








































































Initially all users get at least as much as the "small" user demands, and 

the remaining resources are evenly distributed among the users with unsatisfied 

demands. It follows that from those users with unsatisfied demands no one can 

increase its share without decreasing the share of a user with an already small 

one. This can be formally expressed as follows: a vector of allocations x is 

max-min fair if for any other feasible vector y there exists a user j such that yj 

> Xj implies that there exists user i such that Yi< xi< Xj-

2.5 Conclusion 

This chapter gave revisions of some important concepts behind TCP 

implementations. The viewpoint of the reviewed concepts focus among the 

congestion control theories. We began with the introduction of the causes that 

would bring about congestion - anything that violates "conservation of packet" 

principle. Then slow start and congestion avoidance algorithms were described 

to be some fundamental solutions to congestion. 

Consequently, available solutions to face with congestion have been 

selected to be used in various TCP implementations. TCP Tahoe, TCP Reno, 

and TCP Vegas were chosen in this chapter. We explained some ideas of their 

operational algorithms, and also, the main focus of this study, the applications 

of congestion control algorithms in each of them. 

The theoretical TCP, together with congestion control mechanisms, 

were extendedly reviewed to include practical point of view where fairness of 

resources allocation were explained. 
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Chapter 3 

Simulation Models and Results 

This chapter describes the comparison study about the congestion control 

mechanisms of TCP Reno and TCP Vegas within the environment modelled 

from AEROTHAI network to find out what kind of TCP yields better 

congestion control in AEROTHAI network. 

3.1 Techniques used inside a Router 

Among communication protocols, TCP, policies that routers use to handle 

datagrams can have significant effects on both the performance of a single TCP 

connection and the aggregate throughput of all connections. For example, if a 

router delays some datagrams more than others, TCP will back off its 

retransmission timer. If the delay exceeds the retransmission timeout, TCP will 

assume that congestion has occurred. In fact, there are several tehniques used 

inside the routers, e.g. Drop-Tail router, RED (random early detection) router. 

However, the technique used for AEROTHAI router is Drop-Tail. Therefore, 

we will only focus on the case of Drop-Tail router. 

The most important interaction between IP implementation policies and 

TCP occurs when a router becomes overrun and drops datagrams. Because a 

router places each incoming datagram in a queue in memory until it can be 

processed, the policy focuses on queue management. When datagrams arrive 

faster than they can be forwarded, the queue grows; when datagrams arrive 

slower than they can be forwarded, the queue shrinks. However, because 
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memory is finite, the queue cannot grow without bound. Early router software 

used a Drop-Tail policy to manage queue overflow. 

The name Drop-Tail comes from the effect of the policy on an arriving 

sequence of datagrams. Once the queue fills, the router begins discarding all 

additional datagrams appended at the end of the queue. 

3.2 Configuration of AEROTHAI Network 

Figure 3 .1 shows AEROTHAI network model. The systems in AEROTHAI 

network are interconnected to form a big communication infrastructure. 

Computer machines are connected to the routers by means ofUTP (Unshielded 

Twist Pair) cables via Ethernet hubs or switches. There are a number of 

operating systems in use in the network, e.g., Windows, Linux, Solaris. 

However, Windows is the most popular operating system. 

File Server 

Figure 3.1: AEROTHAI Network Model 

34 

Internet Thailand 
(ISP1) 



A number of important applications exist within the network. Each of 

them requires at least one machine to behave the functions of server system for 

that particular application. Some example applications can be given as follows: 

Netware application supporting file storage and print services, electronic mail 

applications, web applications, back office applications, firewall systems, etc. 

It is apparent that the probability of congestion for this network is high 

since there exist, a number of machines and applications. Thus, the efficient 

congestion control mechanisms shall be required to preclude the possible 

occurrences of congestion and to improve the flow of traffic inside the network. 

3.3 The AEROTHAI Network Characteristics 

This section show how the environment of AEROTHAI network is set up for 

comparison study about the window size and throughput of TCP Reno, TCP 

Vegas. The network experimental, in consideration is only an extracted portion 

from the whole AEROTHAI network since its size is appropriate for 

implemention of algorithms in this study. 

The network set up in this study is composed of 10 computer terminals 

connected to drop-tail router with UTP cables and the connection between the 

router and the server is via UTP cable too. Operating system on computer 

terminals and server are Windows operating system. Bandwidth of the link 

between computer terminals side to router and server side to router ( µ ) is 10 

Mbps. Buffer sizes of the drop-tail router (B) are 30 packets and propagation 

delay from computer terminal to server ( r ) is about 5 msec. 
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Receinver Host 

Computer10 

Figure 3.2: Network Environment set up for this study 

3.4 Comparison of the Window Sizes variation among TCP 

Windows, TCP Reno and TCP Vegas for AEROTHAI 

Traffic 

This section shows the comparison of the change of the window sizes among 

TCP Windows, TCP Reno and TCP Vegas for traffic on setting up of 

AEROTHAI network model in the previous section. The objective of this 

section is to try to show the differences between the algorithms of increasing 

and decreasing the window sizes from the network model as show in Figure 

3.3. The traffic under investigation is the one incurs inside the only one 

machine within the red circle whereas TCP Windows is implemented in the 
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other machines. The observations in the red-circled machine are performed for 

TCP Windows, TCP Reno and TCP Vegas, one after another. 

Computer Under 
Investigation 

Computer10 

Receinver Host 

Figure 3.3: Model of AEROTHAI network under investigation 

3.4.1 TCP Windows window size when the other machines use TCP 

Windows 

Generally, the TCP Windows traffic generated from an end system through a 

congested network at a time instant does not completely reach the destination. 

Some part of it may be lost resulting in the retransmission at the next round trip 

time. Therefore, the traffic sent at the next time instant becomes the 
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accumulation of the real traffic at that time instant plus the retransmitted 

portion of the previous time ones. 
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Figure 3.4: Window Size, generated from the machine in the red circle 

Figure 3.4 shows the plots of window sizes of TCP Windows of the computer 

within the red circle of Figure 3.3 that requires to be able to completely forward 

TCP packets to the receiver host and Figure 3.5 shows the volume of packets 

generated by other end systems seen at the router buffer at the same time 

(captured by surveyor program and plotted by MATLAB). So TCP packets 

from the computer within the red circle cannot be transmitted to the receiver 

host completely, some packets must be drop because the buffer of the router is 

full and to be retransmitted along with the data that belongs to the next round 

trip time. As a result, window sizes of TCP Windows become larger than 

expected and hence the occurrence of congestion, as shown in Figure 3.6. 
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Figure 3 .5: Packets at the router buffer generated from end systems 

(Excluding those of the machine in red circle) 

50 

200 400 600 800 1000 1200 1400 1600 1800 2000 
Simulation Time (msec) 

Figure 3.6: Window Size, generated from the machine in the red circle 

(Inclusion of normal data+ retransmitted data) 
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3.4.2 TCP Reno window size when the other machines use TCP 

Windows 

TCP Reno adjust its windows size in a different fashion from TCP Windows. 

That is, Reno is equipped with slow start, congestion avoidance and fast 

recovery techniques. With such techniques, congestion found previously 

(Figure 3.6) could be reduced, as illustrated in Figure 3.7. 
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Figure 3.7: TCP Reno-Controlled Window Size 

From the machine in the red circle 

At the beginning, the slow start phase controls the exhibition of change 

of window sizes to exponential increase. That is, the source sends two packets 

every time an "Ack" is received. Slow start phase ends when the window size 

reaches a certain level called slow start threshold, ssth (which is set in our 

experiments at 15 packets). Subsequently, congestion avoidance phase begin at 

40 



the end of the slow start phase. The window sizes in congestion avoidance 

phase continue to increase by 1 !Cwnd every time it receives an "Ack" till a loss 

occurs, then the fast recovery mechanism will be carried out. The mathematic 

that used to plot the window size have been described in equation 2.5 and 2. 7. 

As a consequence, it is apparent that changes of window size in Figure 

3.7 (which belongs to TCP Reno) is not as high as that of Figure 3.6 (which 

belongs to TCP Windows.) This demonstrates that TCP Reno can help reduce 

network congestion found in TCP Windows. 

3.4.3 TCP Vegas window size when the other machines use TCP 

Windows 

In case of TCP Vegas, the window size is adjusted by observing round trip time 

of packets that the sender host has sent. Figure 3.8 illustrates the change of 

window sizes adjusted by TCP Vegas. Simulation of Vegas environment 

employs Delphi programming language, which built server and client socket 

components. Server socket component is implemented at the receiver host and 

listened for packets from client socket implemented at the computer in the red 

circle in figure 3.3. After client socket sends packets to server, "Ack" will be 

sent back to client for the complete transmission. The time spent from sending 

packets from client until "Ack" is receiving by client is called round trip time 

of that packet. The derived round trip time is used to compute diff from 

equation 2.8 in order to find out the degree of congestion at a time instant and 

to be able to decide either to reduce or to increase window size for the next 

transmission. Values of window sizes in Figure 3.8 are obtained from Delphi 

programming according to equation 2.8 (which is a and p set in our 

experiments at 2 and 4 packets respectively). Such values are brought into 

MATLAB for the production of a graphical plot. 
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Figure 3.8: TCP Vegas-Controlled Window Size 

From the machine in the red circle 

From Figure 3.8, we can see that TCP Vegas adjusts its windows size by 

observed RTT and does not wait for packet loss to occur. Whereas Reno wait 

until a packet is lost before decreasing its window size. TCP Windows is even 

less secure in that it does not change the window size. It does only 

retransmission when a packet is lost, which results in severe network 

congestion. TCP Reno additionally implements congestion control. However, 

Reno's algorithm still differs from that of Vegas. Vegas's congestion avoidance 

algorithm can be considered as having the best protection against congestion. 
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3.5 Throughput Comparison between TCP Reno 

And TCP Vegas 

From the previous section that showed the comparison of the changes of the 

window sizes among TCP Windows, TCP Reno and TCP Vegas for the traffic 

in AEROTHAI network. In this section, we will consider the comparison of 

throughput between TCP Reno and TCP Vegas to find out which one gives a 

better throughput for AEROTHAI network. 

3.5.1 Network configuration for the throughput comparison study 

The network model used in this section is the same as the previous section but 

in this case, machines that connected to the network are implemented by the 

same type of TCP on all of them as shown in Figures 3.9 and 3.10. 

Computer Under 
---.... Investigation 

Receinver Host 

TCP Reno10 

Figure 3.9 Network Model of TCP Reno 
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Computer Under 
Investigation 

TCP Vegas10 

Receinver Host 

Figure 3.10 Network Model of TCP Vegas 

From both of the network models of TCP Reno and TCP Vegas, we get 

the window size generated from each machine. The machine in the red circle 

can generate fewer window sizes than other machines. The reason why we 

considered that the machine can generate fewer window sizes is that we want 

to compare between TCP Reno and TCP Vegas in the worst case and to try to 

figure out which one can give the better throughput. 
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3.5.2 TCP Reno window size when the other machines use TCP 

Reno 

Figure 3.11 shows the plots of window sizes of TCP Reno of the computer 

within the red circle in Figure 3.9 that requires to forward TCP packets to the 

receiver host and Figure 3.12 shows the volume of packets generated by other 

TCP Reno machines at the same time. Simulation of TCP Reno in this section 

employed the same Delphi programming language according to equation 2.5 

and 2. 7, which built server and client socket components. Client socket 

components are implemented on the 10 machines in the sender side and server 

socket component is implemented on the receiver host. After client sockets 

send packets to server, "Ack" will be sent back to client for the complete 

transmission. TCP Reno uses the lost of packets to detect an eventually 

congested network. So when the lost of packets occurs, client sockets will 

decide either to reduce or to increase window size for the next transmission 

according to TCP Reno algorithms. 
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Figure 3.11 Window Size of TCP Reno generated from 

The machine in the red circle 
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Figure 3.12 Summation ofWindow Sizes generated from other TCP Reno 

machines 

3.5.3 TCP Vegas window size when the other machines use TCP 

Vegas 

Figure 3.13 and 3.14 illustrate the change of window sizes adjusted by TCP 

Vegas algorithm. Window sizes in Figure 3.13 generated by TCP Vegas 

machine in the red circle and window sizes in Figure 3 .14 generated from other 

TCP Vegas machines. Simulation of Vegas environment employed Delphi 

programming language in the same way as the previous section but in this case 

client sockets implemented on all machines. 
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Figure 3.13 Window Size of TCP Vegas generated from 

The machine in the red circle 
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Figure 3.14 Summation of Window Sizes generated from other TCP Vegas 

machines 

47 



3.5.4 Throughput comparison between TCP Reno and TCP Vegas 

Here, we consider a number of packets queued at the router in Figures 3.9 and 

3.10. We assume that all TCP connections behave identically. TCP 

implementations in the red-circled machine are those of interest. TCP 

implementations in all other machines are not of interest in this study. 

Since TCP Reno connections continue to increase their window sizes until the 

router buffer becomes full and eventually some packets are lost. TCP Vegas 

connections, on the other hand, control their window sizes according to the 

observed RTTs of sending packets. Each of those tries to keep the number of 

queued packets in the router buffer between a and p [packets] [19]. 

From the above observation, we obtain the average number of packets at 

the router buffer for TCP Reno of interest and TCP Reno non-interest, 

Br [packets] and Br [packets], respectively 

B 
Br=Wr·---

2rµ+B 

- - B 
Br=Wr•---

2rµ+B 
(3.1) 

where Wr is the average window size of TCP Reno of interest connection and 

Wr is the average window size of TCP Reno non-interest connection. 

Accordingly, the average number of packets at the router buffer for TCP 

Vegas of interest and TCP Vegas non-interest, Bv [packets] and Bv [packets], is 

obtained as; 

B 
Bv=Wv•---

2rµ+B 

- - B 
Bv=Wv·---

2rµ+B 
(3.2) 
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where Wv is the average window size of TCP Vegas of interest connection and 

Wv is the average window size of TCP Vegas non-interest connection. 

Finally we have the average throughput of the connections for TCP 

Reno of interest and TCP Vegas of interest, pr [packets/sec] and 

pv [packets/s ], respectively 

Br 
pr=µ·--= 

Br+Br 

Bv 
pv=µ·--.,.,.. 

Bv+Bv 
(3.3) 

Figure 3 .15 and 3 .16 show the throughput comparison between TCP Reno and 

TCP Vegas of interest from the machine in the red circle that the throughput 

calculated from equations 3.1 to 3.3 which used propagation delay ( r ), 

bandwidth between the router and the receiver host ( µ) equal to 5 msec and 10 

Mbps respectively. 

450 

400 

350 

150 

100 

50 

200 400 600 800 1000 
Simulation Time (msec) 

Figure 3.15 Throughput ofTCP Reno from 

The machine in the red circle 
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Figure 3.16 Throughput of TCP Vegas from 

The machine in the red circle 
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The Figures show that TCP Vegas can achieve higher throughput than TCP 

Reno and when we calculate the average throughput from both of them, the 

results demonstrated that the average throughput of TCP Vegas (260 packets/s) 

is 21 % higher than TCP Reno (213 packets/s ). 

3.6 Experimental and Theoretical Analysis for the 

Throughputs of TCP Reno and Vegas 

This section provides analysis on the throughput of TCP Reno and Vegas 

against varying router buffer sizes. The analysis is based on the mathematical 

concepts show in equations 3.1 to 3.3. In the analysis, other parameters remain 
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constant. The window sizes of TCP Reno and Vegas are kept fixed as follows: 

Wr = 10 packets, Wr = 13 packets, Wv = 13 packets, Wv = 15 packets These 

window size values are derived by averaging window sizes from subsections 

3.52 and 3.53 when rand µ remain the same as before, which are 5 msec and 

10 Mbps, respectively. 
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Figure 3.17: Throughput of TCP Reno and Vegas 

against router buffer sizes (theoretical) 

From the Figure 3.17, the green and blue lines show the throughput 

delivered by TCP Vegas and Reno, respectively, against the buffer size. The 

simulation results from the Figure 3 .17 shows that the throughput will have 

direct variation against router buffer size. This is due to the bigger space 

availability for storing incoming and outgoing packets. 

Apart from the study about throughput against buffer sizes, investigation 

of throughput with regards to propagation delay or bandwidth of the link may 

also be carried out by the use of equations 3.1 to 3.3. That the throughput varies 
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directly with the bandwidth because of the large bandwidth, the more 

transmission speed. Furthermore, that the throughput conversely varies with 

propagation delay is due to the bigger time period used for a fixed volume of 

traffic, which means the less throughput. 

The analysis on throughput against buffer sizes aforementioned is based 

on the mathematical concepts. Now, we will do some comparison between the 

throughput results obtained from the network set up in subsection 3.5.4 and the 

one taken from theory. Then we will be able to observe the differences and 

similarities between them. 
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Figure 3.18: Throughput of TCP Reno and Vegas 

against router buffer sizes (theoretical versus experiments) 

From figure 3 .18, the red line represents the experimental throughput from 

subsection 3.5.4 when buffer sizes equal 30 packets. The results obtained 

demonstrate the throughput of TCP Vegas to equal 260 packets/sand that of 
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TCP Reno to equal 213 packets/s. It can be concluded that the throughput 

shows in Figure 3.18 illustrate small differences between the experimental and 

theoretical values because in experimental setup the actual window size vary 

with time, while in theoretical using average window size in time. 

3. 7 Conclusion 

The network model in this study is characterized according to AEROTHAI 

network. Subsequently, the impacts of either TCP Reno or TCP Vegas applied 

to the AEROTHAI network is investigated and compared. We observes the 

movements of window sizes and throughput values in many possible cases. 

Such observation result in the conclusion of that TCP Vegas makes better 

throughput gain than Reno does. 
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Chapter 4 

Conclusion 

TCP is a very typical transport protocol primarily designed for the exchange of 

information among dissimilar communication networks in conjunction with IP. 

TCP has been constantly researched, developed, and standardized due to that 

the internet having several popular application services such as WWW, HTTP, 

SMTP, and electronic mail, have been very widely used. Thus, the role of TCP 

in the area of computer network implementation, operation, and maintenance 

shall persist. 

Congestion problem is one of the most important issues regarding TCP. 

Internet congestion problems have existed for a long time. Therefore, 

congestion control mechanisms are the challenging research area that do not 

tend to be saturated because demands on the use of the internet have been 

increasing steadily. 

This study attempts to investigate several aspects of some TCP 

implementations. The operations of existing TCP and congestion control 

algorithms are observed and analyzed for the proper parameters using in later 

simulation. (Slow) slow start, congestion avoidance, and fast recovery are 

discussed in three TCP implementations, TCP Tahoe, TCP Reno, and TCP 

Vegas. 

The core idea of congestion control mechanisms mentioned herein is to 

adjust TCP window size according to the volume of the traffic in the network. 

TCP Tahoe has two congestion control phases, slow start and congestion 

avoidance. During the slow start phase, its window size is doubled every time 

the end system receives acknowledgment. It will enter congestion avoidance 

phase when window size reaches a threshold value, where the rate of window 
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size increment gets slower than that of the slow start phase. TCP Tahoe will 

come back to slow start phase if a packet loss is detected. 

Congestion control in TCP Reno resembles that of Tahoe except that it 

has an additional fast recovery phase, where the increment of the window size 

behaves in the same way as the slow start phase. However, the initial window 

size after congestion avoidance phase of Tahoe is set to 1, whereas that of Reno 

is set to half of the current window size. 

TCP Vegas improves the techniques utilized in Tahoe and Reno by 

making it more dynamic in the way that the window size is rectified every 

round trip time instead of being adjusted every time the end system receives 

"Ack". Furthermore, simulation results also showed that TCP Vegas can 

achieve better throughput than Tahoe and Reno at a small buffer size. Hence, it 

may be concluded from the results that Vegas is the right choice for improving 

throughput in AEROTHAI network. 

From all results of this thesis, we believe that TCP can survive any 

dramatical changes of the Internet infrastructure, and that any kind of new 

services in the advanced Internet can be accommodated by TCP technology. 

We do not have to replace TCP with a quite new transport-layer protocol. 

The topics discussed within this study have been centered around 

congestion problems and solutions, where the finalized TCP implementation 

suitable for AEROTHAI network has been Vegas. However, there are 

consequences of employing TCP Vegas. Even if it is able to attain throughput 

improvement, stability is appeared to be unfair phenomenon of TCP Vegas. 

Therefore, fairness and stability should be the extended matters that are to be 

investigated in accordance with congestion. 
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Appendix 

In this section shows Delphi programming source code of client socket and 

server socket for TCP Reno and TCP Vegas that used in subsection 3.4 and 3.5 

TCP Reno Client Socket 

unit UFonnClient; 

interface 

uses 
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls, ExtCtrls, ScktComp, ComCtrls, URenoClient; 

type 
TFonnl = class(IFonn) 
PageControl l: TPageControl; 
TabSheetl: TTabSheet; 
TabSheet2: TTabSheet; 
TabSheet3:TTabSheet; 
TabSheet4:TTabSheet; 
TabSheet5: TTabSheet; 
TabSheet6: TTabSheet; 
TabSheet7: TTabSheet; 
TabSheet8: TTabSheet; 
TabSheet9: TTabSheet; 
TabSheetlO:TTabSheet; 
Memol: TMemo; 
Timerl: Trimer; 
Timer2: Trimer; 
Timer3: Trimer; 
Timer4: Trimer; 
Timer5: Trimer; 
ButtonStart: TButton; 
ButtonStop: TButton; 
ClientSocketl: TClientSocket; 
Timer6: Trimer; 
Timer7: Trimer; 
Timer8: TTimer; 
Timer9: TTimer; 
TimerlO: TTimer; 
ClientSocket2: TCJientSocket; 
ClientSocket3: TClientSocket; 
Memo2: TMemo; 
Memo3: TMemo; 
Memo4: TMemo; 
Memo5: TMemo; 
Memo6: TMemo; 
Memo7: TMemo; 
Memo8: TMemo; 
Memo9: TMemo; 
Memolo: TMemo; 
ClientSocket4: TClientSocket; 
ButtonSave: TButton; 
ClientSocket5: TClientSocket; 
ClientSocket6: TClientSocket; 
ClientSocket7: TClientSocket; 
ClientSocket8: TClientSocket; 
ClientSocket9: TClientSocket; 
ClientSocketIO: TClientSocket; 
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procedure ButtonStartClick(Sender: TObject); 
procedure ButtonStopClick(Sender: TObject); 
procedure Timer! Timer(Sender: TObject); 
procedure ClientSocket!Read(Sender: TObject; Socket: TCustomWinSocket); 
procedure Timer2Timer(Sender: TObject); 
procedure Timer3Timer(Sender: TObject); 
procedure ClientSocket2Read(Sender: TObject; Socket: TCustomWinSocket); 
procedure ClientSocket3Read(Sender: TObject; Socket: TCustomWinSocket); 
procedure ButtonSaveClick(Sender: TObject); 
procedure Timer4Timer(Sender: TObject); 
procedure ClientSocket4Read(Sender: TObject; Socket: TCustom WinSocket); 
procedure ClientSocketSRead(Sender: TObject; Socket: TCustom WinSocket); 
procedure ClientSocket6Read(Sender: TObject; Socket: TCustom WinSocket); 
procedure ClientSocket7Read(Sender: TObject; Socket: TCustom WinSocket); 
procedure ClientSocket8Read(Sender: TObject; Socket: TCustomWinSocket); 
procedure ClientSocket9Read(Sender: TObject; Socket: TCustom WinSocket); 
procedure ClientSocketl ORead(Sender: TObject; 

Socket: TCustom WinSocket); 
procedure Timer5Timer(Sender: TObject); 
procedure Timer6Timer(Sender: TObject); 
procedure Timer7Timer(Sender: TObject); 
procedure Timer8Timer(Sender: TObject); 
procedure Timer9Timer(Sender: TObject); 
procedure Timer I OTimer(Sender: TObject); 

private 
{ Private declarations } 
RenoClientl: TRenoClient; 
RenoC!ient2: TRenoClient; 
RenoClient3: TRenoClient; 
RenoC!ient4: TRenoClient; 
RenoClient5: TRenoClient; 
RenoClient6: TRenoClient; 
RenoClient7: TRenoClient; 
RenoClient8: TRenoClient; 
RenoClient9: TRenoClient; 
RenoClient!O: TRenoClient; 

public 
{ Public declarations } 

end; 

var 
Form!: TForml; 

implementation 

{SR •.DFM} 

procedure TForml.ButtonStartClick(Sender: TObject); 
begin 

RenoClientl := TRenoC!ient.Create(IS,1); 
RenoClient2 := TRenoClient.Create(l 5, 1 ); 
RenoClient3 := TRenoClient.Create(IS,1); 
RenoC!ient4 := TRenoClient.Create(IS,l); 
RenoClient5 := TRenoC!ient.Create(IS,1); 
RenoClient6 := TRenoClient.Create(IS,1); 
RenoC!ient7 := TRenoClient.Create(IS,l); 
RenoClient8 := TRenoClient.Create(IS,1); 
RenoClient9 := TRenoC!ient.Create(IS,l); 
RenoC!ientlO := TRenoC!ient.Create(IS,l); 
ClientSocketl.Open; 
ClientSocket2.0pen; 
ClientSocket3 .Open; 
ClientSocket4.0pen; 
ClientSocket5.0pen; 
ClientSocket6.0pen; 
ClientSocket7.0pen; 
ClientSocket8.0pen; 
ClientSocket9.0pen; 
ClientSocket!O.Open; 
Timerl.Enabled :=True; 
Timer2.Enabled := True; 
Timer3.Enabled :=True; 
Timer4.Enabled :=True; 
Timer5.Enabled := True; 
Timer6.Enabled :=True; 
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Timer7.Enabled :=True; 
Timer8.Enabled :=True; 
Timer9.Enabled :=True; 
Timer IO.Enabled:= True; 

end; 

procedure TForml.ButtonStopClick(Sender: TObject); 
begin 
ClientSocketl .Close; 
ClientSocket2.Close; 
ClientSocket3 .Close; 
ClientSocket4.Close; 
ClientSocket5.Close; 
ClientSocket6.Close; 
ClientSocket7.Close; 
ClientSocket8. Close; 
ClientSocket9 .Close; 
ClientSocket 1 O.Close; 
Timed.Enabled:= False; 
Timer2.Enabled :=False; 
Timer3.Enabled :=False; 
Timer4.Enabled :=False; 
Timer5.Enabled :=False; 
Timer6.Enabled :=False; 
Timer7.Enabled :=False; 
Timer8.Enabled :=False; 
Timer9.Enabled :=False; 
TimerlO.Enabled :=False; 

end; 

procedure TF orml. Timer 1 Timer(Sender: TObject); 
var 

sendTime: TDateTime; 
begin 
sendTime := Time; 
RenoClient l .recordWindowSize(F ormatDateTlme('nn:ss:zzz',sendTime)); 
Memo l .Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime )+','+IntT oSt:r(RenoClientl. WindowSize )); 
ClientSocketl .Socket.SendText(StringOfChar(' A',RenoClient 1. WindowSize)); 

end; 

procedure TFonnl .ClientSocket lRead(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoClientl.receiveMessage(Socket.ReceiveText); 

end; 

procedure TFonnl.Timer2Timer(Sender: TObject); 
var 

sendTime: TDateTime; 
begin 

sendTime := Time; 
RenoClient2.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime)); 
Memo2.Lines.Add(FormatDateTime('nn:ss:zzz',sendTime)+','+lntToSt:r(RenoClient2.WindowSize)); 
ClientSocket2.Socket.SendText(StringOfChar('A',RenoClient2.WindowSize)); 

end; 

procedure TF orml .ClientSocket2Read(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoClient2.receiveMessage(Socket.ReceiveText); 

end; 

procedure TForml.Timer3Timer(Sender: TObject); 
var 

sendTime: TDateTime; 
begin 
sendTime := Time; 
RenoClient3 .recordWindowSize(F ormatDateTlme('nn:ss:zzz' ,sendTime)); 
Memo3.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient3.WindowSize)); 
ClientSocket3.Socket.SendText(StringOfChar('A',RenoClient3.WindowSize)); 

end; 

procedure TForml.ClientSocket3Read(Sender: TObject; 
Socket: TCustomWinSocket); 

begin 
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RenoClient3.receiveMessage(Socket.ReceiveText); 
end; 
procedure TFonnl.ButtonSaveC!ick(Sender: TObject); 
begin 
RenoClientl.WindowSizeRecord.SaveToFile('CLIENTOl.CSV'); 
RenoClient2. WindowSizeRecord. SaveToFile('CLIENT02.CSV'); 
RenoClient3 .WindowSizeRecord. SaveToFile('CLIENT03.CSV'); 
RenoClient4.WindowSi7.eRecord.SaveToFile('CLIENT04.CSV'); 
RenoC!ientS.WindowSizeRecord.SaveToFile('CLIENTOS.CSV'); 
RenoClient6.WindowSizeRecord.SaveToFile('CLIENT06.CSV'); 
RenoClient7.WindowSizeRecord.SaveToFile('CLIENT07.CSV'); 
RenoC!ient8. WindowSizeRecord. SaveToFile('CLIENT08.CSV'); 
RenoC!ient9.WindowSizeRecord.SaveToFile('CLIENT09.CSV'); 
RenoC!ientlO.WindowSizeRecord.SaveToFile('CLIENTOlO.CSV'); 

end; 

procedure TFonnl.Timer4Timer(Sender: TObject); 
var 

sendTime: TDateTime; 
begin 

sendTime := Time; 
RenoClient4.recordWindowSize(F onnatDateTime('nn:ss:zzz',sendTime)); 
Memo4.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoC!ient4.WindowSize)); 
ClientSocket4.Socket. SendText(StringOit:har(' A',RenoClient4. WindowSize)); 

end; 

procedure TFonnl.ClientSocket4Read(Sender: TObject; 
Socket: TCustomWinSocket); 

begin 
RenoClient4.receiveMessage(Socket.ReceiveText); 

end; 

procedure TFonnl.ClientSocketSRead(Sender: TObject; 
Socket: TCustomWinSocket); 

begin 
RenoClientS.receiveMessage(Socket.ReceiveText); 

end; 

procedure TForml.ClientSocket6Read(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoClient6.receiveMessage(Socket.ReceiveText); 

end; 

procedure TFonnl.ClientSocket7Read(Sender: TO~ect; 
Socket: TCustom WinSocket); 

begin 
RenoClient7.receiveMessage(Socket.ReceiveText); 

end; 

procedure TFonn l .ClientSocket8Read(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoClient8.receiveMessage(Socket.ReceiveText); 

end; 

procedure TFonnl.ClientSocket9Read(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoC!ient9.receiveMessage(Socket.ReceiveText); 

end; 

procedure TF onn l .ClientSocketl ORead(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
RenoClientlO.receiveMessage(Socket.ReceiveText); 

end; 

procedure TF onn 1. TimerSTimer(Sender: TObject); 
var 

sendTime: TDateTime; 
begin 

sendTime := Time; 
RenoClientS.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime)); 
MemoS.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClientS.WindowSize)); 
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ClientSocket5.Socket. SendText(StringOfChar(' A',RenoClient5. WindowSize)); 
end; 
procedure TFonnl.Timer6Timer(Sender: TObject); 
var 
sendTime: IDateTime; 

begin 
sendTime := Time; 
RenoClient6.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime)); 
Memo6.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient6.WindowSize)); 
ClientSocket6.Socket.SendText(StringOfChar('A',RenoClient6.WindowSize)); 

end; 

procedure TFonnl.Timer7Timer(Sender: TObject); 
var 
sendTime: 1DateTime; 

begin 
sendTime := Time; 
RenoClient7.recordWindowSize(FormatDateTime('nn:ss:zzz',sendTime)); 
Memo7 .Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient7. WindowSize )); 
ClientSocket7 .Socket.SendText(StringOfChar('A',RenoClient7. WindowSize )); 

end; 

procedure TForml.Timer8Timer(Sender: TObject); 
var 

sendTime: IDateTime; 
begin 

sendTime := Time; 
RenoClient8.recordWindowSize(F ormatDateTime('nn:ss:zzz' ,sendTime)); 
Memo8.Lines.Add(FormatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient8.WindowSize)); 
ClientSocket8.Socket.SendText(StringOfChar('A',RenoClient8.WindowSize)); 

end; 

procedure TF onn 1. Timer9Timer(Sender: TObject); 
var 
sendTime: IDateTime; 

begin 
sendTime := Time; 
RenoClient9.recordWindowSize(F onnatDateTime('nn:ss:zzz',sendTime)); 
Memo9.Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime)+' ,'+IntToStr(RenoClient9. WindowSize )); 
ClientSocket9.Socket.SendText(StringOfChar(' A',RenoClient9. WindowSize)); 

end; 

procedure TFonnl.Timer!OTimer(Sender: TObject); 
var 

sendTime: 1DateTime; 
begin 

sendTime := Time; 
RenoClient 1 O.recordWindowSize(F onnatDateTime('nn:ss:zzz' ,sendTime)); 
Memo 1 O.Lines.Add(F ormatDateTime('nn:ss:zzz' ,sendTime)+' ,'+IntT oStr(RenoClientl 0. WindowSize )); 
ClientSocketlO.Socket.SendText(StringOfChar('A',RenoClientlO.WindowSize)); 

end; 

end. 
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TCP Reno Server Socket 

unit UFormServer; 

interface 

uses 
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
StdCtrls, ScktComp, Spin, ExtCtrls; 

type 
TFormServer = class(TForm) 

ServerSocket: TServerSocket; 
Labell: TLabel; 
Label2: TLabel; 
SpinEditC!ientCollllt: TSpinEdit; 
SpinEditBufferRemain: TSpinEdit; 
procedure FormShow(Sender: TObject); 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure ServerSocketClientConnect(Sender: TObject; 

Socket: TCustom WinSocket); 
procedure ServerSocketClientRead(Sender: TObject; 

Socket: TCustomWinSocket); 
procedure ServerSocketClientDisconnect(Sender: TObject; 

Socket: TCustom WinSocket); 
private 

{ Private declarations } 
ClientCollllt: Integer; 
ReceiveCollllt: Integer; 
BufferSize: Integer; 
BufferC01U1t: Integer; 

public 
{ Public declarations } 

end; 

var 
FormServer: TFormServer; 

implementation 

{SR *.DFM} 

procedure TFormServer.FormShow(Sender: TObject); 
begin 

ServerSocket.Open; 
ClientCount := 0 ; 
BufferSize := 30 ; 
BufferCount := 0 ; 
ReceiveCount := 0 ; 

end; 

procedure TFormServer.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 

ServerSocket.Close; 
end· 

procedure TF ormServer.ServerSocketClientConnect(Sender: I Object; 
Socket: TCustom WinSocket); 

begin 
Inc(ClientCount); 
SpinEditClientCount. Value := ClientCount; 

end; 

procedure TF ormServer. ServerSocketClientRead(Sender: TObject; 
Socket: TCustom WinSocket); 

var 
recLength: Integer; 

begin 
//vegas 
{ 
recLength := Socket.ReceiveLength; 
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if recLength + BufferCount > BufferSize then 
begin 

Socket.ReceiveText; 
BufferCoWlt := 0 ; 
Socket.SendText('LOSS~; 
SpinEditBufferRemain.Value := BufferSize - BufferCount; 

end 
else 
begin 

Socket.Receive Text; 
Socket.SendText('ACK'); 
BufferCOWlt := BufferCount + RecLength; 
SpinEditBufferRemain.Value := BufferSize - BufferCoWlt; 

end; 
//reno 
} 

recLength := Socket.ReceiveLength; 
if recLength + BufferCoWlt > BufferSize then 
begin 

Socket.Receive Text; 
Socket. SendText('LOSS'); 

end 
else 
begin 

Socket.Receive Text; 
Socket.SendText('ACK'); 
BufferCoWlt := BufferCoWlt + RecLength; 
SpinEditBufferRemain.Value := BufferSize - BufferCount; 

end; 
lnc(ReceiveCoWlt); 
ifReceiveCo\Dlt >= ClientCount then 
begin 

ReceiveCowit := 0 ; 
BufferCowit := 0 ; 

end; 

end; 

procedure TF onnServer. ServerSocketClientDisconnect(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
Dec(ClientCowit); 
SpinEditClientCOWlt. Value := ClientCount; 

end; 

end. 
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TCP Vegas Client Socket 

unit Client; 

interface 

uses 
Windows, Messages, SysUtils, Classes, Graphics, Controls, Fonns, Dialogs, 
StdCtrls, ScktComp, ComCtrls; 

type 
TForm2 = class(IForm) 

EditAddress: TEdit; 
Labell: TLabel; 
EditPacketBytes: TEdit; 
Labell: TLabel; 
Label3: TLabel; 
EditBaseRtt: TEdit; 
Label4: TLabel; 
EditAlfa: TEdit; 
LabelS: TLabel; 
EditBeta: TEdit; 
ButtonStart: TButton; 
MemoWindowSize: TMemo; 
ClientSocket: TClientSocket; 
EditAckBytes: TEdit; 
Label7: TLabel; 
Buttonl: TButton; 
Save: TButton; 
SaveDialog: TSaveDialog; 
procedure FormClose(Sender: TObject; var Action: TCloseAction); 
procedure ButtonStartClick(Sender: TObject); 
procedure ClientSocketRead(Sender: TObject; Socket: TCustom WinSocket); 
procedure Button l Click(Sender: TObject); 
procedure SaveClick(Sender: TObject); 

private 
{ Private declarations } 

public 
{ Public declarations } 
lsActive: Boolean; 
WindowSize: Integer; 
StartTime: TDateTime; 
EndTime: TDateTime; 
function cwnd(diff:Extended; size: Integer): Integer; 
function diff(size: Integer,base _ rtt:Extended;rtt: Extended): Extended; 
function SavefileO:boolean; 

end; 

var 
Form2: TForm2; 

implementation 

{$R •.DFM} 

function TForm2.cwnd(diff:Extended; size: Integer): Integer; 
var 
newSize: Integer; 
a: Extended; 
b: Extended; 

begin 
a := StrToFloat(EditAlfa. Text)/StrToFloat(EditBaseRtt. Text); 
b := StrToFloat(EditBeta. Text)/StrToFloat(EditBaseRtt. Text); 
newSize := size; 
if diff < a then 

//newSize :=size+ StrTolnt(EditPacketBytes.Text) 
newSize := size + I 

else if (diff>= a) and (diff <= b) then 
newSize := size 

else if diff > b then 
//newSize :=size - StrTolnt(EditPacketBytes.Text); 
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newSize :=size - l; 
Result := newSize; 

end; 

procedure TForm.2.FormClose(Sender: TObject; var Action: TCloseAction); 
begin 

ClientSocket. Close; 
end; 

fi.mction TForm.2.diff(size: Integer;base_rtt:Extended;rtt: Extended): Extended; 
begin 

Result := size/base _rtt - size/rtt ; 
end; 

procedure TF orm.2.ButtonStartClick(Sender: TObject); 
begin 

WindowSize := StrToint(EditPacketBytes.Text); 
if EditAddress. Text = " then 
begin 

ShowMessageCinvalid address'); 
exit; 

end; 
if not IsActive then 
begin 

ClientSocket.Address := EditAddress.Text; 
lsActive := True; 
ClientSocketActive :=True; 
ButtonStart.Caption := 'Stop'; 

end 
else 
begin 

lsActive :=False; 
ClientSocket.Close; 
ButtonStart.Caption := 'Start' ; 

end; 
end; 

procedure TForm.2.ClientSocketRead(Sender: TObject; 
Socket: TCustom WinSocket); 

var 
rtt: Extended; 
diffs: Extended; 

begin 
Socket.ReceiveText; 
EndTirne := Time; 
rtt := StrToFloat(F ormatDateTime('ss',EndTime))+StrToFloat(F ormatDateTime('zzz',EndTime ))/1000 

- StrToFloat(FormatDateTime('ss',StartTime))-StrToFloat(FormatDateTirne('zzz',StartTime))/1000; 
diffs := diff(WindowSize,StrToFloat(EditBaseRtt.text),rtt); 
WindowSize := cwnd(diffs,WindowSize); 
MemoWindowSize.Lines.Add(FormatFloat('##0.000',diffs)+':'+IntToStr(WindowSize)); 

StartTime := Time; 
ClientSocket.Socket.SendText(StringOtt:har('B',WindowSize)); 

end; 

procedure TForm.2.ButtonlClick(Sender: TObject); 
begin 

MemoWindowSize.Lincs.Add(IntToStr(WindowSize)); 
StartTime := Time; 
ClientSocket.Socket.SendText(StringOtt:har('B',WindowSize )); 

end; 

fi.mction TForm.2. SavefileQ:boolean; 
begin 
if SaveDialog.Execute then 
begin 

MemoWindowSize.Lines.SaveToFile(SaveDialog.FileName); 
Result := True; 

end 
else 
begin 
Result:= False; 

end; 
end; 
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procedure TForm2.SaveClick(Sender: TObject); 
begin 

Savefile; 
end; 

end. 
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TCP Vegas Server Socket 

unit Server; 

interface 

uses 
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
ScktComp, StdCtrls; 

type 
TForml = class(IFonn) 

ServerSocket: TServerSocket; 
MemoClient: TMemo; 
Labell: TLabel; 
EditClientCowit: TEdit; 
Label2: TLabel; 
EditAckBytes: TEdit; 
procedure ServerSocketAccept(Sender: TObject; 

Socket: TCustom WinSocket); 
procedure FormCreate(Sender: TObject); 
procedure ServerSocketC!ientDisconnect(Sender: TObject; 

Socket: TCustom WinSocket); 
procedure F ormClose(Sender: TObject; var Action: TCloseAction); 
procedure ServerSocketClientRead(Sender: TObject; 

Socket: TCustom WinSocket); 
private 

{ Private declarations } 
public 

{ Public declarations } 
ClientCowit: Integer; 

end· . 
var 
Fonnl: TFonnl; 

implementation 

{SR •.DFM} 

procedure TForml.ServerSocketAccept(Sender: TObject; 
Socket: TCustomWinSocket); 

begin 
Inc(ClientCowit); 
EditClientCount.Text := IntToStr(ClientCowit); 
MemoClient.Lines.AddCClient connect: '+Socket.RemoteAddress); 

end; 

procedure TForml:FonnCreate(Sender: TObject); 
begin 

ClientCowit := 0 ; 
ServerSocket.Active :=True; 

end; 

procedure TF orm l .ServerSocketClientDisconnect(Sender: TObject; 
Socket: TCustom WinSocket); 

begin 
Dec(ClientCowit); 
EditClientCowit. Text := IntToStr(ClientCowit); 
MemoClient.Lines.AddCClient disconnect: '+Socket.RemoteAddress); 

end; 

procedure TForml.FonnC!ose(Sender: TObject; var Action: TCloseAction); 
begin 

ServerSocket.Close; 
end; 

procedure TF onn 1.ServerSocketClientRead(Sender: TObject; 
Socket: TCustomWinSocket); 

begin 
Socket.ReceiveText; 
Socket.SendText(StringOl.t:barC A',StrTolnt(EditAckBytes. Text))); 
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//Memol.Lines.Add(Socket.ReceiveText); 
//ServerSocket. Socket.Connections[O].SendText(StringOfChar(' A' ,StrTolnt(EditAckBytes. Text))); 

end; 

end. 
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