Browsing by Subject "Contour preserving classification"
Results Per Page
Sort Options
-
ItemAn Adaptive Learning Algorithm for Supervised Neural Network with Contour Preserving Classification( 2009-11) Piyabute Fuangkhon ; Thitipong TanprasertA study of noise tolerance characteristics of an adaptive learning algorithm for supervised neural network is presented in this paper. The algorithm allows the existing knowledge to age out in slow rate as a supervised neural network is gradually retrained with consecutive sets of new samples, resembling the change of application locality under a consistent environment. The algorithm utilizes the contour preserving classification algorithm to pre-process the training data to improve the classification and the noise tolerance. The experimental results convincingly confirm the effectiveness of the algorithm and the improvement of noise tolerance.
-
ItemMulti-class contour preserving classification( 2012-08) Piyabute Fuangkhon ; Thitipong TanprasertThe original contour preserving classification technique was proposed to improve the robustness and weight fault tolerance of a neu- ral network applied with a two-class linearly separable problem. It was recently found to be improving the level of accuracy of two-class classi- fication. This paper presents an augmentation of the original technique to improve the level of accuracy of multi-class classification by better preservation of the shape or distribution model of a multi-class problem. The test results on six real world multi-class datasets from UCI ma- chine learning repository present that the proposed technique supports multi-class data and can improve the level of accuracy of multi-class classification more effectively.
-
ItemMulti-class contour preserving classification( 2012-08) Piyabute Fuangkhon ; Thitipong TanprasertThe original contour preserving classification technique was proposed to improve the robustness and weight fault tolerance of a neu- ral network applied with a two-class linearly separable problem. It was recently found to be improving the level of accuracy of two-class classi- fication. This paper presents an augmentation of the original technique to improve the level of accuracy of multi-class classification by better preservation of the shape or distribution model of a multi-class problem. The test results on six real world multi-class datasets from UCI ma- chine learning repository present that the proposed technique supports multi-class data and can improve the level of accuracy of multi-class classification more effectively.