• English
    • ไทย
  • English 
    • English
    • ไทย
  • Login
View Item 
  •   AU-IR Home
  • 2 Faculties
  • 2.04 Theophane Venard School of Biotechnology
  • Articles
  • View Item
  •   AU-IR Home
  • 2 Faculties
  • 2.04 Theophane Venard School of Biotechnology
  • Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of AU-IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypesThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Types

My Account

LoginRegister

Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate

by Tatsaporn Todhanakasem; Atit Sangsutthiseree; Kamonchanok Areerat; Young, Glenn M.; Pornthap Thanonkeo

Title:

Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate

Author(s):

Tatsaporn Todhanakasem
Atit Sangsutthiseree
Kamonchanok Areerat
Young, Glenn M.
Pornthap Thanonkeo

Issued date:

2014

Citation:

New Biotechnology Volume 31, Number 5 September 2014, 451-459

Abstract:

Microorganisms play a significant role in bioethanol production from lignocellulosic material. A challenging problem in bioconversion of rice bran is the presence of toxic inhibitors in lignocellulosic acid hydrolysate. Various strains of Zymomonas mobilis (ZM4, TISTR 405, 548, 550 and 551) grown under biofilm or planktonic modes were used in this study to examine their potential for bioconversion of rice bran hydrolysate and ethanol production efficiencies. Z. mobilis readily formed bacterial attachment on plastic surfaces, but not on glass surfaces. Additionally, the biofilms formed on plastic surfaces steadily increased over time, while those formed on glass were speculated to cycle through accumulation and detachment phases. Microscopic analysis revealed that Z. mobilis ZM4 rapidly developed homogeneous biofilm structures within 24 hours, while other Z. mobilis strains developed heterogeneous biofilm structures. ZM4 biofilms were thicker and seemed to be more stable than other Z. mobilis strains. The percentage of live cells in biofilms was greater than that for planktonic cells (54.32 7.10% vs. 28.69 3.03%), suggesting that biofilms serve as a protective niche for growth of bacteria in the presence of toxic inhibitors in the rice bran hydrolysate. The metabolic activity of ZM4 grown as a biofilm was also higher than the same strain grown planktonically, as measured by ethanol production from rice bran hydrolysate (13.40 2.43 g/L vs. 0.432 0.29 g/L, with percent theoretical ethanol yields of 72.47 6.13% and 3.71 5.24% respectively). Strain TISTR 551 was also quite metabolically active, with ethanol production by biofilm and planktonically grown cells of 8.956 4.06 g/L and 0.0846 0.064 g/ L (percent theoretical yields were 48.37 16.64% and 2.046 1.58%, respectively). This study illustrates the potential for enhancing ethanol production by utilizing bacterial biofilms in the bioconversion of a readily available and normally unusable low value by-product of rice farming.

Resource type:

Article

Extent:

9 pages

Type:

Text

File type:

application/pdf

Language:

eng

Rights holder(s):

Tatsaporn Todhanakasem
Atit Sangsutthiseree
Kamonchanok Areerat
Young, Glenn M.
Pornthap Thanonkeo

URI:

http://repository.au.edu/handle/6623004553/21121
Show full item record

View External Resources

Files in this item (EXCERPT)

Thumbnail
View
Article-Abstract-21121.pdf ( 1,199.72 KB )

This item appears in the following Collection(s)

  • Articles [37]


Copyright © Assumption University.
All Rights Reserved.

Contact Us

The St. Gabriel's Library   
Hua Mak Campus  
Ramkhamhaeng 24, Hua Mak  
Bangkok Thailand 10240  
Tel.: (662) 3004543-62 Ext. 3402  
Fax.: (662) 7191544  
E-Mail Library : library@au.edu  


The Cathedral of Learning Library
Suvarnabhumi Campus
Bang Na-Trad Km. 26 Bangsaothong
Samuthprakarn Thailand 10540
Tel.: (662) 7232024, 7232025
Fax.: (662) 7191544
E-Mail Library : library@au.edu
 

 



Copyright © Assumption University.
All Rights Reserved.

Contact Us

The St. Gabriel's Library   
Hua Mak Campus  
Ramkhamhaeng 24, Hua Mak  
Bangkok Thailand 10240  
Tel.: (662) 3004543-62 Ext. 3402  
Fax.: (662) 7191544  
E-Mail Library : library@au.edu  


The Cathedral of Learning Library
Suvarnabhumi Campus
Bang Na-Trad Km. 26 Bangsaothong
Samuthprakarn Thailand 10540
Tel.: (662) 7232024, 7232025
Fax.: (662) 7191544
E-Mail Library : library@au.edu
 

 

‹›×