Linear recurrence equation to analyzing the complexity of algorithms
item.page.dc.publisher
item.page.dcterms.publisher
item.page.dc.date.issued
2009
item.page.dc.date.copyright
item.page.mods.genre
item.page.dc.relation.ispartofseries
item.page.mods.edition
item.page.dc.language.iso
eng
item.page.dc.format.mimetype
application/pdf
item.page.dc.format.extent
4 pages
item.page.dc.identifier.isbn
item.page.dc.identifier.issn
item.page.dc.identifier.eissn
item.page.dc.identifier.doi
item.page.dc.identifier
item.page.dcterms.accessRights
item.page.oaire.accessRight
item.page.au.identifier.callno
item.page.au.identifier.other
item.page.dc.date.copyrighted
item.page.mods.physicalLocation
item.page.dc.identifier.citation
International Journal of the Computer, the Internet and management 17.SP1 (March 2009), 17.1-17.4
item.page.dc.title
Linear recurrence equation to analyzing the complexity of algorithms
item.page.dc.title.alternative
item.page.dc.contributor.author
item.page.dc.contributor.editor
item.page.dc.contributor.advisor
item.page.ithesis.email.advisor
item.page.dc.contributor
item.page.dc.contributor.other
item.page.dc.description.abstract
Solving recurrence equation (Res) is an important technique in the analysis of algorithms. Especially for the divide and conquer algorithms, establishing the recurrence equations, solving them as well as finding the order of complexity will be discussed.