
Domain-oriented two-stage aggregation:
generating baseball play-by-play narratives

James Baldwin‡ and Songsak Channarukul†

Department of Computer Science
Assumption University

Bangkok, Thailand
Email: ‡bravamicus@yahoo.com, †songsak@scitech.au.edu

Abstract— This paper presents an end-to-end natural language
generation system that performs aggregation in two stages: the
first takes advantage of the information implicit in the source
knowledge base in order to aggregate event components into
complex sentences. The second stage examines the developing
context of the text in order to aggregate similar adjacent events
into more fluent text. The source knowledge base is the
Retrosheet collection of play-by-play baseball scoresheets
encoded in machine-readable form. The output is reasonably
fluent and natural, human-readable play-by-play narratives of
historical baseball games. The system was tested against all
regular season major league games played from 1950 to 1969,
taking less than a second to produce three to five pages of text for
each game. The aggregation achieved resulted in a substantial
improvement in native speaker judgments of fluency and
readability.

Keywords - natural language generation; aggregation

I. INTRODUCTION
In natural language generation, aggregation is a catch-all

term that attempts to encompass such linguistic processes as
coordination and subordination, along with various forms of
ellipsis to eliminate redundancies. The goal of aggregation is
variously seen as improving the fluency, conciseness,
coherence and cohesion of the output text [1].

Where and how these processes can best be performed in
the generation process remains uncertain. Aggregation has
been implemented or proposed in each of the three Reiter and
Dale consensus architecture stages: document planning,
microplanning and realization [2]. Furthermore, within their
central microplanning stage, aggregation can be found before,
after and between lexicalization and the generation of referring
expressions. Nor is it clear that a single monotonic module is
desirable. In order to provide a mechanism for more complex
feedback or revision based approaches, the RAGs
implementation architecture [3] gives aggregation its own
component that may be visited (repeatedly if desired) via the
Objects and Arrows System whiteboard interface [4].

Likewise, approaches to how aggregation should be
performed vary widely. On the one hand, theoretically oriented
researchers have employed Discourse Representation Theory

[5] or Centering Theory [6] to inform their approaches, which
results in a close linkage between aggregation and text
planning. At the other extreme, generation has been
approached as a discrete optimization problem [7], which
avoids theoretical commitment altogether in favor of
conciseness. Between these extremes, there is a large body of
research literature, but little consensus has emerged. In recent
years, corpus statistical and machine approaches to generation
have become popular. However, such “data-driven” systems
rely on the existence of extensive corpora of model outputs,
which may or may not be available. For the domain to be
discussed here, such model outputs do not exist.

This uncertainty about how and where to perform
aggregation arises in part from the fact that coordination and
subordination are both constrained and motivated by a tangle
of syntactic, semantic and pragmatic factors. Where one elects
to deal with aggregation depends on which factors are deemed
more important, based largely on one’s theoretical
predisposition and what shortcomings one is willing to
overlook. Definitions of aggregation are usually couched in
terms of messages or propositions, revealing an assumption
that the underlying knowledge base provides its information as
some kind of atomic logical formulae that will need to be
combined appropriately. David McDonald has recently
expressed skepticism that this kind of definition is coherent,
noting that “it might turn out that this is an artifact of the
architecture of today’s popular text planners and not at all a
natural kind, that is, something that is handled with the same
procedures and at the same points in the processing for all the
different instances of it that we see in real texts.” [8].

This paper presents the baseball play-by-play narrative
generation system, named “BABBAGE” (for Babbage’s
Automatic BaseBall Aggregated Generation Engine). In our
system, we have retreated from a theoretical, “domain
independent” approach to aggregation. Instead, we have turned
to the resources available within the source knowledge base,
and to the stylistic desiderata for the output text, to guide our
approach to aggregation. For the first of these, it became clear
that it was necessary not only to decode the densely coded
events surrounding each batter’s turn at the plate, but also to
maintain a record of the on-going state of the game. For
example, the score, the number of outs, and the identities of the

978-1-4799-6049-1/15/$31.00 ©2015 IEEE

42

