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ABSTRACT 

In this thesis, a model of self-growing and self-organizing feature map is 

proposed, which has been designed to alleviate the difficulty of pre-specifying an 

appropriate choice of the network topology, i.e., size and shape of the feature map, 

suitable for a given data set in the application of the Self-Organizing Map. 

The proposed model progressively builds a feature map by incremental 

growing of the network during the training process in a way that maintains two

dimensional regular grid structure compatible with the Kohonen network and by 

gradual adaptation of the reference vectors through coordinated competitive learning 

dynamics of the Batch Map algorithm. 

Experimental results based on iris data set and Italian olive oil data set show 

that the stopping criteria applied in the proposed model is effective in discovering an 

appropriate topology of the network suitable for the data manifold at hand while 

avoiding undergrowth and overgrowth, and that the proposed model is capable of 

growing the network dynamically during the training process to manifest a feature 

map of suitable size and shape for a given data set in significantly less time than the 

time taken by the standard SOM algorithm to produce a feature map of similar quality 

on a predetermined network structure. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the problem 

Kohonen's Self-Organizing Map (SOM) [Teuvo, 2001], also known as 

Kohonen network, is a model of unsupervised artificial neural network [Tommy and 

Siu-Yeung, 2007] that is capable of capturing statistical relationships that exist in the 

principal components of a high-dimensional input data manifold and map them onto a 

low-dimensional regular structure, typically a two-dimensional regular grid for easier 

visualization of the topology of the data manifold. 

The learning dynamics of the SOM can be described as a coordinated 

competitive learning. Upon repeated presentation of input data over a long period of 

training epochs, the reference vectors will adapt to the distribution of the input data 

vectors for which they have become winners forming a quantized approximation of 

the distribution of input data [Teuvo, 2001], and due to the coordinated updating of 

the reference vectors of nodes in the neighborhood of the winners, nodes that are near 

each other in the grid space will develop similar reference vectors, giving rise to the 

important property of topology preservation [Kimmo, 1996]. In other words, data 

samples that are near from one another in the input space will be mapped to nodes that 

are also close to one another in the space of the network grid. The overall effects thus 

achieved by the SOM algorithm can also be regarded as performing the combination 

of two concurrent tasks: topology preserving dimensionality reduction and vector 

quantization. 
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The SOM has been widely embraced as an effective tool for visualization of 

high-dimensional complex systems and data mining problems especially for 

classification and clustering tasks as evidenced by myriads of applications [Helge and 

Klaus, 1988; Teuvo et al., 1996] found in various fields of interests. 

Nevertheless, practical applications of the SOM entail a time-consuming trial 

and error method of generating numerous feature maps of different sizes and shapes 

using varied learning parameters and evaluating the feature maps based on subjective 

criteria to determine a feature map that suits the intended purpose of the application. 

Experimental analyses [Hiong and Susan, 2005] suggest that variances in learning 

parameters have nominal effects on the learning dynamics of the SOM as long as they 

are made to decrease monotonically over the training period except for possible 

differences in the training times and there exist commonly recommended and adapted 

choices for the learning parameters [Tuevo, 2001]. -
No such general network configuration exists since the appropriate size and 

shape of the network grid to yield a good feature map depend on the statistical 

characteristics of the data set and therefore cannot be made into a generic parameter 

independent of the input data. Thus, the requirement in the SOM algorithm to specifY 

the size and shape of the required feature map prior to the training process imposes 

an undue difficulty to the experimenter who is applying the SOM to discover the 

unknown structure of the data manifold that exists in the data set. 

This requirement to pre-specify the topology of the network prior to the 

training process is one of the most criticized drawbacks of the standard SOM 

algorithm along with the long training epochs required by the algorithm. In this study, 

we investigate if it is feasible to grow the two-dimensional regular grid network 

structure of the Kohonen network during the training process in such a way as to 
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automatically generate a feature map of appropriate size and shape suitable for the 

data manifold of a given data set. 

1.2 Research objectives, scope and methodology 

The objectives of the research reported in this thesis are to examine methods 

of growing the feature maps incrementally during the training process in a way that 

maintains the structure of a two-dimensional rectangular grid in accordance with the 

standard Kohonen network, and to devise and propose a model of self-growing and 

self-organizing map that can autonomously yield a feature map of appropriate size 

and shape suitable for the input data without requiring the size and the shape of the 

network to be specified prior to the training process. 

Such a model would alleviate the difficulty of predetermining suitable size and 

shape of the feature map in the application of the SOM while offering a structural 

compatibility to the standard Kohonen network so that visualization tools [Juha, 1999] 

designed for the feature maps produced by the standard SOM algorithm can be 

applied to the feature maps generated by the proposed model without any 

modification. 

Since the topology of the feature maps adopted in most applications of the 

SOM is a two-dimensional rectangular uniform grid structure for easy visualization of 

the data manifold, the scope of the investigation on the design and assessment of the 

proposed model of the self-growing and self-organizing feature map is confined to 

those mechanisms that always maintain the network structure to a two-dimensional 

rectangular uniform grid. 

Assessment of the proposed model is carried out by evaluating the qualities of 

the feature maps generated by the proposed model and by comparing them with the 
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qualities of the feature maps produced by the standard SOM algorithm using well 

known data sets in the field of machine learning and pattern recognition specifically 

chosen to represent varying complexity of the data manifolds they represent. 

For each experiment using a particular pair of a training data set and a test data 

set, a feature map is first generated by the proposed model using the training data set. 

Then the standard SOM algorithm is applied to a network having the same size and 

shape as the feature map generated by the proposed model using the same training 

data set. Furthermore, to ascertain that the stopping condition used in the proposed 

model does not cause the problem of undergrowth and overgrowth, the standard SOM 

algorithm is applied to a network grid twice the size. Quality of the three feature maps 

produced by the proposed model and the standard SOM algorithm are then evaluated 

and compared using the test data set. 

In the evaluation and relative comparison of the quality of the feature maps, 

we use two postulatory quality measures designed to measure how well the values of 

test data samples falling on a particular region of the input data space are represented 

by the reference vectors in the corresponding neighborhood of the feature map space, 

and an application-centric quality measure designed to quantify how well the 

generated feature maps identify the correct data classes of the test data samples. 

1.3 Contributions 

The results of the experiments strongly suggest that the proposed model is 

capable of growing the network dynamically during the training process to an 

appropriate topology suitable for a given input data set while avoiding undergrowth 

and overgrowth to yield a feature map of suitable size and shape for the input data 

manifold in significantly less training time than the time taken by the standard SOM 
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algorithm to produce a feature map of similar quality on a predetermined network 

structure. 

The proposed model of self-growing and self-organizing batch map has been 

shown to be a useful and viable model of growing SOM that successfully addresses 

the difficulty in pre-specifying a suitable structure of the feature map prior to the 

training process in the application of the SOM. With the proposed model, it is no 

longer necessary to go through the time consuming process of generating numerous 

feature maps of different sizes and shapes applying different training epochs in search 

of a suitable feature map for a given data set. 

We also believe that design criteria for the proposed model provides an 

important insight into the necessary and sufficient condition for stopping the process 

of growing and competitive learning in the design of growing models of the SOM and 

that the mean value of the weighted distortion errors in the neighborhood of the 

winner nodes used as the stopping condition in the proposed model presents a viable 

criteria that is guaranteed to converge while offering possibility of fine control when 

required. * * 
c4i'1 ( 969 ~~ 

?*;Ji'lf} °' D' ft~~ 
1.4 Outline of thesis iat1'il 

The remainder of this thesis is organized as follows. Chapter 2 provides 

background information on the context of the thesis by reviewing the Kohonen's 

SOM in the framework of competitive learning models and analyzing the 

computational characteristics and the problems associated with the standard SOM 

algorithm. Review and analytical summaries of existing growing models of the SOM 

are provided at the end of chapter 2. Chapter 3 provides the detailed description of the 

proposed model of self-growing and self-organizing batch map starting with 
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motivations and design objectives of the proposed model followed by the details of 

the Batch Map [Teuvo, 1993; Teuvo, 2001] competitive learning algorithm, the 

stopping condition and the mechanism for the growth of the network. In Chapter 4, 

methodology and settings for the experiments used to evaluate and compare the 

performance of the proposed model against the standard Kohonen SOM algorithm are 

described. Chapter 4 begins with the description of the two data sets used in the 

experiments including the summary of their statistical characteristics and presents the 

outcomes of the experiments conducted along with the summaries of the findings 

from the results of the experiments. Finally, chapter 5 concludes the thesis with a 

summary of main objectives and results of the research including the contributions 

and suggestions for directions in the future research work for development of 

alternative growing models of the SOM. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

As are typical of unsupervised learning networks, the SOM operates on the 

basis of competitive learning, in which neurons in the network compete for the right 

to respond to a given input data [Laurene, 1993]. In this chapter, we provide 

fundamental background information about the context of the thesis by analyzing the 

learning dynamics of the SOM algorithm in the framework of a coordinated 

competitive learning network and by examining characteristics and problems 

associated with the standard SOM algorithm. We then establish foundations and 

grounds for our proposed model of self-growing and self-organizing batch SOM by 

reviewing the rationale behind growing variants of the SOM and summarizing 

different growth mechanisms applied in the existing models. r--
l:lii 

tfl ~ 
2.1 Competitive learning and the Self-Organizing Map 

The SOM employs a form of competitive learning as its mam device; 

consequently it shares some similarities with other competitive learning models. 

However, considerable differences exist in the underlying learning dynamics among 

different competitive learning models. In this section, we compare several models 

related to competitive learning using a common architectural notation and categorize 

the SOM as a competitive learning network in which Winner-Take-Most learning 

approach is used to bring about vector quantization of arbitrarily structured input data 

in a way that maintains some topological order that exist in the data manifold and the 

network structure of a fixed dimensionality is imposed to give rise to dimensionality 
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reduction from a high dimensional input space to the lower dimensional structure 

making it possible to get a low-dimensional representation of the data which may be 

useful for visualization purposes. Although some of the models reviewed in this 

section do not bear the notion of artificial neural network in the strict sense of 

architectural viewpoint, we describe them using a common framework of neural 

networks. 

A competitive learning network consists of a set of K neural nodes A = { c1, c2, 

... , cK}. Associated with each node c is a reference vector We that represents the 

receptive field center in the input space. Each neuron assumes the responsibility of 

representing a subset of input data vectors acting as a prototype for them. An input 

data is encoded as an n-dimensional vector x E ~n, and accordingly the reference 

vectors have the same dimensionality as the input vectors, i.e. w E ~n. The n

dimensional input data are assumed to be generated either according to a continuous 

probability density function p(x), or from a finite set of input data D = {x1, x2, • •• , xL}, 

where L =ID I· 

The competitive learning process involves for each given input data vector x 

finding a node c whose reference vector we is most similar to x and adapting the 

reference vector We (and reference vectors of other nodes determined to be within the 

neighborhood of c in some competitive learning models like the SOM) to the values 

of x so that node c learns from the input data. The learning process is competitive in 

that nodes in the network compete for the right to learn from a given input data hence 

the process of identifying a node whose reference vector is most similar to a given 

input data vector is referred to as finding a winner neuron or best matching node in 

the SOM literature. Similarity among the data vectors and the reference vectors are 

commonly measured using the Euclidean metric. Accordingly, a winner node c for an 
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input data vector x is a node whose reference vector we has minimum distance to x in 

the data space among the reference vectors of all the nodes in the network. 

2.1.1 Voronoi tessellation 

A concept that is useful for illustrating goals of competitive learning is known 

as Voronoi Tessellation [Teuvo, 2001; Bernd, 1997; Franz, 1991]. Given a set of 

vectors w1, ••• , WK in 91n, the Voronoi Region Vi of a particular w; is defined as the set 

of all points in 91n for which w; is the nearest vector, i.e., 

vi = {x E 91
11 

Ii= argmin je{l, ... ,K} II x - w j II}. (2.1) 

The partition of 91n formed by all Voronoi regions is called Voronoi tessellation. 

The competitive learning process culminates in the partitioning of the input 

data space into a Voronoi tessellation where the constituent Voronoi regions are 

represented by the reference vectors of the nodes in the network. For each neural node 

in the network c E A, the Voronoi region Ve of the node c is defined to consists of 

points for which the reference vector We is the nearest vector among all the reference 

vectors of the network, i.e. 

Ve = {x E 91 11 I c = argminieA II x-w, II}. (2.2) 

When the input to the network consists of a finite data set D, we define the subset Ve 

of D for which the neuron unit c is the winner as the unit's Voronoi Set: 

(2.3) 

Figure 2-1 illustrates a Voronoi tessellation partitioned by Voronoi sets for a 

finite number of data points in two-dimensional space. The input space is partitioned 

into regions bordered by lines such that each partition contains a reference vector that 
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is the nearest to any input vector within the same partition. Each Voronoi set contains 

the data points within the corresponding Voronoi receptive field. 

. : . . : . .. ·,· :· .... ,,. . . 
.~ ... ·• *· ..... :· 

. . . .... ··., . , .. . , ..... " . 
·- •• •• 4' ... • . . . . ,. ... , ... . . . . . - .· : ..... , .. . . .. ' . .: ,. ~~ .. 7 .,. ...... ·-:. . . ... \. . . . . 

• '1f.:. • \!~· •. .. . ... . . 
:c :- . . ... 

•• '3--:I • ... · . 

(a) Input data set D 

. . . . . . . 
0 .. ""• .. ,.... .. · .. 
• .......... s. ... ~ : . 

. . .. . ... .. '. . . .,. : . .. · ' . . . ·- .... ,,, 
. ,,,·· ot:· . . . 

·: ~ 

(b) Voronoi sets of a Voronoi tessellation 

Figure 2-1 Voronoi tessellation [Bernd, 1997]: An input data set D is shown on the 
left (a) and the partition of D into Voronoi sets for a particular set of reference vectors 

is shown on the right (b ). 

2.1.2 Objectives and classifications of competitive learning models 

On the whole, the mainstay of the competitive learning is the formation of a 

Voronoi tessellation by adaptive updating of the reference vectors according to the 

distribution of input data vectors, but algorithmic details of how the reference vectors 

are updated vary significantly among different models of competitive learning. The 

specifics of the update mechanism employed by a particular competitive learning 

model is shaped by the intended purpose for the Voronoi tessellation to be formed 

hence the objectives of the competitive learning model. 

Different competitive learning models can be classified into two main classes 

based on which reference vectors are updated for each input data vector, namely, 

Winner-Take-All learning and Winner-Take-Most learning. The Winner-Take-All 

learning models employ an update mechanism where the reference vector of the only 
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the single chosen winner is adapted for each given input data vector whereas in the 

Winner-Take-Most learning models, not only the winner node learns from an input 

data, but other nodes in the network may also learn from the input data by adapting 

their reference vectors to the input data vector. .. e ~ e P. 
One of the most common applications of the Winner-Take-All competitive 

learning is vector quantization, which is a classical signal-approximation method that 

usually forms a quantized approximation to the distribution of the input data vectors 

using a finite number of reference vectors (or more commonly called codebook 

vectors in the context of vector quantization). Once the codebook vectors are formed 

through the process of competitive learning, the approximation of a data vector x 

means finding the codebook vector w c nearest to x in the input space [Teuvo, 2001]. 

Accordingly, vector quantization can be stated as the partitioning of the input space 

into a Voronoi tessellation whose constituent Voronoi sets are portrayed by the 

reference vectors as the codebooks, which typically represent the centroid point of the 

Voronoi set. In this context, the objective of the Winner-Take-Most competitive 

learning is the minimization of expected quantization (or distortion) error, i.e., to 

minimize the average of the differences between the reference vector of a Voronoi set 

and the data points falling on the receptive field of the Voronoi set. The quantization 

error is typically measured using the mean squared error, i.e., for a finite data set D 

and a competitive learning network A, the expected quantization error is 

E(D, A)= 1/1 DI· I~) x-wc 11
2 

' (2.4) 
CEA XEVc 

where Ve is the Voronoi set of the unit c. Therefore, traditional vector quantization 

algorithms such as the k-means algorithm [James, 1967; Stuart, 1982] and the LBG 

(also known as generalized Lloyd) algorithm [Yoseph et al., 1980] can be regarded as 

the embodiment of the Winner-Take-All competitive learning. In fact, the k-means 
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algorithm and the LBG algorithm illustrate two alternative modes of updating the 

reference vectors in competitive learning: online update mode and batch update mode. 

In the online update mode, which the k-means algorithm employs, the 

reference vectors are updated immediately after a winner node for an input data is 

determined and the process of determining the winner node and updating of the 

reference vectors are repeated for every input data vector. A complication with the 

online update mode is that the learning algorithm must decide the magnitude of 

change in the reference vector solely based on individual input data at a time without 

knowledge of other input data. In competitive learning models utilizing the online 

update mode, a parameter called learning rate a is used to control the extent to which 

the reference vectors are adapted toward the current input vector. If the network is 

allowed to learn continuously from the stream of input vectors, i.e. the learning rate a 

is kept constant, the network always stays adaptive; therefore there is no convergence. 

Typically, the learning rate is made to decrease monotonically over the period of the 

training process to stochastically stabilize the reference vectors. 

The LBG algorithm can be considered an instance of the Winner-Take-All 

competitive learning network where batch mode of updating the reference vectors is 

employed to form a quantized approximation of the distribution of the data samples 

on the nodes of the network. In batch update mode, all data vectors from a finite set of 

input data, which is a necessary condition for the batch update mode, are first 

evaluated to determine the winner nodes for each of input data vectors, assigning the 

input data vectors to their corresponding winner nodes during which no updating of 

the reference vectors takes place. Only after the winner nodes of all the input data 

samples have been determined, the reference vectors of the nodes are updated to the 

centroid points of the input data samples for which they are the winners. Because the 
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reference vectors are updated to the centroid points of their corresponding Voronoi 

sets, the LBG algorithm is guaranteed to converge in a finite number of iterations to a 

local minimum of the distortion error and yields more stable asymptotic values for the 

reference values without resorting to the use of the monotonically decreasing learning 

rate a parameter. 

A general problem associated with the Winner-Take-All learning models is 

their sensitive dependence on initialization values for the reference vectors [Bernd, 

1997]. Inappropriate initialization may lead to certain neurons never becoming winner 

for any input data and, therefore keeping their initialization values indefinitely. More 

significantly, sensitive dependence on initialization causes different random 

initializations to produce very different results. The process of single node adaption 

may not be able to get the system out of the poor local minimum where it was started. 

One way to cope with the problem is to adapt the reference vectors of not only the 

winner but also those of some other nodes as advocated by Winner-Take-Most 

learning models, which in general decreases the dependency on initialization. 

However, the hallmark of the Winner-Take-Most competitive learning lies 

with the notion of topology mapping [Bernd, 1995a]. By allowing a group of neural 

nodes correlated by a neighborhood relationship to learn from the same input data in a 

systematic way, the Winner-Take-Most competitive learning fosters a set of nodes 

defined to be within the neighborhood to develop similar values for their reference 

vectors, and the similarity relationships learned and encoded onto the reference 

vectors are either explicitly represented by the connectivity among the corresponding 

nodes or implicitly depicted onto the predefined network structure. Therefore, the 

Winner-Take-Most competitive learning aims to capture the similarity relationships 

that exist in the input data manifold and map the topological structure of the data 
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manifold onto the structure of the network in addition to the quantization of the input 

data space by the reference vectors. A necessary condition for the optimal mapping of 

the topology is that the topology of the employed network has to match the topology 

of the manifold of the input data represented [Thomas and Klaus, 1991]. This requires 

prior knowledge about the topological structure of the manifold which is not always 

available or might even be difficult to obtain if the topological structure is very 

heterogeneous, e.g., composed of subsets of different effective dimensions or disjunct 

and highly fractured. 

Two different approaches to topology mappmg can be observed among 

different Winner-Take-Most competitive learning models in the way the 

neighborhood relationship is defined and in the way the topological structure of the 

data manifold is represented on the network. In an attempt to capture and map the 

topology of the input data manifold more faithfully, competitive learning models like 

the Neural Gas Network [Thomas and Klaus, 1991] do not impose any constraints on 

the structure of the network and define the neighborhood of a winner node in the input 

data space, without being guided or restricted by the predefined structure of the 

network. In the Neural Gas Network, determination of the neural nodes whose 

reference vectors are to be updated to the values of an input data and the magnitude of 

changes in the reference vectors are based on the rank order of distances between the 

reference vectors and the input data vector in the input data space, not in the network 

space. To reflect the learned topology of the data manifold onto the network structure, 

the Neural Gas Network dynamically and explicitly maintains connections among the 

nodes of the network in a connectivity matrix as a topological map based on 

similarities among the reference vectors of the nodes. However, extracting the overall 

topological relationships captured by a high dimensional arbitrary network structure 
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may not be easy and is unsuitable for visualization even if the learning algorithm is 

capable of capturing a heterogeneous topological structure inherent in the data 

manifold. 

In contrast, competitive learning models like the SOM employ afixed regular 

network structure, usually a two-dimensional rectangular grid, to make the extraction 

and visualization of the captured topology of the data manifold simpler. In the 

Winner-Take-Most competitive learning models with a predefined network structure, 

determination of the neighborhood of a winner node and the magnitude of changes in 

the reference vectors of the nodes in the neighborhood are based on their distances 

from the winner node measured in the space of the predefined network structure. As 

the nodes in the neighborhood learn from the same set of data samples, data samples 

that are near from one another in the input data space will be mapped on to nodes that 

are also close to one another in the network space. Thus the topology of the input data 

manifold is implicitly encoded by the reference vectors onto the structure of the 

network without explicit maintenance of the connectivity among the nodes. 

By constraining the network structure to a fixed dimensionality, the SOM aims 

to find a low-dimensional subspace of the input data space, containing most or all of 

the input data samples, in such a way that similarity relationships present in the 

principal components of the input data samples are reflected and mapped on to the 

fixed lower dimensional structure of the network. This objective known as topology 

preserving dimensionality reduction (or feature mapping) is one of the most 

distinguishing characteristics of the learning dynamics of the SOM, but the 

dimensionality reduction may cause the loss of some topological information when 

there is a mismatch between the topology inherent in the input data manifold and the 

topological structures restricted by the fixed dimensionality. 
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2.1.3 Self-Organizing Map as a Winner-Take-Most competitive learning 

network with a fixed network dimensionality 

The SOM is a prime instance of a Winner-Take-Most competitive learning 

network with a fixed dimensionality. In typical applications of the SOM, the network 

is usually defined to be a two-dimensional rectangular grid with a predetermined 

number of neural units making up the nodes of the grid. Higher dimensional lattice 

structures are theoretically possible, but are not commonly used due to the difficulty 

in visualizing topological relationships captured by the learning algorithm. 

Architecture of a typical two-dimensional SOM is illustrated in Figure 2-2, in 

which 36 neural units are arranged in a two-dimensional rectangular grid of 6 by 6. In 

this configuration, the input vectors are presented to the network through the input 

layer. 

Output layer 

Input layer 
x 

Figure 2-2 Architecture of 2-dimensional SOM [Tommy and Siu-Yeung, 2007] 

The standard SOM algorithm employs the online update mode of Winner-

Take-Most competitive learning. For each input vector, the SOM's learning algorithm 

repeats the following three major actions: 
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1. Determination of the winner node. 

2. Determination of the nodes in the neighborhood of the winner. 

3. Adaptation of reference vectors of the nodes in the neighborhood. 

For a given input vector x, a winner node c is determined based on a similarity 

measure in the input data space with the similarity commonly measured in terms of 

Euclidean distance. In other words, the node whose reference vector We is nearest to 

the to the input vector x in the data space among all the reference vectors of the 

network is chosen as the winner, i.e., 

c = arg miniEA II x - W; II· (2.5) 

However, the neighborhood area of the winner, thus the reference vectors to 

be updated, is determined based on the distance measure in the pre-structured 

network space. In other words, the decision as to whether a neural node i is 

determined to be in the neighborhood of the winner node c or not is made based on 

the location of node i relative to the location of the winner node c in the network 

without regards to the magnitudes of the reference vectors. This is in stark contrast to 

the network models without a fixed dimensionality like the Neural Gas Network, 

where the neighborhood area is determined solely based on the magnitudes of the 

reference vectors without regards to the spatial location of the nodes in the network. 

Consequently, the number of neurons whose reference vectors are adapted toward a 

given input vector depends on the size of the neighborhood area, or the radius of the 

neighborhood as referred to in the SOM literature. 

In the standard SOM algorithm, the radius of the neighborhood is set initially 

large and made to decrease over time approaching zero as time increases for 

convergence to a stable topological structure [Teuvo, 2001], i.e., the radius of the 

neighborhood is defined as a monotonically decreasing function of time. This is 
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illustrated for a rectangular neighborhood in Figure 2-3, which shows the radius of the 

neighborhood at time t1, t2 and tn for a winner unit c. 

0 0 0 0 0 0 0 
lit-

0 0 0 0 0 0 ..!--~ 
0 0 0 0 0 0 0 

0 0 0 Oc 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Figure 2-3 Topological neighborhood of a 2-dimensional SOM [Tuevo, 2001]: 
c is the winning neural node and Nc(ti) is a group of nodes considered as in the 

neighborhood of c at discrete time t;. 

The magnitude of adaptations for reference vectors of nodes in the 

neighborhood of the winner node depends on the spatial distance between a 

neighboring node and the winner node and on the learning rate parameter a, which is 

made to decrease monotonically over time. More specifically, the magnitude of the 

adaptations in the SOM can be defined as 

~W; = a(t). hC·/ (t). (x - W;) * (2.6) 

for a node i in the neighborhood, where he.; (t) is the so called neighborhood function 

that determines the extent of adaptations for the node i based on its spatial distance 

from the winner node c. 

There are two frequently cited choices for he., (t) in the SOM literature, one 

based on a set membership and the other based on the Gaussian function. In the 

simpler case of he.; (t) being based on a set membership, which is computationally less 

demanding than the other alternative, all the units determined to be within the 

neighborhood of the winner node acquire the same magnitude of adaptations that are 
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decided by the learning rate a(t) and other units determined to be outside of the 

neighborhood are not adapted at all, i.e., he, (t) = 1 if i E Ne(t) and he., (t) = 0 if i ~ 

Ne(t). Obviously, the winner node is always decided to be in the neighborhood for this 

purpose. 

Instead of making all the neurons in the neighborhood gain the same amount 

of adaptations, the extent of adaptations can be made to depend on the spatial distance 

between a neighboring node and the winner node. When doing so, we must ensure 

that the extent of the adaptation is the highest for the winner node itself and decreases 

monotonically to zero with increasing spatial distance while the nodes at the same 

distance from the winner node are given the same extent regardless of their directional 

orientation. A widely adapted choice for he., (t) satisfying the above conditions is the 

Gaussian function 

(2.7) 

where le and li are the location vectors of nodes c and i, respectively and a(J) defines 

the radius of the neighborhood, which decreases monotonically over time as discussed 

earlier. It must be emphasized that II le - li II is the spatial distance between the winner 

node and a neighboring node in the network space. Therefore, for a two-dimensional 

grid, le E m2 and 11 E m2 are the vectors representing the locations of the winner node 

and a neighboring node, respectively in the network grid. 

An example of a 2-dimensional Gaussian neighborhood function with a 

neighborhood radius of 5 for a 50 by 50 neural grid is illustrated in Figure 2-4. 
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Figure 2-4: A 2-dimensional Gaussian neighborhood function 

Since the reference vectors within the neighborhood of the wmner are 

coordinated together to adapt toward given input vectors, neurons that are close in the 

grid up to a certain spatial distance will activate each other to learn something from 

the same input vector x. This will result in a local relaxation or smoothing effect on 

the reference vectors of neurons in this neighborhood, which in continued learning 

leads to global ordering [Teuvo, 2001]. As a consequence, the topological 

relationships in the input data manifold is gradually encoded implicitly into the 

reference vectors of the neural nodes during the continued learning process without 

requiring them to be explicitly represented and maintained, for example, in a 

connectivity matrix as is done in the Neural Gas Network. 

Upon repeated presentation of input vectors, the reference vectors will adapt to 

the distribution of the input vectors for which they have been winners forming a 

quantized approximation to the distribution of the input data vectors, essentially 

performing vector quantization. Furthermore, due to the coordinated updating of 

reference vectors in the neighborhood, neurons that are adjacent in the network will 

20 



tend to develop similar values for their reference vectors. Overall effect of the SOM' s 

learning algorithm is the formation of a Voronoi tessellation in which the constituent 

Voronoi sets are ordered by topological relationships inherent in the input data 

manifold. Thus the learning dynamics of the SOM can be described as a coordinated 

competitive learning performing the combination of two concurrent tasks: topology 

preserving dimensionality reduction and vector quantization. 

The competitive learning algorithm of the standard SOM with a network 

structure of two-dimensional regular grid using the on line update mode is summarized 

below: 

1.1. Arrange K number of neurons in the set A as a two-dimensional rectangular 

grid. 

1.2. Initialize their reference vectors with randomly selected vectors from the 

training data set. 

1.3. Initialize the epoch counter t = 0. 

1.4. Set the initial learning rate a(t0) 

1.5. Set the initial radius of neighborhood a(t0) * 
2. For each and every input vector x in the training data set, do the following: 

2.L Determine the winner node: c = argmin,EA II x-w, II 

2.2. Adapt the reference vectors of the nodes in the neighborhood of the winner 

according to ~w; = a(t) ·he., (t) · (x - w;). 

3 .1 . Increase the epoch counter: t = t + 1. 

3.2. Monotonically decrease the learning rate a(t) 

3.3. Monotonically decrease the radius of neighborhood a(t) 

4. If t < tmax (a predefined number of training epochs), continue with step 2. 
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2.2 Characteristics and problems of the standard SOM algorithm 

In the previous section, we presented and reviewed the standard SOM 

algorithm in the context of a competitive learning network in comparison to other 

alternative competitive learning schemes in order to highlight the main principles that 

shape the core of the learning dynamics of the standard SOM algorithm and how it 

functions to form a nonlinear, ordered, smooth mapping of high-dimensional input 

data manifolds onto the elements of a regular, low-dimensional grid [Teuvo, 2001], 

called afeature map. 

In this section, building upon the theoretical foundations presented in the 

previous section, we provide analytical summary of the main features and 

characteristics of the standard SOM algorithm and discuss some of the problems 

associated with it in order to lay the ground work for our proposed dynamically 

growing model of the SOM. -r-
l:=ii 

2.2.1 Features and characteristics of the standard SOM algorithm 

The popularity of the SOM as an effective tool for exploratory data analysis 

and modeling of complex system processes [Teuvo et al., 1996], especially for those 

problems demanding classifications and clustering of complex data as in data mining 

and pattern recognition applications, can be attributed to its capability to discover 

generalized categories from high-dimensional complex data and map them onto a 

low-dimensional regular grid structure for easy visualization. 

This capability can be explained in terms of vector quantization and topology 

preserving dimensionality reduction. As described in the previous section, not only 

does the SOM perform a quantized approximation to the distribution of the input data 

manifold using a finite number of reference vectors, but also do so in a way that 
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learns the topological relationships that exist in the data manifold and maps them onto 

a lower-dimensional network in an orderly fashion. The mapping tends to preserve 

the topological relationships of the data manifold and due to this order it manifests 

categories of input data and their relationships on the map. The reason we denote this 

process as the discovery of generalized categories is that the SOM may lose some 

topological relationships that exist in the high-dimensional data manifold and not able 

to preserve all topological information faithfully on the network structure due to the 

dimensionality reduction. 

This loss of topological information, nonetheless, can be regarded as a feature 

rather than a flaw since in the analysis of high-dimensional arbitrarily structured data 

we may not be interested in all the glory of complex topological information but be 

concerned with only the most important topological relationships of the principal 

components of the input data manifold, hence the generalized categories. The whole 

process can also be regarded as the compression of information while preserving the 

most important topological relationships of the principal components from an 

information-theoretic view. However, it must be pointed out that when approximating 

the probability distribution of data manifold that has significant variations in more 

than two dimensions onto a two-dimensional network structure, the resulting map will 

expose twists and discontinuities in the topological order of the reference vectors. 

Whether the possible loss of the topological information due to the dimensionality 

reduction is seen as a feature or a flaw will depend on the design goals of a particular 

competitive learning model. In the case of the SOM, it is a feature intended for easier 

visualization of captured topology of the data manifold. 

In order to better comprehend the capabilities and limitations of the standard 

SOM algorithm, it is also necessary to understand how the learning dynamics of the 

23 



standard SOM algorithm works to achieve the capabilities described. In the following, 

we provide an analysis of the iterative process of reference vector adaptations in the 

standard SOM algorithm as per its capabilities and the roles played by the two time 

dependent parameters, the learning rate a(t) and the radius of neighborhood a(J), in 

the process. 

After initializing the reference vectors, the SOM algorithm iteratively repeats 

the process of finding a winner node, determining the neighborhood of the winner 

node and updating the reference vectors of the nodes in the neighborhood. The 

formation of a final feature map by means of the iterative updating of the reference 

vectors in the SOM can be seen as taking in two phases of the ordering phase when 

topological ordering of the reference vectors takes place followed by the convergence 

phase in which the fine-tuning of reference vectors takes place for statistical accuracy 

of the mapping. -

The radius of the neighborhood at the start of the iterative process, a(t0), is set 

to a large value, typically recommended to cover half the diameter of the network 

[Teuvo, 2001]. During the early iterative steps, say, the first 1,000 steps or so, the 

radius of the neighborhood is made to decrease monotonically over these early 

iterative steps to a unit value (radius of 1 ). Therefore, the number of nodes that are 

adapted towards a given input vector will be large in the beginning and will gradually 

reduce to include only the directly neighboring nodes at the ends of these early steps. 

Furthermore since the reference vectors within the neighborhood of the winner are 

interacting together to adapt towards given input vectors, neurons that are close in the 

network up to a certain spatial distance will excite each other to learn from the same 

input vector. The overall effect of the lateral interaction among the nodes in the 

neighborhood with the gradual shrinking of the radius is the ordering of the reference 
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vectors. Accordingly, this early iterative steps is referred to as the ordering phase. 

Throughout the ordering phase, the learning parameter a(t) should have reasonably 

high values (close to 1) to facilitate the lateral interaction or the coordinated learning 

process. The motive for the large radius at the very beginning of the ordering phase is 

to avoid the problem of the map not becoming globally ordered. If the neighborhood 

is too small to start with, various kinds of mosaic-like parcellations of the map are 

seen during the ordering stage, between which the ordering direction changes 

discontinuously [Teuvo, 2001]. 

After proper ordering of the reference vectors has taken place in the ordering 

phase, the reference vectors are finely adjusted during the convergence phase. Since 

the purpose of the convergence phase is the fine-tuning of the reference vectors for 

statistical accuracy of the quantization, the radius of the neighborhood a(J) is usually 

kept very small usually covering only the nearest nodes as set at the end of the 

ordering phase and including only the winner node itself towards the end of the 

convergence phase. The learning rate a(t) during the convergence phase should 

decrease monotonically to a very small value (e.g., of order of or less than .02) over a 

long period. Since the learning is a stochastic process, the final statistical accuracy of 

the mapping depends on the number of iterative steps in the convergence phase, 

which must be reasonably long; there is no way to circumvent this requirement 

[Teuvo, 2001]. Kohonen recommends that the number of iterative steps in the 

convergence phase be at least 500 times the number of the nodes in the network as a 

rule of thumb. 

Hence the radius of the neighborhood a(t) during the ordering phase and the 

learning rate a(t) during the convergence phase are required to be monotonically 

decreasing functions of the training time for global ordering and convergence of the 
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reference vectors. However, the accuracy of the decay seems to have nominal effects 

on the learning dynamics of the SOM, and both linear and exponential decay 

functions [Teuvo, 2001] are widely used in the applications of the SOM algorithm. In 

fact, the effects of these parameters on the learning dynamics of the SOM algorithm 

have been so far analyzed experimentally only [Hiong and Susan, 2005] as no formal 

theory demonstrating the dynamics of the SOM algorithm has been achieved yet. 

2.2.2 Problems associated with the standard SOM algorithm 

Despite the wide acceptance as an effective tool for exploratory data analysis, 

the SOM is not without its critics. Common problems reported in the literature about 

the standard SOM algorithm are predominantly in the following areas: 

• Possibility of loss of topological information in the learning process which 

could lead to the topological mismatch between the topology of the data 

manifold and the topology of the resultant map. 

• The variances in the final feature map formed depending on the input 

sequence and the choice of learning parameters, e.g. , a(t) and o(t), applied. 

• Lack of standard quality measures for objective evaluation and comparison of 

feature maps generated. 

• Difficulty in pre-determining the number of nodes and the shape of the 

network. 

We already provided an analysis on the possible loss of topological 

information in the previous subsection where we reasoned that the loss of topological 

information during the learning process of the SOM is an inevitable consequence of 

the dimensionality reduction and that it should be considered a feature rather than a 

limitation in the light of its capability to extract topological relationships of the 
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principal components of the input data manifold and offer effortless visualizations of 

the generalized categories of information. Therefore, we will not pursue this matter 

any further in this subsection. 

Our view on the remaining problems is that they are all related together in a 

logical sequence of consequences from a common root cause: the absence of a formal 

theory describing how the SOM algorithm works to generate topologically correct 

feature maps. Despite attempts by several researchers, a clear mathematical formalism 

which describes the objective function computed by the SOM process has not been 

achieved. It is not clear under what conditions the algorithm may be guaranteed to 

converge or whether the algorithm works by performing a stochastic gradient descent 

on some potential function, and problems of important practical interest, like the 

number and type of the algorithm's stationery states, convergence speed as a function 

of the algorithm's learning parameters and the avoidance of sub-optimal 

representations, are not solved [David et al., 1992]. 

The only formal proof achieved of topological ordering and convergence is for 

the simplest case in the formation of a topological map of a one-dimensional input 

space on a one-dimensional linear lattice (array of nodes) when the neighborhood 

function is a monotonically decreasing function of time. Initially Kohonen proved that 

his algorithm converges to a topologically ordered, stable state in the case of one

dimensional input and one-dimensional map by modeling the one-dimensional map as 

a Markov chain for a restricted case of neighborhood function defined as a unit step 

function [Teuvo, 2001]. He showed if the input is randomly selected, once the 

reference vectors become ordered, they never become disordered and the point 

density of the nodes will finally approximate that probability density of the input. 

Ritter quantified the relationship more exactly showing that given an input probability 
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density p(x), the map's point density approachesp213(x) [Teuvo, 2001]. The proof was 

generalized to hold for any neighborhood function, e.g., the Gaussian function, which 

is monotonically decreasing in distance [David et al., 1992]. 

Unfortunately, the theoretical work on the one-dimensional map case is not 

immediately extendable to two-dimensional case, let alone higher-dimensional maps, 

because in two-dimensional case the vectors are not as clearly ordered as in the case 

of the linear array. Various attempts to apply the Markov methods to the analysis of 

the SOM process on the two-dimensional map have not yielded any conclusive 

general formal proof of convergence to a global topological order; the analyses have 

rather revealed that statistical fluctuations can occur in the reference vectors during 

convergence and that their characteristics depends on the time dependent learning 

parameters. In fact, it has been shown that the learning dynamics of the standard SOM 

algorithm cannot be described by a gradient descent on a single global energy 

function even for the one-dimensional map case [David et al., 1992]. 

Determining how the final state of the map depends on the time evolution of 

the neighborhood function a(t) and the learning rate function a(t) and being able to 

predict the final topological state of the two-dimensional map for a given input data 

based on a formal theory of the learning dynamics are the major yet most elusive 

goals of the theoretical analysis of the SOM. The lack of formalism in the description 

of the learning dynamics of the SOM algorithm has caused various difficulties in the 

practical applications of the SOM. 

Since there is no guarantee of convergence to a globally optimal state, the 

learning algorithm of the SOM can generate possibly highly different feature maps for 

the same training data set depending on the initialization values for the reference 

vectors, choices of the learning parameters used and even on a particular sequence of 
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sample training data vectors applied, with each different feature map perhaps 

representing an instance of some local optima. These incontrovertible variances in the 

resultant feature maps have posed difficult problems in the applications of the SOM. 

The only remedy often suggested in the literature for the problem is to generate many 

different feature maps in order to get one final good map. This approach, however, 

brings forward another problem of the SOM: the lack of the standard quality 

measures for objective evaluation and comparison of feature maps. 

As the learning dynamics of the standard SOM algorithm cannot be described 

by a gradient descent on a single global objective function, there is no single standard 

function with which to measure the quality of feature maps to evaluate how close a 

final feature map is to the global optimal state. Therefore, determining what 

constitutes a good feature map is a difficult undertaking in itself. Without a standard 

measure of qualities, generated feature maps cannot be evaluated and compared 

objectively, making the task of finding a good feature map rather subjective in its 

nature. 

Although a few quantitative measures have been proposed, there exists no 

universally accepted standard measure for evaluating the quality of the feature maps, 

especially for comparing the quality of feature maps of different sizes. The measures 

proposed generally attempt to quantify the two main capabilities of the SOM's 

learning dynamics: accuracy of vector quantization and the level of topology 

preservation in the dimensionality reduction. The SOM's capability to approximate 

the probability distribution of the input data vectors is evaluated by means of the 

average quantization error, just as is done in other vector quantization methods. 

However, the quality of topology preservation remains a property that is not easy to 

define and even harder to measure quantitatively. There have been a small number of 
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suggested measures [Hans-Ulrich and Klaus, 1992; Thomas et al., 1994; Kimmo, 

1996] for evaluating the quality of topology preservation but none has been widely 

embraced as a de facto standard. A survey of quality measures for the SOM and 

experimental comparisons of their sensitivity to the size of the network and size of the 

data can be found in [Georg, 2004]. 

The application of the SOM is further complicated by the fact that the standard 

SOM algorithm requires that the number of nodes in the network and the shape of the 

network, i.e., the topology of the network, be predetermined and specified prior to the 

training process. However, an appropriate choice of the network topology to yield a 

good feature map depends on the statistical characteristics of the data and cannot be 

made a generic parameter independent of the input data. Therefore, the requirement in 

the SOM algorithm to specify the size and the shape of the required feature map prior 

to the training process imposes an undue difficulty to the experimenter who is 

applying the SOM to discover the unknown structure of the data manifold, and it is 

one of the most criticized drawbacks in the application of the SOM. Moreover, 

evaluating and comparing qualities of feature maps of different sizes may not be 

straightforward due to the inherent characteristics of a particular quantitative measure 

used. For example, the average quantization error usually decreases with increasing 

number of nodes in the network because the data samples are distributed more 

sparsely on the map. 

To recapitulate, the absence of formalism in the SOM's learning algorithm has 

caused inevitable practical problems that can only be dealt with through experimental 

approaches at present and this point is well reflected in Kohonen's own description 

[Teuvo and Timo, 2007] of the problem: 
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"The mathematical theory of the SOM is very complicated and only the 

one-dimensional case has been analyzed completely. Apparently, the 

SOM belongs to the ill-posed problems in mathematics". 

Accordingly until a formal theory capable of precisely describing the learning 

dynamics of the SOM can be achieved, the effective application of the SOM has to 

rely on the time-consuming trial and error method of generating numerous feature 

maps while tuning the learning and network parameters in order to obtain a final good 

feature map. But then what constitutes a good feature map is not a question with 

clear-cut answers either. The result is that without a single global objective function to 

optimize, the exact mapping that is produced depends to some extent on how the 

experimenter tunes the learning and network parameters. Therefore, the feature map 

tends to reflect some subjective quality that the experimenter wants to see in the two-

dimensional representation of the input data. 

2.3 Growing models of the SOM 

Few extensions to the SOM algorithm have been proposed that grow the 

network structure dynamically during the training process in an attempt to address the 

difficulty of predetermining the appropriate size and/or shape of the required feature 

map in the standard SOM algorithm. Alternative growing SOM models mainly differ 

in when, where and how new nodes are added and in the specification of the stopping 

condition for the growth; these heuristics on the growth mechanism are guided by the 

design goals and have important ramifications on the structure of the feature maps 

produced. In the following, we summarize the growth heuristics adopted by three 

prominent growing variants of the SOM. 
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Fritzke developed Growing Grid [Bernd, 1995b] to tackle the difficulty of 

predetermining a shape, i.e., aspect ratio of width and height, of the feature map 

suitable for the data at hand while maintaining the two-dimensional rectangular grid 

structure of the standard SOM by incrementally inserting rows or columns into the 

network grid until a required number of nodes, specified prior to the training process 

as the stopping condition for the growing process, is established. The training process 

consists of two distinct phases: a growing phase during which the network is 

incrementally grown followed by a fine-tuning phase in which no further changes are 

made to the network structure and the reference vectors are adjusted to improve 

statistical accuracy of the mapping. 

The growing phase starts with an initial grid of 2 by 2 and the reference 

vectors are adapted in a similar fashion to the standard SOM algorithm except that the 

radius of neighborhood and the learning rate stay constant. After every w x h x Ag 

number of adaptation steps, where w and h are the width and height of the current 

network grid respectively and Ag is the number of adaptation steps per node before a 

growth is initiated, a row or column is inserted around a node q that has been the 

winner most time during the period of adaptations. A direct neighbor f of q with the 

most different reference vector from q is identified and a new row (or column) 

between q and f is inserted depending on whether q and f share a common column (or 

row), and the reference vectors of the new nodes are interpolated from their direct 

neighbors. 

When the number of nodes in the network exceeds the minimum required, the 

Growing Grid stops the growing process and proceeds to the fine-tuning phase, in 

which the radius of the neighborhood is kept the same as in the growing phase, but the 

learning rate is made to decrease monotonically over the fine-tuning phase. The total 
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number of adaptation steps applied is w x h x AJ, where w and h are the width and the 

height of the final grid formed during the growing phase and Aj is a user-defined 

parameter that specifies an average number of adaptation steps per node in the fine

tuning phase. 

The Incremental Grid Growing (IGG) [Justine, 1993; Justine and Risto, 1995] 

abandons the rectangular grid structure of the standard SOM and takes on a two

dimensional non-uniform grid structure in an attempt to embed the cluster boundary 

information directly onto the grid structure. In a non-uniform grid structure, a node is 

not required to have all of its four direct neighbors and connections between direct 

neighbors may or may not exist. After initializing a 2 by 2 grid, the IGG repeats the 

following three steps until a desired number of nodes is achieved, which needs to be 

specified as a stopping condition for the training process: 

I. Adapting the current grid to the input distribution by the application of 

standard SOM algorithm. 

2. Adding new nodes to a boundary node with highest cumulative error compiled 

during step 1. 

3. Examining reference vectors of every pair of directly neighboring nodes to 

determine whether a new connection should be established between the pair or 

the existing connection between the pair should be deleted. 

A boundary node is defined as any node that has at least one directly 

neighboring position in the grid space not yet occupied. During the SOM learning 

process, whenever a boundary node is determined to be a winner, the square of the 

distance between its reference vector and the input vector is added to the error value 

of the node. After an application of a complete SOM algorithm, (between one and 
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three) new nodes are added and connected to the boundary node with the highest 

cumulative error, and their reference vectors are interpolated from their neighbors. 

Afterwards connectivity between the directly neighboring nodes is adjusted to reflect 

the changes in the reference vectors. For any pair of directly neighboring nodes which 

are currently unconnected together, if the difference between their reference vectors is 

below the connect-threshold, a new connection is established. Similarly, for any pair 

of connected neighboring nodes, if the difference between their reference vectors is 

greater than the disconnect-threshold, the existing connection is removed to reflect the 

fact that they have evolved into separate areas of the input space. 

The Growing Self-Organizing Map (GSOM) [Damminda et al., 2000; Arthur 

et al., 2009] is another growing model of the SOM that strives to reflect the cluster 

boundary information onto the structure of the network and hence, shares some 

similar characteristics with the IGG. Just like the IGG, the GSOM adds new nodes to 

boundary nodes only, but does away with the elaborate connectivity maintenance 

scheme of the IGG. In the GSOM, connections to directly neighboring nodes, when 

the neighbors exist, are always kept established. The GSOM interweaves the growing 

steps and the learning steps more closely whereas the IGG applies the complete 

learning process of the standard SOM algorithm for each enlarged network. 

After initializing a 2 by 2 grid, the GSOM goes through distinct phases of a 

growing phase followed by a smoothing phase, in which no new nodes are added and 

quantization errors are smoothed out. During the growing phase, each time a winner 

node is determined, a cumulative error for the node is maintained by adding the 

square of the distance between its reference vector and the input vector, and when the 

cumulative error is higher than a predefined parameter called Growth Threshold (GT), 

either between one and three new nodes are added to the winner if the winner is a 
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boundary node, or the error value is distributed to neighboring nodes if the winner is a 

non-boundary node. The distribution of the error value of a non-boundary winner to 

its neighbors is designed to give non-boundary nodes some indirect ability in 

initiating node growth by spreading out the error value and causing boundary nodes to 

increase their error values over time. The radius of neighborhood during the growing 

phase stays constant, but the learning rate is made to decrease exponentially while 

being reset to an initial value every time a growth is initiated. The growing phase 

stops when new node growth saturates, which can be identified by the low frequency 

of new node growth. Therefore, the parameter GT controls the stopping condition for 

the growth hence the size of the final feature map. 

The three growing models of the SOM reviewed in this section demonstrate 

different approaches to growing the network during the training process and 

alternative ways of interweaving the competitive learning process and the growing 

process. However, they still require that stopping condition for the growth is specified 

in terms of the network size either directly or indirectly prior to the training process. 

For example, the Growing Grid and the IGG require the specification of minimum 

number of nodes in the network required before the growing process stops as a 

training parameter and the GSOM uses the Growth Threshold parameter to specify the 

stopping condition for the growth but it's unclear how to determine an appropriate 

value of the Growth Threshold for a given data set. Furthermore, the IGG and the 

GSOM abandon the uniform rectangular grid structure of the standard Kohonen 

network in an attempt to embed the cluster boundary information onto the structure of 

the feature map making their feature maps structurally incompatible to the feature 

maps generated by the standard SOM algorithm. 
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CHAPTER 3 

PROPOSED MODEL OF SELF-GROWING AND SELF
ORGANIZING BATCH MAP 

3.1 Motivations and design goals of the proposed model 

Even though no formal theory describing how the learning dynamics of the 

SOM works to generate topologically correct feature maps has been established, the 

capability of the SOM to capture nonlinear statistical relationships that exist in the 

principal components of high-dimensional input data manifolds and map them onto a 

low-dimensional regular grid structure has been well demonstrated and its 

effectiveness as a tool for visualization of high-dimensional complex systems and 

data mining especially for classification and clustering tasks has been widely 

embraced as illustrated by myriads of applications of the SOM in various fields of 

interests [Teuvo et al., 1996; Helge and Klaus, 1988; Tuevo, 2001 ]. 

Nonetheless, all practical applications of the SOM entail the time-consuming 

trial and error method of experimentally generating numerous feature maps using 

varied learning parameters and different network configurations and evaluating the 

generated feature maps based on subjective criteria to determine a feature map that 

suits the intended purpose of the application, which is inevitable due to the absence of 

a clear mathematical formalism that describes the objective function computed by the 

learning process of the SOM. 

The effects of learning parameters on the learning dynamics of the SOM and 

the quality of the resultant feature maps have been experimentally analyzed by several 

researchers [Hiong and Susan, 2005]. Although no formal proof has been achieved yet, 

various work suggest that different choices for the radius of the neighborhood and the 
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learning rate have nominal effects on the learning dynamics of the SOM as long as 

they are kept to decrease monotonically over the training time except for the possible 

impacts on the speed of the convergence. Neither are they judged to depend on the 

statistical characteristics of the training data set. 

Various experimental analyses have made similar recommendations of setting 

the initial radius of the neighborhood to cover the half the diameter of the network 

and monotonically decreasing it to include only the direct neighbors while keeping the 

learning rate reasonably high to facilitate the lateral interaction during the ordering 

phase and then monotonically decreasing the learning rate over long period of 

convergence phase for fine-tuning of the reference vectors [Tuevo, 2001]. And these 

recommended learning parameters have been widely accepted as de facto choices in 

many applications of the SOM learning process. 

However, not much has been investigated about how the learning process of 

the SOM and the quality of the resultant feature maps are affected by the 

configuration of the network despite the fact that the standard SOM algorithm 

requires the size and the shape of the network grid to be specified prior to the training 

process. We believe this is so because unlike the learning parameters the appropriate 

size and shape of the network to yield a good feature map depend on the statistical 

characteristics of the training data set and cannot be made into a generic parameter 

independent of the input data. 

Therefore, the requirement in the standard SOM algorithm to specify the size 

and shape of the required feature map prior to the training process imposes an undue 

difficulty to the experimenter who is applying the SOM process to discover the 

unknown structure of the data manifold, and it is one of the most criticized drawbacks 

in the application of the SOM. Thus it is necessary to generate numerous feature maps 
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of different sizes and shapes until a satisfactory feature map based on the 

experimenter's subjective criteria is obtained. 

Few extensions to the SOM have been suggested to make the network 

structure grow dynamically during the training process, but they do not completely 

address the difficulty of predetermining the size and shape of the required feature map 

because they still require the stopping condition for the growth be specified in terms 

of minimum network size. In addition, non-uniform grid network structures employed 

by some growing models make the resultant feature maps incompatible to existing 

visualization tools designed for the feature maps of the standard SOM algorithm. 

The proposed model of self-growing and self-organizing batch map has been 

motivated by our desire to devise a growing model of the SOM that can autonomously 

grow the network during the training process while maintaining a two-dimensional 

rectangular grid structure to yield a feature map of appropriate topology suitable for a 

given data set without requiring the size of the network be specified prior to the 

training process. Such a model would alleviate the difficulty of predetermining 

suitable size and shape of the feature map in the application of the SOM while 

offering a structural compatibility to the standard Kohonen network so that 

visualization tools [Juha, 1999] designed for feature maps produced by the standard 

SOM algorithm can be applied to the feature maps generated by the proposed model 

without any modification. Therefore, the design of the proposed model has been 

guided by the following criteria and goals: 

• The proposed model should grow the network dynamically during the training 

process in such a way that maintains the two-dimensional uniform regular grid 

structure consistent with the standard Kohonen network 
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• The proposed model should autonomously determine an appropriate stopping 

point for the growing and the learning process to yield a feature map of 

appropriate size and shape suitable for the data at hand while avoiding 

undergrowth and overgrowth. 

• The final feature map produced by the proposed model should bear 

comparable qualities to the feature maps obtainable by the standard SOM 

algorithm in terms of its capability to capture statistical relationships that exist 

in the principal components of a high-dimensional input data manifold and 

represent them as a two-dimensional feature map. 

3.2 The self-growing and self-organizing batch map 

Fundamental to the design of any growing model of the SOM are the 

mechanisms used to grow the network structure during the training process. In 

particular, the following design questions on the growing mechanisms need to be 

addressed: 

• When to stop the growing and the learning process * 
• Where to insert new nodes and how to initialize the reference vectors of newly 

added nodes 

• How to interweave the growing process and the learning process 

Obviously the design decisions on the growmg mechanisms cannot be 

resolved based on a mathematical formalism due to the lack of a formal theory 

describing the learning dynamics of the SOM, and various heuristics are possible for 

the growing mechanisms. The design choices for the growing mechanisms form the 

quintessence of any growing model of the SOM and they must be carefully 

considered in accordance with the goals of the design. In this section, we present the 

39 



proposed model of self-growing and self-organizing batch map describing how the 

growing mechanisms adopted in the model is designed to accomplish the stated 

design criteria and goals. 

The overall organization of main procedures in the training process of the 

proposed model is outlined in Fig. 3-1. The training process starts by creating an 

initial network arranged in a two-dimensional rectangular grid. Thereafter, the model 

repeatedly interweaves the process of the Winner-Take-Most competitive learning 

using a batch version of the SOM algorithm called the Batch Map [Teuvo, 1993; 

Teuvo, 2001] and the process of growing the network structure until a suitable feature 

map is deemed to have formed, which is signified by the stopping criteria. 

For each newly generated network grid, either initially or by the growing 

process, the Batch Map algorithm is applied to adapt the reference vectors according 

to the distribution of the training samples, resulting in a formation of a feature map. 

Then the feature map produced by the Batch Map process is evaluated to determine if 

the stopping condition has been achieved. When the convergence to the stopping 

condition is achieved, the training process stops and the current feature map is output 

as the final feature map. Otherwise, the growing process is initiated to grow the 

current network and another cycle of the Batch Map process is applied to the enlarged 

network grid. 
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Figure 3-1 Outline of the training process of the proposed model 

3.2.1 Initial network grid 

The size of the initial network grid should not be too large or too small. If too 

large, the benefit of gradual learning through the incremental growing is not reaped. If 

too small, substantial amount of the learning and growing cycles will be initially 

wasted prolonging the overall training time. Furthermore, the sensitivity of the Batch 

Map algorithm to the initialization values [Jean-Claude et al., 2002] must be stabilized 

through adequate number of growing and learning cycles while ensuring sufficient 

numbers of well initialized reference vectors are present to begin with in the initial 

network grid. To achieve the desired effect, we make the values of about half of the 

training data samples from the training data set S to be represented in the initial 

network by creating a square grid with side length k of 
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(3.1) 

and initializing the reference vectors of the nodes with the values of randomly 

selected samples from the training set S. 

3.2.2 The batch map algorithm 

Every time new nodes are inserted by the growing process, a new feature map 

is formed on the enlarged network grid by the Batch Map process, a batch version of 

the SOM algorithm that has been shown to achieve the same overall effect brought 

about by the online SOM algorithm computationally faster by updating the reference 

vectors with the net effect of all the training samples in batch mode [Teuvo, 1993; 

Teuvo, 2001]. For each training data vector x in the training set S, the Batch Map 

finds a winner node c whose reference vector We is closest to x amongst the nodes 

comprising the current network grid A, and then adds the training data vector x to the 

set Ve of the winner node c. Consequently, the training samples are partitioned into a 

Voronoi tessellation and the set Ve of a node c contains a collection of those training 

data samples for which the node c is the winner, i.e. 

Ve = { x E S I c = arg minc E A 11 x - we 11 } . (3.2) 

The set Ve represents the Voronoi set of the node c and the centroid of the 

points in the set is the mean vector Ye of the data vectors in Ve. The Batch Map then 

updates the reference vectors with the average of weighted mean vectors of the nodes 

within their respective neighborhoods. Specifically, the reference vector wi of a node i 

E A is updated to the value of 
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(3.3) 

where hJi is a neighborhood function that controls how much the mean vector y1 of a 

neighbor node j contributes toward the value of the reference vector of the node i 

based on the spatial distance between the nodes j and i in the network grid. Thus the 

neighborhood function hJi controls the degree of lateral interaction among the nodes in 

the network. 

This way of batch updating the reference vectors to the average value of 

weighted mean vectors of the nodes within the neighborhoods is repeated while 

decreasing the radius of the neighborhood monotonically. When the neighborhood is 

reduced to include the node i only, the Batch Map operates in a similar fashion to the 

Linde-Buzo-Gray vector quantization algorithm [Jean-Claude et al., 2002] and the 

batch updating of the reference vectors is continued until the reference vectors 

converge. The proposed model adopts a Gaussian neighborhood function 

* 
[ 

11 l 1 - ti 11

2 J 
hJi(t) =exp --2a_2_(-t)- , 

* 
(3.4) 

where 0 E N2 and l; E N2 are the location vectors of the nodesj and i, respectively, in 

the rectangular grid space and a(t) is the radius of neighborhood, which is initially set 

to half the length of the longer side of the current network grid and made to decrease 

linearly. 

The overall saving in the training time by the use of the Batch Map can be 

significant especially considering that the learning dynamics of the SOM needs to be 

applied each time the network grid is grown. Furthermore, because the Batch Map 
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updates the reference vectors with the net effect of processing all training samples, the 

learning dynamics and the resulting feature map are unaffected by the order of the 

training samples and yields more stable asymptotic values for the reference vectors 

without the use of the learning rate parameter to control the rate of reference vector 

adjustments. 

3.2.3 Stopping Condition 

Main design goal of the proposed model of self-growing and self-organizing 

batch map is to autonomously produce a feature map of appropriate size and shape 

suitable for the data at hand by incremental growing of the network during the 

training process without requiring the size and shape of the required feature map be 

specified prior to the training process in order to alleviate the difficulty of 

predetermining suitable size and shape of the feature map in the application of the 

SOM. Therefore, the stopping condition for the growing and learning process should 

not be defined in terms of the configuration of the network structure. Furthermore, the 

chosen criterion for the stopping condition must be eventually fulfilled to avoid 

growing the feature map indefinitely. 

As the reference vectors are gradually adjusted to the distribution of the 

training samples by the incremental growing and the competitive learning dynamics 

of the Batch Map algorithm, not only do the reference vectors of the winners become 

closer to the values of the training samples for which they are winners, but also the 

reference vectors of the neighbors of the winners develop similar values. Furthermore, 

as the network grid is grown, the differences between the values of training data 

samples and the values of the reference vectors of the nodes in the neighborhood of 

the winner nodes of the training data samples will be reduced due to the increasing 
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number of available nodes serving as the prototypes for the training data samples and 

continued coordinated updating of the reference vectors. 

The differences or the distortion errors in the neighborhood of the winner 

nodes may fluctuate during the early growing and learning cycles when the ordering 

of the reference vectors takes place, but once the network has grown large enough and 

the reference vectors have become ordered and stabilized through continued learning 

cycles, the changes in the distortion errors will be minimized. Therefore, the proposed 

model uses the convergence of the mean value of the weighted distortion errors in the 

immediate neighborhood of the winner nodes as the stopping condition for the 

growing and the learning process. For each training data sample, a weighted distortion 

error in the immediate neighborhood of the winner node is calculated by giving the 

mean squared error of the winner node the weight of 50% and taking the mean 

squared errors of the 8-neighbors for the remaining 50% weight. And the arithmetic 

mean over the distortion errors of all the training data samples is taken as the measure 

of stopping criteria. This measure we denote as the mean of weighted distortion error 

in immediate neighborhood of the winners (MNDE) is defined more formally as 

969 

MNDE =-
1 I(0.5 II x-w; 11 2 + O.S Ill x-w1 11 2

], (3.5) 
I S I xeS I DI /ED 

where W; is the reference vector of the winner node i and w1 is the reference vector of 

a neighbor node j in the set D defined as 

(3.6) 

The growing and the competitive learning process stops when 

MNDE(t) < B" I MNDE(t)-MNDE(t- 1) I<&, (3.7) 
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where B is a degree of error necessary to prevent a premature termination of the 

growing process that may lead to the problem of undergrowth, and £is the threshold 

for the convergence of MNDE. 

The value of B indirectly controls the final size of the feature map and it must 

be chosen taking the dimension of the input data vectors into account because the 

dimension makes a significant impact on the distortion error. We have observed by 

experiments that the following function 

e = 0.5 x (1 - exp( -0.02 x K) ), (3.8) 

where K is the dimension of the input data vectors, along with the value of£= 0.005 

is generally effective in avoiding the problems of undergrowth and overgrowth for 

data vectors that have been normalized to the values in the range of 0 and 1. 

-3.2.4 Growing Process 

When it is determined that further growth is necessary, more nodes are added 

to the network and the Batch Map algorithm is applied to the enlarged network 

structure. There are numerous possibilities for the heuristic mechanisms used to add 

new nodes and grow the network structure, but the growing mechanism employed by 

the proposed model must ensure that the final feature map manifested has a two

dimensional rectangular grid structure consistent with the standard Kohonen network 

as per the design goals of the model. Therefore, the proposed model grows the 

network structure by inserting a whole row or column of nodes connecting them to 

their direct neighbors in order to maintain the two-dimensional rectangular grid 

structure at all times. 

To help determine the location of the insertion, a counter is maintained for 

each node during the Batch Map learning process and whenever a node is found to be 
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within the radius of the neighborhood of a winner node, its counter is incremented. 

The node with the highest counter value at the end of the Batch Map process has had 

its reference vector adapted most frequently hence its vicinity represents the most 

crowded region of the network. Thus a row or column is inserted around a node p E A 

with the highest counter value in order to disperse the mappings of the data vectors to 

a wider area of the grid. 

To decide the orientation of the insertion, direct neighbors NP of p are 

examined, where the neighbors Np is defined as 

(3.9) 

to identify a node q E Np whose reference vector wq satisfies the following condition: 

(3.10) 

The node q is a direct neighbor of p whose reference vector is the most 

different from the reference vector of p among the four directly neighboring nodes at 

the left, top, right and bottom of the node p. If p and q are directly neighboring nodes 

on a same row, then a column of new nodes (whose length is equal to the height of the 

current network grid) is inserted between the column positions of p and q. On the 

other hands, if p and q are on the same column, a new row (whose length is equal to 

the width of the current network grid) is inserted between the rows of p and q. The 

reasoning behind this heuristic is that q presumably points to a direction with more 

variance in the underlying data manifold, and thus a new row or column needs to be 

inserted between p and q to expand the grid toward the direction of q. 

The reference vectors of the newly inserted nodes are interpolated from their 

two direct neighbors, i.e., left and right neighbors in the case of column insertion, and 
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top and bottom neighbors in the case of row insertion, by assigning the mean value of 

reference vectors of the two direct neighbors. Interpolation of the reference vectors of 

newly inserted nodes from those of the neighbors has the effect of inheriting the 

feature information learned in the previous batch SOM learning cycle and maintaining 

the topological relationship among the neighboring nodes. 
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CHAPTER4 

EXPERIMENTS AND RESULTS 

A set of experiments are conducted to assess whether the proposed model of 

the self-growing and self-organizing batch map is capable of autonomously yielding a 

feature map of appropriate size and shape suitable for a given data set. The 

assessment is done by evaluating the qualities of the feature maps generated by the 

proposed model and by comparing them with the qualities of the feature maps 

produced by the standard SOM algorithm using two well known data sets. 

In this chapter, the methodology adopted for the experiments, the quality measures 

used in the evaluation of the feature maps and the results of the experiments are 

presented. :E 

4.1 Data sets used for experiments 

One of the measures used to compare the qualities of the feature maps in our 

experiments is the ability of the feature maps to correctly identify the data class that 

test data belong to. Therefore, we employ data sets containing data samples that have 

been properly labeled with classes the data samples belong to in our experiments. It 

must be emphasized that the class information and labels are used only for the 

purpose of evaluation and comparison of the final feature maps and are never used in 

the formation of the feature maps during the SOM learning process. 

The two data sets used in our experiments are commonly cited in research 

work in the field of machine learning and pattern recognition and have been selected 

to represent varying complexity of the data manifolds they represent. Descriptions and 
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characteristic details of the two data sets used in our experiments are summarized 

below. 

4.1.1 Iris data set 

Iris data set [Frank and Asuncion, 201 O] is the most referred data set in the 

pattern recognition and machine learning literature according to the UCI machine 

learning repository. It is also used widely in various SOM research work. 

The data set contains 3 data classes of 50 instances of each, where each class 

refers to a type of iris plant. One class is linearly separable from the other two classes, 

but the remaining two classes are not linearly separable from each other. Each data 

instance is described by four numeric attribute values that represent sepal length, 

sepal width, petal length and, petal width all in centimeters of an iris plant. 

Iris data set is chosen as a representative of simple data manifolds m our 

experiments. Characteristics of the iris data set are summarized in Table 4-1. 

Table 4-1 Characteristics and data distribution of iris data set 

Total Number of Data Instances 150 
Number of Attributes '\J t 969 . -· 4 
Number of Classes 

. ~~ ... 'JI 
3 

Attribute Information 

Attribute Number Description of Attribute Value Type 

1 sepal length in centimeters Real 
2 sepal width in centimeters Real 

3 Petal length in centimeters Real 

4 Petal width in centimeters Real 

Class Information and Data Distribution 

Number of 
Class Number Class Label samples in 

the class 
1 Iris Setosa 50 
2 Iris Versicolour 50 
3 Iris Virginica 50 
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4.1.2 Italian Olive Oil Data Set 

Italian olive oil data set [Jure and Johann, 1999] had been extensively 

investigated by various statistical and clustering methods and their results had been 

mainly published in the journals of chemometrics and analytical chemistry [Jure and 

Johann, 1999]. J. Zupan, M. Novic, X. Li and J. Gasteiger [Jure et al., 1994] used the 

data set to compare the classification abilities of back-propagation neural network 

method and Kohonen's SOM method and found that for the applied classification 

problem, Kohonen's SOM method was superior. Since then, this data set has featured 

frequently in the SOM literature. 

The data set consists of analytical data of 572 instances of olive oil samples 

collected from 9 different regions of Italy. For each oil sample, a chemical analysis 

determined the percentage of eight different fatty acids. Because the proportion of 

some fatty acids may differ by two orders of magnitude, all values belonging to a 

given variable were normalized. These normalized values of percentage of the eight 

fatty acids form the attributes of the data set and the 9 regions of Italy from where the 

olive oil samples were collected represent the data classes of the sample data. 

Italian olive oil data set is chosen as a representative of moderately complex 

data manifolds with larger number of data instances in our experiments. 

Characteristics of the Italian olive oil data set are summarized in Table 4-2. 
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Table 4-2 Characteristics and data distribution of Italian olive oil data set 

Total Number of Data Instances 572 
Number of Attributes 8 

Number of Classes 9 

Attribute Information 

Attribute Number Description of Attribute Value Type 

1 Palmitic fatty acid Real 

2 Palmitoleic fatty acid Real 

3 Stearic fatty acid Real 

4 Oleic fatty acid Real 

5 Linoleic fatty acid Real 
6 Arachidic fatty acid Real 

7 Linolenic fatty acid Real 

8 Eicosenoic fatty acid Real 

Class Information and Data Distribution 

Number of 
Class Number Class Label 

~ 
samples in 

' the class 
1 ;-' North Apulia ...,,~ 25 
2 Calabria j.. 56 
3 j South-Apulia ~~ 

·~ 206 
4 /!; Sicily - 36 
5 c: Inner Sardinia ~ 65 
6 t..__: Coastal Sardinia r;:::::: 33 
7 East Liguria ~ 50 
8 ~ West Liguria ~ 50 
9 ~ Umbria _"'-....::: /::-..._. 51 

4.2 Overall procedure for experiments 

For each data set used to assess the performance of the proposed model, 

experiments are repeated three times using three different pairs of training data set 

and test data set constructed by a random selection process of the samples in the data 

set to account for possible variations in the distribution of the data samples in the 

training data set and the test data set. 

For each experiment using a particular pair of the training data set and the test 

data set, a feature map is first generated by the proposed model using the training data 

set. The proposed model autonomously determines an appropriate size and shape of 
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the network for the given training data set by incremental growmg and learning 

process and generates a feature map of certain size and shape. Then the standard SOM 

algorithm is applied to a network having the same size and shape as the feature map 

generated by the proposed model using the same training data set. Furthermore, to 

ascertain that the stopping condition used in the proposed model does not cause the 

problem of undergrowth leading to production of inferior feature maps, the standard 

SOM algorithm is applied to a network grid twice the size. Quality of the three feature 

maps produced by the proposed model and the standard SOM algorithm are then 

evaluated using the test data set and compared along with the overall training times 

taken. The overall steps for the experiments conducted are summarized in Figure 4-1. 

To prevent any attribute from dominating the Euclidean distance and to 

constrain the values of the distortion error to a recognized range, the values of the data 

samples are first scaled to be in the range of 0.0 and 1.0 by min-max normalization 

and the normalized data samples are used to construct a pair of training data set and a 

test data set. 

The training data set is made up of 90% of the data samples randomly selected 

from each class in the data set, and the remaining 10% are placed into the test data set. 

Additional test samples are included by replicating random 5% of the training data set 

into the test data set. The random selection process first identifies the number of 

unique class labels in the original data set and counts the number of data sample in 

each class. Then data samples from each class are randomly selected into a training 

data set and a test data set ensuring that required ratio of the data samples from each 

and every class are present in the training data set and the test data set. While at it, the 

selection process also transforms each unique class label into a unique class 
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identification number to make the class matching during the quality evaluation 

simpler. 

Data Set 

Scaling of Attribute Values 
via Min-Max Normalization 

Normalized 
Data 

Vectors 

Class Label to Class ID Conversion and 
Random Selection Process 

Normalized 
Training 

Data 
Vectors 

SOM Competitive 
Learning Process 

Feature 
Map 
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Identification of 

the nodes 

Feature 
Map with 
Class IDs 
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Data 

Vectors 

Evaluation of 
Quality 

Measures 

Quantified 
Quality 

Measures 

Figure 4-1 Summary of experiment procedure and processes 

Then the feature maps are generated by the proposed model and standard 

SOM algorithm using the training data set and the qualities of the feature maps 
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generated are evaluated using the corresponding test data set. Two of the quality 

measures used in our experiments require associating each node of the feature map 

with a data class that its reference vector represents: one for measuring how well the 

feature maps correctly identify the classes of the test data samples and the other for 

measuring the relative similarity of neighboring clusters of data classes in feature 

maps. Therefore, prior to the evaluation of the quality measures, each node of the 

feature map is assigned the identification number of the data class category that the 

reference vector of the node is supposed to represent. To determine the class category 

of a node on the feature map, every data vector in the training data set is compared to 

the reference vector of the node in search of the training data vector which is closest 

to the reference vector. The node is then assigned the class identification number of 

the training data vector most similar to the reference vector of the node and this 

process is repeated for each and every node on the feature map. -r-
~ 

4.3 Quality measures used for evaluation of feature maps 

As discussed in the Chapter 2, there exists no universally accepted standard 

measure that can used for objective evaluation and comparison of quality of the 

feature maps, especially for feature maps of different sizes, due to the lack of 

mathematical formalism that describes an objective function computed by the SOM 

learning process. Since the intention of the experiments is to assess if the proposed 

model is capable of autonomously growing the network to an appropriate size and 

shape suitable for a given data and yield a feature map whose quality is comparable to 

the feature maps produced by the standard SOM algorithm, quality measures used for 

the purpose of the experiments need not be absolute indicators of quality. The quality 
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measures just need to be relative indicators of whether feature maps being evaluated 

bear comparable and similar qualities. 

We use three quantified measures for evaluating and comparing the quality of 

the feature maps in our experiments. Two measures, mean of weighted quantization 

errors in immediate neighborhoods of the winners (MNQE) and similarity ratio of 

neighboring clusters (SRNC), are intended to provide postulatory measures of the 

quality while the rate of correct class identification (RCCI) is designed to indicate an 

application-centric measure of the quality. 

The MNQE measures how well and close enough the values of test data 

samples falling on a particular Voronoi region of the input data space are represented 

by the reference vectors in the corresponding neighborhood of the feature map space 

by determining the weighted mean of differences between the values of the test data 

samples and the reference vectors in the neighborhood of the node whose reference 

vector is most similar to the test data vector. Thus the MNQE quantifies the accuracy 

of vector quantization and the degree of local ordering of the reference vectors of a 

feature map. The MNQE is calculated in a similar way to the MNDE, but for the test 

data set T: '\J 969 ~ Of 

i1.19i\~~ 
I "( ., 0.5 " 2

] MNQE =-L.. 0.5 II x-wi 11- +-L.,11 x-w1 II , 
I T I xer I D I 1e!J 

(4.1) 

where w; is the reference vector of the winner node i and w1 is the reference vector of 

a neighbor node j in the set D defined as 

(4.2) 

The SRNC, on the other hand, attempts to quantifj; the degree of global 

ordering of the reference vectors by assessing the similarity in the neighboring 
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clusters of data classes portrayed by the feature maps. As the optimal topological state 

of a feature map is unknown, we compare the relative topological states of the feature 

maps produced by the proposed model and the standard SOM algorithm by comparing 

the neighborhood relationships that exist among the clusters of data classes 

represented by the reference vectors of the feature maps. 

For each data class represented by the reference vector of a node on a feature 

map, a set of neighboring data classes are identified by examining the data classes of 

directly neighboring nodes and adding the data classes of the neighbors that are 

different from the data class of itself to the set of its neighboring data classes. This 

process of identifying neighboring data classes of every node in a feature map 

culminates in the construction of a list of neighboring data clusters for the data classes 

represented in the feature map projecting a global order of the topology of the 

reference vectors of the feature map. 

Degree of similarity in the global order of the reference vectors in the feature 

maps produced by the proposed model and the standard SOM algorithm are then 

evaluated by comparing the lists of neighboring data clusters of the two feature maps 

and quantifying the ratio of similarity and averaging them over all the data classes. 

This measure of similarity ratio of neighboring clusters or SRNC is more specifically 

defined as 

1 K IP nS I 
SRNC=-I I i, 

K i=I IP; uS;J 
(4.3) 

where K is the number of data classes in the training data samples, Pi is the set of 

neighboring data classes for the data class i in the feature map produced by the 

proposed model and S; is the set of neighboring data classes for the same data class i 

in the feature map produced by the standard SOM algorithm. 
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Therefore, the combination of MNQE and SRNC represent hypothetical 

qualities of the feature maps indicating the level of accuracy of vector quantization 

and the degree of topology preservation in the transformation of a continuous high 

dimensional data manifold into a discrete two-dimensional feature map. However, 

these postulatory measures of quality may not reflect how well the feature maps serve 

the purpose of a particular application of the SOM in practice. Since the major 

applications of the SOM are predominantly in the field of data mining for clustering 

and classification tasks, we also evaluate the quality of the feature maps by 

quantifying how well the generated feature maps identify the correct classes of the 

data they belong to as an application-centric quality of the feature maps. This 

application-centric measure denoted as the RCCI is a percentage of the test data 

samples whose class labels match the class labels of their respective winner nodes and 

is thus defined as 

1 
RCCJ = -Icc(x), 

IT I XE1 

(4.4) 

where cc(x) = 1 if the class label of x matches the class label of the winner node for x 

and 0 otherwise. 

It must be clarified that we use data sets that have been properly labeled with 

the data classes they belong to in our experiments only to evaluate the quality of the 

generated feature maps in terms of the RCCI and the SRNC. The class label 

information is not used during the training process in the formation of the feature 

maps. Therefore, the use of classified data sets in our experiments is a means for 

evaluating classification and clustering capabilities of the feature maps formed 
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through unsupervised learning process using the classified data sets, and should not be 

confused with the supervised learning models. 

4.4 Experiment results 

In this section, the results of the experiments using the iris data set and the 

Italian olive oil data set are presented summarizing the quality measures of the feature 

maps produced by the proposed model and the standard SOM algorithm along with 

their training times taken on a machine with a Core 2 CPU and 2 GB of memory. 

The standard SOM model requires the size and the shape of the network grid 

to be defined prior to the training process. In evaluating and comparing the qualities 

of the feature maps, the standard SOM algorithm is applied to network grids having 

the same sizes and the shapes as the final feature maps generated by the proposed 

self-growing and self-organizing batch map model and the qualities of the resulting 

feature maps are evaluated and compared to those of corresponding feature maps 

generated by the proposed model. Furthermore, we also apply the standard SOM 

algorithm to a larger grid consisting of twice the number of the nodes to ascertain that 

the stopping condition used in the proposed model does not cause the problem of 

undergrowth leading to production of inferior feature maps. 

All results produced by the standard SOM algorithm have been obtained by 

setting the initial radius of neighborhood to half the length of the longer dimension of 

the two-dimensional network grid and the initial learning rate to 0.9 and decreasing 

the radius of the neighborhood and the learning rate linearly over 2,000 epochs. 

The feature maps and their quality measures presented in this section are 

obtained by running the same experiment using a particular pair of training data set 
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and test data set three times and taking the output of the run with the best quality 

measures out of the three runs in order to counter the possible effects on the learning 

dynamics that might be caused by the random selection of data vectors used to 

initialize the reference vectors of the initial network grid. 

4.4.1 Results of experiments on the iris data set 

150 data vectors in the iris data set are randomly selected to construct a pair of 

a training data set consisting of 13 5 data vectors and a test data set consisting of 21 

data vectors. The random selection process ensures that equal number of instances of 

each data class is present in both the training set and the test set. Table 4-3 

summarizes the data class label to class ID mapping and the distribution of the data 

vectors used for the experiments. 

Table 4-3 Class ID mapping and data distribution used for experiments using iris data set 

Data Class Label 
Data Number of Data Number of Number of Test 

Class ID Vector in the Class Training Vectors Vectors 

Iris Setosa 1 50 45 7 

Iris Versicolour 2 50 45 7 

Iris Virginica 3 
c 

50 9 J 45 7 

'1/j ',~ 
,--

Tables 4-4 to 4-9 shows the results the three experiments on the iris data set 

using three random pairs of training data set and test data set. The MNQE and the 

RCCI of the feature maps produced by the proposed model and standard SOM 

algorithm along with their respective training times taken to produce the feature maps 

are summarized in Table 4-4, Table 4-6 and Table 4-8, respectively for the three 

experiments on the iris data set. Table 4-5, Table 4-7 and Table 4-9 summarizes the 

neighboring data clusters of each data class portrayed in the feature maps produced by 

the proposed model and the standard SOM algorithm and shows the SRNC between 
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the feature map produced by the proposed model and the feature map of the same size 

and shape produced by standard SOM algorithm and the SRNC between the feature 

map produced by the proposed model and the larger feature map produced by the 

standard SOM algorithm on a network having twice the number of nodes. 

Table 4-4 MNQE, RCCI and training times for experiment No. 1 on iris data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 26 by 28 99.578 0.0650 1.000 

Standard SOM 26 by 28 294.953 0.0566 1.000 

Standard SOM 38 by 38 592.329 0.0504 1.000 . -

'7 

Table 4-5 Neighboring clusters and SRNC for experiment No. 1 on iris data set 

~ 
Neighboring Neighboring Similarity Neighboring Similarity 

clusters clusters Rate with clusters Rate with 
SS 

Proposed Model Standard SOM Proposed Standard SOM Proposed 
ID 

26 by 28 26 by 28 Model 38 by 38 Model 

1 2 2 1.00 2 1.0 

2 1, 3 1, 3 1.00 1, 3 1.0 

3 2 2 1.00 2 1.0 
.... t SRNC of SRNC of 

Proposed Model 
t 1.0 

Proposed Model 
1.0 to Standard to Standard SOM 

SOM 26 by 28 ........ , " 38 by 38 
IQ.-' -

Table 4-6 MNQE, RCCI and training times for experiment No. 2 on iris data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 21 by 30 76.515 0.0937 0.952 

Standard SOM 21 by 30 255.922 0.0874 0.952 

Standard SOM 35 by 35 501 .313 0.0799 0.952 
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Table 4-7 Neighboring clusters and SRNC for experiment No. 2 on iris data set 

Data 
Neighboring Neighboring Similarity Neighboring Similarity 

Class 
clusters clusters Rate with clusters Rate with 

ID 
Proposed Model Standard SOM Proposed Standard SOM Proposed 

21 by 30 21 by 30 Model 35 by 35 Model 

1 2 2 1.00 2 1.0 

2 1, 3 1, 3 1.00 1, 3 1.0 

3 2 2 1.00 2 1.0 

SRNC of SRNC of 
Proposed Model 

1.0 
Proposed Model 1.0 

to Standard to Standard SOM 
SOM 21 by 30 35 by 35 

Table 4-8 MNQE, RCCI and training times for experiment No. 3 on iris data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 25 by 30 111.250 0.0760 1 000 

Standard SOM 25 by 30 305.360 0.0688 1.000 

Standard SOM 38 by 38 593.032 0.0571 1.000 

Table 4-9 Neighboring clusters and SRNC for experiment No. 3 on iris data set 

Data 
Neighboring Neighboring Similarity Neighboring Similarity 

Class clusters clusters Rate with clusters Rate with 

ID Proposed Model Standard SOM Proposed Standard SOM Proposed 
25 by 30 25 by 30 Model 38 by 38 Model 

1 2 2 1.00 2 1.0 
"" 

2 1, 3 1, 3 1.00 1, 3 1.0 

3 2 2 1.00 2 1.0 

SRNC of SRNC of 
Proposed Model 

1.0 Proposed Model 
1.0 to Standard to Standard SOM 

SOM 25 by 30 38 by 38 

The results of the three experiments using the iris data set clearly indicate the 

qualities of feature maps vary little between the ones generated by the proposed 

model and the corresponding feature maps produced by the standard SOM algorithm. 

The MNQE of the feature maps produced by the standard SOM algorithm is slightly 
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lower than that of the corresponding feature maps produced by the proposed model, 

but the difference (reduction in MNQE value of less than 0.01 on all cases) is not 

significant enough to indicate variance in the quality. The feature maps produced by 

the proposed model and the corresponding feature maps of the same size and shape 

produced by the standard SOM algorithm show perfect matches in the neighboring 

data clusters yielding SRNC value of 1.0 and all the feature maps manifest very high 

RCCI values with very little variance in all of the three experiments. Despite the close 

similarity in the quality of the feature maps produced, the proposed model takes 

noticeably less training time (about three times) to grow the network and yield a final 

feature map than the training time taken by the standard SOM algorithm to form a 

feature map on a given grid of the same size and shape. 

Furthermore, the larger feature maps produced by the standard SOM algorithm 

on the network grids containing about twice more number of nodes do not show any 

significant improvements in quality. The MNQE is slightly reduced as expected due 

to the larger size of the network, but the average reductions about 0.015 in the values 

of MNQE come at the cost of about twofold increase in the training time. The RCCI 

of the larger feature maps do not improve on their smaller counterparts and SRNC 

value of 1.0 indicates that the global order of the topological structure manifest by the 

reference vectors of the feature map is very much consistent across all the feature 

maps. The results of the experiments conducted using the iris data set demonstrate 

that the stopping condition used in the proposed model is effective in determining an 

appropriate size of the network for a given data set to yield a feature map of 

comparable quality while avoiding undergrowth and unnecessary overgrowth of the 

network. 
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The final feature maps generated by the proposed model and the standard 

SOM algorithm for the three experiments using the iris data set are exhibited in Figure 

4-2 to Figure 4-10 for visual references. 

Figure 4-2 Feature Map produced by the proposed model 
for iris data set experiment No. I (26 by 28) 

* 

Figure 4-3 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. l (26 by 28) 

64 



Figure 4-4 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. 1 (38 by 38) 

Figure 4-5 Feature Map produced by the proposed model 
for iris data set experiment No. 2 (21 by 30) 
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Figure 4-6 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. 2 (21 by 30) 

Figure 4-7 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. 2 (35 by 35) 
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Figure 4-8 Feature Map produced by the proposed model 
for iris data set experiment No. 3 (25 by 30) 

Figure 4-9 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. 3 (25 by 30) 
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Figure 4.10 Feature Map produced by the standard SOM algorithm 
for iris data set experiment No. 3 (38 by 38) 

-
4.4.2 Results of experiments on the Italian olive oil data set 

572 data vectors in the Italian olive oil data set are randomly selected to 

construct a pair of a training data set consisting of 511 data vectors and a test data set 

consisting of 83 data vectors. Unlike the iris data set, the number of data samples in 

each data class of the Italian olive oil data set is not the same. The random selection 

process takes 90% of data instances from each data class for the training data set and 

the remaining are made into the test data set. Random 5% of the data samples from 

the training data set are replicated and further added to the test data set. 

Table 4-10 summarizes the data class label to class ID mapping and the 

distribution of the data samples used for the experiments using Italian olive oil data 

set. 
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Table 4-10 Class ID mapping and data distribution used for 
experiments using Italian olive oil data set 

Data Class Label 
Data Number of Data Number of 

Class ID Vector in the Class Training Vectors 

North Apulia 1 25 22 

Calabria 2 56 50 

South Apulia 3 206 185 

Sicily 4 36 32 

Inner Sardinia 5 65 58 

Coastal Sardinia 6 33 29 
East Liguria 7 50 45 

West Liguria 8 50 45 

Umbria 9 51 45 

Number of Test 
Vectors 

4 

8 

30 

5 

9 

5 
7 

7 

8 

The results of the three experiments on the Italian olive oil data set using 

three random pairs of training data set and test data set are summarized in Tables 4-11 

to 4-16. Table 4-11, Table 4-13 and Table 4-15 respectively shows the MNQE and the 

RCCI of the feature maps produced by the proposed model and standard SOM 

algorithm along with their respective training times for the three experiments 

conducted using the Italian olive oil data set. Neighboring data clusters projected by 

the feature maps for the clusters of data classes represented by the reference vectors of 

the feature maps are shown in Table 4-12, Table 4-14, and Table 4-16 summarizing 

the SRNC between the feature map feature map generated by the proposed model and 

the feature map of the same size and shape produced by the standard SOM algorithm 

as well as the SRNC between the feature map generated by the proposed model and 

the larger feature map produced by the standard SOM algorithm on a network grid 

having twice the number of nodes. 
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Table 4-11 MNQE, RCCI and training times for experiment No. 1 on Italian olive oil data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 40 by 42 2049.39 0.1249 1.000 

Standard SOM 40 by 42 4542.06 0.1145 0.988 

Standard SOM 58 by 58 9183.91 0.1016 0.988 

Table 4-12 Neighboring clusters and SRNC for experiment No. 1 on Italian olive oil data set 

Data 
Neighboring Neighboring Similarity Neighboring Similarity 

Class clusters clusters Rate with clusters Rate with 

ID 
Proposed Model Standard SOM Proposed Standard SOM Proposed 

40 by 42 40 by 42 Model 58 by 58 Model 
1 2,4, 7 2,4, 7, 9 0.7500 2,4, 7, 9 0.7500 

2 1, 3,4, 5, 7 1, 3,4,5, 7 1.0000 1, 3, 4, 7 0.8000 

3 2,4, 5,6, 8 2,4, 5,6, 7 0.6667 2,4, 5, 7 0.5000 

4 1, 2, 3 1, 2, 3 1.0000 1, 2, 3 1.0000 

5 2, 3, 6, 7, 8, 9 2, 3, 6, 7, 8 0.8333 3,6, 7 0.5000 

6 3, 5 3, 5 1.0000 5 0.5000 

7 1,2, 5, 8, 9 1,2, 3, 5, 8, 9 0.8333 1,2, 3, 5, 8, 9 0.8333 

8 3, 5, 7 5, 7, 9 0.5000 7, 9 0.2500 

9 5, 7 1, 7, 8 0.2500 1, 7, 8 0.2500 

SRNC of SRNC of 
Proposed Model 

0.7593 Proposed Model 
0.5982 

~ to Standard to Standard SOM 
SOM 21by30 35 by 35 

Table 4-13 MNQE, RCCI and training times for experiment No. 2 on Italian olive oil data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 45 by 35 1883.77 0.1345 0.988 

Standard SOM 45 by 35 4267.27 0.1281 0.988 

Standard SOM 56 by 56 8553.58 0.1116 0.988 
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Table 4-14 Neighboring clusters and SRNC for experiment No. 2 on Italian olive oil data set 

Data 
Neighboring Neighboring Similarity Neighboring Similarity 

Class 
clusters clusters Rate with clusters Rate with 

ID 
Proposed Model Standard SOM Proposed Standard SOM Proposed 

45 by 35 45 by 35 Model 56 by 56 Model 
1 2, 3,4,9 2, 3, 4, 9 1.0000 2, 3,4, 9 1.0000 
2 1, 3,4, 7, 9 1, 3, 4, 5, 7, 9 0.8333 1, 3,4, 5, 7 0.6667 

3 1,2,4,5,6, 7, 9 1,2,4,5, 6 0.7143 1, 2, 4, 5, 6, 7, 9 1.0000 
4 1, 2, 3 1, 2, 3 1.0000 1, 2, 3 1.0000 
5 3,6, 7, 8 2, 3, 6, 7, 8 0.8000 2, 3,6, 7,8 0.8000 
6 3, 5 3, 5 1.0000 3, 5 1.0000 
7 2, 3, 5, 8, 9 2, 5, 8, 9 0.8000 2, 3, 5, 8, 9 1.0000 
8 5, 7 5, 7 1.0000 5, 7 1.0000 

9 1,2, 3, 7 1, 2, 7 0.7500 1, 3, 7 0.7500 
SRNC of SRNC of 

Proposed Model 0.8775 Proposed Model 
0.9130 

to Standard to Standard SOM 
SOM 45 by 35 .., I 56 by 56 

Table 4-15 MNQE, RCCI and training times for experiment No. 3 on Italian olive oil data set 

SOM Model Feature Map Size Training time MNQE RCCI 

Proposed Model 43 by 36 1713.55 0.1252 1.000 

Standard SOM 43 by 36 4185.95 0.1126 0.988 

Standard SOM 57 by 57 8863.30 0.0991 0.976 

~ 

Table 4-16 Neighboring clusters and SRNC for experiment No. 3 on Italian olive oil data set 

Data 
Neighboring Neighboring Similarity Neighboring Similarity 

Class 
clusters clusters Rate with clusters Rate with 

ID 
Proposed Model Standard SOM Proposed Standard SOM Proposed 

43 by 36 43 by 36 Model 57 by 57 Model 
1 2, 3,4, 7, 9 2, 3, 4, 9 0.8000 2, 3,4,9 0.8000 
2 1, 3,4, 7 1, 3,4, 7, 9 0.8000 1, 3,4, 5, 7 0.8000 
3 1,2,4, 5,6, 7 1,2,4, 5,6, 7 1.0000 1, 2, 4, 5, 6, 7, 9 1.0000 
4 1, 2, 3, 7 1, 2, 3 0.7500 1,2, 3 0.6000 
5 3, 6, 7, 8 3, 6, 7, 8 1.0000 2, 3,6, 7, 8 1.0000 
6 3, 5 3, 5 1.0000 3, 5 1.0000 
7 1,2,3,4, 5,8, 9 2, 3, 5,8, 9 0.7143 2, 3, 5, 8, 9 0.7143 
8 5, 7, 9 5, 7, 9 1.0000 5, 7 1.0000 
9 1, 4, 7, 8 1, 2, 7, 8 0.8293 1, 3, 7 0.8333 

SRNC of SRNC of 
Proposed Model 0.8516 Proposed Model 

0.8571 to Standard to Standard SOM 
SOM 45 by 35 56 by 56 
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The results of the experiments comparing the qualities of the feature maps 

produced by the proposed model of self-growing and self-organizing batch map and 

those produced by the standard SOM algorithm on the Italian olive oil data set clearly 

indicate that the proposed model is capable of generating feature maps exhibiting 

similar qualities to those that can be produced by the standard SOM algorithm even 

for more complex data manifolds while offering significant savings in the overall 

training times. 

The MNQE of the feature maps produced by the standard SOM algorithm is 

slightly lower than that of the corresponding feature maps produced by the proposed 

model, but the reduction (of less than 0.01 on average) in the values of the MNQE is 

not significant enough to indicate variance in the quality. Equally high RCCI values 

are exhibited by all the feature maps with the proposed model showing slightly higher 

values in experiment No. 1 and experiment No. 3. The SRNC values between the 

feature maps generated by the proposed model and the corresponding feature maps of 

the same size and shape produced by the standard SOM algorithm suggest that the 

feature maps portray similar topological orders in terms of neighboring data clusters. 

Considering the fact that a mismatch of neighboring data cluster in one data 

class will also cause mismatches in the corresponding data classes lowering the 

similarity rates in multiple data classes, the SRNC values shown for the experiments 

on the Italian olive oil data set that is composed of 9 different data classes should be 

considered as indicating pretty high level of similarity in the overall topological 

orders of the feature maps. The SRNC values for experiment No. 2 and experiment 

No. 3 are especially high indicating high level of similarity in the overall global 

topological orders of the reference vectors. Although the SRNC value of 0.7593 for 

experiment No. 1 is lower in comparison, close observation reveals that the lower 
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SRNC value is mainly due to one or two mismatches in the neighboring clusters of 

the data class 8 and the data class 9 which have small number of neighboring data 

clusters (between 2 and 3 only) thus leading to very low similarity rates of 0.5 and 

0.25. 

The observation of the training times taken to generate the feature maps 

clearly indicates that the proposed model takes significantly less training time to grow 

the network and yield a final feature map than for the standard SOM algorithm to 

form a feature map on a given grid of the same size and shape. The savings in the 

training time achieved by the proposed model is noteworthy especially considering 

that actual wall time required for training more complex and larger data sets are 

generally a lot longer therefore offering larger reduction in training time in terms of 

wall time saved. 

Quality of the larger feature maps produced by the standard SOM algorithm 

do not show any clear indication of improvements over the feature maps generated by 

the proposed model. As expected, the MNQE of the feature maps produced by the 

standard SOM algorithm on the larger network grids is slightly reduced due to the 

larger network size, but the small reductions in the MNQE are obtained at the cost of 

considerable increase in the training time especially in terms of wall time. The RCCI 

of the larger feature maps do not improve on their smaller counterparts and in 

experiment No. 3 on the Italian olive oil data set, the RCCI of the larger feature map 

is shown to be slightly worse, presumably caused by overfitting. The isolated case of 

reduced value of SRNC shown for the larger feature map in experiment no. 1 is 

presumably caused by the increase in the number of low similarity rates induced by 

mismatches in those data classes with small number of neighboring data clusters due 

to the larger network topology causing further mismatches from the smaller feature 
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map of proposed model. However, the SRNC between the feature maps generated by 

the proposed model and the larger feature map produced by the standard SOM 

algorithm show very similar or slightly improved values in experiment no. 2 and 

experiment no. 3 when compared to the SRNC values between feature maps of the 

same sizes indicating general consistency in the topological orders of the reference 

vectors. 

The results of the experiments on the Italian olive oil data set affirm that the 

proposed model is effective in growing the network autonomously to an appropriate 

size and shape suitable for a given data manifold even for more complex and larger 

data sets and is capable of yielding feature maps of comparable qualities while 

avoiding undergrowth that may lead to production of inferior quality feature maps and 

overgrowth which prolongs the training time unnecessarily without any significant 

improvements in the quality of the feature maps. -
The final feature maps generated by the proposed model and the standard 

SOM algorithm for the three experiments using the Italian olive oil data set are 

exhibited in Figure 4-11 to Figure 4-19 for visual references. 
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Figure 4-11 Feature Map produced by the proposed model 
for Italian olive oil data set experiment No. 1 (40 by 42) 

Figure 4-12 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 1 ( 40 by 42) 
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Figure 4-13 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 1 (58 by 58) 
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Figure 4-14 Feature Map produced by the proposed model 
for Italian olive oil data set experiment No. 2 ( 45 by 35) 

Figure 4-15 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 2 ( 45 by 35) 
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Figure 4-16 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 2 (56 by 56) 
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Figure 4-17 Feature Map produced by the proposed model 
for Italian olive oil data set experiment No. 3 (43 by 36) 

Figure 4-18 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 3 (43 by 36) 
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Figure 4.19 Feature Map produced by the standard SOM algorithm 
for Italian olive oil data set experiment No. 3 (57 by 57) 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Pragmatic difficulties arise in the application of the SOM especially for data 

mining problems because the Kohonen's SOM requires that the network configuration, 

hence the size and shape of the feature map to be produced, be specified prior to the 

training process along with other learning parameters. Although there are common set 

of recommended values for the learning parameters based on numerous experimental 

analyses, the same cannot be said for the size and the shape of the network grid since 

the appropriate network configuration is dependent on the statistical characteristics of 

the data set. Therefore, the requirement to predetermine the size and shape of the 

network in the standard SOM algorithm represents an undue complication to the 

experimenter who is using the SOM to discover the structure of the unknown data 

manifold. 

In this thesis, we sought to address the difficulty associated with the 

application of the SOM induced by the requirement to specify the size and the shape 

of the feature map prior to the training process in the standard SOM algorithm by 

investigating ways to grow the network grid incrementally during the training process 

until a feature map deemed suitable for a given data manifold have formed. The 

proposed model of self-growing and self-organizing map construct a feature map 

suitable for the input data by incremental growing of the network structure and 

gradual adaptation of the reference vectors by coordinated competitive learning 

dynamics of the Batch Map during the training process. It is a growing model of the 

SOM designed to automatically determine the size and shape of a feature map 
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appropriate for the data while maintaining the structural compatibility to the 

rectangular grid network of the standard Kohonen network. The application of the 

Batch Map is also particular to the proposed model and has allowed significant 

savings in the overall training time. 

The experiments carried out using the iris data set and the Italian olive oil data 

set have demonstrated the capability of the proposed model to grow the network 

dynamically during the training process and generate a feature map of suitable size for 

a given data set in significantly less time than the time taken by the standard SOM 

algorithm to produce a feature map of similar quality on a predetermined network 

structure. The results of the experiments suggest that the incremental growing and 

learning mechanisms and the automatic stopping condition adapted in the proposed 

model is effective in discovering an appropriate network topology for the data at hand 

in order to yield a feature map of suitable size and shape for the given data manifold, 

while avoiding undergrowth and overgrowth of the network. 

The model of self-growing and self-organizing map proposed and evaluated in 

this thesis has been shown to be a useful and viable model of the SOM that 

successfully addresses the difficulty of having to specify a suitable structure of the 

feature maps to be generated prior to the training process in the applications of the 

SOM. With the proposed model, it is no longer necessary to go through the time 

consuming process of generating numerous feature maps of different sizes and shapes 

applying different training epochs in search of a suitable feature map for a given data 

set. 

The capability of the proposed model to capture nonlinear statistical 

relationships that exist in the principal components of high-dimensional input data 

manifolds and autonomously map them onto two-dimensional regular grid structures 
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of appropriate sizes combined with significant savings in the training time possible 

with the growing batch SOM model should prove valuable as an effective tool for the 

application of the SOM in data mining applications and visualization of high

dimensional complex systems and as a viable alternative model of growing SOM. 

5.2 Suggestions for future work 

Research work reported in this thesis demonstrates that the network can be 

adaptively grown during the training process to automatically discover a suitable two

dimensional representation of the topological structure of arbitrary high-dimensional 

data space by means of incremental growing and progressive learning. Although 

shown to be effective, the proposed model represents one of many possible alternative 

models of the growing SOM and much more work is required in exploring different 

mechanisms for the adaptive growing and learning process and for suitable criteria for 

the automatic stopping condition. 

More research work could be directed at investigating different mechanisms 

for growing the network in terms of the location of insertions and the initialization 

methods for newly inserted nodes, and at evaluating whether and how the different 

growing mechanisms affect the quality of the final feature maps produced in order to 

better understand the possible impacts of the growing process on the overall learning 

dynamics of the SOM. Our own preliminary work in this direction involved assessing 

how inserting multiple rows and columns in each growth cycle affect the quality of 

the final feature maps in comparison to inserting a single row or column of nodes in 

each growth cycle. Although more experiments and analyses are required, initial 

findings seem to suggest that the difference in the quality of the feature maps 

produced by the two different insertion mechanisms is rather nominal. 
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A maJor avenue for further research is in the design and analysis of the 

automatic stopping criteria for growing models of the SOM. In fact, research in this 

area has been lacking so far, and much more comprehensive analytical and 

experimental studies of necessary and sufficient conditions for the automatic stopping 

criteria of growing SOM models are required. More analytical examination of the 

dynamics of the incremental growing and adaptive learning process is necessary to 

determine appropriate measures that are guaranteed to be fulfilled eventually to avoid 

indefinite growing and learning process, and experimental analyses are needed to 

indentify specific conditions that can lead to the formation of feature maps of suitable 

sizes and shapes without suffering from undergrowth and overgrowth. The automatic 

stopping criteria used in the proposed model based on the convergence of the MNDE 

value is shown to be an effective measure of automatic stopping condition and the 

analytical and experimental studies reported in this thesis should prove useful as the 

base of any further research in this direction. 

One critical research area that can benefit not only the studies of growing 

SOM models, but also the SOM in general is the establishment of a universally 

accepted standard measure of quality for feature maps. Due to the lack of 

mathematical formalism in the theory of the SOM, it is doubtable that an absolute 

objective measure of quality can be constructed; however, it is conceivable that a 

hypothetical standard measure of quality is established and that the measure is used as 

the comparative basis for evaluation of the feature maps in the design and analysis of 

alternative SOM algorithms. More concerted research effort toward establishing a 

standard measure of quality should enable more objective evaluation and comparison 

of different SOM algorithms and help design SOM models that can grow feature 

maps in more objective and systematic manners. The MNQE used as a postulatory 
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measure of quality in the experimental analyses of the proposed model has a potential 

to be extended and developed as a possible standard measure of quality since it has 

been designed to quantify both the accuracy of vector quantization and degree of local 

ordering of the reference vectors. By increasing the radius of neighborhood for 

measuring the quantization errors in the vicinity of the winner nodes and by 

augmenting the quantization errors with a similarity measure among the neighboring 

nodes, the MNQE can possibly be extended to quantify both local and global ordering 

of the reference vectors as well as the overall accuracy of vector quantization. 

Investigation into how the MNQE can be extended as a unified measure of degree of 

topology preservation and accuracy of approximation for the SOM algorithms in the 

formation of the feature maps is certainly a potential area for our future research. 

85 



REFERENCES 

[Arthur et al., 2009] Arthur L. Hsu, Isaam Saeed and Saman K. Halgamuge, Dynamic 

Self-Organizing Maps: Theory, Methods and Applications, Foundations on 

Computational Intelligence, Studies in Computational Intelligence Vol. 201 pages 

363-379, Springer Berlin, 2009 

[Bernd, 1995a] Bernd Fritzke, A Growing Neural Gas Network Learns Topologies, 

Advances in Neural Information Processing Systems Vol.7 pages 625-632, MIT Press, 

1995 

[Bernd, 1995b] Bernd Fritzke, Growing Grid - A Self-Organizing Network with 

Constant Neighborhood Rang and Adaptation Strength, Neural Processing Letters Vol. 

2. No. 5, pages 9-13, 1995 

[Bernd, 1997] Bernd Fritzke, Some Competitive Learning Methods, unpublished 

working paper, 1997 

[Damminda et al., 2000] Damminda Alahakoon, Saman K. Halgamuge and Bala 

Srinivasan, Dynamic Self-Organizing Maps with Controlled Growth for Knowledge 

Discovery, IEEE Transactions on Neural Networks Vol. 11 No. 3 pages 601-614, 

2000 

[David et al. , 1992] David E. Irwin, Klaus Obermayer, Klaus Schulten, Self

Organizing Maps: Ordering, Convergence Properties and Energy Functions, 

Biological Cybernetics Vol. 67 Issue 1 pages 47-55, Springer Berlin, 1992 

[Frank and Asuncion, 2010] Frank, A. and Asuncion, A., UCI Machine Learning 

Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, 

School of Information and Computer Science, 2010 

86 



[Franz, 1991] Franz Aurenhammer, Vomoi Diagrams - A Survey of a Fundament 

Geometric Data Strcuture, ACM Computing Surveys 23(3) pages 345-405, 1991 

[Georg, 2004] Georg Polzlbauer, Survey and Comparison of Quality Measures for 

Self-Organizing Maps, Proceeding of 5th Workshop on Data Analysis (WDA 2004) 

pages 67-82, 2004 

[Hans-Ulrich and Klaus, 1992] Hans-Ulrich Bauer and Klaus R. Pawelzik, 

Quantifying the Neighborhood Preservation of Self-Organizing Feature Maps, IEEE 

Transactions on Neural Networks Vol. 3 Iss. 4 pages 570-579, 1992 

[Helge and Klaus, 1988] Helge Ritter and Klaus Schulten, Kohonen's Self-organizing 

Maps: Exploring their Computational Capabilities, Proceedings of International 

Conference on Neural Networks Vol I, 1988, pages 109-116 

[Hiong and Susan, 2005] Hiong Sen Tan and Susan E. George, Investigating Leaming 

Parameters in a Standard 2-D SOM Model to Select Good Maps and Avoid Poor Ones, 

Lecture Notes in Computer Science Vol. 3339 pages 23-48, Springer Berlin, 2005 

[James, 1967] James B. MacQueen, Some methods for classification and analysis of 

multivariate observations, Proceeding of the fifth Berkeley Symposium on 

Mathematical Statistics and Probability, Vol. 1 pages 281-297, University of 

California Press, 1967. 

[Jean-Claude et al., 2002] Jean-Claude Fort, Patrick Letremy, and Marice Cottrell, 

Advantages and drawbacks of the Batch Kohonen algorithm, Proceedings of 1 oth 

European Symposium on Artificial Neural Networks pages 223-230, 2002 

[Juha, 1999] Juha Vesanto, SOM-based data visualization methods, Intelligent Data 

Analysis, Vol. 3 pages 259-126, 1999. 

[Jure and Johann, 1999] Jure Zupan and Johann Gasteiger, Neural Networks m 

Chemistry and Drug Design: An Introduction, 2nd edition, Wiley-VCH, 1999 

87 



[Jure et al., 1994] Jure Zupan, Marjana Novic, Xinzhi Li, and Johann Gasteiger, 

Classification of Multicomponent Analytical Data of Olive Oils Using Different 

Neural Networks, Analytica Chimica Acta, Vol 292 pages 219-234, Elsevier 

[Justine, 1993] Justine Blackmore, Incremental Grid Growing: Encoding High

Dimensional Structure into a Two-Dimensional Feature Map, Proceedings of the 

IEEE International Conference on Neural Networks pages 450-455, 1993 

[Justine and Risto, 1995] Justine Blackmore and Risto Miikkulainen, Visualizing 

High-Dimensional Structure with the Incremental Grid Growing Neural Network, 

Proceedings of 12'h Annual Conference on Machine Leaming pages 55-63, 1995 

[Kimmo, 1996] Kimmo Kiviluoto, Topology Preservation in Self-Organizing Maps, 

Proceedings of the Internal Conference on Neural Networks, IEEE Neural Network 

Council, 1996. 

[Laurene, 1993] Laurene Fausett, Fundamentals of Neural Networks: Architectures, 

Algorithms and Applications, Prentice Hall, 1993 

[Stuart, 1982] Least Squares Quantization in PCM, IEEE Transactions on Information 

Theory 28(2) pages 129-13 7, 1982 

[Teuvo et al., 1996] Tuevo Kohonen, Olli Simula, Ari Visa, and Jari Kangas, 

Engineering Applications of the Self-Organizing Map, Proceedings of the IEEE 

84(10) pages 1358-1384, 1996 

[Teuvo, 1993] Teuvo Kohonon, Things You Haven't Heard about the Self-Organizing 

Map, Proceedings of the IEEE International Conference on Neural Networks Vol. 3 

pages 1147 - 1156, 1993 

[Teuvo, 2001] Tuevo Kohonen, Self-Organizing Maps, 3rd edition, Springer, 2001 

[Teuvo and Timo, 2007] Teuvo Kohonen and Timo Honkela, Kohonen Network, 

Scholarpedia Vol 2. Issue 1 page: 1568, 2007 

88 



[Thomas and Klaus, 1991] Thomas Martinetz and Klaus Schul ten, A "Neural-Gas" 

Network Learns Topologies, Artificial Neural Networks Vol. I pages 397-402, 1991 

[Thomas et al., 1994] Thomas Villmann, Ralf Der, and Thomas M. Martinetz, A New 

Quantitative Measure of Topology Preservation in Kohonen's Feature Maps, 

Proceedings of the International Conference on Neural Networks, IEEE Neural 

Network Council, 1994. 

[Tommy and Siu-Yeung, 2007] Tommy W S Chow and Siu-Yeung Cho, Neural 

Networks and Computing: Leaming Algorithms and Applications, Imperial College 

Press, 2007 

[Yoseph et al., 1980] Yoseph Linde, Andres Buzo, and Robert M. Gray, An 

Algorithm for Vector Quantizer Design, IEEE Transactions on Communications 28(1) 

pages 84-95, 1980 

89 



APPENDIX A 

EVALUATION OF THE PARAMETER B FOR THE 
AUTOMATIC STOPPING CONDITION 

In this appendix, we discuss the premises behind our choice of the function 

used to determine an appropriate value of B, the maximum tolerated MNDE value, in 

the specification of the automatic stopping condition for the proposed model, and 

present the results of the experiments conducted to validate our hypothesis assumed in 

the design of the function. 

As elaborated in Chapter 3, a maJor goal of the proposed model is the 

automatic determination of stopping point for the growing and learning process to 

yield a feature map of appropriate size and shape suitable for the data at hand and the 

proposed model stops the training process when the value of the MNDE converges 

after the MNDE has become smaller than the maximum tolerated value B. More 

specifically, the automatic stopping condition for the proposed model is defined as 

MNDE(t) < B /\ I MNDE(t) - MNDE(t - 1) I < &, (A.I) 

· The value of B stipulates the degree of average distortion error in the direct 

neighborhood of the winners necessary to prevent premature termination of the 

growing and learning process which may lead the production of an inferior quality 

feature maps due to the undergrowth as well as to avoid the overgrowth which may 

prolong the training process unnecessarily without significant improvement in the 

quality of the feature maps. 

An appropriate value of the parameter B should depend on the dimensionality 

of the input data space since the distortion errors are measured in terms of the 
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Euclidean distance and the dimension of the data points significantly affect the 

Euclidean distance between the two data points. Note that the Euclidean distance 

between two data vectors p and q in a K-dimensional space is defined as 

K 

llp-qll = L(P; -q;)
2 (A.2) 

i=I 

and the distortion errors are measured in terms of the square of the Euclidean distance 

K 

llp-qll 2 
= L(P, -q,) 2 (A.3) 

i=I 

to place progressively greater weight on points that are farther apart. 

Thus, higher the dimensionality of the data vectors, more number of featural 

differences between the data vectors to be added in the calculation of the distortion 

errors. Hence, it would become increasingly more difficult for the MNDE to reach a 

small value as the number of the features present in the data vectors, or the 

dimensionality of the data space, increases. The main premise for the function used to 

determine a suitable value of e in our proposed model is that the degree of tolerated 

distortion error should increase as the dimensionality of the data space increases but 

the magnitude of each additional degree of tolerance in the distortion error should 

decrease so that there is a limit to the overall degree of tolerated distortion error and 

the effect of each additional dimension is lessened as the dimensionality increases. 

We model the desired value of the maximum tolerated MNDE value e with 

the following logistic function of the dimensionality of the input data space 

e = 0.5 x (1 - exp( -0.02 x K) ), (A.4) 

where K is the dimensionality of the input data vectors in order to give the maximum 

tolerated MNDE value B of about 0.01 (or tolerance of 1 % ) when K = 1 and to allow 

for gradually diminishing additional tolerance of less than 1 % for each added 
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dimension as K increases, but never more than 0.5 (or tolerance of 50%) even for very 

high dimensional data space. Table A-1 shows the values of B computed by the 

function (A.4) for some selected values of K along with the changes in their values as 

K increases. 

Table A- I Values of 8 as a function of the dimensionality of input data space 

Input Dimension Value of maximum tolerated MNDE Change in fJ 
K () fX,K) - fX,K-1) 
1 0.009900663 0.009900663 
2 0.019605280 0.009704617 
3 - .... '\ 0.029117733 0. 009512453 
4 ~\~ 0.038441827 n .... 0.009324094 
5 

.... 
0.047581291 ( 0.009139464 / 

6 ~ 0.056539782 ~ 0.008958491 ... 
7 il"' 0.065320882 0.008781101 
8 0.073928106 0.008607223 
9 0.082364894 0.008436789 
10 0.090634623 0.008269729 
13 0.114474207 0.007788138 

17 0.144114839 0.007189357 

20 0.164839977 0.006770682 

25 0.196734670 0.006126366 

30 0.225594182 0.005543365 
35 0.251707348 0.005015844 
40 . 0.275335518 0.004538524 
45 I - 0.296715170 

J """' 

0.004106626 

50 ~-
.., 

0.316060279 ft)""'C 0.003715829 

As can be seen from (A.4) and Table A-1, the function used in the proposed 

model to project an appropriate value of Bis a logistic function of the dimensionality 

of the input data space approaching the growth limit of 0.5 starting from an initial B 

value of about 0.01 when K = 1 and growing the value of Bwith diminishing increases 

as K increase resulting in an exponential decay in the changes of the values of Bas the 

dimensionality of the input data space grows. 
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A set of experiments have been conducted to test the premises assumed in the 

design of the function (A.4) and to verify whether the values of B projected by the 

function leads to a suitable stopping point culminating in the production of feature 

maps of appropriate sizes. In the experiments, we test the automatic stopping 

condition used in the proposed model against another comparative stopping condition 

adapting different values of B by applying the proposed model to a set of training 

data samples using the two different automatic stopping conditions while keeping all 

other aspects of growing and learning mechanisms of the proposed model same, and 

by evaluating and comparing the quality of the two feature maps generated using the 

corresponding test data samples. 

The suitability of the function (A.4) as the basis of the automatic stopping 

condition for the proposed model is assessed by testing it against another function that 

generates relatively lower values of B and by comparing the MNQE and the RCCI of 

the two feature maps generated by the proposed model adapting the two different 

stopping conditions along with the overall training times taken to generate the 

respective feature maps. Smaller B values will generally lead to more growing and 

learning cycles resulting in larger feature maps. If the larger feature maps do not show 

any significant improvements in the MNQE and RCCI, it can be presumed that the 

stopping condition based on the function (A.4) used in the proposed model avoid the 

problems of undergrowth and overgrowth and manifest feature maps of suitable sizes 

for given data. We use the following function to generate B values that are about 60% 

of the values generated by the function (A.4) as the basis of the comparison in the 

experiments: 

B = 0.3 x (1 - exp( -0.02 x K) ) D (A.5) 
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The values of e computed by the functions (A.4) and (A.5) are shown for some 

selected values of Kin Table A-2. 

Table A-2 Values of B generated by the functions (A.4) and (A.5) 

Input Dimension 
Value of Value of 

fJ= 0.5 x (1 - exp( -0.02 x fJ= 0.3 x (1 - exp( -0.02 x 
K 

K) )I K) )I 

1 0.009900663 0.005940398 
2 0.019605280 0.011763168 
3 0.029117733 0.01747064 
4 0.038441827 0.023065096 
5 0.047581291 0.028548775 
6 0.056539782 ' - 0.033923869 
7 .... ~ 0.065320882 fl) 0.039192529 
8 ~\) 0. 073928106 

.., 
0.044356863 ~ 

9 0.082364894 /f,; 0.049418937 
10 d. 0.090634623 0.054380774 
13 0.114474207 0.068684524 

17 
-. 0.144114839 0.086468903 

20 0.164839977 0.098903986 

25 0.196734670 0.118040802 

30 0.225594182 0.135356509 

35 . 0.251707348 0.151024409 

40 I 0.275335518 0.165201311 ::.. 

45 ~ 0.296715170 0.178029102 

50 0.316060279 0.189636168 

The experiments are carried out using the three pairs of training data set and 

test data set constructed by random selection process from the iris data set and the 

Italian olive oil data set, which were used for the experiments reported in Chapter 4. 

The results of the three experiments using the three different pairs of training data set 

and test data set on the iris data set and the Italian olive oil data set are presented in 

Table A-3 and Table A-4 respectively, summarizing the configurations of the final 

feature maps generated by the proposed model adapting the two different stopping 

conditions, training times taken to generate the corresponding final feature maps, and 

their quality measures in terms of MNQE and RCCI. 
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Table A-3 Results of the experiments conducted for evaluation of stopping conditions 
using iris data set 

Training -
B= 0.5 x (1 - exp( -0.02 x K)) e = 0.3 x (1 - exp( -0.02 x K) )n 

Test Feature 
Training 

Feature 
Training 

Data Sets Map 
Time 

MNQE RCCI Map 
Time 

MNQE RCCI 
Size Size 

Set 1 26 x 28 99.578 0.0650 1.000 30 x 35 279.61 0.0657 1.000 

Set 2 21x30 76.515 0.0937 0.952 35 x 29 264.31 0.0964 0.952 

Set3 25 x 30 111 .25 0.0760 1.000 29 x 35 261.58 0.0732 1.000 

Table A-4 Results of the experiments conducted for evaluation of stopping conditions 
using Italian olive oil data set 

Training - B= 0.5 x (1 - exp( -0.02 x K)) e = 0.3 x (1 - exp( -0.02 x K) )n 

Test Feature 
Training 

Feature 
Training 

Data Sets Map 
Time 

MNQE RCCI Map 
Time 

MNQE RCCI 
Size Size 

Set 1 40 x42 2049.39 0.1249 1.000 51x59 10317.5 0.1128 0.988 

Set 2 45 x 35 1883.77 0.1345 0.988 57 x 54 10834.2 0.1239 0.988 

Set 3 43 x 36 1713.55 0.1252 1.000 55 x 54 9829.34 0.1127 0.988 

As expected, the proposed model generates relatively larger feature maps 

when smaller values of B are used as the basis of the automatic stopping condition 

since more growing and learning cycles are needed to reduce the MNDE to the 

required value. However, there is very little difference in the quality of the feature 

maps between the larger feature maps and the corresponding smaller feature maps 

produced by the proposed model adapting smaller values of B. The MNQE and the 

RCCI of the corresponding feature maps for the iris data set are very much alike. For 

the Italian olive data set, the larger feature maps show slightly lower MNQE values 

(average reduction of about 0.012 in their values) and equal or slightly worse RCCI 

values, but the differences in the MNQE and the RCCI are not significant enough to 

indicate any variance in the quality. However, training times taken to produce the 

larger feature maps are significantly higher in comparison to the training times taken 
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to generate the corresponding smaller feature maps, exhibiting almost 3 fold increase 

on average for the iris data set and the increase of more than 5 times on average for 

the Italian olive oil data set. 

The results of the experiments clearly indicate that the lower values of e used 

in the alternative automatic stopping condition do not lead to the formation of higher 

quality feature maps while causing significant increase in the training time, which can 

be described as unnecessary overgrowth. At the same time, the fact that quality of the 

feature maps produced by the proposed model adapting the suggested automatic 

stopping condition exhibit very high RCCI values and the MNQE values that are in 

line with the MNQE value of the larger feature maps (including the larger feature 

maps produced by the standard SOM algorithm as shown in Chapter 4) indicate that 

the proposed automatic stopping condition does not cause the problem of 

undergrowth that may lead to production of inferior quality feature maps. 

Therefore, our postulation assumed in the design of the function (A.4) used to 

project an appropriate value of e based the dimensionality of the input data space has 

been shown to hold at least for the data sets used for testing and the results of the 

experiments presented in this appendix and the results of the experiments described in 

Chapter 4 suggest that the proposed model of self-growing and self-organizing batch 

map with the suggested automatic stopping condition is effective in automatically 

discovering an appropriate topology of the network suitable for the given data 

manifold while avoiding undergrowth and overgrowth, and that the proposed model is 

capable of growing the network dynamically during the training process to manifest a 

feature map of suitable size and shape for a given data set in significantly less time 

than the time taken by the standard SOM algorithm to produce a feature map of 

similar quality on a predetermined network structure. 
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