Repository logo
  • English
  • ไทย
  • Log In
    New user? Click here to register. Have you forgotten your password?
external-link-logo
  • Communities & Collections
  • All of AU-IR
  1. Home
  2. Browse by Subject

Browsing by Subject "SRR (Super Resolution-Reconstruction)"

  • 0-9
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

  • ก
  • ข
  • ฃ
  • ค
  • ฅ
  • ฆ
  • ง
  • จ
  • ฉ
  • ช
  • ซ
  • ฌ
  • ญ
  • ฎ
  • ฏ
  • ฐ
  • ฑ
  • ฒ
  • ณ
  • ด
  • ต
  • ถ
  • ท
  • ธ
  • น
  • บ
  • ป
  • ผ
  • ฝ
  • พ
  • ฟ
  • ภ
  • ม
  • ย
  • ร
  • ล
  • ว
  • ศ
  • ษ
  • ส
  • ห
  • ฬ
  • อ
  • ฮ
Results Per Page
Sort Options
  • Item
    An Alternative Single-Image Super Resolution Framework Employing High Frequency Prediction Using A Robust Huber Rational Function
    ( 2015-11) Kornkamol Thakulsukannant ; Vorapoj Patanavijit ; Vincent Mary School of Engineering
    In general prospective, SI-SR or Single-Image Super-Resolution, which is one of the most useful algorithms of Super Resolution-Reconstruction (SRR) algorithms, is a mathematical procedure for acquiring a high-resolution image from only one coarse-resolution image, which is usually computed by Digital Image Processing (DIP). Even thought there have been substantially researched during the last decade, Single - Image Super-Resolution for applying on real implementations still keeps throw down the gauntlet. One of the practical Single- Image Super-Resolution is the resolution enhancement using prediction of the high-frequency image because of its high performance and its less comple xity however the rational function C(x, y) of high-frequency image prediction process of this technique is depend upon three parameters (b, h, k) therefore the parameter turning is difficult for maximizing its performance. From this problem prospective, this paper presents the alternative SI-SR framework employing robust rational function based on Huber function, which is depend upon only one parameter (T), instead of three parameters like the rational function C(x,y). Using up to fourteen standard images, which are crooked by varied noise models, in analysis testing section, the proposed SI-SR is demonstrated to be somewhat simper than the original SI-SR with equivalent efficiency because the saving in parameter turning time will be very important for SI-SR in real implementations.

Contact Us

St. Gabriel's Library (Hua Mak Campus)
592/3 Soi Ramkhamhaeng 24, Ramkhamhaeng Rd., Hua Mak, Bang Kapi, Bangkok 10240, Thailand

(662) 3004543-62 Ext. 3403

library@au.edu

The Cathedral of Learning Library (Suvarnabhumi Campus)
88 Moo 8 Bang Na-Trad Km. 26 Bang Sao Thong, Samut Prakan 10570, Thailand

(662) 7232024

library@au.edu

Website:  www.library.au.edu