florence, Italy, pp.322-330, 1 983 .

1 62. Senko M., "DIAM as a Detail Example of ANSI/SP ARC Architecture - In
Modeling in Database System", Nijssen G., North-Holland, 1 976.

1 63 . Seo, Dongsu & Pericles Loucopoulos, "Formalisation of Data and Process Model
Reuse Using Hierarchic Data Types", CaiSE, Utrecht, The Netherlands, pp.256-
268, 1 994.

1 64. Sevcik, Kenneth C. "Data Base System Performance Prediction Using an
Analytical Model", VLDB, Cannes, France, pp. 1 82-1 98, 1 98 1 .

1 65. Shao, Shin-Chung "Multivariate and Multidimensional OLAP", EDBT, Valencia,
Spain, pp. 1 20-1 34, 1 998.

1 66. Shasha, Dennis "Netbook - a Data Model to Support Knowledge Exploration",
VLDB, Stockholm, Sweden, pp.41 8-425, 1 985. ·

1 67. Shipman D.W., "The Functional Data Model and the Language DAPLEX", ACM
TODS 6(1), Arizona, USA, 1 98 1 .

1 68. Shoshani, Arie "OLAP and Statistical Databases: Similarities and Differences",
PODS, pp. 1 85-196, 1997.

1 69. Shoval, Peretz & Sagit Shiran, "Entity-Relationship and Object-Oriented Data
Modeling - an Experimental Comparison of Design Quality'', DKE 2 1 , pp.295-
3 1 5, 1997.

170. Shukla, Amit & Prasad Deshpande, Jeffrey F. Naughton, Karthikeyan
Ramaswamy, "Storage Estimation for Multidimensional Aggregates in the
Presence of Hierarchies", VLDB, Bombay, India, 1 996.

1 7 1 . Silvon, "Defining Data Warehousing: What is it and who need it?", A Silvon
Software, Inc. White Paper, Westmont, IL.

172. Singh, Harry S. , Data Warehousing Concepts, Technologies, Implementations,
and Management, Prentice Hall PTR, New Jersey, 1 998.

1 73 . Smith J.M. & Smith D.C.P., "Database Abstractions: Aggregation and
Generalization", ACM Trans. On Database System (TODS) Vol.2 No.2, Arizona,
USA, pp. 105-1 33, 1 997.

174. Spaccapietra S. & C. Parent, "View Integration: A Step Forward in Solving
Structural Conflicts", Ecole Polytechnique Federale, Switzerland, 1 990.

1 75. Stanoi, Ioana & Divyakant Agrawal, Amr El Abbadi, "Modeling and Maintaining
Multi-View Data Warehouses", ER, Paris, France, pp. 1 6 1 - 1 75, 1 999.

1 33

1 76. Stanoi, Loana & Divyakant Agrawal, Amr El Abbadi, "Modeling and Maintaining
Muli-View Data Warehouses", ER, Paris, France, pp. 1 6 1 - 1 75, 1 999.

1 77. Su S.Y.W., "A Semantic Association Model for Corporate and Scientific
Statistical Databases", Inf. Science 29, pp. 1 5 1 - 1 99, 1 982.

1 78 . Sutton, David R. P. & J. H. King, "Integration of Model Logic and the Functional
Data Model", BNCOD, Aberdeen, Scotland, pp. 1 56- 1 74, 1 992.

1 79. Tauzovich B. "An Expert System for Conceptual Data Modeling", 8th Conference
on ER Approach, Toronto, Canada, pp.329-344, 1 989.

1 80. Theodoratos, Dimitri & Timos K. Sellis, "Designing Data Warehouses", D KE3 1
(3), pp.279-301 , 1 999.

1 8 1 . Theodoulidis C. & Loucopoulos P., Wangler B., "The Entity Relationship Time
Model and the Conceptual Rule Language", Proc. 1 0th International Conference
on Entity Relationship Approach, San Mateo, California, Oct. 1 99 1 .

1 82. Theodoulidis, C . & B . Wangler, P . Loucopoulos, "The Entity-Relationship-Time
Model", Conceptual Modeling, Database, and Case, pp.49-68, 1 992.

1 83 . Tsubaki, Masaaki "Multi-Level Data Model in DPLS - Database, Dynamic
Program Control & Open-Ended Pol Support'', VLDB, Framingham,
Massachusetts, pp.538-539, 1 975.

1 84. Wang K., Zhou S. & Liew S.C., "Building Hierarchical Classifiers Using Class
Proximity", 25th International Conference on Very Large Data Bases, Scotland,
September 1999.

1 85. Wang, Bing "Toward a Unified Data Model for Large Hypermedia Applications",
DEXA, Toulouse, France, pp. 142- 1 5 1 , 1 997.

1 86. Welzer, Tatja..ria & Johann Eder, "Meta Data Model for Database Design", DEXA,
Prague, Czech Republic, pp. 677-680, 1 993.

1 87. Wietek, Frank "Modeling Multidimensional Data in a Dataflow-Based Visual
Data Analysis Environment'', CaiSE, Heidelberg, Germany, pp. 149- 1 63, 1 999.

1 88. Wohed R. "Diagnosis of Conceptual Schemas", Artificial Intelligence in Database
and Information System, Guangzhou, China, 1 988.

1 89. Y. Cui and J. Widom, "Storing Auxiliary Data for Efficient View Maintenance
and Lineage Tracing", Technical Report, Standford University, Stanford, CA,
1999.

190. Yang J. and J. Widom, "Maintaining Temporal Views Over Non-Temporal
Information Sources for Data Warehousing", Proceedings of the 61h International
Conference on Extending Database Technology, Valencia, Spain, March 1998.

1 34

1 9 1 . Yang J. and J. Widom, "Making Temporal Views Self-Maintainable for Data
Warehousing", Proceeding of the 7th International Conference on Extending
Database Technology, Konstanz, Germany, March 2000.

1 92 . Zhang, Chuan & Jian Yang, "Genetic Algorithm for Materialized View Selection
in Data Warehouse Environments", DaWak, pp. 1 1 6- 1 24, 1 999.

1 93 . Zhang, Chuan & Jian Yang, "Materialized View Evolution Support in Data
Warehouse Environment", EDBT, Konstanz, Germany, pp.293-307, 1 999.

1 94. Zhang, Xin & Elke A. Rundensteiner, "Data Warehouse Maintenance under
Concurrent Schema and Data Updates", ICDE, Sydney, Australia, pp.253, 1 999.

1 95. Zhao, Yihong & Prasad Deshpande, Jeffrey F. Naughton, "An Array-Based
Algorithm for Simultaneous Multidimensional Aggregations", SIGMOD, Tucson,
Arizona, 1 997.

1 96. Zhuge, Y. & H. Garcia-Molina, "Consistency Algorithms for Multi-Source
Warehouse View Maintenance", Journal of Di.stributed and Parallel Databases,
vol. 6, pp. 7-40, Jan. 1 998.

1 97. Zhuge, Y. & H. Garcia-Molina, J. L . Wiener, "The Strobe Algorithms for Multi­
Source Ware house Consistency", Proceeding of the Conference on Parallel and
Distributed Information Systems, Miami Beach, FL, Dec. 1 996.

1 98. Zhuge, Y. & H. Garcia-Molina, J. Hammer, and J. Widom, "View Maintenance in
a Warehousing Environment", Proceeding of the ACM SIGMOD Conference,
San Jose, California, May 1 995.

1 99. Zhuge, Y. & H. Garcia-Moiina, "Graph Structure Views and Their Incremental
Maintenance", Proceeding of the International Conference on Data Engineering,
Orando, FL, Feb. 1 998.

200. Zhuge, Y. & J.L. Wiener and H. Garcia-Molina, "Multiple View Consistency for
Data Warehousing", Proceeding of the International Conference Data
Engineering, Binghamton, UK, April 1 997.

1 3 5

St. Gabriel Library, Au

	Cover and Title Page
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Table of Contents
	Chapter I : Introduction
	Chapter II : Data Structure Modeling
	Chapter III : Dvrdata Model Generation
	Chapter IV : Dvrdata Model Design Via Graph Model
	Chapter V : Application to Engine Cost System
	Chapter VI : Conclusions and Recommendations
	Data Transformation and Dat Loading
	Bibliography

