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What are fuzzy systems?

Before the above question can be answered, two things need to be
defined: system and fuzzy. There are a number of different definitions defined
for both terms. Instead of attempting to compile various different definitions and
judge their correctness, this paper will try to describe practical interpretations of
the terms. A system can be considered as a collection of parts working together,
accepting some inputs (stimuli), processing, then producing some outputs
(responses). This simple view of a system is illustrated in Figure 1.

Normally, a word fuzzy would put a negative impression on anything it
describes. It indicates things that are blurred, ambiguous, imprecise, or vague.
They basically are undesirable values when constructing a system. However, in
reality, not everything is so precise. We, as human beings, survive in this
imprecise world due to our ability to deal with imprecision. We, most of the time
in our everyday life, use our common sense reasoning or qualitative judgment
rather than quantitative computation. For an example, think of yourself when
you drive a car into a curve, what do you do? You would never quantitatively
calculate the degree at which you need to turn the steering wheel nor the speed
you need to drive your car according to the condition of the curve. You would
simply look at the curve and the traffic, then automatically and qualitatively come
up with a response to turn the steering wheel and to adjust your car's speed
without any explicit number-calculation. You would hardly even look at your
speedometer.
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Fig. 1: A system as a black box

Therefore, in order to endow machines with such human intelligence, we
need to equip those machines with a tool that qualitatively takes into account the
imprecision and processes it as we, human beings do, rather than avoids the
imprecision. Researchers in the field of Artificial lhtelligence (Al) have tried to
produce so-called intelligent systems based on symbolic processing and
predicate logic for decades. However, their achievements were quite limited.
This is due to the fact that human intelligence depends largely on qualitative
judgment rather than quantitative computation. In order for machines to possess
such level of intelligence, they must be built to exhibit human's qualitative

reasoning.

With the fuzzy sets theory, we make computer think like human rather
than the other way around. We employ fuzzy sets theory in building qualitatively
intelligent systems so-called fuzzy systems. Fuzzy systems can effectively and
intelligently deal with imprecision in real-world the way human can. A number of
fuzzy systems with commercial applications have been produced in recent years.
Such systems include automatic train operators, automobile cruise controllers,
elevator controllers, camera and camcorder stabilizers, fuzzy washing machines,
fuzzy microwave ovens, etc. Those products have primarily been produced in
Japan and sold worldwide. Even though the fuzzy sets theory was originated in
US, Japanese researchers have proven the worthiness of the underlying theory
and are now helping Japanese industry make quite a good deal of money.
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People in the West with the earlier ignorance to the theory are now beginning to
appreciate the power of the fuzzy sets theory and trying to catch up with the
development in Japan and some other Eastern countries such as China and
Korea.

In the next section, basics of fuzzy sets theory will be described, followed
by a section narrating the evolution of fuzzy systems. Then, an example of fuzzy
systems is illustrated. As a conclusion, a brief comparison of fuzzy systems with
neural networks, as well as conventional expert systems is discussed.

Fuzzy sets theory and Fuzzy logic

The father of fuzzy sets theory L. A. Zadeh gave birth to his child in his
classical paper Fuzzy Sets [Zadeh65] in 1965. Fuzzy sets theory generalize the
dichotomy world of classical sets theory to incorporate multivaluedness.

In classical sets theory, an element in a universe of discourse utterly
either belongs or does not belong to a given set. It is a world of black or white,
yes or no. When an element x; belong to a set A, it is written,

xi € A
While the same element x; does not belong to a set B is written,
Xj ¢ B

The classical crisp sets are adequate for classifying certain things such
as classifying whole numbers as odd or even numbers. Unfortunately, they are
not good enough to meaningfully classify many other real-world objects. For an
example, how can one use a classical set of temperatures measured in degree
Celsius to describe hot weather? Imagine if one uses a threshold temperature
as a cut-off point, say at 40 degree, one would have to consider the temperature
of 40 degree and above as hot. What about 39 degree? Isn't it somehow hot?
Is there a big enough difference between 40 degree and 39 degree to consider
one hot and the other one not hot? This situation is depicted in Figure 2, using
a characteristic function m, where
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ma(xp) =1,ifx; € A,
ma(x) =0,ifx; ¢ A

ma

Fig. 2: A classical crisp set of hot weather

The problem here stems from the sharp boundary of the classical crisp
set. The fuzzy sets theory solves the problem by accommodating the naturally
imprecise nature of the majority of real-world objects. Instead of the dichotomy
membership, i.e. either belong to or not belong to, of an object with respect to a
given set, fuzzy sets theory employs graded membership. Every element in the
universe of discourse U is assigned a membership grade ranging from O (non-
member) to 1 (full-member) that represents the degree to which an element
belongs to a given fuzzy set. This introduces the concept of (continuous)
membership function p which maps an element x; in a universe of discourse U to
a real number in a closed interval [0,1]. This real number represents the
membership degree of the element x; with respect to a fuzzy set A. The said
membership function can be written as,

na: U - [01],
or, in other words,
0 < palx) < 1.

For an infinite universe of discourse, a fuzzy set A can be represented as
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On the other hand, for a finite universe of discourse, a fuzzy set A can be
written,

A = uAXq)IX1 +. .. + pA(Xn)iXn,
or, '
A = ZN pa(xi)x

For an example, if a universe of discourse is a set of whole numbers from
1109, U = {1,2,3,4,5,6,7, 8,9}, afuzzy set big number can be written as

big number =
0.0/1 +0.0/2+0.1/3 +0.2/4 + 0.3/5+ 0.5/6 + 0.7/7 + 0.9/8 + 1.0/9

Based on the concept of membership function above, a fuzzy set
representing hot weather can be shown graphically in Figure 3.
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Fig. 3: A fuzzy set representing hot weather

Since a fuzzy set normally represents meaningful but imprecise real-world
concepts such as hot, warm, fast, slow, tall, beautiful, etc., a membership degree
naturally represents the degree of compatibility or fit of an element with respect
to the given real-world concept. The fuzzy sets theory has equipped us with a
mathematical tool for representing and manipulating natural concepts appearing
in rules of thumb or common sense knowledge. Thus, the theory has given birth
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to a new kind of logic with which imprecise but meaningful reasoning can be
achieved, namely fuzzy logic.

Since the publication of his 1965 paper [Zadeh65] that defines the
concept of fuzzy sets, Zadeh has published a number of papers on the subjects
extending the theory and suggesting how the theory can be applied. Among
those, there are two papers that should be read by any newcomer to the field,;
the first one is his 1973 paper titled Outline of a new approach to the analysis of
complex systems and decision processes [Zadeh73] and his 1984 article on
Making computers think like people [Zadeh84).

It is worth noting at this point that a fuzzy membership degree is by no
means a probability. The sum of the membership degrees of a given fuzzy set
does not necessarily equal to 1. They do not represent values of random
variables. On the other hand, they do represent the degrees of compatibility of
the elements in question with respect to the imprecise concept represented by
the given fuzzy set. Moreover, every classical crisp set can be considered and
manipulated in the framework of the fuzzy sets theory as a limiting case.

There were an extremely high number of people skeptic, rejecting, or
even opposing the theory, on the ground that fuzzy sets theory is imprecise and
non-rigorous. Some people even insisted that the fuzzy sets theory is
redundant, any imprecision the theory is supposed to handle can be dealt with
by the probability theory. Those charges were misleading. First of all, the fuzzy
mathematics itself is not fuzzy. It is rather a quite rigorous mathematical
framework that tries to deal with imprecision in the real-world. Secondly, only
small portion of imprecision in the real-world is expressible in terms of
randomness to which probability theory can be applied. As a simple example,
can the fuzzy set hot weather above be interpreted or described in terms of
probability (distribution) by any means?

Apart from the oppositions, there have been a group of far-sighted
researchers working on both theoretical extension and application of the theory.
They have produced numerous published papers. There have been
establishments of publications and organizations devoted to the theory and
related research. Among those, the prominent ones include International Fuzzy
Systems Association (IFSA) and International Journal of Fuzzy Sets and
Systems.
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In the fuzzy sets theory, all set-operations of the classical sets theory are
redefined in terms of operations on the membership degree. This is a true
generalization of the classical sets theory under which the classical crisp sets
are included as limiting cases. However, unlike the classical sets theory, an
operation in the fuzzy sets theory could have more than one mathematical
definition. The appropriateness of any given definition depends on the
application context. Below is the summarization of popular and simple
definitions of basic fuzzy set operations.

Complement of a fuzzy set A is written —A, and the membership function
is defined as,

noA() = 1 - pax)).

Therefore, a fuzzy set not hot which is a complement of the fuzzy set hot given in
Figure 3, can be shown as in Figure 4 below.

HA

Fig. 4: A fuzzy set representing not hot

Union of fuzzy sets A and B can be written as AuB whose membership
function is defined as,

HAUB(X) = BAWX) v up(xj) = max(na(x;),up(Xj)).

A fuzzy set hot or not hot which is a union of fuzzy set hot and fuzzy set not hot
is shown in Figure 5.
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Fig. 5: A fuzzy set of hot or not hot

Intersection of fuzzy sets A and B can be written as AnB whose
membership function is defined as,

HA~BX) = BAMX) A pg(xj) = min(ua(x;),nB(Xj)).

A fuzzy set hot and not hot which is an intersection of fuzzy set hot and fuzzy set
not hot is shown in Figure 6.

H A

T

oV

Fig. 6: A fuzzy set of hot and not hot

Note that in Figure 5 -- the union of hot and not hot, there is a region that
membership function has value less than 1. This simply reflects the fact that
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there is a range of temperatures that we consider neither (absolutely) hot nor
(absolutely) not hot. Similarly in Figure 6 -- the intersection of hot and not hot,
the non-zero membership degrees represent the region of temperatures which
could be considered both hot and not hot at the same time to certain degree.
This is how we, as human beings, normally feel in reality! The fuzzy sets theory
and fuzzy logic are just a mathematical tool that can be used to mimic the way
we feel and think in computers.

Besides the basic set-operations described above, there as many as 9
different definitions of an implication operator, —. This leads to different
interpretations of subsethood, c. Bandler and Kohout have investigated the
different definitions of the implication operator and presented very interesting
discussion in [BaKo80a] and [BaKo80b]. It could be defined that the degree to
which a fuzzy set A is a subset of a fuzzy set B is,

(A c B) = Aj(nAKX) = nx).

Hence, the classical interpretation of subset in the fuzzy sets theory which
asserts that

AcB ifandonlyif VxjeU, pa(xj) < pg(x)),
can be defined in terms of standard strict implication operator,

HAX) = pglx) = 1, ifand only if pa(x;) < pug(x))
0, otherwise

Based on the concept of fuzzy sets, fuzzy relations can be defined. In
fact any fuzzy relation is just another fuzzy set whose universe of discourse,
instead of being a simple crisp set, is a Cartesian product of a number of crisp
based sets. An n-ary fuzzy relation can be thought of as an n-slot open
sentence or an n-place predicate such that when elements, one from each crisp
based set, are put in appropriate slots, the truth value of the sentence can be
determined in the close interval [0,1].

For an example, given two based sets of interpreters / and languages L,
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I = {Ann, Jane, Sam, Tom}
L = {English, Russian, Japanese, Chinese, Thai}

we can construct a fuzzy relation R,

R = (A translator) is fluent in (a language)
as follows.
English Russian Japanese Chinese Thai
Ann 0.9 1.0 0.6 0.0 0.0
Jane 1.0 0.0 0.8 0.5 0.2
Sam 0.8 0.0 0.8 1.0 0.7
Tom 1.0 0.9 0.0 - 00 0.0

According to the above fuzzy relation, it can be interpreted that Jane is a
native English speaker, who is pretty good in Japanese, speaks some Chinese
and very little Thai, but does not know Russian at all.

Having defined fuzzy relations, we can manipulate them using the
relational products defined below. Note that the most commonly used relations
are binary or two-place relations, and any n-ary relation can be reduced in
various ways to a set of corresponding binary relations depending on the
application's context. Hence, it is sufficient to define the relational products only
for binary products.

Circle product is defined in terms of membership degree as
MR SXiYk) = vj(HR(Xi.Z) A nS(ZjYk)-

This gives a degree to which there is at least one common element zj with
respect to xj and yy of relations R and S respectively.

Triangle subproduct is defined in terms of membership degree as

HR < SXiyk) = Aj(MR(X;Zj) = 1S(Z].yk).
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This yields the degree to which the elements z; of R include the corresponding
elements z; of S with respect to a given pair of x; and y.

Triangle superproduct is defined in terms of membership degree as
HR |> SXivk) = A~ (MR(XiZ)) < 1s(Z).yk)-

This yields the degree to which the elements z; of R are included in the
corresponding elements z; of S with respect to a given pair of x; and y.

Square product is defined in terms of membership degree as

LR O SXiyk) = Aj (RR(XZ)) € nS(Z}.yk)-

This yields the degree to which the elements z; of R exactly match the
corresponding elements z; of S with respect to a given pair of x; and yk.

Here, — is a fuzzy implication operator, « is dual to —, and <
represents if and only if, i.e. - and «. Detailed discussion on various aspects
of fuzzy relations can be found in [BaKo80a] and [BaKo88].

Meanwhile, Kosko has presented a very interesting idea of sets as points
in cubes. For a finite universe of discourse U = { x1, ..., Xp } of n elements, we
can represent a fuzzy powerset F(2U) as an n-dimensional unit hypercube /1 =
[0,1]7. Then, each fuzzy set is represented as a point in the hypercube. The
coordinate in each dimension of the point depends on the membership degree of
the corresponding element with respect to the given fuzzy set. The corners of
the hypercube represent all crisp subsets of the universe of discourse. This can
be illustrated by an example of a two-dimensional hypercube representing a
fuzzy powerset of U = { x4, x2 }in Figure 7. Here two fuzzy sets,

A = 0.7/xq +0.4ixp and B = 0.3/xq +0.8/xo

are shown as points in the hypercube. Further discussion on this sets as points
idea can be found in [Kosko92].
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Fig. 7: Sets as points

The discussion above can be summarized as follows. As a result of an
application of fuzzy sets theory to inference process, an unconventional logic,
namely fuzzy logic has been invented. With fuzzy logic, we normally reason with
statements whose truth values are graded rather than strictly true or false. This
may seem very unsettling to some (old-fashioned) logician. However, the fuzzy
logic, being able to deal with imprecision, covers much larger area of discourse
than the classical strict logic does. Moreover, the fuzzy logic indeed includes
the strict logic in its limiting cases. Instead of having a computer reason with a
strict and unnatural statement like "If the temperature is not above 40 degree
Celsius this afternoon, we will let the children swim for 30 minutes," with fuzzy
logic, we can make a computer comfortably reason with a more natural
statement such as "If it is not too hot this afternoon, we will let the children swim
for about half an hour."

Fuzzy systems: the evolution

Based on the discussion about fuzzy sets theory and fuzzy logic in
previous section, the term fuzzy systems can be defined as any systems that
utilize fuzzy sets theory and fuzzy logic in its process. Applications of fuzzy sets
theory and fuzzy logic permeate wide variety of disciplines such as engineering,
artificial intelligence, decision support systems, information processing and
retrieval, psychology, medicine, meteorology, etc. Most prevailing fuzzy systems
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currently fall into two categories; control systems and decision support systems.
Historically, the first such system was a fuzzy controller developed by Mamdani
and his colleagues at Queen Marry College, University of London in 1974
[Mamdani74). Mamdani experimented then the relatively new idea with a control
of a steam engine which is notoriously difficult to control by a conventional
numerical controller. He created a set of fuzzy if-then rules mimicking the action
of a human operator, and successfully applied the rules to achieve good control
of the steam engine. Later, then his Ph.D. student, Sugiyama [Sugiyama86]
expanded the idea by incorporating performance index so that the fuzzy rules
can be created and modified dynamically depending on the performance of the
fuzzy controller at a given time. This gave birth to a self-organizing fuzzy control
system.

Spurred by the development of the first fuzzy controller, a number of
researchers around the world have worked on various fuzzy systems. The
pioneer works were done mostly in Japan and few European countries. One of
those has become a major mile-stone of fuzzy systems development, Japan's
Sendai automated subway system. The subway system which was opened in
1987 used a fuzzy control system developed by Hitachi in lieu of a human
operator. The fuzzy control system reportedly operates the subway with better
performance than its human operator counterpart in various aspects -- smoother
acceleration and braking, better accuracy in stopping at a platform, and less
energy consumption. Since the success of the Sendai subway system, many
Japanese companies have caught a fuzzy fever developing wide variety of fuzzy
products ranging from consumer products such as fuzzy rice cooker, fuzzy
microwave oven, fuzzy air-conditioning system, fuzzy camcorder, fuzzy
refrigerator, fuzzy washing machine, etc. to high-tech products such as fuzzy
expert system, fuzzy VLSI chip, etc. A recent survey article in BYTE, Putting
Fuzzy Logic into Focus, by Barron [Barron93] summarizes the current trend in
applications of fuzzy systems and related technologies.

While majority of researchers focus on fuzzy rule-based systems, there
are still a number of different ways in applying fuzzy sets theory and fuzzy logic.
In their 1988 book, Fuzzy Sets, Uncertainty, and Information, [KIFo88], Klir and
Folger discuss various theoretical frameworks upon which fuzziness can be
measured and captured for further manipulation. Another interesting application
of fuzzy sets theory and fuzzy logic is the use fuzzy relations in analysis of
computer security and protection model. Kohout and Bandler describes a
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technique which is based on the fuzzified capability-model in [KoBa81] and
[KoBa87].

It should be noted here that the current success of many fuzzy consumer
products, which implement variations of fuzzy control algorithms, is partly owing
to the rapid advancement in sensor technology. In fuzzy products, at least one
sensor is used to sense environmental variables such as ambient temperature or
dirtiness of drained water. The value measured by the sensor is used as an
input into the fuzzy controller. The sensors must be durable and operable in
normal operating environment of such fuzzy products. However, utmost
accuracy is not a prerequisite of such sensors. Remember, after all we have
fuzzy systems to take care of any real-world imprecision!

Fuzzy systems: an illustration

This section briefly discusses an example of fuzzy systems in order to
give an idea on how such systems work. Among various types of fuzzy systems,
the fuzzy rule-based systems are the simplest to construct and the most widely
used in the market. A (very) simplified version of fuzzy system for the control of
traffic signal on a main street is used as an example to illustrate the idea behind
fuzzy rule-based systems. Three common sense rules for controlling a traffic
signal based on the flow rate of traffic could be described as follows.

if traffic speed is Fast then green light is Short
if traffic speed is Normal then green light is Medium
if traffic speed is Slow then green light is Long

The next step here is to define fuzzy sets that represent the linguistic
variables of the if-part, namely Fast, Normal, and Slow, as well as those of the
then-part, Short, Medium, and Long. Those linguistic variables could be defined
as shown in Figure 8 and 9, respectively.
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Fig. 8: Fuzzy sets representing Fast, Normal, and Slow
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Fig. 9: Fuzzy sets representing Short, Medium, and Long

Each rule could be represented graphically in terms of a pair of two fuzzy
sets below.
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Fig. 12: if traffic speed is Slow then green light is Long

A fuzzy rule-based system of the type exemplified here can be depicted
by a schematic diagram in Figure 13.
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ﬁl Fuzzyrule1 —> B1

Fuzzy rule2 —> Bz\

x —Fuzzification A
: ®——> B —Defuzzification

ﬁl Fuzzyrulen —> Bn/

Fig. 13: A typical fuzzy rule-based system

If we have a measurement of traffic speed of about 15 km/hr coming to

the system, the about 15 km/hr may be represented by a fuzzy set in Figure 14.

ph
14

T 1 t t t t >
0 10 20 30 40 50 60 km/hr

Fig. 14: A fuzzy set representing about 15 km/hr

This would cause the second and third rules to be simultaneously fired.
In the simplest case of max-min compositional product, the result of the firing
could be shown graphically as in Figure 15.
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Fig. 15: The firing of fuzzy rules

At this point, the resulting fuzzy set needs to be defuzzified so that a crisp
output could be given. In this case as an output, we would have a length of time
in minutes that the green light should be on. One of the ways to perform
defuzzification is to calculate the center of gravity of the resulting output fuzzy
set. This can be done using the following formula, where B is an output fuzzy
set.

c.g. = XMug(x)) xj ! =" pg(x;)
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The above output fuzzy set would yield a crisp output of 2.71 minutes as
illustrated in Figure 16 below. Note that the output value 2.71 minutes belongs
more in the fuzzy set Long than the fuzzy set Medium, so as the input value 15
km/hr belongs more in the fuzzy set Slow than the fuzzy set Normal.

uA
14+
0.75 L.
05 -
0.25 -r_
>
0 min

2.71

Fig. 16: Defuzzification of output fuzzy set

As already seen, a simple fuzzy system with only three common sense
rules can cover a range of measured input values and produce an appropriate
deterministic output value. Any control or decision support systems that involve
common sense reasoning can easily be constructed this way. The imprecision
inherent in common sense knowledge is readily captured in the fuzzy rules.
Major tasks for a fuzzy engineer are to identify appropriate fuzzy sets'
membership functions and to fine-tune the fuzzy system with actual application
environment after the system is first constructed.

Fuzzy systems, Neural networks, and Expert systems

Both fuzzy systems and neural networks represent numerical approach to
capturing human intelligence in machines. On the other hand, expert systems
use symbolic representation of structured knowledge in terms of rules and
require predicate logic for the manipulation of facts and rules to reach some
conclusion. Even though expert systems sometimes incorporate certainty
factors, they are used in the computation only after symbolic pattern matches
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have been obtained. A knowledge base search is a must in an inference
process of any expert systems. An expert system with excessive number of
rules could result in an intolerable response time. Moreover, the ability to deal
with imprecision even with the help of certainty factors is still limited by the
required matching of symbolic variables. Thus real-life applications of
conventional Al expert systems are a bit restrictive.

Fuzzy systems, while representing structured knowledge mostly in terms
of fuzzy rules, represent the (maybe imprecise) knowledge qualitatively in terms
of linguistic variables (fuzzy sets). Fuzzy rules need no search, with an input
(crisp or fuzzy) all the rules can be fired simultaneously. Hence, an
implementation of speedy fuzzy systems on parallel architecture is readily

- supported. The resulting outputs from every relevant rule (non-relevant rules
will produce no output) are then summed up, and a representative crisp output is
calculated by the defuzzification process. A single faulty rule would unlikely
cause the system to crash. Therefore, besides the ability to deal with
imprecision in the real-world, fuzzy systems also possess very distinct
robustness.

Contrast to expert systems and fuzzy systems, neural networks utilize a
network of connected processing elements called neurons to learn and capture
unstructured knowledge. The knowledge is stored in the adjustable weights at
the connections (synapses) of neurons. Figure 17 summarizes the comparison
among the three different technologies.

Knowledge Type
Structured Unstructured
. Expert
Symbolic N/A
System Systems
Framework
Numerical Fuzzy Neural
Systems Networks

Fig. 17. Fuzzy systems, Neural networks and Expert systems
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With continuous research efforts in Japan, Korea, and China together
with a momentum being picked up in the US and European countries, it can be
most certainly foreseen that fuzzy systems will permeate many aspects of our
everyday life in the very near future. Right now there already are a few of
software development tools for developing fuzzy systems available in the
market.

As a conclusion to this paper, it is worth noting that fuzzy systems and
neural networks are not competing technologies. Rather, they complement each
other very well. For example, since neural networks require excessive
computing power to implement, while fuzzy systems by themselves do not have
learning capability, we can use neural networks to learn the previously structure-
unknown knowledge, then translate such knowledge into appropriate fuzzy
systems that can be executed more efficiently in real-time. Even in the case that
structure of knowledge is known and can be directly implemented in fuzzy
systems, neural networks are still a useful tool for fine-tuning of fuzzy systems.
A unique textbook of Kosko [Kosko92] is strongly recommended for anybody
who is interested in combining these two complementing systems.
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