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Figure 5-3: Uniform knots tensor product surface of Titanium heat data 
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Figure 5-4: Free knots tensor product surface of Titanium heat data 
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Figure 5-5: Performance of tensor product neural networks on Titanium heat data. 
Contour plot of uniform knot b-spline surface in (a) and free knot b-spline surface in (b). 
Square error surface of uniform knots approach ( c ), free knots approach ( d) and their 
corresponding uniform basis functions in (e), nonuniform basis functions in (f). 
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B Experiment 2: 

We considered real data of peaks in figure 5-6 for the experiment. The 3d mask 

was defined by 2401 data points3
. We wanted to approximate these data by a bicubic B-

spline neural network with 8 basis functions in u-direction and 8 basis functions in v-

direction. Length of chromosome was set at 48, population size was 800. The MSE of 

uniform fixed knot networks was fixed knot networks gave error eunifonn= 

7.541549e+OOO, Min=(0.00000), Max=(2.27632). The MSE of free knots neural network 

after 60 genrations was efree = l.012552e+OOO, Min=(0.00000), Max=(0.43356). 
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Figure 5-6: Peaks datapoints 

3 A model from Mathlab www.mathworks.com 
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Figure 5-7: Uniform knots tensor product surface of Peaks data 
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Figure 5-8: Free knots tensor product surface of Peaks data 
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Figure 5-9: Performance of tensor product neural networks on Peaks data. Contour plot of 
uniform knot b-spline surface in (a) and free knot b-spline surface in (b). Square error 
surface of uniform knots approach ( c) and free knots approach ( d). Their corresponding 
uniform basis functions in (e) and nonuniform basis functions in (f). 
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C Experiment 3: 

We considered real data of a pawn in figure 5-10 for the experiment. The 3d pawn 

was defined by 2500 data points4 on [-.15, .15]x[-.15, .15]x[O, .635]. We wanted to 

approximate these data by a bicubic B-spline neural network with 10 basis functions in u-

direction and 10 basis functions in v-direction. The bit length of chromosomes was set at 

24 bit. Population size was 400. The MSE of uniform fixed knot network was eunifonn= 

2.846773e-003, Min=(0.00000), Max=(l .056083e-004). The MSE of free knots neural 

network after 60 generations was efree= 3.619226e-005, Min=( 0.00000), Max=( 

4. 761422e-006). 
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Figure 5-10: Pawn mesh 

4 A model from http://www.cs.technion.ac .il/Labs/Isl/ 
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Figure 5.-11: Performance of tensor product neural networks on Pawn data. Approximate 
networks of uniform knots approach if given in (a) and of free knots approach is given 
(b ). Basis functions of uniform knots ( c ), and basis functions of free knots after training 
(d). 
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C Experiments summarized: 

Experiment 1 Experiment 2 Experiment 3 
Data points 2401 2401 2500 
Data range [595, 1075] x [O, 50] x [-.15, .15] x 

[595, 1075] x [0,50] x [-.15, .15] x 
[0.3612, 4.7046] [-6.55, 8.081 [O, .635] 

Network order (u,v) 4,4 4,4 4,4 
Basis Functions 11, 11 8,8 10,10 
(u,v) 
Bit lengths 24 48 24 
Population Size 200 800 400 
(GA) 1G ,. I 
Generations (GA) 60 60 60 
MSErree 5.109253e-003 1.012552e+OOO 3 .619226e-005 

Max free 0.01318 0.43356 4.7614e-006 
MSEunifonn 9.780895e-001 7 .541549e+OOO 2. 846 773 e-003 

MaXunifonn t. 1.83774 2.27632 l .0560e-004 

~ 
Table 5-1: Surface data -

The parametric surface approximation by tensor product B-spline neural network 

is a much harder problem than the corresponding curve case. Through above three 

experiments, we observe that free knots approach gave a better approximation surface 

than uniform knots approach in all cases. Particularly, for surface containing narrow 

curve ridge, free knots approach is superior, i.e., experiment 1. Uniform knots approach, 

on other hand, could generate a competitive approximation surface where the original 

data surface is smooth enough, i.e., experiment 2. There was always beneficial trade off 

between high precious degree of free knots approach and fast generating time of uniform 

knots approach. 
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CHAPTER6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this thesis, we have presented a B-spline neural networks framework for curve 

and surface modeling. Classical numerical methods for geometric modeling are heavily 

depended on mathematic model and possibly to be trapped in local optima. The B-spline 

neural networks was considered as an alternative approach for geometric approximation. 

The knowledge of the B-spline neural networks could also be extracted after learning task 

for the geometric modeling purpose. 

To minimize the approximation error of curve representation, we constructed a 

gradient descent algorithm learning to estimate coefficient weights through sampling 

data. We used total mean square error to estimate the distance error of original data and 

B-spline . neural networks estimation. The learning algorithm for weight estimation gave, 

in general sense, a satisfactory result for curve modeling. However, it had been shown 

that with fixed knot spline approach where coefficient weights were the only unknown 

parameters, the approximation would not give to optimal result. Free knot approach 

should be implemented to give an improvement on approximation. Consequently, a 

hybrid genetic algorithm had been proposed for the training the B-spline networks of 

variable knots location. We attempted to separate the linear and nonlinear parameters for 
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training process. The evolution hybrid learning algorithm was attractive because it is 

likely to find the global optimum and significantly to reduce cost of gradient computing 

when the order of B-spline function rising. 

For surface modeling, we extended the architecture of B-spline curve modeling 

neural networks to tensor product B-spline neural networks for surface modeling. The 

extension was done in a straightforward way. The hybrid evolution algorithm was 

implemented to training the tensor product networks. The networks had been successfully 

tested on artificial and real-world modeling data sets. 

6.2 Recommendations 

The research presented in this thesis is merely a foundation framework of B

spline neural networks for geometric approximation. There are still many problems that 

left unsolved. The following recommendations are given for only some main future 

research directions. 

6.2.1 Network structure adaptation 

The design of B-spline neural network for geometric modeling involves the 

following primary issues: 

• The number of basis functions for each input 

• The order of B-spline basis functions for each input 

• Input space partition (knot location) 
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In general, we assume that the neural networks are given with a predefined 

number of B-spline basis functions. The order of B-splines could be linear, quadratic, 

cubic or higher degree spline functions. Practically, cubic splines are more appropriate to 

model any space curve where its curvature is expected to vary continuously. The input 

space partition is given a good approximation on fixed knot partition approach where 

number of basis function is large enough and best for all approximation cases with free 

knot adaptive partition approach. 

Alternative, the approximation outcome of B-spline neural networks is primarily 

depended on the number of basis functions. In practice, the number of basis function is 

determined based on some heuristic knowledge. However, given an insufficient number 

of basis functions, the networks would not reach the optimal design even with free knot 

adaptive partition approach. Hence, an automatic framework to identifying the number of 

basis functions should be investigated. For future direction, evolution approach could be 

implemented to optimize the number of basis function of B-spline neural networks 

structure. The networks structure could be evolved in a growing model or sinking model 

or combined model. 

6.2.2 Rational B-spline neural networks 

Non uniform rational B-spline (NURBS) functions is a standard basis function for 

curve and surface modeling. For future research direction, we should consider 

incorporate NURBS as basis functions for rational B-spline neural network modeling. 

Output of rational B-spline neural networks is: 
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n 

Ic;R; 
f (t) = i=~ , where R; = w;N;k (t , A,) 

IR; 
i=l 

where Ci are coefficient points, Wi are weights and N are basis function. Since both 

coefficient point c and weight w are linear parameter of function f(t) , they therefore can 

be determined by iterative backpropagation algorithm or directly by least square 

estimator method. 

The novel architecture of rational B-spline neural network for curve modeling is 

presented as fo llows. 
~ 

i 

t 

~ w. 
Rt -r-

r~[~] Wz 
R1 

W3 
RJ 

Figure 6-1: Rational B-spline neural networks 

Architecture for surface modeling by rational B-spline neural networks is a 

straightforward extension on the structure of rational B-spline neural network for curve 
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modeling. Implementation and testing on the rational B-spline neural network should be 

carried out for both curve and surface modeling. 

6.2.3 Geometric norm approximation 

The distance norm between two curves is fundamental importance to computer-

aided geometric design and geometric modeling. An appropriate measure of distance is 

needed to determine how well one curve and surface approximate another. However, 

many modeling systems still attempt to minimize algebraic quantitative and ignore the 

true shape of curve. For future research direction, we should incorporate geometric 

distance norm on the approximation of B-spline neural network other than algebraic 

Euclidean norm. Variety of norms could be considered as geometric norm for the 

approximation. 
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