Permanent URI for this collection


Recent Submissions

Now showing 1 - 5 of 37
  • Item
    Gallic acid content in taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKCδ activation: in vitro and in silico studies
    Teas can be classified according to their degree of fermentation, which has been reported to affect both the bioactive components in the teas and their antioxidative activity. In this study, four kinds of commercial Taiwanese tea at different degrees of fermentation, which include green (non-fermented), oolong (semi-fermented), black (fully fermented), and Pu-erh (post-fermented) tea, were profiled for catechin levels by using high performance liquid chromatography (HPLC). The result indicated that the gallic acid content in tea was directly proportional to the degree of fermentation in which the lowest and highest gallic acid content were 1.67 and 21.98 mg/g from green and Pu-erh tea, respectively. The antioxidative mechanism of the gallic acid was further determined by in vitro and in silico analyses. In vitro assays included the use of phorbol ester-induced macrophage RAW264.7 cell model for determining the inhibition of reactive oxygen species (ROS) production, and PKCδ and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit (p47) activations. The results showed that only at a concentration of 5.00 μM could gallic acid significantly (p < 0.05) reduce ROS levels in phorbol ester-activated macrophages. Moreover, protein immunoblotting expressed similar results in which activations of PKCδ and p47 were only significantly (p < 0.05) attenuated by 5.00 μM treatment. Lastly, in silico experiments further revealed that gallic acid could block PKCδ activation by occupying the phorbol ester binding sites of the protein.
  • Item
    Microencapsulation of Litsea cubeba Essential Oil in β-Cyclodextrin Using Paste and Co-Precipitation Methods
    Microencapsulation of Litsea cubeba essential oil (LCEO) with β-cyclodextrin (BCD) was carried out using the paste and co-precipitation methods at various oil concentrations and ratios of LCEO to BCD adapted from a central composite design to determine the effect of these factors on the microencapsulation efficiency, microencapsulation yield, surface oil and recovery of the finished product. In addition, the effect of different levels of water activity and temperature on the oxidative stability of the powder was investigated. Treatment 4 using the paste method with 90% LCEO and a ratio of LCEO to BCD of 15:85 was found to be more efficient compared to samples produced by the co-precipitation method. This condition provided an oil loading of 102 mg.g-1 of powder, 74.7% microencapsulation yield, 71.9% microencapsulation efficiency, 94.8% recovery of LCEO powder and surface oil with 4.08 mg.g-1 of powder. Statistical analysis indicated that the temperature and water activity had significant effects on the peroxide value. Moreover, there was an interaction between these two factors. The LCEO powder had higher oxidative stability with the lowest peroxide value of 4.9 when it was stored at 10 °C and a water activity of 0.53 whilst the accelerated conditions of 50 °C and a water activity of 0.64 resulted in the highest peroxide value (13.6 and lower oxidative stability. It was notable that except for the samples stored at a water activity of 0.64 and temperatures of 30 and 50 °C, the other samples did not exceed the limit for the peroxide value of 10 which is the acceptable limit for edible vegetable oils.
  • Item
    Microencapsulation of Saffron (Crocus sativus L.) Extract in Copolymer Complexes Using Extrusion Method
    This study describes the preparation of alginate-chitosan and alginate-gelatin beads containing saffron components to be incorporated as additives in food products. This study evaluated the influence of incorporating hydrophilic natural polymers, alginate-chitosan and alginate-gelatin on preserving saffron components. The alginate beads were coated with chitosan and gelatin as copolymer by extrusion method with a polyelectrolyte complex reaction between two oppositely charged poly-ions. The beads were formulated, optimized and evaluated to obtain high encapsulation efficiency of crocin, safranal and picrocrocin as the main components of saffron. The encapsulation variables were selected in accordance with Central Composite Design and were further optimized via response surface methodology. Alginate concentration significantly influenced particle size and encapsulation efficiency of alginate-chitosan and alginate-gelatin beads (p ≤ 0.05). Both chitosan and gelatin positively affected encapsulation efficiency. The optimum condition for preparing alginate-chitosan beads was an alginate concentration of 1.97% and chitosan concentration of 0.925%; this yielded an encapsulation efficiency of 66.3 ± 1.5, 86.2 ± 0.7 and 52.9 ± 3% for picrocrocin, safranal and crocin, respectively. The optimum condition for preparing alginate-gelatin beads was an alginate concentration of 1.95% and gelatin concentration of 3.65%; this yielded encapsulation efficiency of 39.2 ± 2.9, 31.9 ± 1.7 and 18.3 ± 1% for picrocrocin, safranal and crocin, respectively. The results clearly indicated that, in combination with alginate, chitosan was a better copolymer than gelatin for encapsulating saffron components.
  • Item
    Investigating the Effect of Cold Soak Duration on Phenolic Extraction during Cabernet Sauvignon Fermentation
    The impact of increasing cold soak (CS) duration (0, 1, 4, 7, and 10 days at 10 °C) on the extraction of phenolic compounds during the CS period and primary fermentation as well as the final composition of Cabernet Sauvignon wine was investigated. The results showed that CS duration had no effect on hydroxycinnamate and flavonol extractions. Greater amounts of gallic acid, (+)-catechin, (−)-epicatechin, and total tannins were extracted with increasing CS duration, with differences maintained during bottle aging. Anthocyanin extraction and color density increased with longer periods of CS; however, by the end of primary fermentation, as well as three months’ bottle aging, there were no significant differences due to CS duration. The wines made with seven and 10 days of CS had higher seed tannin contributions and total tannin compared to the non-CS wine, which could potentially result in increased astringency.
  • Item
    Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate
    Microorganisms play a significant role in bioethanol production from lignocellulosic material. A challenging problem in bioconversion of rice bran is the presence of toxic inhibitors in lignocellulosic acid hydrolysate. Various strains of Zymomonas mobilis (ZM4, TISTR 405, 548, 550 and 551) grown under biofilm or planktonic modes were used in this study to examine their potential for bioconversion of rice bran hydrolysate and ethanol production efficiencies. Z. mobilis readily formed bacterial attachment on plastic surfaces, but not on glass surfaces. Additionally, the biofilms formed on plastic surfaces steadily increased over time, while those formed on glass were speculated to cycle through accumulation and detachment phases. Microscopic analysis revealed that Z. mobilis ZM4 rapidly developed homogeneous biofilm structures within 24 hours, while other Z. mobilis strains developed heterogeneous biofilm structures. ZM4 biofilms were thicker and seemed to be more stable than other Z. mobilis strains. The percentage of live cells in biofilms was greater than that for planktonic cells (54.32 7.10% vs. 28.69 3.03%), suggesting that biofilms serve as a protective niche for growth of bacteria in the presence of toxic inhibitors in the rice bran hydrolysate. The metabolic activity of ZM4 grown as a biofilm was also higher than the same strain grown planktonically, as measured by ethanol production from rice bran hydrolysate (13.40 2.43 g/L vs. 0.432 0.29 g/L, with percent theoretical ethanol yields of 72.47 6.13% and 3.71 5.24% respectively). Strain TISTR 551 was also quite metabolically active, with ethanol production by biofilm and planktonically grown cells of 8.956 4.06 g/L and 0.0846 0.064 g/ L (percent theoretical yields were 48.37 16.64% and 2.046 1.58%, respectively). This study illustrates the potential for enhancing ethanol production by utilizing bacterial biofilms in the bioconversion of a readily available and normally unusable low value by-product of rice farming.