

Initially all users get at least as much as the "small" user demands, and

the remaining resources are evenly distributed among the users with unsatisfied

demands. It follows that from those users with unsatisfied demands no one can

increase its share without decreasing the share of a user with an already small

one. This can be formally expressed as follows: a vector of allocations x is

max-min fair if for any other feasible vector y there exists a user j such that yj

> Xj implies that there exists user i such that Yi< xi< Xj-

2.5 Conclusion

This chapter gave revisions of some important concepts behind TCP

implementations. The viewpoint of the reviewed concepts focus among the

congestion control theories. We began with the introduction of the causes that

would bring about congestion - anything that violates "conservation of packet"

principle. Then slow start and congestion avoidance algorithms were described

to be some fundamental solutions to congestion.

Consequently, available solutions to face with congestion have been

selected to be used in various TCP implementations. TCP Tahoe, TCP Reno,

and TCP Vegas were chosen in this chapter. We explained some ideas of their

operational algorithms, and also, the main focus of this study, the applications

of congestion control algorithms in each of them.

The theoretical TCP, together with congestion control mechanisms,

were extendedly reviewed to include practical point of view where fairness of

resources allocation were explained.

32

Chapter 3

Simulation Models and Results

This chapter describes the comparison study about the congestion control

mechanisms of TCP Reno and TCP Vegas within the environment modelled

from AEROTHAI network to find out what kind of TCP yields better

congestion control in AEROTHAI network.

3.1 Techniques used inside a Router

Among communication protocols, TCP, policies that routers use to handle

datagrams can have significant effects on both the performance of a single TCP

connection and the aggregate throughput of all connections. For example, if a

router delays some datagrams more than others, TCP will back off its

retransmission timer. If the delay exceeds the retransmission timeout, TCP will

assume that congestion has occurred. In fact, there are several tehniques used

inside the routers, e.g. Drop-Tail router, RED (random early detection) router.

However, the technique used for AEROTHAI router is Drop-Tail. Therefore,

we will only focus on the case of Drop-Tail router.

The most important interaction between IP implementation policies and

TCP occurs when a router becomes overrun and drops datagrams. Because a

router places each incoming datagram in a queue in memory until it can be

processed, the policy focuses on queue management. When datagrams arrive

faster than they can be forwarded, the queue grows; when datagrams arrive

slower than they can be forwarded, the queue shrinks. However, because

33

St. Gabriel's Library_ Au

memory is finite, the queue cannot grow without bound. Early router software

used a Drop-Tail policy to manage queue overflow.

The name Drop-Tail comes from the effect of the policy on an arriving

sequence of datagrams. Once the queue fills, the router begins discarding all

additional datagrams appended at the end of the queue.

3.2 Configuration of AEROTHAI Network

Figure 3 .1 shows AEROTHAI network model. The systems in AEROTHAI

network are interconnected to form a big communication infrastructure.

Computer machines are connected to the routers by means ofUTP (Unshielded

Twist Pair) cables via Ethernet hubs or switches. There are a number of

operating systems in use in the network, e.g., Windows, Linux, Solaris.

However, Windows is the most popular operating system.

File Server

Figure 3.1: AEROTHAI Network Model

34

Internet Thailand
(ISP1)

A number of important applications exist within the network. Each of

them requires at least one machine to behave the functions of server system for

that particular application. Some example applications can be given as follows:

Netware application supporting file storage and print services, electronic mail

applications, web applications, back office applications, firewall systems, etc.

It is apparent that the probability of congestion for this network is high

since there exist, a number of machines and applications. Thus, the efficient

congestion control mechanisms shall be required to preclude the possible

occurrences of congestion and to improve the flow of traffic inside the network.

3.3 The AEROTHAI Network Characteristics

This section show how the environment of AEROTHAI network is set up for

comparison study about the window size and throughput of TCP Reno, TCP

Vegas. The network experimental, in consideration is only an extracted portion

from the whole AEROTHAI network since its size is appropriate for

implemention of algorithms in this study.

The network set up in this study is composed of 10 computer terminals

connected to drop-tail router with UTP cables and the connection between the

router and the server is via UTP cable too. Operating system on computer

terminals and server are Windows operating system. Bandwidth of the link

between computer terminals side to router and server side to router (µ) is 10

Mbps. Buffer sizes of the drop-tail router (B) are 30 packets and propagation

delay from computer terminal to server (r) is about 5 msec.

35

Receinver Host

Computer10

Figure 3.2: Network Environment set up for this study

3.4 Comparison of the Window Sizes variation among TCP

Windows, TCP Reno and TCP Vegas for AEROTHAI

Traffic

This section shows the comparison of the change of the window sizes among

TCP Windows, TCP Reno and TCP Vegas for traffic on setting up of

AEROTHAI network model in the previous section. The objective of this

section is to try to show the differences between the algorithms of increasing

and decreasing the window sizes from the network model as show in Figure

3.3. The traffic under investigation is the one incurs inside the only one

machine within the red circle whereas TCP Windows is implemented in the

36

other machines. The observations in the red-circled machine are performed for

TCP Windows, TCP Reno and TCP Vegas, one after another.

Computer Under
Investigation

Computer10

Receinver Host

Figure 3.3: Model of AEROTHAI network under investigation

3.4.1 TCP Windows window size when the other machines use TCP

Windows

Generally, the TCP Windows traffic generated from an end system through a

congested network at a time instant does not completely reach the destination.

Some part of it may be lost resulting in the retransmission at the next round trip

time. Therefore, the traffic sent at the next time instant becomes the

37

accumulation of the real traffic at that time instant plus the retransmitted

portion of the previous time ones.

50

40

i
§130
I
~

20

10

200 400 600 800 1000 1200 1400 1600 1800 2000
Simulation Time (l'Tl$0C)

Figure 3.4: Window Size, generated from the machine in the red circle

Figure 3.4 shows the plots of window sizes of TCP Windows of the computer

within the red circle of Figure 3.3 that requires to be able to completely forward

TCP packets to the receiver host and Figure 3.5 shows the volume of packets

generated by other end systems seen at the router buffer at the same time

(captured by surveyor program and plotted by MATLAB). So TCP packets

from the computer within the red circle cannot be transmitted to the receiver

host completely, some packets must be drop because the buffer of the router is

full and to be retransmitted along with the data that belongs to the next round

trip time. As a result, window sizes of TCP Windows become larger than

expected and hence the occurrence of congestion, as shown in Figure 3.6.

38

55

50

45

30

200 400 600 800 1000 1200 1400 1600 1800 2000
Simulation nme (msec)

Figure 3 .5: Packets at the router buffer generated from end systems

(Excluding those of the machine in red circle)

50

200 400 600 800 1000 1200 1400 1600 1800 2000
Simulation Time (msec)

Figure 3.6: Window Size, generated from the machine in the red circle

(Inclusion of normal data+ retransmitted data)

39

3.4.2 TCP Reno window size when the other machines use TCP

Windows

TCP Reno adjust its windows size in a different fashion from TCP Windows.

That is, Reno is equipped with slow start, congestion avoidance and fast

recovery techniques. With such techniques, congestion found previously

(Figure 3.6) could be reduced, as illustrated in Figure 3.7.

50

40

I
i30
~
c

~20

10

200 400 600 800 1000 1200 1400 1600 1800 2000
Simulation Time (msec)

Figure 3.7: TCP Reno-Controlled Window Size

From the machine in the red circle

At the beginning, the slow start phase controls the exhibition of change

of window sizes to exponential increase. That is, the source sends two packets

every time an "Ack" is received. Slow start phase ends when the window size

reaches a certain level called slow start threshold, ssth (which is set in our

experiments at 15 packets). Subsequently, congestion avoidance phase begin at

40

the end of the slow start phase. The window sizes in congestion avoidance

phase continue to increase by 1 !Cwnd every time it receives an "Ack" till a loss

occurs, then the fast recovery mechanism will be carried out. The mathematic

that used to plot the window size have been described in equation 2.5 and 2. 7.

As a consequence, it is apparent that changes of window size in Figure

3.7 (which belongs to TCP Reno) is not as high as that of Figure 3.6 (which

belongs to TCP Windows.) This demonstrates that TCP Reno can help reduce

network congestion found in TCP Windows.

3.4.3 TCP Vegas window size when the other machines use TCP

Windows

In case of TCP Vegas, the window size is adjusted by observing round trip time

of packets that the sender host has sent. Figure 3.8 illustrates the change of

window sizes adjusted by TCP Vegas. Simulation of Vegas environment

employs Delphi programming language, which built server and client socket

components. Server socket component is implemented at the receiver host and

listened for packets from client socket implemented at the computer in the red

circle in figure 3.3. After client socket sends packets to server, "Ack" will be

sent back to client for the complete transmission. The time spent from sending

packets from client until "Ack" is receiving by client is called round trip time

of that packet. The derived round trip time is used to compute diff from

equation 2.8 in order to find out the degree of congestion at a time instant and

to be able to decide either to reduce or to increase window size for the next

transmission. Values of window sizes in Figure 3.8 are obtained from Delphi

programming according to equation 2.8 (which is a and p set in our

experiments at 2 and 4 packets respectively). Such values are brought into

MATLAB for the production of a graphical plot.

41

50

40

I
~30

I
~20

10

0o 200 400 600 800 1000 1200 1400 1600 1800 2000
Simulation Time (msec)

Figure 3.8: TCP Vegas-Controlled Window Size

From the machine in the red circle

From Figure 3.8, we can see that TCP Vegas adjusts its windows size by

observed RTT and does not wait for packet loss to occur. Whereas Reno wait

until a packet is lost before decreasing its window size. TCP Windows is even

less secure in that it does not change the window size. It does only

retransmission when a packet is lost, which results in severe network

congestion. TCP Reno additionally implements congestion control. However,

Reno's algorithm still differs from that of Vegas. Vegas's congestion avoidance

algorithm can be considered as having the best protection against congestion.

42

St. Gabriel's Library_ Au

3.5 Throughput Comparison between TCP Reno

And TCP Vegas

From the previous section that showed the comparison of the changes of the

window sizes among TCP Windows, TCP Reno and TCP Vegas for the traffic

in AEROTHAI network. In this section, we will consider the comparison of

throughput between TCP Reno and TCP Vegas to find out which one gives a

better throughput for AEROTHAI network.

3.5.1 Network configuration for the throughput comparison study

The network model used in this section is the same as the previous section but

in this case, machines that connected to the network are implemented by the

same type of TCP on all of them as shown in Figures 3.9 and 3.10.

Computer Under
---.... Investigation

Receinver Host

TCP Reno10

Figure 3.9 Network Model of TCP Reno

43

Computer Under
Investigation

TCP Vegas10

Receinver Host

Figure 3.10 Network Model of TCP Vegas

From both of the network models of TCP Reno and TCP Vegas, we get

the window size generated from each machine. The machine in the red circle

can generate fewer window sizes than other machines. The reason why we

considered that the machine can generate fewer window sizes is that we want

to compare between TCP Reno and TCP Vegas in the worst case and to try to

figure out which one can give the better throughput.

44

3.5.2 TCP Reno window size when the other machines use TCP

Reno

Figure 3.11 shows the plots of window sizes of TCP Reno of the computer

within the red circle in Figure 3.9 that requires to forward TCP packets to the

receiver host and Figure 3.12 shows the volume of packets generated by other

TCP Reno machines at the same time. Simulation of TCP Reno in this section

employed the same Delphi programming language according to equation 2.5

and 2. 7, which built server and client socket components. Client socket

components are implemented on the 10 machines in the sender side and server

socket component is implemented on the receiver host. After client sockets

send packets to server, "Ack" will be sent back to client for the complete

transmission. TCP Reno uses the lost of packets to detect an eventually

congested network. So when the lost of packets occurs, client sockets will

decide either to reduce or to increase window size for the next transmission

according to TCP Reno algorithms.

25

20

I
~15

i
~

10

5

200 400 600 800 1000 1200
Simulation Time (msec)

Figure 3.11 Window Size of TCP Reno generated from

The machine in the red circle

45

160

140

40

20

200 400 600 800 1000 1200
Simulation Time (msec)

Figure 3.12 Summation ofWindow Sizes generated from other TCP Reno

machines

3.5.3 TCP Vegas window size when the other machines use TCP

Vegas

Figure 3.13 and 3.14 illustrate the change of window sizes adjusted by TCP

Vegas algorithm. Window sizes in Figure 3.13 generated by TCP Vegas

machine in the red circle and window sizes in Figure 3 .14 generated from other

TCP Vegas machines. Simulation of Vegas environment employed Delphi

programming language in the same way as the previous section but in this case

client sockets implemented on all machines.

46

25

20

i
1
~ 15

I
~

10

5

100 200 300
Simulation Time (msec)

400 500

Figure 3.13 Window Size of TCP Vegas generated from

The machine in the red circle

120

100

40

20

600

200 400 600 800 1000 1200
Simulation Time (msec)

Figure 3.14 Summation of Window Sizes generated from other TCP Vegas

machines

47

3.5.4 Throughput comparison between TCP Reno and TCP Vegas

Here, we consider a number of packets queued at the router in Figures 3.9 and

3.10. We assume that all TCP connections behave identically. TCP

implementations in the red-circled machine are those of interest. TCP

implementations in all other machines are not of interest in this study.

Since TCP Reno connections continue to increase their window sizes until the

router buffer becomes full and eventually some packets are lost. TCP Vegas

connections, on the other hand, control their window sizes according to the

observed RTTs of sending packets. Each of those tries to keep the number of

queued packets in the router buffer between a and p [packets] [19].

From the above observation, we obtain the average number of packets at

the router buffer for TCP Reno of interest and TCP Reno non-interest,

Br [packets] and Br [packets], respectively

B
Br=Wr·---

2rµ+B

- - B
Br=Wr•---

2rµ+B
(3.1)

where Wr is the average window size of TCP Reno of interest connection and

Wr is the average window size of TCP Reno non-interest connection.

Accordingly, the average number of packets at the router buffer for TCP

Vegas of interest and TCP Vegas non-interest, Bv [packets] and Bv [packets], is

obtained as;

B
Bv=Wv•---

2rµ+B

- - B
Bv=Wv·---

2rµ+B
(3.2)

48

where Wv is the average window size of TCP Vegas of interest connection and

Wv is the average window size of TCP Vegas non-interest connection.

Finally we have the average throughput of the connections for TCP

Reno of interest and TCP Vegas of interest, pr [packets/sec] and

pv [packets/s], respectively

Br
pr=µ·--=

Br+Br

Bv
pv=µ·--.,.,..

Bv+Bv
(3.3)

Figure 3 .15 and 3 .16 show the throughput comparison between TCP Reno and

TCP Vegas of interest from the machine in the red circle that the throughput

calculated from equations 3.1 to 3.3 which used propagation delay (r),

bandwidth between the router and the receiver host (µ) equal to 5 msec and 10

Mbps respectively.

450

400

350

150

100

50

200 400 600 800 1000
Simulation Time (msec)

Figure 3.15 Throughput ofTCP Reno from

The machine in the red circle

49

1200

450

400

350

1300
!250

~200
F

150

100

50

St. Gabriel's Librarv Au . ~

200 400 600 800 1000
Simulation Time (msec)

Figure 3.16 Throughput of TCP Vegas from

The machine in the red circle

1200

The Figures show that TCP Vegas can achieve higher throughput than TCP

Reno and when we calculate the average throughput from both of them, the

results demonstrated that the average throughput of TCP Vegas (260 packets/s)

is 21 % higher than TCP Reno (213 packets/s).

3.6 Experimental and Theoretical Analysis for the

Throughputs of TCP Reno and Vegas

This section provides analysis on the throughput of TCP Reno and Vegas

against varying router buffer sizes. The analysis is based on the mathematical

concepts show in equations 3.1 to 3.3. In the analysis, other parameters remain

50

constant. The window sizes of TCP Reno and Vegas are kept fixed as follows:

Wr = 10 packets, Wr = 13 packets, Wv = 13 packets, Wv = 15 packets These

window size values are derived by averaging window sizes from subsections

3.52 and 3.53 when rand µ remain the same as before, which are 5 msec and

10 Mbps, respectively.

300

200

100

,
/

101

Buffer Size [packets J

Figure 3.17: Throughput of TCP Reno and Vegas

against router buffer sizes (theoretical)

From the Figure 3.17, the green and blue lines show the throughput

delivered by TCP Vegas and Reno, respectively, against the buffer size. The

simulation results from the Figure 3 .17 shows that the throughput will have

direct variation against router buffer size. This is due to the bigger space

availability for storing incoming and outgoing packets.

Apart from the study about throughput against buffer sizes, investigation

of throughput with regards to propagation delay or bandwidth of the link may

also be carried out by the use of equations 3.1 to 3.3. That the throughput varies

51

directly with the bandwidth because of the large bandwidth, the more

transmission speed. Furthermore, that the throughput conversely varies with

propagation delay is due to the bigger time period used for a fixed volume of

traffic, which means the less throughput.

The analysis on throughput against buffer sizes aforementioned is based

on the mathematical concepts. Now, we will do some comparison between the

throughput results obtained from the network set up in subsection 3.5.4 and the

one taken from theory. Then we will be able to observe the differences and

similarities between them.

900

800

700

I soo
t

TIYoughput value of AEROTHAI Networ1<
with TCP Vegas

- 500 ! 260 packets/sec

I

Throughpli value of
AEROTHAI Network
with TCP Reno ~•oo/

3000---------, v
2001:;:-~~~~~~~~..-...,.i

100
213 packetslsec

AEROTHAI Router's Buffer Size

(30 packets)

Buffer Size [packets)

Figure 3.18: Throughput of TCP Reno and Vegas

against router buffer sizes (theoretical versus experiments)

From figure 3 .18, the red line represents the experimental throughput from

subsection 3.5.4 when buffer sizes equal 30 packets. The results obtained

demonstrate the throughput of TCP Vegas to equal 260 packets/sand that of

52

TCP Reno to equal 213 packets/s. It can be concluded that the throughput

shows in Figure 3.18 illustrate small differences between the experimental and

theoretical values because in experimental setup the actual window size vary

with time, while in theoretical using average window size in time.

3. 7 Conclusion

The network model in this study is characterized according to AEROTHAI

network. Subsequently, the impacts of either TCP Reno or TCP Vegas applied

to the AEROTHAI network is investigated and compared. We observes the

movements of window sizes and throughput values in many possible cases.

Such observation result in the conclusion of that TCP Vegas makes better

throughput gain than Reno does.

53

Chapter 4

Conclusion

TCP is a very typical transport protocol primarily designed for the exchange of

information among dissimilar communication networks in conjunction with IP.

TCP has been constantly researched, developed, and standardized due to that

the internet having several popular application services such as WWW, HTTP,

SMTP, and electronic mail, have been very widely used. Thus, the role of TCP

in the area of computer network implementation, operation, and maintenance

shall persist.

Congestion problem is one of the most important issues regarding TCP.

Internet congestion problems have existed for a long time. Therefore,

congestion control mechanisms are the challenging research area that do not

tend to be saturated because demands on the use of the internet have been

increasing steadily.

This study attempts to investigate several aspects of some TCP

implementations. The operations of existing TCP and congestion control

algorithms are observed and analyzed for the proper parameters using in later

simulation. (Slow) slow start, congestion avoidance, and fast recovery are

discussed in three TCP implementations, TCP Tahoe, TCP Reno, and TCP

Vegas.

The core idea of congestion control mechanisms mentioned herein is to

adjust TCP window size according to the volume of the traffic in the network.

TCP Tahoe has two congestion control phases, slow start and congestion

avoidance. During the slow start phase, its window size is doubled every time

the end system receives acknowledgment. It will enter congestion avoidance

phase when window size reaches a threshold value, where the rate of window

54

size increment gets slower than that of the slow start phase. TCP Tahoe will

come back to slow start phase if a packet loss is detected.

Congestion control in TCP Reno resembles that of Tahoe except that it

has an additional fast recovery phase, where the increment of the window size

behaves in the same way as the slow start phase. However, the initial window

size after congestion avoidance phase of Tahoe is set to 1, whereas that of Reno

is set to half of the current window size.

TCP Vegas improves the techniques utilized in Tahoe and Reno by

making it more dynamic in the way that the window size is rectified every

round trip time instead of being adjusted every time the end system receives

"Ack". Furthermore, simulation results also showed that TCP Vegas can

achieve better throughput than Tahoe and Reno at a small buffer size. Hence, it

may be concluded from the results that Vegas is the right choice for improving

throughput in AEROTHAI network.

From all results of this thesis, we believe that TCP can survive any

dramatical changes of the Internet infrastructure, and that any kind of new

services in the advanced Internet can be accommodated by TCP technology.

We do not have to replace TCP with a quite new transport-layer protocol.

The topics discussed within this study have been centered around

congestion problems and solutions, where the finalized TCP implementation

suitable for AEROTHAI network has been Vegas. However, there are

consequences of employing TCP Vegas. Even if it is able to attain throughput

improvement, stability is appeared to be unfair phenomenon of TCP Vegas.

Therefore, fairness and stability should be the extended matters that are to be

investigated in accordance with congestion.

55

References

[1] J. Nagle, "On Packet Switches with Infinite Storage," IEEE Trans.

Communication., vol. 35, 1987, pp. 435-38.

[2] D. D. Clark, "The Design Philosophy of the DARPA Internet

Protocols," Proc. ACMSIGCOMM, Stanford, CA, Aug. 1988, pp. 106-

14.

[3] S. Floyd and K Fall, "Promoting the Use of End-to-End Congestion

Control in the Internet," IEEEIACMTrans. Net., Aug. 1999.

[4] B. Suter et al., "Efficient Active Queue Management for Internet

Routers,"Proc. Eng. Conf. at Interop 98, Las Vegas, NV, May 1998.

[5] BORRELLI, R., AND COLEMAN, C. Differential Equations. Prentice

Hall Inc., 1987.

[6] LUENBERGER, D. G. Introduction to Dynamic Systems. John Wiley &

Sons, 1979.

[7] JAIN, R. A timeout-based congestion control scheme for window flow

controlled networks. IEEE Journal on Selected Areas in

Communications SAC-4, 7 (Oct. 1986).

[8] ALDOUS, D. J. Ultimate instability of exponential back-off protocol for

acknowledgment based transmission control of random access

communication channels. IEEE Transactions on Information Theory IT-

33, 2 (Mar. 1987).

56

[9] JAIN, R., RAMAKRISHNAN, K., AND CHIU, D.-M. Congestion

avoidance in computer networks with a connectionless network layer.

Tech. Rep. DEC-TR-506, Digital Equipment Corporation, Aug. 1987.

[1 O] Proceedings of the Sixth Internet Engineering Task Force (Boston, MA,

Apr. 1987). Proceedings available as NIC document IETF-87/2P from

DDN Network Information Center, SRI International, Menlo Park, CA.

[11] KLEINROCK, L. Queueing Systems, vol. II. John Wiley & Sons, 1976.

[12] CHIU, D.-M., AND JAIN, R. Networks with a connectionless network

layer; part iii: Analysis of the increase and decrease algorithms. Tech.

Rep. DEC- TR-509, Digital Equipment Corporation, Stanford, CA, Aug.

1987.

[13] HAJEK, B. Stochastic approximation methods for decentralized control

of multi-access communications. IEEE Transactions on Information

Theory IT-31, 2 (Mar.1985).

[14] HAJEK, B., AND VAN LOON, T. Decentralized dynamic control ofa

multi-access broadcast channel. IEEE Transactions on Automatic

Control AC-27, 3 (June 1982).

[15] J.M. Jaffe, "Bottleneck Flow Control," IEEE Trans. Commun., vol. 29,

no. 7, July 1981, pp. 954-62.

[16] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols,

Addison-Wesley, Reading, Massachusetts, 1994.

57

St. Gabriel's Library. An

[17] Lawrence S. Brakmo, Sean W.O'Malley, and Larry L. Peterson, "TCP

Vegas: New techniques for congestion detection and avoidance," in

Proceedings of ACMSIGCOMM'94, October 1994, pp. 24-35.

[18] D. Bertsekas and R. Gallager, Data Networks, Englewood Cliffs, NJ:

Prentice Hall, 1991.

[19] Go Hasegawa, Masayuki Murata, and Hideo Miyahara, "Fairness and

stability of the congestion control mechanism of TCP," in Proceedings

of IEEE INFOCOM'99, March 1999, pp. 1329-1336.

58

Appendix

In this section shows Delphi programming source code of client socket and

server socket for TCP Reno and TCP Vegas that used in subsection 3.4 and 3.5

TCP Reno Client Socket

unit UFonnClient;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, ScktComp, ComCtrls, URenoClient;

type
TFonnl = class(IFonn)
PageControl l: TPageControl;
TabSheetl: TTabSheet;
TabSheet2: TTabSheet;
TabSheet3:TTabSheet;
TabSheet4:TTabSheet;
TabSheet5: TTabSheet;
TabSheet6: TTabSheet;
TabSheet7: TTabSheet;
TabSheet8: TTabSheet;
TabSheet9: TTabSheet;
TabSheetlO:TTabSheet;
Memol: TMemo;
Timerl: Trimer;
Timer2: Trimer;
Timer3: Trimer;
Timer4: Trimer;
Timer5: Trimer;
ButtonStart: TButton;
ButtonStop: TButton;
ClientSocketl: TClientSocket;
Timer6: Trimer;
Timer7: Trimer;
Timer8: TTimer;
Timer9: TTimer;
TimerlO: TTimer;
ClientSocket2: TCJientSocket;
ClientSocket3: TClientSocket;
Memo2: TMemo;
Memo3: TMemo;
Memo4: TMemo;
Memo5: TMemo;
Memo6: TMemo;
Memo7: TMemo;
Memo8: TMemo;
Memo9: TMemo;
Memolo: TMemo;
ClientSocket4: TClientSocket;
ButtonSave: TButton;
ClientSocket5: TClientSocket;
ClientSocket6: TClientSocket;
ClientSocket7: TClientSocket;
ClientSocket8: TClientSocket;
ClientSocket9: TClientSocket;
ClientSocketIO: TClientSocket;

59

procedure ButtonStartClick(Sender: TObject);
procedure ButtonStopClick(Sender: TObject);
procedure Timer! Timer(Sender: TObject);
procedure ClientSocket!Read(Sender: TObject; Socket: TCustomWinSocket);
procedure Timer2Timer(Sender: TObject);
procedure Timer3Timer(Sender: TObject);
procedure ClientSocket2Read(Sender: TObject; Socket: TCustomWinSocket);
procedure ClientSocket3Read(Sender: TObject; Socket: TCustomWinSocket);
procedure ButtonSaveClick(Sender: TObject);
procedure Timer4Timer(Sender: TObject);
procedure ClientSocket4Read(Sender: TObject; Socket: TCustom WinSocket);
procedure ClientSocketSRead(Sender: TObject; Socket: TCustom WinSocket);
procedure ClientSocket6Read(Sender: TObject; Socket: TCustom WinSocket);
procedure ClientSocket7Read(Sender: TObject; Socket: TCustom WinSocket);
procedure ClientSocket8Read(Sender: TObject; Socket: TCustomWinSocket);
procedure ClientSocket9Read(Sender: TObject; Socket: TCustom WinSocket);
procedure ClientSocketl ORead(Sender: TObject;

Socket: TCustom WinSocket);
procedure Timer5Timer(Sender: TObject);
procedure Timer6Timer(Sender: TObject);
procedure Timer7Timer(Sender: TObject);
procedure Timer8Timer(Sender: TObject);
procedure Timer9Timer(Sender: TObject);
procedure Timer I OTimer(Sender: TObject);

private
{ Private declarations }
RenoClientl: TRenoClient;
RenoC!ient2: TRenoClient;
RenoClient3: TRenoClient;
RenoC!ient4: TRenoClient;
RenoClient5: TRenoClient;
RenoClient6: TRenoClient;
RenoClient7: TRenoClient;
RenoClient8: TRenoClient;
RenoClient9: TRenoClient;
RenoClient!O: TRenoClient;

public
{ Public declarations }

end;

var
Form!: TForml;

implementation

{SR •.DFM}

procedure TForml.ButtonStartClick(Sender: TObject);
begin

RenoClientl := TRenoC!ient.Create(IS,1);
RenoClient2 := TRenoClient.Create(l 5, 1);
RenoClient3 := TRenoClient.Create(IS,1);
RenoC!ient4 := TRenoClient.Create(IS,l);
RenoClient5 := TRenoC!ient.Create(IS,1);
RenoClient6 := TRenoClient.Create(IS,1);
RenoC!ient7 := TRenoClient.Create(IS,l);
RenoClient8 := TRenoClient.Create(IS,1);
RenoClient9 := TRenoC!ient.Create(IS,l);
RenoC!ientlO := TRenoC!ient.Create(IS,l);
ClientSocketl.Open;
ClientSocket2.0pen;
ClientSocket3 .Open;
ClientSocket4.0pen;
ClientSocket5.0pen;
ClientSocket6.0pen;
ClientSocket7.0pen;
ClientSocket8.0pen;
ClientSocket9.0pen;
ClientSocket!O.Open;
Timerl.Enabled :=True;
Timer2.Enabled := True;
Timer3.Enabled :=True;
Timer4.Enabled :=True;
Timer5.Enabled := True;
Timer6.Enabled :=True;

60

Timer7.Enabled :=True;
Timer8.Enabled :=True;
Timer9.Enabled :=True;
Timer IO.Enabled:= True;

end;

procedure TForml.ButtonStopClick(Sender: TObject);
begin
ClientSocketl .Close;
ClientSocket2.Close;
ClientSocket3 .Close;
ClientSocket4.Close;
ClientSocket5.Close;
ClientSocket6.Close;
ClientSocket7.Close;
ClientSocket8. Close;
ClientSocket9 .Close;
ClientSocket 1 O.Close;
Timed.Enabled:= False;
Timer2.Enabled :=False;
Timer3.Enabled :=False;
Timer4.Enabled :=False;
Timer5.Enabled :=False;
Timer6.Enabled :=False;
Timer7.Enabled :=False;
Timer8.Enabled :=False;
Timer9.Enabled :=False;
TimerlO.Enabled :=False;

end;

procedure TF orml. Timer 1 Timer(Sender: TObject);
var

sendTime: TDateTime;
begin
sendTime := Time;
RenoClient l .recordWindowSize(F ormatDateTlme('nn:ss:zzz',sendTime));
Memo l .Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime)+','+IntT oSt:r(RenoClientl. WindowSize));
ClientSocketl .Socket.SendText(StringOfChar(' A',RenoClient 1. WindowSize));

end;

procedure TFonnl .ClientSocket lRead(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoClientl.receiveMessage(Socket.ReceiveText);

end;

procedure TFonnl.Timer2Timer(Sender: TObject);
var

sendTime: TDateTime;
begin

sendTime := Time;
RenoClient2.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime));
Memo2.Lines.Add(FormatDateTime('nn:ss:zzz',sendTime)+','+lntToSt:r(RenoClient2.WindowSize));
ClientSocket2.Socket.SendText(StringOfChar('A',RenoClient2.WindowSize));

end;

procedure TF orml .ClientSocket2Read(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoClient2.receiveMessage(Socket.ReceiveText);

end;

procedure TForml.Timer3Timer(Sender: TObject);
var

sendTime: TDateTime;
begin
sendTime := Time;
RenoClient3 .recordWindowSize(F ormatDateTlme('nn:ss:zzz' ,sendTime));
Memo3.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient3.WindowSize));
ClientSocket3.Socket.SendText(StringOfChar('A',RenoClient3.WindowSize));

end;

procedure TForml.ClientSocket3Read(Sender: TObject;
Socket: TCustomWinSocket);

begin

61

RenoClient3.receiveMessage(Socket.ReceiveText);
end;
procedure TFonnl.ButtonSaveC!ick(Sender: TObject);
begin
RenoClientl.WindowSizeRecord.SaveToFile('CLIENTOl.CSV');
RenoClient2. WindowSizeRecord. SaveToFile('CLIENT02.CSV');
RenoClient3 .WindowSizeRecord. SaveToFile('CLIENT03.CSV');
RenoClient4.WindowSi7.eRecord.SaveToFile('CLIENT04.CSV');
RenoC!ientS.WindowSizeRecord.SaveToFile('CLIENTOS.CSV');
RenoClient6.WindowSizeRecord.SaveToFile('CLIENT06.CSV');
RenoClient7.WindowSizeRecord.SaveToFile('CLIENT07.CSV');
RenoC!ient8. WindowSizeRecord. SaveToFile('CLIENT08.CSV');
RenoC!ient9.WindowSizeRecord.SaveToFile('CLIENT09.CSV');
RenoC!ientlO.WindowSizeRecord.SaveToFile('CLIENTOlO.CSV');

end;

procedure TFonnl.Timer4Timer(Sender: TObject);
var

sendTime: TDateTime;
begin

sendTime := Time;
RenoClient4.recordWindowSize(F onnatDateTime('nn:ss:zzz',sendTime));
Memo4.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoC!ient4.WindowSize));
ClientSocket4.Socket. SendText(StringOit:har(' A',RenoClient4. WindowSize));

end;

procedure TFonnl.ClientSocket4Read(Sender: TObject;
Socket: TCustomWinSocket);

begin
RenoClient4.receiveMessage(Socket.ReceiveText);

end;

procedure TFonnl.ClientSocketSRead(Sender: TObject;
Socket: TCustomWinSocket);

begin
RenoClientS.receiveMessage(Socket.ReceiveText);

end;

procedure TForml.ClientSocket6Read(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoClient6.receiveMessage(Socket.ReceiveText);

end;

procedure TFonnl.ClientSocket7Read(Sender: TO~ect;
Socket: TCustom WinSocket);

begin
RenoClient7.receiveMessage(Socket.ReceiveText);

end;

procedure TFonn l .ClientSocket8Read(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoClient8.receiveMessage(Socket.ReceiveText);

end;

procedure TFonnl.ClientSocket9Read(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoC!ient9.receiveMessage(Socket.ReceiveText);

end;

procedure TF onn l .ClientSocketl ORead(Sender: TObject;
Socket: TCustom WinSocket);

begin
RenoClientlO.receiveMessage(Socket.ReceiveText);

end;

procedure TF onn 1. TimerSTimer(Sender: TObject);
var

sendTime: TDateTime;
begin

sendTime := Time;
RenoClientS.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime));
MemoS.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClientS.WindowSize));

62

ClientSocket5.Socket. SendText(StringOfChar(' A',RenoClient5. WindowSize));
end;
procedure TFonnl.Timer6Timer(Sender: TObject);
var
sendTime: IDateTime;

begin
sendTime := Time;
RenoClient6.recordWindowSize(FonnatDateTime('nn:ss:zzz',sendTime));
Memo6.Lines.Add(FonnatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient6.WindowSize));
ClientSocket6.Socket.SendText(StringOfChar('A',RenoClient6.WindowSize));

end;

procedure TFonnl.Timer7Timer(Sender: TObject);
var
sendTime: 1DateTime;

begin
sendTime := Time;
RenoClient7.recordWindowSize(FormatDateTime('nn:ss:zzz',sendTime));
Memo7 .Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient7. WindowSize));
ClientSocket7 .Socket.SendText(StringOfChar('A',RenoClient7. WindowSize));

end;

procedure TForml.Timer8Timer(Sender: TObject);
var

sendTime: IDateTime;
begin

sendTime := Time;
RenoClient8.recordWindowSize(F ormatDateTime('nn:ss:zzz' ,sendTime));
Memo8.Lines.Add(FormatDateTime('nn:ss:zzz',sendTime)+','+IntToStr(RenoClient8.WindowSize));
ClientSocket8.Socket.SendText(StringOfChar('A',RenoClient8.WindowSize));

end;

procedure TF onn 1. Timer9Timer(Sender: TObject);
var
sendTime: IDateTime;

begin
sendTime := Time;
RenoClient9.recordWindowSize(F onnatDateTime('nn:ss:zzz',sendTime));
Memo9.Lines.Add(F ormatDateTime('nn:ss:zzz',sendTime)+' ,'+IntToStr(RenoClient9. WindowSize));
ClientSocket9.Socket.SendText(StringOfChar(' A',RenoClient9. WindowSize));

end;

procedure TFonnl.Timer!OTimer(Sender: TObject);
var

sendTime: 1DateTime;
begin

sendTime := Time;
RenoClient 1 O.recordWindowSize(F onnatDateTime('nn:ss:zzz' ,sendTime));
Memo 1 O.Lines.Add(F ormatDateTime('nn:ss:zzz' ,sendTime)+' ,'+IntT oStr(RenoClientl 0. WindowSize));
ClientSocketlO.Socket.SendText(StringOfChar('A',RenoClientlO.WindowSize));

end;

end.

63

TCP Reno Server Socket

unit UFormServer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ScktComp, Spin, ExtCtrls;

type
TFormServer = class(TForm)

ServerSocket: TServerSocket;
Labell: TLabel;
Label2: TLabel;
SpinEditC!ientCollllt: TSpinEdit;
SpinEditBufferRemain: TSpinEdit;
procedure FormShow(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure ServerSocketClientConnect(Sender: TObject;

Socket: TCustom WinSocket);
procedure ServerSocketClientRead(Sender: TObject;

Socket: TCustomWinSocket);
procedure ServerSocketClientDisconnect(Sender: TObject;

Socket: TCustom WinSocket);
private

{ Private declarations }
ClientCollllt: Integer;
ReceiveCollllt: Integer;
BufferSize: Integer;
BufferC01U1t: Integer;

public
{ Public declarations }

end;

var
FormServer: TFormServer;

implementation

{SR *.DFM}

procedure TFormServer.FormShow(Sender: TObject);
begin

ServerSocket.Open;
ClientCount := 0 ;
BufferSize := 30 ;
BufferCount := 0 ;
ReceiveCount := 0 ;

end;

procedure TFormServer.FormClose(Sender: TObject; var Action: TCloseAction);
begin

ServerSocket.Close;
end·

procedure TF ormServer.ServerSocketClientConnect(Sender: I Object;
Socket: TCustom WinSocket);

begin
Inc(ClientCount);
SpinEditClientCount. Value := ClientCount;

end;

procedure TF ormServer. ServerSocketClientRead(Sender: TObject;
Socket: TCustom WinSocket);

var
recLength: Integer;

begin
//vegas
{
recLength := Socket.ReceiveLength;

64

if recLength + BufferCount > BufferSize then
begin

Socket.ReceiveText;
BufferCoWlt := 0 ;
Socket.SendText('LOSS~;
SpinEditBufferRemain.Value := BufferSize - BufferCount;

end
else
begin

Socket.Receive Text;
Socket.SendText('ACK');
BufferCOWlt := BufferCount + RecLength;
SpinEditBufferRemain.Value := BufferSize - BufferCoWlt;

end;
//reno
}

recLength := Socket.ReceiveLength;
if recLength + BufferCoWlt > BufferSize then
begin

Socket.Receive Text;
Socket. SendText('LOSS');

end
else
begin

Socket.Receive Text;
Socket.SendText('ACK');
BufferCoWlt := BufferCoWlt + RecLength;
SpinEditBufferRemain.Value := BufferSize - BufferCount;

end;
lnc(ReceiveCoWlt);
ifReceiveCo\Dlt >= ClientCount then
begin

ReceiveCowit := 0 ;
BufferCowit := 0 ;

end;

end;

procedure TF onnServer. ServerSocketClientDisconnect(Sender: TObject;
Socket: TCustom WinSocket);

begin
Dec(ClientCowit);
SpinEditClientCOWlt. Value := ClientCount;

end;

end.

65

TCP Vegas Client Socket

unit Client;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Fonns, Dialogs,
StdCtrls, ScktComp, ComCtrls;

type
TForm2 = class(IForm)

EditAddress: TEdit;
Labell: TLabel;
EditPacketBytes: TEdit;
Labell: TLabel;
Label3: TLabel;
EditBaseRtt: TEdit;
Label4: TLabel;
EditAlfa: TEdit;
LabelS: TLabel;
EditBeta: TEdit;
ButtonStart: TButton;
MemoWindowSize: TMemo;
ClientSocket: TClientSocket;
EditAckBytes: TEdit;
Label7: TLabel;
Buttonl: TButton;
Save: TButton;
SaveDialog: TSaveDialog;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure ButtonStartClick(Sender: TObject);
procedure ClientSocketRead(Sender: TObject; Socket: TCustom WinSocket);
procedure Button l Click(Sender: TObject);
procedure SaveClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
lsActive: Boolean;
WindowSize: Integer;
StartTime: TDateTime;
EndTime: TDateTime;
function cwnd(diff:Extended; size: Integer): Integer;
function diff(size: Integer,base _ rtt:Extended;rtt: Extended): Extended;
function SavefileO:boolean;

end;

var
Form2: TForm2;

implementation

{$R •.DFM}

function TForm2.cwnd(diff:Extended; size: Integer): Integer;
var
newSize: Integer;
a: Extended;
b: Extended;

begin
a := StrToFloat(EditAlfa. Text)/StrToFloat(EditBaseRtt. Text);
b := StrToFloat(EditBeta. Text)/StrToFloat(EditBaseRtt. Text);
newSize := size;
if diff < a then

//newSize :=size+ StrTolnt(EditPacketBytes.Text)
newSize := size + I

else if (diff>= a) and (diff <= b) then
newSize := size

else if diff > b then
//newSize :=size - StrTolnt(EditPacketBytes.Text);

66

St. Gabriel's Library, Au

newSize :=size - l;
Result := newSize;

end;

procedure TForm.2.FormClose(Sender: TObject; var Action: TCloseAction);
begin

ClientSocket. Close;
end;

fi.mction TForm.2.diff(size: Integer;base_rtt:Extended;rtt: Extended): Extended;
begin

Result := size/base _rtt - size/rtt ;
end;

procedure TF orm.2.ButtonStartClick(Sender: TObject);
begin

WindowSize := StrToint(EditPacketBytes.Text);
if EditAddress. Text = " then
begin

ShowMessageCinvalid address');
exit;

end;
if not IsActive then
begin

ClientSocket.Address := EditAddress.Text;
lsActive := True;
ClientSocketActive :=True;
ButtonStart.Caption := 'Stop';

end
else
begin

lsActive :=False;
ClientSocket.Close;
ButtonStart.Caption := 'Start' ;

end;
end;

procedure TForm.2.ClientSocketRead(Sender: TObject;
Socket: TCustom WinSocket);

var
rtt: Extended;
diffs: Extended;

begin
Socket.ReceiveText;
EndTirne := Time;
rtt := StrToFloat(F ormatDateTime('ss',EndTime))+StrToFloat(F ormatDateTime('zzz',EndTime))/1000

- StrToFloat(FormatDateTime('ss',StartTime))-StrToFloat(FormatDateTirne('zzz',StartTime))/1000;
diffs := diff(WindowSize,StrToFloat(EditBaseRtt.text),rtt);
WindowSize := cwnd(diffs,WindowSize);
MemoWindowSize.Lines.Add(FormatFloat('##0.000',diffs)+':'+IntToStr(WindowSize));

StartTime := Time;
ClientSocket.Socket.SendText(StringOtt:har('B',WindowSize));

end;

procedure TForm.2.ButtonlClick(Sender: TObject);
begin

MemoWindowSize.Lincs.Add(IntToStr(WindowSize));
StartTime := Time;
ClientSocket.Socket.SendText(StringOtt:har('B',WindowSize));

end;

fi.mction TForm.2. SavefileQ:boolean;
begin
if SaveDialog.Execute then
begin

MemoWindowSize.Lines.SaveToFile(SaveDialog.FileName);
Result := True;

end
else
begin
Result:= False;

end;
end;

67

procedure TForm2.SaveClick(Sender: TObject);
begin

Savefile;
end;

end.

68

TCP Vegas Server Socket

unit Server;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ScktComp, StdCtrls;

type
TForml = class(IFonn)

ServerSocket: TServerSocket;
MemoClient: TMemo;
Labell: TLabel;
EditClientCowit: TEdit;
Label2: TLabel;
EditAckBytes: TEdit;
procedure ServerSocketAccept(Sender: TObject;

Socket: TCustom WinSocket);
procedure FormCreate(Sender: TObject);
procedure ServerSocketC!ientDisconnect(Sender: TObject;

Socket: TCustom WinSocket);
procedure F ormClose(Sender: TObject; var Action: TCloseAction);
procedure ServerSocketClientRead(Sender: TObject;

Socket: TCustom WinSocket);
private

{ Private declarations }
public

{ Public declarations }
ClientCowit: Integer;

end· .
var
Fonnl: TFonnl;

implementation

{SR •.DFM}

procedure TForml.ServerSocketAccept(Sender: TObject;
Socket: TCustomWinSocket);

begin
Inc(ClientCowit);
EditClientCount.Text := IntToStr(ClientCowit);
MemoClient.Lines.AddCClient connect: '+Socket.RemoteAddress);

end;

procedure TForml:FonnCreate(Sender: TObject);
begin

ClientCowit := 0 ;
ServerSocket.Active :=True;

end;

procedure TF orm l .ServerSocketClientDisconnect(Sender: TObject;
Socket: TCustom WinSocket);

begin
Dec(ClientCowit);
EditClientCowit. Text := IntToStr(ClientCowit);
MemoClient.Lines.AddCClient disconnect: '+Socket.RemoteAddress);

end;

procedure TForml.FonnC!ose(Sender: TObject; var Action: TCloseAction);
begin

ServerSocket.Close;
end;

procedure TF onn 1.ServerSocketClientRead(Sender: TObject;
Socket: TCustomWinSocket);

begin
Socket.ReceiveText;
Socket.SendText(StringOl.t:barC A',StrTolnt(EditAckBytes. Text)));

69

//Memol.Lines.Add(Socket.ReceiveText);
//ServerSocket. Socket.Connections[O].SendText(StringOfChar(' A' ,StrTolnt(EditAckBytes. Text)));

end;

end.

70

S(-Gabriel's Library, Au

	Cover and Title page
	Abstract
	Acknowledgements
	Chapter 1 Introduction
	Chapter 2 The Concepts of Existing TCP Implementations
	Chapter 3 Simulation Models and Results
	Chapter 4 Conclusion
	References
	Appendix

