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Abstract 

Feature selection and model selection are pillars of any classification problems. Bottom­

up integrated feature and architecture selection is useful for the optimal neural net­

works construction for an available training data set. From the algorithm, it is easy to 

find appropriate architecture for any number of features with acceptable classification 

rate. Besides, the feature selection approach along with architecture selection gives 

an advantage of defeating a requirement of a prior knowledge of setting fixed number 

of features as other researchers did. Furthermore, proposed algorithm gives a chance 

to decide which pillar comes first for the acceptable solution of the underlie problem. 

Consequently, it enables practitioners to overcome the investigation of appropriate 

network topology using trial and error methodology. The proposed algorithm gives 

us faster, reliable accuracy and less resource usage with likelihood ratio test, cross vali­

dation and regularization measures. The other advantage of this algorithm overcomes 

the burden of computational cost and exhaustive searching for ideal architecture even 

though it may be not suitable for the proponent of middle ground between accuracy 

and speed. The algorithm is tested on new benchmark (Geez characters) and common 

available character recognition feature sets ( "O" - "9") handwritten English numerals. 

ix 



Chapter 1 

Introduction 

Machine replication of human functions, like reading, is an ancient dream. However, 

over the last five decades, machine reading has grown from a dream to reality. Optical 

character recognition has become one of the most successful applications of technology 

in the field of pattern recognition and artificial intelligence. Character Recognition 

or Optical Character Recognition (OCR) is the process of converting scanned images 

of machine printed or handwritten text (numerals, letters, and symbols), into a com­

puter process-able format (such as ASCII or Unicode). Many commercial systems for 

performing OCR exist for a variety of applications, although the machines are still not 

able to compete with human reading capabilities. The main principle in automatic 

recognition of patterns is first to teach the machine which classes of patterns that may 

occur and what they look like. In OCR patterns are letters, numbers and some special 

symbols like commas, question marks etc., while the different classes correspond to 

the different characters. The teaching of the machine is performed by showing the 

machine examples of characters of all the different classes. Based on these examples 

the machine builds a prototype or a description of each class of characters. Then, 

during recognition, the unknown characters are compared to the previously obtained 

descriptions, and assigned the class that gives the best match. 

Since the inception of OCR technologies, there are various and different techniques 

for the achieving of 100% accuracy rate of the technologies with the compromise of 
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speed and resource usages. Among these technologies, there is new and promising 

technique, which is Artificial Neural Networks (ANN). It has unique and inherited 

advantageous for solving of intractable and cumbersome problems such as pattern 

recognition (Character Recognition), NP problem and etc. 

Multilayer Feedforward Neural Network (FNN) is one of numerous variations of 

neural networks due of architectures and training algorithms. Recently it has been 

used extensively in Optical Character Recognition. These networks rnay be viewed 

as a combined feature extractor and classifier. However in this investigation we deal 

independently of unified approach in which neural networks for classifier and principal 

component analysis (PCA) for feature extractor. 

ANN has problems which are it is difficult to analyze and fully understand the 

decision making process. In other words, Artificial Neural Networks in OCR may 

be their limited predictability and generality while an advantage is their adaptive 

nature. In addition to this, in order to achieve the highest accuracy for the given 

problem(s), neural networks should go through exhaustive searching in its weight 

parameters space and hence it uses a lot of resources and time. The latter problem 

is addressed in this thesis through the framework of constructive neural networks 

and maximum likelihood statistic principles. Constructive neural networks are a type 

of feedforward neural network in which the network architecture is built during the 

training process. The type of architecture built can affect both generalization and 

convergence speed. 

In the field of automated classification, classifier is not the only pillar of the clas­

sification system but also feature selection is the complementary of the classifier. 

Feature selection is to select a subset of features from large initial dataset that pro­

vides the best classification performance. The major advantage of feature selection is 

not only that it may reduce the cost but it also could remove redundant and noise fea­

tures. The integration of feature and architecture selection would give the enhanced 
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acceptable accuracy without exhaustive resources. For this particular study, it con­

siders this approach with maximum likelihood statistics to ensure that the proposed 

algorithm has a unique advantage in OCR technologies. 

Convergence speed and reliability are important properties of feedforward neural 

networks. These properties are studied by probing the combined cause of the inherit 

benefits of feature selection, likelihood ratio statistics and constructive architecture 

process in feedforward neural networks. This algorithm addresses the over burden of 

training loads and hence increases the cost of the design of recognition systems. The 

proposed algorithm is revealed to achieve the improved classification accuracy with 

less resource. 

The usage of free user biased setting training algorithm (Resilient propagation) 

with the effect of regularization term is examined through a series of empirical studies 

on different datasets. These data sets are multi feature handwritten English numerals 

and new character sets from one of national script languages in East Africa - Geez 

characters. In addition to this, the feature dimensions of these data sets are high 

and medium one, respectively. The results of these studies demonstrate that high 

dimensional feature sets give better classification accuracy compared to medium di­

mensional feature sets even though the magnitude of deterioration is a bit higher. 

Moreover, the effect of regularization term between error term and weight param­

eter shows a better classification accuracy so does the generalization ability of the 

constructive neural networks with prominent features. 

The proposed algorithm - Forward Integrated Feature and Architecture Selection 

(FIFAS)- has a peculiar advantage for those who in need of less minimal deteriorated 

accuracy with minimal resources and cost rather than unlikely 100% accuracy feat 

and huge amount of resources. 
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1.1 Purpose of the Study 

No investigation in character recognition of one of written scripts in the world - Geez 

scripts has been conducted. The primary purpose of this thesis is to improve the 

unified effect of feature selection and neural networks algorithm for optical charac­

ter recognition principles by applying on machine printed Geez characters and trite 

handwritten English numerals. This thesis is to formulate a new approach to tackle 

the difficulties of getting enhanced and acceptable solution on character recognition 

problems using neural networks paradigm and hence verify it on Geez and English 

characters. 

Another objective of this thesis is to establish a foundation for further investiga­

tions on recognition of Geez characters. 

1.2 Research Questions 

In this section, I describe what I see as one central question regarding Froward Inte­

grated Feature and Architecture Selection (FIFAS) for optical character recognition, 

and which is the goal of this thesis to answer. 

Independent investigations of appropriate and relevant features for the "best" 

solution of given problem have been formulated in literatures. Similarly, suitable 

topology of neural networks has been investigated for so many problems too. Thus, 

despite the impressive empirical results from such independent methodologies in the 

literatures, one central question is that: which technique(s) is suitable that can im­

prove the principle of neuml networks in order to reduce cost function, to get faster 

speed and to find "enhanced" or "acceptable" accuracy of recognition system using 

neural networks. That is, what will be the unified effect on the independent investi­

gations of feature selection and architecture selection using different approaches for 

achieving less cost function, faster speed and "acceptable" accuracy? 
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Furthermore, the above central question further introduces other central ques­

tion, that is, which component is prior of another in the design of the optical char­

acter recognition system. In other words, is there an effect for the choice of order of 

investigation (selection of feature or selection of architecture) for the improved inte­

grated feature and architecture selection of using neural networks on optical character 

recognition problems? 

Lastly, but not least, which direction should one start the training of neural net­

works with and/or without feature selection? And should one proceed constructive 

(forward) or pruning (backward} training of neural networks with the available fea­

tures? 

1.3 Scope of the study 

In optical character recognition (OCR), there are numerous techniques to solve a 

specific problem. Due to unexplored issue of Geez characters, this study will focus 

on only one technique -neural networks. Of course, Optical Character Recognition 

has various stages or components, which are inseparable from one anthers. Before 

applying neural networks principles for OCR, OCR may use the following stages 

in order to get high accuracy performance. These stages are preprocessing, feature 

extraction, classification and post processing:-

This study focuses on the following stages of OCR: 

1. preprocessing the raw data 

2. extracting features of each scanned image using feature extraction methods 

3. classifying each image using a different choices of neural network principles 

Similarly, the study covers scoped to not only Geez characters but also English 

numeral characters from 'O' -'9'. In order to have a broad investigation, the study 
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considered both machine printed and handwritten characters. The former one is Geez 

characters and the latter one refers to English numerals. 

Furthermore, by the investigation of neural networks on the above characters, it 

is limited to only one kind of feature extractor techniques due to its unsupervised 

ability for the selection of principal features in line with neural networks principles. 

1.4 Limitations 

This study has only limited number of character images due to limited available 

machine printed Geez font types. This may lead to poor performance for the inves­

tigation since a large number of training sets are required for high hitting rate for 

neural network architecture. 

Second, there is no comparison with previous studies on Geez character recognition 

topics since the world volt face on this script. 

1.5 Thesis Contribution 

This work investigates the application of optical character recognition in the training 

of multilayer neural networks along with automatic relevant features selection. The 

combined or integrated feature and architecture selection provides improved solu­

tions and establishes a new algorithm in which it further improves for better solution. 

By exploring feature selection algorithm, topology selection algorithm, the combined 

effect of feature and architecture selection, the direction of the starting of the imple­

mentation (constructively or destructively) and the effect of dimension (number of 

training set and features) contribute 

1. To the "bridge" forming between the neural network research community and 

more established disciplines in which neural networks have found application 
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such as optical character recognition. Specifically, this research provides im­

proving the understanding of potentials and limitations of applying integrated 

feature and architecture selection; 

2. The use of Geez character in the field of IT: People in business and government 

facilitate their workflow. In other words, OCR systems provide fast storage, 

recall and distribution of documents in workflow processing and other appli­

cations. Document analysis can help with the indexing for storage and recall, 

and can partition the image into subregions of interest for convenient access by 

users. Besides, automatic processing of international documents alleviates or 

ameliorates the challenging problems due to lack of Optical Character Recog­

nition techniques for all available languages and script classes; 

3. Lay down for an embarkation of further study on Geez characters or language: 

Research on automated written language recognition dates back several decades. 

Today, cleanly printed text in documents with simple layouts can be recognized 

reliably by off-the-shelf OCR software. There is also some success with hand­

writing recognition, particularly for isolated hand-printed characters and words, 

e.g., in the on-line case, the recently introduced personal digital assistants have 

practical value. Most of the off-line successes have come in constrained domains 

such as postal addresses [1], bank checks, and census forms. The analysis of 

documents with complex layouts, recognition of degraded printed text, and the 

recognition of running handwriting continue to remain largely in the research 

arena. Some of the major research challenges in recognizing handwriting are in: 

word and line separation, segmentation of words into characters, recognition of 

words when lexicons are large and use of language models in aiding preprocess­

ing and recognition. Therefore, hence the core foundation for written language, 

that is optical character recognition (OCR), gives a way for further studies in 

the above-mentioned fields; 
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4. Many commercial systems allow recognition results of Geez character to be 

placed directly into spreadsheets, databases, and word processors. 

1.6 Thesis Overview 

The remainder of this thesis is structured as follows: In chapter 2, it has the goal 

of integrated feature and architecture selection followed by related works on feature 

selection and constructive neural network design, list out drawbacks of the related 

methodologies and give a suggestion for solving the drawbacks of discussed methodolo­

gies. Chapter 3 then presents the crux aim of this thesis by stating the new algorithm 

that will answer the research questions that are raised in the previous section. In do­

ing so, we discuss the assumptions, reasons of these assumptions and the superiority 

of the proposed algorithm. Chapter 4 spells out some of its implementation details 

and also empirically compare it with related approaches (such as pruning, train with­

out feature selection, and prioritization of the pillars of recognition systems) and test 

on two different benchmark datasets: common handwritten English numerals and 

a new machine printed Geez characters. Chapter 5 then summarizes and discusses 

the experimental results in order to depict the novelty and aptness of the proposed 

algorithm. Finally, Chapter 6 closes with conclusions, recommendations and future 

work. 
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Chapter 2 

Literature Review 

2.1 Background and Preliminaries 

In this chapter, I first discuss what the goal of forward integrated feature and architec­

ture selection (FIFAS) for the application of optical character recognition using neural 

networks is and then briefly review previous work on constructive neural networks, 

feature selection algorithm, and backward unified integrated feature and architecture 

selection. 

2.1.1 The Goal of Integrated Feature and Architecture Se­

lection 

The notion of independent investigation of feature selection and model (topology) se­

lection in neural networks requires extensive research and enormous cost function to 

achieve the best and ideal solution in the field of one of pattern recognitions - optical 

character recognition. Of course, neural networks has an ability to find acceptable so­

lution using inherent integration of feature and model complexity without considering 

"relevant" feature sets and acceptable topology and in turn cost function. However, 

the general view of neural networks cannot lead to a better investigation with minimal 

cost function unless one considers the integrated effect of independent investigation 
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of each pillar of recognition system. On the other hand, combined study of the in­

dependent investigation may counter balance one another and hence diminishes the 

advantages of each component. As a result, we consider a chance to investigate the 

combined effect of independent investigations of each component without removing 

the advantages which are inherited in each pillar. Moreover, the integrated approach 

should use minimal resources so that it improves the speed of the system without 

deteriorating the accuracy of the recognition rate. 

Therefore, this thesis takes the forward integrated feature and model selection 

using neural networks algorithm in order to minimize the usage of huge resources, 

improve the speed without compromising the accuracy of the recognition system and 

to determine the prioritization of pillars. 

2.1.2 Related Work 

By the time of five years old, most children can recognize digits and letters. Small 

characters, large characters, handwritten, machine printed, or rotated - all are easily 

recognized by the young. The characters may be written on a cluttered background, 

on crumpled paper or even be partially occluded. We take this ability for granted 

until we face task of teaching a machine how to do the same. Pattern recognition is 

the study of how machines can observe the environment, learn to distinguish patterns 

of interest from their background, and make sound and reasonable decisions about 

the categories of the patterns. In spite of almost 50 years of research, design of a 

general-purpose machine pattern recognizer remains an elusive goal. 

The best pattern recognizers in most instances are humans, yet we do not under­

stand how human recognizes pattern. Rose [2] emphasizes the work of Nobel Laureate 

Herbert Simon whose central finding was that pattern recognition is critical in most 

human decision making tasks: "The more relevant patterns at your disposal, the bet­

ter your decisions will be. This is hopeful news to proponents of artificial intelligence, 
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since computer can surely be taught to recognize patterns. Indeed, successful com­

puter programs that help banks score credit applicants, help doctors diagnose disease 

and help pilot land airplanes depend in the same way on patter recognition. We need 

to pay much more explicit attention to teaching pattern recognition." 

What is Pattern Recognition? Automatic (machine) recognition, description, 

classification, and grouping of patterns are important problems in a variety of en­

gineering and scientific disciplines such as biology, psychology, medicine, marketing, 

computer vision, artificial intelligence, and remote sensing. As Watanable [3] defines 

a pattern "as opposite of a chaos; it is an entity, vaguely defined, that could be given 

a name." For example, pattern could be a fingerprint image, a handwritten cursive 

word, a human face, or a speech signal. Given a pattern, its recognition/ classification 

may consist of one of the following two tasks [3]: 

1. supervised classification (e.g., discriminant analysis) in which the input pattern 

is identified as a member of a predefined class, 

2. unsupervised classification (e.g., clustering) in which the pattern is assigned to 

hitherto unknown class. 

Note that the recognition problem here is being posed as a classification or catego­

rization task, where the classes are either defined by the same designer (in supervised 

classification) or are learned based on similarity of patterns (in unsupervised classifi­

cation). 

Interest in the area of pattern recognition has been renewed recently due to 

emerging applications which are not only challenging but also computationally more 

demanding (see Table 2.1). These applications include data mining (identifying a 

"pattern" e.g., correlation, or an outlier in millions of multidimensional patterns), 

document classification (efficiently searching text documents), financial forecasting, 
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Table 2.1: Example of pattern recognition application 
II Problem Domain I Application I Input Pattern I Pattern Classes 

Biometrics Sequence analysis DNA or Protein se- Known types of 
quence genes or pattern 

Data mining Searching for mean- Point of multidi- Compact and well 
ingful patterns mensional space separated clusters 

Document cla.ssifi- Internet search Text document Semantic categories 
cation 
Document image Reading machine Document image Alphanumeric 
analysis for blind characters, 

words 
Industrial auto ma- Printed circuit Intensity or range Defective/non-
tion board inspection image defective nature of 

product 
Multimedia Internet search Video clip Video genre 
database retrieval 
Biometric recogni- Personal identifica- Face, iris, finger- Authorized users 
ti on ti on print for access control 
Remote sensing Forecasting crop M ultispecteral im- Land use cate-

yield age gories, growth 
pattern of crops 

Speech recognition Telephone di rec- Speech waveforms Spoken words 
tory enquiry 

Adapted from [4], pp 5. 

organization and retrieval of multimedia database, and biometrics (personal identifi­

cation based on various physical attributes such as face and fingerprints). A common 

characteristic of a number of these applications is that the available features (typi­

cally, in the thousands) are not usually suggested by domain experts, but must be 

extracted and optimized by data-driven procedures. 

The rapidly growing and available computing power, while enabling faster pro­

cessing of huge data sets, has also facilitated the use of elaborate and diverse methods 

for data analysis and classification. At the same time, demands on automatic pattern 

recognition systems are rising enormously due to the availability of large databases 

and stringent performance requirements (speed, accuracy, and cost). In many of 

emerging applications, it is clear that no single approach for classification is "best" 

and that multiple methods and approaches have to be used. Consequently, combining 

several sensing modalities and classifiers is now a common used practice in pattern 

recognition. 
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The design of a pattern recognition system essentially involve the following three 

aspects: 

I. data acquisition and preprocessing, 

2. data representation, and 

3. decision making. 

The problem domain dictates the choice of sensor(s), preprocessing technique, 

representation scheme, and the decision making model. It is generally agreed that 

a well-defined and sufficiently constrained recognition problem (small intraclass vari­

ations and large interclass variations) will lead to a compact pattern representation 

and a simple decision making strategy. Learning from a set of examples (training set) 

is an important and desired attribute of most pattern recognition systems. The four 

best-known approaches from pattern recognition are: 

I. Template matching, 

2. Statistical classification, 

3. Syntactic or structural matching, and 

4. Neural networks 

These models are not necessarily independent and sometimes the same pattern 

recognition method exists with different interpretations. Attempts have been made 

to design hybrid systems involving multiple models [5]. 

In this paper, the crux idea is Artificial Neural Networks (ANN). It is discussed 

in detail along with other related approaches. 

For many centuries, one of the goals of human kind has been to develop machines. 

One envisioned these machines as performing all cumbersome and tedious tasks so 

that one might enjoy a more fruitful life. The era of machine making began with 
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the discovery of simple machines such as lever, wheel and pulley. Many equally 

congenial inventions followed thereafter. Nowadays engineers and scientists are trying 

to develop intelligent machines. Artificial neural systems are present-day examples of 

such machines that have great potential to further improve the quality of our life. 

Artificial Neural Network can be defined as follows: 

A structure (network) composed of a number of interconnected units (ar­

tificial neurons). Each unit has an input/output (I/O) characteristic and 

implements a local computation or function. The output of any unit is 

determined by its I/O characteristic, its interconnection to other units, 

and (possibly) external inputs. Although ''hand crafting" of the network 

is possible, the network usually develops and overall functionality through 

one or more forms of training. {6] 

Artificial neural networks represent the promising new generation of information 

processing networks. Advances have been made in applying such systems for problems 

found intractable or difficult for traditional computation. Artificial neural systems 

function as parallel distributed computing networks. Their most basic characteristic is 

their architecture. Only some of the networks provide instantaneous responses. Other 

networks need time to respond and are characterized by their time-domain behavior, 

which one often refers to as dynamics. Neural networks also differ from each other 

in their learning modes. There are a variety of learning rules that establish when 

and how the connecting weights change. Finally, networks exhibit different speeds 

and efficiency of learning. As a result, they also differ in their ability to accurately 

respond to the cues presented at the input. 

In contrast to conventional computers, which are programmed to perform specific 

tasks, most neural must be taught, or trained. They learn new associations, new pat­

terns, and new functional dependencies. Learning corresponds to parameter changes. 

Learning rules and algorithms used for experimental training of networks replace the 

14 



programming required for conventional computation. Neural network users do not 

specify an algorithm to be executed by each computing node, as would programmers 

of a more traditional machine. Instead, they select what in their view is the best 

architecture, specify the characteristics of the neurons and initial weights, and choose 

the training mode for the network. Appropriate inputs are then applied to the net­

work so that it can acquire knowledge from the environment. As a result of such 

exposure, the network assimilates the information that can later be recalled by the 

user. 

In general, neural networks can be viewed as massively parallel computing systems 

consisting of an extremely large number of simple processors with many interconnec­

tions. Neural Network models attempt to use some organizational principles (such 

as learning, generalization, adaptivity, fault tolerance and distributed representation, 

and computation) in network of weighted directed graphs in which the nodes are 

artificial neurons and directed edges (with weights) are connections between neuron 

outputs and neurons inputs. The main characteristics of neural networks are that they 

have the ability to learn complex nonlinear input-output relationships, use sequential 

training procedures, and adapt themselves to the data. 

The most commonly used family of neural networks for pattern classification 

tasks [7] is feed-forward network, which includes Multilayer Percepton (MP) and 

Radial-Basis Function (RBF) networks. These networks are organized into layers 

and have unidirectional connection between the layers. Another popular network is 

Self-Organizing Map {SOM), or Kohonen-Network [8], which is mainly used for data 

clustering and feature mapping. The learning process involves updating network ar­

chitecture and connection weights so that a network can efficiently perform a specific 

classification/clustering task. The increasing popularity of neural network models 

to solve pattern recognition problems has been primarily due to their seemingly low 
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dependence on domain-specific knowledge (relative to model-based and rule-based air 

proaches) and due to the availability of efficient learning algorithms for practitioners 

to use. 

ANNs provide a new suite of nonlinear algorithms for feature extraction (using 

hidden layers) and classification (e.g., Multilayer Perceptrons). In addition, existing 

feature extraction and classification algorithm can also be mapped on neural network 

architectures for efficient (hardware) implementation. In spite of the well-known neu­

ral network models are implicitly equivalent or similar to classical statistical pattern 

recognition methods, Neural networks do offer several advantages such as, unified 

approaches for feature extraction and classification and flexible procedure for finding 

good, moderately nonlinear solutions. However, this study tries to investigate inde­

pendent approach for feature selection and classification of the underline problem. 

Consequently, the results will compare both approaches - unified and independent. 

The following are key aspects of neural computing:-

• As the definition of ANN indicates, the overall computational model consists of 

a re-configurable interconnection of simple elements, or units; 

• Individual units implement a local function, and the overall network of intercon­

nected units displays a corresponding functionality. Analysis of this functional­

ity, except through training and test examples, is often difficult. Moreover, the 

application usually determines, via specifications, the required functionality; 

• Modifying patterns of inter-element connectivity as a function of training data 

is a key learning approach. In other words, the system knowledge, experience, 

or training is stored in the form of network interconnections; 

• To be useful, neural systems must be capable of storing information (i.e., they 

must be "trainable"). Neural systems are trained in the hope that they will sub­

sequently display correct associative behavior when presented with new patterns 
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to recognize or classify. That is, the objective in the training process is for the 

network to develop an internal structure enabling it to correctly identify or 

classify new, similar patterns and 

• A neural network is a dynamic system; its state (e.g., unit outputs and inter­

connection strengths) changes over time in response to external inputs or an 

initial (unstable state). 

2.1.3 Advantages and Disadvantages of ANNs 

Because ANNs are a relative new computational paradigm, it is probably safe to 

say that the advantages, disadvantages, applications, and relationships to traditional 

computing are not fully understood. Expectations (some might say "hype") for this 

are high. Neural networks are particularly well suited for certain applications, espe­

cially trainable pattern association. The notion that artificial neural networks can 

solve all problems in automated reasoning, or even all-mapping problems, is probably 

unrealistic. 

Advantages 

• Inherently massive parallel 

• May be fault tolerant because of parallelism 

• May be designed to be adaptive 

• Little need for extensive characterization of problem (other than through the 

training set) 

Disadvantages 

• No clear rules or design guidelines for arbitrary application 

• No general way to asses the internal operation of the network 

17 



• Training may be difficult or impossible 

• Difficult to predict future network performance (generalization) 

2.1.4 The Curse of Dimensionality and Peaking Phenomena 

The performance of a classifier depends on the interrelation between sample size, 

number of features, and classifier complexity. A naive table-lookup technique (parti­

tioning the feature space into cells and associating a class label with each cell) requires 

the number of training data points to be an exponential function of the feature dimen­

sion [9]. This phenomenon is termed as "curse of dimensionality," which leads to the 

"peaking phenomenon" in classifier design. It is well known that the probability of 

misclassification of a decision rule doesn't increase as the number of features increases, 

as long as the class-conditional densities are completely known (or, equivalently, the 

number of training samples is arbitrarily large and representative of the underlying 

densities). However, it has been often observed in practice that the added features 

may actually degrade the performance of a classifier if the number of training samples 

that are used to design the classifier is small relative to the number of features. This 

paradoxical behavior is referred to as the peaking phenomenon [10][11] [12]. A simple 

explanation for this phenomenon is as follows: The most commonly used parametric 

classifier estimates the unknown parameters and plugs them in for the true parame­

ters in class-conditional densities. For a fixed sample size, as the number of features is 

increased (with a corresponding increase in the number of unknown parameters), the 

reliability of the parameter estimates decreases. Consequently, the performance of 

the resulting plug-in classifiers, for a fixed sample size, may degrade with an increase 

in the number of feature. 

The practical implication of the curse of dimensionality is that a system designer 

should try to select only a small number of salient features when confronted with a 

limited training set. All of the commonly used classifier, including multilayer feed 
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forward networks, can suffer from the curse of dimensionality. While an exact rela­

tionship between the probability of misclassification, the number of training samples, 

the number of misclassification, the number of features and the true parameters of 

the class-conditional densities is very difficult to establish, some guideline have been 

suggested regarding the ratio of the sample size to dimensionality. It is generally ac­

cepted that using at least ten times as many training samples per class as the number 

(J > 10) is a good practice to follow in classifier design [10]. The more complex the 

classifier, the larger should the ratio of sample size to dimensionality be to avoid the 

curse of dimensionality. 

2.1.5 Dimensionality Reduction 

There are two main reasons to keep the dimensionality of the pattern representation 

(i.e., the number of features) as small as possible: measurement cost and classification 

accuracy. A limited yet salient feature set simplifies both the pattern representation 

and the classifiers that built on the selected representation. Consequently, the result­

ing classifier will be faster and will use less memory. Moreover, as stated earlier, a 

small number of features can alleviate the curse of dimensionality when the number 

of training samples is limited. On the other hand, a reduction in the number of fea­

tures may lead to loss in the discrimination power and thereby lower the accuracy of 

the resulting recognition system. Watanabe's ugly duckling theorem [3] also supports 

the need for a careful choice of the features, since it is possible to make arbitrary 

patterns similar by encoding them with a sufficiently large number of redundant fea­

tures. It is important to make a distinction between feature selection and feature 

extraction. The term feature election refers to algorithms that select the (hopefully) 

best subset of the input feature set. Methods that create new features based on the 

transformations or combinations of the original feature set are called feature selection 
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algorithms. However, the terms feature selection and feature extraction are used in­

terchangeably in the literatures. Note that often feature extraction precedes feature 

selection; first, features are extracted from the sensed data (see Table 2.2) and then 

some of the extracted features with low discrimination ability (e.g., using Principal 

Component or Discriminant Analysis) are discarded. The choice between feature se­

lection and feature extraction depends on the application domain and the specific 

training data which are available. Feature selection leads to savings in measurement 

cost (since some of the features are discarded) and the selected features retain their 

original physical interpretation. 

The main issue in dimensionality reduction is the choice of a criterion function. 

A commonly used criterion is the classification error of a feature subset. But the 

classification error itself cannot be reliably estimated when the ratio of sample size 

to the number of features is small. 

Feature extraction methods determine an appropriate subspace of dimensionality 

m (either in a linear or a nonlinear way) in the original feature space of dimensionality 

d (m ~ d). Linear transforms, such as principal component analysis, factor analysis, 

linear discriminant analysis, and project pursuit have been widely used in pattern 

recognition for feature extraction and dimensionality reduction. The best known 

linear feature extractor is the principal component analysis (PCA). 

In the investigation of all-rounded solution for real-world problems using neural 

networks, there are many questions to be answered. One such open question involves 

determining the most appropriate network size (architecture) for solving a specific 

task. In fact both large and small networks exhibit a number of advantages. When 

a network has too many free parameters (i.e., weights and/or units) not only is 

learning fast but local minima are more easily avoided. Large networks can also 

form as complex decision regions as the problem requires and should exhibit a certain 

degree of fault tolerance under damage conditions. On the other hand, both theory 
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[13] and experience [14]-[16] show that networks with few free parameters exhibit a 

better generalization performance. Moreover, knowledge embedded in small trained 

networks is presumably easier to interpret and thus the extraction of simple rules can 

be hopefully be facilitated [17]. Lastly, from an implementation standpoint, small 

networks only require limited resources in any physical computational environment. 

2.2 Architectural Selection 

In the design of neural networks, one should ponder the strenuous selection of ar­

chitecture of neural networks due to difficulty and time-consuming job. For neural 

networks, it is equally important to find an optimal network topology, as it is to 

determine an optimal set of weights. It has many factors to acquire the "best" ar­

chitecture for "best" solution of the underline problem. Among the factors, number 

of hidden layers and neurons on it are major factors to decide the architecture of 

neural networks. The use of dynamic neural network algorithms considerably speeds 

up the process of finding an appropriate network topology for a given problem. The 

following sections will discuss important aspects of the selection of architecture of 

neural networks. 

2.2.1 Model Selection and Generalization 

A key difficulty faced in the field of Feedforward Neural Network (FNN) is model 

selection. Model selection involves matching the complexity of the function to be ap­

proximated with the complexity of the model. FNN model complexity is determined 

by factors such as weight number, magnitude and connection topology. If a model 

does not have the complexity to approximate the desired function, underfitting and 

poor generalization occur. If a model is too complex, then it may overfit the data 

and also give poor generalization. 
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It is possible to classify FNN model selection techniques into three groups: 

1. Those that perform a search through models, 

2. Those that begin with an overly complex model which is then simplified, and 

3. Those that begin with simple model whose complexity is increased 

The first group is generally implemented by selecting various network architectures 

that are trained and compared. One well-respected method of comparison is cross­

validation [18]. This is often computationally expensive to perform due to nonlinear 

optimization process employed in the training FNN's, although there have been some 

attempts to reduce this expense [18]. 

The second group of model selection techniques begins training with an oversize 

network. Pruning is one such technique [19]. The non-convergent technique of early 

stopping [20] also uses an oversize network, and works by stopping training at a point 

where the performance on a validation set begins to worsen. The performance on the 

validation set will typically start to worsen when an overly complex model starts to 

form. This occurs because the validation set is sampled from the underlying function 

of which a model is sought. Since the validation set is representative of the underlying 

function, the performance on this data set will worsen when a model more complex 

than the underlying function is formed. There are situations, however, where, it 

can be envisaged that early stopping will fail to produce good generalization. One 

situation where an overly complex model may be produced using early stopping is 

through the formation of an overly complex model during the training process. In 

this case it is still possible that the validation error will fall, since overall the model 

moves closer to the validation data. As training continues the overly complex model 

still reduces the validation error as it learns the training data. As training continues, 

eventually the validation error will stop falling, and may even begin to rise. At this 
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point, however, an overly complex model already existed and there is no way for early 

stopping to reduce the complexity. 

One way of reducing the chance that an overly complex model is formed during 

the training process is to use regularization to constraint the network weights in some 

manner. Since regularization is present throughout the training process, the chance of 

producing over-complexity is reduced (assuming an appropriate level of regularization 

is used). A regularization function commonly used in FNN's is the sum of squares of 

the weights magnitudes. Additional forms of regularization that have been applied to 

FNN's include the Weigend-Rumelhart regularization term [21] and curvature driven 

regularizers [9]. 

The main disadvantage of regularization is the difficulty in selecting the appropri­

ate magnitude for a given problem. One method used to set the regularization level 

is to train a given FNN a number of times with each training runs using a different 

regularization magnitude. A technique such as cross-validation can be used to com­

pare the trained FNN's [9]. Bayesian methods are another technique used to set the 

regularization magnitude [22](23]. A simple method introduced in [21] dynamically 

sets the regularization magnitude during training based on the error performance of 

the FNN. 

The third group of model selection techniques uses constructive methods [24]. 

These methods consist of starting with a minimal size network (often with no hidden 

neurons), and sequentially adding weights according to some criterion. A number of 

network construction algorithms have been developed as far: Upstart algorithm [25], 

Add and Remove [26], and Cascade-Correlation [27], FlexN et [28], to name a few. 

However, the drawback with these procedures is that they either have been designed 

for the use of binary neurons [25] or underlie constraints such as a limited number of 

layers and hidden units [26] [27] or only deal with fixed inputs. 
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2.2.2 Constructive Algorithms 

There are a number of inherent advantages in using constructive algorithms that 

begin training with oversized network:-

I. It is often difficult to specify what size network can actually be considered 

an oversize network a priori. If initial network selected is too small it will 

be unable to converge to a good solution and hence underfit the data. On the 

other hand, selecting an initial network that is much larger than required makes 

training computationally expensive. Constructive algorithms however, initially 

select a minimal size network and can increase the network complexity until 

an appropriate level is reached. In addition, constructive algorithms will spend 

the majority of their time training networks smaller than the final network, as 

compared to algorithms that starting training with an oversize network. 

2. The problem of encouraging poorly performing local minimal is avoided. The 

majority of FNN training algorithms is based on gradient methods, and hence 

can be trapped in local minima. Constructive algorithms are able to escape 

from a local minimal when more weights are added to the network. This can 

occur because the addition of more weights increases the dimensionality of the 

error surface and may allow the network to continue reducing the error level. 

There are a number of properties that must be defined for constructive algorithms. 

These include the type of training algorithm, establishing how the new hidden neu­

rons is connected to the current network, defining which weights are to be updated 

and in which order, deciding on criteria to determine when a new hidden neuron 

is added, deciding on criteria to halt network construction, and selecting how much 

regularization to use, if any. 

In general, constructive networks use gradient-based training algorithms due to 

their convergence speed [29]-[31]. A number of ways of connecting a new hidden 

24 



neuron to the network are existed. The two common methods are to construct a 

single layer of hidden neurons [29] [31 J [26] [32] or to create a cascade of hidden neurons 

[27][33]. In cascade architecture each new hidden neuron receives inputs from all 

inputs and previously installed hidden neurons. Since the hidden neurons in cascade 

architecture receive additional information from some nonlinear combination of the 

inputs (implemented by previous hidden neurons), these neurons are termed higher­

order neurons and are capable of performing a more complex function of the input 

variables. Cascade networks, while having more representational power, are more 

likely to overfit the data. 

There are a variety of ways of training the new hidden neurons in constructive 

algorithms. These can be classified into two general methods. The first consists of 

training the whole network after the addition of a new hidden neuron [29], [31], [26] 

and [32]. The second entails only training a subset of weights, with the remaining 

weights being "frozen" [27][34]. The advantage of this second greedy strategy is 

that there are far few weights to optimize than when all the weights are trained. 

The disadvantage of weight freezing is that each optimization phase is unlikely to be 

optimal, and this can result in larger networks than those in which all the weights 

are optimized [35]. 

The method for adding a new neuron is standard across many constructive algo­

rithms and in general consists of either adding a new neuron when the error fails to 

fall by a set of amount over a given period [29] [27) [26) or testing for some criterion 

such as a local minimum [31 J. Halting network construction is equivalent to finding 

the best model for a given problem, and hence techniques such as early stopping can 

be employed [36). 

The ability to control the complexity of the new hidden neuron is an important 

issue for constructive networks in terms of convergence speed and generalization. In 

cascade networks the hidden neurons become more powerful higher-order neurons 
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as the network grows. A similar effect occurs for ridge polynomial network (40] 

which installs ever more complex higher-order neurons. Having neurons of too little 

complexity may slow convergence, while having neurons of too high complexity can 

cause poor generalization. A number of approaches have been taken to control hidden 

neuron complexity [37], or through the use of regularization. Bayesian methods have 

been used to automatically set regularization magnitudes in a constructive algorithm 

framework [38]. 

Dynamic network creation (DNC) algorithm proposed by Ash (29] is relatively 

simple algorithm that uses backpropagation (BP) [39]. In DNC a sigmoid hidden 

neuron is added to the single layer of hidden neurons after a period of training when 

the error has stopped decreasing by a given amount. After the addition of the new 

hidden neuron, the whole network is again trained with BP. This algorithm a number 

of advantages: its strong convergence follows directly from its universal approximation 

ability [24], and it has been shown to perform well on some simple classification tasks. 

One criticism that has been made of this type of constructive algorithm is that it does 

not scale up well [24] since all the network weights need to be trained after the addition 

of a new hidden neuron. This may be a problem for complex modeling requiring large 

networks. 

2.2.3 Regularization 

One method that would allow the amount of regularization to be automatically se­

lected in constructive algorithm is to adapt this parameter as the network is con­

structed [41][42]. The adaptation process works by noting the validation results on a 

range of regularization levels. When a new neuron is added to the network, the range 

of regularization levels used for the new network is modified based on the previous 

validation results. Larger networks allow greater time for the adaptation process to 

refine the regularization level. In other words, network size and presence of noise can 
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adapt the regularization level well. The regularization magnitudes selected for the 

noisy data set become greater as training proceeds, and are successful in preventing 

the network overfitting the data. 

Among the most common used regularization terms, there are three regularization 

terms used in training neural networks: 

(2.2.1) 

where S = 2-Erh is a simulated annealing (SA) term, Tis the temperature constant, 

and Epoch is the number of epochs used by the training algorithm. 

From [43] 
1 n 
- "'""'w2. 
n L..J J 

j=l 

(2.2.2) 

(2.2.3) 

The adaptive regularization technique has the advantage of being applicable to 

the general class of constructive algorithms. The technique does not use any training 

algorithm specific information, but only requires that a number of training runs be 

performed at each stage of network construction. It would be an easy matter to 

incorporate adaptive regularization in such constructive FNN's as Ash's DNC [29] 

and Fahlman's cascor algorithms [27]. 

The main disadvantage of the adaptive regularization method is the increase in 

computational cost. The increase in computational cost scales approximately linearly 

in comparison to corresponding size networks trained by an algorithm used a reg­

ularization of section 2.2.2. This is expected, since it is a result of at most three 

additional training stages at each point of network construction. 

One difficulty introduced with regularization is the selection of the magnitude 

to be used. Varying this magnitude can affect generalization, with the optimal value 

depending on the function to be modelled, the amount of the noise in the data set, and 
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the final size of the network. This difficulty not withstanding, casper produces good 

generalization over a number of regularization magnitudes. An explanation for this is 

that since the training algorithm used is constructive, the network can compensate for 

a range of regularization magnitudes by increasing network complexity through the 

addition of further hidden neurons. Since early stopping is also employed, network 

construction is halted when the complexity reaches the level necessary to produce a 

good model. 

Second reason for poor generalization of cascaded correlation was pointed out 

in [44], which noted that the correlation measure in cascaded correlation forces the 

hidden neurons to saturate in order to obtain a large correlation value. This forces 

the hidden neurons to have large input weights. The effect of large weights in the 

network is to make the outputs jagged in appearance. This may not degrade results 

for some classification problems which require a definite boundary between classes. 

Regression problems, however, generally require the fitting of smooth functions, and 

so producing jagged outputs can result in poor generalization. 

A series of empirical studies were performed to examine the effect of regularization 

on generalization in constructive cascade algorithms [45]. It was found that the com­

bination of early stopping and regularization resulted in better generalization than 

the use of early stopping alone. A cubic penalty term that greatly penalizes large 

weights was shown to be beneficial for generalization in cascade networks. An adap­

tive method of setting the regularization magnitude in constructive algorithms was 

introduced and shown to produce generalization results similar to those obtained with 

a fixed, user-optimized regularization setting. This adaptive method also resulted in 

the construction of smaller networks for complex problems. 

The major advantage of adaptive casper algorithm is that it performs automatic 

model selection through automatic network construction and regularization. This 

removes the need for the user to select these parameters, and in the process makes 
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the adaptive casper algorithm free of parameters which must be optimized prior to 

the commencement of training. 

There is additional other approach which is called FlexNet algorithm [28]. It 

created networks with as many layers and as many hidden units as are needed to solve 

a given problem. In addition, the user is able to choose between different connection 

strategies and has the option of freezing weights. However all the above mentioned 

algorithms are dealt with fixed inputs, they use dynamic architectural creation or 

selection. 

The philosophy of FlexNet is based on strategies used in Cascade-Correlation 

(ca.scar): it starts with only the input and output layers and incrementally builds up 

a complex network architecture by first training candidate neurons and then installing 

the best ones. However, as the name implies, FlexNet is a highly flexible and powerful 

network construction algorithm, which is not limited by constraints such as ca.scar's 

one-neuron layers and deeply cascaded structure. 

The main aspect of FlexN et can be summarized as follows: 

• Variable number of hidden layers and units in these layers 

• Variable cross-cut connections, 

• Variable candidate pool training, 

• Possibility of freezing weights. 

Similar to the ca.scar procedure, FlexNet consists of two training phases: a main 

and a candidate training phases. In the main training phase, the current network is 

trained until a satisfactory performance is obtained or error stagnation is observed. In 

the latter case, the algorithm switches to the candidate training: Candidate units are 

trained separately at different positions in the hidden layers. The best candidate, i.e., 

the one that contributes to the highest error reduction rate, is permanently installed 
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in the network. Cascor does not consider the benefits of installing new units in 

existing hidden layers. Instead, after each candidate training phase, it creates a new 

one-neuron hidden layer resulting in deeply cascade networks with poor generalization 

ability. FlexNet, on the other hand, allows multiple units per hidden layer. Further 

more, FlexNet does not necessarily install candidates in the newly created layer, but 

also checks candidates' performances in exiting hidden layers. 

In addition, FlexN et does not only train individual candidate (as CasCor does) but 

is able to train and install sets of several candidates, which has positive effects on both 

convergence speed and generalization. By training not only one set of candidates, but 

also a pool of several sets of candidates, the chances to install weak candidate units 

decrease and weight space is searched more effectively. 

Unlike other network construction methods, no constraints are imposed on the 

FlexNet procedure regarding the number of hidden layers and hidden units in these 

layers. Features such as different connection strategies, candidate pool training, and 

the option of freezing weights enables FlexNet to build optimal networks for a given 

problem. The drawback of this algorithm is it has not used cross-validation and early 

stopping principle to avoid overfitting and it might further deteriorat the accuracy of 

the overall of networks. 

2.2.4 The Likelihood-Ratio Test 

Several alternative models are often proposed to explain the same data, and objec­

tive criteria are needed to choose among models. The alternative models may be 

nested or non-nested. Nested models are constructed such that a simpler model can 

be obtained from a more complex model by eliminating one or more parameters from 

the more complex model. Thus choosing among models reduces to determining the 

appropriateness of the additional parameters. While adding features to a model is 

often desirable, the increased complexity comes with a cost. In general, the more 
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parameters contained in a model, the less reliable are parameter estimates. Crite­

ria to select among models must weigh the trade-off between increased information 

and decreased reliability. Beginning with the simplest case, a null model f(x, e0), 

specified by the parameter vector e0 = (01, e2, ... ,Ok), is compared to an alternative 

model f(x, 0 A), which shares the k parameters of the null model but also contains an 

additional parameter,Ok+l . In comparing the null to the alternative hypothesis, we 

are determining the appropriateness of adding the additional parameter to the null 

model. In other words, we are testing the following hypotheses: 

H0: Ok= 0, versus HA:Bk+l i- 0. 

In the determining of variables to be removed from the mode, the likelihood­

ratio {LR) test is one of the techniques to remove the variables. It is a better 

criterion than the Wald statistic. In likelihood process, it involves estimating the 

model with each variable eliminated in turn and looking at the change in the log 

likelihood when each variable is deleted. The likelihood-ratio test for the null hy­

pothesis that the coefficients of the terms removed are zero is obtained by dividing 

the likelihood for the reduced model by the likelihood for the full model. In other 

words, the likelihood ratio test is aimed at testing a simple null hypothesis against 

a simple alternative hypothesis. If the null hypothesis is true and sample size is 

sufficiently large, the quantity -2 times the log of the likelihood-ratio statistic has a 

chi-square distribution with r degrees of freedom, where r is the difference between 

the number of terms in the full model and the reduced model. (The model chi-square 

is likelihood-ratio test.) When the likelihood-ratio test is used for removing terms 

from a model, its significance level is compared to the cutoff value. 
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2.3 Feature Extraction and Selection 

Devijver and Kittler define feature extraction (46] as the problem of extracting from 

the raw data the information which is most relevant for classification purposes, in the 

sense of minimizing the within-class pattern variability while enhancing the between­

class pattern variability. It should be clear that different feature extraction methods 

fulfill this requirement to a varying degree, depending on the specific recognition 

problem and available data. A feature extraction method that proves to be successful 

in one application domain may turn out not to be very useful in another domain. 

The purpose of feature extraction is to reduce data by measuring certain "fea­

tures" or "properties" that distinguish input patterns. In feature extraction, one 

transforms an input observation vector to a feature vector using some orthogonal or 

non-orthogonal basis functions so that data in the feature space are uncorrelated. 

One could argue that there is only a limited number of independent features that 

can be extracted from a character image, so that which set of features is used is not 

so important. However, the extracted distortions and variations of characters may 

have in a specific application. Also the phenomenon called the curse of dimensional­

ity cautions us that with limited training set, the number of features must be kept 

reasonably small if a statistical classifier is to be used. A rule of thumb is to use five 

to ten times as many training pattern of each class as the dimensionality of the fea­

ture vector. In practice, the requirements of a good feature extraction method makes 

selection of the best method for a given application a challenging task. One must also 

consider whether the characters to be recognized have been known orientation and 

size, whether they are handwritten, machine printed or typed, and to what degree 

they are degraded. Also more than one pattern class may be written in two or more 

distinct ways. 

Feature extraction is an important step in achieving good performance of OCR 

systems. However, the other steps in the system also need to be optimized to obtain 
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Table 2.2: Overview of Feature Extraction Methods for various Representation Forms 
-gray level, binary and vector. 

Gray scale Subimage Binary Vector( Skeleton) 

Solid character Outer contour 
Template Matching Template matching Template matching 
Deformable templates Deformable template 
Unitary Transforms Unitary transform Graph description 

Projection Histograms Contour profiles Discrete features 
Zoning Zoning Zoning Zoning 
Geometric moments Geometric moments Spline curve 
Zernike moments Zernike moments Fourier descriptors Fourier descriptors 

the best possible performance, and these steps are not independent. The choice of fea-

ture extraction method limits or dictates the nature and output of the preprocessing 

step in Table 2.2. Some of extraction methods work on gray level subimages of single 

characters, while others work on solid 4-connected or 8-connected symbols segmented 

from the binary raster image, thinned symbols or skeletons, or symbol contours. Fur­

ther, the type or format of the extracted features must match the requirements of the 

chosen classifier. 

In order to recognize many variations of the same character, features that are 

invariant to certain transformations on the character need to be used. Invariants are 

features which have approximately the same values for samples of the same character 

that are translated, scaled, rotated, stretched, skewed or mirrored. However, not all 

variations among characters from the same character class (e.g., noise or degradation, 

and absence or presence of serifs) can be modeled by using invariants. 

Size and translation invariance is easily achieved. The segmentation of individual 

characters can itself provide estimates of size and location, but the feature extraction 

method may often provide more accurate estimates. 

Rotation invariance is important if the characters to be recognized and can occur 

in any orientation. However, if all the characters are expected to have the same 

rotation, then rotation-invariant features should be used to distinguish between such 
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characters as '6' and '9', and 'n' and 'u'. Another alternative is to use orientation­

invariant features, augmented with the detected rotation angle. If the rotation angle 

is restricted, say, to lie between clockwise 45 degree and 45 degree anticlockwise, 

characters that are, say 180 rotations of each other can be differentiated. The same 

principle may be used for size-invariant features, if one wants to recognize punctuation 

marks in addition to characters, and wants to distinguish between, say, '. ', 'o' and 

'O'; and ',' and '9'. 

Skew-invariance may be useful for hand-printed·text, where the characters may 

be more or less slanted, and multifont machine printed text, where some fonts are 

slanted and some are not. Invariance to mirror images is not desirable in character 

recognition, as the mirror image of a character may produce an illegitimate symbol 

or a different character. 

If invariant features cannot be found, an alternative is to normalize the input 

images to have standard size, rotation, contrast, and so on. However, one should 

keep in mind that this introduces new discretization errors. 

For some feature extraction methods, the characters can be reconstructed from 

the extracted features [47] and [48]. This property ensures that complete information 

about the character shape is present in the extracted features. Although, for some 

methods, exact reconstruction may require an arbitrarily large number of features, 

reasonable approximations of the original character shape can usually be obtained 

by using only a small number of features with the highest information content. The 

hope is that these features also have high discrimination power. 

By reconstructing the character images from the extracted features, one may 

visually check that a sufficient number of features are used to capture the essential 

structure of the characters. Reconstruction may also be used to informally control 

that the implementation is correct. 
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2.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis, or PCA is one of feature selection algorithm and 

widely used in signal processing, statistics, and neural computing. In some applica­

tion areas, this is also called the (discrete) Karhunen-Loeve transform, or the Hotelling 

transform. PCA has been widely used in data analysis and compression. Principal 

component analysis (PCA) involves a mathematical procedure that transforms a num­

ber of (possibly) correlated variables into a (smaller) number of uncorrelated variables 

called principal components. The first principal component accounts for as much of 

the variability in the data as possible, and each succeeding component accounts for 

as much of the remaining variability as possible. 

Traditionally, principal component analysis is performed on a square symmetric 

matrix of type SSCP (pure sums of squares and cross products), Covariance (scaled 

sums of squares and cross products), or, Correlation (sums of squares and cross 

products from standardized data). The analysis results for objects of type SSCP 

and Covariance do not differ. A Correlation object has to be used if the variances of 

individual variants differ much, or the units of measurement of the individual variants 

differ. The result of a principal component analysis on such objects will be a new 

object of type PCA. 

We are here faced with contradictory goals: On one hand, we should simplify 

the problem by reducing the dimension of the representation. On the other hand we 

want to preserve as much as possible of the original information content. PCA offers 

a convenient way to control the trade-off between losing information and simplifying 

the problem at hand. 

Briefly, the objectives of PCA in regards to feature data set are: 

• To discover or to reduce the dimensionality of the data set; and 

• To identify new meaningful underlying variables which are not correlated. 
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The mathematical technique used in PCA is called eigen analysis: we solve for 

the eigenvalues and eigenvectors of a square symmetric matrix with sums of squares 

and cross products. The eigenvector associated with the largest eigenvalue has the 

same direction as the first principal component. The eigenvector associated with the 

second largest eigenvalue determines the direction of the second principal component. 

The sum of the eigenvalues equals the trace of the square matrix and the maximum 

number of eigenvectors equals the number of rows (or columns) of this matrix. 

2.4 Backward Unified Feature and Architecture 

Selection 

Neural network feature selection is determining an appropriate feature subset from 

a set of candidate features, whereas architecture selection is determining an appro­

priate number of hidden layer nodes. In the past, the related problems of feature 

selection and architecture determination have been independently considered for neu­

ral networks [26) [49) [50) [51) [52) [53) [54) [55] [56] [57] [58) [59] [60], [61) [62]. An integrated 

approach for feature and architecture selection is meaningful since accurate neural 

network prediction is inherently related to both feature and architecture complexity. 

The work of Jean M Steppe used back propagation to train a single output neural 

network with one hidden layer and one-sided (positive only) sigmoids on both the 

hidden and output layers [63]. The methodology presented in their work did not 

depend on the type of sigmoid function employed. Furthermore, this methodology 

could be employed in a multilayer network, but architecture selection would be become 

very complicated. The works of Cybenko [64], Hornik et al. [65], and Hecht-Nielsen 

[66) suggest that the use of single hidden layer is fully justifiable in view of the 

network's ability to accurately approximate arbitrary functions, provided a sufficient 
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number of hidden nodes. 

In integrated feature and architectural methodology some authors use the com­

bination of statistical model and backward sequential selection [63]. The backward 

selection refers to starting the selection process with a large model and iteratively 

considering reduced models. For situations where correlated features are present, 

practical experience in linear regression applications indicates that a potentially bet­

ter feature set may be selected via backward selection [67]. 

In neural networks algorithm, it often requires multiple neural networks training 

with different random initialization of the weight parameters and presentation order 

of training exemplars. As a result, one can choose the smallest error which has con­

verged. This approach enables to avoid good local minima for better neural network 

architecture selection. 

Based of the above notion, there is a selection algorithm for feature selection. 

This algorithm is designed for systematically investigating reduced neural network 

models with fewer feature inputs and fewer hidden nodes [63]. The algorithm uses 

the likelihood-ratio test statistic as a statistical model selection criterion for testing 

reduced models. Figures from 2.1 to 2.3 provide additional details as to how the 

likelihood-ratio statistic is specifically incorporated into both feature and architectural 

selection. The selection algorithm can be implemented with two different stopping 

rules. The first stopping rule is based on statistical considerations; the algorithm stops 

when the likelihood-ratio test statistic Lis greater than the selected critical point of 

the F-distribution. The second stopping rule gives the practitioner more flexibility 

in model selection. This rule involves stopping the algorithm after a predetermined 

final number of features, f, have been eliminated. As long as the current number of 

features to be selected, the candidate feature for elimination is removed. The second 

stopping rule makes the selection algorithm an effective search procedure, uncovering 

a number of potential neural network models for consideration. Each potential model 

37 



can be examined in terms of tradeoffs between accuracy and parsimony. 

The number of different neural networks trained for the full and for reduced mod-

els was usually limited by the time and computing resources available. The use of 

multiple neural networks in this selection algorithm put practical limit on the initial 

number of candidate features M which can be considered. This approach is the most 

difficult to give or set the appropriate number of features from feature pool. 

The initial number of middle nodes H should be large enough to ensure there is 

sufficient complexity for accurate prediction on a test data set. However, an excessive 

number of middle nodes will unnecessarily increase the computational cost and the 

possibility of accepting a model with more middle nodes than necessary. Cover's rule 

Equation (2.4.1) suggests an upper-bound for H which is based on the separating 

capacities of families of nonlinear decision surfaces [68]. Cover shows that a family of 

surfaces having s degree of freedom has a natural separating capacity for 2s training 

exemplars [68]. Therefore, unless the number of training exemplars is greater than 

the separating capacity of 2s, there is a large probability of ambiguous generalization 

[68]. Cover's theorem translates into the following upper-bound on the number of 

middle nodes: 

H ~ 0.5P-l 
" M +1 

(2.4.1) 

where Pis the number of exemplars and Mis the number of features. It is possible 

that when the number of candidate features is large and the number of exemplars 

is small, Cover's rule may indicate fewer middle nodes than are required for the 

complexity of the problem at hand (a situation where feature reduction is necessary). 

In this case, one should proceed with caution since the neural network's ability to 

generalize to unknown data can be easily compromised in this situation. Cover's rule 

is only one heuristic technique to choose the initial number of hidden units. Cover 

gives the largest cardinality of a set of training vectors such that any possible class 

assignment of the vectors can be implemented (by the network) with probability one. 
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1. Architecture Selection 
Investigate removing a hidden node. 

G 
2. Can additional features be removed t-----. 

NO 

YES 

3. Feature Selection :::!:res 11re 

Investigate removing a feature. ,____ __ ~ 

NO ~------One-~-W-ft-..,.---~~ 

4. Can architecture be further reduced 
YES 

Figure 2.1: Overview of neural network feature selection algorithm 

As an alternative to using Cover's rule, the initial number of middle nodes could be 

determined by using the works of Baum and Hassler [13], Sontage [69], or Vapnik and 

Chervonenkis [70]. 

YES 

Full model (H Middle Nodes) 

,I•• .. .,~ 
I 049......... .: ... 

ssi:.-mln I SSEp1 .. . SSEp1 I 
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Accept Reduced Model 
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No 

Reduced model (H·l Middle Nodes) 

,1oe ...... E 
I 049......... SSE,., . ... 

sse._ ... min!SSE,., ... SSER.J 

No 

R'lJect Reduced Model 

Figure 2.2: Architecture Selection 

When computing resources are available, the selection algorithm is best utilized 

by performing more than one initialization of H with the upper-bound suggested by 

Equation (2.4.1). This provides the practitioner with additional insight and may re­

duced the risk of potentially accepting a larger than necessary network structure. The 

downside is that this approach can also complicate the goal of automatic architecture 
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Figure 2.3: Feature Selection 

. 

and feature selection, since multiple selection runs may produce multiple solutions 

which must be subsequently analyzed [63]. In general, when choosing from variety 

of network models which all have equivalent or acceptable prediction accuracies, the 

smallest network model is preferred. 

2.5 Drawbacks and Benefits of above methodolo-

. 
g1es 

In this section, we summarize the above discussed methodologies so that it clarifies 

the use of the new proposed algorithm (FIFAS) by taking all possible benefits of 

them. In other words, it tries to take the advantages of each methodology. Therefore, 

they are displayed on pages 41 and 42 in tables 2.3 and 2.4. 
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Table 2.3: Drawbacks and Benefits of each methodology 
II Methodology I Drawbacks I Benefits 

Neural Networks 

Resilient Backprop­
agation 

Constructive Algo­
rithm 

Up Start algorithm 

inte­
feature 

Backward 
grated 
and architecture 
selection 

• No clear rules or design guide­
lines for arbitrary application 

• Training may be difficult or im­
possible 

• Difficult to predict future net­
work performance (generaliza­
tion) 

• Needs additional criterion when 
to stop the addition of hidden 
units 

• Many algorithms use a greedy 
approach to construction pur­
pose which is sub optimal in 
most cases. 

• There may be problems in 
achieving good generalization 
when care is not taken in han­
dling hidden units with many pa­
rameters associated. 

• Designed for the use of binary 
neurons only 

• Did not use regularization term 

• Did not use cross-validation and 
early stopping principles 

• Requires prior knowledge of the 
underlie problem especially to 
set the number of features to be 
the final limit 

• Uses pruning pri~ijple. 

• Inherently massive parallel 

• May be fault tolerant because of 
parallelism 

• Little need for extensive charac­
terization of problem (other than 
through the training set) 

• Few parameters that are re­
quired to be set by the user 

• The performance of it is insensi­
tive to the values set 

• Fast training algorithm 

• Straight forward to set an initial 
network 

• Learning is faster than pruning 
algorithm 

• Knowledge embedded in small 
trained networks is easier to in­
terpret and thus the extraction 
of simple rules can hopefully be 
facilitated 

• Require limited resources in 
physical computational environ­
ment 

• Better generalization 

• Likely to find smaller network 
solution than pruning algorithm 

• Starts from minimal resources 

• Takes advantages of each of fea­
ture and architecture algorithm. 

• Determines "optimal" accuracy 
with few parameters. 



Table 2.4: Drawbacks and Benefits of each methodology 
II Methodology I Drawbacks I Benefits 

Flexible algorithm 

Pruning algorithm 

PCA 

Likelihood ratio 
test 

• Did not use cross-validation and 
early stopping principles 

• It is difficult to measure the 
performance and where to stop 
the training regarding number of 
hidden neurons and layers 

• Convergence has taken longer 
time compare to others 

• Difficult to determine how big 
the initial network should be 

• More expensive than construc­
tive 

• It is difficult to scale up the com­
ponents resulted using PCA 

• Approximates the system - not 
calculate exactly 
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• Measures the change in error 
when hidden unit or weight in 
the network removed. Such 
changes can be only approx­
imated for computational effi­
ciency and hence may intro­
duced larger errors especially 
when many are to be pruned. 

• Add many neurons and layers at 
a time 

• No Constraints are imposed re­
garding the number of hidden 
layers and hidden units 

• Large initial size allows the 
network to learn "reasonably 
quickly" with less sensitive to 
initial conditions and local min­
ima 

• The reduced complexity of the 
trimmed system favors improved 
generalization. 

• A voids overfitting problems 

• Uses the most expressive fea­
tures and effectively approxi­
mates the input features using 
mean square error criterion. 

• Unsupervised feature selection 
method. 

• Not affected by parameter effect 
curvatures using mean square er­
ror criterion. 

• More powerful than Lagrange 
test statistics 

• Not require the estimation and 
inversion of covariance matrix of 
the weight parameters. 



Chapter 3 

New Algorithm-Forward 
Integrated Feature and 
Architecture Selection 

3.1 The FIFAS Algorithm 

The motivation or inspiration was developed during the study of backward unified fea­

ture and architecture selection which is done by [63]. The proposed FIFAS algorithm 

considers from bottom to top design approach. 

3.1.1 Statistical approach using likelihood ratio test 

Nonlinear regression statistical model selection was used recently as the basis for 

reconstructing an integrated architecture and feature selection algorithm with back-

ward selection (top-down) methodology in feed-forward neural networks (63]. Their 

criterion was based on likelihood ratio test statistic. We use bottom-up procedure: 

forward selection (bottom-up) approach for architecture selection only. 

From statistical model selection point of view using neural networks, it is necessary 

to test formulated hypothesis. The hypothesis can be based on the neural networks 

weight parameters in which they are either equals to zero or not. In regression 

model, if the inclusion of additional variable(s) to the existing model does not give a 
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better result, then one can conclude that the inclusion of additional variable (s) is not 

worthwhile. In other words, the decrease in the sum of squares for error when one goes 

from the partial (reduced) model to the full model is not statistically significant. The 

same analogy is used in neural network forward selection algorithm from statistical 

fine points. 

The single-output neural network for P training exemplars is defined in Equation 

3.1.l as a univariate response nonlinear regression model 

d = z(X, w*) + c (3.1.1) 

where dis P x 1 vector of true "desired" network outputs; z(X,w*) can be inter­

preted as E(djX), a P x 1 vector of network responses conditioned on a P x M matrix 

of feature input variables X; w* is an s x 1 vector of unknown optimal weight param­

eters; and c is a P x 1 vector of neural network errors. The least-squares estimator of 

w* is ans x 1 vector w1 that minimizes the sum of square errors (SSE) with respect 

to w and is given as 

w1 = argminSSE(w) (3.1.2) 

where 

SSE(w) = [d- z(X, w)]'[d- z(X, w)] (3.1.3) 

To present the general hypothesis test, we define w* as an s x 1 vector of optimal 

neural network weight parameters and S as a q x s binary selection matrix of ones 

or zeros which is multiplied by w* to select the q specific weights of w* which are 

hypothesized to be equal to zero. That is, whenever the nth the weight if w* is 

hypothesized to be zero, there is a corresponding row in S which has a one in the nth 

position and zeros in every other position. A formal hypothesis test for testing the 

statistical significance of a q-dimensional subset of weights from w* is given as 

N ullH ypothesis ( H 
0

) : Sw* = 0 

AlternativeHypothesis(H A) : Sw* i- 0 
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There are two basic categories of statistical model selection criteria for evaluating 

the hypothesis test given in Equ. 3.1.4: 

1. standard test statistics for situations where the nonlinear regression model is 

assumed to be correctly specified with normally distributed errors 

2. specification-robust test statistics for situations where the nonlinear regression 

model is not correctly specified (71][72][73]. 

The standard selection criteria for situations where the nonlinear regression model 

is assumed to be correctly specified are the Wald test statistic, the Lagrange multiplier 

test statistic, and likelihood-ratio test statistic (71](72]. Our hypothesis for architec-

ture selection is that the weights associated with the hidden nodes and output neurons 

are tested to see if they are statistically different than zero. If the tested weights are 

not statistically different from zero, a partial (reduced) architecture model is appro­

priate. For the case of feature selection algorithm, we used one of best-unsupervised 

feature selectors-Principal Component Analysis (PCA). The same principle for fear 

ture selection using feature similarity is now under investigation. This procedure may 

lead to a better result with the constructive feed-forward neural networks algorithm; 

consequently our approach will be strong enough to solve any classification problems. 

The purpose of using one of the best feature selectors is to eliminate some redun­

dant and/or irrelevant features before proceeding with architectural selection using 

neural networks. This approach enables to satisfy the normality assumption for the 

specific-robust test statistics (13]. The theoretical foundation for using likelihood ratio 

test is somehow compromised with neural network selection scenario. The advantages 

of using likelihood ratio test using formulated hypothesis for forward selection algo­

rithm are 

• it is not affected by parameter effect curvatures [74] 
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• it is more powerful than Lagrange test statistics [67] 

• it does not require the estimation and inversion of covariance matrix of the 

weight parameters[13]. 

The likelihood ratio test, sometimes it is similar to Partial F statistic test for F 

distribution, is given by 3.1.6 
SSEp-SSEp 

L= r 
MSEF 

(3.1.6) 

where SSEp is the sum of squares for error of the partial model; SSEF is the sum 

of squares for error of the full model; MSEFis the mean square error of the full model: 

SSEp/(n-(k+l)); k is the number of weight parameters in the full model; and r is 

the number of weight parameters dropped from the full model in creating the partial 

model. 

The difference SSEp-SSEF is called the extra sum of squares associated with the 

partial model. Since this addition sum of squares for error is due to [n-(k+l)]-[n-(k­

r+l)]=r weight variables, it has degrees of freedom. The extra sum of squares for 

error has degrees of freedom . Therefore, whenever L exceeds the critical point of 

the F-distribution, the partial model is rejected. For the selection of neural network 

architecture, we use this test. 

3.1.2 Regularization Term 

The purpose of including regularization term is to improve the generalization. This 

can be implemented by modifying the performance function in feed-forward neural 

networks. For this study we include a regularization term that encompasses the 

minimization of both mean square error ( mse) and mean square of weights and biases 

(msw). The equation is described in Equation 3.1.7 

msereg = 1mse + (1 - 1)msw (3.1.7) 
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where 'Y is performance ratio and 

1 n 

msw = - Lw2
i 

n. 
J=l 

Using this performance function will cause the network to have smaller weights 

and biases, and this will force the network response to be smoother and less likely to 

overfit. 

3.1.3 Algorithm 

In this section, we present the algorithm for architecture selection along with the 

available variable number of feature sets. For the elimination of irrelevant and/or 

redundant features, we have used PCA. With candidate features, we have started the 

construction of feed-forward neural networks with one hidden unit and then continued 

the construction iteratively with one hidden unit at a time until the criteria is met. 

The selection of the architecture depends on the way the network trained - either for 

a fixed feature candidate, construct the network or for a fixed architecture, search 

optimal number of feature(s). The comparison result is presented in experimental 

results section. 

Procedure for the algorithm: 

1. Elimination of "irrelevant" and/or "redundant" features-produce candidate fea­

tures with any feature selector, in this case use PCA for successive contribution 

such as from 0.1% to 4.0% 

2. Train the network 

(a) Construct neural networks with one hidden unit (h=l) in single hidden 

layer at the start 

(b) Train the neural networks with selected candidate k feature(s) for several 

times and consider it as full architecture, denotes F 1,. .. ,FL" Set SSEF= 
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min{SSEF , ... , SSEF } 
1 L 

( c) Construct new networks with one additional hidden unit (h=h + 1) for each 

successive training 

(d) Train the newly constructed networks with k feature(s) for several times 

and consider it as full model and the previous one as partial model, denotes 

F1, ... ,F1 with SSEF= min{SSEF , ... ,SSEF } and P 1, ... ,P1 with 
1 L 

SSEp= min{SSEp , ... , SSEp } ,respectively. 
1 L 

(e) Test the null hypothesis that the reduced model is equivalent to the full 

model 

I. Calculate the likelihood ratio 

II. Put the decision for accepting or rejecting the partial model for a given 

k features 

A. If L :::; F critical value, accept the partial model and go to 2f 

B. If the decision is rejection, then set SSEp=SSEF for further train­

ing and go through 2c to 2e till upper bound of hidden units reaches 

(Note: During training stages, the algorithm records processing 

time, validation accuracy, regularization performance, classifica-

tion rate on SSE, and the corresponding MSEREG for further 

comparisons of the architecture selection.) 

(f) Chose the "enhanced" architecture as long as classification accuracy on 

MSEREG is greater than SSE against either: 

i. The first acceptable architecture or 

ii. The highest classification rate. Compare classification error with pre­

vious acceptable model. If it is the minimum until the current phase, 

retain it. If it is not promising, go through 2c to 2e once again 

Note: 1) The above step deals with hidden units only where as Step 
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3 deals with number of features. 2) The classification rate is flexible 

and set by user. 

3. If the classification rate is not in the acceptable range, add more feature(s) 

depending criterion set by feature selector such as the next contribution in 

PCA, otherwise go to Step 5 

4. Repeat Step 2 

5. Stop, the final neural network model hash middle nodes in single hidden layer 

and k features. 

c=c+inc 

0. Feature Extraction 

1. Feature Selection 

2. Architecture Selection 

3. Train Neural Networks 

h=h+l 

No 

Reached 
Upper 
bound 

Reject 
Accuracy >>------' 

6. Stop 

Figure 3.1: FIFAS Algorithm 

49 



Feature Extraction 

In this stage, all necessary feature sets are produced from image of characters. In the 

mean time, before one proceed to the next stage, it is required to set the classification 

accuracy that be be the minimum and the increment of the contribution of feature 

selection in PCA. That is, Set accuracy rate=% and Incremental (inc)=% 

Feature Selection 

In this stage, the selection process has two steps- one transforms the data into other 

form so that the second step selects only prominent or relevant features from the pool 

of features. In this particular study, the feature selection uses PCA which requires 

the transformation of data into other forms unlike other feature selection algorithms 

such as Forward Search, Backward Search, Forward-Backward Search. For example, 

produce a number of features with PCA contribution of 0.1 % contribution. For further 

contribution, it increments by the increment value set at the beginning. 

Architecture Selection 

Construct (design) a topology of neural networks with initial hidden neuron to 1. 

Consequently, the algorithm design a topology constructively one hidden neuron as a 

time until either it reaches the acceptable accuracy or upper bound of hidden neurons. 

Checking Accuracy and Upper Bound of hidden neurons 

• If the accuracy is less than the preset value and upper bound is not reached, 

~ h=h+l (his number of hidden neurons) 

• else Accuracy is less than the preset value and upper bound is reached, ~ c= 

c+inc (c is contribution and inc is increment) 

• else Accept the integrated feature and architecture 

Likelihood ratio test 

Test L :=:; F? 
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Train the neural networks 

The algorithm trains several times and choose the minimum performance error. 

The modified algorithm for the investigation of the importance of the order is to 

train with all features with fixed topology in the exchange of the addition of hidden 

units by the addition of number of features in the above steps. 

51 



Chapter 4 

Implementation 

4.1 Benchmark methodology 

In the past there has been some criticism of feed-forward benchmarking methodology, 

and suggestions for improvement [75] [76] and [77]. The remedies for these require-

ments are the data sets were partitioned into three groups- training, testing and 

validating data sets. Secondly, train the networks for 7 times for given hidden units 

and features in order to avoid the randomization effect of the weights. 

The training algorithm used in this study is the Resilient Backpropogation (RPOP) 

algorithm [78]. RPROP was selected for a number of reasons. First, it is a gradient­

based method which has fast convergence properties compared to many other gradient 

based algorithms such as BP and its variants [78]. A further advantage of RPROP 

is that there are few parameters that are required to be set by the user. In addition, 

RPROP's performance is relatively insensitive to the values selected. The RPROP 

algorithm used the following standard constant settings: 17 + =1.2, rf =0.5, b.max 

50, b.min = 10-6, performance ratio(')')= 0.5, epoch=l0,000, time = Infinity, goal= 

0.001 and regularization term is Equ. 2.2.3. 

The architecture selection algorithm does not perform weight freezing, but trains 

all weights after the addition of a new hidden neuron. The network architecture 

constructed is a cascade. Training is begun in constructive algorithm with an initial 
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network that has one hidden neuron, with the input connected directly to the outputs 

through it. These weights are initialized to random values in the range -0.7 to 0.7. 

Once new hidden neuron is connected to the network, training is resumed using 

RPROP. The weights of the new hidden neuron are initialized to random values in 

the range -0.1 to 0.1. 

The remaining RPROP parameter is the initial update value ~0, which sets the 

initial step size taken by the weights. For the initial network this value is set to 0.2. 

When a new hidden neuron is added to the network, the update values are reset to 

values depending on their position in the network. This technique has been shown to 

increase convergence speed and is termed search direction biasing (80] (81]. 

In the case of feature selection algorithm for FIFAS, the Principal Component 

Analysis has been used with the explanation of PCA uses singular value decomposition 

to compute the principal components. The input vectors are multiplied by a matrix 

whose rows consist of the eigenvectors of the input covariance matrix. This produces 

transformed input vectors whose components are uncorrelated and ordered according 

to the magnitude of their variance. 

Those components that contribute only a small amount to the total variance in 

the data set are eliminated. It is assumed that the input data set has already been 

normalized so that it has a zero mean. As a result, the transformed components with 

the requirement of Variance Accounted For (VAF) parameter have been formulated. 

In other words, by giving the contribution factor by user, a minimum number of 

components that are necessary to explain the given data set have been produced. 

Thus, for this particularly thesis, the range of contribution factor has been given 

from 0.1% to 4.0% for successive increment of 0.1. Additionally, if the numbers of 

components (features) are the same, then the implementation phase only considered 

one of them in order to minimize the training time substantially. 

For the analysis purpose, the network is taken the minimum values of all the 
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seven trainings. Besides, early stopping was used as a halting criterion. The training 

is lasted until the MSEREG or/and SSE or validation error failed to decrease by a set 

amount error over a given period or reached the maximum limit of hidden units base 

on Cover's theorem [68]. Every network was monitored for the improvement of every 

25 epochs to justify the continuation of the training. The weight parameters vary 

when the number of hidden units changes since it calculates by the interconnections 

all neurons among the adjacent layer(s) in input, hidden and output layers. This can 

be given by (k+l)*h + (h+l) where k is the number of input features and his the 

number of hidden units in hidden layer. 

For the classification purpose, the performance measure was used the percentage 

of patterns misclassified on the new data set in which it based on mean square regu­

larization error and/ or summation of squared error. The selection of the magnitude of 

regularization is one of the most elusive values since it depends on the model which 

is implemented, the type of data sets and the final size of the network [45]. As a 

result, it affects the generalization of the network. In order to be on the safest side, 

set the value 0.5 that will have equal chances between error and weight values. In 

addition to these, time elapsed to train the networks, likelihood ratio test measure 

and training performance on regularization error, or/ and summation of square error 

have been recorded for comparison. 

For the classification problem of the study, we have used two different data sets. 

The first data set is dealt with Geez characters. Geez characters are one of the scripts 

used in East Africa, Eritrea and Ethiopia. It has various roots and derivatives. These 

characters are collected from the Geez word processing software. We have selected 

412 unique characters for each of 7 font types. All in all 2884 exemplars were used 

for neural networks functionality. The preparation process was, each character has 

scanned and produced character images. Then the two-dimensional pixel arrays of 

the input characters were preprocessed using image-processing techniques - normalize 
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Table 4.1: Description of Geez Character features 
Feature I Desrciption 

1 Total Euler Total number of Euler in connected region 
2 Total Area Total number of area in connected region 
3 Area The actual number of pixels in the connected region. 
4 Centroidx X coordinate center of mass of the region. 
5 Centroidy Y coordinate center of mass of the region 
6 Major Axis Length The length (in pixels) of the major axis of the ellipse that has the 

same second-moments as the region. 
7 Minor Axis Length The length (in pixels) of the minor axis of the ellipse that has the 

same second-moments as the region. 
8 Eccentricity The eccentricity of the ellipse that has the same second-moments 

as the region. 
9 Orientation The angle (in degrees) between the x-axis and the major axis of 

the ellipse that has the same second-moments as the region. 
10 Convex Area The number of pixels in convex image 
11 Filled Area The number of on pixels in filled image. 
12 Euler Number Equal to the number of objects in the region minus the number 

of holes in those objects. 
13 Equivalent Diame- The diameter of a circle with the same area as the region. 

ter 
14 Solidity The proportion of the pixels in the convex hull that are also in 

the region. 
15 Extent The proportion of the pixels in the bounding box that are also in 

the region. 
16 X Bounding X coordinate of upper-left corner of the rectangle 
17 Y Bounding Y coordinate of upper-left corner of the rectangle 
18 Width The width of the rectangle. 
19 Height The height of the rectangle. 
20 Extremal The extreme points in the region. 
21 Thinness Ratio Measures the roundness 
22 Perimeter Perimeter of the region 
23 Compactness Ratio Determines the regularity of an object 

threshold and smoothing. Calculated spatial information in which considered features 

of the character using Matlab Toolbox version 6.0 [43] wherein some of them, are 

described on Table 4.2. 

The second data set is the digit data set1 which consists of handwritten numerals 

('0'-'9') extracted from a collection of Dutch utility maps. Two hundred patterns 

per class (for a total of 2000 patterns) are available in the form of 30 x 48 binary 

images. These characters are represented in terms of the following feature sets (total 

1The data set is available through the University of California, Irvine Machine Learning Reposi­
tory ( www.ics.uci.edu/,....., mlearn/MLPRespository.html). 
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649 features): 

1. 79 Fourier coefficients of the character shapes; 

2. 216 profile correlations; 

3. 64 Karhunen-Loeve coefficients; 

4. 240 pixel average in 2 x 3 windows; 

5. 47 Zernike moments; and 

6. 6 morphological features. 

4.2 Parameter settings 

This subsection summarizes all necessary parameters with their values in the imple-

mentation phase of the study. The experimental results are presented and discussed 

in the Experimental Results and Discussion chapter. 

Table 4.2: Parameter Settings 
11 Parameter Name I Parameter value I Parameter Name I Parameter Value 

Training set 10,000 Time Infinity 
Maximum Fail 50 Minimum Fail 50 
Goal 0.1% Hidden Layer logsig 

Transfer Function 
Output Layer Purelin 
Transfer Function 
Number of Input Depends on the Number of output 10 (English) and 16 
neurons number of features neurons (Geez) 
Performance func- MSEREG and SSE Performance Ratio 0.5 
ti on 
Weight Initial- -0.1 to 0.1 Weight Initial- -0.7 to 0.7 
ization of hidden ization of input 
layer layer 
Training update 25 epochs PCA contribution 0.1% to 4.0% (0.1 

increment) 
Number of exem- 2000 (English) and Likelihood ratio 99% 
plars 2884 (Geez) confidence interval 
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Chapter 5 

Experimental Results and 

Discussions 

In this chapter, the study presents the experimental results of two benchmark datasets. 

The organization of the results is as follows: First, describe the criteria to measure 

the behavior of the proposed algorithm. Then discuss briefly the motivation of using 

two real world datasets. Next compares the results against the measures. In order 

to test the robustness and usefulness of the proposed algorithm, we present empirical 

analysis from simulation procedures of neural networks by comparing the classifica­

tion rate using MSEREG and SSE on both real world datasets. Withal this, we add 

in the concept of which pillar or constituent (feature or architecture) comes first to­

ward the "acceptable" or "enhanced" integrated feature and architecture recognition 

system construction. 

In a general sense, we adopted the following measures to evaluate the behavior of 

the proposed selection algorithm in terms of: 

1. Number of hidden nodes in the constructive networks for a given or fixed number 

of features; 

2. Number of features in constructive networks; 
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3. Classification rate, measured as the proportion of examples for which all network 

output values differed from the corresponding target; 

4. Usual SSE measure and MSEREG measure 

5. Network performance on both validating and testing dataset as well as training 

dataset 

The experiments were conducted on two different categories of real-life public 

domain datasets, which is described in Section 4.1. The motivation behind this is to 

figure out the effect of medium-dimensional (number of features as a range between 

10 and 100) and high-dimensional (number of feature greater than 100) effect [79]. 

The feature selection component in this algorithm is dynamic since user only gives 

the amount of principal contribution and hence makes available number of features 

for architectural selection procedure. 

The experimental results are mainly focus on the first acceptable architecture with 

appropriate features. The first acceptable model or architecture refers or points to 

the architecture that found appropriate for the representation of the full model of the 

network using likelihood ratio test. Of course, the main objective of the study is to 

find the unified feature and architecture solution for OCR problems. However, the 

following tables and figures show the validity of the proposed algorithm (FIFAS) and 

describe how to select the appropriate ones. Consequently, full model or architecture 

considers as the model that attains the highest classification accuracy although one 

can consider all possible number of weight parameters or maximum number of hidden 

neurons according to Cover's rule as long as it does not break the requirement. This 

is because the maximum value can not reach with the principle of early stopping and 

cross-validation principles otherwise the training will be overfitted. 
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5.1 Handwritten English Numerals 

To assess the generalization ability for handwritten English numerals (classification 

accuracy in new un-seen dataset during training stage), the whole dataset was parti­

tioned into training set in which 49.503, testing dataset 253 and the remaining 253 

was assigned for validating dataset. The generalization ability is given as averages 

over 10 unseen new (recall) datasets. 

From the feature selector, it achieves 20 prominent feature categories among 649 

features that are displayed in every table as under heading of number of features. 

Table 5.1: Highest accuracy based on MSEREG without considering first acceptable 
model of English numerals 

Cover's No of No of Epoch Elapsed Classi- Classifi- No of 
Rule Fea- Hidden time fication cation weight 

tures units Rate Rate param-
MS ERE< rnsE eters 

142 6 47 112 36.11 91% 89% 377 
124 7 50 61 17.91 89% 84% 451 
110 8 41 129 28.87 89% 83% 411 
99 9 36 64 12.71 91% 82% 397 
90 10 42 94 20.12 90% 87% 505 
83 11 76 186 69.59 90% 73% 989 
76 12 68 113 38.40 88% 81% 953 
71 13 67 130 43.35 89% 79% 1,006 
66 14 54 148 36.83 90% 80% 865 
58 16 60 98 26.69 89% 80% 1,081 
52 18 26 140 19.64 90% 83% 521 
50 19 48 94 20.99 91% 79% 1,009 
45 21 51 81 19.05 89% 78% 1,174 
41 23 46 130 27.79 91% 81% 1,151 
38 25 79 111 41.02 91% 75% 2,134 
33 29 69 146 47.48 92% 74% 2,140 
28 35 59 154 39.54 92% 80% 2,184 
22 45 66 214 65.99 92% 81% 3,103 
15 65 74 189 64.29 90% 75% 4,959 
9 109 61 202 52.40 90% 77% 6,772 

Table 5.1 describes the maximum accuracy that the training algorithm can attain 

based on mean square error of regularization performance function (MSEREG) along 

with the given or set parameters from section 4.2. Besides, it gives the maximum 

number of hidden neurons, epoch, elapsed time, number of weight parameters and 
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Figure 5.1: Number of Hidden Neurons Vs Highest Classification Rate based on 
MSEREG of English numerals 

the corresponding classification accuracy based on sum of square error (SSE) to at­

tain the displayed highest classification accuracy on MSEREG. According to Cover's 

rule [68], the maximum number of hidden neurons for the given number of features 

and training exemplars are put in the first column and the remaining tables. This 

table does not include the decision criterion in order to take as a reference for the 

subsequent decision for enhanced architecture of neural networks. Figure 5.1 shows 

the relationship between number of hidden units and classification accuracy for each 

relevant feature. This figure is the summary of table 5.1 when it sorts by number of 

hidden neurons. Similarly Figure 5.2 depicts how the number of weight parameters af­

fects the classification accuracy of handwritten English numerals based on MSEREG 

performance function. Hence the underlining training have achieved the maximum 

of 92% along with 2140 weight parameters. These weight parameters are enormous 

to resolve the problem when they are compare to the partial model. It is reduced to 

98% which is a big and considerable reduction without much reduction accuracy in 

classification accuracy - from 92% to 88% (4.3% in change). In the first benchmark 

data set which is displayed on table 5.2, there is a peculiar anomalies for the deter-

mination of classification accuracy with the relevant features. These are indicates by 
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asterisk (*)in the classification accuracy column. As a matter of fact, the inclusion of 

penalty (regularization) term in the training neural networks prompts or gives forth a 

higher accuracy than without the term due to longer training without breaching the 

early stopping principles. However, some features don't conform with the theoretical 

foundation. The reason behind for these anomalies might be the network has not 

reached to the optimal stage to generalize the results. Therefore, to complete ap­

proach for the FIFAS algorithm, these results should be rejected automatically. On 

the other hand, the model reduction can be explained in terms of either the maximum 

hidden neurons using Cover's rule or the number of weight parameters. The former 

one has its own drawbacks and the latter has not even though both of them includes 

the number of input features, number of hidden units and output neurons for single 

hidden layer of neural networks. Therefore, the unified and enhanced solution for 

handwritten English numerals is 88% in classification accuracy with 89% of model re­

duction. In other words, 6 features and 5 hidden neurons are the appropriate solution 

for handwritten English numerals. 

Figure 5.3 is given us a comprehensive results between number of features and 

number of hidden units of full and partial models topologies. Moreover, it puts the 

relationship between number of features and classification accuracy for the corre­

sponding architectures. It is evinced that the rejection of model due to the classifi­

cation accuracy based on SSE is greater than MSEREG even though it is acceptable 

from the likelihood ratio test. The explanation for this is that the neural networks 

are not accomplished the desired result in generalization of the networks. This can be 

overcome by letting the training until it reaches the acceptable classification accuracy 

as long as the model is in the acceptable territory. 

In contradistinction to Tables 5.1 and 5.2, the reduction of model in terms of 

weight parameters is more or less constant for various relevant features whereas re­

duction of model in terms of Cover's rule is a substantial changes. The aim of the 
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Table 5.2: First acceptable model based on MSEREG of English numerals 
Cover's No of No of Model Epoch Elapsed Classif- Classif- No of 
Rule Fea- Hidden Re- Time ication ication weight 

tures Neu- duced Ac cu- Accu- par am-
rons racy on racy on eters 

MS ERE< ~SSE 
83 11 2 96% 42 2.99 *83% 87% 27 
90 10 3 97% 54 3.84 *84% 90% 37 
124 7 4 97% 36 3.26 *85% 91% 37 
142 6 5 96% 89 9.40 88% 83% 41 
76 12 3 96% 71 4.68 823 79% 43 
99 9 5 953 43 3.50 *863 89% 56 
110 8 6 953 119 9.67 *87% 88% 61 
71 13 5 933 143 9.91 *84% 91% 76 
50 19 4 923 144 9.00 *83% 86% 85 
41 23 5 883 47 3.38 *823 89% 126 
58 16 8 863 64 5.17 *833 86% 145 
66 14 9 863 33 2.99 86% 833 145 
52 18 9 83% 41 3.55 83% 813 181 
38 25 7 82% 52 4.03 86% 783 190 
45 21 9 80% 85 6.80 *823 873 208 
33 29 7 79% 60 4.51 843 81% 218 
22 45 7 683 44 3.34 *83% 913 330 
28 35 11 603 75 6.43 85% 82% 408 
15 65 7 54% 48 3.57 *813 86% 470 
9 109 5 453 38 2.66 *803 82% 556 

proposed algorithm is to reduce the model as much as possible. 

Thus based on the above two paragraphs, the choice is left to the designer of the 

recognition system since if one decides to train the networks as long as it saturates 

for generalization or decide to select only acceptable model without much resource 

usage. The latter case is suitable in line with the proposed algorithm. 

Table 5.3 is another version of table 5.1. The only difference is that the former has 

produced based on decision criterion and the later does not have. This table (table 

5.3) enables the designer to train the network until it reaches the maximum accuracy 

and without considering the first acceptable model which is the solutions of table 5.2. 

Tables 5.4 and 5.5 describe the final errors during training process for highest 

classification and first acceptable models, respectively. It is not elicited for a trend 

for the all relevant features and number of hidden units that are dependent on various 

criteria such early stopping and cross validation to achieve the results. However one 
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Table 5.3: Acceptable model with highest accuracy based on MSEREG for English 
numerals 

Cover's No of No Hid- Epoch Time Classi- No of 
rule Features den Elapsed fication weight 

Neurons (sec) Accuracy parame-
ters 

142 6 7 45 5.40 91% 57 
124 7 50 61 17.91 89% 451 
110 8 41 129 28.87 89% 411 
99 9 31 92 16.09 90% 342 
90 10 42 94 20.12 90% 505 
83 11 18 63 7.60 90% 235 
76 12 68 113 38.40 88% 953 
71 13 60 141 38.77 89% 901 
66 14 70 194 66.21 89% 1,121 
58 16 60 98 26.69 89% 1,081 
52 18 63 161 45.11 90% 1,261 
50 19 27 117 16.68 91% 568 
45 21 24 65 8.77 89% 553 
41 23 46 130 27.79 91% 1,151 
38 25 79 111 41.02 91% 2,134 
33 29 78 114 41.44 92% 2,419 
28 35 59 154 39.54 92% 2,184 
22 45 66 214 65.99 92% 3,103 
15 65 74 189 64.29 90% 4,959 
9 109 77 164 57.54 90% 8,548 

can observe the errors in training, testing and validating are in increase order which 

are the general truth of neural networks training. Moreover, one can compare the 

corresponding results of training, testing and validating errors from both tables. 

Figure 5.4 tells us that the classification accuracy for variable relevant features 

supersede the fixed relevant features (variable model) except at the first relevant 

feature. From this, one may conclude that to get highest accuracy, it is better to 

use fixed topologies for variable features. However, this is not true if one consider 

the number of hidden neurons and hence number weight parameters along with the 

classification accuracy criteria. The results are displayed in table 5.2 and table 5.6 

Consequently, with minimal weight parameters, it is better to find the classification 

accuracy which is selecting a feature and design the network constructively. 
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Table 5.4: Training, Testing, and Validation Error for highest accuracy model based 
on MSREG of English numerals 

No of No of Epoch Elapsed Training Testing Validation 
Features Hidden Time Error Error Error 

Neurons 
6 47 112.00 36.11 0.46% 1.49% 2.07% 
7 50 61.00 17.91 0.65% 1.68% 2.35% 
8 41 129.00 28.87 0.99% 2.01% 2.40% 
9 36 64.00 12.71 1.33% 2.29% 2.77% 
10 42 94.00 20.12 1.30% 2.27% 2.61% 
11 76 186.00 69.59 0.85% 1.88% 2.26% 
12 68 113.00 38.40 0.99% 1.98% 2.37% 
13 67 130.00 43.35 1.05% 2.05% 2.49% 
14 54 148.00 36.83 1.32% 2.23% 2.73% 
16 60 98.00 26.69 1.27% 2.16% 2.62% 
18 26 140.00 19.64 2.68% 3.40% 3.77% 
19 48 94.00 20.99 1.79% 2.55% 2.96% 
21 51 81.00 19.05 1.78% 2.53% 3.03% 
23 46 130.00 27.79 1.98% 2.69% 3.14% 
25 79 111.00 41.02 1.39% 2.17% 2.65% 
29 69 146.00 47.48 1.60% 2.33% 2.66% 
35 59 154.00 39.54 1.88% 2.56% 2.85% 
45 66 214.00 65.99 1.86% 2.52% 2.79% 
65 74 189.00 64.29 1.85% 2.51% 2.79% 
109 61 202.00 52.40 2.30% 2.93% 3.04% 

Table 5.5: Training, Testing, and Validation Error for the first acceptable model 
selection based on MSEREG of English numerals 

No of No of Epoch Elapsed Training Testing Validation 
Features Hidden Time Error Error Error 

Neurons 
6 5 89 9.40 4.54% 5.02% 5.21% 
7 4 36 3.26 6.11% 6.36% 6.52% 
8 6 119 9.67 5.52% 5.82% 6.16% 
9 5 43 3.50 6.40% 6.62% 6.74% 
10 3 54 3.84 8.08% 8.17% 8.23% 
11 3 42 2.99 8.27% 8.38% 8.42% 
12 3 71 4.68 8.45% 8.53% 8.59% 
13 5 143 9.91 7.17% 7.29% 7.40% 
14 9 33 2.99 5.54% 5.94% 6.13% 
16 8 64 5.17 5.95% 6.30% 6.43% 
18 9 41 3.55 5.81% 6.16% 6.36% 
19 4 144 9.00 8.33% 8.42% 8.45% 
21 9 85 6.80 6.09% 6.40% 6.52% 
23 5 47 3.38 7.97% 8.07% 8.20% 
25 7 52 4.03 7.14% 7.29% 7.34% 
29 7 60 4.51 7.21% 7.40% 7.44% 
35 11 75 6.43 5.96% 6.21% 6.29% 
45 7 44 3.34 7.50% 7.65% 7.61% 
65 7 48 3.57 7.60% 7.75% 7.78% 
109 5 38 2.66 8.80% 8.89% 8.86% 
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Figure 5.4: Number of Features Vs Classification Accuracy for fixed architecture and 
feature of English numerals 

Table 5.6: First acceptable model based on MSEREG for fixed model of English 
numerals 

Cover's No of No of Epoch Elapsed Perform- Classif- No of Model 
Rule Fea- Hidden time ance ication Weight Reduc-

tures Neu- (sec) Error Accu- Param- ti on 
rons racy on eters 

MSERE<: 
143 6 5 89 9.40 4.06% 87.68% 41 96.5% 
125 7 4 36 3.26 5.43% 85.37% 37 96.8% 
100 9 2 58 3.99 6.16% 84.25% 23 98.0% 
91 10 3 54 3.84 6.85% 83.55% 37 96.7% 
83 11 18 63 7.60 3.37% 89.50% 235 78.4% 
77 12 9 38 3.45 4.64% 87.65% 127 88.3% 
53 18 61 86 23.73 3.71% 89.18% 1,221 -16.0% 
50 19 27 117 16.68 2.79% 90.50% 568 45.9% 
45 21 24 65 8.77 3.82% 88.64% 553 47.1% 
42 23 29 120 17.85 3.83% 88.60% 726 30.3% 
38 25 32 100 15.98 3.54% 89.09% 865 16.7% 
33 29 12 56 5.17 4.76% 87.65% 373 64.0% 
28 35 16 96 9.66 4.94% 87.18% 593 42.3% 
22 45 17 65 6.92 3.94% 89.02% 800 21.7% 
15 65 51 103 23.41 3.89% 89.40% 3,418 -236.9% 
9 109 58 197 49.09 5.15% 87.75% 6,439 -538.6% 
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5.2 Machine-Printed Geez Characters 

In this subsection, the newly designed benchmark has been implemented to test the 

effectiveness and robustness of the proposed algorithm. This benchmark is categorized 

under medium-dimensional category so as investigate the effect of dimension. 

As displayed in table 5.8, the reduction of architecture is reached to 99% from 94% 

for 9 relevant features among 26 features. It conforms with the notion of the proposed 

algorithm as less applicable to handwritten English numerals. In other words, within 

the acceptable range of highest accuracy (Table 5.7, the classification accuracy based 

on MSEREG is more or less similar to the reduced model and better than SSE which 

is without penalty (regularization) term for each table. Hence, one may conclude that 

the trainings were reached to their generalization criterion even though the accuracy 

is less than the expected highest accuracy. This hurdle can be overcome by choosing 

the suitable value of performance ration for regularization term. 

Table 5.7: Highest accuracy without considering decision of Geez 
Cover's No of No of Epoch Elapsed Classif- No of Model Trainini Testing Validat· p 
Rule Fea- Hid- time ication weight Re- Error Error Error 

tures den (sec) Rate pa- due-
units rame- ti on 

ters 
144 9 5 193 21 86.983 56 96.53 7.13 7.23 7.13 
180 7 8 152 20 87.213 73 95.63 7.03 7.23 7.03 
120 11 6 165 19 87.033 79 95.03 7.53 7.63 7.43 
160 8 10 194 27 87.313 101 93.83 7.03 7.13 7.03 
103 13 7 123 15 87.153 106 93.23 7.43 7.53 7.43 
80 17 6 180 19 87.053 115 92.53 7.03 7.23 7.03 
131 10 12 212 31 86.893 145 90.83 7.33 7.43 7.33 
111 12 12 181 26 87.063 169 89.23 7.03 7.23 7.03 
96 14 12 192 28 87.133 193 87.53 7.53 7.63 7.53 

One can easily pick up the appropriate integrated feature and architecture for 

Geez character from Figures 5.5 and 5.6 by identifying the first highest classification 

accuracy which is the turning point for reduced (partial) architecture and the corre­

sponding relevant number of features and hence 9 features and 86.97% of classification 

accuracy with 87.99% of the corresponding of classification accuracy of full model. 
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Table 5.8: First acceptable architecture of Geez based on MSEREG 
Cover's No of No of Epoch Class if- Classi- No of Model Tuainini ~Testing Validat· ~· n 
Rule 

160 
120 
111 
103 
180 
131 
80 
144 
96 

87.20% 
..., 
~ 87.00% 
!; 
~ 86.80% 

8 
~ 86.60% 

·~ 86.40% 

0 
86.20% 

Fea-
tures 

8 
11 
12 
13 
7 
10 
17 
9 
14 

7 

Hid- ication 
den Rate 
units 

2 61 86.66% 
2 64 86.67% 
2 60 86.95% 
2 49 86.70% 
4 85 86.60% 
3 64 86.51% 
2 55 86.49% 
4 133 86.97% 
6 102 86.71% 

8 9 10 

fication weight Re- Error Error Error 
Rate pa- due-
SSE rame- tion 

ters 
82.06% 21 98.8% 7.6% 7.7% 7.5% 
85.16% 27 98.3% 8.4% 8.6% 8.4% 
85.92% 29 98.2% 7.7% 7.8% 7.6% 
85.28% 31 98.1% 8.0% 8.1% 8.0% 
86.13% 37 97.8% 8.5% 8.7% 8.5% 
74.30% 37 97.7% 8.6% 8.8% 8.6% 
71.58% 39 97.5% 8.6% 8.8% 8.6% 
84.29% 45 97.2% 7.5% 7.6% 7.4% 
85.87% 97 93.8% 8.7% 8.9% 8.7% 

11 12 13 14 17 

No of Features 

Figure 5.5: Number of Features Vs Classification Accuracy of Geez characters 

From Figure 5.7, the classification accuracy for fixed features and constructive 

architecture is surpassed of variable features with fixed architectures. Furthermore, 

the number of iterations (epoch) to achieve the results for fixed feature are less than 

for fixed topology as it agrees with the general theory of constructive algorithm of 

neural networks algorithm. This leads to the conclusion that for both benchmark 

datasets, the training of constructive architecture with a given (fixed) feature is the 

best approach to design a forward integrated feature and architecture selection. In 

other words, the feature pillar comes first before architecture pillar. 

Figure 5.8 describes the final number of hidden neurons against the classification 
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Figure 5.7: No of Features Vs Classification Rate for fixed feature and topology of 
Geez characters 

rate of each relevant feature while the training proceed. Even though the number 

of hidden neurons is some how linear related for the first four relevant features, one 

can not conclude that the number of hidden neurons linear relates with classification 

accuracy since they are only the last hidden neurons when achieving the attained 

classification accuracy. This would be true when the training were tracing the per-

formance error on training, testing and validating data sets. 
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Table 5.9: Highest accuracy based on MSEREG for acceptable model of Geez char­
acters 

Cover's No of No of Epoch Elapsed Class if- No of Model Trainin1 0 Testing Validat· l 
Rule Fea- Hid- time ication weight Re- Error Error Error 

tures den (sec) Rate pa- due-
units rame- ti on 

ters 
180 7 4 85 9.47 86.66% 37 97.8% 7.6% 7.7% 7.5% 
144 9 5 193 20.88 87.21% 56 96.5% 7.0% 7.2% 7.0% 
103 13 6 139 15.54 87.03% 91 94.2% 7.5% 7.6% 7.4% 
160 8 10 194 26.58 87.31% 101 93.8% 7.0% 7.1% 7.0% 
80 17 7 225 24.98 87.08% 134 91.3% 6.9% 7.1% 6.9% 
131 10 12 212 30.85 86.96% 145 90.8% 6.8% 7.0% 6.8% 
120 11 14 175 27.45 86.82% 183 88.3% 7.4% 7.5% 7.4% 
96 14 12 192 27.59 87.06% 193 87.5% 7.0% 7.2% 7.0% 
111 12 20 272 51.42 87.12% 281 82.0% 7.4% 7.5% 7.3% 

87.40% 

-
~\ 

~ \ ___.. 
~ \ ~ ------ \/ -
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Figure 5.8: Number of Hidden Neurons Vs Highest Classification Rate of Geez char­
acters 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions and Recommendations 

Feature selection is very important aspect of solving the problem of pattern classifi­

cation. Many collected datasets contain attributes that are redundant or irrelevant. 

The advantage of using only the relevant features of the data for classification are 

many. First, by reducing data-overfitting, a classifier with better predictive accu­

racy can be obtained. Second, by identifying the relevant features, the cost of future 

data collection can be reduced. Third, by excluding the irrelevant attributes, a sim­

pler classifier can be obtained and the time required to classify new patterns can be 

reduced. Therefore, in this study, all the above truths were evinced or evident. 

In this study, the selection of number of feature is dynamic one since unsupervised 

feature selector inherits such character where as for the works of [2], they ought to 

set the number of feature before hands. Thus, their methodology required a prior 

knowledge of the underlie problem to set the number which is most of the time 

ineffectual where as for our algorithm has not. The other advantage of this algorithm 

is that it uses minimal resources that give most advantageous accuracy. In other 

words, without the deterioration of the accuracy, one can achieve the desired results. 

Nevertheless there might be a better result for a given architecture and features 

with the tradeoff of computational costs if one considers accuracy is the first and sole 
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objective. If one wants to have exhaustive "best" accuracy than a compromised result 

between speed and accuracy, this algorithm is less suitable. Setting values for this 

algorithm are very few and can be random since the adjustment to the optimal values 

will draw closer while the construction of the architecture in development. Besides, 

the classification rate for the selection of the architecture is flexible and set by user. 

It does not require any prior knowledge as other researcher did [63][79]. The effect of 

dimensions: high and medium have shown substantial effects. As a result, we conclude 

that high dimensions has a better position to fit the proposed algorithm since it can 

provide more uncorrelated feature dimensions for high classification accuracy. The 

training of constructive architecture with a given (fixed) feature is the best approach 

to design a forward integrated feature and architecture selection. In other words, the 

feature pillar comes first before architecture pillar. 

The weak point of this algorithm for looking a better classification rate with ideal 

architecture is it required more resources and sometimes it fails to reach the goal. 

Therefore, with less maximal classification accuracy, the proposed algorithm is the 

best and ideal selection for the design of recognition systems for OCR problems. 

6.2 Future Work 

In feature selection theory, there are many theories along with advantages, disadvan­

tages and suitability of each algorithm for searching best solution for different classes 

of problems. This study will proceed with a comprehensive investigation of various 

feature selection algorithms in conjunction with the new proposed algorithm so that 

it may give a firm conclusion for general principle about unified feature and archi­

tecture selection theory. Consequently, the study will recommend the algorithm for 

suitable types of classes. 
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Furthermore, future work will investigate the effect of two hidden layers and differ­

ent connection strategies for newly added hidden layers and neurons with the achieved 

results of single hidden layer. 

For long term, this study will deal with the combination of both constructive and 

pruning algorithms with the proposed algorithm. Besides, it will find the effect of 

genetic and fuzzy algorithms for the classification of characters with the proposed 

algorithm if there is a way to incorporate it. 
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Appendix A 

Appendix - Geez Script 

Geez characters are one of official scripts in East Africa. They have long history since 

the Birth of Jesus Christ. Since then they have been widely using for more than 60 

million around the region. They have at least 6 derivatives from the root. All in all, 

they are 412 alphabets excluding numerals. Due to limited space, we present only 

few machine printed samples so as they can give you a clear insight how look like. 

For more information, one can see Unicode web page and search for Ethiopic fonts. 
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